{"pages":{"search":{"query":"DrGreggHarbaugh","originalQuery":"DrGreggHarbaugh","serpid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","parentReqid":"","serpItems":[{"id":"15226338297094435860-0-0","type":"videoSnippet","props":{"videoId":"15226338297094435860"},"curPage":0},{"id":"5615042771503724847-0-1","type":"videoSnippet","props":{"videoId":"5615042771503724847"},"curPage":0},{"id":"7962854900351674453-0-2","type":"videoSnippet","props":{"videoId":"7962854900351674453"},"curPage":0},{"id":"8108187745123509373-0-3","type":"videoSnippet","props":{"videoId":"8108187745123509373"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dERyR3JlZ2dIYXJiYXVnaAo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","ui":"desktop","yuid":"8092440811765304313"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"375646766366546638-0-5","type":"videoSnippet","props":{"videoId":"375646766366546638"},"curPage":0},{"id":"6409784102577235428-0-6","type":"videoSnippet","props":{"videoId":"6409784102577235428"},"curPage":0},{"id":"8002164157824435740-0-7","type":"videoSnippet","props":{"videoId":"8002164157824435740"},"curPage":0},{"id":"2949002679231060152-0-8","type":"videoSnippet","props":{"videoId":"2949002679231060152"},"curPage":0},{"id":"8888658459983972059-0-9","type":"videoSnippet","props":{"videoId":"8888658459983972059"},"curPage":0},{"id":"9882545508686230655-0-10","type":"videoSnippet","props":{"videoId":"9882545508686230655"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dERyR3JlZ2dIYXJiYXVnaAo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","ui":"desktop","yuid":"8092440811765304313"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"11035026012580377974-0-12","type":"videoSnippet","props":{"videoId":"11035026012580377974"},"curPage":0},{"id":"8303397544108359698-0-13","type":"videoSnippet","props":{"videoId":"8303397544108359698"},"curPage":0},{"id":"4233878640193542812-0-14","type":"videoSnippet","props":{"videoId":"4233878640193542812"},"curPage":0},{"id":"7150520181161353737-0-15","type":"videoSnippet","props":{"videoId":"7150520181161353737"},"curPage":0},{"id":"1857860893177686667-0-16","type":"videoSnippet","props":{"videoId":"1857860893177686667"},"curPage":0},{"id":"6253916645840183663-0-17","type":"videoSnippet","props":{"videoId":"6253916645840183663"},"curPage":0},{"id":"17230055735314616366-0-18","type":"videoSnippet","props":{"videoId":"17230055735314616366"},"curPage":0},{"id":"9318159882391999867-0-19","type":"videoSnippet","props":{"videoId":"9318159882391999867"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"correction":{"items":[{"kind":"misspell","url":"/video/search?nomisspell=1&noreask=1&text=Dr%20Gregg%20Harbaugh","params":{"nomisspell":"1","noreask":"1","text":"Dr Gregg Harbaugh"},"query":"Dr Gregg Harbaugh","helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"624395209473"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dERyR3JlZ2dIYXJiYXVnaAo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","ui":"desktop","yuid":"8092440811765304313"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Fnomisspell%3D1%26noreask%3D1%26text%3DDrGreggHarbaugh"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1711856285118604844743","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1407488,0,48;1426276,0,0;1193347,0,53;1432976,0,33;1436971,0,36;1429439,0,22;1436030,0,42;1429981,0,65;1312967,0,31;1152685,0,21;1427781,0,54;1434896,0,3;27382,0,46;1432170,0,45;1418739,0,11;1434149,0,91;1425921,0,96;1433743,0,56;1282205,0,71;1417827,0,69;1366396,0,35;1431395,0,69;1430618,0,22;1440099,0,4;1349038,0,56;1430507,0,38;1428091,0,16;124066,0,49;89018,0,58;40255,0,66;1436781,0,18;1422262,0,31;1433820,0,62;1002325,0,39;1435598,0,77;151171,0,8;126350,0,98;1269693,0,11;1281084,0,80;287509,0,67;1231503,0,53;912283,0,24"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Fnomisspell%3D1%26noreask%3D1%26text%3DDrGreggHarbaugh","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?nomisspell=1&noreask=1&text=DrGreggHarbaugh","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?nomisspell=1&noreask=1&text=DrGreggHarbaugh","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"DrGreggHarbaugh: 110 video Yandex'te bulundu","description":"\"DrGreggHarbaugh\" sorgusu için arama sonuçları Yandex'te","shareTitle":"DrGreggHarbaugh — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y7a21905f5f75fd88f89068356a5b4a96","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1407488,1426276,1193347,1432976,1436971,1429439,1436030,1429981,1312967,1152685,1427781,1434896,27382,1432170,1418739,1434149,1425921,1433743,1282205,1417827,1366396,1431395,1430618,1440099,1349038,1430507,1428091,124066,89018,40255,1436781,1422262,1433820,1002325,1435598,151171,126350,1269693,1281084,287509,1231503,912283","queryText":"DrGreggHarbaugh","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"8092440811765304313","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765304624","tz":"America/Louisville","to_iso":"2025-12-09T13:23:44-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1407488,1426276,1193347,1432976,1436971,1429439,1436030,1429981,1312967,1152685,1427781,1434896,27382,1432170,1418739,1434149,1425921,1433743,1282205,1417827,1366396,1431395,1430618,1440099,1349038,1430507,1428091,124066,89018,40255,1436781,1422262,1433820,1002325,1435598,151171,126350,1269693,1281084,287509,1231503,912283","queryText":"DrGreggHarbaugh","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"8092440811765304313","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1711856285118604844743","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":159,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"8092440811765304313","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"15226338297094435860":{"videoId":"15226338297094435860","docid":"34-7-6-Z666AAFE929335E68","description":"This brief video is part 5 of 7 in a series about summarizing and visualizing quantitative data using GFDTs and histograms. In this video, we summarize and briefly justify the 4 rules one should...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382530/b5c59dee34e427a7fd0bb3253a4a5a03/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5Dlu5QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dyiyjl0Yu7fo","linkTemplate":"/video/preview/15226338297094435860?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Exploring Grouped Frequency Distribution Tables: The rules for building GFDTs.","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yiyjl0Yu7fo\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoWChQxNTIyNjMzODI5NzA5NDQzNTg2MFoUMTUyMjYzMzgyOTcwOTQ0MzU4NjBqiBcSATAYACJFGjEACipoaGZvZGl5eHV1dXh6YmFkaGhVQ25Gdm5MVGJ1Z3l6NDluZ24yci1iYXcSAgASKhDCDw8aDz8TjQOCBCQBgAQrKosBEAEaeIH0AwL-_wEAA_8FAQ0G_gEVAvL69AICAPPw-f8FAv8A_f759gEAAAAXCQMCCQAAAOwH_fX1AQAAFQn9_wQAAAAPA_7__AAAABcJ9gj-AQAA7PT2_wMAAAAF_gMEAAAAAPcLB_r7_wAA-gEFAAAAAAAA9fT-AAAAACAALdgy1Ds4E0AJSE5QAiqEAhAAGvABfwfqAtEL_P8LBuEA2_T0ApYAAf8SB-wAxhEBAcsY8gADGegAzfPuAADlCgDd__4ADObaACHvAwAYAfr_LykA__4SIwAt4v4ALPzlAhEKzwAWBBYABfIUABDTDP8U_wX_CPsYAeH46gAS9fQC_PEjABjxHQLz-QoCDfEP_-gYAAIL_fQDFt0DAvQP_AHgDgcECP0R_e0J8_n75AIGFQreAvTk_f_1Fe_6B_HtBhj89_r49Qb89wD2_h8BDgHuEvsEGu0FAvkJ_fznIQv5Fef_AeD_GPrj3Qb8GQLsBP7YB_nmCgH17AwCBtwSCA0CDATyIAAtqRREOzgTQAlIYVACKs8HEAAawAe5HAO_ob-ru5pz-LtayK08M9xAPZ5ilbx8oZs8It0UPYDEZTw-qcu9YWSTPCI2GL0Uz-G-wa37vNXnCr2g4ig-UdvGvEQONjwOMQ6-TQaRPEfoQrynWYC-4tLiOAeaL70rP189fl9xu5_NKrxyH5Q9mAeKPfRx6TtdF769XZalvJLNVb18zpK9Ji2mvHGNdLycFDY-iIAiPEz1ibwuWaU9Y0JMvB8IWjzO9g09c4vUvN_RsbvyKMC9r63EPIVzETsBhTo-G_90vPjt1rtH4oo8-CenvC1D2jvzfec82UD8Oomgxbxt-oi9mHIZPaDGmDz4zCg99DsoPBtyojxTCWq9RDagPZhnRTr19fw9nKIIPesrWbw-CGE9qEKiPSgp8Dx5tYc9cxC0vB0qvDwBQIQ9-V_4PFE0DbwIuky94c9wPfa8tLsFKi08RkEQPd3zVzz9H3Y9IvhEPcvydby9nGO92YixvIFQKDxWH9m8ygNsu2TayLy46vo9hNkkvWXIjLyy-0k92G_MPVslWLyxSIi9cP86O_cCFjxcMjg9F1stvGYgq7g34kk9xds0vc45FzyH0FI8KQKhPfRWODxMule9UeeAvPkyLLxu_6U9SKK8vDq-qLtjdGW77ZbJvGkOHLsPpwK9AfFEvQUGILwgWHo8VHTkPOwq6ruG6JC9LxSwPHoxuTvaV949J-vBvNr1bLmx1Yo8jaE1u0aZS7uvcs87Nz80vFWtv7rUoIE7dBWxvT6zW7gHVRQ9GU-pPEKiSbmZNjK9DRqXOwvyl7m3qUs9LVoFPbniYjkY7fE8bwCsvErdCbqbaOE8j4YYvVeudDrR-gW9lpXDumXkzLiD9wW-iWkVvQzFkrkHjyC9ENoBPROlNTk5oCC9xE06OzSklLlpAK88pUzqPaKPvjhX2a28owNyvUyH17hCBtG7tlDNvItFJrm1SwC9blFGvbtKUjgTiDI87UqmPCghqDh7Zu68eIKYvJCgNbhuTPQ8wrUEPesQJjdalQ47kO9XPbd1jbgFmwQ7G3ubveeWbrZSSM-7PjyrvU-y5DisJ6k8WA34vKs2uTgDGla9FyP3vDO3NrcuQQE9Q_YLPUi9DTh9VdO8W_0gvMbaFLiSEvE8Gw1AvfRmYzjUQ_Q9VmBNPZSLXbnslei7M_MpPTgaUbjML568yhLCvNkhcTeNbnO85j1vu3Q1OLfk1Z68eonxvWVVMLiKllc9EFj5PY0XQDjiGK48b6WiPUwnUri6IFG9bfdcvXx2hLcGlu08XBZdPH4g1DcgADgTQAlIbVABKnMQABpgQ_0AHRki_vX3OuHW1NQEAgAM2R7MEv8KxgDjEODwJR29tfjr_xCx6gWuAAAADxzuIBkAMG8N2sgM5dLX8qb7HA5_Giws0PfsGgPS6RPvGN4P8ytgAAT2tA85zN00BCb5IAAtAr8nOzgTQAlIb1ACKq8GEAwaoAYAAAAAAABYQgAAAAAAAJDBAADCQgAAuEIAAIhCAABAwgAAmMEAAEBBAABAQAAAfMIAAHTCAAAgwQAApEIAAODBAADIQQAAwMEAAEDAAAAswgAAIMEAAATCAADowQAA2EEAAMBAAAAAwgAAWMIAAJbCAADoQQAALEIAAMBBAAAIQgAATMIAAHDBAABswgAAIMEAAKJCAAD-QgAAEMEAAJxCAAAAwQAAwEEAAEhCAAAAwQAATEIAACDCAACAwgAASEIAAIBBAABwQQAAsMIAAHDBAADgwAAAgL8AACxCAACAvwAAxMIAAADBAAAkwgAAsMEAAJhBAAAQwgAA6MEAALzCAAAwQQAAJMIAAADCAAAgwgAAAMIAABDBAAC4QQAAlkIAAIA_AABwwQAAuMEAAIjCAAAIwgAAYMEAACBBAABAQQAASMIAADBCAABAQAAAiEIAAJjBAACAwAAAgMEAABhCAAB8QgAAoMEAAIZCAACOQgAAgEEAAIrCAADQwQAAwMAAAGDBAADAwQAAeEIAABDBAACEwgAAQEIAAIZCAAAYwgAAgMEAAEDAAADwwQAAcEEAABzCAABAQgAAAAAAAIC_AAAQQQAAuMEAABDBAAC4QQAAoMEAAIbCAACYwQAAMEEAAOBAAAAcwgAAZMIAAADCAACAPwAAQEIAAJhBAAAwQQAAwMAAABDBAACwwQAAMMEAAFDBAACwQQAAdMIAAOBAAACgQAAAQMEAAFTCAAAYwgAAsEEAAABBAAA0QgAAgMEAANBBAACgQQAARMIAAIhBAABAQgAA-MEAADjCAAAsQgAAMEIAAABAAAAgwQAAQEAAALjBAAAwwgAAqMIAADxCAABgwQAAAMAAANDBAABAQAAAUEEAAGDBAAAgQgAAKEIAAOBAAAAQwQAAgD8AAOBAAACIwQAAAMEAAIjBAADowQAAuEEAAMDBAAAwQgAA-EEAAAzCAACOwgAAoMAAAIxCAACWQgAAIMEAABjCAAAgQQAABEIAADDBAACAvwAAlsIAAFhCAABAwQAAQEAAAFxCAABUwgAAIMEAABDBAAAQQSAAOBNACUh1UAEqjwIQABqAAgAAdL4AAFS-AAAkPgAAyD0AAKg9AABMPgAAhj4AAA2_AACyvgAA4LwAAOi9AACSPgAANL4AAFA9AACivgAA6D0AAMg9AABAvAAA6D0AACc_AAB_PwAAML0AAOC8AACgPAAAyL0AAIC7AACAuwAAiD0AAJq-AAA0PgAA-D0AAIA7AACGvgAA-D0AACQ-AACYPQAAZD4AALi9AACyvgAAML0AAKC8AACYvQAAbD4AAOC8AACovQAAUD0AAMg9AACovQAA-D0AAK6-AAAQPQAAEL0AACQ-AAAMPgAAgr4AAMi9AAARPwAAED0AABS-AACqPgAAoLwAAFQ-AAAQvQAAVD4gADgTQAlIfFABKo8CEAEagAIAAJq-AADIvQAAMD0AACG_AABsPgAAqD0AAEQ-AAAMvgAAHL4AACQ-AAC4vQAA4DwAANi9AABsvgAAcD0AAIC7AAAwPQAAJz8AAIC7AACyPgAAgDsAAMg9AACAuwAAQLwAAJi9AABAPAAAqL0AAKC8AACYvQAAED0AAKg9AAAMPgAAoDwAACS-AAAEPgAA4DwAABQ-AABMPgAAfL4AAIg9AABUPgAA4DwAAPg9AAAQvQAAgDsAAEC8AAB_vwAA-L0AAIA7AACgPAAAgj4AAIi9AAC-PgAA4LwAAMg9AABAPAAA4DwAABy-AAAUvgAAcL0AAEC8AAD4PQAAyL0AAKg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=yiyjl0Yu7fo","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["15226338297094435860"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5615042771503724847":{"videoId":"5615042771503724847","docid":"34-8-15-ZE6E26D423BF9C9AC","description":"This brief video is part 3 of 4. The first problem shows how to use Excel to calculate the area between two values for a normal distribution. The next example introduces the =Norminv(·) function...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/986839/e6b8aa1514e6ed58564f80b4505431fb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/18dC0QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYSc-rN5mTqY","linkTemplate":"/video/preview/5615042771503724847?