{"pages":{"search":{"query":"Derivative","originalQuery":"Derivative","serpid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","parentReqid":"","serpItems":[{"id":"3819997292942217070-0-0","type":"videoSnippet","props":{"videoId":"3819997292942217070"},"curPage":0},{"id":"1705299247861181645-0-1","type":"videoSnippet","props":{"videoId":"1705299247861181645"},"curPage":0},{"id":"3891836119283907701-0-2","type":"videoSnippet","props":{"videoId":"3891836119283907701"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"Derivative calculator","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Derivative+calculator&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Second derivative","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Second+derivative&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Implicit differentiation","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Implicit+differentiation&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Derivative vs slope","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Derivative+vs+slope&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Derivatives examples","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Derivatives+examples&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Chain rule","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Chain+rule&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"6597824356526331307-0-4","type":"videoSnippet","props":{"videoId":"6597824356526331307"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dERlcml2YXRpdmUK","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","ui":"desktop","yuid":"8254091251769469858"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"14988190553420209125-0-6","type":"videoSnippet","props":{"videoId":"14988190553420209125"},"curPage":0},{"id":"725383316121167646-0-7","type":"videoSnippet","props":{"videoId":"725383316121167646"},"curPage":0},{"id":"8071602604020154921-0-8","type":"videoSnippet","props":{"videoId":"8071602604020154921"},"curPage":0},{"id":"14808398322726514600-0-9","type":"videoSnippet","props":{"videoId":"14808398322726514600"},"curPage":0},{"id":"16879689330109543102-0-10","type":"videoSnippet","props":{"videoId":"16879689330109543102"},"curPage":0},{"id":"5047184969865005198-0-11","type":"videoSnippet","props":{"videoId":"5047184969865005198"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dERlcml2YXRpdmUK","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","ui":"desktop","yuid":"8254091251769469858"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"9406487708144429699-0-13","type":"videoSnippet","props":{"videoId":"9406487708144429699"},"curPage":0},{"id":"5123709690375998973-0-14","type":"videoSnippet","props":{"videoId":"5123709690375998973"},"curPage":0},{"id":"9261579058560611814-0-15","type":"videoSnippet","props":{"videoId":"9261579058560611814"},"curPage":0},{"id":"13443379758386710011-0-16","type":"videoSnippet","props":{"videoId":"13443379758386710011"},"curPage":0},{"id":"2119004810168048982-0-17","type":"videoSnippet","props":{"videoId":"2119004810168048982"},"curPage":0},{"id":"17994385035140575010-0-18","type":"videoSnippet","props":{"videoId":"17994385035140575010"},"curPage":0},{"id":"12733882546916683895-0-19","type":"videoSnippet","props":{"videoId":"12733882546916683895"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dERlcml2YXRpdmUK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","ui":"desktop","yuid":"8254091251769469858"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDerivative"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"8480530964270882237125","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,89;1471993,0,65;1472324,0,75;1466867,0,56;1457616,0,44;1433082,0,76;1193316,0,49;1473738,0,16;1424968,0,55;1450255,0,33;1471964,0,81;1464561,0,40;1460214,0,8;1152684,0,82;1472029,0,4;898801,0,35;754545,0,35;1471363,0,77;1461705,0,63;1464523,0,78;1455763,0,38;1470250,0,73;1463533,0,60;1373787,0,67;1466296,0,29;1465919,0,83;1470855,0,30;1463530,0,46;1464405,0,70;1466618,0,31;1470514,0,27;188944,0,77;1472080,0,23;1470415,0,59;1462741,0,74;151171,0,52;1281084,0,1;287509,0,20;1447467,0,27;1468028,0,75"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDerivative","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Derivative","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Derivative","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Derivative: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Derivative\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Derivative — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y16338e3f302e804792328b128c4ba167","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1471993,1472324,1466867,1457616,1433082,1193316,1473738,1424968,1450255,1471964,1464561,1460214,1152684,1472029,898801,754545,1471363,1461705,1464523,1455763,1470250,1463533,1373787,1466296,1465919,1470855,1463530,1464405,1466618,1470514,188944,1472080,1470415,1462741,151171,1281084,287509,1447467,1468028","queryText":"Derivative","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8254091251769469858","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769469939","tz":"America/Louisville","to_iso":"2026-01-26T18:25:39-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1471993,1472324,1466867,1457616,1433082,1193316,1473738,1424968,1450255,1471964,1464561,1460214,1152684,1472029,898801,754545,1471363,1461705,1464523,1455763,1470250,1463533,1373787,1466296,1465919,1470855,1463530,1464405,1466618,1470514,188944,1472080,1470415,1462741,151171,1281084,287509,1447467,1468028","queryText":"Derivative","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8254091251769469858","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"8480530964270882237125","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":168,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"8254091251769469858","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"3819997292942217070":{"videoId":"3819997292942217070","docid":"34-2-10-Z7B6651DAFC86433C","description":"This calculus video tutorial provides a basic introduction into the definition of the derivative formula in the form of a difference quotient with limits. It explains how to find the derivative...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2966453/8ed213eefe0ef3a78c52158866b10f99/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eDRbtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-aTLjoDT1GQ","linkTemplate":"/video/preview/3819997292942217070?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Definition of the Derivative","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-aTLjoDT1GQ\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzM4MTk5OTcyOTI5NDIyMTcwNzBaEzM4MTk5OTcyOTI5NDIyMTcwNzBqkxcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TgguCBCQBgAQrKosBEAEaeIH_BPsB_gIA6QYOAwQB_wD4AAQJ-v79AO4E_PgFAAAA3f77BQD-_wAGAgMD9gAAAPb4___z_wEACP8EBAQAAAAO9e0B_gAAAA8A-wb-AQAA-AH8AQP_AAAABQj-_wAAAPkF_vj-AAAAAP_7DAAAAAD9_PYOAAAAACAALRPz2Ts4E0AJSE5QAiqEAhAAGvABev8dAJ4Fyf0X3roA9iTXAoH6Ef88FcAAxvX-ABj22QAX__AAwfwTAQggFQHVIvsA-RL1ANDdGQAj3v7-4c4eAckPMgA49gQBIA0A_yQA4v6yFu3_1AMsAQvW5f_uP_kAC_EU-fcGEPrU89AAOM8qAvgW_QIPIhYBB_kyBBsQEwHFANj8-_UICOgI9ALB_iIBDuX8Cfwn2vnt9gED_egMBiXm7QIW9NkAOfnfA-g0FvsPCRr5B_Ts-gQ7GP8INdr30tn3AfX1Du0dGxH2C_4D8wzl8gYK7fQIOu8ADiDzBuzdGQADGwgGERwh7wUlwBATIAAtxv0GOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97tmTge-_iqfu4L4pby726u8pTIgPZPb2zz2tkk-klKKvVFXDT00yR69qHOgPPzF7LzLgDM-5tGIvZhiMzx6Fy--CDwwPSmf1LxtO-29fbg_vBryFTzMvpG98bShvGr07juydZo9pcvRvC3oAbzD-ES8TIlEPS1ZWr28fMY8bg4fvCINeL3pQ6e9Q-icu6SDP7zr4LA9f3iMvHwVT7zxBZc9CyYevae0Gb0WkmK9EV51uz7007zw58o7H4NVPeKPhzxY_ry9xdmevSpLXzvr9rO91r4lPFXXxrvMehE-FocTPXyTi7xi9Iw9nn7Qvb52Xbut-QG-VKWSPCHR3zs-6r896LT4PHYKj7eu1wS-DZ8-PexFmbxz2P08SfaEOeXHKbws_qU850DFPalorDwgnCo9SKrOOsJs_rvDo2i9_k4JPWuU_zwWhNI9RXaPvSdnKLyqXag9S3APPG41a7xz6Um9A208O1E7MryDid-9XGupPfujOTz6_KQ6l9pcvUbRATwFI6U91gI7vknlmjrHg229VxCOvZ23VrzrE8o8CeZDPG5Cq7xO8M09ZjPnvf9XADwOHCe7GmsfPWI0abvA9kK9uP5ivU31gThrAMW9xHUxvYNujrv8ZYG9jqFSPN_rWrwzjea8MKCnPeCgHLyZNtK8vFrOvRicLzqccoA9ajxHPG06AryQg9I9RpRbPdUcFLhiL1Q9KaPAvL93I7viAD-9yd2MvMOp5jrFE0u9-I3KvT_tR7mhndM9UYGYvZedUTl0lAi9GmlOPE9RmjoHluO9-5vrPDSVejeJyNU8fT-FvUdahTmtL7c6_RLxvbwjiTkW85g9f1ayO1kE97qsi9s8OJbBPTtghDkvUPK9qFycvUOAv7c3U6G8s68VOf0yNTkWjbA9m5KHvJ58mTjO2ek6wEhjPdJLsTj9xhI9GZrhvNmVeriLqwg86AECPXE1Tjdar4M9AY_DvabRWjkp23a85-yzPSefgDe1ITW8L8vwulxEnrjclBw9TqKUPbrAhzeaBxA93jjJvQg0-zatLxc9W0SUPL8GHblYn8y9pi40PYN_LDlBaWI78EDTPGL7_Db2xjq9SJFvu3v9xrgQFJ49EMlQPUl3sjfB4ys-3KVovAeJdLmr3xa9DfsdvqO8_rjDEYM5UFUhvYShK7ebS1u9kjynPW1wgTi9rwU9pUkJvq2ehbjK9HA9IuErPvHLiji6E6y8cty5PXQwGLkjaMy9DQH6O28GBjfeAR69GbGNO9UDPjggADgTQAlIbVABKnMQABpgKwAAPPYQ6B3zOu3p5cAU-sHm-u7ANv_fzv_UErIn8SLjzvfM_zS7DASjAAAAKwnvC8kA6X_G0uwO6xITzr8O6y11GS0BqsRF1q7jHD0m2RArHhU0ANTsqz8p0rwkBiwcIAAtsKUWOzgTQAlIb1ACKq8GEAwaoAYAADxCAAAAwgAAwEEAAPDBAADoQQAAkMEAANZCAAAAQQAAyMEAACxCAAAIQgAASMIAAADCAACYQQAAAAAAAJhBAABgQgAALMIAAPhBAABAQAAAAMIAAODBAABgwgAAYMEAAEzCAAAgwQAAsEEAAGBBAADQQQAAYEEAAHzCAADAQAAAxMIAAABAAADKwgAAQEEAAEBCAAB8QgAAqMEAALhBAABwQQAAUEEAAOBBAAD4wQAAEEEAANrCAAAEQgAAhkIAABhCAACeQgAAYEEAAOjBAADIwQAAQEAAAHBBAACOQgAA0sIAAPBBAABgQQAA2EEAAIDAAACewgAAHMIAABTCAABAwQAAoMIAAFTCAABgwgAAPEIAABTCAACgQQAAhEIAABzCAAAAQQAAdMIAAPjBAABUwgAADEIAAABAAABQQQAAWMIAALhCAACgwAAAAEIAAADAAADgQAAAAAAAAMDAAAAcQgAAQMEAAABAAABkQgAATMIAAIC_AABgQgAAgMEAAODBAAAAwgAAcEEAAHBCAACGwgAAQEEAAOhBAADQQQAAgMIAAKBAAACYQQAAIMEAAIDAAACMQgAAUEIAACxCAADgwAAANEIAAAzCAACYQgAAIEIAADzCAACGwgAAmMEAADzCAACUwgAAkMEAAODAAAAMwgAAwMAAAODAAACAPwAAAAAAANBBAAA4wgAAMMEAACBBAACcQgAAEMIAAKxCAAAQwQAAkkIAAADCAACIwgAA2MEAAKhBAABwQgAAsMEAANBBAAAoQgAAHMIAAMBBAABQwQAAoEEAAGDBAABgQQAAGEIAABBBAADQQQAAQMAAAADCAAB8wgAAUMIAAGDBAACQwgAAgEEAAEDAAACIwQAA4EEAAIDAAAAAwgAABEIAAGhCAAAAQQAAUMEAAABBAACgwAAA6MEAADzCAABAwAAAAEAAAGDBAACYQQAALEIAACjCAACgwQAAOMIAAMDBAAAQQgAA4MAAAILCAAAQwgAAuMEAAEDAAACYQQAAgL8AAODAAADgwAAAuEEAAPBBAAAAwAAAqMEAAFDBAAAAACAAOBNACUh1UAEqjwIQABqAAgAA2L0AAAy-AABkPgAAgLsAADS-AAA8PgAABD4AAPa-AAD2vgAA2D0AABA9AAB0vgAAcD0AAHA9AACgPAAALL4AADC9AACgPAAAHD4AAFQ-AAB_PwAAHD4AACQ-AABUPgAAor4AAFC9AADgvAAALL4AAGw-AADYPQAAND4AAFC9AACovQAAor4AAHA9AAA0vgAAiD0AAJq-AABUvgAAQLwAAIC7AADSvgAAoj4AAIK-AABQvQAARD4AADA9AACavgAA4LwAAKa-AACYPQAAQLwAALg9AABAvAAAgDsAAIA7AAA9PwAA2L0AABw-AAB0PgAAqD0AAKi9AAAUPgAAML0gADgTQAlIfFABKo8CEAEagAIAAHy-AABAvAAAqL0AAE2_AACIvQAA-D0AACQ-AADIPQAAyD0AAFA9AACSvgAAoDwAAHA9AABQvQAAyL0AAIA7AABMPgAA_j4AACw-AAD6PgAATL4AABQ-AAD4PQAA-L0AAGy-AACgvAAAbD4AAHC9AACAuwAAuD0AADA9AAAcPgAAML0AADC9AAAcvgAAFL4AAFw-AAB0PgAATL4AAFA9AADgPAAA-D0AAHA9AAAMPgAAQLwAAEw-AAB_vwAA2L0AACy-AADSPgAAlj4AANg9AADCPgAAXD4AAKg9AACYPQAAmD0AAES-AACYPQAAnr4AAEQ-AADYPQAAir4AAES-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-aTLjoDT1GQ","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3819997292942217070"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1389329209"},"1705299247861181645":{"videoId":"1705299247861181645","docid":"34-4-5-Z6C30991012007EAF","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... Our resources cover preschool thr...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3413479/ae7ab36c6524c77068b471bc6f3f1c6a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Hc6oQgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN2PpRnFqnqY","linkTemplate":"/video/preview/1705299247861181645?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative as a concept | Derivatives introduction | AP Calculus AB | Khan Academy","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N2PpRnFqnqY\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzE3MDUyOTkyNDc4NjExODE2NDVaEzE3MDUyOTkyNDc4NjExODE2NDVqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxOzA4IEJAGABCsqiwEQARp4gQQI_wUAAAD0CQ8JBQb8AQgDCQn4__8A7fwH-gcAAAD2BPb1-AAAAPoFCgMJAAAA9vL9Cff_AQAI_f78AwAAABES_vb8AAAA9w_vAf8BAADt8_0MBP8AAAwNDvcAAAAA-xj8-QD_AADx_PgAAAAAAAwD-woAAAAAIAAtAAfVOzgTQAlITlACKoQCEAAa8AF__x4A1_WlAdYE9gDpHeUAxzTyAf4R3QDO6g3_xTwAAh7eGQHs8PcAFBPZAIIT7AH5E_UA7AYhAB7nSf1L2x0AtB8TACgw8AE0IQYAJgDh_uEX5_8J_kUA8tWpAPI24v8P3RL-D-LW__Xx1gcq-zUBrf3oBd8d__7kBgMA0AkWBMwWzP3xGPoICPIH-vZXHQQs9gUFAAgL-dvB5wMoBTj7IQ7_CBkM3wT08N0EvPUgAgABBvz3vxEB9xUE_MvX4Abx9SsCveQF_tPoGv_8Df79EeAB-Q0P-gbxART5DQDz--sR-vkCEQD3HSLvBRD05AIgAC04HAI7OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvM2spTworJ69-SWsvPN3DrxiHDI9Xwh5vTm2Tj67aS49I3eivNh-Er1Ndyi9wpidO_jfKj6mwBe8uUgLvXoXL74IPDA9KZ_UvPAuzL0raYW8HM58vMy-kb3xtKG8avTuO-8RGz3BxL-9CJABvZFWRjy0jqq8lIAdvdQ6mz00VUa9Dp90vQ044rdYjcY7QkSouxpBGT0UQZw8yPVGu1fpvj2q-eC8iq2gvCMByb1wl429pF07PFpHNT2Dxqe7yIPjPD3BlL33k3E9Fc2gu98JDL3PKVA5to4evH7-Cz7NsZw9xg6PvBx1Wb08oCy97KmwvLN96L1STHw6NYr2u9wEqT2Dv989HDGpvDqTNr4ElUw8X4iLvGGCRD0qrom7frHSPFwdAD6QZpE8M1eCO1e1BD6DDTS9Ed6DvG7lIL30oQ28Rr_sPKZqMT0zzlU9S0KeuhWViD1FtU29M3-WPDZDw7sD7z898Bv8ulAIEz1VYy48xhaCO2nPkL2IXZU95SZqvI_gFj5beA6-A-cOvM7yBr2QOIq9nMtDvOfMUT24oIg9WX0evA1EAzzuCdK9NVOtuyxI87y6RrA83hbRO1ZrPLxSr7C9YscYO_wxsr3LQao9Ax9Aua2BMr23VsU8_jD8u1hJNb2TWK28xEcfPJo01zzyViM8aKfROy-yD7wmjrw8IDJ-u6iEjDyNHzQ9itK1u500CD2jsTY91InkN154j72712Q9OJpuOthKoz1ER1e9beyiuNU3dT0rFo-97rDLObVZkL0ZtCs9Ak2TOO3liLzMebY9v_E6uSk1hbwkH8W9yBgwOVQb_L1iu_u9E9PyORzWDz1aYqU8cF3luZbiND3zisy8d4OOudNS1Lx6Qbq8J34UujLXqL1W2q09cazSuLdETj2pewO5e7couNI_dzwbQKQ824H7OB86Mz3o8cC98p5LOXUB7zzW9bU9PRDxuK93j70b28Y8ZtdPucRWNT15YcY9tuYuuIapzb3t66W8pqHlNz_Ko7yd-IW8yG6QuMzICr2zTza9to_VOD5Iaj0g96O8U0CZOEXLi713YRK86NQ7tvfvMLzbRxg9Ud8NOchfOj7clcI8za9LOBX3qT3G6Zo9chH1N4JVRT50yDc9ydyEuflK4L0Mj929YzNEuDjnlrxGwDe9auIDuJdRkb2Hch09UziLtj-Oxj0r3gi-hyK0uAoQJT3u1YI9T_-7OK0yI76RkBI9taJruH4nzL0svIs9ySnBOJ8InT1wS5o8YjwlOCAAOBNACUhtUAEqcxAAGmBN7AAjC_4B3sxF1dToxxLi3cjzD8MU_-rb_-0tzBXU_um5_-AAF-779J8AAAAMB80wKQD-f9PmBxL8JzLXrNJIGl8PByCbxPURvAUSER0B3z0dOy0A2uakQwmbrUoOMvUgAC3v0hQ7OBNACUhvUAIqrwYQDBqgBgAAWEIAAJjBAAAkQgAAdMIAAIBBAAAwwQAAoEIAAJhBAAA4wgAAAMAAAABAAAA0wgAAJMIAAGTCAACIQQAAIMEAAEDBAAD4wQAAYEEAAHDCAABAwQAAlMIAAJjBAADIQQAADMIAAIDAAABgwgAAAMAAACRCAAA8QgAATMIAANBBAACMwgAAqEEAAHTCAABIwgAA4EAAAGxCAABAwAAA0EEAALBBAACYQQAAnkIAAMhBAAAgQgAAeMIAAMBAAABAQAAAxEIAADBCAABgwQAAkMEAAIBAAAAAwQAAwEEAAAAAAADiwgAAQMAAAIDAAABsQgAAEEIAAETCAADYwQAAaMIAAAzCAACQwgAA4EAAAKjBAACAvwAA2MEAAKBCAABkQgAAEMIAALZCAACAQAAAaMIAADzCAACAwQAAMEIAAMBBAAAEwgAA0EEAAKBBAAAAAAAAkEEAALjBAAAAQgAATEIAAGxCAACAwAAAQMAAAJ5CAABQwgAAtMIAAIA_AACewgAA8EEAAFBBAABkQgAAmEEAAITCAABMQgAAsEEAAFTCAAAQwgAAMMEAAAAAAAB8QgAAkMEAADRCAAB4QgAAwEAAAADCAADoQQAAYMEAANhBAAAAwQAAgMEAAIjBAAAAwgAAKMIAALjCAAC4wQAABMIAACBBAAAwQQAAdMIAAOBAAACAwgAAMMEAAIA_AACoQQAAwMEAAAxCAABwQQAAoEEAAEDBAAAQQQAAcMEAAJTCAADgwAAAFEIAALhBAAAEwgAAUEIAAJhBAAB0wgAAwMAAANDBAACIwQAAgEAAANhBAAAkQgAAIMIAALBBAAAQwQAAYMEAAFTCAABowgAALEIAAFzCAACYQQAAoMAAALjBAACIwQAALEIAACRCAACkQgAAmEIAAIhBAABgwQAAyEEAANjBAAAcwgAAhMIAAOBAAABQwQAA-MEAAODBAAB4QgAAFMIAAODBAADgwAAAwMEAADxCAACAvwAAhMIAAOhBAADIwQAAQMAAAIBAAACEwgAAMEEAAFBBAABAQQAAIEIAAODAAACoQQAAjMIAAITCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAA6D0AAJI-AADgPAAAiD0AABQ-AACePgAAFb8AAL6-AACgvAAAMD0AAPi9AADgvAAAjj4AANi9AACovQAAlj4AAEA8AAAwPQAA3j4AAH8_AACgvAAAMD0AAIC7AAAsvgAAgDsAAAQ-AABcvgAAmL0AAAQ-AAAkPgAADL4AANi9AAB8vgAAFD4AAKA8AACAOwAAwr4AAKK-AABkvgAAyr4AAPi9AABsPgAAiL0AAKA8AACgvAAAbD4AAHy-AACovQAAor4AAHC9AAAQPQAARL4AADQ-AACuvgAAuL0AAA8_AABAvAAABD4AALI-AADIPQAADL4AADQ-AAAcPiAAOBNACUh8UAEqjwIQARqAAgAAir4AAHC9AAAQPQAAM78AADw-AABMPgAAUD0AAAy-AABUvgAAgj4AADC9AACIvQAALL4AAFS-AADoPQAAoLwAAEA8AAA7PwAAJD4AAKo-AADovQAA-D0AAIC7AACAuwAAQLwAAKi9AADYPQAAUD0AAFA9AABQPQAA2D0AAHA9AAAsvgAA4LwAAII-AADovQAAjj4AAHA9AADyvgAA4LwAAMi9AABUPgAAiL0AABQ-AAAEvgAAML0AAH-_AACgvAAAZD4AACQ-AABAvAAAhr4AAIC7AACYPQAAmj4AADA9AAC4PQAAQDwAAIi9AABAvAAAmD0AAGQ-AAA8PgAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=N2PpRnFqnqY","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1705299247861181645"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"18908665"},"3891836119283907701":{"videoId":"3891836119283907701","docid":"34-8-5-Z72C20CAC00BBF1A3","description":"More