{"pages":{"search":{"query":"Epsilon Delta","originalQuery":"EpsilonDelta","serpid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","parentReqid":"","serpItems":[{"id":"5197781152685392153-0-0","type":"videoSnippet","props":{"videoId":"5197781152685392153"},"curPage":0},{"id":"1217347565808831842-0-1","type":"videoSnippet","props":{"videoId":"1217347565808831842"},"curPage":0},{"id":"2956946206858017951-0-2","type":"videoSnippet","props":{"videoId":"2956946206858017951"},"curPage":0},{"id":"16693553132975887537-0-3","type":"videoSnippet","props":{"videoId":"16693553132975887537"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEVwc2lsb24gRGVsdGEK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","ui":"desktop","yuid":"2647630991769431009"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"10022051940782393796-0-5","type":"videoSnippet","props":{"videoId":"10022051940782393796"},"curPage":0},{"id":"81019178376311207-0-6","type":"videoSnippet","props":{"videoId":"81019178376311207"},"curPage":0},{"id":"12894193380794579867-0-7","type":"videoSnippet","props":{"videoId":"12894193380794579867"},"curPage":0},{"id":"10334247510564778155-0-8","type":"videoSnippet","props":{"videoId":"10334247510564778155"},"curPage":0},{"id":"2213329388011313485-0-9","type":"videoSnippet","props":{"videoId":"2213329388011313485"},"curPage":0},{"id":"3738467596660731803-0-10","type":"videoSnippet","props":{"videoId":"3738467596660731803"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEVwc2lsb24gRGVsdGEK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","ui":"desktop","yuid":"2647630991769431009"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"18047139751631415245-0-12","type":"videoSnippet","props":{"videoId":"18047139751631415245"},"curPage":0},{"id":"7410965610038659343-0-13","type":"videoSnippet","props":{"videoId":"7410965610038659343"},"curPage":0},{"id":"18112810240028558651-0-14","type":"videoSnippet","props":{"videoId":"18112810240028558651"},"curPage":0},{"id":"1051802901966789010-0-15","type":"videoSnippet","props":{"videoId":"1051802901966789010"},"curPage":0},{"id":"1979499066400446951-0-16","type":"videoSnippet","props":{"videoId":"1979499066400446951"},"curPage":0},{"id":"3256150442330517954-0-17","type":"videoSnippet","props":{"videoId":"3256150442330517954"},"curPage":0},{"id":"6676744592070853645-0-18","type":"videoSnippet","props":{"videoId":"6676744592070853645"},"curPage":0},{"id":"9094627377712248312-0-19","type":"videoSnippet","props":{"videoId":"9094627377712248312"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"correction":{"items":[{"kind":"reask","rule":"Misspell","query":"EpsilonDelta","url":"/video/search?text=EpsilonDelta&noreask=1&nomisspell=1","params":{"text":"EpsilonDelta","noreask":"1","nomisspell":"1"},"helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"35245214938"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEVwc2lsb24gRGVsdGEK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","ui":"desktop","yuid":"2647630991769431009"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DEpsilonDelta"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7924883986909903067221","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457622,0,2;1460716,0,80;1462157,0,59;1459297,0,58;1456929,0,41;1472031,0,78;1461640,0,30;1201470,0,29;27392,0,42;45959,0,97;1464523,0,38;1455767,0,87;1470249,0,53;1282205,0,35;1466295,0,16;1468619,0,71;1452015,0,1;1349038,0,61;1471918,0,93;1470514,0,52;1467619,0,38;1471179,0,81;1469396,0,90;1002327,0,92;1304310,0,39;284409,0,39;1462741,0,6;151171,0,58;126284,0,24;126322,0,12;1269694,0,39;1281084,0,55;287509,0,78;1447467,0,97;1005534,0,98;1468028,0,21"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DEpsilonDelta","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=EpsilonDelta","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=EpsilonDelta","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Epsilon Delta: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Epsilon Delta\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Epsilon Delta — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y58efe97cdc15c2d7e6c2d8440da7801b","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457622,1460716,1462157,1459297,1456929,1472031,1461640,1201470,27392,45959,1464523,1455767,1470249,1282205,1466295,1468619,1452015,1349038,1471918,1470514,1467619,1471179,1469396,1002327,1304310,284409,1462741,151171,126284,126322,1269694,1281084,287509,1447467,1005534,1468028","queryText":"EpsilonDelta","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2647630991769431009","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769431034","tz":"America/Louisville","to_iso":"2026-01-26T07:37:14-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457622,1460716,1462157,1459297,1456929,1472031,1461640,1201470,27392,45959,1464523,1455767,1470249,1282205,1466295,1468619,1452015,1349038,1471918,1470514,1467619,1471179,1469396,1002327,1304310,284409,1462741,151171,126284,126322,1269694,1281084,287509,1447467,1005534,1468028","queryText":"EpsilonDelta","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2647630991769431009","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7924883986909903067221","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":157,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2647630991769431009","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5197781152685392153":{"videoId":"5197781152685392153","docid":"34-5-7-Z2A09B2E234B097B1","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... More free lessons at: http://www.khanacademy.org/video?v=w7...