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Recapping the Four Basic Cumulative Density Functions for Normal Distributions in Excel","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YSc-rN5mTqY\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM1NjE1MDQyNzcxNTAzNzI0ODQ3WhM1NjE1MDQyNzcxNTAzNzI0ODQ3aogXEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E4YDggQkAYAEKyqLARABGniBCQkFDgP9AAz99wb6CP4CFQX4BvQBAQDn-vv-BP4BAAkBA_IGAQAA_QcECwQAAADx-Pb8-QAAAPwHAgDvAP8AFAAFBPwAAAACBPj_CP8BAPIEC_ECAAAAHgUICQAAAAD5D_z6_wAAAAcOCwoAAAAADAP7CgAAAAAgAC3wYMw7OBNACUhOUAIqhAIQABrwAWL8DwHHCPP-DvMMAPIp7gCBBQv_LxfpAM4E_QDYEOEAA_4EANb-DQH7AA__ywUAAC0Q9QAD4h4AFvkVAC4BEQDyChwAKe4PACEAIgD19vD_3xIB_hvyE_746uwB-Q7p_yH7AQDQ_u4C_vrf_hv8IgH8AQIAJOf__f_nB_z9CAAE6_ji_hX9CAfw8P8B8iQIAwT08v_5FPj66ujq_wUV_AT85gIHFRTp_hYkAQL8CAL-7A4D-_cA9v4WGhAG5wb49uvzBPPm4wAA6gL-AhHkCwcS_gr2CQENAAMK9gLv2xQBzA8LAfgVEQPdEQgN6d74-yAALW4nSDs4E0AJSGFQAirPBxAAGsAHkbfcvr5IjT3v0Au9HMg_vQnqjDuczC6946C5vRxtizxeBSO80v_SPWkqdT1UlAW8-MGBvn_o-LxEaU89y4AzPubRiL2YYjM87-VOvhCoQz0YrMC7T3iRvmcVTD2p5ou6JmeyPbMxBjvR05s8wX6-PfL3wb0XrW280YQ8PdV2cz1fAEu9vlKxvOGLArx9Qcu89JX2PHsgCL14j308GFodPmoHcbu0hRA860MNvPQoJry2Ins87LOUvGvV7ryL6PK84pIDPoejkDw4D0w8sd4IPQ4bQLt4p6-73wkMvc8pUDm2jh68lVKGPSMxwTy7ZWK88G5gPVtVO71W2Ge8UwlqvUQ2oD2YZ0U6O8hrPgDZ9TzoJ2Y7fJrTvbGiJj19XrG8GQ_Cu5dNhb3Azk08dA2uPR56Ib3Kyoa70q59PcEyiz2OAZk8CWTAPM9ZdT2FY7E8_R92PSL4RD3L8nW8uDx3u-xTCb2nPaW8KlmJvSV0OLumtcy6vtuMPUtV-zo7tak87N7KPFOeDz3hqnw8yVNbPQCAjb2oMFs8emKnvBvG07wj_ZG8YBV5PY480DxBryo7EiIvPeT-Pr06eZG7LzKiOxQU9bwY9os7N6ruPCqZUr0LR2s8PYFQvfJhgT2wsaY7aMjdPAw2uztByS68922tvN3vUDxpbio8ey0tvUdjs73wvog5eWKhPVW1rj23SBg7k6X7POj4aD0e5xG7GLIKPmWew7sY0YI4zAybvPPArLzJKc87QGmoO5Nx7D0SRDq58JdgPfV1LjscS945pQWaO1k1YzzROuI55imjOn7trz3ujsE4RIAYvdXe8byAGii5_LNVvXc9sr2FGzC4eilmvXN7Dr1Rw-I48UZmPWh-EDxFZZ64NRlfvQX7D716nom6Hs5SvXPshbz8GhW52h5dPQq0Zb07UMY3HmtmPXPdTz3XAB05Mk94PLT08rxnr5m4D9Gqu2-eCj6gohm5IS6tO5hxDTyr8gG5FAQPPRBdAD6Nw3G4n887vfgAiD2xlKg3Hp7Ou_yUGT1rbM634_F-vd00bL2SxL63DCl1PB7mBj2DLVg3bcX-vaLUPr0aL_S4BEj-vLfTlr0YYy62xM8PPjxq6buey5U2WLSEPVQenbwb9EW4sRUEPsb_-Dsy2VO4k4ycvCaxqr33Adu4xcVRPQkpybz4z5-2cfSCvZgLRr3PQ6I2HZcMPUkPQ75UMU25QstfPWMatz1ukI44OaELvdEQhD3l09W4MQdBvVYeDTzX3602jZH0Oh7HCzxa8Jc4IAA4E0AJSG1QASpzEAAaYFHyAAkpB-MNCC3X8dv9ANHc_eYr3_f__Ob_ABbL9PIJyJ3r2_9Wzg0AqwAAABX9yA8XAPhyuuD0FvwUEZrR-_UsfzsmH8fL9wDNyO43-93zGhAWQwD8AKIYO-rGOBUhECAALWNIIDs4E0AJSG9QAiqvBhAMGqAGAACAwQAA6EEAADRCAADQwQAAFEIAAERCAADgQQAAoMIAAIrCAAAkwgAAUMEAAEjCAAAcwgAAqsIAABBCAAC4QQAAgEEAAGBBAAAowgAAEMIAAJBBAACoQQAAkEEAAADBAACgQAAAHMIAAHzCAAAAwgAAmEIAACBCAADgwAAAuEEAABzCAADAQAAAVMIAAABAAACAQQAA2EIAADTCAAD4QQAAAMAAACRCAAA4QgAAAEIAACBCAACQQgAAkMEAABDCAACAQgAAqMEAAFTCAAAgQgAAsMEAAEBAAAC4QQAAgL8AAADDAACAwAAAuMEAAEDBAADIwQAAVMIAAEDBAACcwgAAuMEAAJ7CAABAwAAAcMEAADTCAABQwQAAEEIAAHhCAABQQQAAAMAAAAAAAAAowgAAsMEAALjBAACiQgAAsEEAABDCAAAAQAAAiEEAAExCAADgwAAAgEAAABxCAACMQgAAcEIAAEDBAAAgwQAADEIAAMDAAADewgAAmEEAAATCAAAsQgAAsEEAAADBAABAwQAAgMIAAPhBAACQQgAAdMIAAJhBAAAwwQAAMMIAAHBCAADgwQAA6MEAANhBAABQwQAAQEEAADTCAABQQQAAkEEAAKBAAACSwgAAKEIAAAzCAAAAQAAABMIAAADBAACQwQAAwEEAAEDAAAAYwgAAsEEAABDCAAAEwgAAiEEAAODAAAAAAAAAcEEAAIC_AAAwQQAAGEIAAKDBAAA4wgAAiMIAAGTCAACSQgAAYEIAAMjBAAAQQQAA4EAAAK7CAACQQQAA4EAAAIDAAACoQQAA8MEAANBBAACgwQAAgMAAAIA_AACowQAA6MEAABDCAAAwwQAAiMEAADTCAABAwgAA8EEAABjCAADgQQAAiEEAAAhCAAAMQgAAoEAAACzCAAAQQQAANMIAALDBAADAwQAA2EEAAIhBAAAcwgAAREIAAJBBAABQwQAArsIAAABBAACgwQAAokIAANjBAACOwgAAhkIAAChCAAAkQgAAQMEAADDCAABUQgAA2MEAACzCAACGQgAAjMIAAGDCAACYwQAA6MEgADgTQAlIdVABKo8CEAAagAIAAAS-AABAvAAAyD0AALg9AACgPAAA6j4AAJo-AAArvwAAPL4AAHQ-AABEvgAAoLwAAJg9AADYPQAA4LwAAKA8AABQPQAAuL0AAEC8AADiPgAAfz8AAJg9AAC4PQAAij4AAHS-AAAsPgAA-D0AABS-AAAUPgAAND4AALg9AAAQPQAAgr4AAFC9AACyPgAAUL0AACw-AABQvQAAcL0AANi9AAAMvgAAmL0AAFw-AAAwPQAAFD4AAIo-AADgvAAAjr4AAES-AADWvgAA2D0AAMi9AAC4PQAAmD0AAMi9AACgvAAAIz8AAAy-AADovQAAqj4AAFA9AACGPgAA2D0AADC9IAA4E0AJSHxQASqPAhABGoACAAAUPgAAoLwAAMi9AAARvwAAmL0AAEC8AABwPQAAUD0AADy-AABUPgAAFL4AAEA8AACIvQAAkr4AAHA9AABAPAAA-D0AAB8_AACgvAAA5j4AADS-AABAPAAA2L0AAPi9AAD4vQAAiD0AABA9AACYvQAAUL0AADw-AABAPAAAyD0AAMi9AABMvgAABL4AAFQ-AACIPQAAXD4AAES-AADIvQAA6D0AALg9AADovQAAuD0AABC9AAAsPgAAf78AAMq-AAAkvgAAgDsAAOg9AACgPAAA-D0AAHC9AABwPQAAgDsAAKC8AACYvQAAFL4AAKg9AABQPQAAlj4AAEC8AABcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=YSc-rN5mTqY","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["5615042771503724847"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7962854900351674453":{"videoId":"7962854900351674453","docid":"34-11-7-Z1CDFD75E7160E5E5","description":"This brief video introduces some basic methods to visualize and summarize quantitative data. In particular, the focus is on constructing and interpreting stem-and-leaf plots. After the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1767222/110f110dd98aaafa90974bcdb736f2e3/564x318_1"},"target":"_self","position":"2","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DD9rOUyP4Bzo","linkTemplate":"/video/preview/7962854900351674453?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Stem-and-Leaf Plots: Visualizing & Summarizing Quantitative Data","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=D9rOUyP4Bzo\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM3OTYyODU0OTAwMzUxNjc0NDUzWhM3OTYyODU0OTAwMzUxNjc0NDUzaq8NEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E5sHggQkAYAEKyqLARABGniB-v778wrzAOnvDQEMAv8ADhT9BfMBAQD3Bg74BAT-APwEAPj1AQAA6vsO9gIAAAD7AwQF9P4BAAUWBf7jAP8ALQD8B_oA_wAQHfkD_QEAAPDw9_MCAAAAFQsKAf8AAAAHGAf1AP8AAN71C_gAAAAAGO0IAwABAAAgAC1sQbU7OBNACUhOUAIqcxAAGmAaBwAPDvj97O8J7-r27BLt7P7sFccPAPP_AM4b-OcDAvfG-hT_JuQj_8EAAAAq0R4QFADjTBbM6dgB3xjtyAIOBn8p8wonMRUE49_mBSD8_u7QCjYACPP5-ikL1yoM_vcgAC1p8F47OBNACUhvUAIqrwYQDBqgBgAAAEEAAEDAAAAoQgAAAMIAABRCAACWQgAAoEIAACDBAABgwQAAgD8AAIhBAADQwQAAlMIAAIBCAABAQQAAoMAAAEDAAACCwgAA8EEAAFBBAAAAwAAAqEEAAABBAAAMQgAAqEEAAMBAAAAEwgAAdMIAALDBAACQwQAA0EEAAOBAAACmwgAAiMEAAAAAAAAYQgAA4EEAAKJCAADQQQAASEIAANjBAADgQQAAgkIAADzCAABwQQAAQMIAACBBAACoQQAAWEIAAEhCAABgwQAAgEEAAKDAAABEQgAAoEAAALDBAAAAQQAAMMIAAIjBAACyQgAAUEIAAFDCAAAAQgAA6MEAAMBBAADgwQAAOMIAAHjCAADowQAAsMEAAGRCAACgQQAAoMEAAOBAAABwwQAALMIAABDCAACAQQAA4EAAAEBCAACowQAAtkIAANDBAAAEwgAAoEAAAADAAAAgwQAAYEIAAKhBAABgwQAAqMEAAKhCAADgwAAA4MAAAAAAAACCwgAAJEIAAGBBAADOQgAAcEEAANjBAABMQgAAHEIAAJBBAACswgAAAEAAAIbCAAAAQgAAFMIAAIBCAACAwQAAQMEAAODBAACgwQAAkMEAABxCAABwwQAAMMEAAAxCAAAgQQAAZMIAAIrCAAAwQQAAgL8AAEBBAADoQQAAGEIAAEDAAAA0wgAAqMEAAAjCAABYwgAAdEIAAFRCAADAwAAAqkIAAJhBAAAEQgAA-MEAAFBBAADAQQAAZMIAAIZCAADAwAAAUEEAAFBCAADIwQAAyEEAAKhBAACgwQAAosIAAADAAABEwgAAKMIAAIBBAABMwgAAoMIAAEDAAAAwwgAAkEEAABDBAACAQAAAEMEAAJjCAABcwgAAUMEAAMDAAAAYQgAAcMEAALDBAAAcQgAA0EEAAADAAAB0wgAAcEEAABDCAACQQQAAgEAAAOBBAADYwQAAuMIAAIA_AABUwgAA-EEAAGBCAACEwgAATMIAAJDBAACsQgAAkMEAAKDAAACAvwAAmkIAAAzCAAAIQgAALEIAAABAAABMQgAAwEEAABBBIAA4E0AJSHVQASqPAhAAGoACAACovQAAUL0AAIA7AADovQAAdL4AAEA8AADoPQAA_r4AAJK-AABMPgAAhr4AADQ-AADYvQAARD4AABy-AABAvAAAoLwAAHC9AAAsPgAADz8AAH8_AABEvgAAiL0AAAS-AACGvgAALL4AADS-AACYvQAAiL0AAGw-AADgPAAAdL4AAFC9AAC4vQAALD4AAIi9AAAUPgAAVL4AAGS-AABwPQAAJL4AAEw-AAAUPgAADL4AACw-AABQvQAA6D0AAOi9AACIPQAApr4AAHC9AABMvgAAXD4AAAw-AACyvgAAiD0AACM_AABMvgAAEL0AANg9AADovQAARD4AANg9AACKviAAOBNACUh8UAEqjwIQARqAAgAAcL0AAKg9AADIvQAAJb8AABA9AACYPQAA-D0AAAy-AAAEvgAAgj4AAJi9AABcvgAAFL4AAHy-AACIPQAAqL0AADA9AAArPwAAuL0AAMo-AACAuwAAyL0AAFA9AADovQAAyD0AALg9AAA0vgAAMD0AAFA9AAC4PQAA4DwAAFA9AAC4vQAABL4AAMg9AACYvQAAJD4AAEA8AABMvgAAQDwAACw-AADYPQAAEL0AAOA8AABkvgAAqD0AAH-_AADovQAABL4AADQ-AABQvQAA-L0AAKC8AAD4PQAAuD0AAEA8AACAOwAAoLwAADy-AABwPQAAoLwAABQ-AAB0PgAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=D9rOUyP4Bzo","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["7962854900351674453"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8108187745123509373":{"videoId":"8108187745123509373","docid":"34-6-1-Z9939DE11C918E622","description":"This brief video is part 2 of 2. This second video starts with a problem designed to set the stage for our future discussions on confidence intervals. In particular, we calculate the range in...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3435397/0d2a7baf814b3ffccd7bed6f7bd00e38/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/K3iCLgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8Ips7lEWJ6I","linkTemplate":"/video/preview/8108187745123509373?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to the Central Limit Theorem (part 2)","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8Ips7lEWJ6I\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM4MTA4MTg3NzQ1MTIzNTA5MzczWhM4MTA4MTg3NzQ1MTIzNTA5MzczaoQJEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E8QJggQkAYAEKyqLARABGniB7gX8BQH_APz5BwgCCPwCBAAAAvj__gDtBPz4BQAAAOYB_f_6_wAA5gsECv0AAAD7AwQF9f4BAA37B_sFAAAABf_0B_UAAAAGA_UB_wEAAPT7_vwDAAAAAAT6_v8AAADsAxEC_wAAAPgQ_QcAAAAAC_UFDQAAAAAgAC1qLM87OBNACUhOUAIqhAIQABrwAW_2FQHb_Nv_9_ftAO4V-wGBBQv_Jizp_84E_QDL-dYA_vX-ANwJCQAe7xH_zBMGABsK6wDt2hwAKhkh_i_8AADwFhMAKgAOASEAIgD06eT_3CMB___pGAEI5O7_8xL8_g0R9f34COkBFRDZASbfHQEC-gcEJOf__RT4CP8CFAsC2uXZ_BsM9gT2-uH-4hQYAQ4K8AH-GPwF3-cA_wkCA_4DCAz8HgHsAhcN7wQEEQn-8wEGAPT47vkHFAwD5wb49vDyBwDt8wr9_PAEAw_TBgX0AQ35HhIBCCH_CQf-2Af52hP9COf7_fvXHQQA9vEABiAALW4nSDs4E0AJSGFQAipzEAAaYAMJAB37C934IS7Q_Pv3Btm4K_0N1wUA8fAAAgPI5fb9570G8v8dvQjrugAAAB0G5g76AABi8uTyJ-8I5dyd-h4IfzAZIuTh_fvF0wQQGcor_eP0JgDsD7I5RvHoCy4yGyAALTkiOTs4E0AJSG9QAiqPAhAAGoACAAAQPQAAqL0AAIo-AAAwvQAAoDwAABQ-AADYPQAA-r4AALa-AABMPgAAUD0AAEC8AACgvAAAdD4AAIi9AADovQAAhj4AALi9AAAMPgAAMT8AAH8_AADIvQAAcD0AAJg9AACevgAATD4AAKi9AAAEvgAAMD0AADQ-AAC4PQAABL4AAEC8AAC4PQAAHD4AAFy-AAAsvgAADL4AAJa-AAAkPgAAvr4AAIi9AACovQAAir4AAHC9AACoPQAAZD4AACy-AACAOwAAdL4AADS-AABUvgAAHD4AAK4-AABkvgAAoLwAACE_AABQvQAAZL4AAOY-AAAQvQAAQLwAAOg9AACOPiAAOBNACUh8UAEqjwIQARqAAgAANL4AAHC9AABAPAAAR78AAAw-AACoPQAA6D0AAOC8AABAvAAAhj4AABw-AACYPQAA2D0AAAw-AAAwPQAAoLwAAAw-AAA1PwAAmD0AAOo-AAD4vQAAUD0AAGQ-AACCvgAAoLwAAIC7AAAkPgAAuD0AAAQ-AABUPgAAUD0AAAw-AABsvgAAuL0AAJg9AACovQAAuD0AAFQ-AADYvQAA6L0AAJI-AAAMvgAAPL4AANg9AAD4vQAAHD4AAH-_AAAQvQAA4DwAAK4-AACoPQAAmD0AAPi9AACKPgAAMD0AAAw-AACAuwAAHL4AAEw-AAAUvgAAJD4AADS-AACIvQAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8Ips7lEWJ6I","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["8108187745123509373"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"375646766366546638":{"videoId":"375646766366546638","docid":"34-3-16-ZECAEACFFE8FBAA08","description":"This brief video walks through the calculation for the Expected Value (the mean) of the negative binomial distribution. This demonstrates a useful technique in upper-level mathematics: reducing...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/400207/66f92a677adfb507ef690bea3042590e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eRpWSAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzyoeTPvnrpk","linkTemplate":"/video/preview/375646766366546638?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Expected Value for the Negative Binomial Distribution","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zyoeTPvnrpk\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoUChIzNzU2NDY3NjYzNjY1NDY2MzhaEjM3NTY0Njc2NjM2NjU0NjYzOGq2DxIBMBgAIkUaMQAKKmhoZm9kaXl4dXV1eHpiYWRoaFVDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdxICABIqEMIPDxoPPxPJBoIEJAGABCsqiwEQARp4gfATAAABAADvAwv6-wEBASH7BvX0AwMA-PQB8QMD_gDgBAL7CP8AAAwM_wD6AAAAAPvxDfj9AAD49fjyAwAAABMDEgD-AAAAGAr2CP4BAAAAD_0AA_8AAA4JAQUAAAAA9AsD-gIAAAAKBAgBAAAAABX_9g4AAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AF_CAgBwgneANcFyADrGugAvQUd_zM84P-7--kA7P7aAPn52gDu7-QAKBzzAakk1AAcAcMA-c8CACDh_v4Z3gABwvIWAFAQ_v84EBcCBfbwALkU7v-5CPMA9NqzAB8t4_8B8Ab-IjL-AQrquAkl-y4BDQgsBB3bEv796f8A-w0T_f7dwf_yFhEDGdcY_wEyIQH-CQ4DARYC-usl_gUIC_n__P4P-BYL4wQg8-AF9ATj99LuDPr--foAB-cqB-rfzgHG8xX23dkAAP__Fvrv5BP5_SLwCQnu9QgM6wv6Dd37A-XJ6wHoAgEJ6PjvAvUD9gAgAC2NuxM7OBNACUhhUAIqcxAAGmBE-AAQAxzw8u4x7ffY7APUBv__B9b6AP_zAPMw7AMeDNm6DwYA_d8Y-b0AAADrCgAlEgD8WuD04iEF3PvZwtMoGX8sGQrQAvcY1xgALOUIAjX6FCAA-ATQDS_gvzfkRDQgAC39ukQ7OBNACUhvUAIqrwYQDBqgBgAAIEEAAKBAAABYQgAAUEEAAATCAACcQgAA8EEAAJjBAABEwgAAYEEAAODBAACKwgAAeMIAAJ7CAAAcQgAAcMEAAMhBAABgwQAAoMEAAKzCAAAAQAAAAMEAANjBAAAMQgAAHEIAAADAAAA4wgAAYMIAAKBCAAAAQgAAcEEAADDCAACmwgAAEEEAAKDCAACgwAAAHEIAAKpCAAAQQgAAiEEAAKBBAACAQAAAjkIAADRCAABAQQAAXEIAAGBBAACoQQAA6EEAAKjBAACMwgAAwEAAANDBAADAwQAAYMEAAOBBAAAEwgAAiMEAAIBAAAA8QgAAsMEAALDCAABwQQAAYMIAAKBAAAAUwgAABEIAABzCAACIwQAACEIAADhCAACCQgAAgL8AAIhBAAAcwgAAgMIAAIrCAACIQQAAGEIAADBBAAAAwgAAiEEAADBBAACAPwAAkMEAABxCAAAMwgAAHEIAAMBBAACwwQAA4EEAAKBBAAAAQAAA_MIAAPDBAABQwQAAoMEAADBBAABQwQAAwMAAAADCAACSQgAAKEIAAFTCAACewgAA8EEAAADCAACKQgAAYMEAAIA_AAAUQgAAwMAAADzCAAAUwgAAHEIAAIBAAAAAQgAAYMIAADRCAAAQQQAAgEAAAFBCAABAQQAAAMAAADBBAACAPwAAdMIAALhBAACewgAAQMAAAPBBAAD4wQAA4MEAACRCAAAwQgAAAEEAABxCAABwwQAAUEEAAIzCAACAwAAAkkIAAIBCAACAvwAAEEEAAGRCAACAwQAA-MEAAKDAAADgQAAA4EEAAADBAACSQgAA4MEAAIDBAADQQQAAHMIAAEDCAADAwQAACMIAAMhBAADAQQAALMIAAI5CAADwwQAAiEEAAGBBAADgQQAAAEIAAADAAACewgAA-EEAABjCAACIwQAAqEEAAAzCAAAEwgAAoEEAAODBAAB0QgAAkMIAACTCAAAwwQAADMIAAJBBAACYwgAA6MEAAKxCAACAQAAAGEIAAOBBAAAAwAAAeMIAAPDBAADYwQAAlkIAAHzCAAAMwgAA8MEAACBCIAA4E0AJSHVQASqPAhAAGoACAACAOwAAmL0AAEQ-AAAMvgAAML0AAGQ-AABEvgAAE78AAFS-AABcPgAAJD4AAFC9AABAPAAA2L0AAMK-AAAsPgAAJD4AAFC9AABsPgAAPD4AAH8_AACAuwAA-D0AAOA8AACGvgAAoLwAAHC9AACAuwAA4LwAANg9AAD4PQAA-L0AABC9AADYvQAAmD0AADC9AACIPQAAhr4AAAy-AABMvgAAVL4AAMi9AADmPgAAuL0AAIA7AAC6PgAAuD0AACS-AACAOwAAhr4AAIY-AABAPAAAEL0AAOA8AACWvgAA-L0AAPY-AAAwPQAA4DwAAOg9AAAsPgAAJL4AADA9AAC4vSAAOBNACUh8UAEqjwIQARqAAgAA4DwAAKi9AACgvAAAM78AABA9AAA8PgAAJD4AABQ-AADovQAA2D0AAJi9AAAMvgAAUL0AAIK-AABwPQAAUD0AAOg9AABHPwAAJL4AAIo-AABAvAAA6L0AAKA8AAC4vQAAoDwAAJI-AAAsvgAAQLwAAI6-AAAsPgAAUD0AANg9AABAvAAAyL0AAFA9AABAPAAAyD0AAHA9AABcvgAAqL0AAJI-AAAcvgAAUD0AAFA9AAAQvQAAQDwAAH-_AACavgAAsr4AABC9AAAUPgAA6D0AAIY-AACYvQAAUL0AAEA8AAAwvQAAMD0AAJg9AACgPAAAfD4AAOg9AAB8vgAA4LwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zyoeTPvnrpk","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["375646766366546638"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6409784102577235428":{"videoId":"6409784102577235428","docid":"34-4-12-Z6C6D2A3900917832","description":"This brief video discusses the key distinctions between nominal, ordinal, interval and ratio level data. There is a detailed demonstration to elaborate the ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4077965/1c79287b9220e9bfd5e292cbc63cf985/564x318_1"},"target":"_self","position":"6","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DK2BH_IE03nM","linkTemplate":"/video/preview/6409784102577235428?