intuition of what a derivative is. Using the derivative to find the slope at any point along f(x)=x^2 Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4473373/1820e4fa1c7efd5dfc9ad045506c106b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qJHFPAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Day8838UZ4nM","linkTemplate":"/video/preview/3891836119283907701?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus: Derivatives 2 | Taking derivatives | Differential Calculus | Khan Academy","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ay8838UZ4nM\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzM4OTE4MzYxMTkyODM5MDc3MDFaEzM4OTE4MzYxMTkyODM5MDc3MDFqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxO7BIIEJAGABCsqiwEQARp4gQYFAQn8BADx_fwN_QX-AQcDCQn4__8A8_v9_AcBAAD3BPb1-QAAAAIJDfwEAAAA_gP_EPf-AQAL9_f9AwAAAAkC-AD9AAAABgP2Af8BAAAB-_wPBP8AAAoTAfT_AAAA_Qb4-gIAAADy_PgAAAAAAPv6BwoAAAAAIAAt0DXfOzgTQAlITlACKoQCEAAa8AF_3CYA2PaoAdcT2wDJGQQAyTPyAfw5zgDI4ekB3y29AeThEADmFegAFAX6AK4U6_8o6dT_-coCACzpFf8pz-0B8P8LACD69wBCFTL_FMwM_-o7Ef38_gIAGtLOAwsx7AAi7xX7IhHwAhH_0AMR_kQByRIQBhzlCP_cpSgA6wT5Av7auv4AIfL888EDAv4SIgMm1wwCJx8T_OT-3AT-ASX8_xYA9hgM4AQQB_AH8wv-CLjoF_0K6PoKICcXCb733f_dwykHvSYEBP__GPoo_AX9yfrvEBkP-xQV_PEJ9fwGCxzj9PEB3esI8RDo87rl_fsgAC18swY7OBNACUhhUAIqzwcQABrAB4cW4b64Puw8OUImvfUKDzwaNuc7VT1PvfgzPLyHSzM9xMGUu2eaMD4gkVu8Q-StOWg3j70mftY8QPyXvKZCPD5lYTm9PHxDPXV0_L0vE5o9CwIQvReho70Z9K880wUrPB7XwL1Js5683G1yvO8RGz3BxL-9CJABveiZgzwkVPo8mykjvUFmhz3o4SE79tVQvbd_hb3n09m80I_QOkRpzz3kxDI8cao1vEE_uD3hO4u9bTrCvOxo3L0vvQG8GVgFOy_i1jzO3Kg9MMehPPRhB73DDYi9Lp2FPG5Tl7xYU3k9t3nju2YW4T1BtQY9E9aGvGVDnT13NbS9kHYyvUC3sb09KRM9mtwcPOyG7T2M94M9cluRO3ya072xoiY9fV6xvHB9Mzx5zbu94_mxvGAhEz0b3IE9TojOO1ZakDxVcf48KpMWvC0OH7xVVi49EEIbPRaE0j1Fdo-9J2covP6vjz3MKuy8YKiJuyUvobyjuYQ855RbvN8zFLxDnYg9vZyGO0QgzTwTOIa6ohUOPAUjpT3WAju-SeWaOm2po73ZxT69x4u_u-fMUT24oIg9WX0evAknWDyD-Tu-OzjYu6ERjbu5sCS84ML0uridrLy0HA29l1MnPFpquL2bNPI8FasGvP4s1rxhXKC88747vPWftTspM688tbDAunJT_zu_gtS9OouDOnlioT1Vta49t0gYOxTIMT0e8pA9t5DiuVT6nj2a6Di9eFpPOGVyqr1kOz895fETu2jP5bx2MIc8fp8au-6vDj6fEpG9ftCUOVwtIb28Byg9J1yzOZG6eL0onB09xwEJuN_4v7xItC68QxcPNsui8LxbQh6-NwXjOaoBdD31e2e9ERHlueWzvDw7WWU9MR-Uumsewb3ErqK9WfgiODGDDL2XhgY9gpi-uhaNsD2bkoe8nnyZOJWc0zyN_aY97YmFOXaZKzwtiFK9VulcuOoeHr3IF449OclHOBKyIDyIrKS8io7aORQEDz0QXQA-jcNxuOsPHrz6Y_U8DjI2tzywbT0k7Ys9wkavuAdnlr12z_C8hj7LtwwpdTwe5gY9gy1YNyL7AL7GXyQ9F5hlODxqzLzypWa9-vfltwF7lj2W8_875g3lNxX3qT3G6Zo9chH1N8HjKz7cpWi8B4l0uc3Her3TFey95pv4uNVdmbwRl4K9B3EDuJG_Cr2DHpU9i0ORN7MxBrsIr729HH2mt8r0cD0i4Ss-8cuKOOcgQ70LdHI9BXWVuFrtxr0PFDM9aNv7N42R9Doexws8WvCXOCAAOBNACUhtUAEqcxAAGmBF6AA-JAn7C-Qz2eTb1QDXyunrFK4d_wDg_9EnuhL9EdLEAvcAI-UAAaMAAAAs-PkcLAAYf9jUCB4OF_HolMQPPGbu_VC_zRga4_wzCiP65kAROkIAvQC4V_HPo0j5VAwgAC2NoRQ7OBNACUhvUAIqrwYQDBqgBgAAHEIAAAjCAAD4QQAANMIAAABAAABQwQAAjEIAACxCAAAowgAAoEEAAFBBAABkwgAAMMEAALjBAABwQQAA4MEAABBBAAAYwgAAAEEAAATCAADAwQAAjMIAAJDCAABEQgAAyMEAAKBAAACOwgAAYEEAABBCAAAsQgAAYMIAAOjBAACKwgAAXEIAAJzCAACYwQAA0EEAALRCAADgwQAALEIAAPBBAAAAwAAAbEIAAEBAAACQQQAAmMIAAHBBAADwQQAAWEIAAPBBAAAAwAAAkMEAACBBAABgQQAAkEEAAKhBAADywgAA-EEAAABAAAB4QgAAVEIAALjCAADAwQAAjMIAAKDBAAAowgAAiMEAAFTCAACAQAAAVMIAAGxCAABMQgAAoMEAAGRCAACgwAAAgMIAANDBAADAwAAA-EEAABxCAACAwQAAbEIAABDBAACQQQAAoMAAACBCAAAAwAAA6EEAAAxCAACgwQAAAAAAAIhCAADQwQAAjsIAAKDAAAAwwQAAAEEAAJBBAAAgQgAAUEIAAJzCAACYQgAAVEIAANjBAABgwQAA2MEAAAzCAAB4QgAAKMIAANBBAACYQgAAEEIAALjBAADIQQAAgEAAAChCAAAAwQAARMIAAPBBAADgwQAAMMEAAILCAACQwQAADMIAAABCAABgQQAAYMIAAIBAAABMwgAAoMAAAFBBAAAAQAAAIMEAABRCAACgwQAAoEAAAIBBAACwQQAAuMEAALjCAACowQAAREIAAChCAAAEwgAAgkIAAMBAAAAIwgAAAMAAAGDBAADQwQAAMMEAAHBBAACGQgAA4MEAANjBAACAQAAAmMEAAIDCAACkwgAA6EEAAOjBAACoQQAAAEEAAEBAAACAPwAAcEEAACBBAACCQgAAPEIAALhBAADQwQAAyEEAALjBAABwwQAANMIAAOBAAAAAAAAAYMEAAPhBAADYQgAAbMIAAETCAABAwAAA4MEAAIBCAAA4wgAAVMIAAEBAAAAAwgAAEMEAAAhCAAAowgAAQEAAANDBAACYQQAAMEIAABjCAAAwQQAAQMIAAIDCIAA4E0AJSHVQASqPAhAAGoACAABEvgAAMD0AABw-AADIvQAAML0AAMY-AACCPgAAH78AAAy-AADovQAA-L0AAOi9AABQPQAAkj4AAIg9AADIvQAAmj4AAOC8AADYPQAAuj4AAH8_AAB0vgAAED0AAPg9AAA8vgAABD4AAAy-AABUvgAAmD0AAHQ-AAAUPgAABL4AAOi9AACevgAAUD0AAIA7AACIvQAAcL0AAEy-AADYvQAAor4AALg9AABsPgAAiD0AABC9AAAUvgAAXD4AAJ6-AABEvgAA4LwAAOC8AAAMvgAADD4AABC9AAAsvgAAiD0AAA0_AABQPQAAcD0AAMY-AAAEPgAAML0AAEQ-AAAUPiAAOBNACUh8UAEqjwIQARqAAgAAgr4AABA9AAAwvQAAS78AAJi9AACYPQAAZD4AABA9AAD4vQAADD4AAFA9AACYvQAAPL4AAKC8AAAMPgAAUL0AAHA9AAATPwAAUD0AAOI-AABAvAAAuD0AAFC9AAAkvgAAiL0AAIi9AAD4PQAAiD0AAPg9AAC4PQAAMD0AAIg9AAAkvgAAjr4AAEA8AACAuwAAoLwAAEQ-AABMvgAAgLsAAFA9AACAOwAAQLwAAAQ-AACYvQAA2D0AAH-_AACAuwAALD4AAFw-AABAPAAAQDwAALi9AAAsPgAAZD4AANg9AAAwPQAAUD0AALg9AAAEvgAA6D0AAKA8AAB0PgAAML0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ay8838UZ4nM","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":320,"cheight":240,"cratio":1.33333,"dups":["3891836119283907701"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4018574938"},"6597824356526331307":{"videoId":"6597824356526331307","docid":"34-7-13-Z2D1A4B7534071FC0","description":"Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/diff... Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous lesson...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/761524/b4f0e00821f7ad77f61c5cf52fc06902/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/R2HdoAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"4","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DN5kkwVoAtkc","linkTemplate":"/video/preview/6597824356526331307?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative of x^(x^x) | Taking derivatives | Differential Calculus | Khan Academy","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=N5kkwVoAtkc\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzY1OTc4MjQzNTY1MjYzMzEzMDdaEzY1OTc4MjQzNTY1MjYzMzEzMDdqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxOdBIIEJAGABCsqiwEQARp4gfsPAgb9BAD4BwUIAAb9AgP5DQH5_v4A7vjw_AUAAAD3BPb1-AAAAPgHFPsBAAAA_v0K_vT-AQAE8vz_AgAAAA78_Ab7AAAADf_uAf8BAAAB-_wPBP8AAAoTAfT_AAAAAA368gAAAADr-_77AAAAAAP5_gMAAAAAIAAtMsjcOzgTQAlITlACKoQCEAAa8AF_Bw0A1_WkAfQ09wHd3egA1zYN__w7ywCwD8YB4vn8AAviCADyBdn_9iECAIYx_wET2McA7dcU_0S_4f8iqOcC4-r2ADL27gErPiz-CgoHAAUdGv4K1Pv_9dTL_ucf4P4O8e79IwUEARH_zgMlGCwB4PocARvzJwIDlgEI_eD4AQ7J0P7rLA7_DNsR9wkbEv8o1QwCAvkQ_PQy8AXq9RUA1vgS9hAWyQD_0gcMCOD5_9HfJALt2P0FBD4Z_7v32__i3SL_xivt_dABIfkgIv_34BTuCQbt2wQR_v37Bw4LDhgR9_AO8PIA4Sf8CMQy9_ogAC1c0QA7OBNACUhhUAIqzwcQABrAB_VKyb7ok0u8X_v4PMl3hLrVNeQ8-_HNvEvTtr2Wyys9rO4HvdSBDD5SvYC9AtLAuzYoEL10bYk9w_zLO8uAMz7m0Yi9mGIzPNlDS75DknY7KX-CvW6wJrwYaRg9GXyzuh7XwL1Js5683G1yvMLJjD0vUkO9fBm7PG-LCL1DRwe6I9gYvbGczryXnEm8tu1gvWOMmbwdTVy7D_JVvPp0wT2uTgm97jLyPLSwsj1MJTK96eUgu2sRsb3HyMg8HxHTvC_i1jzO3Kg9MMehPInPDb4ifI69mG-YPHDerr2ER6s9y1FbPKzCaz2df2A910V2vO5lET3n2ZE8Clc0uw1TK75csqY7Yro1vBsqmz1YnUY930wvuxjSAb5Jg6s9liYlvLxtUD2QJf-7KWm0vFh-Lz109T48O3hcPGWaj71C6la9TneDPJlrnL0UuiI8wZijPIFvZDx56yy-wfdluyve6D2zyMA8E6MAPKb4U7yrcFW9rdo1PIaku7tBbUo9A3OZPFoM4LujWK68YMeguwUjpT3WAju-SeWaOgpCg71sv7u9DIPoO5JWsT25Nek9ukyPuvD5YT0UXw2-d4QRu5tcRz2iOIG9f32duzUplb0r4Bo8SH95vH9sEr0zL0y9mAPWuykgzb1ciBs8Zu7Gu16aB7yVbKs8qVSFu7x9UT0YQTO-sZyRuXlioT1Vta49t0gYOxTIMT0e8pA9t5DiuT3-gbwaiMW9RvOLOVi9jb2smcq7PSvluniNx70CY_28x7bWN-6vDj6fEpG9ftCUORXKQjzKsWs9m8zqORtoHr2QbMm896ULOZBt9Dyy6Ee9bevAucui8LxbQh6-NwXjOfDETD1YmT67bF9dOizkAL1RLeI87OSzuQI0I7xNq3e9IbNeObu-aj3jcoe98Ca9uU-iELsJfM-8aK_MOOzbC7y27Ji7H0Uvuv3GEj0ZmuG82ZV6uB3ALD0hiL28F7AEOeci2TwDzPy9UknIOXklN7hUZB49nqiSOF2uODuB8509sxhitlWZlDuTTIM9lA-ZuGCbBbyMRE29dp0vOC7V-7z462Q9wHeYOKKTqr1Xp8Q9vTagOECLgD07l5i8dYoEOAu9WTxQyRQ8Bxk8tydcGT2YqYM7b2zYN5JdGT7ZT1C9rMI_ud68gjy0rxy-_IdluAaoX7wbng6-mX_ANwcUoLrJILc9wteat7hzAT3MK4K9L2Z0uCL_7D01KQU-835buMW_mb1zOEk9XU7juK1t6r0UO788b9LjNyg1qrwz3CC9FZJMNiAAOBNACUhtUAEqcxAAGmA84QA6IQTiA-I05NPK2AbP3Pzo_L4Y_wLd_-0_xw71-cHGFPsAFtnv96EAAAAv_PAOGgANfODV5D4J_Pb5gb8QPVjYBkPQ1BYS4AY1Hwrg9U0ILksAwgG1T-u-wkD3N_EgAC2Vmxg7OBNACUhvUAIqrwYQDBqgBgAA8EEAAAjCAACYwQAAcEEAAGDBAACAwAAAtkIAAABBAAAYwgAA-EEAAEBCAADSwgAAIMIAAIbCAADIQQAAoEAAAAxCAAAowgAAkEEAAATCAACAQQAA4EAAAKDBAABQwQAA6MEAAJDBAACcwgAAoMEAAJxCAAC4QQAAQEEAAJjBAACuwgAAgEEAAIjCAADgwAAAfEIAAKpCAAAkwgAAUEEAAKhBAAAQQgAAgEIAAIBAAAAAwAAA2MEAAADAAADAQQAAskIAACBCAACgwAAAwMEAAPBBAADYQQAAIMEAADRCAAC8wgAAEEEAAIDCAAAUQgAAQMAAAFDCAABAQQAAFMIAAIbCAACQQQAAgEEAAIDAAACoQQAAQMEAADRCAAB0QgAAMEEAABhCAACIwQAAUMIAAODBAAAEwgAAMEIAABxCAAAwwgAAgL8AAKjBAACeQgAAiMEAAMBAAACgQAAAiMEAAOBBAADwwQAAcEEAACRCAADYwQAAusIAAIBAAACQwQAAgEAAAPBBAADAQAAAoEEAAHjCAACoQgAATEIAALDBAABMwgAAIMIAABDBAACsQgAAHMIAAIhBAAAEQgAAOEIAAKBBAABAwAAAkEEAAODAAAAcwgAAkMEAABhCAABAQAAAMMIAAAzCAACgwQAAQMAAAIDAAAB4QgAAqMIAAEDAAAAowgAA4MAAAOBBAABAQAAAGMIAADBCAAAEwgAAyEEAABDBAADAwAAAgMEAAKbCAABAwgAAHEIAAKDBAAAwwQAAAAAAAABBAAAowgAAEEIAAGDCAACowQAAoMAAAEhCAACOQgAADMIAAAxCAACQQQAAiEEAANDCAADgwQAAGEIAAOjBAAAAAAAAGMIAADBCAADAwQAAKEIAAKhBAADgQQAA-EEAADRCAAD4wQAAEEEAABzCAAAAAAAAIEEAAKjBAABwwQAAAMAAAADAAADSQgAAQMEAAAjCAADAwAAAQMAAAFxCAABUwgAAnsIAAN5CAABwwQAAUEEAAADAAACwwQAAgMAAANDBAACgQAAAUEIAAAAAAABAwQAAyMIAAHjCIAA4E0AJSHVQASqPAhAAGoACAABwvQAAgLsAAKI-AAAcvgAAPL4AAMY-AAAkPgAAHb8AABS-AAAEvgAAoLwAAHC9AADoPQAAuD0AAKi9AAAEvgAAgj4AAFC9AAD4vQAAfD4AAH8_AACovQAA4DwAAJg9AAD4vQAA6D0AAFC9AACCvgAAED0AADw-AAAMPgAAEL0AAJi9AABsvgAAoDwAAJi9AACYPQAAgr4AAPi9AACYvQAAxr4AAMi9AAC6PgAAQLwAACw-AABQPQAAMD0AAKa-AACKvgAADL4AALg9AAAQPQAAQLwAAFC9AACavgAAML0AACs_AAC4vQAAND4AAJo-AAB8PgAAnr4AADw-AAAQPSAAOBNACUh8UAEqjwIQARqAAgAAlr4AAHC9AAAEvgAAM78AAPi9AADYPQAAqj4AAIC7AADovQAAVD4AAFA9AADIvQAAZL4AAJi9AACoPQAAgDsAAOg9AAAbPwAAQDwAAPY-AADgPAAA6D0AAOi9AACIvQAAgLsAABA9AAC4PQAAQDwAAAw-AACIPQAAED0AAFA9AAA0vgAAwr4AAKg9AAAQPQAAmD0AALg9AACKvgAAgDsAAOA8AAAEPgAAqD0AADA9AAAQPQAA6D0AAH-_AAAEvgAAMD0AAKA8AAAQPQAAQDwAADA9AACgPAAAhj4AAHA9AAAQPQAAUD0AAOA8AABQvQAADD4AAJg9AABUPgAAgLsgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=N5kkwVoAtkc","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6597824356526331307"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3031184197"},"14988190553420209125":{"videoId":"14988190553420209125","docid":"34-3-15-Z0E9A6BB6E863FE64","description":"This video is the break down every major type of derivative you’ll encounter in calculus. This video covers it all in a clear and visual way. 👉 Subscribe for more math explanations in simple...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4083704/fdbce0a43afbd80b51571896cbb8ea6a/564x318_1"},"target":"_self","position":"6","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dy9ojuz1diD4","linkTemplate":"/video/preview/14988190553420209125?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Every Type of Derivative Explained in 7 Minutes","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=y9ojuz1diD4\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhYKFDE0OTg4MTkwNTUzNDIwMjA5MTI1WhQxNDk4ODE5MDU1MzQyMDIwOTEyNWqvDRIBMBgAIkUaMQAKKmhoeWd5bnZwd3NhZnJheGNoaFVDY25OZVNjUHlYUU9RSG1GOUlWQi1fURICABIqEMIPDxoPPxO4A4IEJAGABCsqiwEQARp4gfsSCAoC_gD4AQAK9wf9AhIDBvoI__8A7PwBBQkAAAD3BPX6BAAAAP0HBAsEAAAA9vL9Cvf_AQACCAERBAAAAAUABOz6AAAAAwsC-v4BAAD_9AQJBP8AABAG-BD_AAAA-v0C_f3-AADx_PgAAAAAAAIC-w4AAAAAIAAtaITMOzgTQAlITlACKnMQABpgKA8AIiD-8wXkE-Py7Mv3KPf3AePUDwAQ4wAKOPgHBCLuxwkNAB7gCwPHAAAABCEDHukAEErv8OAfDvXz_cvjCR1_Awrg9x0F-L7a9Qgj9r82EzA1APcb8A4F0NkiGQT7IAAt9rBYOzgTQAlIb1ACKq8GEAwaoAYAAJjBAAAIwgAAQMEAADzCAACcQgAAHEIAAIRCAACIwgAAAMEAAPhBAAAYQgAAisIAAEDCAAAwwQAAgMEAAJhBAAAgQgAAQMAAABRCAACAQAAATMIAANBBAABEwgAAEEIAALjBAABAwAAAcEEAABDCAACgwAAA0EEAABDCAAAQwgAAfMIAANDBAAAMwgAAQMAAAGDBAABoQgAAQMEAANpCAADwwQAAwMAAAIpCAACowQAAMEEAAJrCAACAQQAA2EEAAIZCAACAQgAAiMEAAARCAAAQwQAAUMEAAIDBAAAgQgAA8MEAALjBAABAQQAAREIAAEBBAAAMwgAAQMIAACDCAADwwQAAlMIAAODBAAB0wgAAiEEAAFzCAAAsQgAAKEIAAHjCAAB0QgAAEMEAAHDCAACEwgAAmEEAAEjCAACYQQAAkMEAAGhCAABMwgAAUMEAAPBBAAAEQgAA4EEAAFxCAABAQQAAAEAAAHjCAACQQgAA2MEAAAAAAAAAwQAAUEEAAARCAAAAwAAAiEIAACRCAAB8wgAAMEEAAIBBAADQwQAAAMMAALhBAAAMQgAAuEEAAEBBAACsQgAAAEAAALhBAADIwQAAyEEAAEDBAAA8QgAAqEEAAEDAAACoQQAAQMAAAHTCAACewgAAIMEAALjBAADowQAAgD8AALjBAABwwQAAhMIAACRCAACQwgAA2EEAABBCAABAQgAAhMIAAERCAAAwwQAAHEIAAMDBAABswgAAoEAAAHDCAAAYQgAAyEEAAABAAAAAAAAAyMEAACRCAACIwQAAoMAAAEDAAACoQQAANEIAADDBAACIQQAAMMIAAPjBAAAwwQAAnsIAAKhBAAAIwgAAQMAAAMjBAAAowgAAKEIAAExCAABYQgAApEIAAExCAABwQQAAeEIAAIBAAAAAQgAAEMEAAKDAAAAIwgAAQMEAAEzCAACAwQAAAEIAABzCAACwQQAAgMEAAIhBAAB4QgAAiMEAAAjCAADgwAAAYEEAACDBAACowQAAqMEAAChCAABQwQAAAEAAAPhBAAAMwgAA6EEAAIBAAAA0wiAAOBNACUh1UAEqjwIQABqAAgAA3r4AANg9AACIvQAAij4AACy-AAAPPwAAfD4AACG_AADWvgAAgDsAADS-AACCvgAAEL0AAHQ-AADgPAAABL4AACQ-AACgvAAAnj4AACE_AAB_PwAAUL0AAK4-AACYvQAALL4AAIC7AACivgAAuL0AAGw-AACWPgAAgj4AALi9AACYPQAAnr4AADS-AABUvgAAyL0AADS-AACmvgAAUD0AAFC9AAAcvgAAsj4AAFS-AACavgAAmD0AALg9AADKvgAARL4AAOK-AABAPAAAiL0AALg9AABQvQAAFD4AALg9AABjPwAA4DwAAL4-AACmPgAAyL0AAAS-AADIPQAAHD4gADgTQAlIfFABKo8CEAEagAIAADy-AAAcvgAAyL0AACu_AAAwPQAAmD0AAMI-AADYvQAAcL0AAIC7AAAQPQAA6L0AANg9AAAEvgAAyD0AADA9AABcPgAAMT8AABy-AACaPgAAML0AABA9AAAQPQAAoLwAANi9AABQvQAAMD0AAKi9AADYPQAA2D0AABQ-AACYPQAAtr4AAFS-AAAEPgAA6D0AAKg9AADYPQAAsr4AADS-AACoPQAAHD4AADQ-AADYPQAA4DwAAFw-AAB_vwAAHL4AALi9AAAUvgAAdD4AABw-AACiPgAAQLwAAOA8AABQPQAA4DwAAIg9AADIPQAABL4AAAQ-AADoPQAA4LwAAGy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=y9ojuz1diD4","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14988190553420209125"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"725383316121167646":{"videoId":"725383316121167646","docid":"34-11-0-Z6602DC1196EC8EAE","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/diff... Differential calculus on Khan Academy: Limit introduction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1030700/a49ce0e88a06ca5cf905760b3fcf8128/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-WphOgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D765X_PAxhAw","linkTemplate":"/video/preview/725383316121167646?