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1658172/6e29fd6d0d360e93aaec596c0e8cdbe4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mqyXdAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dw70af5Ou70M","linkTemplate":"/video/preview/5197781152685392153?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-delta definition of limits","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=w70af5Ou70M\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTNTE5Nzc4MTE1MjY4NTM5MjE1M1oTNTE5Nzc4MTE1MjY4NTM5MjE1M2qSFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E6IDggQkAYAEKyqLARABGniBA_r9AvsFAO37B_sDAAAAAPz2_fj-_QDxAAL8_gEAAOkB_QD7_wAA-wf6DwIAAADz-gX7_AAAABL2AQADAAAADvT5AwMAAAANC_wD_gEAAP8B9P0C_wAABgTv9v8AAADz-v_8_P8AAPv7AgMAAAAA_wf-_wAAAAAgAC1ZQuI7OBNACUhOUAIqhAIQABrwAX__HgDX9aUBxALmAaYcAQCaNCn__DvMANbc_QCu9b8BE9fo_8wX4f80-u7_rBXq_x0Gz__4yQIALugV_1bD_f_FBQYBE_7hASwdH_8JCgcA4hoH_gv6DADy1akA9Rbc_hXqCAES-PH86gS5Air7NQHrDBwHLOsAAduhKgDA9_gI9ve-_vYnBgXw7gj29lcdBCz2BQUOLwj43OzM_gvhBgT-xP7wIR_d_RTfAwgQFQAE8An3Bvvd9Qc3GBAC2QL8BvH1KwLi-wX_3McE-PneAvTD_fj-_uH59ijqF_gL8PcL7dzq9cz_6vT3EPn82wnz6iAALTgcAjs4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK8o1M8vfTIG7zrTTG8FNqYvSdPeT0LEYm7JEMePpNrrzpzlC29rS-ivRbg1rxDX1W9xVWFPlQwb72bfyq8GYGivUC1uz3hpF-9R48Pvm2kkTxoOMo851kEvemiPL3YbEA8iGVzPaVqm71wApk6w_hEvEyJRD0tWVq93JsEPNST3rz87QG9rX_hPLPFv7zETy28C1UbPeSf_Ls41Na7L-u0PAkAKb3bXRa9XR5GvBAGnjxhmS29mUP3PEI8Nz07li28FaSAu8-XmL2A0Yo862sivf6DozwW-0s7JkCoPZCoKz1v0a682MIHPUTHmb3yO7K8s33ovVJMfDo1iva7qPwLPqWDlT0kjoa8GNIBvkmDqz2WJiW8uypQPfqNQLy_7746AZm3PdaiKrxXIYo80q59PcEyiz2OAZk8LQ4fvFVWLj0QQhs9slW4PMUvhrzvEge8phNEPdVOXr35jae7Zf8dvFqoqzysY8c6oL66PT1Ze7yaoac8Po2gPOYJgDt-9Je7BSOlPdYCO75J5Zo6dfhVvcH-K70XKn-8Yy-fPSb_oz24YjW8vQw1vJwZDb7jFam6K7Q9PF8BFryjxJU6sfdHvdaOAr3tXtU76lobvmh5_j0rODE4ZCe0OydTIju-gW68Dk-vPIM16TwD-Po7xWUGPfoMCL5VIQO69StdPXMRPz2wlem6inyyPHJmkD2MOTQ6RPO1PZYibzley_k6uHRMvSGH7zsElli6zbzLvafPTr3MSqm3bQPXPbWj2L0Mn685tyn9On-6Rj01-k45xPd0vSdmXjtz_hA5rFOlPB5Yabx_dqE5HhGovc78Sr4Byw45_vWFPQFtC73u9h26-D2FPTBfFroUmwU4U1n0va_hs7yMjI-5vLS8O94EPz3wrKU5gCkDPncbyjzI7zk58t8tvUssHz2fqc63y_99O47qdL1T6sA32kKmvTspnT0CL4235HtLvcR0RjsBFLC4FAQPPRBdAD6Nw3G4EcGNvbpWgT1J4uU3I2GEPLpnvT0lX3e3b_YHvQIQd714-IE3Af4EPWZfA7xW1E84bcX-vaLUPr0aL_S4WXojvVVosL0M6DG4pyTrPel1GLriWkW4alOAPRsAAD1XJUM4weMrPtylaLwHiXS5OcXEvWe3Jr7WR3I42MlKvQxQRL1awKq4V7_IvPkVxjyuaau3SfeOPK1QxL1znPK4ipZXPRBY-T2NF0A4rARGvRElMD0PcrO4bgONvSdprj2_9xY34stEPCiJO7039NW3IAA4E0AJSG1QASpzEAAaYBPvADfdMMkaBEreAenx6fLd_eEdnSn_59f_zOrZ6O0WpLMH_AAS0S4CmgAAADX73wzqAOx_thD7WAbuEP2J4DkjVibhBu_qBgan5CgyCNEk9QcfUQDm_50oXAWaDxNgICAALSbdDzs4E0AJSG9QAiqvBhAMGqAGAADwQQAAUEEAAPhBAAB8wgAAyEEAAADAAACsQgAAuMEAAETCAACAQAAAAEAAAJbCAABAwgAAOMIAAARCAADwwQAAgL8AAIA_AAAAAAAARMIAAHDCAABAwgAA8MEAAPBBAAAAwQAAqMEAAOjBAABQwQAAAEIAAFBCAAAcwgAA6EEAAJTCAADoQQAAgsIAAEDCAAAAwAAAykIAAEDBAABsQgAAQEIAAGDBAABUQgAAQEEAACBBAACswgAAuMEAAADBAADYQgAAkEEAANjBAABAQQAAkEEAAKDAAADAQAAAQMEAAADDAACAPwAAgMEAAFRCAABoQgAAcMIAALjBAABUwgAAFMIAAJbCAAAwwQAAGMIAAIDAAABMwgAAgEIAAHRCAAAwwgAAeEIAAABBAACswgAAqMEAAIjBAAA8QgAAwEEAAAjCAAAAQgAAoEAAABBBAADAQQAAwMAAAJhBAABMQgAAikIAAADBAABAQQAAiEIAAIDCAACqwgAAMEEAAGzCAAC4QQAAQEEAALhBAACwwQAAnMIAACBCAADoQQAAisIAAJDBAAAQQQAAgMAAAAxCAAAAwgAAQEIAAERCAACwQQAAgMAAAABAAABgwQAASEIAAKDAAADowQAAQMAAAATCAADIwQAALMIAABDCAADwwQAAwEAAAAhCAAD4wQAA4MAAAEzCAACIQQAAMEEAAJhBAADAwQAAhEIAAFBBAACAQAAAAMEAAMBAAAAAwQAAcMIAABDBAACYQQAA2EEAANjBAAB0QgAA4EAAAGjCAABAQAAAmMEAAGDBAAAAQQAAEEIAAGBBAAA4wgAAMMEAALjBAABgwQAAQMIAAJTCAAAcQgAAQMIAALBBAABwwQAAcMEAAIA_AAD4QQAAZEIAAI5CAACEQgAAQEEAAHDBAAAgQgAAmMEAAADAAAAUwgAAAEEAANDBAADowQAAqMEAAIxCAACYwQAARMIAAABBAACYwQAAMEIAAIA_AACQwgAASEIAACDBAABwwQAAIMEAAHTCAAAAwAAA4MAAAMDAAAAsQgAAoMEAAMBAAACMwgAAkMIgADgTQAlIdVABKo8CEAAagAIAADy-AACevgAAij4AAIi9AADgPAAAvj4AAAw-AAAfvwAAF78AADQ-AADCPgAABL4AANg9AABcPgAA-L0AAK6-AAA8PgAAoDwAAIg9AAD6PgAAfz8AACQ-AAA8vgAAbD4AAOi9AABcvgAATD4AANK-AAA0PgAAmj4AAFQ-AADYvQAAZL4AANi9AAD4PQAAsr4AAGw-AACavgAAur4AAIC7AAAFvwAArr4AAOA8AAA0vgAA6D0AADA9AAA0PgAA4r4AAIA7AACivgAAcL0AAHS-AADovQAAdD4AABS-AACgvAAAUz8AAFA9AACoPQAAPz8AAHw-AACAOwAALD4AADS-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAQDwAACS-AABHvwAAir4AAM4-AABMPgAAkj4AABS-AACePgAAHL4AAKC8AACYvQAA2D0AACS-AACAOwAAED0AADk_AAAcPgAAGT8AAIC7AAA8vgAA4DwAALi9AADovQAAir4AALg9AADgvAAA6D0AABw-AABAvAAABL4AABA9AABwvQAAPD4AAJq-AACgvAAAqr4AAES-AAB0PgAAcL0AALg9AACoPQAAoDwAAPi9AABkPgAAf78AAMg9AABQPQAARD4AAHA9AAA0PgAAML0AAKo-AAAsPgAA2D0AAKC8AAAwPQAAij4AAKi9AAA0PgAA-D0AABA9AABEviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=w70af5Ou70M","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5197781152685392153"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1444219964"},"1217347565808831842":{"videoId":"1217347565808831842","docid":"34-4-2-ZEAD8023E7E0362FE","description":"Introduction to the Epsilon Delta Definition of a Limit. Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous lesson? https://www.khanacademy.org/math/diff...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3415088/ca7d08178754e3290e3578bc757149ca/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0-NQIAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-ejyeII0i5c","linkTemplate":"/video/preview/1217347565808831842?