{"pages":{"search":{"query":"Digamma","originalQuery":"Digamma","serpid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","parentReqid":"","serpItems":[{"id":"10324348027082350021-0-0","type":"videoSnippet","props":{"videoId":"10324348027082350021"},"curPage":0},{"id":"13697165663649029984-0-1","type":"videoSnippet","props":{"videoId":"13697165663649029984"},"curPage":0},{"id":"3743562874849415490-0-2","type":"videoSnippet","props":{"videoId":"3743562874849415490"},"curPage":0},{"id":"11560262530415179227-0-3","type":"videoSnippet","props":{"videoId":"11560262530415179227"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dERpZ2FtbWEK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","ui":"desktop","yuid":"7792493201769560583"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"16066974598077595788-0-5","type":"videoSnippet","props":{"videoId":"16066974598077595788"},"curPage":0},{"id":"16331992064106964468-0-6","type":"videoSnippet","props":{"videoId":"16331992064106964468"},"curPage":0},{"id":"16576755372464592732-0-7","type":"videoSnippet","props":{"videoId":"16576755372464592732"},"curPage":0},{"id":"4837501241321823606-0-8","type":"videoSnippet","props":{"videoId":"4837501241321823606"},"curPage":0},{"id":"6983919376424678357-0-9","type":"videoSnippet","props":{"videoId":"6983919376424678357"},"curPage":0},{"id":"9063782064625721532-0-10","type":"videoSnippet","props":{"videoId":"9063782064625721532"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dERpZ2FtbWEK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","ui":"desktop","yuid":"7792493201769560583"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"8890054097271094988-0-12","type":"videoSnippet","props":{"videoId":"8890054097271094988"},"curPage":0},{"id":"1837140159979730492-0-13","type":"videoSnippet","props":{"videoId":"1837140159979730492"},"curPage":0},{"id":"6257141450402372188-0-14","type":"videoSnippet","props":{"videoId":"6257141450402372188"},"curPage":0},{"id":"10892085601122643381-0-15","type":"videoSnippet","props":{"videoId":"10892085601122643381"},"curPage":0},{"id":"6394999183746083189-0-16","type":"videoSnippet","props":{"videoId":"6394999183746083189"},"curPage":0},{"id":"2833021135614770703-0-17","type":"videoSnippet","props":{"videoId":"2833021135614770703"},"curPage":0},{"id":"8336916942847974874-0-18","type":"videoSnippet","props":{"videoId":"8336916942847974874"},"curPage":0},{"id":"2593894253922203250-0-19","type":"videoSnippet","props":{"videoId":"2593894253922203250"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dERpZ2FtbWEK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","ui":"desktop","yuid":"7792493201769560583"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDigamma"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9638753325313685417286","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472323,0,41;1466868,0,55;1457622,0,24;1473738,0,15;1424968,0,5;1472056,0,25;1460717,0,57;1460214,0,52;1465968,0,48;1472010,0,62;1472029,0,93;1471623,0,6;1469885,0,24;45958,0,70;1461715,0,19;1470249,0,21;1463533,0,7;1282204,0,36;1466295,0,94;1465919,0,55;1470857,0,51;1466078,0,38;1467161,0,27;1464404,0,64;1349038,0,2;1471919,0,85;1470514,0,67;1471671,0,38;88928,0,7;1404017,0,61;1471183,0,40;461652,0,42;1469413,0,21;1297911,0,23;1470414,0,60;972818,0,90;124080,0,34;151171,0,94;126317,0,7;1269694,0,36;1281084,0,49;287509,0,98;1447467,0,63;1350564,0,12;1473596,0,41;1468028,0,45;1467128,0,19;912288,0,40"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DDigamma","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Digamma","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Digamma","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Digamma: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Digamma\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Digamma — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y5230c1d49161e21d12b29b445e603674","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1466868,1457622,1473738,1424968,1472056,1460717,1460214,1465968,1472010,1472029,1471623,1469885,45958,1461715,1470249,1463533,1282204,1466295,1465919,1470857,1466078,1467161,1464404,1349038,1471919,1470514,1471671,88928,1404017,1471183,461652,1469413,1297911,1470414,972818,124080,151171,126317,1269694,1281084,287509,1447467,1350564,1473596,1468028,1467128,912288","queryText":"Digamma","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7792493201769560583","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769560627","tz":"America/Louisville","to_iso":"2026-01-27T19:37:07-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1466868,1457622,1473738,1424968,1472056,1460717,1460214,1465968,1472010,1472029,1471623,1469885,45958,1461715,1470249,1463533,1282204,1466295,1465919,1470857,1466078,1467161,1464404,1349038,1471919,1470514,1471671,88928,1404017,1471183,461652,1469413,1297911,1470414,972818,124080,151171,126317,1269694,1281084,287509,1447467,1350564,1473596,1468028,1467128,912288","queryText":"Digamma","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7792493201769560583","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9638753325313685417286","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":155,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7792493201769560583","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"10324348027082350021":{"videoId":"10324348027082350021","docid":"34-6-1-Z8A988EAB67718F07","description":"The proof at the end is from: https://math.stackexchange.com/questi...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/481127/c1ebd9564ffbb576bbe2bc9a24628425/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/o24KUAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dksna9jtQ6HE","linkTemplate":"/video/preview/10324348027082350021?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to the digamma function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ksna9jtQ6HE\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoWChQxMDMyNDM0ODAyNzA4MjM1MDAyMVoUMTAzMjQzNDgwMjcwODIzNTAwMjFqiBcSATAYACJFGjEACipoaGFjdGRid2lhcHlmZW5jaGhVQ0FmN0VvdlNFUXFPMVd4ODBlaXhGbFESAgASKhDCDw8aDz8T8QiCBCQBgAQrKosBEAEaeIHuAfn9_AUA7gT8AgkC_wAGBvgA9___AO78BvoGAAAA-_0A__8AAAD6_QgEAAAAAPMD_gH6AAAABAH2_gMAAAAH__75_gAAAAIL-Ab-AQAA8fz8AwMAAAAWBP4GAAAAAPgKB_v7_wAA_ggDCwAAAAD58gIGAAAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABf_MY_snk3P_CHPQByQcGAtYgDAD7QsUApefMAKzk1gHVJeYA-fjlAMULHv-7G_ABFdTAANDH_AEp2P7-EcjY_xsF9QH54uEBNt9JAjYe3_8CLDj-4cEWAfy31QA8L-UCGOcJAicU7QIOEt0DKRsxAQX_VgEz2zT-6b4jBPXq3_z739X97xv5CMW-LP_08TD-FJXl--_0-PbGB90DAPcU_O7KLf_5TN34KO_XBxr_-gnO0wUC3__yFCc28gHC_ekF2LkwCNvu-fDG6wgHLvsG_bf81fww4PQKHc4QEwcQDA_-5Of_3-rr-ecN5AjeINXuIAAtHQbnOjgTQAlIYVACKs8HEAAawAcHB9u-eQOMPMpnMTqlnY-9ROTPvIVLvbzjoLm9HG2LPF4FI7wUdhE-3w7evCa-gztoN4-9Jn7WPED8l7zFVYU-VDBvvZt_KrzZQ0u-Q5J2Oyl_gr1FvPW9Z-jEPKy4J7xqXRM8RnwnvSBzDrug4tg9YTyevMVPiLzJV8K85gwAPULuAr0oEzI9sF8rvbGnPb0byVS8n_EzvLlwHjwLVRs95J_8uzjU1rvO9g09c4vUvN_Rsbt7rgW9wwd7PSPKDb3P4bU6WEogPdpfEbzr-4W9PmhMvYc7ETwpD2G9QDX7O_d2y7s27DI9AA0FPcTSO71i9Iw9nn7Qvb52XbuoyCG-AnwcPejpbTzwiws-8z-zu-I6xjt6tl29aUA4PY-axLuaxwq7WJOCva71hbx-Nva7tOeiPcHwXzvEEDQ9BF7eO2f_TTxutiO9-VhwPQkSwDz081A908APvbuSrrz0i5I9VHFjvV92tLwbFGi95qzPPNZcibxPXG49kbc8PWF8B7vs3so8U54PPeGqfDxgZ4Q9-RG_vT1rEjxtqaO92cU-vceLv7sdbcE9OWkQPS4Ff7xu_Ok9TOStvStzqbtp5ua7WF2ivCNTmTs3qu48KplSvQtHazwhhme9OmgEPF2MnrsHIza9vBybO6PKMLyd-Ki76ZFwPVXnRbuyEvO9ljF0vfpZqzmbG6g9x8mzO06oFjslSLs9nqAjPWBPK7lND289T0UlvaooIzguzoO9YQgvvaioyrnMYbe84y1cvRLwgjfurw4-nxKRvX7QlDnVCP08vb31PCKsjrmh8s-9Tu0cPsaq7bnub5o8oywyvbz3m7jLovC8W0IevjcF4zmeEmu98mMnPI0fQDlOYSW8rNW4PY6GFrhrHsG9xK6ivVn4IjijRyO8PXSLPFpSSjk4FN49iz2fPTKtt7jpTDU91H2EO_3BLjkXwZq8rgxPPC2TYTniWxO9RDarPPq4MzffAw89wLA8vdCgE7hGPzo99M6HPWz-t7halQ47kO9XPbd1jbj6gbY9G_oiPQbifTfl4rm8cWibveWtCDaZggU--fNSPR6uBrm0kBC-2IyiPZl7BLf-aR69yPmRvNl-rbheWRQ8HGQtPcJrkTgCAeE8RDMPvTkGn7iSXRk-2U9QvazCP7nNx3q90xXsveab-LjVuX08jBMfvXFzMLVAkIK9prxxPaB-9bZJ9448rVDEvXOc8rjK9HA9IuErPvHLijjtlkY6deikPQpu47itbeq9FDu_PG_S4zd6DIC9KYA9PMRZt7cgADgTQAlIbVABKnMQABpgF_gAIvYp5B0o7-MD2OPo0Nr30CLA_wD95AAdEOQEFwr3vv8BAOnwB-q9AAAAERIJNe4AF1QXLf4xABru5bETBCJ_OzAg3tn0Be36JDwk8PIE6Q89AAIQxwz9BdckLzInIAAtz-9BOzgTQAlIb1ACKq8GEAwaoAYAAABBAAAAQQAAdEIAAKzCAAAAQgAAMMEAAJ5CAAAkwgAAuEEAABDBAAC4QQAAoMEAABzCAADgwAAAUMEAAIBAAADYQQAAIMIAAAxCAAAAwAAA4MAAAJBBAACawgAAgD8AAPjBAADgwQAAyEEAANjBAAA4QgAAyEEAAEjCAADQQQAAhMIAAMjBAADawgAAwMAAANhBAABIQgAAoMAAADRCAABgQQAAMEEAAEDAAAAQQQAAIEIAAJjCAAAAwgAASEIAANBBAABgQQAAsMEAAJDBAAAMwgAA0EEAAHBCAACYQQAArMIAAJhBAAAAQgAAQEEAALBBAABcwgAAdMIAAMjBAACwQQAAyMIAACzCAACkwgAAIMEAAJTCAABkQgAAcEEAAMTCAAAcQgAAwMAAAKjBAAAwwgAAYEEAAOBAAACAQAAA6MEAAKhCAAAkwgAAgL8AAMBBAAAYQgAAgEAAABDBAADAQQAAQEEAABBBAAC6QgAAgMEAAEBCAACSQgAA4MAAAJDBAAAIwgAANEIAANBBAABgwgAAXMIAAGBCAAAYwgAAyMEAAPhBAAAwQgAA8MEAAHBBAACSQgAASEIAAMhBAABQwgAAqMEAACTCAACEQgAAhkIAAJjBAADwwQAA2MEAAIDBAAAswgAA6EEAADTCAABAwAAA4EAAABRCAAAwwQAA4MAAAIBCAAAUwgAAoMEAAIC_AAAoQgAA6EEAAGhCAAC4wQAAeEIAAFDCAABAwQAAgD8AACDBAACWQgAAksIAAIBAAACoQQAAoMAAAIA_AAAAAAAAwMEAAMjBAADoQQAAXEIAACRCAACAvwAADMIAAKjBAAAAwAAAEMEAAILCAAC6wgAAgL8AAODBAAAAwAAAWEIAAIBAAAAowgAAwEIAAEhCAAAAwAAAcEIAAJhBAAAAQQAAFMIAAATCAADQQQAAoEAAAPDBAAD4QQAAwEAAABTCAABIwgAAwMAAAPjBAABUQgAAMMEAABTCAABQwgAA8EEAAABCAAD4QQAAsMEAAOBAAAAQwQAAcEEAABxCAAAYwgAA6MEAAEBAAADAQSAAOBNACUh1UAEqjwIQABqAAgAAQLwAAKC8AACWPgAAFD4AABC9AACoPQAAir4AAMq-AABkvgAAmD0AAFA9AACgvAAAmD0AABw-AADgvAAABL4AAAw-AABwPQAAQLwAAKI-AAB_PwAAoDwAAHC9AADIPQAANL4AAKA8AACAOwAA4LwAAIg9AAAUPgAAiD0AAOC8AABQvQAAgLsAAIo-AABwPQAAoLwAADy-AAAsvgAAfL4AAFC9AAAsvgAAmD0AAFS-AABQPQAA-L0AAOg9AABQvQAAyL0AAGy-AAAwPQAA4LwAACQ-AABUPgAAPL4AAEC8AAD2PgAAgDsAAKA8AABEPgAAUD0AAFA9AAA8PgAAuL0gADgTQAlIfFABKo8CEAEagAIAANi9AACgPAAAyD0AADO_AAB0PgAAqD0AAIo-AAAcvgAAcD0AAFw-AADgPAAAEL0AAPg9AAAQvQAAqD0AAFC9AAAwPQAANz8AAMi9AACiPgAAmr4AAJi9AADoPQAAML0AADA9AAAMvgAAJD4AAHA9AABEPgAAuD0AABA9AAAcPgAAqr4AAEC8AACAuwAAUL0AAJI-AACCPgAAZL4AADy-AAAUPgAAML0AAPi9AADoPQAAUL0AAKA8AAB_vwAAgDsAAFA9AACiPgAAyD0AAOA8AADYPQAA4LwAADC9AACoPQAAoDwAAKi9AADYPQAAEL0AAHQ-AACAOwAAcL0AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ksna9jtQ6HE","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10324348027082350021"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"558164450"},"13697165663649029984":{"videoId":"13697165663649029984","docid":"34-9-14-Z6ABDA97BB5F06E6D","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/de/stores/papaf... https://shop.spreadshirt.de/papaflammy 2nd Channel: / @rockhardwooddaddy Digamma intro: • WAIT...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3924252/b362c45330be3e692f74ad98313113a2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XMGsFAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH1JbQtSHhSA","linkTemplate":"/video/preview/13697165663649029984?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Digamma Function at Integer Values!