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative of natural logarithm | Taking derivatives | Differential Calculus | Khan Academy","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=765X_PAxhAw\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhQKEjcyNTM4MzMxNjEyMTE2NzY0NloSNzI1MzgzMzE2MTIxMTY3NjQ2apIXEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8TuwGCBCQBgAQrKosBEAEaeIH7C_4A_wEA-wMDDgoI-wIIAwkJ-P__AP_6-P0GBP4ABPrx-PsBAAACCg78BQAAAAH2AQT1_QEACvz3BQMAAAAXBPz9AwAAAAEB-fr_AQAAAfv8DwT_AP8LFAH0_wAAAPoM-AP9AAAA8fz4AAAAAAAC9wUHAAAAACAALQhh1Ts4E0AJSE5QAiqEAhAAGvABfxET_vjmxAPaEt0A7PHxAdAg-wAJMvEAt-zWAOcS0AEABO4A8SLzAOso9P-zKvj__PjL_v_k5QE9xuX_HrHqAtjf7QEV2gQCQ0gm_e4C8v8A-B3_G-j1__3F3QAfGsQA7_Id_R4WAgDtA8ACEC0cBALqKvwY9CMCO7P8Ac3X_QAg2uj-5AnuAQzxFf7-ER8DKPcEBRYTCfn5KckC_94YBAjvGPYIL9T9DBAH_xcD__yuAxcC-94LDwMJHAPUDv0G1vEvBtI9AP3dGCH_FwPiBfUK9BEG798DJ-7xAOYC9Aob__H3AADyBNMaAv7lGt7yIAAtHUYQOzgTQAlIYVACKs8HEAAawAcfvM6-sRKYO0btwDtCpPC8cUQtPQnmw7wq4B6-A-5ZPXNVj7y4GYM9lDlRvX_mAr1ps6C9WLSkPZuE3Dyg4ig-UdvGvEQONjzZQ0u-Q5J2Oyl_gr0qXXW9zQ_SPF8MxDuPQ_O83zS9vM0EY71-eXw9GcWyvBaePDxviwi9Q0cHuiPYGL1D5_W9f7YfvVoiAb0_P2c9e2GXvNILDrwuWaU9Y0JMvB8IWjxBP7g94TuLvW06wrx3CL29-BJvPb3jFL11Ziw9povDPP90qDyJzw2-InyOvZhvmDzakoC9_lXRPHKg7DyVUoY9IzHBPLtlYrxjkgK54F4-vCQVvLxlF1y-eKeMPCgEvLv9z7s9eLmIPasmiLx6tl29aUA4PY-axLsqcJI9ZXF_vBv2VryoyWe8Nnu7PEWAkzzgFLG8EU_bvHILpzwxLUW9JGC2O_SwhjyBb2Q8eessvsH3ZbutM949KubjuWyE9rvgTn288TSEvXcan7uE04e9xk7YPXqVbzvU4gI9W422vJiQB7zFNUM9-FENvglvLLvO8ga9kDiKvZzLQ7zD8BE9LEWiPSZFFjtDqR0-H2rbvcSaqTk5xXS8qM45vSGz8bvA9kK9uP5ivU31gTh1A8W810CUvcGhgbs2GqW9W8qePOsqD7xFgJM8TzAtPW3tszsvEbQ9SpoPvopX4rmB0gs9A2mFPZMbEboUyDE9HvKQPbeQ4rngfXq98wXNvUMJWjriAD-9yd2MvMOp5jouiVi93ekzvfSNprqhndM9UYGYvZedUTnhJI08zeA0PUkssrkwlI29aeYkvcnpBbj2-FM9-oMcvQE2QrnpD008qDg-vnKfXTmsaD08SKkkPSXJ8rks5AC9US3iPOzks7l-Mza9pFCWvS6Do7dQEMY8gA5TvRuBNbmAzNg8f-ppvSxUeDjiJVW77oI5ujj4CLjgn4I9eA0avapHB7lHObg9Aom_u4kSljhB8QM9cU_Bvdc4ezmW7Z48bBsrPRMdbrjJW0m964gJPHOvr7h0xA48-XRLPTIV4Liug168a4PuvDkoDjjhrZy7_4_6uvB-RjgKu2i9RTCZPUe8wjgnpiY9afKevGQ8VThSN0a94gqDvPYjzbhYtIQ9VB6dvBv0Rbj3ASg-cGHdvfFnv7k0UxA9glTqveUcjrgGqF-8G54Ovpl_wDeXpSI9EFLBPRGZT7hcqKE9fcSUvbihljci_-w9NSkFPvN-W7h3xo29qykEPZ_Tiritbeq9FDu_PG_S4zdwma68cPrpvA9nuDcgADgTQAlIbVABKnMQABpgQuoAPBsY-O_ECOTo3vj6ztkN_BC6Hv_syv_TTecG8Pq9zf4EADviB_ukAAAANfzdCBMAGn_OwPZB9ArO4o7EFylR2OtOvt0OCL7uGxoU7uwiBytKANb2slnu57Yx80fsIAAt7NEYOzgTQAlIb1ACKq8GEAwaoAYAADBBAACowQAA4MAAAEDCAAAQQQAAEEEAAExCAABgQQAAKMIAAHBBAAAAwAAAmMIAABTCAAAQwgAAREIAADzCAAAQQQAAsMEAAEBBAAA4wgAAXMIAAIrCAAA8wgAACEIAAHDBAAAQwQAADMIAAIA_AAAMQgAADEIAAFzCAACAwQAAlsIAAAxCAACOwgAA-MEAAOBBAADQQgAA4MEAAJ5CAAAcQgAAcEEAAKBCAACgQAAAoMAAAIbCAABwwQAAiEEAAHxCAAAAAAAAgMAAAIjBAACAvwAAsEEAAKhBAACAPwAA3MIAABhCAAAswgAAXEIAAEBCAAAIwgAAyMEAAJ7CAAA4wgAAOMIAAIC_AAAMwgAAwEAAADTCAABgQgAALEIAADDBAACGQgAA2MEAAIrCAACowQAAgMEAAPBBAADYQQAAHMIAAABCAACgQQAASEIAAAAAAABwQQAAwEAAADxCAAAMQgAABMIAAAAAAACKQgAABMIAAL7CAADgwAAA-MEAAODAAACgQQAAKEIAAABBAACiwgAAYEIAACxCAACgwgAAOMIAABDBAAAgwgAAaEIAAOjBAABAQgAAHEIAAAxCAAAAAAAAMMEAAIhBAACAQQAATMIAACjCAADAQQAAyMEAALDBAAAkwgAAmMEAAKDBAACoQQAAWEIAALbCAADgQAAANMIAAMDAAACwQQAAbEIAAMDAAAAAQgAAIMEAAEBAAAAAwQAAQEIAAAjCAACuwgAAAMAAAKhBAACwQQAAkMEAAABCAACAQAAA2MEAAADAAADowQAAAEAAACBBAABQQQAAXEIAAEjCAACowQAAiEEAAAAAAACewgAAtMIAAFBCAAAYwgAAqEEAAFDBAAAgQQAAQMEAACBCAAB0QgAAhEIAADRCAAAUQgAA6MEAACBBAACIwQAAgEAAAPjBAACAwAAALMIAAKBAAABgQQAAxkIAAPjBAAAUwgAAkEEAAFBBAAAYQgAAUMEAAJrCAAAQQgAAgMEAAHDBAABAQAAAJMIAAKDAAABAwgAA4MAAADRCAAAUwgAA6EEAAITCAACUwiAAOBNACUh1UAEqjwIQABqAAgAA-L0AAEA8AAB0PgAA6L0AAKi9AADCPgAAbD4AAB-_AABMvgAAiL0AANi9AAAsvgAAyD0AADQ-AACAuwAAuL0AAAw-AAAQvQAAcD0AAL4-AAB_PwAAyL0AAFA9AACYPQAAqL0AAHA9AABwvQAAZL4AAMg9AACePgAA2D0AAIi9AAA0vgAA6L0AAOA8AACAOwAA4DwAADS-AAAUvgAAuL0AAMK-AAC4vQAALD4AAEA8AABAPAAADL4AAJg9AAB0vgAAVL4AABy-AACgvAAAUL0AAHA9AAAwPQAAir4AAOA8AAAXPwAADL4AALg9AADqPgAAUD0AAOA8AABMPgAAQDwgADgTQAlIfFABKo8CEAEagAIAAFS-AAAQPQAAEL0AAD-_AAC4vQAAoLwAAEQ-AAAQPQAAJL4AAAw-AACAOwAALL4AABS-AADYvQAAHD4AAFC9AAAUPgAAET8AAIg9AADePgAAoLwAADw-AADovQAAJL4AAIC7AACgvAAAuD0AAOA8AABQPQAAFD4AAOA8AACoPQAAyL0AAI6-AACAuwAAQLwAAEC8AAAMPgAATL4AADA9AACgPAAAED0AAIi9AAAkPgAADL4AALg9AAB_vwAA2L0AAKC8AAAkPgAAUD0AAEA8AABQvQAAuD0AAFQ-AACIPQAAMD0AALg9AAAwPQAABL4AAJg9AAD4PQAAXD4AAMi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=765X_PAxhAw","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["725383316121167646"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4175600468"},"8071602604020154921":{"videoId":"8071602604020154921","docid":"34-10-13-Z769B9EAC67AB7C10","description":"#türev #fonksiyonkuvvetitürevi #aytmatematik fonksiyonun kuvvetinin türevi, bileşke fonksiyonun türevi,türev ,türev alma kuralları, bileşke fonksiyonun türevi, türev konu anlatımı , türev soru...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4362296/12d329c14a176dfb33e10300cedc6187/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aU62KAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"isFull":true,"fullTextUrl":"/video/result?ask_summarization=1&numdoc=1&noreask=1&nomisspell=1&parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=videoid:8071602604020154921","teaser":[{"list":{"type":"unordered","items":["Bu video, bir matematik öğretmeninin türev konusunu anlattığı kapsamlı bir eğitim içeriğidir. Öğretmen, öğrencilere hitap ederek konuyu adım adım açıklamaktadır.","Videoda fonksiyonların kuvvetlerinin türevi, eksi kuvvetlerin türevi ve köklü fonksiyonların türevi gibi temel türev alma kuralları detaylı olarak ele alınmaktadır. Öğretmen önce genel kuralları anlatıp, ardından kareköklü, küp köklü ve beş dereceden köklü fonksiyonların türevlerini hesaplama yöntemlerini örneklerle göstermektedir.","Video boyunca 82. sorudan başlayarak 86. soruya kadar çeşitli türev problemleri çözülmekte ve \"bölü çek iki yaz\" gibi pratik kısayol yöntemleri açıklanmaktadır. Öğretmen, bir sonraki videoda f² fonksiyonunun türevleri ve zincir kuralını işleyeceğini belirtmekte, ayrıca türev alma kurallarının son üçünün parçalı fonksiyon ve mutlak değer fonksiyonu türevleri olacağını ifade etmektedir."]},"endTime":2476,"title":"Türev Dersi: Fonksiyonların Kuvvetlerinin Türevi","beginTime":0}],"fullResult":[{"index":0,"title":"Fonksiyonların Kuvvetlerinin Türevi","list":{"type":"unordered","items":["Bir fonksiyonun karesi, küpü veya başka bir kuvvetinin türevini alırken, önce üs başa düşürülür.","Üs bir azaltılır ve fonksiyonun kendisi olduğu gibi yazılır.","Son olarak, fonksiyonun içindeki ifadenin türevi ile çarpılır."]},"beginTime":33,"endTime":145,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=33&ask_summarization=1"},{"index":1,"title":"Kareköklü Fonksiyonların Türevi","list":{"type":"unordered","items":["Kareköklü fonksiyonların türevi için uzun yol, üsün başa düşürülmesi ve bir azaltılmasıyla yapılır.","Kareköklü fonksiyonların türevinin kısayolu: içinden türev bölü iki kök içi şeklinde yazılır.","Kareköklü fonksiyonun türevi hesaplanırken, payda iki ile fonksiyonun aynısı çarpılır, payda ise içindeki ifadenin türevi yazılır."]},"beginTime":145,"endTime":324,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=145&ask_summarization=1"},{"index":2,"title":"Örnekler ve Uygulamalar","list":{"type":"unordered","items":["Fonksiyonların kuvvetlerinin türevi hesaplanırken, üs başa düşürülüp bir azaltılır ve içindeki ifadenin türevi ile çarpılır.","Türev hesaplamalarında, verilen fonksiyonun türevini bilmek ve kuralı uygulamak önemlidir.","Çeşitli örnekler çözülerek kuralın uygulanması gösterilmiştir."]},"beginTime":324,"endTime":513,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=324&ask_summarization=1"},{"index":3,"title":"Eksi Kuvvetli Fonksiyonların Türevi","list":{"type":"unordered","items":["Eksi kuvvetli fonksiyonların türevi alırken önce eksi kuvvet durumuna getirilmelidir, örneğin 1/(x²-3x+1)³ ifadesi (x²-3x+1)⁻³ şeklinde yazılmalıdır.","Türev alırken önce üst katsayı indirilir, sonra üst bir azaltılır ve iç fonksiyonun türevi ile çarpılır.","Eksi kuvvetli fonksiyonların türevi alındıktan sonra, eksi kuvvet durumundan dolayı ifade aşağıya indirilebilir."]},"beginTime":515,"endTime":679,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=515&ask_summarization=1"},{"index":4,"title":"Köklü Fonksiyonların Türevi","list":{"type":"unordered","items":["Köklü fonksiyonların türevi alındığında önce kuvvet durumuna dönüştürülmelidir, örneğin ³√(2x-3)⁵ ifadesi (2x-3)⁵/³ şeklinde yazılmalıdır.","Köklü fonksiyonların türevi alırken üst katsayı indirilir, üst bir azaltılır ve iç fonksiyonun türevi ile çarpılır.","Eksi kuvvetli ve köklü fonksiyonların türevi alındıktan sonra, eksi kuvvet durumundan dolayı ifade aşağıya indirilebilir."]},"beginTime":679,"endTime":860,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=679&ask_summarization=1"},{"index":5,"title":"Kareköklü Fonksiyonların Türevi İçin Kısa Yol","list":{"type":"unordered","items":["Kareköklü fonksiyonların türevi almak için kısa yol: √f(x) fonksiyonunun türevi 2√f(x) şeklinde yazılır.","Kareköklü fonksiyonların türevinde, kökün içerisindeki fonksiyonun türevi iç kısımda yazılır.","Kareköklü fonksiyonların türevi alındığında, katsayılar ve kök içindeki fonksiyonun türevi hesaplanarak sonuç elde edilir."]},"beginTime":860,"endTime":1161,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=860&ask_summarization=1"},{"index":6,"title":"Köklü Fonksiyonların Türevi","list":{"type":"unordered","items":["Küp köklü, kareköklü ve beşinci dereceden köklü fonksiyonların türevi hesaplanıyor.","Küp köklü fonksiyonların türevi için önce kuvvet başa düşürülür, sonra üstü bir azaltılır ve iç fonksiyonun türevi ile çarpılır.","Kareköklü fonksiyonların türevi için karekök işaretinin altındaki ifadenin türevi alınır ve kökün derecesi (2) payda olarak yazılır."]},"beginTime":1169,"endTime":1340,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=1169&ask_summarization=1"},{"index":7,"title":"Örnek Sorular","list":{"type":"unordered","items":["Beşinci dereceden köklü fonksiyonların türevi hesaplanırken, kuvvet başa düşürülür, üstü bir azaltılır ve iç fonksiyonun türevi ile çarpılır.","Türevin değerini bulmak için x yerine verilen değer yazılır ve hesaplamalar yapılır.","Çarpımın türevi alınırken, çarpım kuralı kullanılır: (f·g)' = f'·g + f·g'."]},"beginTime":1340,"endTime":1759,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=1340&ask_summarization=1"},{"index":8,"title":"Karmaşık Fonksiyonların Türevi","list":{"type":"unordered","items":["Daha karmaşık fonksiyonların türevi alınırken, önce kuvvet başa düşürülür, sonra üstü bir azaltılır ve iç fonksiyonun türevi ile çarpılır.","İçinde kuvvet olan ifadelerde, kuvvetin türevi alınırken aynı işlem tekrarlanır.","Türev hesaplandıktan sonra, x yerine verilen değer yazılır ve hesaplamalar tamamlanır."]},"beginTime":1759,"endTime":1862,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=1759&ask_summarization=1"},{"index":9,"title":"Türev Alma Örnekleri","list":{"type":"unordered","items":["Bir türev sorusunun çözümünde hata bulunuyor ve düzeltiliyor.","Bölüm durumunda olan bir fonksiyonun türevi hesaplanıyor: f(x) = (2x+1)³ / (x-1)² türevi bulunuyor.","Kareköklü fonksiyonların türevi alındığında bölümün çekip 2 yazılması ve içindeki fonksiyonun türevinin alınması gerektiği hatırlatılıyor."]},"beginTime":1872,"endTime":2086,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=1872&ask_summarization=1"},{"index":10,"title":"Kareköklü Fonksiyonların Türevi","list":{"type":"unordered","items":["f(x) = √(x² + √(x+3)) fonksiyonunun türevi hesaplanıyor.","Kareköklü fonksiyonların türevi alındığında bölümün çekip 2 yazılması ve içindeki fonksiyonun türevinin alınması gerektiği tekrarlanıyor.","f(x) = √(2x+6) / 5 fonksiyonunun türevi hesaplanıyor."]},"beginTime":2086,"endTime":2355,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=2086&ask_summarization=1"},{"index":11,"title":"Çarpım ve Türev Kullanımı","list":{"type":"unordered","items":["f(x) = √(g(x)·h(x)) fonksiyonunun türevi hesaplanıyor.","Çarpımın türevi formülü kullanılarak g'(x)·h(x) + g(x)·h'(x) ifadesi elde ediliyor.","Türev alma kuralları konusunda önemli başlıklar işleniyor ve bundan sonraki videoda f²(x) fonksiyonlarının türevleri ve zincir kuralı ele alınacak."]