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-delta limit definition 1 | Limits | Differential Calculus | Khan Academy","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-ejyeII0i5c\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTMTIxNzM0NzU2NTgwODgzMTg0MloTMTIxNzM0NzU2NTgwODgzMTg0MmqSFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E_8FggQkAYAEKyqLARABGniBAQACBv8CAO_7-wkLA_4AAfz2_Pj9_QDz_QH19QEAAO0H_f4D_wAA_w0ACfoAAAD8AgQE9v4BABD7_vkDAAAADv_9CAQAAAAODPwD_gEAAPgB_AED_wAAEAP48v8AAAD8_fsB-f4AAPHy-wYAAAAAC_8F_gAAAAAgAC1etdg7OBNACUhOUAIqhAIQABrwAX_CHwLW9aIBniPD_swu3QG5PA8ACyXh_8zpDf_AGs8AJ_clANf-Ev8k_9H_jDMnAfEF-_34xwIAPMEn_yfbEQCpCBIBFP7gAS4eIP8N7Pv-2S7gAdIpKf8cz8oDEkb4_CTyBP0QFPb-6gS3AgskPgPL-QICAwwMA8Ly-QXBJPf-9fe8_vAaFAQA4_j-6BpFAULqGgYC-BD8A_Dj_fMhKf4NAAsGIN7eByQU5AbbKjP-7ekm9Q_uFgcNySMG7fjaDOHcI__h-wb___8a-Tr08wf0BPsDH_LyDgn7Ce4c8ugDGBL38Pjl9gAOIuv1-cnvASAALZ5R-zo4E0AJSGFQAirPBxAAGsAHHw-9vqJhMb1qeQ-9vln5PBLY3Lw8Hum87QOqvV_8ozw42Iu9M6lBPtnEMDpYs6k8vSgwvb-iNry854A8FJRCPkZFHL1z6AC8GYGivUC1uz3hpF-9yqKVveZHMjzxfgE9rwr0veDdBLxG3w287xEbPcHEv70IkAG95MPHPMPyILqDmuu81DqbPTRVRr0On3S9pZr-O5XJurx45eG7peCEPfpHujxALae7tLCyPUwlMr3p5SC7dHvpvaUWyry7WpO8hFkSPbjnWT1iIBk8LNy9vcm_oDx_z1k8xijSOQ-HW7w2-iC7fv4LPs2xnD3GDo-8nxHXO_m1er32Tp67X5O6vWpnPbywpey88H9sPWapwD3lZQk8hNd-vhfPxTw_xly7K97IPHyX97ykw0M8ZJPcPW79TzxnMcw81mSXPTghA723NTe74OwAveBYhjydOdo8dj8dPRq5uLyAoUM7FZWIPUW1Tb0zf5Y82XgwvIXtI7tLnTa83fRCO_0FET1jRao7asQHPYIQej3_gQu7BSOlPdYCO75J5Zo6wdIPvSjTCL01n068dH7KPGokcz2FxKi795MxvbNowL2f4jy7pj-QvXzgurvAnic7FvVuPDCQFr2BXGI7IyuEvQf0nT1ywAO6_GWBvY6hUjzf61q8_7B2Ovok-7ssUhc8L4GgPXHexbtTxdw7KhwgPFjnuD1fULa7BgJwu7tZLDuVfsK7SQ59PUXA_LwrMte7ZXKqvWQ7Pz3l8RO7gKo7PclgoLxf8Xo67nScPazizb0q_705zEHwvXrahj3GzVU4Mru4Ozeo3T2bbAQ4_8V5u2-QmrzoBDa5VBv8vWK7-70T0_I56L7cPa6RrjwPGxw5LOQAvVEt4jzs5LO57_XiO4gqkb1tgww5MteovVbarT1xrNK4rq__POpCrDpzwt23uYy8u6Jq7DtDTbo6qckGvOcGqb1QgDa2ZXimuwCUGj02cdA4pWbvvZoImzxLOaG5zq_BPEmTzD3fRIe4WpUOO5DvVz23dY2469A_PbPdMz3Lj5O45eK5vHFom73lrQg2GMmDPWvLCj3OoTK3yuEDvhDXHjyX_U43btRUPLREnbwz5wA4CNLAPYuSmz3j8Xk4g4eJPU58tT2qKOk3oFTLPffxxrwtj9W4-UrgvQyP3b1jM0S4vJDOvTeCmb2CYo-4l6UiPRBSwT0RmU-49nR6PeAP370_mZu3FD01Pa4jWD300Jw4MdDVvbZX1TyGG2u4tAH4vbVYRT1R4Fw4WweHPHut-rz-LHK3IAA4E0AJSG1QASpzEAAaYAbjADn8FN74AlDk7NXpEsTTDvcZpBP_ydT_0unNDtQju7z98AAt0BnzngAAACv36_4RACB_AfD_JgLuFxOFrVEUYxoT8uP0BAixBwA0D_4XICIpQgCwD6I6OuKcJyFoQiAALZMsEDs4E0AJSG9QAiqvBhAMGqAGAACIQQAAUMEAAIA_AABwwgAA4EEAAIBBAAB8QgAAUEEAABzCAABQQQAAAEAAACzCAAAYwgAAIMIAADxCAAAMwgAAAEAAALjBAACIQQAAbMIAAIDBAABEwgAAcMEAABBCAABAwQAAUEEAADjCAAC4wQAAREIAAChCAAAIwgAACMIAAIzCAABMQgAAbMIAAADCAACAvwAA_kIAAIA_AADQQQAATEIAAABBAACUQgAABEIAAIC_AACYwgAAcEEAAABAAAAcQgAAMEEAADDBAAAQwQAAIMEAAIDBAACgQQAAcEEAALzCAADgQQAAOMIAAGxCAABQQgAAAMEAAJDBAACiwgAABMIAAGzCAAAQwQAAQMIAAJBBAAAEwgAAjkIAAHxCAAAowgAApkIAALDBAAB4wgAAFMIAAFDBAACIQgAAWEIAACDCAABoQgAAwEEAABhCAACIQQAAwEAAAKBBAABQQgAAYEIAAIC_AACQQQAAhEIAAAzCAADEwgAAwMEAAFzCAABQQQAAAMAAAFhCAAAAwQAAjsIAAERCAAAkQgAAKMIAAADCAACAwAAAHMIAAJxCAAAMwgAAsEEAAOhBAADgQQAA4MAAAEDBAACwQQAAyEEAAADCAACGwgAAIEIAAGDBAACIwQAAJMIAAFDBAAAgwQAAgL8AAGBBAABowgAAAEAAAFDCAABQwQAAYEEAACxCAACwwQAAwEEAAJBBAADAwAAAsEEAAMBBAACEwgAAqsIAABDBAACAQQAAHEIAAKDBAAA8QgAAIMEAAODBAABwwQAAgD8AAJjBAACwQQAAwEEAAFhCAAAYwgAAgMAAALhBAAAAwQAArMIAAKDCAAAwQQAAhMIAABhCAACQwQAAQMEAAADCAACIQQAAgkIAAIpCAAAoQgAAOEIAAMDAAADwQQAA2MEAAKhBAABIwgAAUMEAAPjBAACAwAAAEMEAALpCAACQwQAAMMIAAEBAAACAwAAACEIAAMjBAACkwgAA-EEAAPjBAADowQAAoMAAAFzCAAAQwQAAJMIAAFDBAAAcQgAAcMEAALhBAACSwgAACMIgADgTQAlIdVABKo8CEAAagAIAADy-AACCvgAAND4AAFS-AADYPQAADT8AAJI-AAATvwAAlr4AAKA8AAAMPgAA6L0AADQ-AADIPQAAyL0AAJi9AABcPgAAUL0AAFA9AAAHPwAAfz8AAJi9AABQvQAAhj4AALi9AABQvQAAbD4AAAS-AACgPAAAhj4AAGw-AADYvQAAmr4AALi9AAAcPgAAFL4AAJg9AAAsvgAAyr4AAJi9AAAZvwAAZL4AADw-AABEvgAApj4AANi9AABMPgAAur4AAFC9AABMvgAAHL4AAKa-AABwPQAATD4AAJa-AAAQvQAANz8AABC9AABAvAAAHT8AADw-AAAsPgAABD4AAOC8IAA4E0AJSHxQASqPAhABGoACAAAkvgAAiL0AAIa-AABNvwAAVL4AAJY-AACWPgAAFD4AAFy-AABcPgAAcL0AAKC8AABMvgAAmD0AAEC8AABwvQAAML0AABs_AADoPQAAHT8AAKA8AAC4vQAAiL0AAPi9AADgvAAAgr4AAKg9AAAQvQAAHD4AABA9AACgPAAA-L0AAEC8AADYvQAAND4AAIK-AABQvQAAHL4AAFS-AAA8PgAA4DwAAAw-AAAEPgAAMD0AABy-AADoPQAAf78AALg9AABEPgAA2D0AADC9AACIPQAAuL0AAIY-AABEPgAA-D0AAIC7AABQPQAAND4AAKi9AACIPQAA-D0AAPg9AAC4vSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-ejyeII0i5c","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":320,"cheight":240,"cratio":1.33333,"dups":["1217347565808831842"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2099950270"},"2956946206858017951":{"videoId":"2956946206858017951","docid":"34-10-3-Z344FFDE1E0417140","description":"Using the epsilon delta definition to prove a limit Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous lesson? https://www.khanacademy.org/math/diff...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2918671/b9612572f867ef2548e9dc226dae9851/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PQ7ZxgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFdu5-aNJTzU","linkTemplate":"/video/preview/2956946206858017951?