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H1JbQtSHhSA\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoWChQxMzY5NzE2NTY2MzY0OTAyOTk4NFoUMTM2OTcxNjU2NjM2NDkwMjk5ODRqiBcSATAYACJFGjEACipoaHJwYnliaGZiYnh6Z3ViaGhVQ3RBSXMxVkNRcnltbEFudzNtR29uaHcSAgASKhDCDw8aDz8T_wWCBCQBgAQrKosBEAEaeIH2_vQB_AQA9gEB-fsBAAETCfz89gICAOz9DPn6_wEA6vkDBgj_AAD1DgEJAgAAAPMD_gH6AAAAEf_wBwIAAAAA_P4G-gAAAAQO_AMJAAEB9v_0AgP_AAAL9vz__wAAAP78C_r7_wAA__wDCgAAAAD_7wP4AAAAACAALVAZ4Ts4E0AJSE5QAiqEAhAAGvABfyQy_dzpvwGbB88ABTMdAbMoGQBiQP4A3zUGAOX9zgH298__8QbT_yj_zP-jOSUBzr6pAvCmxv_9wf__Gun-AQfYGwAYtQQAN95LAhjDD_-WCxL_7AISA_HZ3QI3S_D97cIb_Av5zQHnBK8CIN06Ayn9KQc01Or45dnyAeAZ7QfFGcX94-T4B-DMGvuzEBUDLc8OA_g3DPoNy9X-9-P1AQrqH_MnGfUIMejw9dX9FwXEHfb1-wHfBQwjFgYK1eYM7vQyA_awBf8J8AL25CEL_eElyvgZtN0MHAIhBf_jCu_27vPryxXpDs_0AP3PEO3_IAAtI0HiOjgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLz284E8w8pYORpUdrzemFm9_RjOvNqrL72Cykg-xJSIvFVKkbu3DPi9jfjEvCMyJz3FVYU-VDBvvZt_KrwZgaK9QLW7PeGkX70dkc-95AqJPY3CAby47da8wEOsPOBZLL2g4tg9YTyevMVPiLyRVkY8tI6qvJSAHb2pT_I9gPOCvcABEr34_ua9GTfaPD-_FLxWThY9z9cxPYVPBLz1Yi09WVSfPHG74TvbGRa-r30BPMLHO72Afwo-Av8qPTbVLDvu0DC9WHqIvIsqz7sRdpW9DwlfvKQkWrw9Cjc9pkZovJPGqLx_wrQ8Wnc9vUcl7bsUe1i-WbcLvSVIG7yNOoQ8tg-5PPFWpzwdPd69vsAMPrsIC7pz2P08SfaEOeXHKbxPFPI8xC24O12aqjvTSrE9AiNZvR-O5LwJZMA8z1l1PYVjsTzHizs94JXuPLSAv7yyy4E8agSBPckMirzfiM69khk5vLahT7p7fdI8Vyx5PV0uBzutX7q8r5qlO20lKrwFI6U91gI7vknlmjp1-FW9wf4rvRcqf7wNv-G7QvNUPXKPgLxDqR0-H2rbvcSaqTmW-NI8QXYIvSKx9ro1-oc9Dv2uvOOZo7sWrKe8l7WDPKjYIDn8ZYG9jqFSPN_rWrzs76Y9Wk2yPU9zprnxnmO9XXaOvYnVxrla37Y8JW4fPadarDtMEZo9SH1jPTqFXrnCTNs9Ox3ovXbP2DnJ2lC9IN90vUjZIbnCKFI8qCA6vTv2nzmTYpE9poE_vYOTrLkH9WM7ghaWOt6aDTst0Qm-liEuPZ64YLj2-FM9-oMcvQE2QrkUnYu9iXrhvcYncDk5BJM9j0ysvIqZGzqbqRW9kNcjPf2WPLp-Mza9pFCWvS6Do7ejiHa9R4hXPdYwOLgpfZy9VguRPezHjzjGsgu8b11WvHQwkLcyT3g8tPTyvGevmbgdwCw9IYi9vBewBDkKKWS860NtvaRZ8zaRH7u8o-5ePTR747aJrFo79n8uPrw7Fbn2RzM9pjRxPQrtsbjeWfs82PGfvRgNlzgu55I9FuA2PScnFrkKu2i9RTCZPUe8wjhmyv28fnGJPcWcATlevlC8OL3qO0pWsbiilBS8KebBuz5IODjUYNo9B-ORvceXT7lwpz68J9NtvXRBX7ivYiw9eJRvvYJcJDek0Ai9JEQJPpsWwTYd4ww8Z0bfvWlQErhVGKY9bQvFPYPH5zisBEa9ESUwPQ9ys7i0Afi9tVhFPVHgXDiNkfQ6HscLPFrwlzggADgTQAlIbVABKnMQABpgROwARR4q7Q3bFf_xzfoAysrdswXDNP_z3v8iCQfzFiXqlQjx__PYItSVAAAALQQNB90AEXwe--07-Aj1u7PhHtZ_RAk10fU2COHGX3si2AC07xFbAAgRpRAx9rEuPz9LIAAtGTMLOzgTQAlIb1ACKq8GEAwaoAYAADxCAAAEwgAAzEIAAFDBAAAkQgAAAEIAAHBCAADIQQAAksIAACBBAAAwQQAACEIAADxCAAAMwgAAQEEAABBBAACAQQAA2MEAADBCAACQQQAAjEIAACRCAAC8wgAAZEIAADDBAACIwQAAmMIAAIC_AABcQgAAQEAAAGBBAAAgwgAAuMEAAADAAACewgAAPEIAAOBBAACYQgAAUMEAAADAAABIwgAA0EEAACBBAACSwgAAaEIAAODAAAAoQgAAPEIAAMZCAACIwQAAoMEAAIA_AACAvwAAIEEAAEBAAADAQQAAWMIAAAhCAAA8QgAAEEIAAABAAAAEwgAAQMAAAEDCAAAcwgAAlsIAAIzCAAAUwgAA6MEAAJjBAAAgQgAAqEEAAADCAAC6QgAAGMIAAADCAABMwgAAgEAAADTCAADAwAAAoEEAAKJCAABAwAAAoEAAAIBBAAAwQgAA8MEAAIBBAAA8QgAAYEEAAATCAACIQQAA6EEAABDCAABIQgAAMMIAANDBAAAQQgAAREIAALhBAAAMwgAAgEEAAFxCAAAkQgAAiMIAAHDBAACgQQAApkIAAJBBAACgQQAAoEEAABxCAABgwgAAAMAAABDBAABgQgAAHEIAACDCAADAwQAAcMEAAFzCAACIwQAAIMIAABBBAADAQQAApMIAAMDAAAAQwQAA2MEAAODAAABAQQAAgD8AAPjBAAAQQgAAZMIAACRCAADoQQAA8MEAAHDBAACgwAAAjsIAAIBBAABwQgAAnMIAAChCAAAwQgAAkMEAANBBAADAwQAA8MEAANjBAACAvwAAgL8AAOBAAADAQAAAoMEAAIDBAACowQAAaMIAAIDBAAAQQQAA-EEAAJDBAAAYwgAACEIAANhBAACYwQAAuEEAAAxCAAAAQQAAoEEAAAhCAADAQAAAtsIAANjBAACAwQAAoEEAABDCAACYQQAACEIAAHzCAADowQAADMIAAHTCAABcQgAA4sIAACBCAACIQQAAoMEAADxCAABAQgAAEMIAAMhBAAA8QgAAEMEAAARCAACYQQAAwEAAAHxCAACgwCAAOBNACUh1UAEqjwIQABqAAgAA6L0AABS-AACGPgAADL4AABC9AACqPgAAiL0AAA2_AAA0vgAAcD0AAKA8AAAMvgAAgj4AAMg9AAAwvQAALL4AABw-AAAQPQAA-D0AAK4-AAB_PwAAMD0AAHA9AABcPgAAPL4AABw-AAAQPQAAoLwAAIA7AABcPgAA2D0AADC9AADIvQAAoLwAACw-AACYvQAAcD0AAPi9AABEvgAAjr4AADC9AABAvAAA-D0AADS-AACAuwAAMD0AAAw-AADYvQAAbL4AAJa-AADYPQAA4LwAAFw-AACaPgAAJL4AAIA7AAAhPwAA-D0AAKA8AADKPgAAJD4AAIC7AACIPQAAor4gADgTQAlIfFABKo8CEAEagAIAAFy-AADIPQAAmD0AAE-_AADgvAAAoLwAAKo-AABUvgAAUD0AAKg9AAAwPQAARL4AABA9AAC4vQAAuD0AABC9AACovQAAKz8AAKC8AAB8PgAAmD0AAHS-AAAwPQAA2L0AABC9AAAQPQAABL4AADA9AACgPAAAUD0AAKA8AAAMPgAABL4AAAy-AAAwPQAAgLsAAHQ-AABMPgAAHL4AAAy-AAB8PgAAUL0AALg9AADgPAAAoDwAAKg9AAB_vwAAuL0AABC9AACoPQAAdD4AAEA8AABsPgAAED0AAOi9AADYPQAAUL0AAEC8AACIPQAAcL0AAIY-AADYvQAARL4AADA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=H1JbQtSHhSA","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13697165663649029984"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3336987796"},"3743562874849415490":{"videoId":"3743562874849415490","docid":"34-11-12-Z42D47D52062EE450","description":"Always Digamma function helps me to solve the integrals and infinite sums Digamma function 1 - • Digamma function - (1) - Properties o... Digamma function 2 - • Digamma function - 2 - Properties...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2708494/37fb60a2f7aa1c573777de867094da8b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/G6cn8gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjPa6Q-GJt6Y","linkTemplate":"/video/preview/3743562874849415490?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Always Digamma function helps me to solve the integrals and infinite sums","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jPa6Q-GJt6Y\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChMzNzQzNTYyODc0ODQ5NDE1NDkwWhMzNzQzNTYyODc0ODQ5NDE1NDkwaoYXEgEwGAAiQxovAAooaGhzd3B3aGV1YWplY3JoaFVDWkRreHBjdmQtVDF1UjY1RmV1ajVZZxICABAqEMIPDxoPPxPyAYIEJAGABCsqiwEQARp4ge73CvcE-wDy7RH9_QMAAfkE_wH4_f0A2_YC-_n5AwD3AAX5CAAAAOIBCAMHAAAA_f79__f-AAAJ_PT99wAAABT4Av72AAAA-hH6__4BAAD_AvL9A_8AABDp-gH_AAAA9g0T-v8AAADw_PcAAAAAAPL-Eff__wAAIAAt6ePEOzgTQAlITlACKoQCEAAa8AF_Hh4A8xzbA8kyAQD_zAsB0xwpABtT-ACz5vH_zwfcAfUO-gDl_QAAyB0HAMgmFgAW1KsD_-EI_0PB4v8Pz90A-vQKAOrVBQBj7zsD7xTh_vr9Dv8YzOwB_cDaAAkNy_7-5Bn_DxP2_gY00gMkFysBAugt_PjvGQTvvgj_1NTmAiLxEvn6QeUDDNwR99_RKwMc8gn-4w8E_Mg43AQA-BH88dEo_9YfzP0x7QYIZxz_-6zt9_3u2f0FSA0j_tgq4f7x9ioC6xsO9OfgBgsu5PYA4y3qCfbx6QQKCAMQ4iAWBUL09fXb-Pz4-iTy__sg7_ogAC1qTQQ7OBNACUhhUAIqzwcQABrABwlS2b5FBJC6jKDxPKWdj71E5M-8hUu9vF8lf70UrzI8GaKSu9SBDD5SvYC9AtLAu48b_rwUNLc8KSq0O_29dD6SVEu9A7HsPHV0_L0vE5o9CwIQvdjVhL2N8ie8Dt2sPFgVJr2h3DG9FRmdvOkL4T2tHou8I9QxPMlXwrzmDAA9Qu4CvZita70X5UO9vEkCvRvJVLyf8TO8uXAePKGjsDw2YOu8qtqLO872DT1zi9S839Gxu3uuBb3DB3s9I8oNvS9Ndj3GlYk9wutEPNz0F77kIki9l576u9FeiL36ghG99qXpO-oHdT2_hMQ7sdUKvYKr_Lw4n_q9MkUvvdAqQ76Yc5-8D6iIPN20GT49FtE8A2D6uwWSlr3KfTy8cfLwuxvccT3B-kS9zGJivAVbmzxOtmE9SVjlPEYotrrO4C-9oTWaPFzrxr0-tM88IX3uPH97aLyg_ei9NldNvLqHfz0lzne6b9NhO6ym0LyA4Yu8gemTu7a1ar16r1U9v9YlPGYJHL3gzg28IrucPGBnhD35Eb-9PWsSPOxDuL2PUAO-f0AQu5-wtD3pj0u5uEZ8u0gYBj5uyWW97dUFvHicUrr3PSM68ztNPK1yHL1RY8o7jpnAOvwCNb3VnYI8VDuDvPxlgb2OoVI83-tavP9YSL3cNoI8b8HOuqc95bzrjA--Jd69tzqcnz3aOrg8XHxAO6NtgT2S45M9w4kcuDauvzwLwpu9wz3GuFi9jb2smcq7PSvlusUTS734jcq9P-1HuaqCoT0aGJm9R0qgOM2h1jx4UpU8PMqXOJSJ270J3Zo9773oOKeHUj05uV-9rEGGuFxUC72cFfG93J51OfRFjDzM0Lg8eaMlOkuxfrzdes08xal3uX4zNr2kUJa9LoOjt_ReCjxPNsq8QsmCuFa3uj1lLjq9qEIwOcXUTDyPrUK84x8Iunhzsr12sNW63PCLObBxXT2ZisO8plkyOb7nxj0AHaa9akOGOXisI7yun349fQTTOCAYNLvTbPm8DTpJuKwTYTwChO89qBqeNnq767sqI8c7k0bmN6uscj25G8A7_6zRuL2P4704Zc49OHOROADKujyAF4w9eEuCOHnqjTv_eC88SagguKnRFT2z_0u85d9Rt5JdGT7ZT1C9rMI_uSvcE7xklQK-cT0buHI0CTtwjrS9ONKNtqTQCL0kRAk-mxbBNt7oXj145YS9QVK0uCL_7D01KQU-835buCmeabx4zZA9oeaauFrtxr0PFDM9aNv7N3wkur05ibc8XGwKtyAAOBNACUhtUAEqcxAAGmAFEQApCBbhDOn24_X1-_7sBfPv99YSAAfpAPcI-OILI-zXGg8AK_MY_tEAAAAbBRYY1AD7OhoP8A8FMfvpzeEdF38EBfDs1APq198KJw0ICvv9CBwA8B7p-x4E5CT_BBggAC2x0n07OBNACUhvUAIqrwYQDBqgBgAA0EEAABjCAAAMQgAAVMIAAJJCAAAAAAAAwEIAAMBBAABIwgAAwEEAAGBBAAAAwAAA6MEAAEBBAAAEQgAAAEIAACxCAAAAQAAAMMEAAKjBAADYwQAAOMIAAIbCAACoQQAALMIAAIDBAAAMwgAA4MEAABhCAAAQwQAAHMIAAJDBAADawgAANEIAABTCAACAQAAAREIAAPRCAAAgwQAAYEIAAKhBAADgQAAAZEIAACzCAABgQgAAzMIAAExCAAAoQgAAUEEAAABAAAAcwgAAgMEAAKBAAABAQAAAsEEAAAxCAACuwgAAOEIAAJhBAACyQgAACEIAAJTCAADwwQAAXMIAAIDAAABswgAAEMEAAKBAAAAQQQAAsMEAAMhBAAAIQgAAosIAALBCAADwwQAA6MEAAKjBAABgwQAAQMEAANBBAABAwQAAjkIAAIBAAACAPwAADMIAAJhBAADgQAAA6EEAAIRCAABIQgAAwMEAAFRCAAAEwgAAJMIAAIhBAADQwQAAQMEAAKBBAAAUQgAAaEIAAI7CAAAAQgAAoMAAAMBAAACEwgAAgL8AAMDBAAAEQgAAYMEAALBBAADwQQAAqEEAAIDAAACAwAAAoMEAALxCAADQQQAASMIAAABAAABQwQAA-MEAACzCAAC4wQAAwMAAAADAAACQwQAA-MEAAADBAABAwgAAgL8AAEzCAADgQAAA4EAAAI5CAAAkwgAAOEIAAIBBAAD4QQAA0MEAALjBAACIwQAAFEIAAAxCAACwwQAAlkIAAIJCAACYwQAAqMEAADBBAADgwAAARMIAAPhBAADAQAAAEMIAABxCAADgQAAASMIAAFDCAADawgAAYMEAAGDBAACAQQAAMEEAAPjBAADgQAAA6EEAAODAAACeQgAAAEIAAFhCAABwwQAAgEEAACBBAAAEwgAAgMIAAMjBAAAkwgAAgMEAAMDAAADYQQAAjsIAAADBAACAvwAAgD8AAIBCAACwwQAAFMIAACjCAADowQAA6EEAADhCAABAwAAA6EEAAAzCAABAQQAAGEIAALDBAACAwQAAiMEAALjBIAA4E0AJSHVQASqPAhAAGoACAACAuwAAfL4AAIA7AAAEvgAA4LwAAAE_AAAcPgAARb8AAEy-AAAQPQAAFL4AAEA8AABEPgAAEL0AAIi9AAAsvgAAuD0AANg9AACovQAAPT8AAH8_AACoPQAAqD0AAFQ-AAC4vQAAHD4AAIY-AACAuwAAgLsAAJg9AABkPgAAgLsAAIC7AADIPQAAzj4AAEA8AABQPQAABD4AALq-AACWvgAAir4AADC9AADIvQAAir4AAFC9AAAwPQAAmj4AANi9AADgvAAAgr4AACw-AAAcvgAAmj4AAPY-AACuvgAAML0AAH8_AAAcPgAA4LwAAIC7AABwPQAAQDwAANg9AADqviAAOBNACUh8UAEqjwIQARqAAgAATL4AAKA8AADoPQAAOb8AAEA8AABAvAAA6D0AAFC9AABAvAAAyD0AAEC8AAAcvgAAFD4AABS-AABkPgAAML0AAAw-AAAvPwAAoDwAAI4-AAAMvgAAuL0AAAw-AACovQAAcD0AABC9AAC4vQAAoDwAAOA8AACYvQAAiL0AAAw-AAAwvQAAqL0AANg9AACgPAAAmD0AAHQ-AADYvQAA2L0AADA9AACYvQAAuL0AADC9AACgvAAAQDwAAH-_AABAvAAAJL4AAOA8AAAUPgAAUL0AAAQ-AAA8PgAAnr4AAIg9AACAOwAAgLsAAJg9AACIvQAADD4AADy-AACYvQAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=jPa6Q-GJt6Y","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3743562874849415490"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1759674967"},"11560262530415179227":{"videoId":"11560262530415179227","docid":"34-2-15-Z2B4CE421CF184C95","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/de/stores/papaf... https://shop.spreadshirt.de/papaflammy 2nd Channel: / @rockhardwooddaddy Weier Def: • The...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3793178/fd53e5f3b181f4cb1d75a716b0adc4cb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/bpLkmwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkjK9WfmLElo","linkTemplate":"/video/preview/11560262530415179227?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"WAIT, WHAT?! Differentiating x Factorial x! - Introducing the Digamma Function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kjK9WfmLElo\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoWChQxMTU2MDI2MjUzMDQxNTE3OTIyN1oUMTE1NjAyNjI1MzA0MTUxNzkyMjdqkxcSATAYACJFGjEACipoaHJwYnliaGZiYnh6Z3ViaGhVQ3RBSXMxVkNRcnltbEFudzNtR29uaHcSAgASKhDCDw8aDz8TvAiCBCQBgAQrKosBEAEaeIHqBQL6_gIA_AAQBQcH_AEEAAAC-P_-AOPrAvoB_AIA9wETAQEAAADxBgECCQAAAP79C_3z_gEAA_v8AgQAAAAN9ggC-wAAAAwO7wL_AQAA9f4DBQMAAAAQBPjy_wAAAPgLB_r7_wAA_ggDDAAAAAAF_QL5AAAAACAALbqI1Ts4E0AJSE5QAiqEAhAAGvABfywT_6Ym2f_MBroADBXuAZA5Lf9AStj_vdkWAskI1wH0EPoA1ATkAB0B5QDVUhP_ONXsAAW92gAuy-z-USr0AO_75gFLz_wBb-1CBDjiCv-rNQz90gUC_xru0v8nONz-7cUa_REOzwEN5aYLLvo6ATzrFgIcMuQA6s0AAdgo_wPrGcn99gDuBg7XEvbH5yUC_PzdCQ80CfcAJu__K9cLAgAA__oHJwgCLRH1Bhn_-gmqwOwFAiH7CuIPLgQA6QQFAQ87-ejeF_cJ-A4H7Qf49d0W7Ar99gIWG_oIEhHyDQARvfv_zhTqDckfA_3yBPQAIAAtqzHsOjgTQAlIYVACKs8HEAAawAc5K_q-GQMMvDbvtLq-Wfk8EtjcvDwe6byPnYE9A0o-vae1hLxpOis-YSsSvSw_-jyz8HW-x9CWvEVkQDnLgDM-5tGIvZhiMzwZgaK9QLW7PeGkX73gu22-XoqWPRa5TLwjZfA8zNT_PCu9W7zS6wU9ZoPMvNUiAr2pqsi7sl0mvV_BDL30Hy09P7m3vZ4_Er0_5ci9ke08vb8enbyho7A8NmDrvKraizuzzXI9QfuHPAr3yryscOu98NOCPDIFqbsRACw-llsaPdsd7Txd3vw9wPwfvf5OzbpVil29HOOUvI0FCr09KAi947sePWfLILzlesA9KRXgO8MJ8bxCCi6-Pl8OvWzDcrwq0Yg9ig0MPSymyDzGYaq9q1udPe7UmjvleMs7AvvePJ7o37wGFts8qcL6PPaTFrxiRj098Wu9ux9PBr0vkbY9H9WFPQB4n7zeC8I97VagPFPuGTqTfQa9aWhIPYjRGjxJFeC8z_dwO9Ny2rotj5o8hnvAPD0SqztXiu68GmmOPTYCULvFNUM9-FENvglvLLvczbq7IPRnvUmyVLtqNg08n3sqPTHJbbyLy5w9pBd6vV94Srzfm3A9Uxi1vRrx7LtsJl896-DFPDHaDzq9Lzg957ytO_SPF7y_a6e7OsO5PNY1f7zEknY732-kPVxAwzopxKs7J-uhvWwGejuJZlk9AfGUPdF-vLin03U9AZklu7Ax-bpJDn09RcD8vCsy17tQtUy8Dh7cvCHIJLuS5g-9bEYBPU98b7rKNPo9E3vNvFmGYTjyv5s9NASDuUaIAzn-65G9Z4dTPZxI8binh1I9OblfvaxBhrirPZG9GlIVvjBRCjqqAXQ99XtnvRER5bkaoZS9d0xdPKmKrTgl1ji9GMxEvR8fzDlpD0U8uDISPfb1NrlHd4u9jDhTPQ_0Qri_B5S8IqqLvLJFBrnmKow8teScvXzogzgXAxU9v3x3PT0HBznsua-7xcGavROAdjlBTQi934ekO_Z-VThUpdK8H8zHPXLVWLeaH5Q9o68APbBkzjca5-U8XQ9rvbiwjTciM9c9cimZO_ktbDdaNKO9fFpKPXIgbDiDYvG7BuY3PRNDE7gLvVk8UMkUPAcZPLeNwgS9zFW9O0Y_ZrfCpNg9NiomvXu0Lbn_5V476UCLvcslr7h19fS8Wd3qvQ0j8TXCRn68D3vhPQy1wTd3YVC9nQZWvcEWorigFw49FyW9PSh_ADkOCo-90DoCusUCKLiyq4-9fLr6PHOUNDeBEWo8LfghvORr_jcgADgTQAlIbVABKnMQABpgROwAJf8n5BMNJfP1v-bw_dQoyCHbEv_Y9_8VN-_N_xbBrR34_yHMCtWbAAAALPYDB8AAKX8W8tUt6_wB2oe8Swh6GxEnxOg9B93gMg4B4N_r-iRPANE0kiVMF8NSPBs6IAAtFNgQOzgTQAlIb1ACKq8GEAwaoAYAABRCAABwwgAAhEIAAABAAACSQgAAgMAAACRCAAD4wQAABMIAAFDBAACQwQAAcEEAAKjBAACgQAAAEEIAAIA_AABgwQAA0MEAABBCAAAwwQAAAEEAAEDBAACowQAAHEIAANDBAACKQgAAzsIAADDBAACAQgAA-EEAAAjCAADoQQAAEMEAAADCAAA4wgAAFEIAAGhCAADUQgAAQMAAAEBBAAC4wQAAMMEAAABCAABcwgAAfEIAADTCAACgQQAAAEEAAChCAAAIQgAAiMIAAGDBAAC4QQAAIEEAAAxCAAAAwAAAgD8AAMhBAADYQQAAhEIAAFBBAAAswgAADMIAALTCAAA0wgAAjsIAADDCAADYwQAAqMEAAADCAAAMQgAAQMAAALDCAAAQQgAAiMEAAIDCAABkwgAAsMEAABTCAABAwQAAQMAAAIZCAACAvwAA4MAAAIBBAACYQQAAIEIAAERCAADgQAAA2MEAAIbCAACQQgAAAEAAACTCAABYQgAAgMEAAFDBAACAwQAAyEIAAIhBAACMwgAAaEIAAPhBAACAvwAAaMIAAABAAABIwgAAEEEAAIjBAACIQgAAoMAAAJjBAADQwQAAOMIAACDCAACAQAAAYEEAABjCAACQwQAAIMEAADDBAAB0wgAAqMEAAMBAAABAQQAAlMIAABBBAAAIwgAAyMEAAPjBAACgwAAAoEAAAGDBAABcQgAAAMEAAIpCAACAQQAAksIAAGBBAABIwgAAsMEAALjBAACOQgAAFMIAABRCAABwQQAACMIAAPBBAAC4wQAAIMEAAAAAAACCQgAA4EEAAADBAAAAwAAAAEIAAADCAABQwgAAhMIAACBCAACAwQAAQEEAACTCAAAswgAAcEEAAERCAACYQQAAskIAAEBCAABwQQAA4EEAAIDAAACKQgAAcMIAACjCAAAQwQAASMIAAMBAAAAwQQAA2EEAALrCAAAUwgAAQEAAANjBAAA8QgAApMIAAEBBAAA4wgAAIMEAAPBBAAAgQQAAJMIAACBCAABgQQAAsEEAAIxCAAC4QQAAuMEAAMhBAADIwSAAOBNACUh1UAEqjwIQABqAAgAAuL0AAEC8AACqPgAAQLwAABS-AAC6PgAAiL0AALa-AAD4vQAAMD0AAEC8AADgPAAAZD4AADQ-AABwvQAAQDwAAIo-AACYvQAAqD0AAI4-AAB_PwAAUL0AADQ-AAAMPgAAgr4AADA9AABAPAAAqD0AALi9AADoPQAAmD0AAEA8AAAEvgAAuL0AABQ-AAD4vQAAJD4AAOi9AABEvgAAZL4AAKC8AAAMvgAA2D0AAPi9AABcPgAAoLwAAOg9AAA8vgAA6L0AANa-AACgPAAAqL0AALg9AAA8PgAAuL0AAKA8AAAVPwAAMD0AAIC7AAB8PgAAEL0AAOi9AAAwPQAAHL4gADgTQAlIfFABKo8CEAEagAIAADy-AAB8PgAAUD0AACO_AAC4vQAAuD0AAM4-AAAQvQAA2D0AAEQ-AACAOwAALL4AABA9AADovQAAgDsAAKC8AABsvgAAOz8AAFy-AACCPgAAHD4AAL6-AADIPQAANL4AAOA8AABQPQAAZL4AAAw-AABQPQAA4LwAAOA8AADgPAAAlr4AADS-AABcPgAAcL0AALI-AADgPAAAXL4AAIi9AABkPgAAgLsAABw-AACAuwAAMD0AAKA8AAB_vwAAgDsAALi9AABwPQAAcD0AACw-AAA0PgAAiD0AABQ-AACoPQAA-L0AABS-AAAQvQAAQLwAAAw-AABAPAAABD4AADC9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=kjK9WfmLElo","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11560262530415179227"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4134598646"},"16066974598077595788":{"videoId":"16066974598077595788","docid":"34-2-0-ZD049AB840DEC88B9","description":"1st video on this with integration method: • Can I turn this into an integral??? Digamma function cheat sheet: https://owlsmath.neocities.org/Digamm... Digamma function playlist: • Digamma...