},"beginTime":2355,"endTime":2475,"href":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=2355&ask_summarization=1"}],"linkTemplate":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative Lecture Series Video 9 (Derivative of the Power of a Function)","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MHV2zec4UCQ\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzgwNzE2MDI2MDQwMjAxNTQ5MjFaEzgwNzE2MDI2MDQwMjAxNTQ5MjFqiBcSATAYACJFGjEACipoaHplenV3cW1ibndmdnRjaGhVQ3hIU0x4SmN1WjhTcEY1emdKZVE4Q2cSAgASKhDCDw8aDz8TrBOCBCQBgAQrKosBEAEaeIH8CfUB-wUA9QkOCQQF_QEYAAYJBwEBAO_xBP0GAAAA7v38AwT_AAD4BQICAAAAAAD1AAMA_gEACgUACAQAAAAR_gD5_wAAAAYL-v3-AQAA9v_8DAT_AAANCAEFAAAAAPQJ-v8CAAAA9wcBAAAAAAD9_PYOAAAAACAALWA94Ts4E0AJSE5QAiqEAhAAGvABf__H_9f7-v_X19r_2AAWAoMhCv4zEsoAxiMNAa7U5AAEEAcA-O-0_yPtBf_SDiQAGAXY_w_bBQAEAPX_QA8u__TqAQBE4PABHPPzAdQM8__tFvkAEPkd_wDo8QAHC-_-_AQ6_9nl0AEO_9cDF-cpAgLsJv3n7fEF6vYW_vgI9P386OH9IhQUBOHi-vztFDYB7PAQ_ukL8ffr1vn9-Avj_RbSAQJJFeoA6ebQBfjdA_MaIP35C-XqAvz6FgrZCx72BPwS-hDr7vgICwj_IxUFBPj9DQb71wMFJDMB-gL1_vvZ__r16fUT9dfs8gXc8_X6IAAtaj0fOzgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTq9OgU71gQMvZVw17z4gbW8A6vPPGkU97wYmAU-gDPrO3-zvbs4aYq-0Qw9PO2ufTzLgDM-5tGIvZhiMzyG4wm-3yD1PKwBKr31oWu-hNMHPXQ1w7uOyCc-80RmPbBoI7xvwAI9ONFTvQoJorzqNhK9UxSevSdM-7vueim-3MunvUZ9bbyt5SS9fIEZvQmlrzsYWh0-agdxu7SFEDzXaBk9nB81vQyR9DuVZg69KZ2jvETbMTwr2fE9PX0EvS8BUzwxQhi9wvr_PDGviLyDvpS9U_0UO9tjzrwO1iS8yhXePZPfAr17Mlo9IhZWvFzbJbz5oAe-9BqbPS-BgDtmMGY9C8qZPfOBk7zGYaq9q1udPe7UmjurMde8oqUhPbrwhzvfiK49BIkSPE4YILzQgJU9Q5CDPMF9kbtPBNG9OKvTu1Xt5Dx11p08f7n7PChJsrzxSJs60a5CPImSNbxVj7q9vjk3PBeZJbw0R9Y99DY2vKFnPbptXSU9SJU3PYF8ZDzfZsY9ObXzvYcfGDxh3qM8hjzivVlJcbtLrBC8Z1zdu_7oI7tBlIk9bSUvvTtI_DpxY4m9zBG9vSy1JDsCyIo9OIyNvRTHZLshhme9OmgEPF2Mnru_a6e7OsO5PNY1f7zp7Mk8TBjNPV_omrlOAmW88KyIvfj1xzoUeRI9K1ovPST7FLvzENc8YUPmPHufqjtru4Q9-7N6vDe5Z7srG1E9p62mvefg27omOgY9AM7Fup6Khrvu7yc9kSiTuzYe_7kcegs94sYSPE0vKLplXGe9uHw_vVAulTk6AQ87VwM5vAp0Hzr6dYw866qAvfNfxDh49_a8WPKnPHvrmTglr849Iz27vKOuD7kvUPK9qFycvUOAv7dDcYe9y7wXvAMhn7jCkgI8WVEDvXIx97awZWg9RTcRPQBDfTgmN8w6kf6ovIkI3jnAzBc-mXJPPZxAADlar4M9AY_DvabRWjkUBA89EF0APo3DcbjOr425VzqEPf1GFjjOVjm9KqRBPckNorjNmSg9_BxfvV2ArzZiZE49cSEqPZocGrhUshe9c7g2vSiRWLcWIIA8CFTBuyXkerb7BxE9BsaTO4ByCri4OsW9PkKNvML_MjjCpNg9NiomvXu0LbkKXAi94sORvTylWLhmErU8XqHPvYC6sjcyC7O9Ev5APbJytjdeqki9OukdvrRj-rgi_-w9NSkFPvN-W7h0p4U8V5fTPPGVVbiyWFS8kNY9PfEV67eVEbK8ZTCrPIsVjzYgADgTQAlIbVABKnMQABpgUeYAN_IJAwvnFu_54tIlAtXyCwzP-_8P2ADhMOQYIAf8wRvjADPTAfiwAAAADfLnFAwAEG7Z2MwB7xoGscYM-P1_9gwnpv8O_NbhLQ8FDsz81k0cAOvxoQ5K06oGKh7WIAAt_M4oOzgTQAlIb1ACKq8GEAwaoAYAAKBAAADgwAAAhkIAAKZCAADowQAAsEEAAFRCAACWwgAARMIAAGDBAACAPwAAUMEAAGzCAACgQAAAcEIAAJbCAACAQAAAAAAAADDCAAAUwgAA0EEAAIBAAAA8wgAAgEIAAExCAABgQQAARMIAAHBBAABgQgAA-EEAAIDBAAAgwQAAgsIAAHxCAAAAAAAAkEEAAEBAAAC2QgAA8MEAACDBAAAMQgAAAEAAAAjCAADQQQAALEIAAEzCAAAwwgAACMIAAJpCAACAvwAAgMAAAFBCAACQQQAAoEAAAABBAABwQgAAkMEAADBBAADgQAAA8EEAAPhBAACgQQAAgMIAACDBAACAQAAAoMEAABhCAACAwAAAmMEAAODBAABIQgAAZEIAAIjBAAC4QQAALEIAAADDAAA0wgAADEIAAEDAAADAwAAAFMIAAMBAAAAgQgAAaEIAAEDBAACAvwAAAMEAAHBBAAA0QgAAwMAAAGDBAACgwAAAQMAAAJbCAABAQAAAIMIAABhCAADAQQAAoEAAAMBAAACQQQAAwEEAAHxCAABEwgAA-MEAACDBAAAQQQAAIEIAAMDBAABIQgAATEIAAIhBAAAAAAAAgL8AAExCAABQQgAAEEEAAETCAADAQAAAEMIAAADBAADgwQAAuMEAAJzCAAAQQgAAZEIAABDBAAB0wgAACMIAABDCAACsQgAACMIAAAzCAAAoQgAAgL8AABBBAAA4QgAAgMEAAHDCAACYwgAAwEEAADhCAABAQAAAiMEAADBCAADwwQAARMIAAABCAAAIQgAAwMAAAODBAAAswgAAAEEAANjBAABAQQAAYEIAAFTCAAA4wgAA4MEAALhBAAAAwgAAJEIAALDBAACwwQAAcMEAANDBAABAQgAA6EEAAJRCAACAwAAA8sIAAEBCAAAwwgAAqkIAAAjCAAAAwAAAisIAAAjCAAA0QgAAlkIAAHBBAAC4wQAAgMEAALDBAACWQgAAQMIAAKBAAAC4QQAANMIAADRCAABAwAAAgD8AABBBAACIQQAA0EEAAJBBAAAowgAAqMEAANbCAAD4QSAAOBNACUh1UAEqjwIQABqAAgAADL4AABA9AABUPgAAoLwAACQ-AABUPgAAQDwAABW_AAB0vgAALD4AADy-AAA0vgAAuD0AAAQ-AADIvQAAUL0AAAS-AABwvQAAoDwAAK4-AAB_PwAAED0AAIg9AABAPAAAbL4AADQ-AADoPQAAiD0AALi9AACgPAAAyD0AAFA9AACYvQAA4LwAAIC7AACuvgAAuL0AACS-AACCvgAAHL4AAOi9AABAPAAAzj4AAKq-AADYvQAAXL4AAHQ-AAAMvgAAuL0AAIa-AAA0PgAAmL0AADQ-AABsPgAAyL0AAMi9AAAjPwAAyL0AADC9AAAkPgAADD4AAEA8AADoPQAAHL4gADgTQAlIfFABKo8CEAEagAIAADy-AAAQPQAAmL0AACe_AADIPQAAcD0AADQ-AAAEvgAAEL0AAFQ-AAAEvgAAmL0AAHA9AABMvgAAcL0AAHC9AABwPQAAGT8AAJi9AACmPgAA2L0AAHC9AACIPQAAgLsAAIi9AAAwPQAAXD4AAIA7AADgPAAAuD0AAOg9AAC4PQAAjr4AAKC8AABMvgAAgDsAABw-AAC-PgAAlr4AAAy-AACYPQAAJD4AAI4-AAAQPQAAiD0AAOg9AAB_vwAAQLwAAJi9AABsPgAAND4AAKC8AADKPgAAQDwAAEC8AACAuwAAUD0AALg9AAA8vgAA2L0AALg9AAD4PQAAEL0AABy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=MHV2zec4UCQ","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8071602604020154921"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"52398745"},"14808398322726514600":{"videoId":"14808398322726514600","docid":"34-4-16-ZB27532E3BD54F2F8","description":"Finding a Derivative Using the Definition of a Derivative - In this video, I walk through two complete examples of finding the derivative using its definition. This step-by-step approach...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3668947/a052edf746d5c0d92bc1631862f2f060/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0Thz8wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvzDYOHETFlo","linkTemplate":"/video/preview/14808398322726514600?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding a Derivative Using the Definition of a Derivative","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vzDYOHETFlo\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhYKFDE0ODA4Mzk4MzIyNzI2NTE0NjAwWhQxNDgwODM5ODMyMjcyNjUxNDYwMGqIFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxPJA4IEJAGABCsqiwEQARp4gQED_QL7BQD1CQ4JBAX9AQcDCQn4__8A8_v9_AcBAAD0AP7-_wAAAAb8BAz7AAAAAPUAAwD-AQAMAP0D-wAAABIA9AL_AAAABQH9Bv8BAAAC-fwGA_8AAAYRAQAAAAAA9QoD-gIAAAD3Bv4JAAAAAPb4-wcAAAAAIAAtd1vjOzgTQAlITlACKoQCEAAa8AF_FPv_-trlBNQFxAAKEvEBvzcNAPw4zwC1--cA4_n9ANM03__a8QQB1AvzAMBJ8wA30s3-FAfy_yS79f4iygIA1wL8ARTR7QJAFDH_HOYc_tvtFwDx0gb-BOjYABwc2wAQwwX-IQQEAf8H3QQZAyEBNQArAS_9QQPwwQj_7AT5AgH87P7yF_oHGvQZ_LrXKQLm-h4EDwXx-dEa1gD1-vb94gEQAQgy0v0i8fYGIv8NBbnpF_0G9AcERg0h_r0E9vrkBBgAswjq-v__GPr9HvL45x7T-hL_8AI0DhsK_v4J-QoFC-zgFgryFwPg-Pco_wQgAC1SbQk7OBNACUhhUAIqzwcQABrAB7nEub7teFi9zb2RPL6jhr3s6Xm9osSdvBTamL0nT3k9CxGJu_a2ST6SUoq9UVcNPTRNKL5ZLsA79AmPPCb_8z3xBbe9oGUnPHoXL74IPDA9KZ_UvPNZDr44bzc9dvssu5avUD3Ct1W8yKZmvbJ1mj2ly9G8LegBvIf76L2pWye93S-Xu5ita70X5UO9vEkCvViTor0P5wu9eM47PCAHuj2CkTe9iLKcvOAR1T1CWog7mLKCvHK1r71iWTq9523RvFpHNT2Dxqe7yIPjPHgANb1Xp_M6xYLvu0Nu67w5LLg9ncmIPGijxDxcKPC7nUUUvY6Sl7xCfnG9AKWGvCM9y7047rk83ralvP3Puz14uYg9qyaIvFDD173Eknc9a4zOOglfqT123Ru9kDpwvDBjqj2hkZk8JmmjPCCihzz5pG49oEiBvG62I735WHA9CRLAPMeOfD0wL8A7JtvlvBy2TT2Qrgi9EmmbvCUvobyjuYQ855RbvKi4njtCGVQ9YZ9nurgUQb3qM--7DxzAOwUjpT3WAju-SeWaOg_d4jx1dBy-GGL6uXR6Hj429yG7Jcusum786T1M5K29K3Opu7a_Lj1L8Ly8N-wtuxb1bjwwkBa9gVxiO5Ion73OF3u8E-PnO62BMr23VsU8_jD8uw-peD2oMIs9GDBUu_GeY71ddo69idXGuQwDFj19CCq8-tRSu7EwxD31Ree8wPZTulGX1jzl0W29oBpMu5vc1LzzTSS9_lwXOzUeMb14hj-94DucOpRAtD3gzWS94odqOfKsibxCtdy8mqmBuKw84b1pQ1Q9lVuyOKxTpTweWGm8f3ahOVxUC72cFfG93J51OfiZabxu3KI8VNNkua-ftD2ml9g8Q8qbOcwgw73UDQS-CFOFOcz77rxWPQk7u7uWubeCAb1fwZy91lMFubXRrzwtf3m9ZG8HOb0YirzZ1FS8kHtDOKd_RD280r09Jyr7NkUO0T0pI-694iy_Oalm-zy0cYk9YM_ruFSl0rwfzMc9ctVYtx6ezrv8lBk9a2zOt6_YGTzz2pa9SVoftxnqi7ykbPE9pd7HOKBQz70V74Y9wtICOPLQNz1cQhk9eXKOOAF7lj2W8_875g3lN9rYdr0aWUg9uKw0ODpd1j3sSo07HPtJuagmp71UPcS9HLiDuFnApD2zmu695xf_N9psob2N5rI9IXQJOB3jDDxnRt-9aVASuFUYpj1tC8U9g8fnODjCvT2Ljdk91Sngtn0JMD2atTQ94HEkuEspjr3yKJA94DNcuCAAOBNACUhtUAEqcxAAGmA_7wAyFxDkLN_96v3g4e7t3-bhCcIb_-nVAOg8rA0bGsri_9QAMtQVAagAAAAgD94d2wDed7fq9hoFMvy3ss8TMH8QFTDQ0C7zitYlHBzY5SsaJEEA6u64AArdqEn4HQIgAC1aABo7OBNACUhvUAIqrwYQDBqgBgAAaEIAAIC_AAAgQgAAAEAAABBCAAAwQgAAukIAABBBAABYwgAAuEEAAKBAAADgwQAACMIAACBBAAAgQQAAkEEAADBCAADAwQAAcEEAAHBBAABgQQAA2MEAAMjCAAAEQgAABMIAAKjBAACYwQAADEIAALBBAAAAAAAAXMIAAJDBAACcwgAAaEIAAIjCAADgwAAAHEIAAOBBAABwQQAAIEIAAGxCAADIwQAAgEEAAKDBAAAAAAAAqsIAANBBAABMQgAAuMEAAJpCAAA8wgAAQMEAAADCAADYQQAAoMAAAKxCAADKwgAAiMEAAMBAAACcQgAAUEEAAJDCAAAgwgAAUMEAAKBAAACEwgAAgL8AAAAAAABwQQAA-MEAAFhCAAA0QgAAVMIAAJhCAAAAwgAAgMEAADTCAAAAQgAAMEEAAPBBAAAMwgAAcEIAAODAAAAQwQAAiMEAABxCAADowQAAAEAAANhBAADAQQAAMMEAAGhCAACEwgAA0MEAABxCAACAwQAAuMEAADDCAADYQQAAGEIAAFTCAAAUQgAA2EEAADhCAACQwgAA8EEAABDBAABAQAAA2MEAAEhCAABoQgAAwMAAAADBAAAEQgAAAMIAAIBCAADYQQAAOMIAAMDAAAAEwgAAsMEAAFjCAADgQAAAbMIAAMjBAABAQQAAUEEAAEBAAAAAwQAAIEEAAMDBAAAgwQAA6EEAAJxCAABwQQAAzkIAAKDAAABEQgAADMIAAETCAACgwQAAqEEAAFRCAAAIwgAAGEIAAIhCAACYwQAAMEEAAOBAAABAQQAAQMIAAABCAAAAQgAANMIAAERCAABAwAAAPMIAACzCAACswgAAkMEAANjBAAAgQQAAAMAAAGBBAABUQgAAJMIAAIDBAAA8QgAAsEEAAOhBAACgQAAAQEIAAABAAACAwQAAfMIAAPjBAACgQAAAVMIAAOBAAABwQgAA2MIAANjBAACAPwAAAMIAADBCAACAQAAAZMIAAHDBAACYwQAAoMAAAJhCAAAAAAAAgL8AAIBAAACAQAAAkkIAAJjBAADgwAAAAMAAABDBIAA4E0AJSHVQASqPAhAAGoACAABQvQAAML0AACw-AACmvgAAqL0AAL4-AACqPgAAF78AAAO_AAA0vgAAJD4AANa-AAAEPgAARD4AAAQ-AACgPAAAyL0AAKC8AABAPAAAXD4AAH8_AABsPgAAPD4AAPg9AADWvgAAJD4AAKC8AACGvgAAmD0AADw-AADCPgAAJL4AAEA8AAC2vgAAfD4AABS-AABwvQAAfL4AAJa-AACgvAAAEL0AAL6-AADGPgAAir4AACS-AADCPgAAmD0AANq-AABQPQAA5r4AALg9AADYvQAAVD4AAMi9AACAOwAAgDsAAEk_AAAEvgAAjj4AAOo-AACYPQAAmL0AABQ-AADoPSAAOBNACUh8UAEqjwIQARqAAgAAnr4AAIA7AACgvAAAQ78AADA9AAAUPgAABD4AAHA9AAAQvQAA-D0AAKi9AADIPQAAiL0AAJi9AACgvAAAoLwAAEC8AAAhPwAA-D0AAOY-AADovQAA4LwAACw-AABUvgAANL4AAHC9AACgvAAAoDwAAOA8AABAvAAAcD0AAOg9AABAvAAAiL0AABQ-AAAUvgAARD4AAJ4-AABEvgAAUD0AACw-AAAQvQAAgDsAAIC7AAAQvQAA-D0AAH-_AACYvQAAUD0AAJo-AAB0PgAAgDsAAJY-AACCPgAAyD0AAFA9AACAOwAAhr4AAFA9AAAkvgAABD4AADA9AADYvQAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=vzDYOHETFlo","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["14808398322726514600"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1640237765"},"16879689330109543102":{"videoId":"16879689330109543102","docid":"34-1-4-Z8F1E9B5FDB9D853F","description":"Thanks to all of you who support me on Patreon. You da real mvps! $1 per month helps!! :) / patrickjmt !! Derivative Using the Definition, Example 2. In this video, I find the derivative of a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3429594/52d3313173071823047c003bc6a91f44/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/V_sypwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWERgBgi4hg4","linkTemplate":"/video/preview/16879689330109543102?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative Using the Definition, Example 2","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WERgBgi4hg4\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhYKFDE2ODc5Njg5MzMwMTA5NTQzMTAyWhQxNjg3OTY4OTMzMDEwOTU0MzEwMmqTFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxO3AoIEJAGABCsqiwEQARp4gQH9-gUAAAD0AgwAAwT-ARgADgn2AgIA6Pr8_gT-AQDnAf3_-v8AAP33BwX4AAAA__L_-Pj9AQAD-_wCBAAAABEA8vb9AAAAEQYADf4BAADu-g75AgAAAAkFBAEAAAAA-Q78-_8AAAD-CvkLAAAAAAIC_A0AAAAAIAAtLGDVOzgTQAlITlACKoQCEAAa8AF-Fhf85M_2AbjzyACbHuIAgUQE__tExACm4u7_zerKAMAO9gDj4xUACSYZAeoP0_9T8rn_AM_zAU3R-wD51_gA3Do1ASPU0QBD5y0ACdzm_tYsO_zZnSv-_LXUAAoQ6P4O7hj3FAnkAg8S3ANE6SoCKj0XBzjZFAIEsBcA8vTv_drzy_zdKuQE4Mwa--EKMQL7-PMHDNgB_5xS5wALxw37_dUe-zlGyP8n0AUCEOkDBakbC_YXAdIBEU0B_tDnBvrd2Cf_s98G_gXQ__sf2Sf45hHm90EL-RLt8QYJFR4ECPzY9tztBgwc3avzFsMaBPIgAC0-2OE6OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivHdlJ74VRJO8QcnuvKjhG77fFuw8h9tGPKfN-D3sJKy8tYYXvRToM77779w8WdOGvJjdIz6BSZC9Q_T1vHoXL74IPDA9KZ_UvEQYX77UZGc7pZ0_PJrMuDy-OYK9f8MfPKA0xD2m1VC9Ef_WOZ5LjL3tSLU8mctXvF2psr3BnCq9PR5EvFFWgjwrN8y9JXXCPCAHuj2CkTe9iLKcvKGUej1kaKu8waq6vB2tSj1iIF49ElAhvf5ukD3H7HI7oXMNPfElmb2H1P689VHhPDfd0r1rpIC8k2XSO6xjCz0NBjI8WuybvPRsablgqyS-gDKAu22s5L2mES49lE7BO_CLCz7zP7O74jrGO-_ks733kZs9zf26vBvccT3B-kS9zGJivHDdsz34EeQ8PTVquzMtNj0gKk09pSseO5AkELwQ36M9pmIDPSBLqj2oFva8XHaIvN3zdDvvDt88NfHROao-fL3vEKA9S48mPB1aZLx5hwU9wuyOuiGNLzyqR5o8vM9xPMU1Qz34UQ2-CW8suyaUeb2xCVq9kYJ9OX446D1CQIA7fH0QvORpuT1ddI28RwEgPJb40jxBdgi9IrH2uhb1bjwwkBa9gVxiO9n1sb1IRym6IzAZurLLgbz3DLw9cfINu3MHWz0DU8c9cgzBOZGgU7zfJq29Fu2eujEERT0vZx27euxtOsITuj1qm-q6mQCyutrHKj0hSzW9gLa4u5vc1LzzTSS9_lwXOxGQ77wdbIu94EIdOe50nD2s4s29Kv-9OeIdYD3Ua2m88W1Ruwq_T70mHtA9gCM5ue5vmjyjLDK9vPebuMui8LxbQh6-NwXjObaWc72INlY9umCZup4_kj2hA9w8O26xucwgw73UDQS-CFOFOTf74jq8VBE9XHC5tsiD4zx1DOM8vhzZtzzN-LzGN--8ZpzfOHFPPL1_1Ta8NKC_OL8gM7ysG889SQw0NeKSAz6Ow6W9gjGhOXn5qbunJcY9xK7_uINokrzkgx49p2upN3LCZD3f_wI9bA0MOPFZKD13loq91TXrOOFqcz1nPUE9ZfbpuGVTzr3C6Kg8_jLoN4NmHD35w6o8kqDwOA_bET0hVM48Yp1OtzjshLoR7sS8KwdeN8HjKz7cpWi8B4l0ubhdk73Pq5C92nVEuNU7gTzvPYe9zZO_N9psob2N5rI9IXQJONmE6rwiV7W90kIwuMr0cD0i4Ss-8cuKOJVfKzzPvIw9xfwGuW4Djb0naa49v_cWN7SRa73XSbI9UhvVNyAAOBNACUhtUAEqcxAAGmAt-QAxERjRJ9km7PnU3fTaw_Xw9dEc_wXZANQWzRgQP83K7-MALsgGDq0AAAAqAu8EAQAFccoBBCcj9gPQkvLnLH8KARuzvS0FmQRCFQTTGBQwBzAA49zGIgDX1lPqCRIgAC217iA7OBNACUhvUAIqrwYQDBqgBgAAdEIAAIDAAAA0QgAAMMIAAETCAACAwAAAKEIAABxCAACowQAAmMEAAIDAAAA8wgAAwMAAAIC_AADYQQAAAAAAAIxCAAAgwgAAhEIAAAjCAAAYwgAACMIAANTCAAAAQgAAOMIAAEzCAADIQQAANMIAAKBAAACgQQAA8MEAABBBAABUwgAA-EEAALDCAABAQQAAGEIAAJxCAACoQQAApkIAANBBAABwQQAA6EEAAADBAABQQQAA0MEAAKDAAABAQgAAoEEAAIDBAAAAwQAAkMIAAHDBAAA4QgAAWEIAAABCAACWwgAAoMAAAJBBAAAAwAAAgMAAAHjCAAAQwgAANMIAAKDAAABkwgAA2MEAAKLCAAAUwgAAgD8AACxCAAAAQAAAwEEAAABBAACgwQAA2MEAAHjCAAAQwgAA4EEAAADAAACIwQAAREIAAAAAAACIQQAAoMAAAIZCAACAwQAAfMIAAPBBAABswgAAHEIAALhBAAC4wQAAgMEAAEBBAAAkwgAAMMEAAOBAAABQQQAAOEIAALTCAABkQgAALEIAAKDBAAAUwgAAMEEAAPDBAAAwQgAAAEAAADxCAABYQgAAQEIAAKDAAADAwAAAQMAAAHhCAABAQAAAgsIAALjBAAB0wgAAHMIAAKDBAAAAwQAABMIAANjBAACAPwAAjsIAAEDBAACowQAAUMEAAIBAAAAAwgAAoEAAAJ5CAADAwQAAQEAAAFhCAAAgQgAAoEAAAIbCAACgQQAAQMAAANhBAAAQwgAAEEIAADBCAAAAQAAAMMIAAJDBAABQQgAAyMEAAJBBAACcQgAAgL8AAIC_AABEwgAAlsIAADTCAACCwgAAUMEAAOBAAACAQQAAJEIAALBBAACAPwAAKEIAAFDBAAB4QgAAzkIAAGDCAABMwgAAIMEAACDBAACgwQAAgEAAAMjBAACwwQAAgEAAAKBAAAAQQgAAYMIAAADDAACAPwAAoEAAADxCAABUwgAAZMIAAEBAAAAAAAAAwMEAAGxCAABgwQAAFMIAADTCAACIQQAAmEEAABzCAABsQgAAdEIAACzCIAA4E0AJSHVQASqPAhAAGoACAACIvQAAUL0AAKg9AAAsPgAAjr4AAMI-AAALPwAAM78AAH-_AABQPQAAiD0AACO_AABwvQAATD4AALg9AAC4vQAAoDwAADA9AAD-PgAACz8AAH0_AACOPgAAqL0AAPg9AABcvgAA6D0AAEy-AAC-vgAAuj4AAGw-AAC2PgAAiL0AADA9AADavgAApj4AAAy-AABwPQAAPL4AAMa-AABwPQAAcD0AAL6-AACiPgAARL4AAEC8AAC-PgAAEL0AAEu_AAB0PgAAur4AAI4-AADYvQAAMD0AAJg9AAAEPgAAqD0AAEs_AAAwPQAARD4AAAM_AAAUPgAARL4AAEw-AACgvCAAOBNACUh8UAEqjwIQARqAAgAAXL4AAOC8AAC4vQAAQ78AAOA8AABUPgAALD4AAOg9AAAQPQAABD4AAPi9AABcPgAA4DwAAPg9AADovQAAoLwAAKi9AAAxPwAAUD0AAPo-AAA0vgAAPL4AAGQ-AABcvgAARL4AAAy-AADYPQAAgDsAADQ-AAAEPgAAED0AAJg9AAAkvgAAuL0AAJg9AAAsvgAABD4AABw-AAAEvgAA4DwAAHQ-AABwvQAAED0AAHA9AAAQvQAAFD4AAH-_AAAQvQAADD4AALo-AABUPgAA6D0AACQ-AACKPgAAND4AAMg9AACAuwAAfL4AAOg9AAAcvgAAZD4AABA9AAAsvgAAfL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=WERgBgi4hg4","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["16879689330109543102"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"32218895"},"5047184969865005198":{"videoId":"5047184969865005198","docid":"34-4-14-Z9A5733B07A491465","description":"After discussing differentiation at great length, it is time to connect this concept with the act of taking the derivative of a function. In actuality these mean the same thing, but using the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2746755/33d570bcf8a46a4e5b71f064affb0f40/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eXqIPwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx3iEEDxrhyE","linkTemplate":"/video/preview/5047184969865005198?