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-delta limit definition 2 | Limits | Differential Calculus | Khan Academy","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Fdu5-aNJTzU\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTMjk1Njk0NjIwNjg1ODAxNzk1MVoTMjk1Njk0NjIwNjg1ODAxNzk1MWqSFxIBMBgAIkQaMAAKKWhoZG92aXd4c2V2ZnFyZ2hoVUM0YS1HYmR3N3ZPYWNjSG1GbzQwYjlnEgIAESoQwg8PGg8_E48FggQkAYAEKyqLARABGniBAQACBv8CAO_7-wkLA_4AAfz2_Pj9_QDz_QH19QEAAO0H_f4D_wAA_w0ACfoAAAD0BQMI_AAAABD7_vkDAAAADvT4BAMAAAAKBvcI_gEAAP8F-_8D_wAAEAP48v8AAAD1__8G-v8AAPHy-wYAAAAAC_8F_gAAAAAgAC1etdg7OBNACUhOUAIqhAIQABrwAX_79AHQ-9L_2QTMAMQpCQCvGgkACR3n_8wBDgDAA-MAFA7mAdL7y_8EBAYAzvkRACLt2__60gIAMO8A_0Di-gD79ggAMtzbACMyJP4EFeL-5xUG_gThDAAW8sn_7gPh_-wDFv0fBegA2vXXADYMKgDt2B4CCfYh_d7ODAHZIekA8r3ZANsQ-v_NvwH-_g8dAgLcCAgw9gX76RYRAgf_9fwHBx_3FArlBAv1_Azl_QL669oiBArjBAAUBxIGxgP3-trzKwXG9_IEAQgE9CcJ8gfBCwMKCwz7BQcNFgMM3_sDEO7zAAj_Af_y-AYH3Qvz_yAALWPLHTs4E0AJSGFQAirPBxAAGsAHgO7TvhHew7rl6Ja8yXeEutU15Dz78c28zKWXvXGq9Tw9PJU81IEMPlK9gL0C0sC7gQgBvjc-ST2ubYC8pkI8PmVhOb08fEM92UNLvkOSdjspf4K9_Qeyvb-txzt7DhO8jPiZvfaWVTrGrTi8MA7uPC8ZB7yYtkk8kVZGPLSOqryUgB29IhehvTucirwFK1O99jqOvdm9C725w6a8vFruPUBjS7wrAac8oZR6PWRoq7zBqrq87GjcvS-9AbwZWAU7hFkSPbjnWT1iIBk89GEHvcMNiL0unYU8_gVnvcBDbD08mQe7nLS6PUrtRTywepu8SsTFPZfTFL0wY4q8bazkvaYRLj2UTsE7jTqEPLYPuTzxVqc8GNIBvkmDqz2WJiW8ZmUePAkCnrtWFoG7tMlhPBWnjz3_Fi48LHqMvHZlYTzJLyy7chP3uyy5ijxzMsw82c3sPYD07b3XWD-684erPYhgAbwS7r45HiUlvb_ZQbzaa-q7CurlvNcERz3FIRc8FOeNPMazGr0nFCC8BSOlPdYCO75J5Zo6V3s4vS-H_b0qoGY66xPKPAnmQzxuQqu88PlhPRRfDb53hBG7LzKiOxQU9bwY9os7feaRvDIJcrwV16W6dQPFvNdAlL3BoYG7NhqlvVvKnjzrKg-8rokAvYsffj3skXk6LxG0PUqaD76KV-K5G3TIPUA3Tz1XBlW7NWy6PS5hozx7Usk4D4F-PCKQhr3GgxA77c9qvdX_nrzq-Xu6xxFLvSBOlrzX6Au7PL3yPUrIUb1XwY45FcpCPMqxaz2bzOo5g0mWvK0UBDwtiLM5FdeCPYlNWr0565M476sSPc6mA74Woda3Xdo1PQEOhrxAOlq5vqZivJj7JD16k4Q3zCDDvdQNBL4IU4U5h-JpPZY1u7xi08G4q21UPLcoc72OqtW3rRsKvU8FPD0NUwS3MCZCPekyK70nTAC5FwMVPb98dz09Bwc5QfEDPXFPwb3XOHs5YkOcPMMdiT1YsKE5LZ7wvHbjXTzFxlG4S2yEO5cEIz2ApPK4UkjPuz48q71PsuQ4kJkwvK3mDz3HJhY4yuEDvhDXHjyX_U431h-8PCU2RLzCQgg4rzoVPPl_ejxyRjw4IEoNPEM4Rj0M-Mw3kl0ZPtlPUL2swj-5tlF4PHMS6r0u6_a4ZhK1PF6hz72AurI3jrmhvMkJrj1kbhS37AO9O3zUD74X-ty4yvRwPSLhKz7xy4o4U1N8vfDzZD0mccO3rW3qvRQ7vzxv0uM3gRFqPC34Ibzka_43IAA4E0AJSG1QASpzEAAaYC_kADPaJdgL7kbWDub8Bc7FGuckpgH_19j_w_bE8vYXoLHyFwAa2PcJoAAAACvsBgIbAAR_7-3aR9vv8giJtzMPXCPyCuXJCBimF_cw_PAWG_oaUgDLCKlHL9ynLvVWECAALeW2Ejs4E0AJSG9QAiqvBhAMGqAGAACAQQAAgMEAAIjBAACQwgAAqEEAAIBBAAB4QgAAQEEAACDCAACoQQAAmEEAAHTCAAAMwgAAsMEAAExCAABUwgAA4EAAAMDBAADgQAAAbMIAAPjBAACUwgAAPMIAAPhBAADIwQAAgMEAAFTCAADYwQAAqEEAANBBAAAwwgAA-MEAAJTCAABAQgAAhMIAABzCAACAQAAA1EIAAMDAAACIQgAAHEIAAIBAAACMQgAAgEEAAIBBAAC6wgAAAMAAABBCAAB0QgAAiEEAAKjBAAAQwQAAIEEAAJBBAABAQQAAqEEAAPDCAAAsQgAAFMIAAHBCAACAQgAAFMIAAIjBAACCwgAADMIAADjCAABwwQAA2MEAAOBAAAAowgAATEIAAHhCAADYwQAAkkIAAIDAAACawgAA4MEAAOjBAADAQQAA8EEAAMDBAAAkQgAAAEEAAAhCAAAAwAAAJEIAABBBAAAkQgAAOEIAAADCAADgQAAAXEIAABjCAACqwgAAIMEAANjBAAAQwQAAcEEAAFBCAACYQQAAnsIAAIpCAAAkQgAATMIAAHTCAACAPwAA8MEAAHBCAAAIwgAAPEIAAPBBAABYQgAA2MEAANDBAADwQQAAwEEAAATCAAAYwgAAPEIAADDBAADAwAAAEMIAAIDBAACwwQAAQEEAAGRCAACEwgAAgMAAADTCAACgwAAAcEEAALhBAAAQwQAAJEIAAJjBAADgwAAAIEEAABRCAAAkwgAAtMIAAIDAAACQQQAABEIAAGDBAAAUQgAAgMAAANDBAABAwQAAMMEAABDBAABAQAAAJEIAAFhCAAAowgAAMMEAAOBAAAAwwQAAdMIAAK7CAACoQQAAOMIAAMBBAACAQQAAgEAAAKBAAADIQQAATEIAAHBCAABYQgAA8EEAAADCAABEQgAA6MEAAOBAAADIwQAAEMEAALDBAAAAwAAAQEAAAL5CAADIwQAAQMIAAOBAAACAPwAAWEIAACjCAAB8wgAAFEIAAIC_AADgwQAAgMAAAFDCAABwwQAABMIAAJBBAAAUQgAAFMIAAJhBAABgwgAAosIgADgTQAlIdVABKo8CEAAagAIAAFS-AAB0vgAAZD4AAAS-AAD4PQAABT8AAHw-AAAhvwAAhr4AAOA8AAAUPgAADL4AABQ-AABsPgAAEL0AANi9AACyPgAAQLwAAEw-AADyPgAAfz8AAAS-AACIvQAAmj4AAAy-AAAQvQAAqD0AAIa-AADIPQAAhj4AAEQ-AAAkvgAARL4AACS-AAA0PgAAuL0AAIA7AAAQvQAAxr4AADC9AAD2vgAAQLwAAOA8AAAEvgAAFD4AABS-AACWPgAAyr4AAIC7AAD4vQAAuL0AAJq-AAD4PQAAFD4AADS-AACAuwAAGT8AAKg9AADIvQAAKz8AAAw-AACIPQAA-D0AABQ-IAA4E0AJSHxQASqPAhABGoACAAAkvgAA4LwAADy-AABRvwAAXL4AAJI-AACaPgAATD4AACS-AAB0PgAAEL0AAKA8AAA8vgAA-D0AADC9AAAQvQAAmL0AACc_AADYPQAAFT8AAJg9AAAEvgAAUL0AAAy-AACIvQAAXL4AAOg9AAAQPQAAqD0AAPg9AACgPAAA6L0AADC9AADYvQAAJD4AAIa-AABwvQAAFL4AAGy-AAAkPgAAcD0AAHA9AAAsPgAAiD0AALi9AADoPQAAf78AAAw-AABEPgAAyD0AAIi9AAA0PgAAuL0AAII-AABkPgAADD4AAIC7AABwPQAAij4AANi9AAD4PQAAqD0AALg9AADIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Fdu5-aNJTzU","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":320,"cheight":240,"cratio":1.33333,"dups":["2956946206858017951"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4095548058"},"16693553132975887537":{"videoId":"16693553132975887537","docid":"34-6-13-ZA5EAC7231C294FA1","description":"Unlock the secrets of calculus with our latest video! Join us on a mathematical journey as we delve into the Epsilon Delta Definition of Limits, demystifying a fundamental concept in calculus.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4331728/291651b5cb02e0a7a6bb556caee70fd7/564x318_1"},"target":"_self","position":"3","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8qi-hv48Hws","linkTemplate":"/video/preview/16693553132975887537?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon Delta Definition of Limits: Easy Explanation","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8qi-hv48Hws\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFgoUMTY2OTM1NTMxMzI5NzU4ODc1MzdaFDE2NjkzNTUzMTMyOTc1ODg3NTM3aq8NEgEwGAAiRRoxAAoqaGhwdWh3eHN3aWVleXdjYmhoVUNNMF9aVzN5aGJKN1ZyUFJwOGdvdE1REgIAEioQwg8PGg8_E-UCggQkAYAEKyqLARABGniB-_oBBP4CAOz-BQIHAf8ADP77CPf__wDxAQL8_gEAAO0H_f4D_wAA_gf0B_wAAAD1AQP89P8BABf8-QADAAAAEvUDBwIAAAAOC_wD_gEAAPkB-vgD_wAABwTu9f8AAADz-f_7_P8AAPb8_AgAAAAACAn7AwAAAAAgAC3CpNo7OBNACUhOUAIqcxAAGmD_CgAfAfbW4g0-3A7v6PLx9uEQ_ZIlAOTuAN_f2OwHL8fA7ucAL8kR9bAAAAAkEPoN1gALZ-EFwywh9AT9vOAVGH8yAdQjFvjorffoGybbA8X4CB0Ay_LpEEwX3RP5WSogAC3tbSw7OBNACUhvUAIqrwYQDBqgBgAA2EEAAODBAAA0QgAAcMIAADBCAABAQQAAuEIAAJDBAAAwwQAAPEIAAKBAAABIwgAAAMIAAKjBAADgwAAALEIAADxCAACIwQAAYEEAAEDCAAC4wQAAqMEAAEjCAACwQQAA0MEAAOjBAAAAAAAALMIAAPhBAAAAAAAAZMIAAJDBAAB0wgAAgEEAABzCAAAAQAAAIMEAAKZCAACgwQAAuEEAAGxCAACgQAAALEIAAODBAAB0QgAA7sIAADBBAADIQQAATEIAAARCAADwwQAA4EAAAKBAAACoQQAAIEIAABRCAAD4wgAAoMAAAGBBAADIQgAA0EEAAMDCAACAwQAAUMIAAFBBAACiwgAAiMEAAFjCAABAwQAAbMIAAIpCAACSQgAAysIAAChCAAAwwQAAVMIAACDBAABAQAAAkEEAAEBBAADAwAAAaEIAAKDAAAAQwQAAQEAAAIBAAACYQQAAOEIAADBCAAAIwgAAuMEAAIJCAACswgAAEMIAACBBAACwwQAAuEEAAIhBAADoQQAAIEEAAEDCAABwQQAAAEEAAKBBAACEwgAAsEEAAAzCAADgwAAAoMEAAPBBAAAwQgAAgL8AAJDBAAAwQQAAEMIAAKpCAAAMQgAAwMEAABTCAAAQwQAAJMIAAGjCAAAMwgAAcMEAAFBBAADAwQAAMMEAAEDBAACowQAAMEEAABjCAADQwQAAEEEAAHRCAACowQAAbEIAADBBAACQQQAAoEAAAHzCAACgQAAAYMEAAIxCAAAkwgAANEIAAOBAAAAIwgAAuEEAAMhBAABwwQAAkMEAAKBAAACYQQAAyMEAAPhBAAAAwQAAsMEAAGTCAACQwgAAQEAAACTCAADIQQAAAEAAAETCAADQQQAAwEAAAEjCAABwQgAAoEEAAKBAAABAQQAAEEIAAADAAAAQwgAAgMIAAIhBAABAwAAAhMIAAChCAAAkQgAATMIAABTCAACAwQAAEMIAAFxCAACawgAAWMIAADDCAABAwQAAMEEAADhCAAAIwgAAyEEAAIDAAABQQQAADEIAAFTCAACAwAAAgMAAAADCIAA4E0AJSHVQASqPAhAAGoACAADuvgAAir4AAHA9AABwvQAAEL0AAC0_AACSPgAARb8AABm_AAC4PQAA3j4AAES-AAAcPgAApj4AAJa-AACevgAAcD0AAEA8AACYPQAAKz8AAH8_AABAPAAAuL0AAKY-AAB0vgAAnr4AADw-AADCvgAAbD4AAGQ-AADKPgAAXL4AAGy-AAA8vgAAUD0AAAO_AABEPgAARL4AAC2_AABAPAAAsr4AADy-AADIPQAA4r4AABA9AAB8PgAA2j4AAA-_AABUPgAAB78AAFy-AADyvgAALD4AAMo-AAAwvQAAQLwAAH0_AAC-PgAABL4AAHU_AACoPQAATD4AAHA9AAD4vSAAOBNACUh8UAEqjwIQARqAAgAA6L0AAIC7AABEvgAAWb8AAOa-AACiPgAAoj4AALY-AABAvAAAtj4AAGS-AAAMPgAA4DwAAHQ-AACqvgAAQLwAAAy-AAAjPwAAED0AADM_AABQPQAAqr4AADA9AAAcvgAAJL4AALq-AACoPQAAoDwAADA9AAAMPgAAQDwAAJi9AADgvAAAqL0AABw-AAC2vgAA2D0AAES-AAAUvgAApj4AAFA9AAAwPQAAcD0AADC9AACIPQAAiD0AAH-_AACiPgAAMD0AAFw-AAAEPgAAuj4AANg9AAAFPwAAcD0AACw-AADovQAAQLwAAHw-AABsvgAAND4AABw-AABQPQAAdL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=8qi-hv48Hws","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16693553132975887537"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10022051940782393796":{"videoId":"10022051940782393796","docid":"34-7-6-Z0350C75C0E1D45A6","description":"My ultimate introduction to the epsilon-delta definition of limits in calculus! The epsilon-delta definition of a limit is commonly considered the hardest topic in Calculus 1 (it's also the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1001002/41ff370904a644ad8fd2fd50d3726d89/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QXIu7AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDdtEQk_DHQs","linkTemplate":"/video/preview/10022051940782393796?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"epsilon-delta definition ultimate introduction","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DdtEQk_DHQs\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFgoUMTAwMjIwNTE5NDA3ODIzOTM3OTZaFDEwMDIyMDUxOTQwNzgyMzkzNzk2aogXEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E48JggQkAYAEKyqLARABGniBAP3__v4DAO36B_sEAAAAAAP_-Pj-_gDlBgcC9_wCAOcB-PYA_wAAAPv4Cv4AAAD3Awf8_P8AACT99v0AAAAAEwD0Av8AAAAHB_8C_gEAAPn29QgD_wAABQP69_8AAAD8CAEB_P8AAPsB_AQAAAAACAn7AwAAAAAgAC1S99o7OBNACUhOUAIqhAIQABrwAVYK8P_UABj_8yTgAPcD7QGBBQv_KQ7VAM4E_QDyBPUB_hL3ANriAAAlAyEAzBMGAA7jyAID-wsAEfX8_ybpBgHpDgMANufzAQ3yBQDp6vH_xwgZ_-_8AAHw2fUBIxvwAQYBCv4RJu0BBPLrAPsTFQEX_hcEFeT6AgEI_f79CQ7-B_ThAN4BCvwa8R_96fgjBQnu_QYFCeoA-DX-APrjA_4B2wr_ICjh_wEJ_P8G5wj98NsFARLz8Ab9-xIIHgby-e30Evru3gkCDun8-SrwDP0N_gMD498DCv32-frw7AD98h3x_wIK9Af79v0L7u_7EiAALW4nSDs4E0AJSGFQAirPBxAAGsAHa_PHvnKyg7zI45O9qfcUvEQlw7t3Lsy8DVRGPfo8gD1LHYS9PtDqPZnO8zydh1G7FM_hvsGt-7zV5wq9mN0jPoFJkL1D9PW83PQXvn7UNT2qYg08bTvtvX24P7wa8hU8uhMMPqzA5DmQFpe9Qd4jOxk5m71sKma8QGwJPrBcSjwBN-Y7iUf9vJOdqL1rcBG9tv1hPPGiijyM_oY8dzHtPY8AKb12lhE89WItPVlUnzxxu-E7pVH9u93tej3pSsI7WkqGPisl1TyIhM67dk1tvL0Hw7yNkba7bAeDvc0W2jyWMIm80RuTvU80WbxuZIM8Y5ICueBePrwkFby8pZUMPZ_Isz1PH6I7u0sdPbhtBD0TccQ8oV2PvMl3CT4H0iQ7kGkNPbMa3DxZff88qgZmPaHoiz0b1au71mSXPTghA723NTe7kCQQvBDfoz2mYgM9WHCUvWhidT2i4BS7p60QOrmMuz1aYoo8NjwePMulDD3hPEG8l4IePA4PBLx3Gt88O7PVu-3YiD1iELu7thQLPZFUgL3la4W8g-rVOlGQELwauMm7jV9YvQArUbwiGXI8C0alPC4XVr3ciKO6pj-QvXzgurvAnic7IR6JPaCuaT1AOBk82Ig7vMnHbj3OOiE8v2unuzrDuTzWNX-8efNKPVwtBTyzmi48UKvova4QVrwIWn07R0zaPCq3I73FzV66SKkEvsCBIDpKNVe648UCPtmdCT2w5cW5Aj65PTmrb71U7fY4iKZHvVdgg710_2c40UjKPQvqgLyO7eC4-4N3vej46D2yFAK6ZVxnvbh8P71QLpU5btySPTuyKL0jTiO5ZDtfvTdb77x3Iso4r43CPPrEu71ceXm5xcSLPGxU8bxV9oO5-gh8PIVsuj1t2OS4C9chvBxvfD2Mway4FkBCPF7aED3ceYe3ej8EPb10brz8hUi4cWalvXJimTxC6P45SZ8GPniivzxGQEw5vufGPQAdpr1qQ4Y5FAQPPRBdAD6Nw3G4PiYNPSPgmz2w6xy42mxRPZh_ub2dRds4nfKIPT5Ndz0voB04qu3LvNOBkT0Gk2a3tMBIvekAMr1SM5c3bwSDPYBgo73jBOo4gtWSPXME-rwL3zu2PLavvRNLRb3-r7w3G7B1vLRKGr2hFbo35iPpPOKL27wjA9W292ANPQKJIT1B7wC4DBjJvJiyALt2pC630zOIPYUL-bxAeiS4mQ6dvOWooj38XTA4WZZ5PMUMYz0buI64hE6jPPbsGDtn0L2373lZPAZYhT0QiKg2IAA4E0AJSG1QASpzEAAaYBX_ACj1K9P0KTr3Cdjl-una4v8VoST_x-L__vm18RU038r68gAdxxvwqAAAAP_y9QjlAPx43vnbPQYe892P3xwZf00fBtP0Be63BhIiAN4_APIDGgDE-p8WPx6xTCQQIyAALUbfHTs4E0AJSG9QAiqvBhAMGqAGAAAUQgAADMIAAIhCAABwwgAAwMEAADDBAACAQQAA2MEAALTCAACYwQAAQEEAAKBCAADwwQAAgMAAAHRCAADAQQAAQEAAAHDCAAAAwAAAPMIAAKjBAABwQgAAwMEAAERCAAAEQgAAAEIAABjCAAAQwQAAeEIAACRCAAAMQgAAAEIAAFBBAACAQQAAQEAAAIhCAAAQwQAA0kIAAOhBAAAIwgAAUMEAALhBAACIQQAAMMEAAIDAAAAAwQAAYEEAAPDBAAC6QgAAAMAAAGBBAACIwQAAAEIAACBBAAAAQQAAMMEAAMjBAAAEQgAABEIAAABCAABgwQAAAMEAACzCAAAAwgAAgMEAADDBAAC4QQAAXMIAAIDCAACwwQAArEIAALhBAABswgAAtkIAADBCAACQwgAAqMIAAJBBAACIQgAAqMEAABjCAAAgQQAAiMEAACBBAACYQgAAgEIAACDBAAAwQgAA4EAAABDCAAA4wgAAaEIAAPBBAABAwAAAsEEAABTCAACAwAAAAEEAAK5CAADAwAAAZMIAAFRCAAD4QQAAXMIAAADBAACaQgAAAEEAAJxCAABYwgAAGEIAAKBBAACAPwAAnMIAAABAAACUQgAAIEIAABBBAADwwQAAIEEAAKbCAAAUwgAA4MEAACBBAABQwgAABEIAALjBAACIQQAAosIAAKBAAAA4wgAAgMIAADDBAABAwAAAfEIAAEBBAAAAQQAACEIAAAzCAACgwAAAJMIAAOBBAACIQQAA8EEAABTCAAAgQgAALEIAADjCAAAwQgAA0MEAADTCAAD4QQAAEMEAADDBAAD4wQAAgMAAANDBAABgwQAAgMEAAJhBAAAMQgAADMIAAPhBAACowQAA4MAAAKhBAACAwQAAgD8AAJjBAACIwQAAdMIAAHjCAAAAAAAAaEIAAATCAAAAQgAA8EEAAGhCAABowgAAokIAAIBCAADYwQAAsMEAAEDCAABUwgAALEIAAIDCAAAAwgAAcEEAABDCAAAEQgAAEMEAANhBAABAwQAAcEEAACzCAACYQQAAIMEAACRCAADgwAAA0MEgADgTQAlIdVABKo8CEAAagAIAACS-AABUvgAA2D0AAIK-AABUvgAAVD4AAAU_AAABvwAAK78AADy-AADOPgAAFL4AAMi9AAAMPgAAyL0AAIa-AAC-PgAA2L0AAFQ-AAA9PwAAfz8AADQ-AABwvQAADD4AALa-AACAuwAAoLwAAPi9AADIPQAAoDwAAMY-AADWvgAAor4AAMi9AACWPgAAJb8AAHA9AADavgAAL78AANi9AAC4PQAA3r4AAPg9AACavgAAXD4AALY-AADSPgAA4r4AAMo-AADGvgAAzr4AAJ6-AABcvgAACz8AAPg9AADYPQAAbz8AAHC9AABkvgAAWT8AABQ-AADgPAAAUD0AADS-IAA4E0AJSHxQASqPAhABGoACAACAOwAA4DwAAAS-AAA3vwAA-L0AABk_AAC2PgAAdD4AAIA7AAB0PgAAHL4AAMg9AAAkPgAARD4AAHy-AACIPQAAQDwAAEs_AACgvAAAGz8AABC9AACyvgAAjj4AABS-AAAkvgAAur4AAKA8AABAvAAAcD0AALg9AAD4PQAA-L0AABy-AADYPQAAmj4AAMq-AAC4vQAAkr4AAEy-AACoPQAAJD4AAJo-AACGPgAAJL4AADS-AABEPgAAf78AAGQ-AABUPgAAFD4AAAQ-AADuPgAAmD0AAAs_AABMPgAAJD4AALi9AADYvQAAFD4AADS-AADIPQAAuD0AAOA8AACqviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DdtEQk_DHQs","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10022051940782393796"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3439391007"},"81019178376311207":{"videoId":"81019178376311207","docid":"34-6-11-ZEBD5A32E68E265D7","description":"Here's how to find a delta for a specific value of epsilon in the epsilon-delta definition of a limit. We will use the limit of x^2 as x goes to 2 as an example. Part 1: • How to find a formula...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2933743/8811f107178cef108aa07f5149827833/564x318_1"},"target":"_self","position":"6","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dpk7vxTbKpxk","linkTemplate":"/video/preview/81019178376311207?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find a delta for a specific epsilon (epsilon-delta definition of a limit)","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pk7vxTbKpxk\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaEwoRODEwMTkxNzgzNzYzMTEyMDdaETgxMDE5MTc4Mzc2MzExMjA3aq8NEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E80DggQkAYAEKyqLARABGniB-_oBBP4CAPD_A_7_AgABCwD7-vcAAAD5_wUA-gT-AOcB-PYA_wAAAPv4Cv4AAAD3Awj8_P8AABf8-QADAAAAB_r3BQIAAAARBQAM_gEAAP4A-AYD_wAAAAj37_8AAAD2AQL7-AD_AfoCBAcAAAAA_wf-__8AAAAgAC3CpNo7OBNACUhOUAIqcxAAGmABCgA49fDq-RUw2Rn47frx-OH-ELQYAOnjAPD3yuEGQdDSEvwAQdkU9LgAAAAn6_cQ5QAVWwj9wTIlG_0P2NEBDH9JBeQYHwMAuu4THBH1FOEVCRQA5Pjr_jYRvhroUz8gAC3DbTo7OBNACUhvUAIqrwYQDBqgBgAAXEIAANjBAACWQgAAUMIAAMDBAADAwAAANEIAACBBAABMwgAAgEAAAMBAAAC4QgAABMIAAKDAAACQQQAAhEIAADDBAABgwgAA4EEAAABCAAAAQgAAYEIAADDCAAAUQgAA8EEAABDBAADYwQAAHMIAADBCAAAAQQAAUEEAAEBBAACQwQAAAMAAAJjBAACEQgAA4MAAAOJCAAAAQAAAsMEAAJjBAABAQQAA6EEAAHjCAAC4QQAA6MEAADBCAADQQQAAikIAAIBBAACgQAAACMIAAIC_AABIQgAA4EEAAJBBAAAgwgAAEEEAAFRCAAAoQgAA8MEAABDCAABgwgAAPMIAAMjBAAAAQQAA0EEAACDCAACwwQAAwMEAAJZCAACAPwAAZMIAALRCAAAAQAAAgsIAANTCAAAQQgAACMIAAJjBAAAwwQAAcEEAAIA_AACgQQAAQEIAAJBCAACgwAAAkEEAADBBAAA8wgAA8MEAAIhBAACwQQAAkMEAABBBAABAwQAANMIAAAhCAACyQgAAQEIAALDBAAAIQgAADEIAAMjBAABkwgAAcEIAABxCAACkQgAAoMEAAHBCAAAwQgAAgEEAAKzCAAAAQAAACEIAABBCAAAQQgAAAMIAAADAAACQwgAAQMEAABTCAABAQAAAwMEAAIDBAABQwgAAAEEAANzCAACwQQAAHMIAANjBAAAAAAAA8EEAADRCAACIwQAAsEEAANBBAACIwQAAwMAAAGzCAABQQQAAKEIAADBCAAAMwgAACEIAAGRCAABgwQAANEIAAPDBAADQwQAAgMEAAADBAABwwQAA2MEAAKhBAAAAwAAAEMEAABBCAACIQQAATEIAAHDBAADgQAAAAEEAAIDBAAAEQgAAAMAAABDBAAAwwQAAiMEAAGDBAABgwgAA4EAAALhBAAAAAAAA4MAAAMBBAADIQQAARMIAADBCAABQQgAAdMIAAIBAAAAowgAAgMIAAGBCAAAAwwAA4EAAABxCAADAwAAAUMEAACRCAADgQQAAgEAAAJBBAAA0wgAAaEIAAMDBAABQQgAAuEEAAIjBIAA4E0AJSHVQASqPAhAAGoACAAAwPQAAlr4AAIo-AAADvwAAcD0AADw-AACCPgAAX78AAHS-AAAwPQAA1j4AADS-AAC4PQAARD4AAJK-AACYvQAARD4AAFA9AABsPgAA6j4AAH8_AAA8PgAATD4AAKo-AACavgAAmL0AAII-AACKvgAAiD0AAIC7AACSPgAAnr4AAFC9AADIvQAAFD4AANq-AACoPQAAqr4AANa-AAAQvQAAmr4AAOC8AABwPQAAir4AAGS-AAAEPgAAlj4AAKa-AACqPgAAHL4AAOA8AACAuwAAgLsAAL4-AABQvQAAqL0AAHM_AACYvQAAiL0AANI-AAAMPgAAVD4AAKg9AACSviAAOBNACUh8UAEqjwIQARqAAgAAmL0AAIA7AACIvQAASb8AAMq-AACGPgAAhj4AAKY-AACgPAAALD4AACS-AADYvQAAiL0AAIg9AABEvgAAoLwAADA9AADuPgAAUD0AAAs_AABQvQAAdL4AAKC8AABsvgAAoLwAANi9AABAPAAAuL0AAKA8AACIPQAAEL0AAHA9AAAwvQAAQDwAAOA8AAB8vgAAHD4AALg9AAAMvgAALD4AALg9AAAwPQAADD4AADC9AACIvQAAmD0AAH-_AACSPgAAUL0AAFw-AAAEPgAA-D0AADw-AACmPgAAQLwAAKg9AACgvAAAqL0AAIg9AADIvQAADD4AADS-AAAMvgAA6D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=pk7vxTbKpxk","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["81019178376311207"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12894193380794579867":{"videoId":"12894193380794579867","docid":"34-8-11-Z266CCF0D80589523","description":"This video introduces the precise epsilon-delta definition of the limit: for any epsilon greater than 0, there exists a delta greater than 0 such that if x is within delta of a, f(x) is within...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3482668/8615daa0bde7ffcc1a4b3c93f8cbae38/564x318_1"},"target":"_self","position":"7","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTzFjhxLwA_g","linkTemplate":"/video/preview/12894193380794579867?