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3422135/ee391089fe556da08eb88430e8ad8509/564x318_1"},"target":"_self","position":"5","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4DRASU37XAw","linkTemplate":"/video/preview/16066974598077595788?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve with the Digamma function?","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4DRASU37XAw\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoWChQxNjA2Njk3NDU5ODA3NzU5NTc4OFoUMTYwNjY5NzQ1OTgwNzc1OTU3ODhqrg0SATAYACJEGjAACiloaGZ4cnd5dXJta2Nld29oaFVDLWVmaDZWTXFFMEF5eGtUdXc0UmY0dxICABEqEMIPDxoPPxPNBIIEJAGABCsqiwEQARp4ge4B-f38BQD1AQMFBwT9AQz--wj3__8A7vwG-gYAAAD8_wcDAQAAAPr_AQUIAAAA8wP-AfoAAAD_-vn7AwAAAAgABAT8AAAAAgv4Bv4BAAD-APgGA_8AABf6_gwAAAAA-AoH-_v_AAD-CAMLAAAAAP_wBwEAAAAAIAAtcYbeOzgTQAlITlACKnMQABpg_xIAFBIcCfMBA_P08vj55ALl-wHhDgAL7gANBQLjCwgDzxQGABTrBQXWAAAAFAYSEwIABS8XEuQRBQ0F3fH_Ev1_GhbU8v4E9uv85R0IHOzlB_4bAA0J--Eb9OgOExIYIAAtTV-UOzgTQAlIb1ACKq8GEAwaoAYAAABCAACkwgAAwkIAAKjBAABgQQAAXMIAAIZCAAAwwQAAAMIAANhBAABgQQAAHEIAAKBCAACwQQAANMIAAMjBAAAwQQAAmMEAADxCAABgQQAA6EEAAMhBAACWwgAACEIAAJDBAAAIQgAAAMEAAAhCAAAYQgAAwMAAABDBAACQwQAAMMIAAABCAAAAwAAAsEIAAAAAAADEQgAAVMIAAIC_AABAQAAAAEIAADRCAABAQQAAQMEAAITCAABwQgAAcMEAAPhBAAAQwQAAyEEAAEBAAACgwQAALMIAAARCAADgQQAAgMEAAMjBAADcQgAAgkIAABRCAACkwgAAgMIAAEBBAAAAQQAAgMEAADDBAADowQAAYMEAAJDBAABgQgAAdEIAAFTCAABYQgAAAEAAAKbCAADQwQAAyEEAAFjCAADoQQAAkMEAAPhBAAAkwgAAmEEAAMjBAACYQQAAmEEAAJhBAACGQgAAiMEAAI7CAAAkQgAAkMEAAPDBAACAwAAAEMIAAKBAAAD4QQAAoEAAAIhCAADgQAAAMEEAAIjBAACYQQAASMIAAPDBAABAQgAAEEIAABRCAADwQQAAlkIAAABBAAAIwgAAaEIAALjBAADQQQAAgkIAAETCAACowQAAUMIAABBBAABQwgAAiMEAAFjCAACAQQAAMMIAAMDBAACAwAAAbMIAACDCAABgQQAAHMIAAJDBAAAsQgAAmsIAALZCAAAsQgAAQEAAABBBAAC2wgAA4EAAAIDAAACgwAAACMIAALhBAAAwQQAA6MEAABBBAAAQQgAAcEEAAPDBAAAMwgAA4EAAAODAAABQQQAA4MAAABDCAAAcwgAAQMIAAPhBAAA4wgAAwEAAACBBAAAswgAAEEEAAABAAAAgQQAAsEEAAIDAAABgQQAAXMIAAFBBAACwwQAAMMEAAGDCAABwQgAApsIAACjCAAAkQgAASEIAAEjCAABAQQAAQMEAAJjBAABoQgAAKMIAAARCAAAQwgAAkMEAAGhCAAAUQgAA2MEAADRCAACQQQAA6EEAANBBAAC4wQAALMIAABDCAAAgwiAAOBNACUh1UAEqjwIQABqAAgAAqL0AAOA8AACGPgAAED0AAKC8AACmPgAAML0AAA2_AABsvgAATD4AAJg9AAAcvgAAlj4AAKA8AACgPAAAmL0AACQ-AAAEPgAAHD4AANo-AAB_PwAAuD0AAEA8AACGPgAAFL4AAIA7AAAkPgAAoLwAAHC9AAC4PQAAmD0AADy-AABAvAAAEL0AAMY-AABwvQAAoDwAAAy-AABEvgAAor4AALi9AAAwvQAAiD0AACS-AAC4vQAAUD0AALg9AABwvQAAdL4AAIq-AADIPQAAQLwAAHQ-AACyPgAARL4AAEC8AAA1PwAAQDwAAAQ-AAAQPQAADD4AACQ-AACIPQAAor4gADgTQAlIfFABKo8CEAEagAIAALi9AAAUPgAA6D0AACm_AAD4PQAAFD4AAAc_AAAkvgAAmD0AAEQ-AAAcPgAAmL0AAEC8AAAsvgAAiD0AAOC8AAC4vQAAOT8AAFy-AACKPgAAHL4AAIq-AADgvAAAED0AAEA8AAAsvgAA-L0AAFA9AAD4PQAA2L0AAEA8AAAUPgAAnr4AAOC8AADIPQAAEL0AAIY-AAAkPgAAjr4AABS-AAAcPgAAEL0AAIA7AAAQvQAAcD0AAJg9AAB_vwAAUD0AABw-AAAQvQAABD4AALg9AAB8PgAABL4AANi9AADYPQAA4LwAAPi9AAC4PQAAqD0AABw-AADovQAADL4AALg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=4DRASU37XAw","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16066974598077595788"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16331992064106964468":{"videoId":"16331992064106964468","docid":"34-2-16-ZD349E8F5A6EA2273","description":"In this video, we introduce and establish several important properties for two integral-defined functions: the gamma function and the digamma function (the logarithmic derivative of the gamma...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3286218/42639e3b308846d0c1b050fa9cd88a61/564x318_1"},"target":"_self","position":"6","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-OyXXBKTaAk","linkTemplate":"/video/preview/16331992064106964468?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"(RA22) The Gamma and Digamma Functions","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-OyXXBKTaAk\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoWChQxNjMzMTk5MjA2NDEwNjk2NDQ2OFoUMTYzMzE5OTIwNjQxMDY5NjQ0Njhqrw0SATAYACJFGjEACipoaHN6dHZ5a3hpcm51bmJjaGhVQ3hmYTR1eUp4N1BBdnJSeW5rSlV4dUESAgASKhDCDw8aDz8TwRKCBCQBgAQrKosBEAEaeIHuAfn9_AUA5P_3_v7-AwAGBvgA9___APP7_fwHAQAA8_oHAQQAAADy_g0CBgAAAOz9-wz3AQAAC_f3_QMAAAAA_P4G-gAAAAEQAAT-AQAA-A8ABAP_AAAPBvkO_wAAAPoN_Pv_AAAABQz5AwAAAAD_8AcBAAAAACAALXGG3js4E0AJSE5QAipzEAAaYAIZACX-Lub_-A37C_78FPH1-PoA2PkAAPAAHBwG4g4D47sDCgAK7gf-zgAAACEMBBQIAAQ6Jw7YJvv9DNjh9wkKfxgd5_T3Gerp__UjIinq_fYKCwAMBvjlGgToFBwtKCAALcdKgDs4E0AJSG9QAiqvBhAMGqAGAAA0QgAA8EEAAChCAABAQQAAqMEAABxCAAAoQgAAoMAAAFzCAACAPwAAnEIAAKjBAAA4wgAAEMEAACBCAADoQQAAqEEAAIDCAACYwgAA2EEAAGBBAABQwQAAQMAAANBBAADAwAAA0EEAAEDBAABgQQAAmEEAAOBBAABAQAAA4MAAACDBAACAQQAAmEEAAKBBAAAAwgAA_kIAAIC_AAAYwgAAmEEAANhBAAAkQgAA4MEAAODAAACAQQAAwMEAAJrCAAAAQAAAgL8AAABBAADgQAAAoMEAABDCAACAQQAAqEEAAHjCAAAkwgAAEEEAAJhBAAAMQgAA4MAAAMBAAABwwQAAsMEAAHjCAAAAQgAAYEEAAIDAAACUQgAAZEIAALJCAAAIwgAAtEIAAKDCAADQwQAAiMEAAEDAAACAwQAAKEIAADDCAAAAAAAAsMEAANhBAAAQwgAAiEEAABxCAAAgQQAA2EEAAOhBAADQQQAAAMAAABDCAAAEwgAAcEEAAHDCAACIwQAAhkIAAIC_AACawgAAPMIAAFBBAAAIQgAAqMIAABTCAACwwQAAKMIAAOBBAAAQQQAAUEEAACxCAAAowgAAJMIAAMjBAAAQwQAAUEIAAFBBAACYwgAAYEEAAOhBAABgwgAAMEEAAMjBAAAQwgAAIEIAAIhBAAAQQQAAuMEAAGDCAADAQAAANMIAAIRCAAAwwgAAFEIAAIxCAACAPwAAIEEAAIDBAACuwgAAQMIAAABBAACkQgAAFEIAAODAAAC-QgAAwEEAAIC_AAB8QgAAoEEAAIhBAAAAAAAAgMEAAIBBAADQwQAAQEEAANhBAACYQQAAnMIAAKBAAAAQQQAAAMAAANBBAAAgwgAAkMEAAFjCAACAwgAAhEIAAABBAAAQQQAAqEIAADDCAACMwgAAEEEAANBBAAAcwgAAGEIAABDCAAB0wgAAAMIAAIJCAAAEwgAAHMIAALDBAAAwQQAAOEIAACDBAACYwgAA7EIAAIDAAAAwQgAAcMEAAIC_AAAgwQAAQMEAACTCAAA0QgAAUMIAAKBBAADAwQAAsMEgADgTQAlIdVABKo8CEAAagAIAALa-AAAUvgAAND4AAEC8AACAOwAAuj4AANi9AAAbvwAAjr4AAEA8AADgPAAAXL4AAII-AAC4PQAAgDsAAFC9AAA8vgAAMD0AAFw-AACmPgAAfz8AAMi9AAAwPQAABD4AAES-AABMPgAAHD4AANg9AAAsvgAAgDsAAJI-AACIvQAAFL4AABy-AADuPgAAgLsAAEA8AABEvgAAur4AABC9AABAvAAAbL4AAFA9AAB0vgAAyD0AAHQ-AACePgAAiL0AANi9AAB8vgAAML0AAMK-AACWPgAAFD4AAOi9AACoPQAAKz8AABQ-AAAQPQAAsj4AAGQ-AAAwPQAAML0AABy-IAA4E0AJSHxQASqPAhABGoACAACgPAAAoLwAAAy-AAAnvwAALL4AAPg9AADyPgAAHL4AAIg9AAD4PQAAMD0AADC9AAAkPgAA6L0AAMg9AACAuwAAyD0AADk_AABwvQAA-j4AAGS-AAA0vgAAMD0AAPi9AACAuwAAoDwAACw-AADYPQAALD4AALi9AADgPAAAmD0AAIq-AAB8vgAAgDsAAAQ-AAAcPgAAsj4AABS-AABkvgAAyj4AAFA9AADgvAAAED0AAEA8AADIPQAAf78AAKK-AABQvQAAVD4AAFQ-AAAMPgAAiL0AADC9AABQPQAA2D0AAKi9AAC4PQAAML0AADC9AACmPgAA-D0AAKC8AABMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=-OyXXBKTaAk","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16331992064106964468"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16576755372464592732":{"videoId":"16576755372464592732","docid":"34-7-6-ZCDF9D60179AB669E","description":"Follow me on twitter @abourquemath The digamma function is the logarithmic derivative of the gamma function. We play around with its definition to get some nice expressions, including the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1995642/63e5b20159e4d85bf82d0216266bf6b4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zmOgUAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dt1A3zNsP5DU","linkTemplate":"/video/preview/16576755372464592732?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Digamma Function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t1A3zNsP5DU\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoWChQxNjU3Njc1NTM3MjQ2NDU5MjczMloUMTY1NzY3NTUzNzI0NjQ1OTI3MzJqtQ8SATAYACJEGjAACiloaHpvcXpzbGhseHhvZWJoaFVDekJSb3RkSlMzYkpQY1VaeWVQa0hCdxICABEqEMIPDxoPPxOWBIIEJAGABCsqiwEQARp4ge4B-f38BQD1A_4CAAT_AfoD_wH5_f0A7vwG-gYAAAAA_gEDBwEAAPr9CAQAAAAA8wP-AfoAAAD__PUEAwAAAAgABAT8AAAAAgv4Bv4BAAD-APgGA_8AABf6_gwAAAAA-QX--P4AAAD-CAMLAAAAAP_wBwEAAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_-xMB5e_RAc4C6gHZ__YB0kMhAPge8ADQ5ewBvR7vANMO5QDp_gAA1hbqALgn-P8S2rgCG-T9ACDD9v8j1e8B4hIEAQjl8QFaHyv9Fff4APEMFf_s4f3_HOfnAB4r5P8D2QQAFfXjAAUs2QMuKi0B9PcTAf_4D_3ftP0B9tn8AuPy8P7pL-P89AYA9sr-HgEe3fUJAAoWAuj-4QQJ5gUD89gi_w4k8AQT5xAOLv7vA8rn_gX84_cGDTgB_9QH1P34Bg8B1BP68hH8EPz1GQXw1hD8ACf88gIABwcCHwsJDTj29_fp9RP17QrrBsv57gIgAC1cMBs7OBNACUhhUAIqcxAAGmAv9QAr9UXoOwD--SHn3hu82wbTELEC_wL8_ysn2Ao-G8OuCBUA-PMZ2p8AAAAwHPg-3gDzfCMeA0ToKh2lzc8k_X81HgiuvyUP7fQoVDoJwPz4-EkAMB6j9iQOlwk3OS0gAC1cXRE7OBNACUhvUAIqrwYQDBqgBgAAkEEAAKDBAACuQgAAVMIAAADBAAAQwQAAXEIAABhCAAAAwgAAYMEAAJhBAACowQAAQMAAAMDAAACgwAAAAMAAAIZCAABswgAAgkIAAIA_AACAPwAAoMEAAPzCAADgQQAAcMIAADDBAAAAAAAA4EEAABBBAADoQQAA8MEAAJBBAACOwgAAoEAAAL7CAACQQQAAuMEAAAxCAAAwwgAAEEIAAMjBAACAwAAAUMEAAIhBAAAcQgAACMIAALhBAABcQgAAsEEAAAhCAAAAwQAAnsIAABDCAABUQgAAIEEAACxCAACmwgAAwMAAAAxCAADwQQAAAMEAADTCAABEwgAALMIAAEDAAAB8wgAALMIAAODBAABIwgAA-MEAACBCAABwQgAAMMEAAABAAACYwQAAYEEAABTCAACQwQAAQMAAAADAAACAPwAApkIAAEDAAAAQQQAAgEAAAFBCAACowQAAisIAAKhBAADoQQAAgEEAAPhBAABowgAAJEIAAChCAAAQwgAACMIAAMDBAACgQAAAyEIAACTCAADAwAAAwEEAACDBAABkwgAAQEAAAKBAAAAkQgAAQMAAAJRCAABsQgAAFEIAAEDBAADwwQAAAAAAAIZCAADoQQAAUMIAADTCAACwwQAAUMEAACjCAACIQQAAQMIAAAzCAAAQwQAADMIAAIDBAAAAwQAA6EEAAHDBAAB4wgAAHEIAAKhBAAAQwQAAaEIAANBBAACYQgAAAMIAADDCAACgwQAAwEAAAPBBAACawgAAwMAAACRCAAAQQQAAoEEAAADAAACMQgAA-MEAAABCAACUQgAAsEEAALBBAAAAwgAAnsIAADDBAABgwQAAUMIAAHTCAAAUQgAA0EEAAIC_AABAQgAAMEEAAHBBAADIQgAAnEIAAIjBAADwwQAAoEAAANjBAAAwwgAAhsIAAABAAADgQAAAOEIAAOBBAABcQgAAusIAAETCAACowQAA0MEAAIBBAACQQQAA8MEAADDBAACoQQAADMIAAGhCAABwQQAAsMEAAADBAAAAQQAAhEIAAJDBAAAwQQAAuEEAAIBAIAA4E0AJSHVQASqPAhAAGoACAADYvQAAmL0AAEw-AABQPQAA4LwAAGQ-AAD4vQAA9r4AAJa-AABEPgAAoLwAAOi9AAB8PgAAED0AAKg9AAAwvQAAcD0AABA9AAA8PgAAjj4AAH8_AABAvAAA-D0AAAw-AACYvQAAuD0AAHA9AAAQPQAAuL0AANg9AAAEPgAAML0AAMi9AACovQAAyj4AAJi9AAAwvQAARL4AAGS-AAAEvgAAuL0AAGS-AADgvAAAPL4AAHA9AAAQvQAAHD4AAHC9AABsvgAAor4AAEC8AAAsvgAAFD4AAEQ-AACovQAAcD0AAB0_AACoPQAA6D0AACQ-AABEPgAAED0AAOA8AACeviAAOBNACUh8UAEqjwIQARqAAgAA-L0AAOg9AADgPAAAP78AAEA8AAAwPQAA4j4AACy-AADIPQAA6D0AAFA9AAA0vgAABD4AAPi9AABQPQAAML0AADA9AAAzPwAAuL0AAIY-AABcvgAATL4AAAw-AAAQvQAAQLwAAOi9AABAPAAAMD0AADQ-AACgvAAAED0AACQ-AAC2vgAAuL0AAIi9AACAuwAAbD4AAHw-AAAkvgAA-L0AAHQ-AACIvQAAyL0AANg9AAAwPQAAHD4AAH-_AADYvQAAgLsAAGw-AACePgAA4DwAADw-AACYvQAAqL0AALg9AACgvAAAMD0AAFA9AAD4vQAAjj4AAIC7AABEvgAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=t1A3zNsP5DU","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16576755372464592732"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1137181933"},"4837501241321823606":{"videoId":"4837501241321823606","docid":"34-9-12-Z3CC8CDEB0EAD5C9E","description":"Notes: https://drive.google.com/file/d/1SWy6... Gauss's Integral for Digamma Function (used on page 2 in the notes): • Gauss's Integral for Digamma Function... 1/( t²+4π²k²) G(x) = Integral over...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1975414/728829523fdbc0fa261d79df37dcbadf/564x318_1"},"target":"_self","position":"8","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLefbuaF6jEw","linkTemplate":"/video/preview/4837501241321823606?