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is a Derivative? Deriving the Power Rule","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x3iEEDxrhyE\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzUwNDcxODQ5Njk4NjUwMDUxOThaEzUwNDcxODQ5Njk4NjUwMDUxOThqkxcSATAYACJFGjEACipoaG91Y25jb2NmcnNocWViaGhVQzBjZF8tZTQ5aFpwV0xIM1VJd29XUkESAgASKhDCDw8aDz8T3ASCBCQBgAQrKosBEAEaeIH-__j_-wYA_AAPBQcG_AEHAwkJ-P__AO_xBP0GAAAA9AD-_v8AAAACAA7_-wAAAPQD_gH6AAAAAwr3_wMAAAAABf35_gAAAAn6AgP_AQAA9_oFDQP_AAAIBQQBAAAAAPoN_fv_AAAA_Q70AgAAAAAC-_cGAAAAACAALdlt5Ds4E0AJSE5QAiqEAhAAGvABf_kNA6n56vwz5PsB-RriAYMV8P86COYA4uf-AO0O2wH-9f4A5P8N_xj_4ADW-g8A3u3zAPb0EQAS8Az_GPch__n1FABA5wsBChj6ABoA6v_qEO7_6g8f_wji7P8LFPX-EQAj_ijt3QAABeYDHfwlAfIJ7wL84fD-HxMTAd8SKAHpAuwAFADxAhDt8P7S_xkB_QzoBOkp7QAF9An8IQEG-v8LBAMF7fAE6xboBPYREvX__PwDF_jr-v0D_gIFDuMK5fwHBQDoCgcHBvgA-vMPC_L4AggFCQD5D_31B-fjB_nzEgj__fUO7_AI7wUJ8Pj4IAAtZrM4OzgTQAlIYVACKs8HEAAawAcpIM2-nYwAPYpCBr33C9G8etlAPHhs-rwjE_C91y0nPff9QLzusr89t7BTPVY1V729jpC-fOdcvdimKTsKL2E-F3GwvEHTxjnv5U6-EKhDPRiswLtEGF--1GRnO6WdPzxYwcQ9kZYPPUcagTxyHmk9O2pxvby0PL26S4I9_BPBvPI6B70y4_G7sVfzvMmW_roTXLS7McwOvS_6yDsvUf09sQVgup-rrbwRzCy8zQd_vY8-fztyta-9Ylk6vedt0byUwhw-5JPfu3qjGz0ptCw91aoiPcg2-jzrRi49xruIPOX4fLw27DI9AA0FPcTSO728Wm49t4u8Onblrzts6dG9qValPW0a27z7BTs-2jfXPUR1yjtQw9e9xJJ3PWuMzjor3sg8fJf3vKTDQzxLD5k9IRisvD-IJruWxQ49gZmaPf_HT7vLHte8dmG1PA38KDtO7GY9kE-IPF_waTyCb7-8iR1XvBWUGjtJFeC8z_dwO9Ny2rqkLI09nRwVvHlskTtReFo9_Y1RPJx-mrzFNUM9-FENvglvLLs_wlU8qlN0vRoFd7yg86Q8Xx4XPTCz-LoplbA8CjWnOOk_0ruMTMA8IDJbvblIDDyQ5dU7hRlHu-qzwTtz2ci9YjN7PQntybuQ42I9lfg3vEjGBbxxc427LmA4PUGvBzzxnmO9XXaOvYnVxrmJZlk9AfGUPdF-vLhNOCo80sLlPOBhvbsYsgo-ZZ7DuxjRgjhyVIk8JwUsveQViDtW0_U8uWCaPfMOK7nRSMo9C-qAvI7t4LhK8Uy8EXpsvBFjwTg4PT27V_MyPclPEbtoOkC9pkL8vPXKjzmzE7S91kWQvbRnMDn0RYw8zNC4PHmjJTqW4jQ984rMvHeDjrk-Qp296KpUvZaHTrne3W-86taWPSjdLjjaHl09CrRlvTtQxjdF6oc9lfSwPN5o9LeuHXs83HksvRdCBjcP0aq7b54KPqCiGbm_fzG7RqWCPfFHtzcUBA89EF0APo3Dcbi6F3O99DLKPJLaErWE8gA8oHraPE7vabfj8X693TRsvZLEvresJ6k8WA34vKs2uThUU9K96HTPvC_4xTeOiLU62cpwvf8JZzfIXzo-3JXCPM2vSzhvt4k8QlFqPIdCKTitp_Y9s-qYvHs7OrnNx3q90xXsveab-LjFxVE9CSnJvPjPn7ZdMi69cPsOPM6sULazMQa7CK-9vRx9prdqTxk-qW6ZPQgCMrcvwSm8CsTGPFtMlriX9EG9vLy_PekOEjga22u8sYMQPDqBJDggADgTQAlIbVABKnMQABpgTvwAGiIO7jbhLtnTxcf8AfvpDAenF__w8f8oQt__FvMMygvL_0-55AikAAAA-P_ZCBwABn_ivAAUAQQWrr_uDTRmEBYcrfIU58Lc6BT93_IW_l9aAKIRq0cXzb4iHy4BIAAtroEWOzgTQAlIb1ACKq8GEAwaoAYAAABBAAAEwgAAQEIAAADBAAAwQQAABEIAAKxCAACwQQAAcMEAAKBBAADQwQAAsMEAAEDBAAA4QgAAiMEAAIBAAACAwAAAsMEAAIBBAACAwQAAwEEAAIDAAAA4wgAAcMEAACDCAADgQQAA0EEAAGTCAAAkQgAAgEAAABTCAABEQgAAsMEAAChCAACQwgAA6EEAAARCAABMQgAAAAAAAOjBAAAQQgAAmMEAANhBAACgQAAAREIAAGTCAAAgwQAAAEAAADzCAADoQQAA8MEAABDCAACgwQAAoEAAAKBBAADQQQAAkMIAAIDBAACQQQAAqkIAAChCAAAgwgAAFMIAAEzCAAAgQgAAnMIAAKDBAACUwgAAQMAAAGTCAAA0QgAAmMEAAKLCAAA4QgAA0sIAALBBAACAQQAAIMEAAGRCAABwQQAAIMIAAMJCAACwwQAAGEIAAABCAAAowgAAuEEAAADAAAAwQQAAoMEAADTCAAAEQgAAZMIAAGxCAAAAQAAAOMIAAMDBAACwwgAAZEIAABDBAACwwQAARMIAAHBCAAAAQAAA-MEAABRCAADwwQAAAEEAAGBBAABgQgAAJEIAAOBAAADAwQAAYEIAAABAAABQQQAA8EEAAEDAAACEwgAA0EEAAMBBAACgwAAAoEAAAJjBAACYwQAADMIAADxCAABwQQAAAEAAAIBBAACAwAAAkMEAAFBBAACSQgAAsEEAAFBBAAAAQgAAgL8AALzCAACAQAAAgD8AANjBAAAwQQAAAAAAAIhBAAAwQQAAAAAAAHzCAADgQQAAkEEAAETCAABgQgAAOEIAAIBAAADAQQAAqEEAABTCAABgwgAAcMIAAKhBAACKwgAATEIAANDBAACQwgAATMIAAIC_AACgwAAAtEIAADRCAABwQQAAfMIAAMhBAAAAQQAAKMIAAIbCAAAcwgAAgD8AABjCAAAgwQAAYEEAALLCAADowQAAwMEAAGTCAABwQgAAKEIAALDBAABswgAAqEEAACDBAAAkQgAAgEEAAFRCAADgwQAA0EEAAMRCAADwQQAAsEEAABBBAABQwSAAOBNACUh1UAEqjwIQABqAAgAAir4AAHQ-AACaPgAAmL0AACy-AAB8PgAAoDwAAAe_AADivgAAJL4AAIi9AAC6vgAA2L0AAKo-AAAcPgAAir4AAHC9AAAEvgAAiD0AAJ4-AAB_PwAAuD0AAHw-AAAQvQAA1r4AAKA8AABQvQAA6D0AACS-AADIPQAAXD4AAKC8AAAMvgAAgLsAAOC8AADCvgAAFD4AAIq-AABEvgAAcD0AAHC9AAA8vgAA5j4AAFC9AADgvAAAiD0AAHA9AACGvgAAoDwAACy-AAAQvQAAqL0AAEA8AACgPAAAmD0AADA9AAArPwAAcD0AAOA8AAC2PgAAFL4AACQ-AABcPgAAJD4gADgTQAlIfFABKo8CEAEagAIAAHy-AAC4PQAAqL0AADW_AADIPQAAQLwAAFQ-AAAUvgAAyD0AAKA8AAAEvgAAPL4AACw-AADYvQAAoLwAADC9AAAkPgAAIT8AADC9AAC6PgAAML0AAHC9AABsPgAABL4AAIi9AABAvAAAiD0AAOC8AAAsPgAAiD0AAKg9AADoPQAAor4AAOA8AADovQAAuL0AAOg9AACoPQAATL4AADS-AAAQPQAAFD4AAEQ-AACYPQAA-L0AALo-AAB_vwAAmL0AAHS-AABEPgAADD4AAAw-AACGPgAAdD4AACy-AACIPQAA4DwAAFC9AACYPQAARL4AAEA8AAAEvgAAmL0AAFy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=x3iEEDxrhyE","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5047184969865005198"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2060194273"},"9406487708144429699":{"videoId":"9406487708144429699","docid":"34-8-11-Z3C9D7FDE870C0674","description":"This video presents the definition of the derivative. We will cover what the formula is, what it is used for, and how to use it. Timestamps 0:00 Derivative Definition 0:40 Derivative Definition...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/486974/14fee47a48a8954872edea3c116b31d3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fKi1-gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-eX5SPpeBeM","linkTemplate":"/video/preview/9406487708144429699?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Definition of the Derivative","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-eX5SPpeBeM\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzk0MDY0ODc3MDgxNDQ0Mjk2OTlaEzk0MDY0ODc3MDgxNDQ0Mjk2OTlqiBcSATAYACJFGjEACipoaHhpdndocWZmaXFhdXhiaGhVQ2xBRWNwNTEzRlNFbTV5ZTNSWXp0NVESAgASKhDCDw8aDz8TlQOCBCQBgAQrKosBEAEaeIH_BPsB_gIA6QYOAwQB_wDu-gMN_AAAAO4E_PgFAAAA3f77BQD-_wAG-wQM-wAAAPb4___z_wEABgT9AQQAAAAO9e0B_gAAAA8A-wb-AQAA-fj-BgP_AAAAAwIB_wAAAPkF_vj-AAAAAP_7DAAAAAD9_PYOAAAAACAALRPz2Ts4E0AJSE5QAiqEAhAAGvABf9wmAM7WxgDc9uv_zw_lAb44DgAhKt0A0t3RAMQY0gDq4P8B0iTNAAAl8f-LL_8B5OrB_wTCF_9C4xwAS935ANPwCgBAGPACFxoiAjgg9v_9Ivj-5coTARrSzgMRQfj85uj5_A8T9v4gGMUCEf5EAfoBAwADCwsD3KUoAMz6CgMPBd39Di4eAwT79vPyExH8Dfv8CBQa-v3QG9UA40Ec_CHoEvIW9NkACfntABD5Cf7C4_4G8_DyB_cVBPzu-d0LwPIX9dgTCvnV6Rn_FwzyB9MOARES__ACEP7--wYNCg3zFeX86-gD8AMV6gTjG9vwIAAtfLMGOzgTQAlIYVACKs8HEAAawAdPPsW-ftjcPDHGsDu9OgU71gQMvZVw17ztftW9O-qDvOeUW7yJfVI-gGrXPCVXtTuy3gO9v5dnvDP6UbzFVYU-VDBvvZt_KryHNCq-nmmoPbZyZbzn_iq-Xcv_PEh0KjznWQS96aI8vdhsQDzg2X49UnFNvc03R7zD-ES8TIlEPS1ZWr2iYtw9dVawvPdYGr2THDC8CPpRO6BSpTwHyoI978sUPQnvvDwgUoC6ZtaUO-yE17wWkmK9EV51uz7007zw58o7H4NVPeKPhzzxJZm9h9T-vPVR4TzrayK9_oOjPBb7SzvMehE-FocTPXyTi7y7u6k9kiSIvXIoWbpjtB6-NhZ7u39gWDz19fw9nKIIPesrWbwY0gG-SYOrPZYmJbx8e5e87moovXsuU7ws_qU850DFPalorDxBfnY98h85O50ILLwIm_C8_2McPRcNmTwrA_08zbcZvbZvCbz-r489zCrsvGCoibuqPh2816ypvJ1OFjqouJ47QhlUPWGfZ7rpNpc845s3vEug8zoFI6U91gI7vknlmjqV3Dy9PPHBvUPp5rvB5MY8Uv60Pc3ZjLxO8M09ZjPnvf9XADy2vy49S_C8vDfsLbvieYS8aahxvfWMt7shjwC-1Xu6PSuLobqdIWa8lBYOvZMtHrz1dpU8Hf8JPMyiybpOAmW88KyIvfj1xzqB0gs9A2mFPZMbEbpz_Is9ZF3HPe-osLf3P6s9QyHduyr5u7v36iO91inFPLz6R7oKDYq7iUgovIKFwblPIx0-lbgOvQ170jjwO-G8LC_UPBHuJTsb6qG9sluVPSzZmTgGdiY96tuIvQLNZjirPZG9GlIVvjBRCjrwxEw9WJk-u2xfXTrQ1iG9mJaXPWB23TnBouy8IbqGvdjyrjnrS4C9QAenPFvERrmAKQM-dxvKPMjvOTmkUss69D1-PKUtd7jmpQs7U7s1vX3cwjhX0gW91kwIPX9BjDc69Iy89IBDvOXdibliQ5w8wx2JPViwoTmycEg8f-mDPdv9gDcXH7A8S6CHPTgzx7gS0be7DP2IvVBl-jf06Lw8Q6MlPYwX27egUM-9Fe-GPcLSAjhN2lS9hveWvTeDAbdIJpE9KEuYPYslHTcXiYQ9R31IPMw1AbiCVUU-dMg3PcnchLmoJqe9VD3EvRy4g7h5MxS9aiyWvUjoMLebS1u9kjynPW1wgTj2dHo94A_fvT-Zm7eKllc9EFj5PY0XQDhTU3y98PNkPSZxw7e0Afi9tVhFPVHgXDi9dsS8Ji4RPYPbJTggADgTQAlIbVABKnMQABpgOf0ATxQV2CPkN9bx6MH8_NXw_-7NE__x6QDNHLUnIyry4f_XACPHFgKwAAAAHgEKMLYA8G2y7vAVGjUY-cPE9xF_BQX9v8QmAsTUFRgL3PcrLR87AN70sycP6K4w5h0UIAAtT40iOzgTQAlIb1ACKq8GEAwaoAYAANhBAADIwQAAYEEAAADCAABwwQAAIMEAAMhCAABYwgAAwMEAAMDBAADgQAAAyMEAAIDBAABAwgAAsMEAAMDAAAAIQgAAUEEAAIDAAACAwAAA8MEAAEDCAABwwQAA4MEAABDBAACoQQAAWMIAAADAAAAoQgAAuEEAAHDBAADgQQAAmsIAABRCAABMwgAAoMAAADBBAAC2QgAA0EEAAIA_AAA8QgAAAMIAAHBBAADQwQAAgEEAABjCAAAEQgAAAMAAAPBBAADAwAAAKMIAAODBAADAwAAABMIAAODAAABEQgAAAMMAAATCAAAQQgAA-EEAAIhBAAA0wgAAkEEAABzCAAAMwgAAVMIAAHBBAABwwQAAUMEAAMjBAACgQgAAikIAAJrCAADwQQAAgMIAAJDCAACowQAA6EEAAIBAAAAQQgAAQMIAAHRCAACYQQAAmMEAAAAAAABgQQAASEIAAAxCAAAkQgAAMMEAABBBAACeQgAAEMIAAJDCAAC4QQAAZMIAANBBAADgQAAAAMIAAERCAACCwgAA0EEAAKBAAADIQQAAwMAAACxCAABAwQAAFEIAAGBBAACAQQAAQEEAAEDAAADAQAAAgL8AAABAAABAQgAA-EEAAGzCAAAUQgAAFMIAAMDBAAAUwgAAqMEAAFDBAABAwAAAoMAAABBBAADIwQAAMMIAAHRCAACIQQAAoEAAAADAAAAwQgAAlEIAAEBAAABAQQAAeMIAABjCAACAwgAAgMEAAARCAABgQQAAgD8AAOhBAABYQgAA-MEAAODAAABYQgAAUMEAABBCAAAEQgAA4EAAAETCAAD4QQAA6EEAANDBAABQwgAAdMIAAEBBAACQwgAAQEEAADDCAAAwQQAAWMIAACxCAAAQwQAAoEIAAL5CAACgQAAARMIAAFDBAAAgQgAAgMIAALzCAACowQAA4EAAADDCAAAcwgAArkIAAGTCAADwwQAAQEAAAAzCAAAwQgAAYEEAAKTCAACiQgAAVMIAADDCAABQwQAArMIAALjBAABwQQAAgEAAAJJCAACoQQAAkMEAAHDBAABgQSAAOBNACUh1UAEqjwIQABqAAgAAVL4AACS-AAAsPgAAUD0AAKK-AAAcPgAAiD0AAOK-AAD-vgAAgDsAAOC8AABsvgAAcD0AAFA9AAAQPQAAVL4AAJi9AABQvQAA-D0AAAw-AAB_PwAAJD4AABA9AAAkPgAAFL4AABA9AAAUvgAAiL0AACQ-AAAEPgAAPD4AAOC8AAAUvgAAnr4AAKg9AAA8vgAALD4AAJa-AAB8vgAA4DwAAIg9AAC2vgAAmj4AAES-AAC4PQAAmj4AABQ-AACCvgAAqL0AAL6-AACYPQAA6L0AANg9AAC4vQAAuD0AAHA9AAA1PwAAoLwAACQ-AAC6PgAAJD4AABy-AACYPQAA2L0gADgTQAlIfFABKo8CEAEagAIAAGS-AACIPQAAoLwAAFe_AADIvQAAJD4AAOg9AADYPQAAmD0AALg9AABMvgAAML0AANg9AACgvAAAqL0AAEC8AAAEPgAAGT8AAGw-AAD2PgAAJL4AAIg9AABsPgAARL4AAFS-AACIvQAA2D0AAIC7AAAwvQAAoDwAAHA9AABwPQAAED0AAIA7AACgvAAAhr4AAKg9AAA8PgAARL4AAHA9AADgPAAABD4AAIg9AAAQPQAA6L0AACQ-AAB_vwAAED0AAOC8AADGPgAAgj4AAPg9AAB8PgAAvj4AAMg9AACIPQAAQDwAABy-AAD4PQAAqr4AABw-AADgPAAAFL4AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-eX5SPpeBeM","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9406487708144429699"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"407897840"},"5123709690375998973":{"videoId":"5123709690375998973","docid":"34-5-3-Z28A23879415D2CCD","description":"This calculus 1 video tutorial provides a basic introduction into derivatives. Direct Link to Full Video: https://bit.ly/3TQg9Xz Full 1 Hour 35 Minute Video: https://bit.ly/41WNmI9 Derivatives...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1658505/e04be24c0e07db8a1f4167aeb1487e1f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AJptfQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5yfh5cf4-0w","linkTemplate":"/video/preview/5123709690375998973?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus 1 - Derivatives","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5yfh5cf4-0w\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzUxMjM3MDk2OTAzNzU5OTg5NzNaEzUxMjM3MDk2OTAzNzU5OTg5NzNqkxcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8T4hiCBCQBgAQrKosBEAEaeIH3-QT7_AQA-wMDDgoI-wIZAAYJBwEBAPP7_fwHAQAA9wT29fkAAAD2EAfzAAAAAPv9_gf-_gAADPf3_QMAAAAO9e0B_gAAAAYD9gH_AQAAAfv8DwT_AAANFAoBAAAAAPQJ-v8CAAAA7QP5DQAAAAD58gIGAAAAACAALZbg3Ts4E0AJSE5QAiqEAhAAGvABfx4eAOHsyAGpIeIA7eQHAdg1Df8VNgIAs-bx_94A6AEPP9IC7CEY__YgAgCsLvf_FtSrA_7x2AFC2PwAQNTnAOPq9gAk8N0ASU8p_A3t-_7i-Cj7CPf5_wTn1gAPHPD9_uQZ_zQc6_8gGcQCNjE1AtXeMgog1hT9A5kBCOjZ8vf_3vUF3PgKBvEFEv3mCCoBAtfzAxjxBwTvDOgF-Of2AOfgCvMJM9D9Gv7yAyMT_gqpzw__-9sMEAQKDgPHF-n90vAzBrpE9APxJx_zGQPgBuoO6vkICtYNGxMLEAYOCg0vzgAE8AruC_cQ-fwLA-z4IAAtak0EOzgTQAlIYVACKs8HEAAawAfkTba-QgUsPGvnpDscyD-9CeqMO5zMLr1fJX-9FK8yPBmikrszMhg-EDRwvXw9xDw2KBC9dG2JPcP8yzsKL2E-F3GwvEHTxjmHNCq-nmmoPbZyZbzQwF69bSuHPfaZ8zxs0cK96px6PJ1XhryVels9Kp8XOv7BtjwCtV29X3obPdOwLr3cahk69RFYvRN8WL02-2i9VoJFPDTKqbztr4g9g-4cvS7aa7uzzXI9QfuHPAr3yrwWkmK9EV51uz7007wED8I9IiaHPRBKTjwrvfa9pUOxvS2kMrwr--68mdkiPWOsHzwXY-A9TfjxuR0vTbufEdc7-bV6vfZOnrvQKkO-mHOfvA-oiDy5Zrc9cxOwPb8bgTwY0gG-SYOrPZYmJbwF85w993gBPZa7hbyE7Uw95PNqPVSQ-jxPlJS9pR4WvEqNHDyZ-4-9m0WOPWdtyTx_e2i8oP3ovTZXTbz84Bw9ueNIPWq77LtKV9W8vR5sveIyuLxn7Ua-UdkwPYIf1bg9FGA9a5bwvOfNPDwFI6U91gI7vknlmjqV3Dy9PPHBvUPp5ru1kSY9f6swPbsdzLtO8M09ZjPnvf9XADwIiBM9MolOOaXwpLsW9W48MJAWvYFcYjvU8Ti9iRiFvQb63bs2GqW9W8qePOsqD7xSG8u8cZZtPKsXT7u-Pf48R1qlvZ2w0Lt2Zqe8l4brPB2UCzvIftY9AoV2O1J02ziIJIQ9pRm2vdyZLrvR1ZG99TasvCIn4TrauuW8wDWxvVJZDrofotE9WPgfvXnRijjuuYe9D7vKPNOW0bhCTLi9rvI9um3Bj7enh1I9OblfvaxBhrjYAow8g2jNvS4kwrix6609At5dvO5CAjnexSC9qKxhPTgRrbizxSC7UUDEvW897Dj7JFK83sFZvQ1yNjeKojE9rlgLvOVln7hUDoe9HtvXvNC8n7gtcz89APhxvZyDm7h4H0w9pa_xPJfPAjnnItk8A8z8vVJJyDn0Qos8k5zdO2cKPTdqiaU9G8WIPc-v0De4RyW8F4LcPSYd5TfeWfs82PGfvRgNlzgRy4G8SJNBPMor47cqTCm9DT29PfDPXzn_xag9iwZ_PaQGJTk-l6S9oBgZvYg46LZY55i7WBlyPZzcXzgvphk-eDvMPPzmG7mr3xa9DfsdvqO8_rgylO68uvi7vTYXJri7iKU8zsg7PUUchbe9rwU9pUkJvq2ehbjK9HA9IuErPvHLijgHC6e8vfzuPYO0HrlV18a9u5lRvPmaW7dtDpa9LoRmPQTvtzcgADgTQAlIbVABKnMQABpgWvgALxQc4woKCfX1wekJ5dfQDvbFLP8a9gD0PK0eLR3I6QT3ACThFPaoAAAABg_gDewAEXyz5eH38yEGysTA_VV_1wIepuwS5cDED_wsB9I9-AtAAKj9tz_46qMW3ibnIAAthbYYOzgTQAlIb1ACKq8GEAwaoAYAAAhCAACgwQAAkEEAAILCAAAAwAAAHEIAAKxCAAAgQgAAiMIAADxCAACQQQAAgMEAALDBAAA8QgAACEIAAMDAAAAMQgAAJMIAAMBBAABIQgAAEEEAAODBAACUwgAAGEIAAJjBAAD4QQAAyEEAAFBBAAAIwgAA-EEAANjBAAAwwgAAQMIAAEBBAADIwgAABEIAAEDBAACuQgAA-MEAAGxCAABMQgAAQEAAABhCAACAQAAAgL8AAJrCAABMQgAAtEIAAIhCAACCQgAAgD8AAJDBAADAwAAAIEIAAOjBAADQQQAAwsIAANBBAAAQQQAADEIAAKBBAACWwgAABMIAANjBAACwwQAAisIAAIDCAADowQAAiEEAAAjCAABgQQAAskIAACBBAABIQgAAhsIAAJDCAACMwgAAIMEAAAhCAAAoQgAAEMIAAKRCAACQwQAAQEAAAHBBAAA4QgAAoMAAAJjBAADQQQAA8MEAAKDBAAA8QgAAkMEAAADBAAAgQQAAQMEAAOjBAACAQAAAOEIAAGxCAABEwgAAQEIAAOBAAAAAQQAAmsIAACDBAAAEQgAAQEIAANjBAABQQgAAWEIAAKpCAADgwQAAVEIAAHBBAADQQQAAoMAAAHzCAABAQQAAEMIAANDBAABowgAAgMAAADDCAACowQAAoMEAAFTCAACwwQAA0MEAADBBAAAgwgAA4EAAADBBAABEQgAATMIAAAxCAACAwQAAOEIAALjBAACgwgAAUMEAAADAAAAwQgAAoMAAAAxCAAAMQgAAAAAAAODAAADYQQAAEEEAABjCAACAQQAAGEIAAGDBAABAwAAAuMEAAFTCAABIwgAAYMIAAIhBAAAowgAAoEAAABBCAABAwQAA0EEAAIhBAAAcQgAAwMAAACxCAADAwAAAAMAAAMhBAACQwQAAsMEAAHDBAAAgwQAAoEAAAHDCAABwQQAAkEIAAMLCAACAwQAATMIAAAxCAACcQgAAYMIAAJjBAABAQAAAoMAAAIDBAAAAwAAAcEEAAKDBAACwwQAAkEEAACBCAADwwQAAuEEAAEDBAABYwiAAOBNACUh1UAEqjwIQABqAAgAA6L0AAKg9AAAcPgAAuL0AAPi9AACaPgAAND4AAMa-AACKvgAABD4AAFS-AAA0vgAAyD0AALg9AABwvQAAgDsAAIg9AACAuwAA6D0AAK4-AAB_PwAATL4AAIg9AAAwPQAALL4AAIA7AABQPQAAiD0AANg9AAAUPgAAqD0AADS-AAAwvQAAgr4AAAQ-AACSvgAAUL0AAJq-AAAsvgAAFL4AAJi9AABEvgAA1j4AAFy-AABwvQAAQLwAAFA9AAC4vQAAgr4AABS-AABAvAAAMD0AAIg9AAAQPQAAUL0AAJg9AAAZPwAAEL0AAJo-AAAcPgAATD4AAOA8AAAcPgAA2L0gADgTQAlIfFABKo8CEAEagAIAABA9AAAcPgAAFL4AAD-_AAAsvgAADD4AAJI-AABwvQAAQLwAAKg9AABAPAAALL4AADA9AACovQAADD4AAIi9AACAOwAA5j4AAOi9AAC6PgAA2L0AAHA9AADgPAAAFL4AAJi9AACIvQAAoLwAAEC8AABQPQAAUL0AABA9AAD4PQAAZL4AAIa-AABUvgAAoLwAAJg9AAB8PgAALL4AADS-AAAwvQAADD4AABC9AAAMPgAAED0AALg9AAB_vwAAgDsAAFw-AACiPgAAHD4AAEA8AACgvAAAXD4AAFA9AADIPQAAQDwAADC9AADgvAAAML0AAFw-AAC4PQAAXD4AACS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5yfh5cf4-0w","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5123709690375998973"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3546786291"},"9261579058560611814":{"videoId":"9261579058560611814","docid":"34-1-12-Z779A505D9F5CF902","description":"If you want to see more math videos, explanations, and riddles, subscribe to our channel, and contact us with video requests or if you want to try to stump our crew. If you enjoy the content and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4266003/1392268b0e12a7b0fe437e91b9cd40e8/564x318_1"},"target":"_self","position":"15","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhJ84z9MNLNc","linkTemplate":"/video/preview/9261579058560611814?