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to the Epsilon-Delta Limit Definition","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TzFjhxLwA_g\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFgoUMTI4OTQxOTMzODA3OTQ1Nzk4NjdaFDEyODk0MTkzMzgwNzk0NTc5ODY3aq8NEgEwGAAiRRoxAAoqaGhydnd2d2VweG13bnVwY2hoVUNYaUxVWmpoWlk2eTdHakNRQ0lJYzd3EgIAEioQwg8PGg8_E9YHggQkAYAEKyqLARABGniB-_oBBP4CAOj-APsE_wEABAAAAvj__gDxAQL8_gEAAOcB-PYA_wAA-gf6EAIAAAD2_hL6-_8BABYAA_8FAAAADvT4BAMAAAAOC_wD_gEAAPgB_AED_wAABPr27_8AAAD2AQL7-AD_AfYG_goAAAAACAn7AwAAAAAgAC3CpNo7OBNACUhOUAIqcxAAGmD-BQAh8P7z8Rof6Qnu2gD98_0PF7ARAN3nAOnu2dsKKeDL-O3_I8sE_8MAAAAdAwII6QATTPL7wh8PA_AZyeQLEn81CPkW__76w_b3Cxn0I-T4ChIA6wHyEUsC1A8TLyggAC1J-1c7OBNACUhvUAIqrwYQDBqgBgAAJEIAABBBAAAAQgAAFMIAAIBCAACAwAAAuEIAAMBAAADIwQAAVEIAADBCAABEwgAAPMIAAHBBAACwQQAAqEEAAKBAAABQwgAAqEEAAABBAABAwQAAoMAAAGzCAACAwAAAqMEAABDCAACAvwAAosIAADBCAAAQQQAAUMIAAAxCAADQwgAAcMEAAJ7CAAAQQQAANEIAAIJCAAD4wQAAEEEAAOBBAAAUQgAAJEIAAEzCAACIQgAAsMIAAMBAAAAYQgAAjkIAAHBBAAAgwQAA2MEAANhBAACoQQAALEIAAMhBAAC6wgAAqEEAAIBAAAAEQgAAFEIAADjCAACYwQAAgsIAAJhBAAB8wgAAgMIAABjCAADIQQAASMIAABxCAAC-QgAAZMIAALjBAABMwgAA4MEAAGDCAAAgQQAAYEEAAKhBAAAAwQAA1EIAALDBAACgQQAAiEEAAIBBAABgQQAA4EAAAGxCAAAIwgAAgD8AAJJCAADYwQAAMEEAADRCAAAcwgAAgMAAAFDBAAD4QQAA8EEAAEDCAADYQQAA4EEAAPhBAAA4wgAAwEEAAODBAABwwQAA4EAAAExCAAAEQgAACEIAALjBAACgwAAAXMIAAKBCAAAcQgAAYMEAAKLCAACAwQAAXMIAAIDCAADAwQAAAEAAAADAAAAAQAAATEIAAPDBAADAwAAAkEEAACDCAADgwQAAiEEAAGxCAADgwQAAjEIAAJBBAADIQQAAiEEAADzCAAAQwQAAkMEAAEhCAAAgwgAAcEEAAFRCAABUwgAAIEIAACDBAADowQAA-MEAAIA_AACAQAAAwEEAAKBBAAAcwgAAwMEAAFTCAAAgwgAAoMEAAHjCAACAPwAAoMEAAPjBAABAQAAAAEEAAIjCAABQQgAAUEIAAJDBAABAQAAAQEEAAADAAABEwgAAoMEAAMDAAADwQQAA6MEAAFhCAABAwgAAkMIAAAzCAAAkwgAAAAAAAJxCAABswgAAdMIAAETCAACoQQAAUMEAAADBAADAwAAA-EEAAIDAAAAAQgAAHEIAAADAAACIQQAAoEEAAPhBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAjr4AAEQ-AAAEvgAAUL0AACw-AABEPgAAEb8AANK-AAC4PQAAmj4AAEA8AACgvAAAND4AADy-AABUvgAATD4AABC9AAAkPgAAKz8AAH8_AAB0PgAA2L0AAJo-AACGvgAAUL0AAAw-AACAuwAAiD0AAKC8AABUPgAAmr4AAAS-AABwvQAAND4AAI6-AABMPgAAfL4AAPa-AACIPQAAkr4AACS-AAD4vQAAfL4AAGw-AAAsPgAAxj4AAMK-AACSPgAAqr4AAAS-AABsvgAAQLwAAOY-AACSvgAAgLsAAEs_AACgPAAAXL4AABs_AADgPAAADD4AAMg9AAAcviAAOBNACUh8UAEqjwIQARqAAgAA2L0AAEA8AAAkvgAAX78AAEy-AADaPgAAnj4AAJo-AACAOwAAkj4AAMi9AADIPQAAQLwAAJY-AABkvgAAEL0AAEC8AAAfPwAAcD0AADE_AAA0vgAAjr4AAAw-AABEvgAAiL0AAI6-AAAcPgAAML0AAGQ-AAAsPgAAgDsAAOi9AAAUvgAAMD0AAAw-AACyvgAAED0AABy-AADIvQAAVD4AAJg9AAAQPQAAiD0AALg9AABUvgAAND4AAH-_AACCPgAAUD0AAOY-AADgPAAAij4AAIg9AADePgAA4DwAABQ-AACYvQAAHL4AAJY-AACGvgAATD4AABA9AABAvAAARL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=TzFjhxLwA_g","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12894193380794579867"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10334247510564778155":{"videoId":"10334247510564778155","docid":"34-10-15-Z9FDD396B7CBB47A0","description":"The epsilon delta definition of limits makes much more sense with distance functions! 👉 More calculus ideas explored: • How can we be sure of the limit properties... Here are a few other shorter...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/788049/901b773e1a0bb82e910671e20831e1c5/564x318_1"},"target":"_self","position":"8","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJlP_1PLEXW8","linkTemplate":"/video/preview/10334247510564778155?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Taming the epsilon delta definition of limits.","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JlP_1PLEXW8\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFgoUMTAzMzQyNDc1MTA1NjQ3NzgxNTVaFDEwMzM0MjQ3NTEwNTY0Nzc4MTU1aq4NEgEwGAAiRBowAAopaGhsdmFrbGxodWV3cHJwaGhVQ2ZOcjVFLURxZlRpb3BrOEZ4c2duMmcSAgARKhDCDw8aDz8T8QWCBCQBgAQrKosBEAEaeIH59_wD-wUA8f8D__8CAAH89_0G-v79APIAAvz-AQAA6QH9APv_AAD7B_oPAgAAAPoEAQD__wAAEvYBAAMAAAAN__0HBAAAAA8IBQL-AQAA__z7_wP_AAAE-vbw_wAAAPX-BAEBAAAA-_sCAwAAAAAGAgAAAAAAACAALc534zs4E0AJSE5QAipzEAAaYAILACj0BenjGTjpD_ry9vbw_xEdmRYA7fMA6eXM5wU0xsjx7gApyw74tgAAACzw_A3sAPJg8AC6MggS_ArJ4QAPfysI3jEc9vi36_oeHvoQ7AoEFgDN-dwCRRrRFv9UNCAALefmODs4E0AJSG9QAiqvBhAMGqAGAADIQQAAVMIAAIRCAADAwQAAoMAAAEBCAADCQgAAgD8AAJ7CAAA8wgAAIEEAAKjBAACYwQAARMIAAKjBAAAAQQAAIMEAAIC_AACgQQAACMIAAMDAAAAYwgAA4MEAALBBAABEwgAAsEEAAGTCAABMQgAA2EEAAAxCAACKwgAAwEEAAEDCAABQwQAAisIAAHDBAAAcQgAAYEIAAEBAAABkQgAAQEAAAIBAAABsQgAAoEAAAFBBAACYwQAA-EEAACBCAADSQgAAkMEAAIjBAABUwgAAwMAAADTCAAAAQQAAYMEAAEzCAAAAwQAAAEEAAHBBAABQQgAAKMIAANjBAABAwgAAGMIAAADDAAAQwgAATMIAAGDBAAAQwgAAKEIAAFBCAAAwwgAAjEIAABBBAAAkwgAAeMIAAFBCAABAQgAAHEIAAEjCAAC4QgAAuEEAAOjBAADoQQAABEIAADRCAAAMQgAAiEIAAIjBAAAQwgAAREIAADDBAABYwgAAwEAAAHDCAABQwQAAYEEAALhBAAAIQgAAPMIAAABBAADAwQAA4EAAAK7CAAAQQQAAkEEAAFRCAADIQQAAbEIAAJhCAACGQgAA4MEAAIDAAAAEQgAAYEEAAOBBAACAwQAAEEEAAIjBAACIwgAAwMIAAFDBAACQwQAAcMEAAKDAAABYwgAAYEEAALbCAACgQQAAQMAAANhBAACIwQAACEIAALjBAACAvwAA4MAAAKBAAADgwAAAhMIAAGDBAACgQQAAYEEAAABAAAAEQgAAkEEAAODBAABgQgAAuMEAABDBAADYQQAAIMEAAKhBAAAEwgAAgD8AAODAAAAIwgAARMIAAJzCAABcQgAA-MEAAOBAAADwQQAA8MEAABjCAADgQQAAyEEAAERCAAAQQgAAEMEAAABBAAAQQQAA4EAAANDBAAAEwgAAUEEAAHzCAAAgwQAAGMIAAKBCAADQwgAAgEAAAKDBAAAgwgAAIEEAAABAAABEwgAAoEEAAFDBAABgQQAAmEEAAAjCAAAQQgAA4EEAABDCAABAQgAAAEIAAAAAAADIwQAAQMAgADgTQAlIdVABKo8CEAAagAIAAKq-AAA8vgAAJD4AAAy-AACAuwAAlj4AAPg9AABNvwAA7r4AAEw-AAC-PgAAqL0AAKg9AACWPgAAJL4AAJa-AABQPQAA4LwAAIC7AAD2PgAAfz8AALg9AADgPAAAfD4AADy-AAAQvQAAUD0AAIa-AAAwPQAAgDsAAHw-AAAEvgAAVL4AAAS-AACIvQAA2r4AAJo-AACuvgAA8r4AAKC8AADCvgAAcL0AAPg9AAB0vgAAgDsAACQ-AADKPgAAjr4AADQ-AACuvgAABL4AANa-AACoPQAABT8AADS-AABAPAAAcz8AADC9AACYvQAALT8AAIg9AAAkPgAAHD4AAFS-IAA4E0AJSHxQASqPAhABGoACAADgPAAAoDwAAEC8AABZvwAAsr4AALI-AACGPgAAlj4AABC9AACKPgAAqL0AAIi9AADgPAAAmD0AAGy-AACAuwAA-D0AACc_AAAwPQAADT8AAIi9AABMvgAAUD0AACy-AADYvQAALL4AAKg9AABAPAAAiD0AADQ-AADgPAAAmL0AALi9AAC4vQAAmD0AACS-AACIvQAADL4AACS-AABEPgAAMD0AAEA8AACIPQAAMD0AADy-AAA0PgAAf78AAII-AAC4vQAAij4AAKg9AACaPgAAcD0AALI-AADgPAAA2D0AAFC9AACYPQAARD4AAI6-AAAEPgAAgLsAAJg9AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JlP_1PLEXW8","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10334247510564778155"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2213329388011313485":{"videoId":"2213329388011313485","docid":"34-0-13-Z2A7339E6B4CF11D8","description":"Yes, it really did take a year. It's been a year since I started learning what the epsilon-delta definition meant, and I feel that only now I truly understand what it means. Are you tired of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2380126/2dcb6f051c54092ba4da7aaf6d11ac03/564x318_1"},"target":"_self","position":"9","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Da7YLaMqCbjY","linkTemplate":"/video/preview/2213329388011313485?