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Revisiting Measurement Levels","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=K2BH_IE03nM\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM2NDA5Nzg0MTAyNTc3MjM1NDI4WhM2NDA5Nzg0MTAyNTc3MjM1NDI4aq8NEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E84DggQkAYAEKyqLARABGniB9vv7-_sFAPL7__8IAv8ABgb4APf__wDyAhEF_QH_APT9Cgj8AAAACAcGDwEAAADz-gX7_AAAAA0MAfoFAAAABgT-B_0AAAAJD_sN_gAAAAT9CP_6AQAACwT5BQAAAAACDhAE_wAAAAQBA_wAAAAABgIBAAAAAAAgAC1ZkeI7OBNACUhOUAIqcxAAGmAYCQAKFw4C7gAM7CUFHgIY7THu_9bzAO3DAPgSCs0S2ODP-QQAQPES-sMAAAAfIuIYLADoUQP98xn_AOnH6gL9Gn8LCAIBFdICxNrM_hvtP_gbLi0AA_H3_izs2RYeGx0gAC2mqFQ7OBNACUhvUAIqrwYQDBqgBgAAsMEAAKhBAAAkQgAA8MEAAKpCAAAAQgAArkIAADjCAADgQAAAEEEAAIBAAACUwgAAVMIAALhBAABYQgAAhMIAAJBBAACgQQAAgMAAACjCAACgwAAAYMEAAADBAAAAwAAAUEEAAPDBAACAwAAA4MIAAJBBAAAwQgAAyEEAACxCAABMwgAALMIAAEjCAACQwQAA0EEAAP5CAABQwQAAukIAANDBAAAQQQAAKEIAABBBAAAAQQAAOMIAAGzCAADgQQAA4MAAALhBAACEwgAAIEEAABBCAACoQQAAEEIAAEBBAAD-wgAAAMEAAIDCAAC4wQAAgEAAAMDAAACQwQAApMIAAMBAAABgwgAAVMIAAITCAACgQAAAqEEAANhBAAB0QgAAwMEAAIjBAAAMwgAAqMIAAJDBAADIwQAAOEIAALBBAACEwgAAaEIAABTCAAB4QgAACEIAAKDAAADQQQAA6EEAAGRCAAAAQQAAUEIAAHRCAABIQgAAwMEAAKjBAACwwQAAwEAAALjBAAAEQgAAQMEAAATCAADAQQAAHEIAADzCAAAAAAAAoMAAALjBAADgQAAA0MEAADRCAACQwQAAEEEAACRCAACgwQAA6EEAADRCAACQwQAAQMIAAIbCAAAgwQAAqEEAACDBAACMwgAABMIAAFBBAAAMQgAAkEEAAIA_AACgQAAA4EAAAADAAAAgwQAAAMAAAMBAAABcwgAAkEEAANDBAADowQAAVMIAAEzCAAAgQgAAuMEAADxCAAAAAAAA4EEAAIDAAACMwgAAAAAAAHRCAAAwQQAA2MEAADhCAABkQgAAFEIAABzCAABAwAAA2MEAAODBAAAQwgAADEIAAFzCAACYQQAANMIAAODBAACwwQAAgMAAAPhBAAB4QgAAgD8AAKBAAAAAQAAAgL8AANhBAACowQAALMIAADjCAAA4QgAAgL8AAEBCAAAQQQAAIEEAAPjBAADgQAAASEIAAGBCAAAgwQAAeMIAADDCAADAQQAAQMEAABDCAACEwgAAeEIAAIDBAACoQQAACEIAAIbCAABQwgAAYMEAAIA_IAA4E0AJSHVQASqPAhAAGoACAAA8vgAAUD0AAAQ-AAAwPQAAQDwAAHA9AAAMPgAAyr4AAI6-AABkPgAAPL4AAGy-AAAkPgAAUD0AAIi9AAB0PgAAPD4AAHA9AABsPgAAsj4AAH8_AABkvgAAZD4AAFS-AACGvgAA2L0AABS-AADYPQAADL4AAGw-AAAkPgAA6L0AAAS-AADIvQAAJL4AAKC8AABAPAAAdL4AAGS-AACgvAAAUD0AAES-AAAkPgAAEL0AAJi9AAC4PQAAuL0AAPi9AAAQPQAABL4AABC9AABQvQAAXD4AABQ-AADgPAAAyD0AABU_AACIvQAAcD0AACQ-AACSvgAAQLwAAOA8AACIvSAAOBNACUh8UAEqjwIQARqAAgAAFL4AABA9AAAUvgAAN78AAOA8AABwvQAA2D0AABC9AABAvAAAuD0AAJg9AAAUvgAAQLwAAJq-AAAwPQAA4LwAAKg9AAAhPwAALL4AACw-AACAOwAAED0AADQ-AABwvQAAgDsAAAw-AACyvgAAcD0AADA9AAAQvQAAuD0AAOg9AADgPAAAFL4AACQ-AAAwvQAAqj4AABw-AAAcvgAAgDsAAMI-AAAsvgAAXL4AADA9AACAuwAAMD0AAH-_AAAwvQAALL4AACw-AACuPgAAyL0AAEQ-AADgPAAA4DwAAOA8AABQvQAAqL0AAOC8AAD4vQAAqD0AAPg9AACYvQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=K2BH_IE03nM","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["6409784102577235428"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8002164157824435740":{"videoId":"8002164157824435740","docid":"34-6-8-Z24683E35388C7C72","description":"This brief video walks through how to interpret ordinal regression output from R. Compares probit and logistic models.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4063615/967202659bda7cac9bff46afea1156a5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KGylDgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjWIJ7P1G9P4","linkTemplate":"/video/preview/8002164157824435740?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Ordinal Regression","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jWIJ7P1G9P4\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM4MDAyMTY0MTU3ODI0NDM1NzQwWhM4MDAyMTY0MTU3ODI0NDM1NzQwapMXEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E8UHggQkAYAEKyqLARABGniBBA0A_QL-APUPBQL5BP8B_xP3Bvb-_gDs_AEFCQAAAOv4Efz9_wAAAg4J9_kAAAD8-AcM__4AABvz__UDAAAAHe8CAfoAAAABAfj6_wEAAOXq_gADAAAACQQCCwAAAAD8Av_tAAAAAP4QBQEAAAAACPcA_gAAAAAgAC1tDM47OBNACUhOUAIqhAIQABrwAWgE_AG9Cu_-Kv7nAO8V-wGB8Pv_LRbpAL4A6gDZEOIAD__1ANHz_wADAwUA3AscAA3u8QAK8xsAJfMA_ywBEQAHGRYAOeoKATECEP_0Avb_7RAE_xjvIgH59vkB8wLp_xb1Dv3TAOQAFRDaAQv_LAEi9AwBFAL9AQz_BgH1BQYA9QP7AhsC_gMC_vcC2xgCBQwBAvz0If8D_wT2_w0B-AX_CgMCEPvz_RsIBQoBAQn74QP-_P0F7vUd9gMH-xDk_fr3-QH--gb9-g8JAB_xBQTwChACBQgA-gkW7wD66gz97AoN-vn6CPvYHAQA7ef7AyAALZD6Tjs4E0AJSGFQAirPBxAAGsAHjPb4vl4CJjzxDeq8vln5PBLY3Lw8Hum8lyy4PLcN_jwxdXy8K6uEPWmIbz0PCV-7HcnFvmYIkbx9pY09mN0jPoFJkL1D9PW8nmKFvpG6fT0sc4S8T3iRvmcVTD2p5ou6bLDwPAproTsO2aO6b8ACPTjRU70KCaK8c69dPPMsgj0lweW840EJvRk4oLzo9P67fQA3PftcDb11P6c6YOcmPg3TDb3xHvG89WItPVlUnzxxu-E7v7WDvXmKgTxaaQy76q_3PTGyUTrITQM9-tsUPXOW47zAXl27T2YyvQpCfj2zl608uQC0vGVNkT1MrGe8eSqGPUUHKb0KkBe9bN_tu0vp2T28Wm48qPwLPqWDlT0kjoa8g8-FvOufMT3RoZ07CTgfvCZexL13tQG5AUCEPflf-DxRNA28F1z9vJQ8LT1f4e47kCQQvBDfoz2mYgM9LGHtPS2Eyz1npiy7jnx5vZYQpDvW7SI7GxRoveaszzzWXIm8W-VOPeMqTbkPuC48O38kvM8627r8QIs7tpInvc5CEb3tQe-7JAlnPRsmv7yXTFu65cPCPVdSuDyMx5w7r0M1PWi-yb1nO5G7LzKiOxQU9bwY9os7QdgJPUJYor3kPyK6ajNKu332Mj3d37U5mG3nPOnnE7yeP9C7V8dWvSTWPbytRsC73uBQvWAh873aCH66eWKhPVW1rj23SBg7TTgqPNLC5TzgYb27euSqPSNfrrxvSIK5HhOOvHsfPb1Rlqm71Jw8PbPMlz2MsM64y4TfPLDMVzvzYMW5seIvvPgytLpRp3o7vNpAvGKcZD2yDPW5BF-HvMWaIL1G4T85ekMQvWsFMr1BaEK49iOFvNpIKL0nuY45HEXxPPJ5hbx2Hz-55_6qvB_Khrz0dIA5k5uyvOemDT2xIue4N_8PPRjbOr1sYMS1xtwVPccbjz0zaBC35qULO1O7Nb193MI4D9Gqu2-eCj6gohm5O1YkPQmRiDtoeYS2Rj86PfTOhz1s_re4XRfhu5dssT1do2U4MC4RvKibWj1jZvq41LpIvWqlkL0OtTa4THVcPER9MTnoP4q2Y6iEvWaZL73HPsk3F9U6uvlQMTrQWNw3xM8PPjxq6buey5U2t7PPPacMl70IT0e4Qe63PTxh07tBGfy4rBtPvXAAYr1x-qK4fOzTPKHyL72J3mo4mLBsvRHfybxfwoA45NWevHqJ8b1lVTC4ipZXPRBY-T2NF0A4dcn2O0cZNj3Cko24NXoVvSthNzwusg83W8rePPqE6LtJUcc3IAA4E0AJSG1QASpzEAAaYD4FAAYBDtvnIAzkv9jH__wTLPRHyvb_8uf_9SXI2w7v457m5P8z0gP8pgAAABLx4Br9AAF74tHbI9reAee78iYWfy0zSL3I5A7k5wor2sIBJA7vQAA1758eQsD4QRM29SAALYyaHDs4E0AJSG9QAiqvBhAMGqAGAABAwAAAiMEAAJhBAABwQQAAsEEAAERCAACgQgAAAEAAACDBAAC4QQAAgEIAAMBAAACwwQAAcMEAABTCAAAAAAAAwEAAAGDBAADgwAAAwMEAAEDAAABAwAAAAAAAAODAAAAcwgAAUEIAAJDBAAAYwgAAKEIAAOBAAACAPwAANEIAANjBAABAQQAAPMIAAOBAAABsQgAAwEIAAFzCAADAwAAAiMEAAHTCAABwQgAAhMIAAEBCAACQwQAAqMIAACBBAADAwQAAFMIAAHDBAAA8QgAANMIAAHDBAADwQQAAOEIAAMLCAAAIwgAAAMIAAARCAABQQgAAuMEAADDBAACUwgAACEIAABjCAACEwgAAhMIAALBBAAC2wgAAiMEAACTCAACAwgAAgL8AAAzCAAAAQAAAqEEAAIBBAAAwwQAAgEIAAMjBAAB8QgAAAMIAAGBCAACIQgAAgL8AAMBAAAAcQgAARMIAADBBAAAswgAAREIAANBBAABsQgAAIEEAAKjBAAAAQAAATMIAAKZCAACwwQAAoMIAAABBAAAUQgAAwEEAALjBAACYQQAAIMEAAAhCAABAQAAAVEIAALRCAADgwAAARMIAABxCAAAcQgAAAEEAAEBBAADgQAAA0MEAAEBBAADQQQAAAAAAAFzCAAAAAAAA8MEAAADAAAAkQgAANEIAAADCAAAgwQAA4EAAAL7CAADAwAAAREIAACxCAADAwAAAwkIAAOjBAADGwgAAYMEAAKDAAADIQQAAUEEAAOBBAABQwQAARMIAAJRCAAAgwgAA0EEAAEhCAADAwQAA4EAAABhCAAB8QgAAiEEAAODAAAAQwQAAMMEAABhCAACAwAAAAEAAADDBAABMwgAAiMIAALDBAADAQQAAiEEAAIBCAADgwAAACMIAAGDCAABcQgAAGEIAABzCAADAwQAAGEIAADRCAABAwQAAYEEAANhBAABAwgAAoMAAAGDCAACYwgAAmEEAAAhCAABEwgAAoEAAACxCAACIwQAAgD8AAJZCAAAMQgAADMIAAEBAAACUQgAAgEEAAOBAAABQwgAAAMIgADgTQAlIdVABKo8CEAAagAIAAAS-AADIvQAAij4AAJY-AAAkvgAAHD4AABy-AADyvgAANL4AAAQ-AABkPgAAuD0AADA9AACgPAAAVL4AAKC8AACWPgAAgLsAAIg9AAAZPwAAfz8AALg9AABcvgAAjj4AADy-AAAwPQAAyL0AAFC9AAAUPgAAMD0AAIC7AAAEvgAAdL4AACQ-AADYPQAA-L0AAKi9AACGvgAAmL0AANi9AAAwvQAAyL0AAAw-AABAvAAA-L0AAJg9AADgvAAAjr4AANi9AAB0vgAAML0AAEw-AABMPgAAXD4AAKa-AABwvQAAMT8AANg9AABQvQAALD4AAKA8AAD4PQAAQLwAABS-IAA4E0AJSHxQASqPAhABGoACAACGvgAAQDwAAIC7AABTvwAA6D0AABA9AACSPgAAor4AAJg9AABMPgAAMD0AAOg9AACIPQAA4DwAANg9AABAPAAA4DwAADE_AACIPQAA3j4AAJq-AADIvQAA-D0AAHC9AAAMvgAAcD0AAOA8AADgPAAABD4AAEA8AACAuwAA2D0AADA9AAA0vgAAuD0AADA9AAAwPQAABD4AAEA8AAAEvgAAbD4AABA9AAAEvgAAED0AACy-AADgPAAAf78AACS-AAAcPgAAnj4AAKo-AABQvQAAiD0AADQ-AAAQvQAAqD0AAOC8AAB0vgAAiD0AACy-AAB8PgAAoDwAANi9AAAwvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=jWIJ7P1G9P4","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":650,"cratio":1.96923,"dups":["8002164157824435740"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2949002679231060152":{"videoId":"2949002679231060152","docid":"34-5-14-Z6E8658BC00E43783","description":"This brief video is part 2 of 4. This video introduces the sister function for the =Normsdist(·) function in Excel: the function to calculate the inverse of the cumulative probability distribution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3436835/b08e1adecd5384fc11075a11c3cc8b2a/564x318_1"},"target":"_self","position":"8","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqXHWqPz2KlA","linkTemplate":"/video/preview/2949002679231060152?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introducing the Inverse Cumulative Function for the Standard Normal Distribution","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qXHWqPz2KlA\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChMyOTQ5MDAyNjc5MjMxMDYwMTUyWhMyOTQ5MDAyNjc5MjMxMDYwMTUyaq8NEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E6kGggQkAYAEKyqLARABGniBCQAI_wb5APwAEQUICPwCLQb5BwsFBgDp9_vyAv8BAP37_fwIAAAA-Qz6AwIAAAAC_v318v0BAPwE-P36AAAAF_gR-fYAAAACFvP3_gEAAOrz9v8DAAAAGP4HAwAAAADrDwr9_v__AAUHAxYAAAAACPr-CwAAAAAgAC0mJcQ7OBNACUhOUAIqcxAAGmAWCwAkD_f_9R4V3uj80_0U6icQHdHu_-nrAAYsyvsS-O-b9tz_QssYCboAAAAPDuofFwDtW_fQ3h37KOLT3gL9Un8oDPDz-uTp3AQLFxkMDPf2IR8A8PwKAhrt3kXkKxkgAC2HG0Y7OBNACUhvUAIqrwYQDBqgBgAAgMEAAOhBAAA8QgAA0MEAABRCAABAQgAA4EEAAKDCAACKwgAAJMIAAFDBAABMwgAAHMIAAKrCAAAIQgAAuEEAAIBBAABgQQAAJMIAAAzCAACQQQAAqEEAAJBBAAAQwQAAoEAAABzCAAB4wgAA-MEAAJhCAAAgQgAA4MAAALhBAAAYwgAAoEAAAFTCAABAQAAAgEEAANZCAAA0wgAA-EEAAIC_AAAgQgAAOEIAAABCAAAgQgAAlEIAAIjBAAAUwgAAgEIAALDBAABUwgAAIEIAALDBAABAQAAAsEEAAADAAAAAwwAAoMAAALjBAABAwQAAyMEAAFDCAABAwQAAmsIAALjBAACgwgAAAMAAAGDBAAA0wgAAQMEAABBCAAB4QgAAUEEAAADAAAAAAAAALMIAALDBAAC4wQAAokIAALBBAAAUwgAAAEAAAIhBAABIQgAA4MAAAEBAAAAcQgAAikIAAGxCAABAwQAAIMEAABBCAADAwAAA3sIAAJhBAAAEwgAALEIAALhBAAAQwQAAUMEAAHzCAAD4QQAAkEIAAHjCAACgQQAAMMEAADDCAAB0QgAA0MEAAOjBAADYQQAAUMEAAFBBAAA4wgAAUEEAAJhBAACgQAAAksIAACRCAAAMwgAAgD8AAADCAADgwAAAmMEAAMhBAABAwAAAHMIAALBBAAAQwgAABMIAAIhBAACgwAAAAAAAAHBBAAAAAAAAMEEAABhCAACowQAAOMIAAIbCAABkwgAAkkIAAFxCAADIwQAAEEEAAABBAACuwgAAmEEAAMBAAABAwAAAsEEAAPDBAADQQQAAqMEAAEDAAAAAQAAAqMEAAPDBAAAMwgAAMMEAAIjBAAAswgAARMIAAPhBAAAcwgAA6EEAAIhBAAAIQgAADEIAAKBAAAAswgAA4EAAADDCAACwwQAAwMEAANhBAACAQQAAHMIAAERCAACQQQAAYMEAAKzCAAAAQQAAoMEAAKJCAADgwQAAjsIAAIhCAAAsQgAAJEIAAFDBAAAwwgAAVEIAANDBAAAwwgAAiEIAAIzCAABgwgAAmMEAAOjBIAA4E0AJSHVQASqPAhAAGoACAADIvQAAoLwAAAQ-AAAUPgAAED0AAJg9AACIPQAAD78AAMq-AACePgAAiD0AAKi9AADgPAAAHD4AAOi9AAA8PgAA4DwAAIi9AAB0PgAA3j4AAH8_AAAQPQAAiD0AAIA7AAAsvgAAuD0AAJg9AABwvQAAcL0AAJi9AABwPQAAMD0AABy-AADIvQAAxj4AAAS-AABQPQAADL4AAOi9AAAcvgAA2L0AABS-AACyPgAABL4AANg9AAD4PQAAmD0AAJK-AACAOwAA5r4AAOA8AABAvAAAoDwAAOg9AABkvgAAmL0AANI-AAAkvgAAUD0AAGw-AADYPQAAkj4AAOA8AAAwvSAAOBNACUh8UAEqjwIQARqAAgAA4LwAAIg9AAA8PgAAE78AADA9AACYvQAAbD4AACQ-AABwvQAAgj4AABC9AAAkvgAAiL0AAIq-AAAQvQAAED0AACQ-AAA5PwAA2D0AAKY-AAAcvgAAmD0AADC9AAAcvgAABL4AAIg9AAAwPQAAML0AAEC8AAAcPgAAgDsAAEQ-AAB0vgAADL4AAHC9AACIPQAAfD4AAKg9AACGvgAAUD0AAHA9AABQPQAALL4AAIg9AABwvQAAhj4AAH-_AACivgAATL4AADC9AACIPQAA2D0AAFQ-AAC4vQAAdD4AAIA7AABAPAAANL4AALi9AAAQPQAAgLsAANi9AABEvgAAiL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=qXHWqPz2KlA","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["2949002679231060152"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8888658459983972059":{"videoId":"8888658459983972059","docid":"34-7-13-ZD6D6B3C624EB5A6E","description":"In this brief video, we introduce the concept of statistical bias. First, we start by showing empirically that the mean of a sample is unbiased (i.e., is good at estimating the population mean...