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Bounds/inequalities for the digamma and trigamma functions","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LefbuaF6jEw\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChM0ODM3NTAxMjQxMzIxODIzNjA2WhM0ODM3NTAxMjQxMzIxODIzNjA2aq8NEgEwGAAiRRoxAAoqaGhsa2ppamtiZHBodXFnYmhoVUNYVXRPbFkwcGNTbmlMLWg5U29HTlRBEgIAEioQwg8PGg8_E9gIggQkAYAEKyqLARABGniB9v70AfwEAPEC_P_6AgABAPz2_fj-_QDyAfgCBwH_APj8CQoJAAAA-gUJAggAAADu_voC-wEAABH2-QgCAAAACAAEBPwAAAANC_wD_gEAAPgB_AED_wAACgPuAQAAAAD5DgTyAAAAAAQE_QYAAAAAAvgFBgAAAAAgAC1QGeE7OBNACUhOUAIqcxAAGmARGAAkBRbj_AkR-BD0Awb59O79898SABP5ABMP_foYC-raCQgABPAKAtkAAAAIFv4ZCAAAKxwH8gUG_wDe1uYO_H8KGPP-Dw3z2v4DFCEV6fkB_AUA_f4H9A8T7RgZGyIgAC1ey5c7OBNACUhvUAIqrwYQDBqgBgAA2EEAAHBBAACUQgAAjMIAAGBBAACowQAAcEIAADDBAAAAwAAAqMEAAEBBAAAQQQAAMMIAABBBAAA0wgAAPEIAANBBAABYwgAAXEIAAOBAAACgwQAAIMEAAKLCAABgQQAAgsIAAMjBAAAkQgAAAMEAAOBBAAAAQgAANMIAALjBAAC0wgAAyMEAAL7CAACgQAAA4MAAAPhBAACgwAAAYEEAADDBAACgQQAAUMEAADDBAAB0QgAAJMIAAIDAAABMQgAAgMEAAIBBAAA0wgAAkMEAAPDBAAAEQgAAHEIAACRCAABwwgAAEMEAAExCAACYQQAAoEAAAGDCAACEwgAA4MAAAFBBAACMwgAA2MEAACBBAAAwwgAA2MEAAAhCAADwQQAAsMIAAERCAADYwQAAgEEAADDCAADAQAAAUMEAAODAAACAwAAAikIAAEBAAAD4wQAA4MAAAHBBAAAwQQAAmMEAAABCAACwQQAAcMEAAGRCAAAowgAA2EEAAJBCAADIwQAA4MEAAEDAAACgQQAAVEIAANjBAAAowgAAPEIAAADAAAB0wgAAREIAABBCAABwQQAACEIAAI5CAADQQQAAAEEAANDBAAAAwQAAqMEAAKRCAADoQQAA2MEAAFzCAAAowgAAcMEAAETCAAAYQgAANMIAANjBAAAQQQAANEIAADzCAACAwAAAcEEAADjCAAAAwgAAYEEAAIxCAAAEQgAAykIAAMhBAACqQgAAjsIAAPDBAAAgQQAAiMEAAAxCAABMwgAAoEAAACxCAABAQAAAGEIAACjCAACQwQAACMIAAFxCAAAoQgAAVEIAABBCAABAQQAALMIAABDCAABAQQAAisIAAKDCAAAIQgAAAMEAAMBBAABYQgAAkEEAABTCAABsQgAAYEIAAMDAAACAQAAAoEEAAMBAAAAswgAAqsIAACxCAACgwAAAAMIAABhCAACgQAAAUMIAAATCAABAwAAAsMIAADxCAABQQQAALMIAAITCAADAQQAAsEEAAGBCAABAwQAAAMIAABDBAACIQQAAxEIAAJDBAAD4wQAAiEEAAIBBIAA4E0AJSHVQASqPAhAAGoACAABAPAAA4LwAAAw-AACIPQAAgLsAAKo-AABsvgAAA78AACS-AAAkPgAAJD4AAIi9AACyPgAAMD0AABy-AAAUvgAA2L0AAIg9AACoPQAAlj4AAH8_AABAPAAAMD0AAGw-AABEvgAAcD0AADA9AAC4vQAAcD0AAIi9AAAMPgAANL4AAKA8AABwvQAAvj4AANi9AABQvQAAir4AAIq-AAAMvgAABL4AAGS-AABUPgAAkr4AAJg9AAAwPQAAPD4AAHy-AACYvQAApr4AAKA8AACIvQAAlj4AABw-AAA8vgAAML0AAAc_AABQvQAA6D0AAOg9AADYPQAAgDsAAOA8AABcviAAOBNACUh8UAEqjwIQARqAAgAAqD0AAFC9AACgPAAAEb8AAFA9AAAUPgAApj4AAEC8AADovQAAHD4AAOg9AAAwvQAADD4AAEy-AAAUPgAAEL0AAHC9AABLPwAAQLwAAKo-AAA8vgAAgr4AAAw-AADovQAAQDwAAAS-AAAwPQAAgDsAAEQ-AADovQAAQDwAAPg9AADGvgAAHL4AAKA8AACAOwAAED0AANY-AABkvgAANL4AAIY-AAC4PQAAUD0AAMi9AAD4PQAA2D0AAH-_AAA8vgAAhj4AAKC8AADoPQAAQDwAAOg9AAC4vQAAUD0AADA9AACgvAAAcL0AABy-AABwPQAAPD4AAFA9AACovQAATL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=LefbuaF6jEw","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4837501241321823606"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6983919376424678357":{"videoId":"6983919376424678357","docid":"34-6-17-Z7F733DCC05EAC527","description":"Digamma of 1/3 evaluated using the infinite sum definition and conversion to an integral. Feel free to suggest integrals or other problems for me to try in the comments!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3430537/e4b44eee4b549984695d9ef685a62ee5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/idzGMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAA7AlvXQr6w","linkTemplate":"/video/preview/6983919376424678357?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Calculate Values of the Digamma Function!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AA7AlvXQr6w\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChM2OTgzOTE5Mzc2NDI0Njc4MzU3WhM2OTgzOTE5Mzc2NDI0Njc4MzU3aogXEgEwGAAiRRoxAAoqaGhuamZ4Y2xmeHRnYXJmYmhoVUNkZWxjRktlUjRpVzdIRzBqRjdpZ0h3EgIAEioQwg8PGg8_E_4DggQkAYAEKyqLARABGniB9Pz2_gH_APv-A_8DBP4BCwDvAfb__wD4_f4DBQL_APUGBgEBAAAA-hEE_gYAAAD1CPcR_v8AABAB9_wEAAAADAEMBPUAAAAPDf0DEv4BAfsL9w0E_wAAC_UBBwAAAAD3Cwf6-_8AAP__-w0AAAAA_-8HAQAAAAAgAC2FQdE7OBNACUhOUAIqhAIQABrwAX8jCgPa9qwBwhThAO7lBgHLCREAGU75AMvj6gG09sQAERHMAesE7f_2HgIAjBLtARHczAD89-kBPf0E_zjECwAY8wABCvHoASc4KP4J6Rr_6gooAAPD-gEY8cL_5vDX__7lF_8PDNcB7AO_Aib7MQHj-S8EAcH_A_DCCP_05QoGBvMK8gAf8vzx7wf39vQo_vfEBAAQBgnz8xX3AO8JHgbp4gr0KRz0-vH2DQlFH_gDrtIO_wvgBAAXIyX-zf3tBNXxMAbT-wr2FPYE7DT19Abq-P3-2-HxCg_-_vwOC__9Nef9Cgbb7fX1D_cN5Brd8SAALbb3DDs4E0AJSGFQAirPBxAAGsAHNbXMvqF0WDy9TQQ9moKbvam1F7wDBV694OLXvHi0EDzYkwa79rZJPpJSir1RVw09NigQvXRtiT3D_Ms7_b10PpJUS70Dsew8cT1avucWvz2FTKi8vu-5vdaPTT1BFr08HtfAvUmznrzcbXK870jLPe6KDTyJDCY9c69dPPMsgj0lweW8vHzGPG4OH7wiDXi9N_R7vVxhUTvdLHu7nYV4Pbw-kLuKBT688QWXPQsmHr2ntBm9OC_uvScRQT24jCC98OfKOx-DVT3ij4c8WP68vcXZnr0qS1873xiSvdm_4TwBmcY7nLS6PUrtRTywepu8YpOpO3EqyL3Iaqm8Y7QevjYWe7t_YFg8ldxcPQZCNz1wtsg5Can7vaXnTDwlRBa7c9j9PEn2hDnlxym8uO4Du_LCZz2sKzC7PD0lPCM9e7zqo766w6Novf5OCT1rlP88W5WUPeoOqL0wMIa8KnF9Pae-PbzVfka8rKbQvIDhi7yB6ZO7g4nfvVxrqT37ozk8zxPPu7QZTDxmxH07j-AWPlt4Dr4D5w68Yyp9vKNFzL2HKka8PRVGPeprpzx6BkO8Q6kdPh9q273Emqk52HUZvRxqSjwzUSW7wPZCvbj-Yr1N9YE4lSSEvZxEnr31Ll67NhqlvVvKnjzrKg-8eJGyu09BGT2iROy7mTbSvLxazr0YnC86YYIEPfql9Dwg-6y7Tzv8Pc0Iyjpz6gS3li8ePa7Yj732P-G6PbrBvVG5Dzxbm4S6iKZHvVdgg710_2c4eVgIPrggvrsPtpE4kH8LvW9NhT2ST5k4J4j6vdqnBDx18Hi5U7MnPdKQTL0zGpQ43SqjvFc9wL2RBh45uFb7PNlxy7rLzwy6VuZ3vSECnj0jH1o5zCDDvdQNBL4IU4U5FbTBu7TnMrx4v7a4SdV7PSH_cbxNlFE3v2iqvAHRXTtxYIu5bTHJPChJ8ry0nqw49zy_PfrnzrwySdk4I6yMPfRsBr7PcKU5OeWbvH1v3TwYt_y35Y5IPAmOJjzpW4S43JQcPU6ilD26wIc3EtG3uwz9iL1QZfo3zF2LPJwOrjx13wa4AIshvVjm7T2dLtw4_9vbPJwdZD2-hTw5gGDuvQQPAr0MGcO4b08LPWe4AT0wY5g4Ol3WPexKjTsc-0m5K9wTvGSVAr5xPRu4cjQJO3COtL040o22m9KPu-Lkjj1g3kc3Gno1PVKCGb2aDlK4yvRwPSLhKz7xy4o48LI1vVzMzz0MRgq5pyUGvs8Zi7v0jjQ2mGdKvUEUJzzyREw3IAA4E0AJSG1QASpzEAAaYCEAAEgvNcPr5S_SDdrrFtLS-snyxyr_AeEABPYaBiQ2wsbr_AAM7inFqwAAABn6FgTmACJrE_HJDvkXGb66zycKf0j5HeTTDA7xzDxrJ_Pd-dcEaAAJ-toIHvewFP49HCAALTHCHjs4E0AJSG9QAiqvBhAMGqAGAADIQQAAAMIAAKZCAABIwgAAAEAAAFjCAADQQgAAEEEAAATCAAC4QQAA2EEAAKBAAABQQQAAcEEAAMDBAADwQQAADEIAAOBAAACoQQAAgMEAAADCAAAgQQAAUMIAAEDAAAB8wgAAAMIAAIA_AACIQQAAfEIAAIDBAABwwgAAuMEAANzCAACoQQAAMMIAAMBBAABQQgAAcEIAAABBAAAkQgAAAMIAADBBAAAQQgAAGMIAAMBAAACiwgAASEIAAIBCAAAYQgAAEMEAAKBAAADowQAA4MAAAEBBAADAQAAAcEEAAJjCAAAAAAAAwEEAABhCAAAQQQAApsIAAAzCAABIwgAA6MEAANjCAAA0wgAAcMEAAAhCAABMwgAAqEEAAOBBAACUwgAALEIAAETCAACgwQAA4MAAALBBAADAwAAAQEEAAOjBAADEQgAACMIAAMjBAABQQQAAyEEAAChCAAAQwQAAAEIAAJRCAAB8wgAASEIAAABAAAAAQAAArEIAAKjBAADAQAAAuEEAAHBBAACwQgAAKMIAACTCAABgwQAAkEEAABTCAACgQAAAyEEAABhCAADgQQAAVEIAAHRCAABQQgAAmMEAAMBAAAAQwgAAqEIAAOBBAAAUwgAAgD8AAJjBAADIwQAAeMIAAKDAAAAAQQAARMIAAFDCAAB0wgAAqMEAAOjBAACIQQAAFMIAAIDBAACgQAAAcEIAAIrCAAAEQgAAAEAAAOhBAADAwQAAHMIAAGDBAABwQgAAXEIAADDCAACCQgAAjkIAAIBBAADgQQAAUMEAADjCAAAAwgAAgMEAAMDBAACAwAAAoEAAAIhBAAAAwgAAqMEAAGzCAACYwQAABMIAAMBBAAAQwgAACMIAACBBAABkQgAA8MEAAExCAAAAQgAAAMAAAHBBAADoQQAA2EEAAHDCAAAowgAAmEEAABDCAAAgwQAAgEAAAKhCAAB0wgAAwMAAAAjCAAB0wgAAgD8AAEzCAACQwQAAwMEAAIDAAADAQQAAIEIAAIjBAAAgwQAAgMAAAEDBAAAUQgAAYMEAAAzCAAAwQQAAAAAgADgTQAlIdVABKo8CEAAagAIAAKi9AADYvQAAHD4AAMi9AAC4PQAAfD4AAOA8AAAjvwAAHL4AAJg9AAAMvgAA6L0AABQ-AACgvAAA-L0AAEy-AADIPQAA2D0AAFA9AADaPgAAfz8AAIi9AACoPQAAmj4AAMi9AAAkPgAA2D0AABC9AAAUPgAAVD4AAPg9AACevgAAQLwAAJi9AADIPQAAMD0AAEC8AACCvgAAPL4AAHS-AAAUvgAAgLsAAEQ-AADYvQAAXL4AAEC8AAAUPgAALL4AAJq-AAAQvQAAgDsAAKA8AAAsPgAAZD4AAOi9AADgvAAAHT8AAMg9AACIvQAAkj4AAGw-AAAkPgAAFD4AAGy-IAA4E0AJSHxQASqPAhABGoACAADIvQAAuD0AAIC7AAA9vwAAuL0AAPi9AAB0PgAAcL0AAIC7AADIPQAAgLsAAGy-AAAkPgAAHL4AAII-AADovQAAiD0AABk_AACgvAAAVD4AAAS-AACIvQAAiD0AAEA8AAAwPQAAcL0AAJg9AACAuwAAHD4AAIi9AACYvQAAHD4AAGy-AABUvgAAPL4AADA9AACGPgAAgj4AADS-AABkvgAAmL0AAOA8AACIvQAAFD4AAFQ-AADIPQAAf78AAOC8AACYvQAA-D0AABQ-AACovQAAUD0AADA9AABsvgAAuD0AAFA9AADoPQAAmD0AAIA7AACmPgAAoLwAAHC9AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=AA7AlvXQr6w","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6983919376424678357"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"571089552"},"9063782064625721532":{"videoId":"9063782064625721532","docid":"34-11-6-ZD9EFFBCA41196354","description":"Help me create more free content! =) https://stemerch.com/ / mathable Merch :v - https://papaflammy.myteespring.co/ https://www.amazon.com/shop/flammable... https://shop.spreadshirt.de/papaflammy...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3296372/7149733d607f48966d6817b377634a7e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aFwgOAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DE6WygdbGXl8","linkTemplate":"/video/preview/9063782064625721532?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gauss' Representation for the Digamma Function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E6WygdbGXl8\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChM5MDYzNzgyMDY0NjI1NzIxNTMyWhM5MDYzNzgyMDY0NjI1NzIxNTMyaogXEgEwGAAiRRoxAAoqaGhycGJ5YmhmYmJ4emd1YmhoVUN0QUlzMVZDUXJ5bWxBbnczbUdvbmh3EgIAEioQwg8PGg8_E8YEggQkAYAEKyqLARABGniB8w36_fwFAOgHBPv7_wIAE_UHBvcAAAD4_f4DBQL_APoFBwT5AQAA8AAEBAAAAAD4Bfr-9P8BAP_89QQDAAAAE_oJ_QEAAAAJEPsO_gAAAP8B8_0C_wAAFwDyBv8AAADxA_v6_v8AABEQ9QUBAAAAAvv2BgAAAAAgAC1TZt07OBNACUhOUAIqhAIQABrwAX_0Nf7U9Z4BhQvTABEm5wKxKT__MjTyANUDCgDlGeYB4d0SANXvBQEsEOwAjf32AfHD6QDJxOMAHOgT_iXyMv8H6AoBI_r2ADTgRgIV3g_-riD__7oEEf_9utcAWEfx_y_8LP771NcC6QS0Ai36OQH3LvgDEgzCBtLvBv_wIgz-wdS_-vAa-QjbsBn-AT0oATTcKQMJDiz7EP7cAArLDPtN7__uIDr7_Avn4grUt_T879UC-fXrBQILIRUG8ALf9hjzJ_AHwf_2FtYmBf1JC_nhMegKEugDFh8iGPvZ0wv1FOjv_84x_AXk6vX46vP2_iAALU178To4E0AJSGFQAirPBxAAGsAHuRwDv6G_q7uac_i7qfcUvEQlw7t3Lsy8mxvTvBczHb3QXbe8Jpa6PUMfDL1eKoY9OGmKvtEMPTztrn08nUaCPn8WS7y-Esi8RE7fuzxQkj3KkUm981kOvjhvNz12-yy7nb0jPni7uTxFw5i8qcHUPeqoNDztSqa8IhTAPNbM9byFKpC89B8tPT-5t72ePxK9N_R7vVxhUTvdLHu7jymZPSZRVD2YeTw8xQDoO9_mqLzf3x48OC_uvScRQT24jCC94pIDPoejkDw4D0w8cDruvDpauDtY3-W8YjD_vG1AP70Lrwm905klvRc5ejxbqEa80qOOPZmkDb1Q37I8ZRdcvninjDwoBLy7YtUDPPVZUDsuvUc8A3NZvQ3mmj0vYy-8ziinvCfxjj1V4L-7SxcHPf-JGz00z1s8cM_zPBvc8bzePuu8CM1JPX5tojzq_8U7ANNYvA9cijyDtga9a4OuvMlILDzexou8JwetvRdWYLz0-368G-1dPW8UtDxVTEE6pYVLvME3Tbyv4TM8j-AWPlt4Dr4D5w68zvIGvZA4ir2cy0O80KD8PFCJ0DyKcQC8tCAEPhgIAr3YIDe6jQuVOUUwub2I9s47PZFxPfhhLr355oq7OiF0PN6BsLwbZJY7ZCe0OydTIju-gW68IB8ZPdhhnD0krBW7VqVIvcQaGbxgoNY7qrqHPHES1Dwiot67NWy6PS5hozx7Usk4iCSEPaUZtr3cmS67PHyjvILnqb3Wf1-472WsvFhtI70sTxw7at6BPVFmaL0CFoQ5SC8vPRvUfrwCxga5LdEJvpYhLj2euGC4g-FXPYbcsbxMshS5iQ-3vbdCuL0xQro4d6ZLvX1wo7zWGoe5WqFIvIu8UTzOEx85p0fJvJsTxb0DArM4nVI0vTeffz2YhJK4xeKcvJTdDD0UvbK3AXRuvfnihr3jiYM4dpkrPC2IUr1W6Vy4llKhPZr2Iz1lzWg3t8lyPG0tHb3Lo8K4iCOZvVZfwjw7K6k4ksyqPCJVBD4FDR83hPIAPKB62jxO72m3xzdqPSBfgr12-co2GMmDPWvLCj3OoTK3WjSjvXxaSj1yIGw4h9vCu_PIjz2WzYM4C71ZPFDJFDwHGTy38BdTvWdrWLzX-BM3pdO_Pe-sfb2gLA65hd5MvVSojr3qysO4poaRPCNjWr30foo3hs2LvQiw6D1Us5Y4szEGuwivvb0cfaa3Iv_sPTUpBT7zflu4CA6OvRhzfLwt3IG4tAH4vbVYRT1R4Fw4zmYavQ_uzryQJD-3IAA4E0AJSG1QASpzEAAaYB3yAAsCJQDxEBHh9cvsDNXYC98KwA4A6_0A_TIA-w0PDcoN3QADzBrwuQAAAC4W8hoOAPlU9x3nJBnhCsrV6Q7sfyUZEdUGOP3r8BY2Hgr98wYhMAAJB9cGJf-hOygqViAALf77QDs4E0AJSG9QAiqvBhAMGqAGAABUQgAATMIAAOBCAACAwgAA-EEAAAAAAABAQgAA4EEAAETCAAAEwgAAiEEAAGBBAADIQQAAcEEAAABAAADIQQAAiEEAABzCAACUQgAAAMEAABBBAADIQQAAHMIAAEhCAAAUwgAAgEEAAEjCAAAAwAAAdEIAAIDAAABQwQAAAEEAABDCAACAwAAAMMIAACxCAABQQQAAokIAAKBAAABgQQAA-MEAAEDAAAAwwQAAvMIAACBCAABQwQAAPEIAABRCAACWQgAAcEEAAIjCAACwwQAAuMEAAIhBAACAQAAAcEEAABzCAACoQQAACEIAAFBBAAAAQgAAUEEAAETCAACMwgAA8MEAAADDAABQwgAATMIAAMDBAADAwQAA6EEAAJhBAAAowgAAoEEAACzCAADgQAAAIMIAAAjCAABQwgAAMEEAAEDBAADKQgAAQMAAAGBBAADwQQAAHEIAAODAAABwwQAANEIAAOhBAACAwgAA4EEAAIjBAACgwAAAWEIAADTCAABowgAAHEIAAHxCAABcQgAAlMIAAEBBAABIQgAAAEAAABzCAACgwAAAZEIAAIRCAADwQQAAsEIAAEhCAAA0QgAAiMEAAHDBAACYwQAASEIAAARCAAAwwQAAOMIAAFjCAAAQwgAAjMIAAAAAAAAEQgAAsMEAAIjCAADgwQAAQEAAAMjBAACQQQAAQMAAABzCAAAAwgAAQEIAAIDCAAAkQgAAcEEAADDBAAAIwgAAAAAAAPjBAABAQAAAuEEAACDCAAA8QgAAhkIAACDBAABAQQAAjsIAAGDBAAAwwQAAYEEAAEDAAAAwQQAAgL8AAHBBAADwwQAABMIAAJLCAAC4QQAAgL8AAAhCAACgwAAAMMIAAEBBAACCQgAALMIAAIpCAACeQgAAkMEAAAjCAACAwAAAgMAAAJbCAABcwgAAMEEAAPDBAADgQAAAAMAAAABCAABswgAAMMEAAHDBAABAwgAAYEEAAGzCAACgwAAAVMIAAMjBAADYQQAAkEEAAMDBAACAQQAAEMEAAHBBAADIQQAAFEIAAIC_AAAMQgAAAMEgADgTQAlIdVABKo8CEAAagAIAALi9AABAvAAAij4AABA9AAAwPQAAqj4AAEy-AAAjvwAAqL0AAPg9AAAcPgAAML0AAEw-AAA0PgAA4LwAABy-AAAEPgAAoDwAADQ-AACSPgAAfz8AAKC8AAAsPgAAgj4AABy-AABAvAAAED0AAIi9AABQvQAAHD4AAMg9AADovQAAoDwAAKi9AAC4PQAAQLwAAHC9AABUvgAAXL4AACS-AACIvQAAiL0AAFQ-AAA8vgAAoLwAAEA8AAB8PgAAPL4AAJ6-AADyvgAAoLwAALg9AAAkPgAAyD0AAIK-AADgvAAAHT8AAKA8AAC4PQAAfD4AACQ-AABwPQAA4DwAADS-IAA4E0AJSHxQASqPAhABGoACAAAUvgAAZD4AAIC7AABJvwAA6L0AAKA8AADKPgAABL4AAIC7AACSPgAAHD4AAOi9AAB0vgAATL4AAIi9AACIPQAAqL0AADk_AACgvAAAhj4AAIC7AACGvgAAQLwAAOi9AABcvgAAuD0AADS-AADgPAAAoLwAABA9AABwPQAA6D0AAHS-AACKvgAAML0AANg9AAA0PgAALD4AAFS-AABMvgAAXD4AAFA9AABAPAAAEL0AAAQ-AADGPgAAf78AAJ6-AAAEPgAAUL0AAKI-AABQPQAAlj4AANi9AACIPQAAMD0AAFC9AACIvQAAMD0AABC9AABUPgAAEL0AAGy-AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=E6WygdbGXl8","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9063782064625721532"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2539322095"},"8890054097271094988":{"videoId":"8890054097271094988","docid":"34-10-8-Z4A5C0AE9BF16443D","description":"Digamma function cheat sheet: https://owlsmath.neocities.org/Digamm... Digamma function playlist: • Digamma function Website: https://owlsmath.neocities.org Check out my other channel OWLS MATH...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4219177/9c18147a4e066de82dda7c2e883f09cc/564x318_1"},"target":"_self","position":"12","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8KIYW2tGL5w","linkTemplate":"/video/preview/8890054097271094988?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Digamma function: Quick formula derivation!