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the Derivative Using The Definition of Derivative Example","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hJ84z9MNLNc\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzkyNjE1NzkwNTg1NjA2MTE4MTRaEzkyNjE1NzkwNTg1NjA2MTE4MTRqrg0SATAYACJEGjAACiloaHp3bGh0Z29rYmFqbHloaFVDSjhDTndkQWJGc1pSQ28xa1NQU290dxICABEqEMIPDxoPPxPCAoIEJAGABCsqiwEQARp4gfsB-Qj8BQD1CQ4JBAX9ARcADQn2AgEA8_v9_AcBAADzAP7-_wAAAP34BwX4AAAA-O71_fr-AAD7__wBAwAAABUL8_oAAAAADgD8Bv4BAAD9_AkEA_8AAAgFBAEAAAAA_AgBAPz_AAD3Bv4JAAAAAP389g4AAAAAIAAtotThOzgTQAlITlACKnMQABpgL_8ARhr04w_3MN7l9br0C9f6Jdm7Hv8A4QDZJr31EQ3gyvfWAEKtHiqoAAAAGyj1E_AA_W_K8eX_H_IU0sf24zh_Fvze3e5J5psKGC852fgkKy4pANDT_hjj0Mk-6jYGIAAt9FcgOzgTQAlIb1ACKq8GEAwaoAYAADRCAAC4wQAA_kIAAKDCAACQQQAAAMEAALBCAABwQQAAuMEAAFDBAACAQQAAIEEAAIjBAADAwAAAgMAAALjBAADIQQAA4MEAAJBBAACAwQAAwMAAAJjBAAC-wgAAcEIAABjCAAAQQQAASMIAAKjBAABMQgAAAEEAAKDBAAA0QgAA-MEAAOBAAADMwgAAiEEAAKBBAABcQgAAuMEAAKhBAADQwQAAUEEAABDBAAAkwgAA6EEAAADBAACIwQAAyEEAAKBBAACQQQAAvsIAAADBAADgQAAAgkIAAAhCAADAwQAAhsIAAOBAAABgQgAAUEEAAIBCAABIwgAAjsIAAETCAADYQQAAxMIAAPDBAADswgAA0MEAAKDBAACGQgAAgEEAABjCAAAAQgAAIMEAAIjBAABMwgAABMIAAATCAADAQQAAQMIAAEBCAABAwgAA4MAAAEDAAAA0QgAACMIAACTCAACoQQAAoEEAAMBAAAAgQgAAcMEAADBCAAAkQgAABMIAAATCAABQwQAAWEIAAFhCAACEwgAAAMEAAIZCAAC4wQAA4MEAAMBAAADIQQAADEIAAIBBAABgQgAAiEIAAAhCAAAIwgAAgMEAALDBAAC6QgAAgEIAANDBAAD4wQAASMIAAFDBAADIwQAAcEEAALjBAABAwAAAmMEAALBBAAC4QQAAEMEAABRCAAAAAAAAhMIAACDBAAAUQgAAwEEAAARCAACgwAAAAEEAAEjCAAAMwgAAAEAAAABCAABQQQAAeMIAAOBAAABYQgAAkMEAAIC_AADIwQAA6MEAAGDBAACIQQAALEIAANBBAADAQAAAgEAAAFjCAADIwQAAFMIAAEDBAABEwgAABEIAAEBBAABAwAAAwEAAADDBAAAYwgAA2EIAAFhCAAAswgAAkMEAAMBAAAAkQgAAqMEAADzCAACYQQAAMMEAAMDAAACgQQAAhEIAAKbCAAAMwgAA4EAAAPjBAADgQQAACMIAABzCAAAQwgAACMIAAOhBAAAwQgAA4MEAABBCAABAwAAAiEEAAGBCAACgQAAAqEEAAIBAAAAQQSAAOBNACUh1UAEqjwIQABqAAgAAMD0AAHQ-AADOPgAAEL0AAIa-AADOPgAAFD4AACe_AAALvwAA2L0AAFS-AAAZvwAAMD0AAFA9AACIPQAA2D0AAIi9AAAkvgAAiD0AAII-AAB_PwAAJD4AAHQ-AADgvAAAir4AAJg9AAD4vQAAPL4AALg9AAC4PQAAbD4AADC9AADgvAAA8r4AAAQ-AADqvgAAML0AAKa-AADGvgAADL4AAFC9AAAEvgAACT8AAIK-AABwvQAAtj4AADQ-AAALvwAAML0AABG_AAAwPQAAJL4AAKi9AACoPQAA6L0AAIC7AABFPwAAyL0AADQ-AABUPgAAQDwAAJK-AAAkPgAALL4gADgTQAlIfFABKo8CEAEagAIAAAO_AABUPgAAiD0AAF-_AABAPAAA6D0AAKI-AACIPQAAND4AABA9AAA0vgAAED0AAPi9AABQvQAAqL0AAKC8AABwvQAAFT8AAOA8AADCPgAAdL4AADy-AAA8PgAA6L0AAFS-AADovQAA6D0AAMg9AACAOwAAiL0AAHA9AAA8PgAAir4AAEC8AACgPAAARL4AAKo-AACiPgAAdL4AAJg9AABwPQAA6L0AAKC8AAAUPgAAqD0AAJg9AAB_vwAAUL0AAEC8AAANPwAArj4AANg9AADGPgAAgj4AAJg9AACYPQAAgLsAAJi9AACYPQAAhr4AAJI-AAD4PQAA2L0AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=hJ84z9MNLNc","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9261579058560611814"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13443379758386710011":{"videoId":"13443379758386710011","docid":"34-1-9-Z6897C53ACEF7614A","description":"More Lessons: http://www.MathAndScience.com Twitter: / jasongibsonmath In this lesson, you will learn what the mathematical definition of a derivative is in calculus. The derivative is defined to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3933039/5f4c53b60c8072566f46a5ade0dc9048/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mCZQLQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9boavjdulxY","linkTemplate":"/video/preview/13443379758386710011?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Derivative in Calculus Defined as a Limit - [1-2]","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9boavjdulxY\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhYKFDEzNDQzMzc5NzU4Mzg2NzEwMDExWhQxMzQ0MzM3OTc1ODM4NjcxMDAxMWqHFxIBMBgAIkQaMAAKKWhobWtsbGdqeGlmZ2tkc2hoVUNZZ0w4MWxjN0RPTE5obmVsMV9KNlZnEgIAESoQwg8PGg8_E58KggQkAYAEKyqLARABGniBAQACBv8CAPb5BgkOBvwBBAAAAvj__gDxAfcCBwH_APH69vr_AAAA-g_9_vsAAAD2_vsI9P8BAA0A_QP7AAAAFfD39_0AAAAKBvcI_gEAAP3_AgYE_wAAAP8ACQAAAADzC__--v8AAO0D-Q4AAAAAA_YJ-wAAAAAgAC1etdg7OBNACUhOUAIqhAIQABrwAX8NJ__MM8YBysnN_v0u8QGYDyL_Nf_NAIfy7gDVMtsCJPMB__kQ6AEjCiwChjUpAQgH8f3gwC8AKt4vAC8qNQClCRMBTjb4AxodJwIO6_v-4E36_7kd-wH9udYAJjjc_ijaJv8OPQD88RrQAj_JMAIV9BcFSvfFARPnAwAeEhUBAxXe_gYdEQX37_n6BA4-_iMXCgLecu7-8d3lB-3PLgcetuz4BB_dBvs15ATlF_4D-Avq_egR8PbkKyT9DQf77dwN_fENIggACg8K_uMVAPXqCwYN-ckEB_za4vLM5_vx2BwAA-DY_QHoKeQN-LH5FCAALdyU7zo4E0AJSGFQAirPBxAAGsAHKSDNvp2MAD2KQga9vln5PBLY3Lw8Hum8DVRGPfo8gD1LHYS9PtDqPZnO8zydh1G7oKhMvuyrZr2pUaM7y4AzPubRiL2YYjM82UNLvkOSdjspf4K9iQsQvjZqrrrOj_k7QIo6PSwTWTwueAy9ch5pPTtqcb28tDy9bya7PcHgmrwZBJa8GBwqvb5Oir0GDgu8TZ-hO8q4c70YjhE97Ri9Pc7dgz15lZC8FYjDPXW3obx8gG48l5AvvrY_4TvBF0u8VwTfPT5-Cr0zkx49UGIlO8ffMT1yWia8833nPNlA_DqJoMW829vNPaG6qT2miMK8dEavPDvXYT1Hvpy8XoSJvaEKJDxlzLi83ASpPYO_3z0cMam8OpM2vgSVTDxfiIu8YKWsPS8MvzvaOe47r2d-PcFCHDxCeR08-abEPc6IUj135L68APy4vBRPqDt5PRi7ddadPH-5-zwoSbK8t86UvTcppj24GgA83IsevQPSfjyJwAm88LeDu4PkuD0ImT8848ViPeV1Lj1feZC8j-AWPlt4Dr4D5w68wdIPvSjTCL01n0681kg8vUxVNT1JXww7r0M1PWi-yb1nO5G7cWOJvcwRvb0stSQ7NSllPaGBuL1qUA87LL0xvfqMNT3tCK86_GVBvIXs2buHQjq8Qp--PFwxjT1He5M7anqaPOQJTr2CxPo7KhwgPFjnuD1fULa7n21avK7tkj3jrAk37H2kPVjLnT2-zri6ZKuwvJbnhr2I5Ni6LolYvd3pM730jaa6kweIPeI3Kj3C6XK52xVZu5V-wryTG9O3KkVhvWpcjj2HZCu4erk5vSQLmLx5m5c5VBv8vWK7-70T0_I5uE6tPDGVXj2cRo44T_AoPbkDUL23W-y3bd1SvWNcszt5B4K5P1RavbJGPT2Q3IO5kp4YPfrdCj1keAA4QNk5PMwpQT2UZp256cBoPUFQmb0JNIa4QSMdPUkv6j3kQu24F1YAvb-GG72Cgh-4_ViXPdy3-j0dVsQ1zC95vTlJTjxyZ_C15TIEPcIagrwg0JU4Jl3pPL2Q6TtVK184pSXgPEGx-jxAO9O44-cavb-W_Dw5Mvk4yCxWvG0bxrwceyS4-KcUPgP6Tj0f9O02D5c8vQ61hz1IPQg4H58APqTkkL0V6Dq5XEkBvcre0r0XIgS5vJDOvTeCmb2CYo-4QJCCvaa8cT2gfvW23I1UvZ0ns70sNBK4qFO-PSJ0qzxXKZw4KEKPPJsbeLy5NL-4UgmkvR_4Uz0JQzA43gEevRmxjTvVAz44IAA4E0AJSG1QASpzEAAaYCj7ABcOGeMW9C_r6N3tEe_y3PTfxwz_COwA6xm5HQcQvs0H3QAc3AbptQAAABkF9yX0APtiyN3aCQYXHNGs5BAGfwwABtACIeylxQEWEvzuMxowNQDXCcI4HfW5F_8qOCAALeRSMzs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAwMAAAJRCAAAMwgAAUEEAAMBBAAC6QgAAQEEAAPjBAAA4wgAA4MEAAIBCAABMwgAAcEEAAHRCAADAwAAAFEIAAAzCAADQQQAAwMEAABBBAAAkwgAA6MEAABBCAACwQQAAQEAAAODBAAAIQgAAAAAAAPhBAAAwwgAAQEIAANjBAAA4QgAAoMIAAEBBAADAQQAAVEIAACRCAAAMwgAAcEEAAAxCAABQwQAAiMEAAAhCAABwwQAAUMEAACDBAAAQQgAA2EEAAJjBAADgwQAAQMAAAAhCAABAQAAAGMIAAMjBAACgwAAASEIAAGBCAADYQQAAdMIAAIjCAACawgAAIEEAADDCAABAwQAAhsIAABTCAACYwQAAkkIAAGRCAABQwQAATEIAABDBAADUwgAAnsIAAFTCAABQQgAAQEEAAFDBAAAYQgAAIEEAAGDBAADgQQAAMEEAAIBBAADQwQAA4EEAAMjBAACgwQAABEIAAADBAACAQAAATEIAAJzCAADAwAAAAAAAAMhBAACCQgAAyMEAAMDAAADgQAAAzsIAAIDCAACwQQAAYEEAAARCAAAwwQAAcEIAADBCAABIwgAAgMEAACBCAABgQQAAOEIAAIC_AAAEwgAAqMEAAJbCAAAgwQAAkMEAAOBAAABwwgAAoMEAAIjBAACYQQAAiMIAAOjBAABgwQAAIEEAAKjBAACYwQAAqEIAAEDBAABwQQAAAEEAABBBAAAowgAA0sIAAFBCAACIQQAAuMEAAIBBAAAAQQAAwEAAAAjCAACAPwAA4EEAAODAAADIwQAAAEEAANhBAAAEwgAAYMEAACDCAADawgAADMIAAJ7CAADwQQAAIMIAAHxCAACAQAAAgD8AAEBAAABMQgAA0EEAABhCAACyQgAANMIAALzCAAA4QgAAKEIAAKBAAABEwgAAEEEAAMDAAACAQAAAJMIAAJBCAAB4wgAARMIAADDBAAAgQQAAZEIAAPjBAACYwQAAwMAAAETCAAAoQgAAMEEAAIBAAAAwQQAAwMAAAIhBAAAoQgAAgEEAANhBAACowQAAgMEgADgTQAlIdVABKo8CEAAagAIAAMi9AACovQAARD4AAHy-AAC4vQAAoj4AAA8_AAAXvwAArr4AAOg9AADovQAATL4AAKg9AABEPgAAUL0AAEC8AAAcPgAAcL0AAAQ-AAD6PgAAfz8AALi9AABkPgAADD4AAKa-AAB8PgAA-D0AANi9AAB0vgAAhj4AAGQ-AABsvgAAyL0AAHy-AABMPgAAFL4AAFC9AABkvgAAlr4AAIC7AABkvgAATL4AALI-AABcvgAA-L0AADA9AABkPgAAbL4AAMi9AACCvgAA4LwAACy-AAA0PgAA-D0AAIi9AABAvAAAUz8AABy-AADIPQAARD4AACS-AAAwPQAA6D0AAIi9IAA4E0AJSHxQASqPAhABGoACAABMvgAAJD4AAAS-AAAnvwAALL4AABQ-AABkPgAAFD4AAFA9AABMPgAAiD0AAJi9AACYvQAAML0AAEC8AACAOwAALD4AAPI-AACgPAAA7j4AANi9AAD4PQAAQDwAACy-AAAwPQAAoDwAAHC9AACYPQAAyL0AALi9AACgPAAABD4AAAy-AADgPAAAmD0AAIa-AABUPgAAjj4AAFy-AADIvQAAyD0AADA9AADIvQAAML0AADA9AABwvQAAf78AAFQ-AACYPQAAgj4AABw-AAAEPgAADL4AAMY-AAC4PQAA6D0AAFC9AADovQAAUD0AAIA7AADIPQAARL4AAPg9AACoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9boavjdulxY","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":654,"cheight":480,"cratio":1.3625,"dups":["13443379758386710011"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4204563267"},"2119004810168048982":{"videoId":"2119004810168048982","docid":"34-3-0-ZB79B3DB57A06562B","description":"This calculus video tutorial provides a basic introduction into derivatives for beginners. Here is a list of topics: Calculus 1 Final Exam Review: • Calculus 1 Final Exam Review Derivatives...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2837418/b4018213a09ff50b91005973f7e307ba/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/16yUKwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFLAm7Hqm-58","linkTemplate":"/video/preview/2119004810168048982?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivatives for Beginners - Basic Introduction","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FLAm7Hqm-58\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhUKEzIxMTkwMDQ4MTAxNjgwNDg5ODJaEzIxMTkwMDQ4MTAxNjgwNDg5ODJqiBcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TmxuCBCQBgAQrKosBEAEaeIHuBfwFAf8A9Q8FAvkE_wEcDgAG9AMDAPL6_fwHAf8ABf_66vwAAADv-wAH9QAAAAH2AQX1_QEAGAAD_gUAAAAVDAAB_gAAAAH59f__AQAA8-cECQP_AAAJBRD8_wAAAPQL9_MAAAAA___7DQAAAAAM6_0KAQAAACAALWoszzs4E0AJSE5QAiqEAhAAGvABfxMEA-MPywLKEeUA8ekGAMocEgAWQ_oAv_IKANgG4wEEHuMA6xLsAPIsBwGfJwABD-HTAAzn7gE14PwAItfwAd4C_QEd8-QAPEAh_fz7___NETMBCN38__j01QAHC-_-8vQJ_hYZ6P7tIdkDIfwqAfTdOgIX6gb_AqwBBvba_AL62AMA-QDzBAMCBfvj9isHCtT9_y_2BfvzLeX99_v4_dzsCQEHKtn-HfTjBSEDAP-52Az__OIKDRQeIP_U_vAE2_MqBeAU9wAAHRMBIgP0-dv7AwXvCN4AESD5CAz2CQAP7vMA4vn9-vUe9xPoF-LzIAAtBLoiOzgTQAlIYVACKs8HEAAawAfou6O-dew5O2-wgTyjUzy99MgbvOtNMbzZ38O9fjq7O4C-iDz2tkk-klKKvVFXDT0gNVe957cePdE6jzwKL2E-F3GwvEHTxjlxPVq-5xa_PYVMqLzE2m69eJAoPYhFMbz3R569QGIFPYGz0rthXYs9Ug_RPJALEz0CtV29X3obPdOwLr0oEzI9sF8rvbGnPb1pRI-9PpHMPBUvAL0gB7o9gpE3vYiynLy_40o99gtWPZb5_bzhH7u9AUCEvDm07bwvTXY9xpWJPcLrRDyJzw2-InyOvZhvmDxPZjK9CkJ-PbOXrTwmQKg9kKgrPW_Rrrx_wrQ8Wnc9vUcl7bvQKkO-mHOfvA-oiDzwf2w9ZqnAPeVlCTwY0gG-SYOrPZYmJbykbqc8_dJHPBa6t7ws_qU850DFPalorDyTuQO9FV4dvaPElbhutiO9-VhwPQkSwDzs-gU92Znivaurp7xGgZk9oaA0PVLfaLtKV9W8vR5sveIyuLyDid-9XGupPfujOTzPAw4933k4vUsPtzsFI6U91gI7vknlmjpXezi9L4f9vSqgZjqg86Q8Xx4XPTCz-LpDqR0-H2rbvcSaqTkw-mU8kqu7O93NFbv2RV87mmxtvU7WpLvU8Ti9iRiFvQb63bstfaO92YcmPV6pgLt4kbK7T0EZPaJE7Lsk8wQ8OCytvSm18rtiG6c803AFPeAWSbpPO_w9zQjKOnPqBLdas1o9PXaRveqG2Lrtz2q91f-evOr5e7pl04C8kCiZvVIDEzsfotE9WPgfvXnRijiykkC9Lb8CPY8myLkqYoe98OuRPA7EvTi50mE9Lt6UvXNP3Thq9iO7752nvWJI3LgSqIk90ZZOvDu567nQ1iG9mJaXPWB23Tnp9q28JTv2vbm8zDiMRGw7YcxxveoEmLiKojE9rlgLvOVln7hIWXq9JCYovPUXDrkCA1I9WpzxvCm8Nbl4fUY9ueanOwY1ADcjrIw99GwGvs9wpTkKJLI82_OAu27rbzh6jkg9yuRPPVxTpTi4RyW8F4LcPSYd5TeaBxA93jjJvQg0-zazQLu8AEApPZO2NTicenO910vTPZ-Nlzh2BZE9xzdKPXfkkDjYbrG9ZQPEvLzs3reeVzG6D2NSPWgutjjB4ys-3KVovAeJdLm2UXg8cxLqvS7r9rgeKng7JQTrvSO_ZzhVMRO8TplbPQ2vyzdDIsg8pU3VvVAHd7jK9HA9IuErPvHLiji6E6y8cty5PXQwGLlgRqe9F4EQu5N02TcaM5m9X4TfPGMYMbcgADgTQAlIbVABKnMQABpgRe8ALwEL6AIDDOfs09sI68zh7xS2HP_r9QAUNskMLRL05_nwABnSEg2zAAAAER3MG-kAEG2uvPcJAycCz6Th9zN_-Pwus_f57q_wLhElDe4sCRxHAP_hxhYQ3bUg7Sv3IAAtl2ApOzgTQAlIb1ACKq8GEAwaoAYAADxCAAA4wgAAFEIAADjCAACgQQAAgEEAANRCAAC4QQAAyMEAADhCAADIQQAAeMIAADTCAAB4QgAAsEEAAFDBAAAYQgAAeMIAAKBCAACgwQAAAMAAAIBBAABIwgAAuEEAAIC_AACgQQAAAEAAAADCAACAwAAAAAAAAEDAAAAQwQAAYMIAADDCAACkwgAAuEEAAADAAACGQgAATMIAAARCAAAwwQAAoEEAAHBCAACQwQAAAMAAAM7CAAAsQgAAWEIAADRCAABgQgAAUEEAAJhBAADgwAAABEIAADDBAAAAQAAAGMIAAODAAADAQAAAJEIAAKBBAACYwgAAJMIAAAzCAABwQQAA2MEAAKjCAAB4wgAAMEIAADTCAACQQQAAjkIAAOBAAACAvwAAZMIAAJjBAACgwgAAAMEAACBBAAAAQAAAIMIAALhCAAAAQAAACEIAADBCAAAAwAAAoMAAAEDAAABkQgAA8MEAALjBAACqQgAA0MEAAIA_AACgQQAAUMIAAIDBAABgwQAAmkIAAExCAAAswgAAHEIAAMBAAADAQQAAqMIAAFBBAAAAQAAAUEEAAMDAAACGQgAANEIAAExCAAAgwgAA6EEAABjCAAAcQgAADEIAANDBAAB4wgAAwMAAAEjCAADYwgAAoMEAAKjBAACAQAAAAMIAAOBAAAAwQQAAMMEAAODAAABEwgAAqMEAAFBBAADwQQAAnMIAALxCAACIwQAAMEIAALjBAAAMwgAAmMEAABTCAAAYQgAAmMEAAHDBAADQQQAA4MEAAARCAABQwQAA4EAAAGDCAADQQQAALEIAAADBAAAMQgAAVMIAACjCAACEwgAAOMIAAMDAAAAkwgAAMEEAAMDBAAA8wgAAkEEAAPhBAAAwQQAA0EEAAOBBAAAAwAAAKEIAALBBAADYwQAAuMEAAABBAAAUwgAA8EEAACjCAAAcQgAAiEEAANDCAAC4wQAAAMIAAGBCAABsQgAA-MEAABDCAABEwgAAgEAAADDBAACowQAAgL8AABBCAACAwAAA4EEAAMhBAAAgQQAAmEEAAABBAAAAwiAAOBNACUh1UAEqjwIQABqAAgAADL4AAKA8AABcPgAA-L0AAMi9AABUPgAAbD4AAOq-AACSvgAAqD0AABS-AACYvQAADL4AADA9AADgPAAAmL0AAOC8AAAQvQAAuD0AAOI-AAB_PwAA4DwAAIA7AACgPAAAlr4AAHC9AACovQAAUL0AAKi9AAAEPgAA2D0AAEA8AACYvQAAur4AAKA8AABcvgAAyD0AADy-AAA8vgAAcD0AAHC9AAB8vgAAPD4AADS-AAD4PQAAoLwAAJg9AAA8vgAAEL0AAIa-AACovQAAED0AAIg9AADoPQAAiL0AAHA9AAARPwAAmL0AAOg9AACiPgAAyD0AAIg9AAAkPgAAXD4gADgTQAlIfFABKo8CEAEagAIAAJi9AADIPQAA6L0AADm_AACoPQAAUD0AAJI-AACGvgAAUD0AANg9AAAwPQAAHL4AAFA9AAAcvgAADD4AADC9AACIPQAA_j4AAAy-AACqPgAAXL4AALg9AABAPAAAuL0AAHC9AADIPQAAoLwAABC9AABQPQAAcD0AAOg9AAAEPgAAlr4AAKi9AAAwvQAAgLsAABQ-AACKPgAAhr4AAHS-AAC4PQAAZD4AAEA8AAA0PgAATL4AAOg9AAB_vwAAoLwAABA9AAAcPgAAFD4AAHC9AAAUPgAAmD0AANg9AAC4PQAAMD0AAES-AACovQAADL4AAKg9AACoPQAAcD0AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=FLAm7Hqm-58","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2119004810168048982"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3676634307"},"17994385035140575010":{"videoId":"17994385035140575010","docid":"34-2-14-ZEA27E4FFA2D0997C","description":"This calculus video tutorial provides a basic introduction into the first derivative test. The first derivative test can be used to locate any relative extrema in a function. When the first...