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/216630/6578fa036b2b2ccae80cfb7250741f8b/564x318_1"},"target":"_self","position":"9","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DypLQrghbYbk","linkTemplate":"/video/preview/8888658459983972059?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introducing Statistical Bias: Or...¿why are there two formulas for the standard deviation?","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ypLQrghbYbk\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM4ODg4NjU4NDU5OTgzOTcyMDU5WhM4ODg4NjU4NDU5OTgzOTcyMDU5aq8NEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E5MDggQkAYAEKyqLARABGniB_QUF-wH_APP5C_b-AQEBDAD7-vYAAADs_AEFCQAAAALwBP_6AQAA-QL6_gYAAADw-g8I_wAAABr5AQjyAAAADfD9__kAAAAWBv8A_gEAAPbr9AMD_wAAEQ79_f8AAADsDwn9____AP4IAwwAAAAAEwv0CQAAAAAgAC2Il847OBNACUhOUAIqcxAAGmAQAgAzGwsK2SEZ29gYlfr34i7xKLv___AbAOIXzeP9Btm-CQr_P8oS66wAAAAcAQouAgDobhfCuA3zE9XwAeExIX8SCgfqB_UE6f0w-BYiDM3iIEkApuwBCQ7i6lTiFyAgAC3Z_Ss7OBNACUhvUAIqrwYQDBqgBgAAgEAAALhBAAC4QQAAmEIAAKBBAABoQgAAOEIAAJhBAABAwgAAoEEAANhBAABgwQAAMMIAAJDBAADQwQAAAMEAAADBAAC4wQAADMIAAATCAABAQAAAAEAAAKjBAAD4wQAAjsIAADhCAACEwgAA8MEAAOBAAACAvwAAcEEAABBCAABowgAAEEEAAGDBAAA8QgAAEEEAAP5CAABgQQAADEIAAMjBAAA4wgAAJEIAAEDBAABYQgAAKMIAAGTCAADIwQAABMIAAODBAAAAwAAAHEIAACzCAABwwQAAAEIAAIpCAABkwgAALMIAAMjBAAAcQgAAZEIAAIA_AABkwgAAcMIAAOBAAABMwgAAKMIAAHjCAABIwgAAPMIAADzCAAD4QQAAwsIAABRCAADgwAAAEEIAAHDBAACgQAAAIEEAAIA_AACAwAAAOEIAAJLCAAAQQgAAQEIAAKBBAABwwQAAXEIAABDBAAAAwAAAQMAAALjBAABAQAAAIEEAAERCAACQwgAAgEEAAFzCAABgQgAAkMEAADTCAABsQgAACEIAABxCAABYwgAALMIAAGTCAAAoQgAAIMIAAAhCAACgQQAAAMEAAJLCAADQQQAAUEIAADxCAAAAwQAAFMIAAKhBAAAAQgAAOEIAAODAAAA4wgAAAMEAAADCAABwQQAAdEIAAGBBAAAUwgAAAEAAAADAAABQwQAAkMEAAKxCAACyQgAA-MEAAIZCAAAMwgAAssIAABjCAADIQQAA0EEAAJBBAACIQQAACMIAAAjCAAAsQgAAcMEAABRCAAAoQgAAQMEAABhCAADYQQAAGEIAAHBBAACAvwAAZMIAAIhBAAAMQgAAyEEAAIjBAABwQQAAMMIAAGTCAABYwgAAQMEAAKhBAACYQgAAUEEAADTCAACOwgAAJEIAAABAAAAQQQAADMIAACRCAABgQQAA0EEAAIDBAACYQQAA2MEAAMDAAABAwgAAtMIAACBCAADIQQAAbMIAAIA_AAAwQgAAEEEAAKjBAACwQQAAjEIAAIjBAAAIQgAASEIAAMjBAAAMwgAAIMIAAJBBIAA4E0AJSHVQASqPAhAAGoACAABAvAAAiL0AANg9AACYvQAAcL0AAHC9AAAMPgAAAb8AAKA8AACCPgAA-L0AAJi9AACgvAAALD4AAFC9AABAPAAA2D0AADC9AAAMPgAAhj4AAH8_AAC4vQAAND4AAJg9AAAsvgAABD4AAFA9AAAwPQAAmL0AAEA8AACAOwAAmL0AAKi9AACIvQAA6D0AAFA9AACYPQAAED0AAHC9AAAQvQAAqL0AACS-AABcPgAAoDwAAJi9AABQvQAAMD0AABy-AACIvQAAhr4AADC9AABcPgAApj4AAKA8AAAMvgAAML0AAM4-AAAsvgAAUL0AAFA9AABQvQAAqD0AAPg9AAC4PSAAOBNACUh8UAEqjwIQARqAAgAAqL0AAOg9AAAQPQAAX78AAHS-AAAQPQAAmj4AAJg9AACovQAADD4AAEC8AACuvgAA2L0AAMK-AABAPAAAmD0AAOg9AAAfPwAARD4AAFQ-AACovQAAHD4AAAS-AADIvQAABL4AAIY-AACAOwAA4LwAAFC9AAD4vQAAML0AAIg9AACAuwAA-r4AAIa-AACgPAAA6D0AALi9AACevgAAyL0AAEy-AABkPgAAQDwAAJg9AABAvAAAHD4AAH-_AACKvgAA4DwAABQ-AAA8PgAAuL0AABA9AACYvQAAij4AABC9AACgPAAAcD0AAHC9AACovQAAVD4AAJi9AACAuwAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ypLQrghbYbk","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["8888658459983972059"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9882545508686230655":{"videoId":"9882545508686230655","docid":"34-9-5-Z0C05DD3E97564F9A","description":"This brief video explores how the mean and standard deviation changes when additional data is added to a data set. In particular, we explore what happens to the mean and standard deviation when a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4549253/40581cc9b388b3763a71f7819241fee3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rq4_4AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFz1vR8wwGIs","linkTemplate":"/video/preview/9882545508686230655?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How the Standard Deviation Changes with Additional Values in a Data Set","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Fz1vR8wwGIs\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM5ODgyNTQ1NTA4Njg2MjMwNjU1WhM5ODgyNTQ1NTA4Njg2MjMwNjU1aogXEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E5sDggQkAYAEKyqLARABGniBAf36BQAAAPf9CP37BP8BGPvxBPUBAQDmAwT9Cf0CAOwKAgb7AAAAAPsBDgUAAAAI7gMM_f0BABUE9AD1AAAAEPr1AfUAAAAIBgn__gEAAPHyAQH2AgABAQsJ-f8AAAAACAL3AwAAAPYG_goAAAAACe8C_gABAAAgAC0sYNU7OBNACUhOUAIqhAIQABrwAWwE_AHJ8N7_CwbiAPET7gCBBQv_KQ7VAMv1CADYEOEABwj5ANb-DQH-Cw0A2xkOAPwP2wAPAhsAEdkQ_xwFDAAF_wwAQOkmAyIWBAAR7_L_2RgV_gT0BwH-_AD__gPsAPACEf3h69oACPDLBwv_LgEW-w_-FA_1AwwL-wP2FQf_9QnuAwwJ8f7wBvgB1v8XAR8D8QINJfT_7hINAgb0-v4A9AoBBe7yAyMK4AL1-Qr53fL5-gYI9vv68wYH6iT2_u0K_gMN8gYH-g8JABTn_wEM6BYC8_L8CPgD8v8T3wz29BEH_9gOAwHdFfoKC-kEASAALW4nSDs4E0AJSGFQAirPBxAAGsAHkgfyvqZACz3gg5e89QoPPBo25ztVPU-9SV4nveNVVj2mv8280v_SPWkqdT1UlAW8mx2hvkahm7zIZ6g8y4AzPubRiL2YYjM87-VOvhCoQz0YrMC79aGDvjx38TsuxZc7Oz1KPEEYLjwYYzs8ch5pPTtqcb28tDy9zvoUPamVE72UOVG9K4jBvMMXHL1JW-a85YB4PUchRL0bCw67L1H9PbEFYLqfq62812gZPZwfNb0MkfQ7136nvQv9Xbx3S3K86q_3PTGyUTrITQM9Ht9ePS3x2zzRckU8VadevGgrJT34mUS8rMJrPZ1_YD3XRXa8SsTFPZfTFL0wY4q8xMyOvTaR2T1o7Ca8qPwLPqWDlT0kjoa8UMPXvcSSdz1rjM46J0hRPa3MKr3Xyc88cN2zPfgR5Dw9NWq7VmZFPQyoXD1bUOm8buUgvfShDbxGv-w8U3nbPdbxDj0NRja8hVhCvWSzHr0paIs7KRTYvKFvAT0diUC6LTOWPat4I70SjjS8-GbFPb-ihj02RTa8xTVDPfhRDb4Jbyy7P8JVPKpTdL0aBXe8J7ZnPYjO27tKiKi8SPMNuzzYg7swICS7ajGIvfYfXr1pdAO5baSRPF7Ieb0frDU7D0givfbYcTxdGCK6_GVBvIXs2buHQjq8XyBNPfvcej2Hl9Q7MdBVvYuZTr3m-P45eWKhPVW1rj23SBg7W3lJPTIuZjzJWj-7DT-ePXnsgjzLJ4461KCBO3QVsb0-s1u4uMj9PLbkRz2G77O67PckPYy2L72Rdsy6n2ZUu2963buVQgO7KmKHvfDrkTwOxL04m3DxO4BEOL22w2k4sxO0vdZFkL20ZzA5GaHpvJQ7Aj20XdG5MNoDPaReJr0B3bO5tBE5vTcoC72tfhA5bnHovMH7rz1T7ry4V9mtvKMDcr1Mh9e4Gq1ePRHJ67xtHgI5qckGvOcGqb1QgDa2eH1mPDtU8z1THCg438csvRzMSzxuY5C5FAQPPRBdAD6Nw3G4Wsb8vKlQWD0q2gS1IYqOPaOjh7sAr423w9PrPGcm-L0iJCS42Jg8PbQlxjzOH4C4d2V3vfH5fL1g1mo4btRUPLREnbwz5wA4cv-cPXc7sTyoF8A1YA2GPOUZKDuXIR04weMrPtylaLwHiXS5TsGQvT--Tr1TTmU3K0wfPZ0kor2_a-U3UIthvauKOjwUmGu3JtyQvBYwMb5BoFq5o7m0Pch9iz2A8YM4gV74vCXvFz082aa4squPvXy6-jxzlDQ3mAlQvHJr0jwD9nw4IAA4E0AJSG1QASpzEAAaYFwGACwRHOrf3SHJ-dK33NX42e0Jvv7_4_T_8Q3K-hzk96Dj6P86ByDtowAAAAn0EywMAAN_MbrWNN8T9MjI4hghdjIeLbbkEfWqxyhE9O4n8voUWgDn6Lw4UgT2Ph3pBSAALZZHGDs4E0AJSG9QAiqvBhAMGqAGAAAUQgAA6MEAAEhCAABwwQAAsEEAACBBAAD-QgAAFEIAADDCAAAAAAAA0EEAAOhBAABQQQAAAMEAAGRCAADIQQAAgEEAADDCAAAAwAAAEMIAAEBCAACgQAAAeMIAACBCAAAkwgAAAAAAAEDCAAAEwgAAwEEAAGBCAAAUQgAAIMEAACDBAACAQQAAJMIAAKBBAABAwQAAgkIAAEBCAAAIQgAAwEAAABBCAAA8QgAAoEAAAIxCAABwwgAAsMEAALhBAABAwAAA0MEAAAzCAADAwAAAYMIAAKBAAABwQQAAkEEAAGTCAABMwgAAqMEAAKZCAACGQgAAgL8AANjBAACYwgAAFEIAAJTCAAAQwgAAssIAAKjBAAC-wgAAYEIAAEDAAAA4wgAAmkIAANjBAADowQAAwMAAAEDAAABMQgAAgEEAAAjCAABgQgAAAMEAAPBBAAAwQgAAmMEAAKDBAAAUQgAAEEEAABDBAACQQQAAtkIAAMhBAABMwgAAiEEAAEzCAABAwAAAQMIAALZCAAAEwgAAmMEAAMBBAAA8QgAAMMIAACzCAACgwAAAoMEAAODAAAAAwgAAwEEAAKJCAACwwQAAPMIAABBCAAC4QQAAgMAAAIDBAAAQwQAAiMEAAMDAAADAwAAAHMIAAATCAAAAQQAAMMEAALjBAAAwQgAAgEAAADDBAAAAwgAAVMIAAABAAACowQAAwEEAABhCAACIwQAAiEIAAFzCAAB8wgAAHMIAACBBAABAwQAAHEIAAIBAAACIwQAA4MEAABhCAAB0wgAAbEIAAJDBAACWwgAAoEAAAADAAADgQAAAjEIAADBBAABUwgAAAMEAAIrCAADAwAAAQEAAAIhBAADQwQAA0MEAAGzCAACQwQAADEIAAHBCAAAYQgAAoMAAAKDBAACgQQAAOMIAAATCAABowgAAPMIAAOjBAAA0wgAAgL8AAIC_AACMwgAAkMIAAAjCAABAwgAAHEIAAABCAAA8wgAA4MEAANhBAACWQgAA-MEAAGzCAABIQgAAyMEAAMhBAADQQQAAqMEAAAxCAAA0wgAALEIgADgTQAlIdVABKo8CEAAagAIAAIC7AADIvQAAgj4AAKA8AACIPQAARD4AAM4-AABNvwAAXL4AAFw-AADYvQAAhr4AAKC8AAAsPgAAiL0AALi9AAC4PQAA2D0AAKg9AAD2PgAAfz8AAHw-AABwPQAA4DwAADC9AACSPgAAmD0AAHA9AAC4PQAAhj4AABQ-AAAEvgAAuL0AAEA8AAB0vgAAJD4AAIY-AAA0vgAANL4AAIK-AACYvQAA4LwAAEw-AAAwPQAAoDwAAKA8AADIPQAABL4AAOi9AACCvgAAnj4AALg9AACoPQAAXD4AAFC9AACAuwAAOz8AAIi9AAC4vQAAVD4AABA9AABwPQAAij4AABy-IAA4E0AJSHxQASqPAhABGoACAAC4vQAA6L0AACQ-AAA7vwAAoDwAAHw-AAAEPgAADD4AAJi9AACAOwAAoLwAAFS-AABwvQAAHL4AAKg9AAAwPQAAVD4AAEk_AADIPQAAoj4AAFC9AABwPQAAQLwAACS-AACgvAAAyD0AAPg9AACAOwAAQLwAAFQ-AABQPQAAFD4AAFS-AAAkvgAAyD0AAKC8AACAOwAAqD0AALq-AABAvAAAuD0AAEA8AAC4PQAADD4AABS-AAC4PQAAf78AAMi9AABAPAAAqD0AAIA7AACgvAAAmL0AAOA8AAC2PgAAMD0AAMg9AACIPQAAgLsAAIC7AABkPgAA6L0AAEC8AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Fz1vR8wwGIs","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["9882545508686230655"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11035026012580377974":{"videoId":"11035026012580377974","docid":"34-11-8-ZB2415F47DC9B58A7","description":"This brief video is part 7 of 7 in a series about summarizing and visualizing quantitative data using GFDTs and histograms. In this video, we present some o...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4034012/cfd5b2bf89f5fbdb7c5d2acfd4083699/564x318_1"},"target":"_self","position":"12","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2z3MXcUPLSg","linkTemplate":"/video/preview/11035026012580377974?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Exploring Grouped Frequency Distribution Tables: Common distribution shapes in GFDTs and histograms","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2z3MXcUPLSg\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoWChQxMTAzNTAyNjAxMjU4MDM3Nzk3NFoUMTEwMzUwMjYwMTI1ODAzNzc5NzRqrw0SATAYACJFGjEACipoaGZvZGl5eHV1dXh6YmFkaGhVQ25Gdm5MVGJ1Z3l6NDluZ24yci1iYXcSAgASKhDCDw8aDz8TlwKCBCQBgAQrKosBEAEaeIHwEwAAAQAAFf0FCQoL_QMB_Pb89_39APUA9PQDAv8A8gD9_v8AAAABDfr9BQAAAO4A9__wAAEADgP4EQMAAAAXBv3w-wAAAAoG9gn-AQAA9P31BPUCAAAS-AwNAAAAAOwDEQL_AAAABAUTBwAAAAAR_QoFAAAAACAALXZQzjs4E0AJSE5QAipzEAAaYB0CAPwF9_i5Eijc1QDO-Qj1CfIR4fsA8toA-BLu2R4Fx775A_8K0_cBxQAAAA0cAzMjAPlLDejeHhff8vzk8SANf_gZ9uHx8_wD_h0HCCHrF_gzJwAFEA4FIs4UVvcLICAALRw6WTs4E0AJSG9QAiqvBhAMGqAGAACgwQAA4EAAAEBAAAAwwQAAiEIAAADAAAB0QgAAoMAAAADBAABUwgAAHEIAABDBAAAQwQAA4EEAAFDBAADQwQAAIEEAABBBAADAwQAAcMEAABRCAACYQQAAHMIAAIA_AAA4wgAA0EEAAFDCAAAAQAAAmEEAAIjBAAAwQgAAXEIAABzCAAAAwQAANMIAAMBBAAAQwQAAWEIAADBBAAAMwgAAuEEAALjBAAAYQgAAGMIAACjCAADAwAAAMMEAAAhCAAAwwQAAhsIAAAzCAAAAAAAAssIAAITCAAAEQgAANEIAAKjCAABkwgAAIMEAAMhBAACoQgAAAAAAAHTCAACywgAAiMEAANDBAACkwgAAoMAAAGDCAABwwgAAcEEAABDBAAAswgAAAMEAAKDAAACIwQAAMEIAAFxCAAAgQQAAiMEAAKDBAAAQQgAAkMIAAOBAAACgQgAAuEEAACRCAAAMQgAAoMAAAEBBAAAAwQAAkEIAAODBAACIwQAAwEAAAITCAACAwAAALMIAAKBAAADAQQAALMIAAJjBAADAQAAAwMAAAEDCAADYQQAAwEAAAARCAADYwQAAMEEAAGRCAACAPwAAgMIAALBBAABsQgAAAEIAAHRCAACowQAA4EEAAADBAABAQAAAqEEAACTCAACAPwAAoMAAAMBBAADQQQAAAMAAACDCAAC0QgAAAMEAAAzCAADAwQAAUEIAAEhCAABwwQAAmkIAAI7CAACKwgAAOMIAAABAAAAMQgAAcEEAAPhBAAAgQQAAUEEAALhBAACQwQAAAEEAAAhCAAAEwgAAVEIAAIhBAACAQQAAgkIAAGzCAAD4wQAAUEIAAAhCAADIQQAAIEEAAARCAACowgAALMIAAKBBAACgwAAAgEAAAEBAAAAQQQAAgMEAACzCAAAcQgAA4MAAAEBAAAAEwgAAtEIAAGBBAADgwAAAiMEAAGBCAABMwgAApMIAABzCAAA8wgAAPEIAAJxCAABEwgAAmEEAALJCAADowQAAoEAAAHDBAAA0wgAAgkIAAIxCAADGQgAAOEIAAODBAAAQQQAAmEEgADgTQAlIdVABKo8CEAAagAIAABS-AABsvgAAVD4AAFQ-AACYPQAAFD4AAGw-AAAfvwAAgr4AAKA8AAAEPgAApj4AAEA8AAC4PQAAvr4AAAQ-AAAcPgAAiD0AAJi9AAA5PwAAfz8AADy-AABMvgAA2L0AAFw-AACgPAAAcL0AAEA8AACCvgAATD4AACQ-AADgvAAAir4AAFC9AABMPgAAyD0AAAw-AAAkvgAArr4AAFC9AACgvAAATL4AAEw-AAAwvQAAgLsAAIA7AABsPgAARL4AAFA9AACWvgAAQLwAAFC9AAAkPgAAiD0AAK6-AABwvQAAAz8AABA9AACgPAAAgj4AANg9AAAwPQAA4LwAACw-IAA4E0AJSHxQASqPAhABGoACAADovQAALL4AAJg9AAAvvwAAJD4AALg9AAA8PgAAQLwAAGS-AABMPgAA-L0AAEC8AABAPAAAbL4AANg9AABAvAAA-D0AAC8_AACoPQAAxj4AAJi9AAAkPgAAUD0AAKC8AADYvQAA4DwAAKC8AABwvQAAuL0AAIg9AAAwPQAAqD0AAKg9AACOvgAA4LwAAMg9AAAQvQAATD4AAAy-AACoPQAAVD4AALg9AACoPQAA4LwAAKC8AACAuwAAf78AAGS-AAAQvQAAMD0AAEw-AABQPQAAxj4AAEA8AACIPQAAgLsAAEA8AADovQAAJL4AACy-AAAwPQAAgj4AAMi9AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=2z3MXcUPLSg","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["11035026012580377974"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8303397544108359698":{"videoId":"8303397544108359698","docid":"34-6-14-ZACE2D66A24D210C4","description":"In this short video, I present the protocol to calculate the median of a data set. Along the way, I show how to use the =Small(·) & =ROW(·) functions to sor...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3502737/301c75c0951ce3709607dc6924fc82b0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AEfmzgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJMQIz4WyXD0","linkTemplate":"/video/preview/8303397544108359698?