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8KIYW2tGL5w\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChM4ODkwMDU0MDk3MjcxMDk0OTg4WhM4ODkwMDU0MDk3MjcxMDk0OTg4aq4NEgEwGAAiRBowAAopaGhmeHJ3eXVybWtjZXdvaGhVQy1lZmg2Vk1xRTBBeXhrVHV3NFJmNHcSAgARKhDCDw8aDz8TywGCBCQBgAQrKosBEAEaeIH89_sAAAEA7P79BAEC_wAbAAEK9QICAO348PwFAAAA-PYEAAwAAADz_QP9BgAAAPcA9AL6_wAAAQD-CAQAAAAJCP_29wAAAPcP7wH_AQAA-fj9BgT_AAAXBf4GAAAAAPkG_vf-AAAA8wMJAgAAAAAJ9QgDAAAAACAALQZu1Ds4E0AJSE5QAipzEAAaYAcYAA0MCfgFEgj69wHtCOrw6vT74g0AFwMAHBPy5hkB_-cbAQAO3v8S2gAAABEI8BYFAP4oEAL_CgAM-t3x_wgKfxYL6_TzC_fp8vQDHRn26gMMDwAgABLyAfDjGBcgBiAALdQwnTs4E0AJSG9QAiqvBhAMGqAGAACgQQAAisIAAIxCAAAMwgAAPEIAAFTCAABIQgAAIEEAAKDAAABQQQAAgD8AANBBAABkQgAAoEAAAEzCAADAwAAAgEAAAKjBAAAkQgAAAMAAABBBAABAQAAANMIAAJBBAABgwQAA4EAAACDBAACgQQAAVEIAAEBAAACgwQAAQMEAABzCAABQQgAAUEEAAFRCAAAIQgAAzkIAAAzCAABwwQAAQMEAAEBAAABAQAAAqMEAAOhBAADowQAAkEEAAFDBAADIQQAAkMEAAIC_AACYwQAAGMIAAGDBAADwQQAABEIAAOjBAABwwQAA2EIAABxCAAAMQgAAnMIAAJ7CAADQwQAA4EAAADzCAACAQQAAIMIAAODBAADQwQAA4EEAAJBBAADcwgAA0EEAAABAAACQwgAAMMEAACBBAACUwgAAmEEAAEDAAABAQgAA2MEAAAAAAAAYwgAAQEEAAPhBAAA8QgAAcEIAAEDBAACIwgAANEIAAFjCAABQwQAAgMAAAIDBAABQwQAANEIAAMBBAABcQgAAwMAAACBBAABAwQAAJEIAAMDBAADQwQAAQEIAAPhBAAAQQgAAYEIAAERCAAAAQAAAIMIAAERCAAAYwgAAsEEAAEhCAAA0wgAAUMIAAGDCAAD4wQAATMIAAODAAAAIwgAAgMEAAFDCAACIwQAA4MAAAADCAAAswgAAIEEAADzCAACAwQAAZEIAAJrCAAC6QgAAbEIAAEDAAADAwQAAlMIAAODAAABwwQAAMMEAAJjBAACgQQAAIEIAANjBAACAwAAAwEEAAJBBAAAgwQAARMIAAADAAACYwQAA8EEAAIhBAAA4wgAAVMIAAL7CAAAkQgAATMIAAHDBAACAwQAAPMIAAADAAAAwQQAAIMIAAFhCAACgwAAAQMAAAEDCAACAwAAADMIAAFDBAABMwgAAYEIAANTCAAAkwgAAiEIAAFBCAAAwwgAAsEEAAIBBAACGwgAAuEEAADDCAADQQQAAKMIAAAzCAABoQgAA4EEAACTCAACOQgAAIEEAAGBBAAA4QgAAUMEAACzCAACIwQAAMMIgADgTQAlIdVABKo8CEAAagAIAAKC8AAAQPQAATD4AALi9AAAwPQAAmj4AABw-AAArvwAAgr4AAEw-AABAvAAAtr4AABQ-AABsPgAA-D0AADy-AAAcPgAA-D0AACw-AAC2PgAAfz8AAAQ-AACIPQAA6D0AAOi9AAC4vQAAPD4AAHC9AACgvAAAqD0AAJg9AABEvgAAML0AADy-AACePgAAbL4AAIC7AABwvQAANL4AAES-AADYvQAAbL4AAJg9AACgvAAAVL4AAEC8AACoPQAAUL0AAJq-AACGvgAAND4AAHA9AAAMPgAAJD4AAJi9AACgPAAARz8AAFA9AAAMPgAAQLwAAIo-AABwPQAAuD0AAGS-IAA4E0AJSHxQASqPAhABGoACAAAcvgAAij4AADA9AAAXvwAAUD0AAFA9AACaPgAAcL0AANg9AADgPAAAiL0AAES-AAC4vQAAyL0AAAQ-AACAuwAAgDsAAC8_AAAQPQAApj4AAJg9AACGvgAAiD0AAHC9AACIvQAA4LwAAMi9AACAuwAAyD0AABQ-AABAvAAA6D0AAFS-AAAQvQAAQLwAABC9AABMPgAAED0AACy-AAC4vQAAHD4AAIg9AABEPgAAqD0AAJg9AACKPgAAf78AAFy-AACAuwAA-D0AABw-AADoPQAAFD4AAOC8AACIPQAA-D0AAOC8AABUvgAAqD0AAAQ-AABcPgAAQLwAACy-AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=8KIYW2tGL5w","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8890054097271094988"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1837140159979730492":{"videoId":"1837140159979730492","docid":"34-2-8-Z259F6385DBA42740","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/de/stores/papaf... https://shop.spreadshirt.de/papaflammy 2nd Channel: / @rockhardwooddaddy Digamma: • WAIT, WHAT?!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/906227/d741a6c908df384d619d1bc3dcc59b81/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/r8y9ngAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSNUbR8lXD4M","linkTemplate":"/video/preview/1837140159979730492?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Integral Representation for the Digamma Function!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SNUbR8lXD4M\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChMxODM3MTQwMTU5OTc5NzMwNDkyWhMxODM3MTQwMTU5OTc5NzMwNDkyarYPEgEwGAAiRRoxAAoqaGhycGJ5YmhmYmJ4emd1YmhoVUN0QUlzMVZDUXJ5bWxBbnczbUdvbmh3EgIAEioQwg8PGg8_E70EggQkAYAEKyqLARABGniB8w36_fwFAPAIAvz7AQABE_39APYBAQD2_wkABgL_APP6BwEEAAAA8AAEBAAAAADvAPj_8QABAAQB9v4DAAAADPH9__oAAAAAF_YG_gAAAO7-9PkCAAAAFwDyBv8AAADwBAT8_v8AAAUCBwgAAAAAAvUPBgAAAAAgAC1TZt07OBNACUhOUAIqhAIQABrwAX_iKP68-b3_vx70ARD88AGmBij-ShqyAM4PMgDXAOQB8xH5ANEL-f_2K9D_1hH8_-UEzP3EvuEAFMfx_xvp_gH60A0ASMzLAV7rKP8f4ef-tRlLAfX3NgEf7LH-Uy7GAA7tGfdTEdYCFP_FBEbpKwMSCzsFCiLy_-TY8QHnGQIH9PWy_e3_2v3fyxr6xxgNBiXoH__qJxP11bXiBCXF8Ao-0Cz-7kn1AkC0z_fWMDr948vr9_Ea7griPRICwtDaB9zXKP--mf_688kW7soh9ff0GPQCzv4WDQoTIATq7BDu6dbm8-YB7Onf9ukD9-blEyAALd2M2zo4E0AJSGFQAipzEAAaYDzoABn1LfHt8wD358rvGN29B88f1xb_39X__jb56xcV8b0P9AAS4_3UpwAAABsK9C7RAAdpBxD4MA0V98OvGinufxgEH7nFMtnW0TBBI-DtChMFRQAQCroWGeyyQkwlSSAALbJLIzs4E0AJSG9QAiqvBhAMGqAGAAAIQgAABMIAALRCAAB8wgAA4EEAACzCAACKQgAAUEEAAIDBAADIQQAAqEEAAIA_AACYQQAAgMAAAODBAAAMQgAAJEIAAPjBAADAQAAAKMIAAADBAAAQwQAAmMIAAIA_AABswgAALMIAAJDBAAAgwQAApkIAAIA_AAAgwgAAgD8AAKTCAAAAwAAAjsIAANhBAAAgQgAAJEIAALDBAAAQQgAAyMEAAMBAAACYwQAABMIAAIZCAADwwQAAqEEAAFRCAAAMQgAAAAAAAGDBAABAwgAAQMEAAIBBAADgQAAA-EEAAKzCAABAwQAAUEIAAOBAAABIQgAAJMIAACzCAACewgAAEMEAAOrCAAA4wgAAFMIAAADBAAAgwgAAqEEAAABAAACowgAAgD8AADDCAACAPwAAHMIAADBBAADAwAAAwMEAALBBAADmQgAAuMEAAJjBAABAwQAAAMEAAHhCAADAwQAAGEIAABxCAACgwAAANEIAALjBAACoQQAApEIAAEDBAABkwgAAQMAAAIA_AAC8QgAAXMIAACjCAACwQQAAIEIAAPDBAACQQQAADEIAAADAAABAQgAArEIAABhCAABMQgAAmMEAABBBAAAUwgAAnkIAACxCAACowQAAgsIAAATCAACgwQAAnMIAACDBAACwQQAADMIAAPjBAABAQQAAgL8AAADAAAAgQgAAGMIAAMDBAADAQQAAcEIAALDBAABcQgAADEIAADRCAACAwgAA4MEAAJDBAAAAAAAA6EEAAFzCAADYQQAATEIAAHDBAAAYQgAAQMAAACzCAAAgwQAA4MAAAIBAAAAkQgAAIEIAABBBAABIwgAAgMEAAOjBAABwwgAAbMIAABxCAAAMwgAAAMIAAMBAAAAwQgAAQMIAAHxCAACIQgAAMMEAAJhBAAAQwQAAwEAAAGjCAABYwgAAQEEAAMDBAAAAQQAAEEIAAPhBAAA4wgAAmMEAADDBAACcwgAABEIAABDBAAAAwgAA8MEAAOhBAAAQQgAAGEIAAMDAAACgQAAAcMEAAEDAAADYQQAAcEEAABTCAABIQgAAmEEgADgTQAlIdVABKo8CEAAagAIAAIi9AAAEvgAAij4AAMg9AACgPAAAoj4AACS-AAAfvwAALL4AAOg9AADoPQAA4LwAAHw-AAAsPgAAUL0AABy-AAB0PgAAED0AAAw-AAC6PgAAfz8AAEA8AAB0PgAAXD4AAFS-AAAEPgAAcD0AAIi9AADIvQAA6D0AACQ-AABQvQAAED0AAKC8AAAkPgAAoDwAAJi9AAAcvgAAVL4AAES-AAAQvQAAiL0AAIo-AABsvgAAoLwAAAQ-AAAkPgAAkr4AAKK-AAABvwAAEL0AAMg9AAA8PgAAFD4AAIK-AACIvQAANT8AAPg9AACgPAAAjj4AADw-AAAQvQAAoLwAAGS-IAA4E0AJSHxQASqPAhABGoACAABcvgAAbD4AAKA8AABXvwAAuL0AAIi9AADCPgAAVL4AAOg9AABMPgAAJD4AAKi9AAAUvgAAHL4AAEC8AAAQPQAAPL4AADc_AAAQPQAAhj4AAIg9AACOvgAAcD0AAAy-AABMvgAAFD4AAEy-AACoPQAAuL0AAHA9AADIPQAABD4AAFy-AAAcvgAAUD0AAEA8AACGPgAAPD4AAHy-AABMvgAAij4AAKg9AACAuwAAUD0AABw-AABMPgAAf78AAHS-AAAUPgAAoLwAAJo-AADIPQAAkj4AAIC7AACoPQAAuD0AAKi9AAAkvgAAiD0AAAy-AACKPgAAED0AAFy-AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SNUbR8lXD4M","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1837140159979730492"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3739449375"},"6257141450402372188":{"videoId":"6257141450402372188","docid":"34-10-16-ZF246CD0419169EB9","description":"Digamma function- 3 - Integral representation of Digamma function Digamma function- 1 - • Digamma function - (1) - Properties of Dig... Digamma function- 2 - • Digamma function - 2 - Properties...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2394494/438cc8a9a65f20ba84d54005811c9bcb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lKlg_wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DP18KB6YI3n4","linkTemplate":"/video/preview/6257141450402372188?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Digamma function- 3 - Integral representation of Digamma function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=P18KB6YI3n4\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChM2MjU3MTQxNDUwNDAyMzcyMTg4WhM2MjU3MTQxNDUwNDAyMzcyMTg4aoYXEgEwGAAiQxovAAooaGhzd3B3aGV1YWplY3JoaFVDWkRreHBjdmQtVDF1UjY1RmV1ajVZZxICABAqEMIPDxoPPxO4BIIEJAGABCsqiwEQARp4gfcE-v76BgD1A_4CAAP_AQQAAAL5__4A7vwG-wYAAAD0-gcBBAAAAPv9CAQAAAAA9gED_PT_AQD__PUEAwAAAAb6_v_6AAAAAQ8ABP4BAAD4Af0BA_8AAAsE-QUAAAAA9gEC-_gA_wEEAgcIAAAAAAL4BQYAAAAAIAAtWlTkOzgTQAlITlACKoQCEAAa8AF_Bvv-1A_YAMUC5gHg9Q8AvDoOAAk37wCy5vD_zwfbAfT89wHk_QAA7jYJAcY0_v8W06oD7dgT_zSxDgIqzewB3C38ATH27gFEFTP_DQ3w_sUlIP0H7goCG9HMAwUo1f4j8gT9IxHwAgY10gMR_kYBA-sUAzH9RQPboioA67oC_gTu9_rrKw7__c8bAO8KHg0C1QkJEAYDAvA43vz88wP58NAo_zE90P8v1fYCNgAaDMDi_gbK9P0HISgYCuQC7Qi3wR72vf4C89ckB_8k7Qb2tTMCCBP_7wIIEBsD8foiBR3i8_Hj3P0ByiH2D-Ic2vAgAC0sqgI7OBNACUhhUAIqzwcQABrAB1wfxr4AQXQ9pxKUPJqCm72ptRe8AwVevcyll71xqvU8PTyVPNSBDD5SvYC9AtLAu6HhI72KUBY9xiVYvP29dD6SVEu9A7HsPHV0_L0vE5o9CwIQvUpNwb1m5jg7TxqPPIJEibx1K4q9_CtYu1RTAj7cSzq9dswQvMlXwrzmDAA9Qu4CvbGczryXnEm8tu1gvbZCAr3erpc66IoNPar0Lj1HUve81B5APFwQYD0Al1a9jlGovKYQg70fACc9Mxv_vPDnyjsfg1U94o-HPCy7EL7ZFq-8-zzKO1ZQjL3QwQm9WhSRvOoHdT2_hMQ7sdUKvWkz8zweb_K91yXTOtAqQ76Yc5-8D6iIPEYK5T2jliA8U83uO9lCkL02vbo8SOxqOxvccT3B-kS9zGJivH6h7Loe4j89CEaUPOlrET1NGn68TPIOPODsAL3gWIY8nTnaPOz6BT3ZmeK9q6unvEaBmT2hoDQ9Ut9ou3PpSb0DbTw7UTsyvCJ7M71suQ49u2DTO6c1E7k29ja8sNBiPMU1Qz34UQ2-CW8suwpCg71sv7u9DIPoOz0VRj3qa6c8egZDvEOpHT4fatu9xJqpOfnQD73X3qe6flreOyuuYLwmYya9W7SdundZwr0uTka87qU6vPxlgb2OoVI83-tavK6JAL2LH3497JF5Oqc95bzrjA--Jd69t5t-vz0Ud_w89IgrOhTIMT0e8pA9t5DiuQ40WToNxR29H9twuwTKJr29d227TeaKOhGQ77wdbIu94EIdOaqCoT0aGJm9R0qgOGYJvDy9cMY7FO-dOv7rkb1nh1M9nEjxuDFNibuNHUS6i4KoOMui8LxbQh6-NwXjOUJD2jxG2ZE8aTf6OUuxfrzdes08xal3uS9Q8r2oXJy9Q4C_t4t8TTyLsX25G9kfuYMT0T0h8_W7MEsQOKv7Eb3Wips8L-M4uMSwaL1f4OI6LMCQOb-EpTxEKAC974KyOCI8pT3lwoe9O4xSOQqAsbwnF-M9YmCSuQMAEb3CPlC9iVlzuCNhhDy6Z709JV93tzRGED0OGtW8BuraNzWAgj1XsI085fOrtr2P4704Zc49OHOROC5BAT1D9gs9SL0NOHnqjTv_eC88SagguKgvVT1ECtA61pMONpJdGT7ZT1C9rMI_ubZReDxzEuq9Luv2uHqXAb2rA2W9tWLmt6TQCL0kRAk-mxbBNlyooT19xJS9uKGWNyL_7D01KQU-835buJ9b5DsVIvs8CcbAuFrtxr0PFDM9aNv7N85mGr0P7s68kCQ_tyAAOBNACUhtUAEqcxAAGmAHBgAYEi3r-AoA8wXv-gfe4PTjE9v6APjdABcV--kdDezPEAUADu8R988AAAAPH-8Y3gD5OggP-B8JG_rVywQJGn8QFQ7s3hf05PcDKAgF7P0ICh8AF_7k-iP8xSQoGhUgAC3mvHs7OBNACUhvUAIqrwYQDBqgBgAAAEAAAAjCAAC4QQAAUMIAACRCAABAwgAAWEIAAEBBAABAQQAAQEEAAOhBAADowQAAgMAAAMhBAABAwAAA6EEAAOBBAAAQwgAAkEEAAADBAAAEwgAAgMAAAATCAABQwQAABMIAAAzCAAAwQgAAwMAAAGBCAAAcwgAAQMIAADBBAACuwgAAwMEAAGTCAADoQQAAlkIAALhCAAAUwgAAsEEAALDBAACwQQAAuMEAADjCAAB8QgAAgsIAABBBAACIQgAAIMEAAIBBAAD4wQAAYMEAAKDAAACwQQAAgEEAAEhCAACwwgAAQMAAAJhBAADgQAAACEIAAAjCAADgwQAAgMIAACDBAAC4wgAAQMIAAIzCAAD4QQAAIMEAAKBAAACAQQAAwsIAAODAAABgwgAAcMEAAATCAACgQAAABMIAAIA_AABgwgAApEIAAIBAAAAgQQAAkMEAAABCAACgQQAAoMEAAIC_AADgQAAAOMIAAIRCAABYwgAANEIAAAxCAAAAwgAAXMIAAEDBAAAAAAAAikIAAAAAAABswgAAJEIAAABBAAAEwgAAOEIAADRCAACAPwAALEIAAMxCAADgQQAAaEIAAADCAABAwAAAGMIAAOpCAAAYQgAAoMEAAJrCAAAMwgAASMIAAHTCAAD4QQAAgMAAAEDBAAAgwgAAgL8AANDBAACAvwAAKEIAAJLCAACwwQAAFEIAAHxCAACgwQAAzEIAAEDAAAB4QgAALMIAAFjCAACAvwAAwMEAAPBBAAAAwQAACEIAAFBCAACAPwAAJEIAAIDBAACYQQAAgEAAALBBAACQQQAACEIAAARCAAAAQQAAmMEAABzCAAAcwgAAoMEAAHDCAACQQQAAiMEAACjCAAAYQgAAIEIAADDCAAC6QgAAWEIAAODAAABwQQAAmEEAABDBAADwwQAAGMIAABDBAABIwgAAMEEAADxCAAAAQQAAiMEAAGzCAAAQwgAAuMEAAABCAAAAwAAAEMIAAJDCAADoQQAAgD8AAKhBAABAQAAAIMEAAKjBAACgwQAAQEEAAHDBAADQwQAAXEIAAAhCIAA4E0AJSHVQASqPAhAAGoACAABEvgAAEL0AACw-AABwPQAARD4AAKY-AAAEvgAAHb8AAEy-AAAMPgAAmL0AANi9AADGPgAAQDwAAOg9AAAwvQAAyD0AAJg9AAAMPgAA5j4AAH8_AACAuwAAVD4AANg9AACIvQAAMD0AAPg9AACovQAAEL0AAOg9AAAkPgAA4LwAAIA7AAAEvgAAij4AABC9AABEvgAA-L0AAGS-AABkvgAABL4AAKC8AAAQPQAAXL4AAHC9AADgvAAAZD4AAJK-AADSvgAA1r4AAKi9AACYvQAATD4AAGQ-AAAUvgAAQLwAACM_AAAsPgAAmD0AACQ-AAB0PgAAoDwAAHC9AACqviAAOBNACUh8UAEqjwIQARqAAgAAgr4AABQ-AABwvQAASb8AAKC8AAAcvgAA2j4AAJq-AACYPQAA6D0AAAw-AAC4vQAAcL0AAIK-AAAMPgAAoLwAANi9AAAbPwAAMD0AAIo-AABAPAAAPL4AALg9AAAQvQAA6L0AAIA7AAD4vQAAuD0AADC9AAD4vQAAED0AADQ-AACCvgAAFL4AAOC8AADgPAAAZD4AAII-AABkvgAAFL4AAEQ-AABAvAAA4LwAAFA9AABkPgAAJD4AAH-_AACGvgAAqD0AAEC8AAB0PgAAgLsAACQ-AAAQvQAAiL0AAMg9AAAwvQAAEL0AAIg9AACovQAARD4AAIC7AAAsvgAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=P18KB6YI3n4","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6257141450402372188"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3813881980"},"10892085601122643381":{"videoId":"10892085601122643381","docid":"34-3-7-ZB988D3308094B835","description":"Digamma(1/2) - special value of Digamma function Digamma function 1- • Digamma function - (1) - Properties of Dig... Digamma function 2- • Digamma function - 2 - Properties of Digam...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2837802/1a352d8a6738ebe91d3b900c807e3b0d/564x318_1"},"target":"_self","position":"15","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfNM2QishDBE","linkTemplate":"/video/preview/10892085601122643381?