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2918671/c8ef6a83d5bc63e70808b30ab42701a0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1WRgcQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DG5wlKltW7pM","linkTemplate":"/video/preview/17994385035140575010?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"First Derivative Test","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=G5wlKltW7pM\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhYKFDE3OTk0Mzg1MDM1MTQwNTc1MDEwWhQxNzk5NDM4NTAzNTE0MDU3NTAxMGqIFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxP1BYIEJAGABCsqiwEQARp4gfQI-wf9AwD4BwUIAAb9AhMPDQb2AgIA-vUF_gYE_gDoAf0A-_8AAP4LBwIAAAAA9_P9Cfj_AQAGA_0BBAAAAAMG-v4FAAAABgH9_v8BAAD8-QEI-gEAABEJCAH_AAAA-g78-_8AAAD6AgQHAAAAAP3z-gQAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF_-SgBzPrN_6ofyv_8MQEBviI1__w10QC21gIByv_rAfj52f_mFNL_Fif0AJIs_wH_3doA79sS_0_hCgBE3xoA6R_yASz38AE-FC__IgEF_sod8f7aBAL_89mxAB8awwAPxgX--Rj3A-wDwALv8EgDBfgdAvfxAP3I2xQC7-z__vf73AANNPQCC98P-OsWPAHq5yAFEB8Z-fAL6gQMAwT-_e8G9BYL4gQCBOUDDhMAA9HtDfnY3xH6BAcu_tDb4wXy9icC4wj7-N70DPAhIvcGxRryCPUFAAgRCQn-6uUA_CUR6QP56PcA9w75_NkN8f8gAC3nWA87OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivCwuzrxxcI48Id6Au0vTtr2Wyys9rO4HvT9zRj4O7jO9lvl9O8N4V71BUps7GVkyvC0LVj6wily9QS0mvXV0_L0vE5o9CwIQvReho70Z9K880wUrPB7XwL1Js5683G1yvLJ1mj2ly9G8LegBvMlXwrzmDAA9Qu4CvdQ6mz00VUa9Dp90vUTPHL0UxMi7CSjevKXghD36R7o8QC2nu7PNcj1B-4c8CvfKvDeIBr6_sGM7AEKavC9Ndj3GlYk9wutEPFj-vL3F2Z69KktfOzTDwb3aVz49wRPAO9_8xj3sG_M8h1k-vdjCBz1Ex5m98juyvGO0Hr42Fnu7f2BYPNwEqT2Dv989HDGpvK70Kr5txd49itQLu81hMj1lUVg8-05dvFxJoTzYa9U84vLOPEIDVj3E3c88eWirOpAkELwQ36M9pmIDPYbiTj2Q_nK9RqBVvE6OzD0eeiE9Pi7guyIPbr09WRu9HYPjOt8zFLxDnYg9vZyGO_r8pDqX2ly9RtEBPI_gFj5beA6-A-cOvMeDbb1XEI69nbdWvJyiCDz6hog9dmU8vEOpHT4fatu9xJqpOXnLVTzSMcw8Qtcxuso-_ryK84a9Eo6TO1pquL2bNPI8FasGvChyUr10MDE9Pqn-uzd1-TzVQik94B-Au_5ByTxbDI69Hd9mOxR5Ej0rWi89JPsUuy2Lkz2erx49oKIPOhJQwT3BeEG9YdMKutkQEr1Jzei8WkKlOxuIQLyxa_u9tr6euTy98j1KyFG9V8GOOe65h70Pu8o805bRuCZstL1kQNY9XCYQOGvjPjx0CJy8bbVsuVxUC72cFfG93J51Odhi1z3YPg28LIi-uOWzvDw7WWU9MR-UugL0i71FNZC9O4YxOC09Hjw5SU68IehzuHiekz1uuNk8_aiduM9qQb358IE9hW8AuualCztTuzW9fdzCOIK_hD0-iE49DmtHOEHxAz1xT8G91zh7OcN3LD3uSKA9be0bOZvO6TzW8lQ9VMseuOg_NT1kHwQ-Z7EbOOXiubxxaJu95a0INslDOrwfWZo9N_MGN5r_nL3QkJs9AtsuODW2lzzntF08wUDnOEbx6DqWAre8xu9nN835Ez3i_II9T8q6NMHjKz7cpWi8B4l0ud68gjy0rxy-_IdluCGNT73ugny9RhWOuFUxE7xOmVs9Da_LNw0SRzx0fPS9VlhZuMr0cD0i4Ss-8cuKOAcLp7y9_O49g7QeuQahfL1gHIE8YXy1NzMOf71p7a660zyfNyAAOBNACUhtUAEqcxAAGmBD-gAZBx__EQvx6dDe5R4C3-8X8NYQ__AEAAAawAkbDPfs_vgALdYW8L0AAAATAusZBQDxXNvXBekLGgHAt9cNI38JDSiv6Q3xyu4LDwzz9iQQMwUA4e-7EgPhmxkG_PwgAC3gvUI7OBNACUhvUAIqrwYQDBqgBgAABEIAAHBBAAAwQQAAJMIAAABCAADMQgAAqkIAAFBBAABgwgAAqMEAAHBBAAAAwAAAOMIAAMhBAAAIwgAAMEEAAIJCAADgQAAAIEEAANBBAACYQgAAJMIAAGDBAAAQwgAAsMEAAEBCAAAYwgAA4EEAACDBAAAQQQAAQEAAAIjBAAAQwgAAGEIAAMjCAADIwQAAQEEAAFRCAAAgQQAA4EAAAIhCAACgwAAAikIAAEBCAABQQQAAtMIAAAhCAACSQgAAgEEAAOBBAACQwQAAwMEAACDCAABAwQAA4MEAAFxCAABUwgAAmMEAAKhBAAAoQgAALEIAADjCAAAUwgAAgMEAADDBAADOwgAAUMEAAKjBAACgQQAAwMAAACBCAAA8QgAAZMIAAJhCAADwwQAAfMIAAI7CAABAwQAA4EEAAMBBAACUwgAAmEIAALjBAAA0QgAAyEEAABRCAACQwQAAsEEAAGBBAABwwgAAAMAAAL5CAAD4wQAAVMIAABzCAAAgwgAAJMIAAGjCAABYQgAASEIAAMDAAADgQQAAoEAAAFBBAADOwgAAQMEAAMBAAACEQgAAAMEAAJRCAADIQQAAIEIAAKDAAADgQAAAAEIAAEDBAACMQgAAWMIAAJBBAACIQQAAkMEAADTCAACAPwAAisIAAEBBAAAQQQAAaMIAAEBCAADwwQAAAMEAACDBAADAwAAAuMEAAOBBAAAAwgAAXEIAAKjBAACAwAAAgMIAAGDCAABwwQAATEIAAJhBAADQQQAAEEEAADBBAAAQQQAATMIAAJjBAABAQQAAkEEAAHBBAABcQgAA2MEAABRCAAAAAAAA-MEAAGDCAAAswgAAmEEAAFjCAACgQAAAWEIAACBBAACAvwAAMMEAAAhCAABEQgAA-EEAAJhBAAAcQgAAqEEAACDCAAC4QQAAEMEAABDBAACAQAAAQMIAAKBAAACeQgAAZMIAAGDBAAAcwgAACEIAAAxCAABQwgAADMIAADDBAACAPwAA2MEAAIDBAAAAQQAAUEEAAOhBAAAgQQAAgkIAAADBAABAwAAAwsIAAFDBIAA4E0AJSHVQASqPAhAAGoACAABAPAAAyD0AAI4-AABwPQAALL4AACw-AABEPgAAA78AALK-AACoPQAAgLsAADy-AADgPAAA6D0AAOC8AABwvQAAoLwAAIC7AAAsPgAA1j4AAH8_AAAkPgAABD4AADA9AACavgAAoDwAAEC8AAAUvgAAEL0AAOg9AAAEPgAAED0AAIi9AAA8vgAAqD0AABy-AABQPQAAHL4AAES-AAC4vQAA4LwAALi9AADCPgAANL4AAHC9AAAkPgAAMD0AAAy-AAAQvQAAlr4AAEC8AAD4PQAAmD0AADQ-AADgPAAAoDwAACU_AABwvQAAqD0AAGw-AAC4PQAATD4AACw-AABAPCAAOBNACUh8UAEqjwIQARqAAgAA6L0AAFQ-AABEvgAAF78AANg9AACgvAAAZD4AACS-AAAUPgAAND4AAJi9AAAQvQAAiL0AACy-AADoPQAAgDsAALg9AAAdPwAAML0AAOI-AABMvgAAiL0AAJg9AACovQAA-L0AACw-AABAvAAA4LwAADC9AABQPQAAoDwAABQ-AAD4vQAAiD0AAOC8AAAwvQAAyD0AAIg9AAAcvgAABL4AACQ-AAAkPgAAQLwAADA9AAAMvgAAZD4AAH-_AACevgAA6L0AAIg9AACYPQAAMD0AAKg9AADYPQAADD4AAKg9AAAwPQAAXL4AABC9AABwPQAA4DwAAOC8AAAcvgAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=G5wlKltW7pM","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17994385035140575010"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"514914182"},"12733882546916683895":{"videoId":"12733882546916683895","docid":"34-1-5-Z504D5DA283293C9D","description":"🙏Support me by becoming a channel member! / @brithemathguy #math #brithemathguy This video was partially created using Manim. To learn more about animating with Manim, check out...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3780447/97cb1a0e11ea2d3e3e6f892eed6bb64e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0GpNlgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFCDgseztPLE","linkTemplate":"/video/preview/12733882546916683895?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Derivative: The Definition of the Derivative","related_orig_text":"Derivative","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Derivative\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FCDgseztPLE\",\"src\":\"serp\",\"rvb\":\"EqoDChMzODE5OTk3MjkyOTQyMjE3MDcwChMxNzA1Mjk5MjQ3ODYxMTgxNjQ1ChMzODkxODM2MTE5MjgzOTA3NzAxChM2NTk3ODI0MzU2NTI2MzMxMzA3ChQxNDk4ODE5MDU1MzQyMDIwOTEyNQoSNzI1MzgzMzE2MTIxMTY3NjQ2ChM4MDcxNjAyNjA0MDIwMTU0OTIxChQxNDgwODM5ODMyMjcyNjUxNDYwMAoUMTY4Nzk2ODkzMzAxMDk1NDMxMDIKEzUwNDcxODQ5Njk4NjUwMDUxOTgKEzk0MDY0ODc3MDgxNDQ0Mjk2OTkKEzUxMjM3MDk2OTAzNzU5OTg5NzMKEzkyNjE1NzkwNTg1NjA2MTE4MTQKFDEzNDQzMzc5NzU4Mzg2NzEwMDExChMyMTE5MDA0ODEwMTY4MDQ4OTgyChQxNzk5NDM4NTAzNTE0MDU3NTAxMAoUMTI3MzM4ODI1NDY5MTY2ODM4OTUKEzQ4MTQ0MTQ4NDg3NTI4ODk2MzQKFDE0MDMxMDc0NDIwMTY1MDgyMDMyChMzMjYzNDE5OTkyMTI1MjE1NTU0GhYKFDEyNzMzODgyNTQ2OTE2NjgzODk1WhQxMjczMzg4MjU0NjkxNjY4Mzg5NWq2DxIBMBgAIkUaMQAKKmhodXFrcmNmdmRtdmlrdWNoaFVDaFZVU1hGelY4UUNPS05XR2ZFNTZZURICABIqEMIPDxoPPxPcA4IEJAGABCsqiwEQARp4gQIK-gb8BQD1CQ4JBAX9Ae76Aw38AAAA8_v9_AcBAADoAf0A-_8AAP0ECAn6AAAA9_P-Cfj_AQANAP0D-wAAABIA9AL_AAAADgD8Bv4BAAD9_wIGA_8AAAIIAfz_AAAA-QX--P4AAAD3Bv4JAAAAAP389g4AAAAAIAAtwVrgOzgTQAlITlACKoQCEAAa8AF_DAD8CuneBardtP-1D_j_lBAj__tCxQCdHQEBpPS3Adk1Ef_hGwIAEAoc_9gjJf9R8rr_FM0H_0vS-wD_4eQAxCEMAQvc6wJZ7Cf_8-PzAL0HJf_23RYAHu21_icgtQAEzAb_7vrZ-CUcvAIs4gEALxZKAB7xKwPqzAAB4RjtB9vzzPwGHvwHBAIH-JP-JAkR6vj5Lvr6_t0F7QEA9xT87vAk9xEYwwAQxu0BWgEKBKsaC_bx7fAJKxYY77Ho_fje2Sb_084AABf6Ffsj1f4Bwh_f9goL0A8t6Br3ALz2AhH0-_La7wME49zxEQH07_0gAC1w3uY6OBNACUhhUAIqcxAAGmAo9gA4FQLZIPQO6-Pjzgz7zdnuCdsb_wPkAMcbyRIGFufUCsIAN8AJA64AAAAzBOgayQD6cb3s9xgUJvrPuuQGMH8NDTmpwET_vdI1EAvXCychNEcA3gu8ExTmtyv0GAggAC3vdyI7OBNACUhvUAIqrwYQDBqgBgAAjkIAAKDAAACeQgAAVMIAAGzCAADQwQAAskIAAOBBAAAQQQAAgD8AABDBAAD4wQAAwEAAAIDAAACwQQAAUMEAAHhCAADgwQAAVEIAAEDAAABQwgAAyMEAALrCAAA8QgAAUMIAABzCAAAAwAAAYMEAAGBBAAC4QQAAgMIAADDBAACqwgAAwEAAAI7CAACgQQAA4EEAABhCAAAAQAAAbEIAACBBAADAQAAAoEEAAMDBAAAsQgAALMIAABDBAADAQQAA4EEAAMBAAAAYwgAA0MEAAMDAAABYQgAAgkIAAEDAAACGwgAAgD8AAIhBAAAIQgAAkEEAAEzCAAB0wgAAOMIAAEBAAACYwgAADMIAAOLCAAC4wQAAbMIAAGRCAAA8QgAA-MEAAOBAAAAAAAAAuMEAAI7CAACwwQAA2EEAANBBAACIwQAAGEIAAJjBAABQwQAAgL8AAGhCAAAMwgAAXMIAADRCAAAAAAAAQEEAACRCAABQwQAAAAAAAGhCAAAIwgAAgEEAAADBAABgQQAAPEIAAGzCAACYQQAAUEEAAPjBAAAswgAAQEAAAMDAAADYQQAAcEEAAFxCAACqQgAAuEEAAEDBAAAgwQAA-MEAALJCAABgQQAAYMIAALDBAABwwgAABMIAAKDAAACgwAAAyMEAAIjBAACowQAAgEEAAABAAABowgAAIMEAANDBAABEwgAAEMEAALJCAACwwQAAiEEAAHBBAADYQQAAQMAAAJ7CAAAIQgAAUMEAAOBBAABEwgAAyEEAAPhBAAAAwAAAsMEAAIBAAABgQQAATMIAABDBAAB4QgAAuEEAAIDAAAAEwgAAtsIAAEzCAABMwgAADMIAACDCAACwQQAAiEEAAMhBAABAQQAAmEEAAJDBAACaQgAAlkIAAI7CAAAEwgAAAAAAAABBAACIwQAAIMEAAGBBAABAwAAAgMEAAJhBAABAQQAAvMIAAMDCAAC4QQAAYMEAACRCAABIwgAAYMIAAGDBAACQwQAAQEAAAFBCAAC4wQAA4MAAABDBAABwQQAA4EEAADzCAABEQgAABEIAAADCIAA4E0AJSHVQASqPAhAAGoACAACCvgAAgDsAACw-AABQPQAAZL4AAGQ-AACYPQAAAb8AAPK-AADgvAAAgLsAAHS-AAAwPQAAcD0AAIC7AABUvgAA2L0AAJi9AADgPAAAHD4AAH8_AAAcPgAAUD0AADw-AAA8vgAAUL0AAJi9AADovQAAZD4AAFA9AAAsPgAAgDsAAAS-AACavgAAuD0AAFy-AAD4PQAAhr4AADS-AACgvAAADL4AAHS-AADePgAAJL4AAIi9AABcPgAA6D0AAEy-AACIvQAAnr4AAIg9AAAEvgAA4DwAADA9AADgvAAAQLwAAC0_AABAPAAAqD0AAEw-AAAEPgAAML0AACw-AACIvSAAOBNACUh8UAEqjwIQARqAAgAAgr4AADw-AABQPQAAL78AADC9AAAQPQAABD4AAIC7AADoPQAAiD0AAFS-AADgvAAAQLwAAFC9AACAOwAAgLsAALg9AAAbPwAAyD0AAPo-AAAEvgAAML0AAKA8AAA8vgAALL4AAFC9AABMPgAAgLsAABC9AAAEPgAAoDwAABQ-AAAQvQAA4LwAAJi9AACgvAAAoDwAAHQ-AAAMvgAAoDwAADA9AACgPAAAuD0AAFA9AACovQAABD4AAH-_AAAUvgAA6L0AAJ4-AABcPgAA-D0AAFw-AAA8PgAAiD0AAIg9AACAOwAAiL0AAEC8AADIvQAABD4AAEC8AACIvQAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FCDgseztPLE","parent-reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12733882546916683895"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2662090164"}},"dups":{"3819997292942217070":{"videoId":"3819997292942217070","title":"Definition of the \u0007[Derivative\u0007]","cleanTitle":"Definition of the Derivative","host":{"title":"YouTube","href":"http://www.youtube.com/live/-aTLjoDT1GQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-aTLjoDT1GQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1410,"text":"23:30","a11yText":"Süre 23 dakika 30 saniye","shortText":"23 dk."},"views":{"text":"2,9milyon","a11yText":"2,9 milyon izleme"},"date":"22 şub 2018","modifyTime":1519257600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-aTLjoDT1GQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-aTLjoDT1GQ","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":1410},"parentClipId":"3819997292942217070","href":"/preview/3819997292942217070?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/3819997292942217070?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1705299247861181645":{"videoId":"1705299247861181645","title":"\u0007[Derivative\u0007] as a concept | \u0007[Derivatives\u0007] introduction | AP Calculus AB | Khan Academy","cleanTitle":"Derivative as a concept | Derivatives introduction | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/N2PpRnFqnqY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N2PpRnFqnqY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":435,"text":"7:15","a11yText":"Süre 7 dakika 15 saniye","shortText":"7 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"19 tem 2017","modifyTime":1500447600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N2PpRnFqnqY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N2PpRnFqnqY","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":435},"parentClipId":"1705299247861181645","href":"/preview/1705299247861181645?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/1705299247861181645?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3891836119283907701":{"videoId":"3891836119283907701","title":"Calculus: \u0007[Derivatives\u0007] 2 | Taking \u0007[derivatives\u0007] | Differential Calculus | Khan Academy","cleanTitle":"Calculus: Derivatives 2 | Taking derivatives | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/ay8838UZ4nM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ay8838UZ4nM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":571,"text":"9:31","a11yText":"Süre 9 dakika 31 saniye","shortText":"9 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"3 eki 2007","modifyTime":1191369600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ay8838UZ4nM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ay8838UZ4nM","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":571},"parentClipId":"3891836119283907701","href":"/preview/3891836119283907701?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/3891836119283907701?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6597824356526331307":{"videoId":"6597824356526331307","title":"\u0007[Derivative\u0007] of x^(x^x) | Taking \u0007[derivatives\u0007] | Differential Calculus | Khan Academy","cleanTitle":"Derivative of x^(x^x) | Taking derivatives | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/N5kkwVoAtkc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/N5kkwVoAtkc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":541,"text":"9:01","a11yText":"Süre 9 dakika 1 saniye","shortText":"9 dk."},"views":{"text":"430,1bin","a11yText":"430,1 bin izleme"},"date":"2 eki 2009","modifyTime":1254441600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/N5kkwVoAtkc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=N5kkwVoAtkc","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":541},"parentClipId":"6597824356526331307","href":"/preview/6597824356526331307?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/6597824356526331307?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14988190553420209125":{"videoId":"14988190553420209125","title":"Every Type of \u0007[Derivative\u0007] Explained in 7 Minutes","cleanTitle":"Every Type of Derivative Explained in 7 Minutes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=y9ojuz1diD4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/y9ojuz1diD4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY25OZVNjUHlYUU9RSG1GOUlWQi1fUQ==","name":"X to Y","isVerified":false,"subscribersCount":0,"url":"/video/search?text=X+to+Y","origUrl":"http://www.youtube.com/@XtoY-Math","a11yText":"X to Y. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":440,"text":"7:20","a11yText":"Süre 7 dakika 20 saniye","shortText":"7 dk."