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introducing the Protocol To Calculate the Median (by-hand)","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JMQIz4WyXD0\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM4MzAzMzk3NTQ0MTA4MzU5Njk4WhM4MzAzMzk3NTQ0MTA4MzU5Njk4aogXEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E_UFggQkAYAEKyqLARABGniB_v33_f8CAPX-CgwCBvwB9fj7_Pr-_QDt_Ab6BgAAAO38A_oD_wAA-hAE_gYAAAD2B_gR_v8AAA0A_QP7AAAAFvgOCf0AAAAKBvcI_gEAAPEE-_0DAAAAFvv8_gAAAADwCAIG_gAAAAQE_AcAAAAACfUIAwAAAAAgAC0Kb9k7OBNACUhOUAIqhAIQABrwAWwE_AHlBPcB8gXhAN8M0ACBBQv_FRD1AMP_AADYEOEA3_rtANru-QAJBhD_yyAVAQ3t8QAQ9_YADuIEACr2DwEE6Q8ARu8AACEM7QER7_L_ARkg_xvyE_4Y4BIBJQvw_yfhFP_N2_gD9xDjAQfgLgIEEwcACvcLBv_nB_zcHgj_7PAB_AnxEAYI7_8D8AgBAwTzBv0BEAL7_QLpAe8K7wXz9AcAHd_wARYgEQQRC-sB5e0JCA0O7PgS9wH-9C4D-vIU_PsFCf3_Eg__AhflAvUB-BMI_-z8-g4a-gf__wb7Ah4T_eoPB_fw_Q77_Pr79CAALW4nSDs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF48oBRyvdu6AD3z7v68PIs5vXIbCD3HgR460v_SPWkqdT1UlAW8mx2hvkahm7zIZ6g8nUaCPn8WS7y-Esi8ehcvvgg8MD0pn9S89aGDvjx38TsuxZc7EFwFPpuTVbvtrCu7QbYcPsEwqjyNSXs7b4sIvUNHB7oj2Bi9fM6SvSYtprxxjXS85pTgPebct7y20J88aRkZPr1fO71lF-87OR69vOYueLxSqF28dvk7vf_jKTxLTUw86q_3PTGyUTrITQM9SMsXPewHhjx383m8xijSOQ-HW7w2-iC7E2fBu5aGL7vnT0C80qOOPZmkDb1Q37I8bazkvaYRLj2UTsE73WA4PimmXD3jGz46_Ouuu-4eZT2IA7I8QCt2u6lj-rzZegQ8y8dkPUOXi7zesp47pBMOvYf7iD1d-aw8jUolPdYjKD0s85Y8IzKXPQzlCT1dZEg7MwYMvVVD7LxoGfM6fJ10vTbCDD2ifdc5Rx8jPnCt27z-vve78SmVPcHFCj1F0D28CYSAO_N957xeQ5U8mhEZPTDy8rztoiu6zniRPRtrGr3170A7qDIxPf93xDzuRMW7oRGNu7mwJLzgwvS68djPPcijSLtyLni6VCU9OvBVxjwpE-m6s_4iPHN1Ub1XB4C8cuyPvImTQD1NsCw7MdBVvYuZTr3m-P45ngntPV0bxTy7e226J1szvYUqDrywHCW70PPCPMPttbyttDW7m9zUvPNNJL3-XBc7VtP1PLlgmj3zDiu5c_ONuiic-rubbnc3u87tO1OFFT2Cb7-3DFxmOWVCgrtvpiK6udJhPS7elL1zT904RG_MvOxnlr2bzOo4d6ZLvX1wo7zWGoe5e0_APAbH2zxTqcC6tBE5vTcoC72tfhA53zTgusNOrD3qCRW4ot7CPItU-L01yyQ4TYbjPEQ8yLzlHSq5eHOyvXaw1brc8Is5vH0RvfUnNj3h9bo47Lmvu8XBmr0TgHY5Hs6yPLYlVz2rSUy3WpUOO5DvVz23dY24okRrvSS5fLz9dia4laM7vUWbA74N2jM3TzmLPCH2k7yWFAC5rOZ5vW1XqLx5afa33oi4PMJuM73tnK-3TJJCPd2YHrpxTAc4rsfzPM00q7wLXo8188-3PftNUj3ELCK5Z0MDva3wGD2L1Dq4poaRPCNjWr30foo3UN8yPD_iV7wEiSy37AO9O3zUD74X-ty4VRimPW0LxT2Dx-c48LI1vVzMzz0MRgq55yOfvTfAcTztZJe3KDWqvDPcIL0Vkkw2IAA4E0AJSG1QASpzEAAaYC0LAE4hFuv26yrc-fHw_PIc7d0S0hD__OAA3QjQ9_8OoIrq5f8X7AzcqgAAAPYB0AkEAPh08OrdAP1N8wqayvwsfzo2MuDeISDB1S8F-tAFFMz7IgD--6A6RPfWQhoGMCAALUUxHjs4E0AJSG9QAiqvBhAMGqAGAAAEQgAAXEIAAPBBAADYwQAA1EIAAIJCAACcQgAAoMEAAPjBAAAAQQAAwMAAAIbCAACGwgAAkMEAAJxCAABAwgAAyEEAAMjBAADAQQAAPMIAAKDAAABwwQAATMIAABRCAACAPwAAwMEAAEjCAAB8wgAAmEEAAOhBAADAQAAAMEIAAITCAACwwQAAlMIAAIDAAACMQgAA1kIAACDBAAC6QgAAgD8AAADBAAAsQgAAcMEAABhCAACKwgAAgMIAAGRCAAAkQgAALEIAALrCAACgwAAAgD8AABDBAADwQQAAoEAAAM7CAABgQQAAKMIAAOBAAAAEQgAALMIAAGDBAACawgAAUEEAAGDCAAA8wgAAkMIAAJjBAACwwQAASEIAAIBCAACAwQAAgMEAAAzCAABQwgAAIMIAAFDBAAAQQQAAEEEAADjCAAD4QQAA4MAAAHxCAACAPwAAAMAAABBBAADwQQAAMEIAAPDBAABoQgAAtEIAAMDAAAAgwgAAwMEAAGDBAABgwQAAEMIAAJJCAABQwQAApsIAAIBCAACEQgAAAMIAAKjBAACAvwAAyMEAAEBAAABUwgAAcEIAAIhBAACQwQAAgL8AAMDAAADowQAAiEEAAIDAAAAgwgAAKMIAAMBAAACAwAAANMIAABzCAAD4wQAAQEEAADxCAACQQQAAoEEAABBBAACAQAAAwMEAANDBAAAQwQAA0EEAAEjCAAAwQgAAAAAAADDBAAAYwgAAyMEAAADBAACAQAAAHEIAALDBAACoQQAA4EEAAIzCAACIQQAABEIAAPDBAADYwQAANEIAAOBBAACAwAAAwMAAANDBAADIwQAAIMIAALTCAAA4QgAABMIAAADAAACYwQAAoMAAAIhBAADAwAAAyEEAAHBCAACQQQAAwMAAAADAAAAwQQAAwEAAABDBAADgwQAATMIAAOBBAAAQwgAAEEIAAJBBAABMwgAAksIAAIDBAAA4QgAAlkIAAEDBAAAYwgAA4MEAADBBAACYwQAAoMAAAHTCAAA0QgAAsEEAAIBBAABMQgAAMMIAAIDBAADgwAAAUMEgADgTQAlIdVABKo8CEAAagAIAAIa-AADgPAAAVD4AANg9AADYPQAADL4AAFC9AAABvwAAyL0AAPg9AAAMvgAAgLsAADC9AABsPgAA2L0AAIA7AACYPQAAmD0AADw-AAD-PgAAfz8AANi9AABQvQAA6D0AAGy-AACovQAAqD0AAOg9AADIPQAARD4AAHA9AADCvgAAEL0AAEC8AACAOwAAiD0AAOA8AAB0vgAAPL4AAFy-AABAPAAAiD0AAI4-AABcvgAAgDsAALi9AACKPgAAyL0AAOA8AAA8vgAAgLsAALg9AAAEPgAABD4AALi9AAAQvQAAJz8AAOA8AACIvQAAhj4AAOA8AABkPgAAuD0AABC9IAA4E0AJSHxQASqPAhABGoACAABwPQAAUL0AAKg9AABDvwAAiL0AADw-AAAEvgAAwj4AAAS-AADoPQAA4LwAAFS-AACgvAAAxr4AAIA7AAAwvQAAHD4AAEE_AAAUPgAAdD4AAGy-AACYPQAAuD0AAHC9AABQvQAAqD0AAJg9AACgPAAAdD4AAIi9AADgvAAAcD0AAEC8AABUvgAAyL0AAOC8AACKPgAAmD0AAI6-AAAcPgAAFL4AADy-AABMvgAA6D0AAHC9AAAsPgAAf78AAFC9AAA0vgAAwj4AADC9AAB0vgAAQDwAAKC8AAA0PgAAML0AAKg9AACYPQAA4DwAABA9AABMPgAAUL0AAOC8AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JMQIz4WyXD0","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1248,"cheight":720,"cratio":1.73333,"dups":["8303397544108359698"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4233878640193542812":{"videoId":"4233878640193542812","docid":"34-6-8-Z2B0FA785D14B088F","description":"In this brief video, I discuss a troubling element of statistical analysis and data science that "haunts" many students. That is the idea that there appear ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/762717/e6ff50c490e8fa8d4b7a1dd7a2710173/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cz7dOgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLmXgEFje0BU","linkTemplate":"/video/preview/4233878640193542812?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Statistics...1000 ways to do the same thing: Another a 2nd approach to summarize quantitative data","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LmXgEFje0BU\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM0MjMzODc4NjQwMTkzNTQyODEyWhM0MjMzODc4NjQwMTkzNTQyODEyaogXEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E7YFggQkAYAEKyqLARABGniB-vf8-f8BAPT4CAECBP4B7foDDfwAAADjBf0BAPwCAPEKAvv5AAAA9P0D_QYAAADs9foHAAEAAAAO8woDAAAAEO4I9_sAAAAKDwMA_gEAAP8FBvj4AQAACPz7Cv8AAAD4Cwf6-_8AAPsB_AQAAAAADv4B9QAAAAAgAC0rMtc7OBNACUhOUAIqhAIQABrwAX8DFAPMCOMADAfeANoM6wGIAAH__SzZAKYAJgPGA-YA5vj0ALv72_737wz_5hcY_xYE3P8b0gcBMuL9AC0MCf8E5hIAM979AD31BAAL7-EA_goe_vTcBP4V-woA_QPpAAsPHf_c59QBHvfYAgr1HP_56A4EC_UNB_T19QHXIwn_-e___vzm4gD6AvX9uP8YBgXxBvz2Bv__BwIABRgM2gLt6Aj2-vfdAR8L-QQI8APx2fEK-_zm-AUJ2BkE8gr_BAT8EfvwFQv38hII8hfk8Pb6-wn5CPYCBRvl7wr-0wj48A37-u0hCPLoFw0H_QYQ-CAALd9dLjs4E0AJSGFQAirPBxAAGsAHuRwDv6G_q7uac_i7SVJNvVc_pj0Y2QS97y12PBlHiz3m6ke8H6bYO0GUubwf39Y6mYCnvmX70Dyf-hE9iZkNPsw_X73rnZ-5ehcvvgg8MD0pn9S8wtktvtiTSr0CAge9PXvDPf0QQD3VDW-89bsAPkMVsz0FrsY8yi59vUnnrjvglx-9CUG9vbkmkzz2kxa8Gk_kPTr5Pj3rrxI9aRkZPr1fO71lF-879SVAPIe_prygbIq8uhGWvRk8CDy-fQc9rdwrPsmgRL2LqAm7Sg8eu23FvrzCUY08siiRuz7k0jz-zfC80RuTvU80WbxuZIM8YZZsPQpfpD0g2bc8ZdojvDjTmT2Obqm87IbtPYz3gz1yW5E7IpStvHRLoT3OwbM8odxxPVsULDyBaLm74N4wPd_wzDwQWD067usAvpQ_mT1Fhck74OwAveBYhjydOdo8E__GPfRcVT1GvMw7bVMcvdaHOr1Y9cM8LPmTvWJgQjwPL6O80ZPSPX1F8bvoyau8m-MMPswZoD2SCTu6V6-HvMeV37zgkBk8wWt8PVK3871rFYg5pRi7PZ1snrxCO4y8_t3QO-MFY7o34V48SHybujFbN73oIzq8bv-lPUiivLw6vqi7QXh-vLKcBLs4tNA7anM1O695Fb0g9dO7sZbxPDE-cTzywgo8JLa7vdLEHDzB6LC629wIPp7CwLyvTI06WCuJPCSVTr3fbZw7CkznvGhsebyiWsg6ZlalPPbRab21bE47asJ2PMOrNj2FTL25ySS-vCRIAD2qvxg6NyUPPeu4gD0d1bs5DFxmOWVCgrtvpiK6p4dSPTm5X72sQYa4-v0MvT9LYb2_V5O5PPjpvSE9pb1K7ta4S7F-vN16zTzFqXe5POedPNZPA7woCkS58QL2vKGhjz1tCMq2w92Tu9oEs73fYQy5EwlLvVnajrzvjSW5JjfMOpH-qLyJCN45dZq7PKTf_jwaNti3klEvPFEVU7wCSGS5rUA-PPwFlrto8pk4lnZqPE9HVj1NzD643kk4O0okUb0VN303mgcQPd44yb0INPs2Sf1QvOn2Lb3QwoI47CWXvQObzrxEeBE4RK9VPX_Yd7xzGpU3OjzEvGGogzwl3fq3F9MRPUbZgb07_hM4o7EWPqZVnj1HIyS5lGwQvbpJsbyD43O3cjQJO3COtL040o220CUBvdBEuzvlMNC3JtyQvBYwMb5BoFq5ipZXPRBY-T2NF0A4vxYKPaFvwT3_L5y3TXAAvbsWY7wn6My3kQl4OwRdljyClXA4IAA4E0AJSG1QASpzEAAaYCUDADIJFOr36BLh7vPED9H98b45wwX__wn_2yzR4vQf6a3nGP88_SnWpwAAADHREhL8AOx7JsngHewGAce8vhIwfwI0JM7jBfGT-Pcg19QWCao5OADi-KU0TBXjPCLlBSAALeoSGjs4E0AJSG9QAiqvBhAMGqAGAABAwAAAgEAAABRCAACQwQAAaEIAAHBCAACyQgAARMIAAIjBAADgwAAAGEIAAFTCAAAAwgAAqMEAAJZCAABAwQAAgEEAAKBBAACgwAAACMIAAAAAAABAQQAA4MEAAABBAABQwQAA4MAAAAjCAADUwgAAIMEAAMhBAAAoQgAAokIAAKLCAABcwgAAoMEAACBCAAAgwQAAkkIAAKBAAACGQgAATMIAABhCAADMQgAAQMAAAGhCAADowQAAhMIAABhCAACIQQAAGEIAAIrCAAAQQQAAgD8AAEBBAABQQQAAgEAAANbCAABswgAAsMEAADxCAADgwAAAkMEAAJhBAABkwgAAyEEAAADCAACgwAAAysIAAJBBAACIwQAAoEIAAGxCAACAwQAAAEEAAFjCAACwwgAA4MAAABBCAABwwQAAgD8AAGjCAACoQQAA-MEAAFRCAAAwwQAAyEEAAMBBAACcQgAAoMAAACDBAADQQQAAokIAACBBAAAwwgAA4MEAAJjBAAAAAAAAYMIAAGxCAACAvwAAoMEAAADAAADUQgAAFMIAABzCAAAAQAAAoMAAAPDBAAAIwgAAWEIAAHDBAAAYwgAAQMAAADDBAACAwAAAAAAAANDBAABkwgAAkEEAAHBBAADIQQAABMIAAHDCAABEwgAAcEEAACBCAADIQQAAEMEAABDBAADAwQAAAMEAAEBAAAAYQgAAYEEAAFzCAACwQQAA4EAAACBBAACOwgAAiMEAAPBBAAAQQgAAqEEAAIDBAAAwQQAAQEAAAHDCAADQQQAAcEIAANhBAACIwgAAUEEAADDBAADQQQAAuEEAAODBAACAwAAAEMEAAADCAAAMQgAAUEEAAOBBAAAgwQAACMIAAGTCAAAUwgAAqEIAAIpCAAAsQgAAmEEAAEDBAAAAwQAAUEEAAMDAAAC4wQAAWMIAAABAAAAIwgAASEIAAABAAADwwQAAQEAAABBBAAAoQgAAPEIAAITCAABMwgAAKMIAAGhCAACAwAAAAEAAADjCAACAQgAAFMIAALBBAADAQAAAksIAAGDBAADAwQAAAMEgADgTQAlIdVABKo8CEAAagAIAADA9AACYPQAAED0AAEw-AACIvQAA4LwAALg9AAAVvwAAFL4AALg9AABQvQAAuD0AAKi9AAC-PgAAmL0AAAy-AABMPgAAiD0AADw-AADaPgAAfz8AAHC9AADYPQAAND4AADy-AAAwvQAAEL0AAAS-AABQPQAAqD0AAPg9AADovQAA4LwAAFC9AADoPQAAHD4AABA9AAAcvgAAor4AABy-AACGvgAAUD0AAOi9AABcvgAAhj4AAOC8AACaPgAAXL4AAJg9AACWvgAAuD0AAIi9AAAkPgAAQDwAAHC9AAAwvQAAJz8AAMi9AADovQAAbD4AAOC8AAB0PgAA2D0AAIA7IAA4E0AJSHxQASqPAhABGoACAADgvAAAyL0AAAw-AABFvwAAML0AADA9AADYvQAAUD0AABC9AACgvAAAuL0AAAS-AAAsvgAAXL4AAPg9AAAQPQAA-D0AAEE_AACYPQAAuj4AAKC8AAAQvQAAQDwAAFy-AACIvQAAZD4AAMi9AACAuwAAEL0AAFQ-AAAQPQAA-D0AALg9AACKvgAADD4AACw-AAC4vQAA-D0AADy-AABAPAAAND4AAHA9AAAwvQAAgDsAAHS-AAAwvQAAf78AAES-AAAQvQAAMD0AAFC9AAAwvQAAcL0AACQ-AACGPgAAQDwAAEA8AABAvAAATL4AAEC8AADoPQAAQLwAABw-AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=LmXgEFje0BU","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1248,"cheight":720,"cratio":1.73333,"dups":["4233878640193542812"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7150520181161353737":{"videoId":"7150520181161353737","docid":"34-3-3-Z5A736C68CAEB9DBD","description":"This brief video introduces the frequency distribution table (FDT) as a tool to summarize qualitative data (both nominal and ordinal). Pareto Charts, Pie Charts, and Bar Graphs are introduced as...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4237383/c7cacd319d22b1ce41272885e9751936/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zsHXFQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DweVru2bu7Yo","linkTemplate":"/video/preview/7150520181161353737?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Summarize & Visualize Qualitative Data","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=weVru2bu7Yo\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM3MTUwNTIwMTgxMTYxMzUzNzM3WhM3MTUwNTIwMTgxMTYxMzUzNzM3arYPEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E6EHggQkAYAEKyqLARABGniBA_r9AvsFAPP7-wD_A_8B9QH4APn-_gDuCf8FCAAAAPz_BwMBAAAA9gn8-gQAAADz-gEF_QAAAAYF_fv7AAAAG_ECAfsAAAADCgL7_gEAAPcEAvgCAAAADw39_f8AAAAABwL3AwAAAPwD_vYBAAAACvTx_AEAAAAgAC1ZQuI7OBNACUhOUAIqhAIQABrwAV8K-wDK8d__GPLnAeAc6wCB8Pv_HQ_sAMQODgG3Afr_8gXwANDm8QDxAgYAzwMQABIE4f8aBQUACgAO_ywBEQAVAQ8AJ-8OACL3-wD8_P__9BYWABjvIgEc6gUACv_rAA7vHf7lA_L_9w_kAf8DIAAVCRUBHPMAAf4PCALvJBkDEw_z_Qf1_ADn9vYA4g0HAw7_8QYVB_b8-PnzAREP8gLsAAoBFOvsBAoF9QUBEAD19_0TAQT48_wW-xkE_SX7_-z0BPT66vgC-g8JADTtCwgF_wz-_v0GAPIY8gj-2gf5_A0TAfAsA_HyBggE8_n6_yAALZD6Tjs4E0AJSGFQAipzEAAaYCEGABQCB8PvHR3i9uD4GNv92soduf0A_C8AwxLrxwoB-avf_v8c-BbvrgAAADjaLRMAAABn9fX-__rDJdic5CsCfz8YHdID8fS4x9f17dwKGs8TTAD69bURRRPNHgLfByAALbdUKTs4E0AJSG9QAiqvBhAMGqAGAACAvwAAYMEAALBBAACgQAAAoMAAANhBAABUQgAAOEIAADjCAACAQAAAAEIAAMjBAAC4QQAARMIAAMDAAADwQQAAAEAAACDCAACowQAAMMEAAFDBAABgwgAAJMIAAADBAAAgwgAA4EEAAKjBAADQwQAATEIAAKhBAAB0QgAAJEIAAADCAAAgwQAAbMIAAMhBAACAPwAArEIAAIjBAAAAQAAAWMIAABjCAACSQgAACMIAABBBAAAYQgAAisIAAIDBAAAAQAAAgMEAAMDBAADgQQAAoMIAAGBBAADIQQAAbEIAAHDCAACQwQAAgMEAAI5CAABkQgAAVEIAAGzCAACEwgAAyEEAAPDBAAAowgAAkMEAAODBAACAwgAAUMEAABDCAAAIwgAAgEAAALDBAAD4wQAAgL8AAEBBAAAQwQAAcEEAADDBAADAQQAAAMIAAOBBAAB8QgAAwEAAAADAAABsQgAAiMIAAADBAAAAQAAAoEEAAEhCAAAYwgAA0MEAACzCAACAPwAAgEEAAABCAAAEwgAAeMIAAIhBAABUQgAAuEEAAKBAAADgwQAArsIAAKBBAACGwgAA8EEAADxCAACYQQAAqMIAAGRCAAD4QQAAgEEAACTCAAAQwQAAmEEAAITCAADAQAAA8MEAADTCAADgwAAAAMIAAAzCAADgwAAAGEIAACjCAACywgAAsEEAAJLCAADgwQAAyEEAAMjBAAAQwQAAwEAAAIjBAAA4wgAAksIAAEBAAAAsQgAAAEAAAJJCAACQwQAAUEEAAAhCAABAQAAAqkIAADxCAACiwgAAUEEAAIDBAACAQgAAwMEAAATCAAAowgAA4EEAAGBCAACgQQAAoEEAACRCAADEwgAADMIAAJDBAACAvwAAREIAALZCAABAQAAAJMIAABjCAAAgQgAAwEAAAEzCAACAwAAA4EAAABRCAACgwAAAcEEAADRCAACQwQAAYMEAAILCAACawgAA4EEAAERCAABYwgAA4EAAAFBBAAAcwgAAcMEAACDBAABAQgAAYEEAANBBAAB0QgAAoMEAABDCAAA0wgAAwEAgADgTQAlIdVABKo8CEAAagAIAAKC8AAB0vgAANL4AAI4-AAAsvgAAlr4AAOC8AADyvgAAmr4AAKI-AABAPAAAqD0AAAS-AAAkPgAADL4AAMi9AACgPAAAyL0AAJI-AAATPwAAfz8AAFw-AACAOwAA6L0AAJg9AAAwPQAARL4AAKC8AADIPQAA-D0AACQ-AABwvQAAcL0AANi9AAAUPgAABL4AAMg9AACgvAAAXL4AAKg9AAAsvgAAcD0AADQ-AACqvgAA4DwAACw-AAB8PgAAxr4AAKg9AACyvgAAcL0AAAy-AABsPgAA6L0AALi9AACgvAAAPT8AALK-AAA0PgAAcD0AAIi9AAAUPgAA4DwAAGS-IAA4E0AJSHxQASqPAhABGoACAABAPAAADL4AAMi9AAAhvwAAUD0AAFA9AABwPQAAUL0AAAS-AACYPQAAoLwAAKi9AAD4vQAANL4AABw-AAAwvQAAZD4AAB0_AADgvAAA6j4AALi9AADYPQAAED0AAOi9AACgPAAAQDwAAIi9AACAuwAALD4AAAQ-AABQPQAA6D0AAEC8AAAsvgAA-D0AAMg9AACYPQAA-D0AAAS-AACIPQAAkj4AAFA9AAA0vgAAqD0AAIK-AADoPQAAf78AACy-AADgvAAAPD4AAKC8AACovQAAyL0AAAw-AAD4PQAAmD0AAKA8AACYvQAAJL4AAIA7AACAuwAABD4AACQ-AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=weVru2bu7Yo","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7150520181161353737"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1857860893177686667":{"videoId":"1857860893177686667","docid":"34-5-1-ZADF3AE6E53DAEAE8","description":"This brief video provides a summary of the normal and t-distribution functions available in Excel. Each function is categorized by its appropriate distribution and by when it should be used.