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Digamma(1/2) - special value of Digamma function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fNM2QishDBE\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoWChQxMDg5MjA4NTYwMTEyMjY0MzM4MVoUMTA4OTIwODU2MDExMjI2NDMzODFqrQ0SATAYACJDGi8ACihoaHN3cHdoZXVhamVjcmhoVUNaRGt4cGN2ZC1UMXVSNjVGZXVqNVlnEgIAECoQwg8PGg8_E5ECggQkAYAEKyqLARABGniB9wT6_voGAPIH_QkABP4BBAAAAvn__gDu_QEECAAAAPz_BwMBAAAA-AUCAgAAAAD7_f4G_v4AAAP7_QIDAAAABQYB__4AAAACC_gG_gEAAPgB_QED_wAACwT5BQAAAAAADQH6_f8AAAQE_QYAAAAAAvgFBgAAAAAgAC1aVOQ7OBNACUhOUAIqcxAAGmAAJwASEx39_AYQ9Qf-_gPuA_Lz-OYIAAj7ABwACuILEPzmCQMABvAJBOIAAAAGF_4O-wD5IhMJ6QkBC_785_oHAn8XFPEE_QP87Qv-GgoU6vP7_Q8ABggD6xsB5QUQGhQgAC3ap6o7OBNACUhvUAIqrwYQDBqgBgAAwMEAABzCAACsQgAABMIAAIC_AAAAQQAAYEIAANDBAACAvwAAmEEAAIC_AACQwQAA-EEAALDBAADwwQAA0EEAABTCAADQwQAAfEIAAJjBAACwwQAAjkIAAEDCAAAAQQAAbMIAADDCAAAwwgAAoMAAALBCAACwwQAANMIAAJDBAADIwQAAKMIAABzCAAAIQgAAUEIAABRCAACgQAAAgEAAAEjCAACwQQAAIEEAAFzCAABgQQAAfMIAAMhBAAAgQQAAXEIAACzCAACowQAAkMEAAIhBAACgwAAAoEAAAJBBAAAUwgAAUMEAAARCAACgQQAAiMEAAKLCAABAQAAAAMIAACzCAACCwgAA-MEAAODBAACIwQAAgMIAAADAAAAgwQAAysIAALBCAACYwQAA0EEAAHBBAADoQQAAAMIAALjBAABgwQAAjEIAACDCAACgwQAA4EEAAKDBAABYQgAAuEEAALBBAADQwQAAjMIAAOBBAAAUQgAA6EEAAHhCAACAvwAAEEIAAKBAAACoQQAAzEIAAADAAADgwAAAIEEAALjBAACUwgAASMIAAIDBAACGQgAAoEEAAGRCAAA4QgAANEIAAEjCAAAAQAAAiMEAAJBBAAAAwAAAgMEAACRCAAAIQgAAmMEAAJjCAAAIwgAA2MEAAJjBAABAwgAAQMIAAGDBAAAkwgAA4EEAALjBAACgQQAAsEEAAChCAAA8wgAAAEIAAARCAACIwQAACEIAABjCAADowQAAQEAAAJJCAAAcwgAAfEIAAFBCAADQQQAA-EEAAIA_AACAwAAAwMEAALDBAACgQAAAgMAAABDBAABwwQAAQMAAABDBAABQwgAAgL8AACTCAAAAQQAAuMEAALbCAACAvwAAjEIAACBCAACaQgAAIEIAAOBAAABQQgAAOEIAAJxCAABkwgAA8MEAAMDBAACQwQAA4MAAABxCAACYQgAAVMIAAHzCAABQwQAAIMIAAEBBAAAwwgAAYEEAAADCAAD4QQAAuEEAADxCAADgQAAAyEEAAADAAABIwgAApEIAAADAAACmwgAAAEIAAFzCIAA4E0AJSHVQASqPAhAAGoACAADgvAAA4LwAAAQ-AADgvAAAgLsAAGQ-AABMvgAADb8AAAS-AAA0PgAAoLwAALi9AACiPgAABL4AAPi9AACgvAAABD4AAOA8AACYPQAAzj4AAH8_AABAvAAAiD0AAIg9AAC4PQAALD4AAOA8AAA8PgAAHL4AAJg9AAAkPgAAbL4AABA9AACgvAAAoj4AABC9AADYvQAAHL4AADS-AACavgAAUL0AACS-AAAkPgAARL4AABy-AADYvQAAZD4AADC9AACSvgAATL4AAIA7AAAEvgAAUD0AAHw-AADYvQAAgDsAAAM_AAAEPgAAoDwAAAQ-AABUPgAAgLsAALg9AABcviAAOBNACUh8UAEqjwIQARqAAgAAuL0AAPg9AABAPAAAPb8AAEC8AAAwPQAAzj4AAPi9AABAPAAABD4AAKC8AAA0vgAA4LwAACS-AAAMPgAAUL0AABA9AAANPwAAcL0AALY-AADYvQAAJL4AABC9AAAQvQAAoDwAALi9AACgvAAAED0AABC9AACAOwAAgLsAABQ-AAA0vgAAEL0AAKi9AAAwvQAAZD4AAFw-AABUvgAAcL0AALg9AABwvQAAoDwAAKg9AADgPAAA6D0AAH-_AACYvQAAiL0AANg9AAAcPgAAgDsAAAw-AACIvQAAFL4AANg9AACAuwAAgLsAABw-AAAQPQAAPD4AAKC8AAAsvgAAcD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=fNM2QishDBE","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10892085601122643381"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"6394999183746083189":{"videoId":"6394999183746083189","docid":"34-10-17-ZABB8DE06726ADFAA","description":"Find the value of sum_(n = 1 to ꝏ) 1/(9n^2 + 3n) (SS-223) #sequenceandseries #cipher Meditation Impromptu 02 by Kevin MacLeod is licensed under a Creative Commons Attribution 4.0 license...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1369961/9dc1ea095f0c4b2e2a4c6018782f308e/564x318_1"},"target":"_self","position":"16","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dut1uiE-lL2U","linkTemplate":"/video/preview/6394999183746083189?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Application of digamma function series representation and Guass's digamma theorem for required sum","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ut1uiE-lL2U\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChM2Mzk0OTk5MTgzNzQ2MDgzMTg5WhM2Mzk0OTk5MTgzNzQ2MDgzMTg5aq4NEgEwGAAiRBowAAopaGh5emJwanFpaWFxcHFiaGhVQ0g3c3ZqWktxTXlPVjJ4SFFiVGh0dVESAgARKhDCDw8aDz8T-QGCBCQBgAQrKosBEAEaeIH3_vwA_gMA8P8D_v8CAAEMBf8C9wAAAO78BvoGAAAA_vwCBPcBAAD__Q8MAwAAAPb--wj0_wEAA_v8AgQAAAAQBv4I9wAAAAAX9gf-AAAABAj2BAP_AAAWBf4GAAAAAP0G-fz5_gAB_gn_AwAAAAAD8AAFAAEAACAALQBT2zs4E0AJSE5QAipzEAAaYAMaAAoaEQDtCxry-Pz1AfLpA-sA8vsAA_AABxr47A74AOUI_gAA9w8E4wAAAAYF9Q30AO4gFv7uBggR9vAD8wAFfwEV6P_2BPXdBAAFBgn18QIEBwD_BBcCDgUCCQINFyAALVHgszs4E0AJSG9QAiqvBhAMGqAGAAA8QgAAsMEAAMBCAADkwgAAIEIAALhBAADEQgAA2EEAAMjBAABAwQAAIMEAAIBAAACYwQAAoMEAANhBAABgQQAAAEEAAIDBAAAwQgAAgEAAAMhBAAD4wQAApsIAAGxCAADowQAA4EEAAIC_AADAwAAAAMAAAGBBAABQwgAAoMAAAMDCAAC4wQAAeMIAALhBAACYwQAA4EIAAABBAACAPwAAgMAAAKBBAAB4QgAAMEEAAABCAABMwgAAAEIAAJBBAAAoQgAAHEIAACzCAADgwAAAUMEAAADAAACYQQAAIEEAALDCAABAQgAAEEIAAKBCAACCQgAA1sIAAEDAAAAgwgAAQEEAAIzCAABQwgAAyMEAAODBAABcwgAAXEIAAGRCAABwwgAA1EIAAI7CAABwwQAAVMIAAJDBAADgQAAAqEEAANjBAAAoQgAAoMAAANhBAADYwQAAEEIAAIDBAACAwAAA-EEAAEBBAABYwgAAMEIAAEBAAADYwQAAYEEAAKjBAADgQAAA6EEAAJZCAABoQgAAcMIAACRCAABAwAAAEMIAAGzCAABAwQAABEIAAOhBAABQwQAAOEIAABRCAACQwQAAAMIAABDCAAAkwgAABEIAAIhBAACMwgAAiMEAAODAAAAgwQAASMIAAABAAAAQQQAAqMEAAPjBAABAQQAAyMEAAETCAACAQAAAIMEAANDBAABAwQAACEIAAKDBAAAEQgAA4EEAACBCAADowQAAZMIAAODAAACgQgAAGEIAAKjBAABEQgAATEIAADzCAABQwQAA4MAAALDBAAAcwgAAgD8AAIBBAADIwQAAuEEAANDBAAAAwgAAmMIAAIrCAACgQAAA4MEAALhBAACYQQAAiMEAAADBAABwwQAAgD8AALpCAADwQQAAsEEAAODBAABAQQAAAMIAAEDCAABkwgAAoMEAALhBAAA4wgAAQEEAAIhBAACkwgAAAMIAAJDBAABAwQAAYEIAADTCAAAgwQAAEMIAAFDBAABQQQAAwEAAADzCAABwQQAAQEAAABRCAAAEQgAA8MEAADxCAAAwwQAAsMEgADgTQAlIdVABKo8CEAAagAIAAFy-AADgvAAAJD4AALg9AADgPAAAFD4AAGS-AAAxvwAAFL4AAJg9AAAQvQAAoLwAAGw-AAAMPgAAML0AAFy-AAAMPgAAMD0AAKC8AADyPgAAfz8AAHA9AABAvAAApj4AAEy-AACAOwAAcD0AADC9AACIvQAAQLwAALg9AACGvgAA4DwAAKA8AACSPgAAML0AAOi9AAAkvgAAuL0AANi9AABUvgAAUL0AANg9AAAcvgAAdL4AAEC8AACmPgAArr4AAFS-AAC-vgAAJD4AALg9AAAsPgAAND4AAIa-AAAMvgAAOz8AAII-AACAOwAAXD4AAIg9AABAPAAAQDwAABS-IAA4E0AJSHxQASqPAhABGoACAAA8vgAAQDwAAEC8AAAtvwAATD4AANg9AAC6PgAA-L0AABC9AABUPgAAQLwAAEA8AAAQPQAALL4AAPg9AABAvAAAiD0AAEM_AAC4vQAAuj4AAGy-AACKvgAAVD4AAKi9AACgPAAAuD0AAIC7AADgPAAAUD0AAEC8AABAvAAAuD0AAIa-AAA8vgAAQDwAABA9AABwPQAAPD4AAOi9AAAMvgAAbD4AAKC8AACIPQAAQDwAAOA8AACoPQAAf78AAJ6-AACYvQAATD4AAFQ-AACIPQAARD4AAKC8AAC4vQAAgLsAAOC8AAC4vQAAoLwAAIi9AAA8PgAAyD0AAHC9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ut1uiE-lL2U","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6394999183746083189"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2833021135614770703":{"videoId":"2833021135614770703","docid":"34-7-9-Z122A9E68B344BA2C","description":"ψ | Advanced Maths | Digamma function of 1/3 Integral representation of Digamma function - • Digamma function- 3 - Integral representat...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1491919/14ed579a1a0cd853c98e901fc977b4ba/564x318_1"},"target":"_self","position":"17","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIRoLjIAWSEw","linkTemplate":"/video/preview/2833021135614770703?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Digamma function of 1/3","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IRoLjIAWSEw\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChMyODMzMDIxMTM1NjE0NzcwNzAzWhMyODMzMDIxMTM1NjE0NzcwNzAzaq0NEgEwGAAiQxovAAooaGhzd3B3aGV1YWplY3JoaFVDWkRreHBjdmQtVDF1UjY1RmV1ajVZZxICABAqEMIPDxoPPxOVBIIEJAGABCsqiwEQARp4ge4B-f38BQDyA_UCAgP_AQYG-AD3__8A7gT8-AUAAAD8_wcDAQAAAPoC-_4GAAAA8wP-AfoAAAD7__wBAwAAAA38_Ab7AAAADRj7Av4BAADx_PwDAwAAAA8G-Q7_AAAA-g38-_8AAAD-CAMLAAAAAP_wBwEAAAAAIAAtcYbeOzgTQAlITlACKnMQABpgAyAAFRMf9_QKDfkS_e8L9Or__fnn-gAI_AAfD_rrEgz_3AgHAAD1BgbgAAAAAxgFD_kA-yYaCe8T-AkA8vMFAQJ_GhjyDPcH9ur4Ax4TEuX4-_gEABMHAO4P_uUTHRkNIAAtYHykOzgTQAlIb1ACKq8GEAwaoAYAAEBAAAAwwgAAfEIAAHTCAADQQQAAgMEAAKBCAAAQwQAAhsIAAGBBAAAQQgAAoMAAAIhBAACQwQAAYEEAABhCAABAQQAAcEEAAKhBAACwwQAAMMIAAABAAABQwgAA4EAAAITCAACAQQAA0MEAACDBAAAQQgAAHMIAAEjCAACwQQAALMIAAABCAAAgwgAA4EEAAIhCAADcQgAAgEAAAKBBAABAQAAACEIAAIRCAACIwQAAEMEAAIrCAACYQgAAjkIAAMBBAAAcwgAACMIAAMDAAADgQQAAiMEAAAhCAAD4QQAAksIAAIBAAAAsQgAASEIAAKDAAABkwgAAYEEAANjBAADQwQAAmsIAALDBAACAvwAAqEEAAGDBAAAwQQAApEIAAFDCAAC-QgAAEMIAAMjBAAAAQAAA8EEAAJjBAADIQQAAiMIAAHRCAACAwAAAAMEAAOBBAAD4QQAAIEIAADRCAAAMQgAA4EAAAJTCAABQQgAAIEEAAAzCAACeQgAAAMAAAKBBAADIQQAAOEIAAGBCAADQwQAA4EAAAIjBAACowQAAdMIAAMDAAACgQAAATEIAAIBAAABwQQAAfEIAAABCAACgwQAAwMAAAEBAAACKQgAAAEIAAETCAACqQgAAmEEAACzCAABswgAAAEAAAGTCAACgwQAAUMIAAFzCAABAwAAAEMEAAKBAAABIwgAAqEEAAFDBAABYQgAA8MEAAKBBAAAAwQAAAMAAAPBBAABcwgAAcEEAACxCAAB8QgAA8MEAAJ5CAACyQgAAQMAAADRCAACgQAAAMEEAAFDBAAAAAAAA-MEAADDCAABAQQAAoEEAAIDAAAAAwgAAoMIAAPjBAAA0wgAAwMEAAKBAAABgwgAAAAAAAFBCAAAgwQAAskIAABxCAAAYQgAAREIAAIhBAADoQQAASMIAACzCAABAwQAA2MEAAIjBAADgwQAAqEIAAMbCAAAgwgAAYMEAAJDBAAAAwAAALMIAAIA_AAAAQAAAMMEAAKBAAACoQQAAUMEAAOhBAABQQQAAHMIAAFRCAABAQAAAcMEAAABBAADgwSAAOBNACUh1UAEqjwIQABqAAgAALL4AAOi9AAAUPgAAiD0AALg9AAB8PgAA6L0AAAe_AABcvgAAZD4AAIi9AAA8vgAAmj4AAIA7AAAQPQAA-L0AAEC8AAC4PQAARD4AAMI-AAB_PwAAED0AABw-AAAkPgAAQLwAAOA8AAAMPgAA4LwAAPi9AAAkPgAAFD4AAKi9AACgvAAAoLwAAIo-AAAQvQAAUL0AAIK-AACavgAAPL4AAPi9AABEvgAA2D0AAIa-AAAQvQAAcL0AACQ-AABwvQAAqr4AAJa-AABwvQAA2L0AAGw-AAB0PgAAyL0AAIA7AAArPwAAMD0AAAQ-AABUPgAARD4AABw-AACAuwAAor4gADgTQAlIfFABKo8CEAEagAIAAHC9AACIPQAAyL0AAEW_AABQvQAAqL0AAP4-AAA0vgAA4DwAAMg9AAAEPgAAir4AAPg9AACSvgAALD4AAIi9AACgvAAAHz8AAKi9AAB8PgAAHL4AACS-AAAMPgAAUL0AAKC8AAD4vQAAqL0AAOA8AACoPQAAPL4AAKA8AAAsPgAAvr4AAOi9AABQvQAAcL0AAJY-AACaPgAAir4AAAS-AAAkPgAAoLwAAMi9AACoPQAAqD0AAIY-AAB_vwAAXL4AAJi9AADgvAAARD4AAKC8AABcPgAAyL0AAPi9AACYPQAAgLsAAHA9AADIPQAAqL0AAHQ-AACAuwAAbL4AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=IRoLjIAWSEw","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2833021135614770703"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8336916942847974874":{"videoId":"8336916942847974874","docid":"34-0-10-Z3F929691E88D02A8","description":"Help me create more free content! =) / mathable Merch :v - https://teespring.com/de/stores/papaf... https://shop.spreadshirt.de/papaflammy 2nd Channel: / @rockhardwooddaddy Digamma: • WAIT, WHAT?!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2091815/5d693f83e82b5540e4fd40747b6a6763/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y8J4KQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DjHN-nnFbCcI","linkTemplate":"/video/preview/8336916942847974874?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Introduction to the Polygamma Functions - The Taylor Series of the Digamma Function!","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jHN-nnFbCcI\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChM4MzM2OTE2OTQyODQ3OTc0ODc0WhM4MzM2OTE2OTQyODQ3OTc0ODc0aogXEgEwGAAiRRoxAAoqaGhycGJ5YmhmYmJ4emd1YmhoVUN0QUlzMVZDUXJ5bWxBbnczbUdvbmh3EgIAEioQwg8PGg8_E4YIggQkAYAEKyqLARABGniB8w36_fwFAPUD_gIABP8B9QH4APn-_gDo_QUC__4BAPP6BwEEAAAA_gYECgQAAADzA_4B-gAAAA0G9QMEAAAACAAEBPwAAAABBu8LAAEAAPH8_AMDAAAACwT5BQAAAAD2AQL7-AD_AQQE_AYAAAAACP4EBgAAAAAgAC1TZt07OBNACUhOUAIqhAIQABrwAW4fKfq9H-MAtkfe_0YK_P-5-zUAGQ38_9of8AEXLvEA6AsHAA0svwAeJwUAgRkQAerp0gDN2-UBOcgS_yISLwHu--QBF_7bAXjsRwTvAikBpDkN_bsi3gLW0r3-KSKwAAGXAgG9B6T_DuOfDO-qLglKK_MAHzbiANfk5AK2GycCyS3o-vUA7QbU0zUBBjYN_zX0BgYEQSUBOQTpB1DH5P0s7yT78PPm-_Da6v3rCPr3_vn5Bd71CAML0xv71eziARrxK-4owP_7L-X_Aes1DP_0GPMC5cXWCxzyBOjUmhrq_uLl_wwP1P7uFOPw3-D2ICAALVR92jo4E0AJSGFQAirPBxAAGsAHkgfyvqZACz3gg5e80BDJPVC9vzwLMOK75sSiu04Tkbw5tK28aTorPmErEr0sP_o8lpNAvqLMqzzo0mQ8xVWFPlQwb72bfyq8RE7fuzxQkj3KkUm91NiJvYQM5D0yFN479OfRvOg4gj0F7kq91qIvPVQ99LzapCq75MPHPMPyILqDmuu8HlMnPuEhgb0zX7G7XIzGvSMLoDvjZyi9GkEZPRRBnDzI9Ua7xsSBPBhysT3NqYk86tW7vaLHOTyQTEe94pIDPoejkDw4D0w8dk1tvL0Hw7yNkba75V4AvU2YurzY_2-8FRbBPPb8G7sYSrs7LR1YPZlxyTxHf9w7Qgouvj5fDr1sw3K8jXx-vUKGRDwPWQ49HT3evb7ADD67CAu6wUwAvX-0ST1TfYK8eYNcu6AqEbyVm6g8xYN3PT0mF71RB8O8mtKFPTcvEz1BCwk8cHNPO2d2gj1Ikru88UibOtGuQjyJkjW8ca_HvUiyjb0rm168vUtzvS4gDz33mMC7z-1KvRPqDj3iWzO832bGPTm1872HHxg8Yyp9vKNFzL2HKka8dH7KPGokcz2FxKi75CxMPupXj70DDIU735twPVMYtb0a8ey7K23BPfQJajxvp2O8JFN0PaE3cL0Qwis79cV0vbNfmLsTTyy8Qp--PFwxjT1He5M7trwyvSvWFb3urnW79StdPXMRPz2wlem6JUi7PZ6gIz1gTyu5iCSEPaUZtr3cmS67acw_vdBjNL3Ij526pFRCPelmWjwt3gO6H6LRPVj4H7150Yo4HV1APTlOQLvMNsi5mzrPvbjuQTwtJwq5UW6mPUpsbb3mggY5rhlPvOw2Q70aTrU57BqIPLOCmr1VQxm5HWCcvLw7kj2IMbC3ax7BvcSuor1Z-CI4xAAuPP4PsDxEu6y3yMrEvVKazTzRDAo4ThbtvOgIKjxFW2I31VOQvEItPL000Ws3QxLHPE0QtTy1u4M4mLRSOz9wxb33LmA5QTuxPLOrtTx5IVY5iaxaO_Z_Lj68OxW5AcZOPSaatjy_Koa4Z2dsPQVN671fJjU4xKvRPBhdwTtDtlW4AIshvVjm7T2dLtw4vpU2vbTASD0V7zE5HO8OPZ37hryYAUg3h_bzumA7gLl5hns4X0DUPKPMhr1kn1W3oDNpPLtOqb0fUJu4PHHUvMmdCL3xG4C3BxSguskgtz3C15q3zTNAvHnlOr3RBlq3VRimPW0LxT2Dx-c4RHItveH65ruyPZm4XCivvd4SKr38ImM3slK3PFCIlT2iGSQ3IAA4E0AJSG1QASpzEAAaYBkBABECHAH__QT8DujDDuPPIvkR4g0A_-0A_AcO9hEJ_L729P8YziLswAAAAB8OCgnyAAlKJPnQGw4h_9a7BgznfxQeCNHtDgT74DAqHxn4-90EKgD_CNEEKfLLJzgjQCAALXtBVDs4E0AJSG9QAiqvBhAMGqAGAABAQgAAwMEAANRCAABQwgAAgEAAAEBBAACIQgAAwEAAAJLCAADAQQAAHEIAAKDBAAAwQQAAQMAAAKBAAADAQQAA4EAAAHTCAADIQQAAHEIAAEBAAAAUQgAAvsIAAABCAAB8wgAA0MEAAODAAABwQQAAgEAAAKDAAABQwgAAuEEAAAzCAABAwQAAoMIAAHxCAABgQgAAcEIAAODBAABwQQAA-MEAAIBAAAAAwAAAuMIAABBCAACAwQAAyEEAAKZCAACGQgAAbEIAAGDBAACAvwAAcEEAADBCAAAgQQAAIEEAAGjCAAAQQgAAqEEAAEBBAADgQQAA4MEAAADCAAAgwgAAoMAAALbCAACgwgAAQMEAANhBAAA8wgAA4EAAAAxCAAA0wgAAIEIAAHzCAABwwQAARMIAAFBBAADgwAAAgEAAAERCAACqQgAAwMAAAIA_AABQwQAAGEIAAHBBAACAwAAA4EEAABDBAABQwgAAmEEAAOBAAACgQAAAUEIAALDBAAAAwgAAQEEAANhBAAAAQgAAQMAAALjBAAAEQgAAQEIAAKDCAABQQQAAuEEAADRCAACQQQAAOEIAAJBBAACGQgAAoMIAACRCAACYwQAAmkIAANhBAACwQQAASMIAALDBAAAswgAAfMIAALBBAADgQAAAwMEAADzCAAAgQQAAmMEAAIjBAADAQQAAAMEAAABAAABUwgAANEIAACjCAABwQgAAiEEAAEBBAACYwQAA0MEAAEzCAACQwQAAQEIAAKLCAADAQQAABEIAAKBBAACOQgAAUMEAAIA_AAD4wQAAgEAAAKhBAAAYQgAAgL8AAABAAACYwQAASMIAADzCAAAswgAAiMEAAADBAABAwAAAcMEAALBBAABUQgAA2MEAAOhBAADEQgAAoMAAABBBAACCQgAAQEEAAM7CAABMwgAAgEEAACRCAAA0wgAAEEEAAEBAAABwwgAACMIAAATCAADwwQAAaEIAAGTCAADgQAAAgMAAAIDAAABAQQAAgL8AAKBBAAAAwQAA6EEAAKDAAAAoQgAAAEAAAMDBAABYQgAA2EEgADgTQAlIdVABKo8CEAAagAIAADS-AADYvQAAlj4AAOA8AAAQPQAA6D0AAJi9AAADvwAAhr4AAIi9AADoPQAAoDwAADQ-AAAEPgAAgDsAADy-AADYPQAAED0AAIg9AADOPgAAfz8AAPg9AADIPQAA2D0AAEy-AACAOwAABD4AAIC7AACoPQAAmD0AACw-AACAuwAAmL0AALg9AACuPgAAoLwAAJg9AAAcvgAAZL4AABy-AACIvQAAbL4AAOC8AABcvgAA6D0AAKA8AACaPgAAHL4AAIA7AADWvgAAMD0AABC9AAAMPgAAlj4AANi9AADgvAAALz8AAKA8AADgvAAA-D0AAHA9AABAPAAAMD0AAJ6-IAA4E0AJSHxQASqPAhABGoACAAAsvgAAuD0AAFA9AABbvwAAML0AAHC9AACyPgAAgr4AANg9AAAkPgAAoLwAALi9AADYPQAAyL0AAIg9AABwvQAAgDsAAB8_AAC4PQAAuj4AAES-AABkvgAAcD0AADC9AABQvQAA4LwAANg9AACgPAAA2D0AAJg9AACgPAAAiD0AADy-AAA0vgAAyL0AAFA9AAAMPgAARD4AABS-AAAQvQAAqD0AAJg9AABAPAAAJD4AAKA8AAAQPQAAf78AAHC9AADgvAAAgj4AAJI-AAAwvQAAND4AADC9AADIvQAAuD0AABC9AAAQvQAAgLsAAFy-AAB8PgAA2D0AAAS-AAAMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=jHN-nnFbCcI","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8336916942847974874"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2549105083"},"2593894253922203250":{"videoId":"2593894253922203250","docid":"34-3-12-ZD50400ACBD81A55F","description":"Hello guys! Today, we are going talk about the series formula of Digamma function Check out Weierstrass expression of Gamma function here: • Weierstrass's product definition(expressio...