},"views":{"text":"109,3bin","a11yText":"109,3 bin izleme"},"date":"26 tem 2025","modifyTime":1753488000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/y9ojuz1diD4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=y9ojuz1diD4","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":440},"parentClipId":"14988190553420209125","href":"/preview/14988190553420209125?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/14988190553420209125?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"725383316121167646":{"videoId":"725383316121167646","title":"\u0007[Derivative\u0007] of natural logarithm | Taking \u0007[derivatives\u0007] | Differential Calculus | Khan Academy","cleanTitle":"Derivative of natural logarithm | Taking derivatives | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/765X_PAxhAw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/765X_PAxhAw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":187,"text":"3:07","a11yText":"Süre 3 dakika 7 saniye","shortText":"3 dk."},"views":{"text":"403bin","a11yText":"403 bin izleme"},"date":"1 mayıs 2014","modifyTime":1398902400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/765X_PAxhAw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=765X_PAxhAw","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":187},"parentClipId":"725383316121167646","href":"/preview/725383316121167646?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/725383316121167646?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8071602604020154921":{"videoId":"8071602604020154921","title":"\u0007[Derivative\u0007] Lecture Series Video 9 (\u0007[Derivative\u0007] of the Power of a Function)","cleanTitle":"Derivative Lecture Series Video 9 (Derivative of the Power of a Function)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MHV2zec4UCQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MHV2zec4UCQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeEhTTHhKY3VaOFNwRjV6Z0plUThDZw==","name":"Bıyıklı Matematik","isVerified":true,"subscribersCount":0,"url":"/video/search?text=B%C4%B1y%C4%B1kl%C4%B1+Matematik","origUrl":"http://www.youtube.com/@biyiklimatematik","a11yText":"Bıyıklı Matematik. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2476,"text":"41:16","a11yText":"Süre 41 dakika 16 saniye","shortText":"41 dk."},"views":{"text":"48bin","a11yText":"48 bin izleme"},"date":"18 şub 2021","modifyTime":1613646685000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MHV2zec4UCQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MHV2zec4UCQ","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":2476},"parentClipId":"8071602604020154921","href":"/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/8071602604020154921?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14808398322726514600":{"videoId":"14808398322726514600","title":"Finding a \u0007[Derivative\u0007] Using the Definition of a \u0007[Derivative\u0007]","cleanTitle":"Finding a Derivative Using the Definition of a Derivative","host":{"title":"YouTube","href":"http://www.youtube.com/v/vzDYOHETFlo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vzDYOHETFlo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick JMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+JMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"Patrick JMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":457,"text":"7:37","a11yText":"Süre 7 dakika 37 saniye","shortText":"7 dk."},"views":{"text":"1,1milyon","a11yText":"1,1 milyon izleme"},"date":"3 nis 2008","modifyTime":1207180800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vzDYOHETFlo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vzDYOHETFlo","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":457},"parentClipId":"14808398322726514600","href":"/preview/14808398322726514600?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/14808398322726514600?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16879689330109543102":{"videoId":"16879689330109543102","title":"\u0007[Derivative\u0007] Using the Definition, Example 2","cleanTitle":"Derivative Using the Definition, Example 2","host":{"title":"YouTube","href":"http://www.youtube.com/v/WERgBgi4hg4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WERgBgi4hg4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick JMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+JMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"Patrick JMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":311,"text":"5:11","a11yText":"Süre 5 dakika 11 saniye","shortText":"5 dk."},"views":{"text":"309,7bin","a11yText":"309,7 bin izleme"},"date":"25 nis 2011","modifyTime":1303689600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WERgBgi4hg4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WERgBgi4hg4","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":311},"parentClipId":"16879689330109543102","href":"/preview/16879689330109543102?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/16879689330109543102?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5047184969865005198":{"videoId":"5047184969865005198","title":"What is a \u0007[Derivative\u0007]? Deriving the Power Rule","cleanTitle":"What is a Derivative? Deriving the Power Rule","host":{"title":"YouTube","href":"http://www.youtube.com/live/x3iEEDxrhyE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x3iEEDxrhyE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGNkXy1lNDloWnBXTEgzVUl3b1dSQQ==","name":"Professor Dave Explains","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Professor+Dave+Explains","origUrl":"http://www.youtube.com/@ProfessorDaveExplains","a11yText":"Professor Dave Explains. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":604,"text":"10:04","a11yText":"Süre 10 dakika 4 saniye","shortText":"10 dk."},"views":{"text":"229,3bin","a11yText":"229,3 bin izleme"},"date":"5 mar 2018","modifyTime":1520273010000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x3iEEDxrhyE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x3iEEDxrhyE","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":604},"parentClipId":"5047184969865005198","href":"/preview/5047184969865005198?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/5047184969865005198?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9406487708144429699":{"videoId":"9406487708144429699","title":"The Definition of the \u0007[Derivative\u0007]","cleanTitle":"The Definition of the Derivative","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-eX5SPpeBeM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-eX5SPpeBeM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbEFFY3A1MTNGU0VtNXllM1JZenQ1UQ==","name":"DigitZero","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DigitZero","origUrl":"http://www.youtube.com/@digitzero634","a11yText":"DigitZero. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":405,"text":"6:45","a11yText":"Süre 6 dakika 45 saniye","shortText":"6 dk."},"date":"24 mar 2022","modifyTime":1648080000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-eX5SPpeBeM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-eX5SPpeBeM","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":405},"parentClipId":"9406487708144429699","href":"/preview/9406487708144429699?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/9406487708144429699?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5123709690375998973":{"videoId":"5123709690375998973","title":"Calculus 1 - \u0007[Derivatives\u0007]","cleanTitle":"Calculus 1 - Derivatives","host":{"title":"YouTube","href":"http://www.youtube.com/live/5yfh5cf4-0w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5yfh5cf4-0w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3170,"text":"52:50","a11yText":"Süre 52 dakika 50 saniye","shortText":"52 dk."},"views":{"text":"4,4milyon","a11yText":"4,4 milyon izleme"},"date":"8 tem 2018","modifyTime":1531008000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5yfh5cf4-0w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5yfh5cf4-0w","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":3170},"parentClipId":"5123709690375998973","href":"/preview/5123709690375998973?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/5123709690375998973?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9261579058560611814":{"videoId":"9261579058560611814","title":"Find the \u0007[Derivative\u0007] Using The Definition of \u0007[Derivative\u0007] Example","cleanTitle":"Find the Derivative Using The Definition of Derivative Example","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hJ84z9MNLNc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hJ84z9MNLNc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSjhDTndkQWJGc1pSQ28xa1NQU290dw==","name":"Beyond The Test","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Beyond+The+Test","origUrl":"http://www.youtube.com/@BeyondTheTest","a11yText":"Beyond The Test. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":322,"text":"5:22","a11yText":"Süre 5 dakika 22 saniye","shortText":"5 dk."},"date":"12 eki 2024","modifyTime":1728691200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hJ84z9MNLNc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hJ84z9MNLNc","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":322},"parentClipId":"9261579058560611814","href":"/preview/9261579058560611814?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/9261579058560611814?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13443379758386710011":{"videoId":"13443379758386710011","title":"The \u0007[Derivative\u0007] in Calculus Defined as a Limit - [1-2]","cleanTitle":"The Derivative in Calculus Defined as a Limit - [1-2]","host":{"title":"YouTube","href":"http://www.youtube.com/live/9boavjdulxY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9boavjdulxY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWdMODFsYzdET0xOaG5lbDFfSjZWZw==","name":"Math and Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+and+Science","origUrl":"http://www.youtube.com/@MathAndScience","a11yText":"Math and Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1311,"text":"21:51","a11yText":"Süre 21 dakika 51 saniye","shortText":"21 dk."},"views":{"text":"43,9bin","a11yText":"43,9 bin izleme"},"date":"1 ara 2022","modifyTime":1669902352000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9boavjdulxY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9boavjdulxY","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":1311},"parentClipId":"13443379758386710011","href":"/preview/13443379758386710011?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/13443379758386710011?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2119004810168048982":{"videoId":"2119004810168048982","title":"\u0007[Derivatives\u0007] for Beginners - Basic Introduction","cleanTitle":"Derivatives for Beginners - Basic Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/live/FLAm7Hqm-58","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FLAm7Hqm-58?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3483,"text":"58:03","a11yText":"Süre 58 dakika 3 saniye","shortText":"58 dk."},"views":{"text":"1,4milyon","a11yText":"1,4 milyon izleme"},"date":"27 tem 2020","modifyTime":1595808000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FLAm7Hqm-58?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FLAm7Hqm-58","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":3483},"parentClipId":"2119004810168048982","href":"/preview/2119004810168048982?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/2119004810168048982?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17994385035140575010":{"videoId":"17994385035140575010","title":"First \u0007[Derivative\u0007] Test","cleanTitle":"First Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/live/G5wlKltW7pM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/G5wlKltW7pM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":757,"text":"12:37","a11yText":"Süre 12 dakika 37 saniye","shortText":"12 dk."},"views":{"text":"690,8bin","a11yText":"690,8 bin izleme"},"date":"4 mar 2018","modifyTime":1520121600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/G5wlKltW7pM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=G5wlKltW7pM","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":757},"parentClipId":"17994385035140575010","href":"/preview/17994385035140575010?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/17994385035140575010?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12733882546916683895":{"videoId":"12733882546916683895","title":"\u0007[Derivative\u0007]: The Definition of the \u0007[Derivative\u0007]","cleanTitle":"Derivative: The Definition of the Derivative","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FCDgseztPLE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FCDgseztPLE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaFZVU1hGelY4UUNPS05XR2ZFNTZZUQ==","name":"BriTheMathGuy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=BriTheMathGuy","origUrl":"http://www.youtube.com/@BriTheMathGuy","a11yText":"BriTheMathGuy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":476,"text":"7:56","a11yText":"Süre 7 dakika 56 saniye","shortText":"7 dk."},"date":"12 mayıs 2016","modifyTime":1463011200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FCDgseztPLE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FCDgseztPLE","reqid":"1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":476},"parentClipId":"12733882546916683895","href":"/preview/12733882546916683895?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","rawHref":"/video/preview/12733882546916683895?parent-reqid=1769469939203956-13848053096427088223-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Derivative","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"8480530964270882237125","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Derivative","queryUriEscaped":"Derivative","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}