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2908886/2ce39e2671b021ef0f994ce3f12d8d48/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/g04WKQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8hcgbHNJ0kM","linkTemplate":"/video/preview/1857860893177686667?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Summarizing the Excel Functions for Normal & t Distributions","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8hcgbHNJ0kM\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChMxODU3ODYwODkzMTc3Njg2NjY3WhMxODU3ODYwODkzMTc3Njg2NjY3aogXEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E4EHggQkAYAEKyqLARABGniB-fcHAwT7APjsCQoHB_wCHQ8AB_MDAwDp9_vyAv8BAP8EDvMIAQAA-REE_gcAAAD2APQC-v8AAP_7_gP6AAAAGggLDPsAAAD9BfDw_wEAAPAJ-fECAAAAHwUICQAAAAAHFgb2AP8AAP8HBfwAAAAAEwz0CQAAAAAgAC38mcc7OBNACUhOUAIqhAIQABrwAX_uAAC18-v-S-0JAPwEBwGNHdH_JSb2ALAOJwLW8f4A-freAO4D8AD2COAB8AkYADwa1v8O3AUAHeT__wXsBADRBBQAVusAADkTA_8DFeP-4AsK_ujmCQETBv4BBP70AOYMJv_qDdoBDv_YAw_aFf8aDBoB7dYHABYBHwEFCPr__ejh_u4D_gPbCfIC7hQ0Afjx5fwFQxgA_QEG-xgG_foG8vz5OwXhAR4c-f31_QQBFhb1_wfP7gAbIBMI9iPt__kFDwH18fMHB_oKBQve_woRBu38HQjrBxIM-ADk3wj42d7y-gQmDPnO3_kG6_7tBCAALRggJDs4E0AJSGFQAirPBxAAGsAHkujtvpRnQbnNSV699vOBPMPKWDkaVHa8MgDUvWEmID1Cpds8SRPPPSImFzuwr3W9s_B1vsfQlrxFZEA5Ci9hPhdxsLxB08Y5hzQqvp5pqD22cmW8FAdQvpN2fjyKmh69Xz_pPDfnmrsjrLy8wsmMPS9SQ718Gbs8kVZGPLSOqryUgB29D1hDvT8ZY7xsiea85suLPXyWDL1uPM48WzGiPbGRWr1PbE88gU6XPe6N57vcK_M8qUs2vtRWtrzV5I48BTTxPRUkDbw2Q186IgT_vB1_OD2F9Iw7g76UvVP9FDvbY868EYcxPW9oJb1I9YK8LR1YPZlxyTxHf9w7XZGzvYxCGDw-NYe7uWa3PXMTsD2_G4E8GNIBvkmDqz2WJiW8pG6nPP3SRzwWure8MbEZPqn1Izw7SJk86XYAPTBiBD0bB8U7brYjvflYcD0JEsA83Ws3PYycqj0EfoO8_OAcPbnjSD1qu-y7KlmJvSV0OLumtcy6UAgTPVVjLjzGFoI78SmVPcHFCj1F0D28BSOlPdYCO75J5Zo6LvIdvG8umb3Ny3676clmPYGwMz2cdT47hlqePSdQRLpdN4C8LzKiOxQU9bwY9os7AsiKPTiMjb0Ux2S7Cnm-vZgAFz2DLgY8vYosvZixVzxXwmI7oMz1PHDKwTxvuI-7oPqou3vAXL2EUaS7DW7rPACbYjwQpeY6BFRYvUZzCb2nUES7euSqPSNfrrxvSIK50ClIO5MtHL31B1I7B1UUPRlPqTxCokm5zBI4PU95dLyWpB064SSNPM3gND1JLLK5S5kvPHhciT3-F1W4WZifPShmmDsD5Ui5QdS9vdocB72FqYG5PowVPddpJLxWc8U5Ha0qPdzhZTwwxl44Y3RqveAZaL1Zb_23zDVWvdaL4ztGSgC5NOumPVdkD70kSzg5BKEmPUqqgLwv8zg5-au2vLAsZ70n8iM5BaR9PJqEgT2wtak4q8wKOsurKb0JVcK3SXffOtMkwjwLXRY2lKjyPBAC1zyjTM62EkeDvJ4jUr17qx63Z2dsPQVN671fJjU4zF2LPJwOrjx13wa4a_HpvXnWJLzuL2A2QNXNPAriUTsCDso3Yi-UPa1pHrw_ddy18DYvvdJF1Dw75z84weMrPtylaLwHiXS5zcd6vdMV7L3mm_i4SJZCvSwRw73BzI-42RYPvQi-M7uZnFW47AO9O3zUD74X-ty4yvRwPSLhKz7xy4o4YJqYPFua-z2Erf24lWlPveevqbvwvLc26xYGvUkyhry7hZ84IAA4E0AJSG1QASpzEAAaYBgIAPnoH-39Cgbn-e_tHOwV--4O0v__AeMAyCjN5hAWA5PtDP8pzvkEugAAACUA6woWAOdd-wEAFwHxDbvN-AgcfyMZAsHQARO5-usj--8YEcsuBAAXDcAkEdTmWBALGiAALdMkPzs4E0AJSG9QAiqvBhAMGqAGAAAcQgAAUMEAAIZCAACoQQAAgEEAAGRCAAB4QgAAUMEAABzCAACAQQAAYMIAAETCAABYwgAAUMEAABRCAABwwQAA4EAAAJjCAAB4QgAA6MEAAKBAAABMwgAAZMIAAJhBAAC4wQAAQEAAAIDBAAAAwgAAYMEAAADAAAAEQgAAQEIAAJDCAABIwgAAAMMAAFhCAABQwQAAEEIAABDBAADYQQAAZMIAAIDAAACIQQAAyEEAAChCAADwwQAAUMEAAIJCAACAPwAAsEEAAFDCAADIQQAALMIAAGDBAABkwgAAbEIAAKDAAABowgAAqEEAAIRCAACYQQAAksIAAKDCAACowgAAwMAAAHzCAACYQQAAwMEAABDCAABAwAAABEIAAAhCAABwQQAAgEAAAEzCAACowgAAXMIAAEjCAAAQwQAAUEEAAIjBAAB0QgAAGMIAAIC_AABMQgAAGEIAAIjBAAD4QQAAIEEAAAxCAADYwQAASEIAAAjCAABAQQAAUEEAAKjBAADgwAAAhMIAANBCAAAUQgAAQMIAABBCAAAAAAAAwMEAADjCAABAwAAAgEAAACRCAAA4wgAAgEEAAGhCAADAQQAADMIAAOBBAAAQwQAA8EEAAHDBAAAcwgAABMIAAMBBAABgwQAAnsIAAKBAAAAowgAA4MAAAAAAAABQwQAAqMEAAIC_AADwwQAAQMIAAHDBAABAQQAAlEIAAKDBAACEQgAAkEEAAMBAAAAgwgAA0MEAAIBAAAAsQgAA8EEAADjCAACgQQAAUEIAAADBAAAsQgAAIMIAACBCAABgwQAAQMEAABBBAAAAwAAAkEEAACDBAABUwgAAEMIAAEDCAAAQQQAAGMIAALDBAABwwgAAgL8AAOBAAAAwQgAAREIAALRCAAA0QgAA6MEAAIBBAAAQQQAAYEEAAEBAAADAQAAAYMIAACDBAADwwQAAgEAAABBCAAAAwwAAMMEAAGjCAAAAQgAAAEEAAIDBAABEwgAAuMEAAPhBAABQQQAAYEEAAJDBAACUQgAA4MEAAHBBAAB8QgAAyEEAAHBBAAAQwQAAoEAgADgTQAlIdVABKo8CEAAagAIAAOC8AACKvgAAHD4AAFw-AACgvAAAyj4AADA9AAAfvwAALL4AADQ-AACAuwAAgDsAAIg9AAAMPgAALL4AAIi9AAAsvgAA-L0AAAQ-AAAXPwAAfz8AAIA7AAC4PQAAFD4AAOK-AABQvQAAVD4AAMi9AAAkPgAAHD4AAOg9AAA8PgAAjr4AAI4-AAAdPwAAEL0AAHQ-AAAUvgAANL4AAFA9AADuvgAAfL4AAI4-AADovQAABD4AAJg9AAAQvQAAmr4AAIK-AAArvwAAgDsAADS-AABAvAAALD4AACS-AADYvQAAOT8AAKC8AAAEvgAA2D0AAFQ-AABAPAAAgLsAAOC8IAA4E0AJSHxQASqPAhABGoACAACYPQAAQLwAAKC8AAAfvwAA4LwAADA9AAC4PQAAQLwAADC9AABUPgAAJL4AALi9AACAuwAAfL4AADw-AABQvQAAqD0AADM_AACYvQAA7j4AABS-AADovQAAED0AAAy-AACAOwAA6D0AAEC8AAAQvQAAgDsAAAw-AABwvQAAqD0AAJi9AACOvgAAQLwAAEQ-AAAwPQAAPD4AABS-AADgvAAA2D0AALg9AABAvAAAUD0AALi9AACIPQAAf78AAJa-AAB8vgAAiD0AAJi9AACAuwAABD4AAOA8AADgPAAAgLsAAIC7AAAEvgAAPL4AAEA8AADoPQAAbD4AACw-AAD4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=8hcgbHNJ0kM","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["1857860893177686667"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6253916645840183663":{"videoId":"6253916645840183663","docid":"34-1-5-Z3DFBEFBF652133D8","description":"This lecture recording introduces (multiple) criteria we can use to determine if the normal distribution provides a good approximation to the binomial distri...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3946463/5c50d212ce1ab464e09a4869f5aebc2b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/l-nWJgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZyO0SUukK_E","linkTemplate":"/video/preview/6253916645840183663?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"When we can approximate the binomial distribution with the normal distribution & why this is useful","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZyO0SUukK_E\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM2MjUzOTE2NjQ1ODQwMTgzNjYzWhM2MjUzOTE2NjQ1ODQwMTgzNjYzatYQEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E_4HggQkAYAEKyqLARABGniB_gcIBPwEAA8AEAACB_8BAAP_-Pj-_gDs-PzzAv8BAPf5APcBAAAAAgf_Av0AAAD3APUC-_8AAP4G_P8EAAAADAELBPUAAAANB__6_gEAAP_y-wED_wAADv4BCAAAAAD1AP_6AwAAAPUMBQYAAAAADPn3BQAAAAAgAC27St47OBNACUhOUAIqhAIQABrwAXHqDACuDOv9Ce0AAAwb7gGB_uUANxvkAMUE_QC0EdH_BPPyANT2HwAF8xkAwgYB_xID7AAM8CEAK_sh_w8FMwAG_w4BKvIjADEOFAIKCvT_2Afp_zTpBQIA6fIA7Rjo_xzlG__o_N4D4AraAQ3-NgEZCxkBGd8Q_tYiBf8CGA0C8hLa_hHs_Af13P8F5g0QBywO8PkrIwf9_APkAvsADwYT9wYCDBDWAC0g6_wMEAAD6RAE-hf1-fMgCgX_7BX29t7kCPf16Qj-BQ7_CBHLBwYZERf_-PMR-QD9ABEN0Prz7B___ekOAwfQBQEA5dj3-iAALQmXKTs4E0AJSGFQAirPBxAAGsAHhxbhvrg-7Dw5Qia9e8KNPZav7DuUh4W84OLXvHi0EDzYkwa72pAfPqYFMzvnrZk6HHh1vmp8ED18ONI8cqesPi0la73hSHu8YtksvnICqjvDZAq9t7IkvikVwzxE0GK8K31wOyHYB70YIkw9HQDxPfXVFb35njG9zvoUPamVE72UOVG9mK1rvRflQ728SQK91-rBPTfwlL0J6R880c3-PMG-I7zt9cm87gIqvZsFdb2DbUQ7FpJivRFedbs-9NO8CXmTPQ3WyTz8jmE8fedXPUbF6rtSVPY4TBacPMEQQ72mqOU797e6vIWmmTvLZ7m8eSqGPUUHKb0KkBe9P28qvVFOdD0RSDK7uWa3PXMTsD2_G4E8CI7LvUJNIbxmfhq8UocPPFATorygbIq8Dk7kPVr6C70rdmo7meJgPDXpOz05nxM8uD_XPB7ygbsqkUQ8U3nbPdbxDj0NRja8UAgzPQm_GrwkUFS7IJDwvM9bRr2ZQs46ksgCPGWHHzzN3bY6GOuLPQVZJb3eVGY7IZ_GPWLMJ70Kzgc86wHzPH11erygg9O7ew2WPWS-bT3Lq8a6SBgGPm7JZb3t1QW8LzKiOxQU9bwY9os7Y3XAPX1RDL1aZyI6j6wXvUdxbj2qUBW8OnlsPHzzdjwu1ia8lJqXvfPY5Dtq7vA7TgJlvPCsiL349cc6iWZZPQHxlD3Rfry4q6jLvG-YzbzVVTm6aeTTPcnSvbxSsAa4JRftvD_TIT0lNzM7ubzDvHhQjz1Nz6K55CkwPaVWDr3x2A074WLgvDjNjLwGZaW4J2a9PGnuFzw0ydC4erk5vSQLmLx5m5c5FJ2LvYl64b3GJ3A5bYZgPSKIo72H8ka50cuoPHSUiL32T765SgsXvgrcmr2pquG2xLFOvZX_mjxpQWG4Pr6TPZF1nbwwTfM3M-4ZvHxXTj0edQg5VpScvevrj72V5sY5pN-evfT4_T2gCBU4gbqau_Rznj08Pai4efmpu6clxj3Erv-4Wsb8vKlQWD0q2gS1sLSCPWMIID4L5EA5nA5Jvcj1Cr2Aq_G3oNx7PQGZtz1YADa4rOZ5vW1XqLx5afa3PympvRvW1L24fkG3HF7wPX0E_jz055C4PVusvJEhDL16rEA41fK5PIp9Pb34qAM42V3iulC3or0Qm0G4b0VnvbQWm71OcPi30d0_va5uqzwSgde3P47GPSveCL6HIrS4yvRwPSLhKz7xy4o4eo-OvRjY2bwOJO63qA0dvYncAj2iPPa2vbQSulmfl73yZjO4IAA4E0AJSG1QASpzEAAaYC72APLfE_EKPjfdzw_k_dtMDPEd4fT_7uD_DSIA5hAI0ZQA8v8-5xj8qwAAACMH1TcCAPB1uPwAM_YF_Lfsxy0TfxEKGMTd-f7K8iAc7ucs_ww7OQAHAakFWf3dWQAKOyAALcaKIjs4E0AJSG9QAiqPAhAAGoACAAAwPQAABD4AAJI-AABwPQAAqL0AALg9AAAcvgAArr4AAIC7AACoPQAAkj4AAMg9AAAcPgAAgLsAAHy-AABsPgAAJD4AAFC9AAAwPQAAmj4AAH8_AABAvAAA2L0AALY-AAAQvQAA-D0AAHC9AAD4vQAAUD0AAEQ-AADgvAAAUL0AAES-AADgvAAATD4AAIi9AABAPAAAfL4AADS-AACSvgAAZL4AAK6-AACOPgAAqD0AACS-AAAwPQAAND4AABy-AAC4PQAA2L0AAEQ-AABwvQAAuD0AALg9AACuvgAAiL0AAM4-AACIPQAAoDwAAEQ-AABwPQAAED0AAJg9AAAQvSAAOBNACUh8UAEqjwIQARqAAgAAFL4AABy-AAC4PQAAOb8AAIg9AAAcPgAABD4AAOA8AAD4vQAAhj4AABS-AADYvQAAiD0AAKA8AAC4PQAAoLwAAFQ-AABBPwAAUL0AALo-AABcvgAAgLsAAIA7AABAvAAAUD0AAEw-AACoPQAAEL0AAEA8AAAcPgAAUL0AABA9AAAMPgAABL4AAEA8AACYPQAAyL0AAJg9AAAQPQAAiL0AAFQ-AABQPQAA4DwAADC9AACOvgAAJL4AAH-_AACAOwAA-L0AAPg9AABwPQAA4DwAABw-AABMPgAAqL0AAOA8AABAPAAAMD0AAHC9AADIvQAAFD4AAFC9AAAQvQAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ZyO0SUukK_E","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["6253916645840183663"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17230055735314616366":{"videoId":"17230055735314616366","docid":"34-2-2-ZBF02795B05757178","description":"This brief video walks through a handful of estimation problems using the count-by-thirds empirical rule. In particular, we explore problems that use the intervals associated with the rule...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2350158/2af2bc7b0bc208341e3375b76f04c8f2/564x318_1"},"target":"_self","position":"18","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6b9wpgWHksk","linkTemplate":"/video/preview/17230055735314616366?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Demonstration Problems Working with the Count-by-Thirds Empirical Rule","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6b9wpgWHksk\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoWChQxNzIzMDA1NTczNTMxNDYxNjM2NloUMTcyMzAwNTU3MzUzMTQ2MTYzNjZqrw0SATAYACJFGjEACipoaGZvZGl5eHV1dXh6YmFkaGhVQ25Gdm5MVGJ1Z3l6NDluZ24yci1iYXcSAgASKhDCDw8aDz8T1AWCBCQBgAQrKosBEAEaeIH7AAH6_wIA8fsSBQYE_gEBCP4I-P7-AOv4-_MC_wEA-gUHBPkBAAAL-wkKBwAAAPoH-wf7_gAADQIJDwQAAAAM9wgC-wAAAAnyBAn_AQAA9_0KAfUCAAEQBAcQAAAAAPkO-xD_AAAAChkBDAAAAAAH-AD-AAAAACAALVkm1zs4E0AJSE5QAipzEAAaYAwUAB0MDPnm-ind7_rZBw7_8PQT8AEADNwADRIa7RUT2NElCv8f1RYCygAAABr_9RcKANRIAt7LIwwG9-IH9hYMf_8X9vnfH_gBBej7IQoB1eoTLQD0D_UCKgXgQiQaFSAALQvNbTs4E0AJSG9QAiqvBhAMGqAGAAAAQAAAYMEAAMZCAADowQAAqEEAAFBBAACSQgAAyEEAAKDCAAAswgAAHEIAAAhCAACAPwAAMMIAAFDBAAD4QQAAqEEAANjBAACQwQAAQMAAAPhBAAC4wQAAkMIAAABCAACkwgAA4EEAABzCAAAwQQAA6EEAABDCAADAQQAAuEEAAEDCAACgwQAA2MEAACBBAAAwwQAAmkIAAERCAAAAAAAAUMIAAKBAAAAsQgAAKMIAABhCAAAYQgAAAEAAAABAAAAgQgAABMIAAJjCAABwwQAACMIAAIA_AABUQgAA4MAAAJjCAAAkwgAAgEEAAHBCAACwQQAAsMEAAAzCAAC8wgAAcEEAABzCAAAswgAAgL8AAGDCAACmwgAAgL8AAOBBAAAkwgAAkEEAAODAAACIwQAAYMEAAPBBAACIwQAAiEEAABBBAAAIQgAAQMEAAKBBAADgQQAAUEEAAADAAADIQQAAAMIAANBBAAAQwgAAeEIAAFDBAABQwgAA0EEAAAjCAACAvwAAOEIAAHBBAADAwAAArsIAAHhCAAAgQgAA4EAAAIbCAAAgQQAAFMIAAKhBAABEwgAACEIAAMJCAACIwQAAmMIAAIC_AACIQQAA4MAAAAhCAAAgwQAAoEEAAFzCAACAwQAAQMIAABDCAACQQQAAYMEAAABBAAAYQgAACEIAAMjBAADAwQAAiEEAAJ7CAACIwQAAhEIAAFBCAACowQAAXEIAAIDAAAAEwgAAHMIAAEDCAAAAQgAAXEIAAKhBAADoQQAAGEIAAIA_AACAwQAAkkIAAMBBAAAMwgAAQMAAABDBAACAvwAAcEEAAKjBAACGwgAAJEIAAMDAAAAwQQAA2EEAAAAAAABkwgAAiMEAACDBAAC4QQAAUMEAAJJCAACAPwAADMIAAJLCAADwQQAAcMEAAAzCAADGwgAAOEIAAIhBAAAQwQAAAEEAAGRCAAC0wgAAMMIAAAzCAACqwgAAIEIAAOhBAAAowgAAmEEAADxCAABQQQAAREIAAHjCAACgwAAASEIAABhCAABcQgAAEEEAAEDAAADQQQAAsEEgADgTQAlIdVABKo8CEAAagAIAAKC8AACovQAAXD4AADw-AADgvAAA4DwAAJg9AAC-vgAAmr4AABC9AADovQAAQDwAAKC8AADoPQAABL4AAIi9AABwvQAAoDwAAOg9AADiPgAAfz8AAII-AAC4vQAAuD0AAFC9AAAMvgAAHD4AAIC7AADIPQAAdD4AAIg9AABkvgAABL4AAKC8AADgvAAAoLwAACQ-AAC6vgAA2r4AABA9AACqvgAA4LwAAIo-AADYPQAAED0AAFA9AABkPgAAPL4AAGw-AADIvQAAUD0AAFQ-AABwvQAAXD4AADS-AABwvQAABT8AAOg9AAD4PQAAnj4AAAQ-AABQPQAAJD4AAIa-IAA4E0AJSHxQASqPAhABGoACAACYvQAALD4AAOg9AAA_vwAADL4AAOi9AABEPgAAHL4AAAw-AACyPgAAML0AABy-AAAUPgAAXL4AADC9AAAwvQAAmD0AAD8_AABkPgAA9j4AABS-AACOvgAAJD4AAIi9AAC4vQAAHD4AACw-AADIPQAAND4AAFA9AADYvQAA6D0AACS-AABMvgAAir4AAJg9AACYvQAAQDwAAKC8AACYPQAAcD0AAAQ-AACYvQAAgLsAALi9AACCPgAAf78AAJK-AABsvgAARD4AAKi9AABAvAAAED0AABQ-AAC4vQAAcD0AABC9AACgPAAAZL4AABS-AABwPQAALL4AABC9AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=6b9wpgWHksk","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["17230055735314616366"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9318159882391999867":{"videoId":"9318159882391999867","docid":"34-6-7-ZDFF6D2666F6C7436","description":"This brief video introduces some basic methods to visualize and summarize quantitative data. In particular, the focus is on constructing and interpreting grouped frequency distribution tables...