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4478373/caab18b883d355f129456a70cd494590/564x318_1"},"target":"_self","position":"19","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7SCkKAF0rP8","linkTemplate":"/video/preview/2593894253922203250?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Series formula of Digamma function","related_orig_text":"Digamma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Digamma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7SCkKAF0rP8\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMyNDM0ODAyNzA4MjM1MDAyMQoUMTM2OTcxNjU2NjM2NDkwMjk5ODQKEzM3NDM1NjI4NzQ4NDk0MTU0OTAKFDExNTYwMjYyNTMwNDE1MTc5MjI3ChQxNjA2Njk3NDU5ODA3NzU5NTc4OAoUMTYzMzE5OTIwNjQxMDY5NjQ0NjgKFDE2NTc2NzU1MzcyNDY0NTkyNzMyChM0ODM3NTAxMjQxMzIxODIzNjA2ChM2OTgzOTE5Mzc2NDI0Njc4MzU3ChM5MDYzNzgyMDY0NjI1NzIxNTMyChM4ODkwMDU0MDk3MjcxMDk0OTg4ChMxODM3MTQwMTU5OTc5NzMwNDkyChM2MjU3MTQxNDUwNDAyMzcyMTg4ChQxMDg5MjA4NTYwMTEyMjY0MzM4MQoTNjM5NDk5OTE4Mzc0NjA4MzE4OQoTMjgzMzAyMTEzNTYxNDc3MDcwMwoTODMzNjkxNjk0Mjg0Nzk3NDg3NAoTMjU5Mzg5NDI1MzkyMjIwMzI1MAoUMTUzMTI4MTkxNTcwOTkyMTUwNTUKEjk2NzMyNTk3NDMwNjM2MzQyNxoVChMyNTkzODk0MjUzOTIyMjAzMjUwWhMyNTkzODk0MjUzOTIyMjAzMjUwaq4NEgEwGAAiRBowAAopaGhudWh3amdxbmx6aG1jaGhVQzNfWExwbWR0aWR6U3ZlX3FtZlVVd3cSAgARKhDCDw8aDz8TrgKCBCQBgAQrKosBEAEaeIH3_vwA_gMA5QD9Awn_AAAGB_gA9___AO4E_PgFAAAA-PwJCwkAAAD3BAn8_wAAAPsL-v_8_gAA_gb8_wQAAAD-AwQF_AAAAAAX9gf-AAAA_gD4BgP_AAATEQEK_wAAAPwC_-4AAAAA_AgIBQAAAAAC9wUHAAAAACAALQBT2zs4E0AJSE5QAipzEAAaYAcXAAQXH-4aFBrz_gnQBuvOC_rn3g8AF-kAHAT36B7-5rUHAgAP4xPwyAAAABAFGAL2AAhIIATpBvsJ_OfP-wEBfygV39TbBfDj6ekKJTfU1fDvJQD5AvsECfHWKw87FSAALVrzZDs4E0AJSG9QAiqvBhAMGqAGAABgQgAAQMAAAIhCAACmwgAA4EAAAABAAACOQgAAGEIAAFDCAAAAAAAA8EEAAOjBAABwwQAAmEEAABBCAACgQQAAcEEAAKjBAAAEQgAAIEIAANjBAAAAwAAAjsIAALhBAAA4wgAA-MEAAADAAADgwAAAuMEAAIBBAADIwQAAcMEAAGjCAADQQQAAgsIAABhCAACgwQAAwkIAANjBAACQQQAAyEEAADBBAAAAQgAAMMIAAABCAACswgAAyEEAAFxCAAAkQgAAyEEAACDCAADYwQAAwMEAADBBAACAwAAADEIAAADDAADoQQAAAEIAANBBAAAMQgAArMIAALDBAAC4wQAAHMIAAGTCAADowQAAqMEAAADBAACQwQAA8EEAAJZCAAAAQAAAokIAALzCAADYwQAAmMEAAEDBAABgwQAAiEEAAIA_AABcQgAA6EEAAFDBAAAYwgAAqEIAAKBAAACYQQAAAAAAAKBBAACgwAAAQEIAAMDAAADgQAAABEIAAEDAAADAwQAAPEIAAIhBAACiQgAAfMIAACRCAAD4QQAAgD8AAFTCAAA4wgAAmEEAABhCAADIQQAA6EEAAEhCAAAsQgAA2MEAAPhBAAAAQAAAlEIAAGBBAABIwgAAAAAAABjCAAAQQQAA-MEAACDBAADgwAAA2MEAANDBAABYwgAAIMIAADzCAADoQQAAFMIAAIDAAABAQAAASEIAABjCAADYQQAAmEEAAGBBAAAQwgAAVMIAAEDBAACaQgAALEIAAHjCAABUQgAATEIAAEBBAACIQQAAcMEAAMhBAABAwQAAMEIAAOBAAABAwAAAJEIAALjBAADowQAA6MEAAJLCAACAvwAA0MEAAFBBAACIQQAAYEEAAODBAABUQgAAcMEAAIBCAADEQgAAoEEAAEjCAADgQAAAgEAAADzCAACKwgAA4MAAALBBAADowQAAIMEAAGBCAACiwgAAiMIAABDCAACwwQAAgEIAAIDBAADwwQAATEIAAHzCAAC4QQAAMEEAANDBAAA0wgAA8MEAAKDAAABYQgAACMIAAABBAADgQQAA6MEgADgTQAlIdVABKo8CEAAagAIAAIA7AABwvQAAZD4AAKg9AABAPAAATD4AAFA9AAD2vgAAqL0AAFQ-AADgPAAAUL0AAMg9AAA0PgAAED0AABS-AADoPQAAcD0AAMg9AACCPgAAfz8AAPg9AACIPQAAmj4AAES-AAAwPQAAyD0AAFC9AABAvAAAgLsAABA9AABwvQAAQLwAAOi9AADOPgAAXL4AACw-AAAUvgAAdL4AAMi9AADIvQAAsr4AALg9AABAPAAA4LwAAMg9AAAcPgAAmL0AACS-AADovQAAVD4AAKA8AACIPQAAJD4AANi9AABAPAAAPT8AAFA9AADYPQAAgLsAAGw-AACYvQAAED0AAGS-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAUD0AAFA9AAA1vwAA2D0AAKC8AACKPgAAZL4AABA9AABsPgAAQLwAAAy-AABMPgAANL4AADQ-AACIvQAA2D0AAEk_AABwPQAAij4AAPi9AABUvgAAfD4AAMg9AACAuwAAED0AABA9AAAQPQAALD4AAFA9AAAQvQAAuD0AAFy-AAAsvgAADL4AAKg9AAAsPgAAED0AAAS-AAAMvgAAMD0AANg9AACgPAAAyD0AADQ-AAAUPgAAf78AAGS-AADYvQAALD4AAPg9AACgvAAAJD4AAIA7AACGvgAAqD0AAIA7AABAvAAAgDsAAHC9AACWPgAAmD0AAMi9AAB0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7SCkKAF0rP8","parent-reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2593894253922203250"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"10324348027082350021":{"videoId":"10324348027082350021","title":"Introduction to the \u0007[digamma\u0007] function","cleanTitle":"Introduction to the digamma function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ksna9jtQ6HE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ksna9jtQ6HE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQWY3RW92U0VRcU8xV3g4MGVpeEZsUQ==","name":"Daniel An","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Daniel+An","origUrl":"http://www.youtube.com/@daniel_an","a11yText":"Daniel An. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1137,"text":"18:57","a11yText":"Süre 18 dakika 57 saniye","shortText":"18 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"27 kas 2020","modifyTime":1606435200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ksna9jtQ6HE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ksna9jtQ6HE","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":1137},"parentClipId":"10324348027082350021","href":"/preview/10324348027082350021?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/10324348027082350021?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13697165663649029984":{"videoId":"13697165663649029984","title":"The \u0007[Digamma\u0007] Function at Integer Values!","cleanTitle":"The Digamma Function at Integer Values!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H1JbQtSHhSA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H1JbQtSHhSA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":767,"text":"12:47","a11yText":"Süre 12 dakika 47 saniye","shortText":"12 dk."},"views":{"text":"8,8bin","a11yText":"8,8 bin izleme"},"date":"20 mayıs 2019","modifyTime":1558310400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H1JbQtSHhSA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H1JbQtSHhSA","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":767},"parentClipId":"13697165663649029984","href":"/preview/13697165663649029984?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/13697165663649029984?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3743562874849415490":{"videoId":"3743562874849415490","title":"Always \u0007[Digamma\u0007] function helps me to solve the integrals and infinite sums","cleanTitle":"Always Digamma function helps me to solve the integrals and infinite sums","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jPa6Q-GJt6Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jPa6Q-GJt6Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWkRreHBjdmQtVDF1UjY1RmV1ajVZZw==","name":"Mathematics MI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+MI","origUrl":"http://www.youtube.com/@mathematicsmi","a11yText":"Mathematics MI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":242,"text":"4:02","a11yText":"Süre 4 dakika 2 saniye","shortText":"4 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"30 oca 2022","modifyTime":1643567885000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jPa6Q-GJt6Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jPa6Q-GJt6Y","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":242},"parentClipId":"3743562874849415490","href":"/preview/3743562874849415490?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/3743562874849415490?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11560262530415179227":{"videoId":"11560262530415179227","title":"WAIT, WHAT?! Differentiating x Factorial x! - Introducing the \u0007[Digamma\u0007] Function","cleanTitle":"WAIT, WHAT?! Differentiating x Factorial x! - Introducing the Digamma Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kjK9WfmLElo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kjK9WfmLElo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1084,"text":"18:04","a11yText":"Süre 18 dakika 4 saniye","shortText":"18 dk."},"views":{"text":"203,3bin","a11yText":"203,3 bin izleme"},"date":"18 mayıs 2019","modifyTime":1558137600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kjK9WfmLElo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kjK9WfmLElo","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":1084},"parentClipId":"11560262530415179227","href":"/preview/11560262530415179227?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/11560262530415179227?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16066974598077595788":{"videoId":"16066974598077595788","title":"Solve with the \u0007[Digamma\u0007] function?","cleanTitle":"Solve with the Digamma function?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4DRASU37XAw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4DRASU37XAw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLWVmaDZWTXFFMEF5eGtUdXc0UmY0dw==","name":"owl3","isVerified":false,"subscribersCount":0,"url":"/video/search?text=owl3","origUrl":"http://www.youtube.com/@owl3math","a11yText":"owl3. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":589,"text":"9:49","a11yText":"Süre 9 dakika 49 saniye","shortText":"9 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"15 eki 2024","modifyTime":1728950400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4DRASU37XAw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4DRASU37XAw","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":589},"parentClipId":"16066974598077595788","href":"/preview/16066974598077595788?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/16066974598077595788?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16331992064106964468":{"videoId":"16331992064106964468","title":"(RA22) The Gamma and \u0007[Digamma\u0007] Functions","cleanTitle":"(RA22) The Gamma and Digamma Functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-OyXXBKTaAk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-OyXXBKTaAk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeGZhNHV5Sng3UEF2clJ5bmtKVXh1QQ==","name":"Let's Learn, Nemo!","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Let%27s+Learn%2C+Nemo%21","origUrl":"http://www.youtube.com/@LetsLearnNemo","a11yText":"Let's Learn, Nemo!. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2369,"text":"39:29","a11yText":"Süre 39 dakika 29 saniye","shortText":"39 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"25 haz 2023","modifyTime":1687651200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-OyXXBKTaAk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-OyXXBKTaAk","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":2369},"parentClipId":"16331992064106964468","href":"/preview/16331992064106964468?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/16331992064106964468?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16576755372464592732":{"videoId":"16576755372464592732","title":"The \u0007[Digamma\u0007] Function","cleanTitle":"The Digamma Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t1A3zNsP5DU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t1A3zNsP5DU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDekJSb3RkSlMzYkpQY1VaeWVQa0hCdw==","name":"Essentials Of Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Essentials+Of+Math","origUrl":"http://www.youtube.com/channel/UCzBRotdJS3bJPcUZyePkHBw","a11yText":"Essentials Of Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":534,"text":"8:54","a11yText":"Süre 8 dakika 54 saniye","shortText":"8 dk."},"views":{"text":"4,7bin","a11yText":"4,7 bin izleme"},"date":"4 tem 2018","modifyTime":1530662400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t1A3zNsP5DU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t1A3zNsP5DU","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":534},"parentClipId":"16576755372464592732","href":"/preview/16576755372464592732?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/16576755372464592732?