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2238828/99f87a8d9a3d2227e7615b1fdfbc9e2f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ViUdPwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMe1d-PuXf0c","linkTemplate":"/video/preview/9318159882391999867?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Grouped Frequency Distribution Tables (GFDTs): Visualizing & Summarizing Quantitative Data","related_orig_text":"DrGreggHarbaugh","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"DrGreggHarbaugh\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Me1d-PuXf0c\",\"src\":\"serp\",\"rvb\":\"EqgDChQxNTIyNjMzODI5NzA5NDQzNTg2MAoTNTYxNTA0Mjc3MTUwMzcyNDg0NwoTNzk2Mjg1NDkwMDM1MTY3NDQ1MwoTODEwODE4Nzc0NTEyMzUwOTM3MwoSMzc1NjQ2NzY2MzY2NTQ2NjM4ChM2NDA5Nzg0MTAyNTc3MjM1NDI4ChM4MDAyMTY0MTU3ODI0NDM1NzQwChMyOTQ5MDAyNjc5MjMxMDYwMTUyChM4ODg4NjU4NDU5OTgzOTcyMDU5ChM5ODgyNTQ1NTA4Njg2MjMwNjU1ChQxMTAzNTAyNjAxMjU4MDM3Nzk3NAoTODMwMzM5NzU0NDEwODM1OTY5OAoTNDIzMzg3ODY0MDE5MzU0MjgxMgoTNzE1MDUyMDE4MTE2MTM1MzczNwoTMTg1Nzg2MDg5MzE3NzY4NjY2NwoTNjI1MzkxNjY0NTg0MDE4MzY2MwoUMTcyMzAwNTU3MzUzMTQ2MTYzNjYKEzkzMTgxNTk4ODIzOTE5OTk4NjcKFDEwMzY4OTUyMDkzNDM3Mjc0MjA1ChQxNjg5MjYzNTA1NjkwMzU3ODE4NhoVChM5MzE4MTU5ODgyMzkxOTk5ODY3WhM5MzE4MTU5ODgyMzkxOTk5ODY3aogXEgEwGAAiRRoxAAoqaGhmb2RpeXh1dXV4emJhZGhoVUNuRnZuTFRidWd5ejQ5bmduMnItYmF3EgIAEioQwg8PGg8_E5QIggQkAYAEKyqLARABGniBAAMD8QH-AAP1-gkHCfsCBgf3APb__wD4_f4EBgL_APb4APYBAAAA-QQF9wgAAAD2-P_-8_4BABIIAQz1AAAAGgL9APcAAAAREfr4_gEAAO3-8_kCAAAAEwoIAf8AAAD8BQ7vAAAAAPD2B_sAAAAAFAL5AAAAAAAgAC3vMs47OBNACUhOUAIqhAIQABrwAX_9IgLU-9X_6AruAM0K-__MGxEA_S3YAI8RKgDW4O4AA_4FANX7zv8EAwYAzfgs_w7i1AAX-_8ASf8HAA0U-gDv2QkBUPgPAfby9QEQ1woAKQUv_u3k_v8fBRIBG-vk_xQh_v3rDdsBH_fXAvHzAf8MBxQECecU_v7V-vzaLvYAENIG_ezu1AMCAeb6xx0WAw4BA_z8B_D__AoYCkH8__rd7AkB9vjv_Q8U_P8I4wr9JOMM_Qrn6wEg-vwC9iLu__oRBvrhE_cAEQwD9RQC5wX8FOz7ARIDB-sA8QwJ4wr8-QHyDecVFf7oHv0G1xED9yAALSxVKTs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF48qFTJvJjgFD0n3Gu9PIs5vXIbCD3HgR46zNJOPejoJzyT5X-8HHh1vmp8ED18ONI8Ci9hPhdxsLxB08Y5nmKFvpG6fT0sc4S8wtktvtiTSr0CAge9PXvDPf0QQD3VDW-8QbYcPsEwqjyNSXs7IKjouh11ETwz3AC9PvKdvRmAHD3YW--8Tir6PdVeHzwh6Cg95gNCPvY9T71HAQG7DB6GPd-qKTvk7RA8GVgXvhVNEb0uHXM8SZwVPnXqBb0omZy86Lc0PUcvNDznVw48v3b6vNbsnDyTdym9jHgPOvDjA73bsjI8m3qoPWVy6j0J4dE8xMyOvTaR2T1o7Ca87IbtPYz3gz1yW5E7wrKYvZXp_DxoMLw8VCNsO6S-kTyS_oM8GnInPc5Rpjv7QgK8yqfnvV_4Nz1mB6Y6BSotPEZBED3d81c8umMWPeT2yzym1Yy7OoEfvLMlC70YRP88JS-hvKO5hDznlFu8pCyNPZ0cFbx5bJE7q5YUPtO9Lj0lEhi8LcoRPV8XhL2aQ_M7wWt8PVK3871rFYg5CxJ2Pd2hdjtbiW27we4KPR7cgjygGm071skZPXV7RL3ey9y7pH29PXPJh70vyC87qOIEuwlZF7qWMjo8_izWvGFcoLzzvju8A6NBPZopiDx0BlS5_mFrvefE3rxN1qi72lUIPnzeMDpUnQK7dMMlvPyCh72WUtw5axRtPDyMpDsJHPe5zjUKO7-Njr22QdS6wNWVO4IsVT17eIm4gU0MPcYqbzyajuc4wJCbOjwUhT035rQ4J2a9PGnuFzw0ydC4btySPTuyKL0jTiO5tkKSvZcT_rxZwi85ThWivbcQj71pj3G6cKgGvOOIWrxbkqi6Oun9O-13Db2H7Wy58UKhO3VgdD2luGw5QOPdPLWem70Wr7i2HhgAvSXurL1NFOc33c_pvHfkfry_NrW46romPI2LGTxj1Aw4IS6tO5hxDTyr8gG57URJPVvs9jzjfGc4Q9OYPctgsTzUf3U3zBkAPBBO1bwcMKy4Z2dsPQVN671fJjU4iCjLu1osxbxzYTQ4SlGovWNu7Tz7BT44CbCuPc4IBb2oifI4GFD5PLSqSjzCqvY3XETKu33Fwzt9XZM3L6YZPng7zDz85hu59cOvuWwb67yy5YC4c_lqPFX4o73jEDs3u_i2PGX5_DoLyww4XqpIvTrpHb60Y_q4QstfPWMatz1ukI44OMK9PYuN2T3VKeC2ORdzu3pf2bn4bYu3-PsHvKXQgzxQ4zc4IAA4E0AJSG1QASpzEAAaYCX_ACoyFe3mECPavu7DFdDl-bREmwT_8vf_0QrJxwX6u7XkAv8d8RP3owAAADDzARwHAOt5Av0I-_PJF_WK1BURfy4zQer5JACjC9MA6gYJJNYxdwAE-KUPLuHiQPcO6SAALWAyFjs4E0AJSG9QAiqvBhAMGqAGAABQwQAAuEEAABBBAABYwgAASEIAAAhCAAD-QgAA-MEAAIDBAACgwAAAgL8AAEBAAAB0wgAAUMEAADRCAAAgQQAAQEIAAFDBAAB0QgAAwMEAAFBBAAAQwQAAiMEAAMDAAABgwQAADEIAAEDBAACCwgAAQMEAAAxCAABAQQAAqEEAAKDBAACAwAAATMIAAJDBAABYQgAAlkIAALBBAAA0QgAAoMAAANhBAACcQgAAHMIAAEhCAADIwgAAAMEAAIRCAABwQQAAyEEAAIDBAADgQAAAuMEAAABCAACgQAAA6MEAADjCAAAMwgAABMIAABBCAAAQQgAAQMIAAKjBAACkwgAAoEEAAEDCAABcwgAApsIAAIDBAABcwgAAJEIAAPBBAACQwQAAmEEAAMjBAAAQwQAAWMIAACBBAACgwAAANEIAAJjBAAC-QgAA4EAAAABAAADgQQAAHMIAAEBAAABAwAAA-EEAABjCAACgQQAA3EIAAFBBAAAUwgAA8EEAAFTCAADAwAAAbMIAAP5CAAAkQgAAAMIAADRCAACAwAAAyMEAAHTCAADIQQAAwMEAAIBAAABAwAAAhkIAAHBBAABAwAAAgL8AAMDAAABAwAAAsEEAAHBBAADAwAAAdMIAAARCAADQwQAAJMIAALjBAACgwQAAoMAAAHBBAACGQgAAgMAAAKBBAABAQAAAIMIAAKBAAADAQAAA-EEAAJjBAABIQgAAHEIAAOjBAAB8wgAAgMAAAEBAAAAQwgAAQEEAAEDAAAAAQQAADEIAAIhBAADIQQAAPEIAAJjBAABMwgAAgEEAAPBBAACgQAAAqkIAAEBAAACQwgAAOMIAAIrCAAAAQgAA4EAAAAhCAACAvwAABMIAAGTCAACIQQAAIEIAAHRCAAAoQgAAQMAAAHBBAAAcQgAAsEEAAADBAADgwQAARMIAAABBAABgwgAA4MEAAOjBAADQwgAAcMEAAODBAACkQgAAkkIAAMjBAABEwgAAFMIAAIA_AACIwQAAAEEAAHjCAADYQQAADMIAAIBAAABgQgAAgD8AADhCAACAPwAACEIgADgTQAlIdVABKo8CEAAagAIAAIi9AABkvgAA4LwAABQ-AADovQAAUD0AACQ-AAAFvwAAdL4AAOg9AAC4vQAAnj4AAAy-AAAUPgAApr4AALg9AABMPgAA4LwAAKg9AAA3PwAAfz8AAKA8AABQvQAAoLwAAOi9AAAwvQAA2L0AADC9AAD4PQAAZD4AAOg9AAAUvgAAXL4AAHC9AABEPgAAyD0AADQ-AADgvAAAVL4AABS-AACCvgAAqD0AANg9AABUvgAAUD0AAOg9AAB8PgAAkr4AAKg9AADyvgAAcD0AANi9AAAkPgAA2D0AAHS-AADovQAAMT8AALi9AAAQvQAADD4AAOC8AABQPQAA4DwAADC9IAA4E0AJSHxQASqPAhABGoACAAAEvgAAgDsAAIA7AAATvwAAuD0AAKC8AAA8PgAABL4AACS-AABEPgAAML0AALi9AAAcvgAAvr4AAKg9AADgvAAABD4AACU_AACgvAAAvj4AAFC9AADIPQAA2L0AADC9AACAOwAAMD0AADC9AAAQPQAAqL0AAIA7AACoPQAA2D0AADA9AAC4vQAA2D0AAIg9AACYPQAAVD4AAGy-AADIPQAAjj4AAJg9AACgvAAAQLwAACS-AABQvQAAf78AAES-AADovQAAmD0AAPg9AACgvAAARD4AAJi9AAAcPgAAoLwAAEC8AABwPQAAmr4AAOC8AAD4vQAAVD4AAJg9AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Me1d-PuXf0c","parent-reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["9318159882391999867"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"15226338297094435860":{"videoId":"15226338297094435860","title":"Exploring Grouped Frequency Distribution Tables: The rules for building GFDTs.","cleanTitle":"Exploring Grouped Frequency Distribution Tables: The rules for building GFDTs.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=yiyjl0Yu7fo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yiyjl0Yu7fo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":397,"text":"6:37","a11yText":"Süre 6 dakika 37 saniye","shortText":"6 dk."},"date":"27 haz 2021","modifyTime":1624752000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yiyjl0Yu7fo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yiyjl0Yu7fo","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":397},"parentClipId":"15226338297094435860","href":"/preview/15226338297094435860?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/15226338297094435860?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5615042771503724847":{"videoId":"5615042771503724847","title":"Recapping the Four Basic Cumulative Density Functions for Normal Distributions in Excel","cleanTitle":"Recapping the Four Basic Cumulative Density Functions for Normal Distributions in Excel","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YSc-rN5mTqY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YSc-rN5mTqY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":390,"text":"6:30","a11yText":"Süre 6 dakika 30 saniye","shortText":"6 dk."},"date":"21 tem 2020","modifyTime":1595289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YSc-rN5mTqY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YSc-rN5mTqY","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":390},"parentClipId":"5615042771503724847","href":"/preview/5615042771503724847?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/5615042771503724847?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7962854900351674453":{"videoId":"7962854900351674453","title":"Stem-and-Leaf Plots: Visualizing & Summarizing Quantitative Data","cleanTitle":"Stem-and-Leaf Plots: Visualizing & Summarizing Quantitative Data","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=D9rOUyP4Bzo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/D9rOUyP4Bzo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":923,"text":"15:23","a11yText":"Süre 15 dakika 23 saniye","shortText":"15 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"30 ara 2020","modifyTime":1609286400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/D9rOUyP4Bzo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=D9rOUyP4Bzo","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":923},"parentClipId":"7962854900351674453","href":"/preview/7962854900351674453?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/7962854900351674453?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8108187745123509373":{"videoId":"8108187745123509373","title":"Introduction to the Central Limit Theorem (part 2)","cleanTitle":"Introduction to the Central Limit Theorem (part 2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8Ips7lEWJ6I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8Ips7lEWJ6I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1220,"text":"20:20","a11yText":"Süre 20 dakika 20 saniye","shortText":"20 dk."},"date":"23 tem 2020","modifyTime":1595462400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8Ips7lEWJ6I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8Ips7lEWJ6I","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":1220},"parentClipId":"8108187745123509373","href":"/preview/8108187745123509373?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/8108187745123509373?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"375646766366546638":{"videoId":"375646766366546638","title":"Expected Value for the Negative Binomial Distribution","cleanTitle":"Expected Value for the Negative Binomial Distribution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zyoeTPvnrpk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zyoeTPvnrpk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":841,"text":"14:01","a11yText":"Süre 14 dakika 1 saniye","shortText":"14 dk."},"views":{"text":"13,8bin","a11yText":"13,8 bin izleme"},"date":"11 eki 2020","modifyTime":1602374400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zyoeTPvnrpk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zyoeTPvnrpk","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":841},"parentClipId":"375646766366546638","href":"/preview/375646766366546638?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/375646766366546638?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6409784102577235428":{"videoId":"6409784102577235428","title":"Revisiting Measurement Levels","cleanTitle":"Revisiting Measurement Levels","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=K2BH_IE03nM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/K2BH_IE03nM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":462,"text":"7:42","a11yText":"Süre 7 dakika 42 saniye","shortText":"7 dk."},"date":"27 haz 2021","modifyTime":1624752000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/K2BH_IE03nM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=K2BH_IE03nM","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":462},"parentClipId":"6409784102577235428","href":"/preview/6409784102577235428?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/6409784102577235428?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8002164157824435740":{"videoId":"8002164157824435740","title":"Introduction to Ordinal Regression","cleanTitle":"Introduction to Ordinal Regression","host":{"title":"YouTube","href":"http://www.youtube.com/live/jWIJ7P1G9P4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jWIJ7P1G9P4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":965,"text":"16:05","a11yText":"Süre 16 dakika 5 saniye","shortText":"16 dk."