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4837501241321823606":{"videoId":"4837501241321823606","title":"Bounds/inequalities for the \u0007[digamma\u0007] and trigamma functions","cleanTitle":"Bounds/inequalities for the digamma and trigamma functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LefbuaF6jEw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LefbuaF6jEw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWFV0T2xZMHBjU25pTC1oOVNvR05UQQ==","name":"AKSS","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AKSS","origUrl":"http://www.youtube.com/@akss557","a11yText":"AKSS. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1112,"text":"18:32","a11yText":"Süre 18 dakika 32 saniye","shortText":"18 dk."},"date":"8 ara 2023","modifyTime":1701993600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LefbuaF6jEw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LefbuaF6jEw","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":1112},"parentClipId":"4837501241321823606","href":"/preview/4837501241321823606?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/4837501241321823606?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6983919376424678357":{"videoId":"6983919376424678357","title":"How to Calculate Values of the \u0007[Digamma\u0007] Function!","cleanTitle":"How to Calculate Values of the Digamma Function!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AA7AlvXQr6w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AA7AlvXQr6w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZGVsY0ZLZVI0aVc3SEcwakY3aWdIdw==","name":"dr3213","isVerified":false,"subscribersCount":0,"url":"/video/search?text=dr3213","origUrl":"http://www.youtube.com/@danielrosado3213","a11yText":"dr3213. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":510,"text":"8:30","a11yText":"Süre 8 dakika 30 saniye","shortText":"8 dk."},"date":"21 haz 2023","modifyTime":1687305600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AA7AlvXQr6w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AA7AlvXQr6w","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":510},"parentClipId":"6983919376424678357","href":"/preview/6983919376424678357?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/6983919376424678357?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9063782064625721532":{"videoId":"9063782064625721532","title":"Gauss' Representation for the \u0007[Digamma\u0007] Function","cleanTitle":"Gauss' Representation for the Digamma Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=E6WygdbGXl8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E6WygdbGXl8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":582,"text":"9:42","a11yText":"Süre 9 dakika 42 saniye","shortText":"9 dk."},"views":{"text":"9,1bin","a11yText":"9,1 bin izleme"},"date":"28 eyl 2020","modifyTime":1601298196000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E6WygdbGXl8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E6WygdbGXl8","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":582},"parentClipId":"9063782064625721532","href":"/preview/9063782064625721532?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/9063782064625721532?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8890054097271094988":{"videoId":"8890054097271094988","title":"\u0007[Digamma\u0007] function: Quick formula derivation!","cleanTitle":"Digamma function: Quick formula derivation!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8KIYW2tGL5w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8KIYW2tGL5w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLWVmaDZWTXFFMEF5eGtUdXc0UmY0dw==","name":"owl3","isVerified":false,"subscribersCount":0,"url":"/video/search?text=owl3","origUrl":"http://www.youtube.com/@owl3math","a11yText":"owl3. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":203,"text":"3:23","a11yText":"Süre 3 dakika 23 saniye","shortText":"3 dk."},"date":"11 şub 2025","modifyTime":1739232000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8KIYW2tGL5w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8KIYW2tGL5w","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":203},"parentClipId":"8890054097271094988","href":"/preview/8890054097271094988?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/8890054097271094988?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1837140159979730492":{"videoId":"1837140159979730492","title":"An Integral Representation for the \u0007[Digamma\u0007] Function!","cleanTitle":"An Integral Representation for the Digamma Function!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SNUbR8lXD4M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SNUbR8lXD4M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":573,"text":"9:33","a11yText":"Süre 9 dakika 33 saniye","shortText":"9 dk."},"views":{"text":"9,6bin","a11yText":"9,6 bin izleme"},"date":"3 haz 2019","modifyTime":1559520000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SNUbR8lXD4M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SNUbR8lXD4M","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":573},"parentClipId":"1837140159979730492","href":"/preview/1837140159979730492?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/1837140159979730492?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6257141450402372188":{"videoId":"6257141450402372188","title":"\u0007[Digamma\u0007] function- 3 - Integral representation of \u0007[Digamma\u0007] function","cleanTitle":"Digamma function- 3 - Integral representation of Digamma function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=P18KB6YI3n4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/P18KB6YI3n4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWkRreHBjdmQtVDF1UjY1RmV1ajVZZw==","name":"Mathematics MI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+MI","origUrl":"http://www.youtube.com/@mathematicsmi","a11yText":"Mathematics MI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":568,"text":"9:28","a11yText":"Süre 9 dakika 28 saniye","shortText":"9 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"12 nis 2022","modifyTime":1649721600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/P18KB6YI3n4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=P18KB6YI3n4","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":568},"parentClipId":"6257141450402372188","href":"/preview/6257141450402372188?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/6257141450402372188?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10892085601122643381":{"videoId":"10892085601122643381","title":"\u0007[Digamma\u0007](1/2) - special value of \u0007[Digamma\u0007] function","cleanTitle":"Digamma(1/2) - special value of Digamma function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fNM2QishDBE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fNM2QishDBE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWkRreHBjdmQtVDF1UjY1RmV1ajVZZw==","name":"Mathematics MI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+MI","origUrl":"http://www.youtube.com/@mathematicsmi","a11yText":"Mathematics MI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":273,"text":"4:33","a11yText":"Süre 4 dakika 33 saniye","shortText":"4 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"25 mayıs 2022","modifyTime":1653436800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fNM2QishDBE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fNM2QishDBE","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":273},"parentClipId":"10892085601122643381","href":"/preview/10892085601122643381?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/10892085601122643381?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6394999183746083189":{"videoId":"6394999183746083189","title":"Application of \u0007[digamma\u0007] function series representation and Guass's \u0007[digamma\u0007] theorem for r...","cleanTitle":"Application of digamma function series representation and Guass's digamma theorem for required sum","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ut1uiE-lL2U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ut1uiE-lL2U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSDdzdmpaS3FNeU9WMnhIUWJUaHR1UQ==","name":"Cipher","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Cipher","origUrl":"http://www.youtube.com/@cipherunity","a11yText":"Cipher. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":249,"text":"4:09","a11yText":"Süre 4 dakika 9 saniye","shortText":"4 dk."},"date":"6 mayıs 2024","modifyTime":1714953600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ut1uiE-lL2U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ut1uiE-lL2U","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":249},"parentClipId":"6394999183746083189","href":"/preview/6394999183746083189?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/6394999183746083189?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2833021135614770703":{"videoId":"2833021135614770703","title":"\u0007[Digamma\u0007] function of 1/3","cleanTitle":"Digamma function of 1/3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IRoLjIAWSEw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IRoLjIAWSEw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWkRreHBjdmQtVDF1UjY1RmV1ajVZZw==","name":"Mathematics MI","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathematics+MI","origUrl":"http://www.youtube.com/@mathematicsmi","a11yText":"Mathematics MI. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":533,"text":"8:53","a11yText":"Süre 8 dakika 53 saniye","shortText":"8 dk."},"date":"28 oca 2025","modifyTime":1738022400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IRoLjIAWSEw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IRoLjIAWSEw","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":533},"parentClipId":"2833021135614770703","href":"/preview/2833021135614770703?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/2833021135614770703?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8336916942847974874":{"videoId":"8336916942847974874","title":"An Introduction to the Polygamma Functions - The Taylor Series of the \u0007[Digamma\u0007] Function!","cleanTitle":"An Introduction to the Polygamma Functions - The Taylor Series of the Digamma Function!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=jHN-nnFbCcI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jHN-nnFbCcI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1030,"text":"17:10","a11yText":"Süre 17 dakika 10 saniye","shortText":"17 dk."},"views":{"text":"12,6bin","a11yText":"12,6 bin izleme"},"date":"13 haz 2019","modifyTime":1560384000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jHN-nnFbCcI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jHN-nnFbCcI","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":1030},"parentClipId":"8336916942847974874","href":"/preview/8336916942847974874?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/8336916942847974874?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2593894253922203250":{"videoId":"2593894253922203250","title":"Series formula of \u0007[Digamma\u0007] function","cleanTitle":"Series formula of Digamma function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7SCkKAF0rP8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7SCkKAF0rP8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM19YTHBtZHRpZHpTdmVfcW1mVVV3dw==","name":"LUNJAPAO BAITE","isVerified":false,"subscribersCount":0,"url":"/video/search?text=LUNJAPAO+BAITE","origUrl":"http://www.youtube.com/@lunjapaobaite4071","a11yText":"LUNJAPAO BAITE. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":302,"text":"5:02","a11yText":"Süre 5 dakika 2 saniye","shortText":"5 dk."},"date":"14 kas 2021","modifyTime":1636848000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7SCkKAF0rP8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7SCkKAF0rP8","reqid":"1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL","duration":302},"parentClipId":"2593894253922203250","href":"/preview/2593894253922203250?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","rawHref":"/video/preview/2593894253922203250?parent-reqid=1769560627685521-17963875332531368541-balancer-l7leveler-kubr-yp-klg-286-BAL&text=Digamma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9638753325313685417286","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Digamma","queryUriEscaped":"Digamma","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}