},"views":{"text":"51,1bin","a11yText":"51,1 bin izleme"},"date":"28 nis 2019","modifyTime":1556409600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jWIJ7P1G9P4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jWIJ7P1G9P4","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":965},"parentClipId":"8002164157824435740","href":"/preview/8002164157824435740?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/8002164157824435740?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2949002679231060152":{"videoId":"2949002679231060152","title":"Introducing the Inverse Cumulative Function for the Standard Normal Distribution","cleanTitle":"Introducing the Inverse Cumulative Function for the Standard Normal Distribution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qXHWqPz2KlA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qXHWqPz2KlA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":809,"text":"13:29","a11yText":"Süre 13 dakika 29 saniye","shortText":"13 dk."},"date":"21 tem 2020","modifyTime":1595289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qXHWqPz2KlA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qXHWqPz2KlA","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":809},"parentClipId":"2949002679231060152","href":"/preview/2949002679231060152?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/2949002679231060152?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8888658459983972059":{"videoId":"8888658459983972059","title":"Introducing Statistical Bias: Or...¿why are there two formulas for the standard deviation?","cleanTitle":"Introducing Statistical Bias: Or...¿why are there two formulas for the standard deviation?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ypLQrghbYbk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ypLQrghbYbk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"https://www.youtube.com/channel/UCnFvnLTbugyz49ngn2r-baw","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":403,"text":"6:43","a11yText":"Süre 6 dakika 43 saniye","shortText":"6 dk."},"date":"28 haz 2021","modifyTime":1624838400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ypLQrghbYbk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ypLQrghbYbk","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":403},"parentClipId":"8888658459983972059","href":"/preview/8888658459983972059?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/8888658459983972059?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9882545508686230655":{"videoId":"9882545508686230655","title":"How the Standard Deviation Changes with Additional Values in a Data Set","cleanTitle":"How the Standard Deviation Changes with Additional Values in a Data Set","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Fz1vR8wwGIs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Fz1vR8wwGIs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"https://www.youtube.com/channel/UCnFvnLTbugyz49ngn2r-baw","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":411,"text":"6:51","a11yText":"Süre 6 dakika 51 saniye","shortText":"6 dk."},"views":{"text":"7,9bin","a11yText":"7,9 bin izleme"},"date":"28 haz 2021","modifyTime":1624838400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Fz1vR8wwGIs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Fz1vR8wwGIs","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":411},"parentClipId":"9882545508686230655","href":"/preview/9882545508686230655?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/9882545508686230655?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11035026012580377974":{"videoId":"11035026012580377974","title":"Exploring Grouped Frequency Distribution Tables: Common distribution shapes in GFDTs and histograms","cleanTitle":"Exploring Grouped Frequency Distribution Tables: Common distribution shapes in GFDTs and histograms","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2z3MXcUPLSg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2z3MXcUPLSg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":279,"text":"4:39","a11yText":"Süre 4 dakika 39 saniye","shortText":"4 dk."},"date":"27 haz 2021","modifyTime":1624752000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2z3MXcUPLSg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2z3MXcUPLSg","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":279},"parentClipId":"11035026012580377974","href":"/preview/11035026012580377974?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/11035026012580377974?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8303397544108359698":{"videoId":"8303397544108359698","title":"Introducing the Protocol To Calculate the Median (by-hand)","cleanTitle":"Introducing the Protocol To Calculate the Median (by-hand)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JMQIz4WyXD0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JMQIz4WyXD0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"https://www.youtube.com/channel/UCnFvnLTbugyz49ngn2r-baw","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":757,"text":"12:37","a11yText":"Süre 12 dakika 37 saniye","shortText":"12 dk."},"date":"13 tem 2021","modifyTime":1626134400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JMQIz4WyXD0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JMQIz4WyXD0","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":757},"parentClipId":"8303397544108359698","href":"/preview/8303397544108359698?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/8303397544108359698?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4233878640193542812":{"videoId":"4233878640193542812","title":"Statistics...1000 ways to do the same thing: Another a 2nd approach to summarize quantitative data","cleanTitle":"Statistics...1000 ways to do the same thing: Another a 2nd approach to summarize quantitative data","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LmXgEFje0BU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LmXgEFje0BU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":694,"text":"11:34","a11yText":"Süre 11 dakika 34 saniye","shortText":"11 dk."},"date":"12 tem 2021","modifyTime":1626048000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LmXgEFje0BU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LmXgEFje0BU","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":694},"parentClipId":"4233878640193542812","href":"/preview/4233878640193542812?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/4233878640193542812?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7150520181161353737":{"videoId":"7150520181161353737","title":"Summarize & Visualize Qualitative Data","cleanTitle":"Summarize & Visualize Qualitative Data","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=weVru2bu7Yo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/weVru2bu7Yo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":929,"text":"15:29","a11yText":"Süre 15 dakika 29 saniye","shortText":"15 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"17 mayıs 2020","modifyTime":1589673600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/weVru2bu7Yo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=weVru2bu7Yo","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":929},"parentClipId":"7150520181161353737","href":"/preview/7150520181161353737?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/7150520181161353737?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1857860893177686667":{"videoId":"1857860893177686667","title":"Summarizing the Excel Functions for Normal & t Distributions","cleanTitle":"Summarizing the Excel Functions for Normal & t Distributions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8hcgbHNJ0kM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8hcgbHNJ0kM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":897,"text":"14:57","a11yText":"Süre 14 dakika 57 saniye","shortText":"14 dk."},"date":"31 tem 2020","modifyTime":1596153600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8hcgbHNJ0kM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8hcgbHNJ0kM","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":897},"parentClipId":"1857860893177686667","href":"/preview/1857860893177686667?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/1857860893177686667?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6253916645840183663":{"videoId":"6253916645840183663","title":"When we can approximate the binomial distribution with the normal distribution & why this is useful","cleanTitle":"When we can approximate the binomial distribution with the normal distribution & why this is useful","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ZyO0SUukK_E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZyO0SUukK_E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1022,"text":"17:02","a11yText":"Süre 17 dakika 2 saniye","shortText":"17 dk."},"date":"18 tem 2020","modifyTime":1595055600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZyO0SUukK_E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZyO0SUukK_E","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":1022},"parentClipId":"6253916645840183663","href":"/preview/6253916645840183663?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/6253916645840183663?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17230055735314616366":{"videoId":"17230055735314616366","title":"Demonstration Problems Working with the Count-by-Thirds Empirical Rule","cleanTitle":"Demonstration Problems Working with the Count-by-Thirds Empirical Rule","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6b9wpgWHksk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6b9wpgWHksk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"https://www.youtube.com/channel/UCnFvnLTbugyz49ngn2r-baw","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":724,"text":"12:04","a11yText":"Süre 12 dakika 4 saniye","shortText":"12 dk."},"date":"28 haz 2021","modifyTime":1624838400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6b9wpgWHksk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6b9wpgWHksk","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":724},"parentClipId":"17230055735314616366","href":"/preview/17230055735314616366?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/17230055735314616366?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9318159882391999867":{"videoId":"9318159882391999867","title":"Grouped Frequency Distribution Tables (GFDTs): Visualizing & Summarizing Quantitative Data","cleanTitle":"Grouped Frequency Distribution Tables (GFDTs): Visualizing & Summarizing Quantitative Data","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Me1d-PuXf0c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Me1d-PuXf0c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbkZ2bkxUYnVneXo0OW5nbjJyLWJhdw==","name":"DrGreggHarbaugh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DrGreggHarbaugh","origUrl":"http://www.youtube.com/@DrGreggHarbaugh","a11yText":"DrGreggHarbaugh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1044,"text":"17:24","a11yText":"Süre 17 dakika 24 saniye","shortText":"17 dk."},"views":{"text":"1bin","a11yText":"1 bin izleme"},"date":"31 ara 2020","modifyTime":1609372800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Me1d-PuXf0c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Me1d-PuXf0c","reqid":"1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL","duration":1044},"parentClipId":"9318159882391999867","href":"/preview/9318159882391999867?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","rawHref":"/video/preview/9318159882391999867?nomisspell=1&noreask=1&parent-reqid=1765304624133586-11711856285118604844-balancer-l7leveler-kubr-yp-sas-43-BAL&text=DrGreggHarbaugh","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1711856285118604844743","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"DrGreggHarbaugh","queryUriEscaped":"DrGreggHarbaugh","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}