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What the Epsilon Delta Definition of a Limit Really Means","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=a7YLaMqCbjY\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTMjIxMzMyOTM4ODAxMTMxMzQ4NVoTMjIxMzMyOTM4ODAxMTMxMzQ4NWquDRIBMBgAIkQaMAAKKWhoYnp1dXRveW5wa2x0bWhoVUM4dkdNSFRITzFaVzdDUGlib2M0WmtnEgIAESoQwg8PGg8_E_IEggQkAYAEKyqLARABGniBAP3__v4DAO36B_sEAAAA-AAECfr-_QD5_wUA-gT-AOcB-PYA_wAAAPv4Cv4AAADuAAn2-AAAABf8-gADAAAADvT5AwMAAAASEQYJ_gEAAP4A-AYD_wAABPr27_8AAADz-f_7_P8AAPb8_AgAAAAABwsC_AAAAAAgAC1S99o7OBNACUhOUAIqcxAAGmD0DAA1-Pnn7ww44yL32PL_-w0QC6MgAOjuAPn0z9kSIsO__PcASsIY-7MAAAAi-hUTwQAQYgAAy0D9CPkCxcwVFX9P_PUdCPjywNMAChgFE-8I_S0A0wv5BD0J2R8QTzIgAC0MOzI7OBNACUhvUAIqrwYQDBqgBgAAkEEAABDBAACQwQAAQMIAAMBBAAAgQQAA6EEAAKDBAAAswgAAiEEAAHDBAACYwQAAMMEAAKjCAABAwAAADMIAAEDBAAAQQQAAcEEAAGzCAAAgwgAAAMIAAEDAAADYwQAAcMEAAHBBAACCwgAAoEAAAPBBAADQQQAAMMIAAMjBAABAwgAAYEEAAEDCAAAcwgAAgD8AAGBCAADIQQAAgkIAAMRCAAAAwAAATEIAALBBAACIQQAAaMIAAMhBAAD4QQAAUEIAAADCAAB0wgAAoMEAAHTCAADowQAAgEEAAEBAAACmwgAAIEEAAKhBAACYQgAAoEAAAEDAAADgwAAAoMEAAJ7CAAD-wgAAEEEAAKjBAAC4wQAAEMEAANZCAAB0QgAAnMIAAKJCAACAQAAAyMIAABjCAABAQAAANEIAAMhBAABUwgAAjEIAAAAAAABEwgAALEIAAIBBAADIQQAACEIAACxCAAAcQgAA6MEAANZCAAD4wQAAsMIAACRCAABcwgAAqEEAAAxCAADYQQAAwMEAADjCAADYQQAA4MEAAEBAAAAEwgAA8EEAAIhBAABAQgAA8EEAAIA_AAAkQgAAEEEAAMjBAACYQQAABEIAAChCAACAvwAABMIAAFxCAAAQQQAAgMAAAIjBAACAPwAATMIAAIBAAACwQQAAcMIAAIDAAAA8wgAAPMIAACDBAABQQgAAgD8AAExCAACAQQAAmEEAADDBAAAgwgAAAAAAAFzCAAAwQQAAAEIAAEhCAAAAwAAAJEIAAARCAADAwAAAgMAAAAhCAAAAQQAAcEEAACBBAADAQQAAmMIAAKhBAADYQQAA4MAAAKjBAABgwgAAYMEAACDCAAAAQgAAgEEAAAAAAAAAQQAAAEIAACBBAABMQgAAhEIAAGDBAABwQQAAmEEAAAAAAADgwQAAAMIAAOBAAABQwgAAQMIAAI7CAADaQgAArsIAADDBAACAvwAAwMEAABhCAABAwgAAfMIAAKhBAABAwQAA2EEAAIhBAAAcwgAAgD8AAEBBAABEwgAAYEIAAODAAAAAwAAAWMIAAKDBIAA4E0AJSHVQASqPAhAAGoACAACKvgAAbL4AAOg9AADovQAAor4AAFQ-AACIPQAAxr4AANK-AABwPQAAfD4AAGy-AAAUPgAAgj4AACy-AACCvgAA4DwAABS-AABUPgAAqj4AAH8_AACAuwAAmD0AANI-AADWvgAA2L0AAIA7AACIvQAAmD0AAHC9AABUPgAARL4AAJq-AAB8vgAAJD4AACm_AACWPgAAmr4AAAW_AACoPQAAgr4AAJ6-AABEPgAAfL4AAEC8AABEPgAAtj4AANa-AACiPgAAlr4AAIK-AADKvgAA4LwAAMY-AAB8PgAAcD0AAD0_AABcPgAABL4AAEk_AAAQPQAAgDsAAFA9AAAUviAAOBNACUh8UAEqjwIQARqAAgAALL4AAMi9AACmvgAAS78AAKq-AACWPgAABD4AANI-AACoPQAAZD4AADy-AAAkPgAAjj4AAIo-AAANvwAA4DwAAIA7AAAZPwAAcD0AACM_AACSPgAAVL4AAK4-AACKvgAAgLsAAJa-AAAwPQAAcD0AALg9AAC4PQAAmD0AANi9AAAwvQAARD4AADQ-AAATvwAA6D0AAHS-AADovQAAbD4AAKo-AAAwvQAAZD4AABy-AACgPAAA6D0AAH-_AAAHPwAALL4AALo-AACIPQAAEz8AAJg9AABPPwAANL4AAFQ-AABUvgAAcL0AAJo-AADGvgAAgDsAAFS-AACYvQAAbL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=a7YLaMqCbjY","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2213329388011313485"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3738467596660731803":{"videoId":"3738467596660731803","docid":"34-4-11-Z37A8B51EA085162A","description":"Exercise solutions for the Epsilon Delta 2 video...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3842731/0702e4d0a990295acc4d0a24edb62b4c/564x318_1"},"target":"_self","position":"10","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_d2gtMzq42A","linkTemplate":"/video/preview/3738467596660731803?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus, Epsilon Delta Definition of Limit II Exercise Solutions","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_d2gtMzq42A\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTMzczODQ2NzU5NjY2MDczMTgwM1oTMzczODQ2NzU5NjY2MDczMTgwM2quDRIBMBgAIkQaMAAKKWhobWVvdnZocHlzcHR4cGhoVUNKcXV6WmtUamFhTi0wTldWZnFUVUpBEgIAESoQwg8PGg8_E6gMggQkAYAEKyqLARABGniB__wF-gT8AObz_gEIAAAAFf38APUBAQAACvn09wT-AO37APP4AAAABQ_zCwYAAAD5BAEA__4AABvz__UDAAAAEPP4BAMAAAAPDfsE_gEAAPX_8wID_wAABfr17f8AAAD1AQP79wD_AesD-A8AAAAACAYKA_8AAAAgAC2L-8c7OBNACUhOUAIqcxAAGmD5_QBLAArz6jQz6xPx8gbZ2usBBpYV_9vpAPEC7NEAUbG49PUAOecADaoAAAAaGNEm7wAWYNkL7RInDfEI2uD4EH8IDMsrCf8RyuQyDhHgMOjlIBwAn_cxCSngqjL7Pi8gAC1t0Cc7OBNACUhvUAIqrwYQDBqgBgAAyEEAABDBAADOQgAAtsIAAIBAAACoQQAAcEIAAADAAAD4wQAA6MEAAGDBAADAQAAAiMEAAGBBAACowQAAAEAAAKhBAABowgAAEEEAAMBBAABwQQAAIMIAAKbCAABkQgAAJMIAAIA_AAAQQgAAkMEAAIA_AAA8QgAACMIAAFBBAABkwgAAMEEAAADDAAAYQgAAYEEAAFBCAACAQQAAAEEAAOhBAADYQQAAAMIAACBCAAAIQgAAHMIAAOBAAAAcQgAAgD8AAFhCAABkwgAAYMIAADTCAAAUQgAAwMAAAMBBAABwwgAAqMEAAGRCAADYQQAAmEEAAODBAACCwgAAgsIAAOhBAACqwgAALMIAACDBAADIwQAAJMIAAJJCAADAQAAAmMIAAJxCAAAQwQAAyEEAAKjCAABwwQAAqEEAAFBBAAAMwgAAsEIAADTCAACQQQAAkMEAAEBCAAD4QQAArsIAAKBBAACgQQAACEIAAARCAADowQAAyEEAABBCAADAwAAAgL8AANDBAABUQgAAdEIAADTCAACAQAAAjkIAAADCAAA8wgAAoEEAABDBAADoQQAA4EAAADxCAAAIQgAA4EAAACDBAACAwAAAsMEAACBCAAAUQgAAuMEAAKDAAACIwQAAgMAAAEBAAAAkQgAAqMEAAHjCAACAwQAAQEEAAFTCAAAQwQAAoMAAAJhBAACgwgAAgEEAAGhCAACAQAAASEIAALhBAABQQgAAXMIAABDCAACYwQAA4MAAABRCAABkwgAAkMEAABxCAABQQQAAYMEAANhBAABAwQAAfMIAAABCAAAIQgAAgEIAAHBBAAAgwQAAgMIAAKDAAABowgAAFMIAAIjCAADoQQAAMEIAAMBBAACAPwAA0MEAAKBAAADUQgAAFEIAAADAAADgQAAAMEEAALDBAAAQwgAAPMIAAKjBAACwwQAAuMEAAKBAAACYQQAAzsIAAKDAAAAwwQAAyMEAAIJCAABQwQAAuMEAAPjBAAC4QQAAIEEAAEhCAADAwAAAoEEAALjBAAAQQQAAbEIAAABBAACQwQAAgEEAACDBIAA4E0AJSHVQASqPAhAAGoACAAAEvgAAbL4AAAw-AAC6vgAAHD4AAIo-AACWPgAAY78AANa-AACuPgAAwj4AAMi9AACYPQAA_j4AAPi9AADKvgAArj4AANg9AACKPgAART8AAHk_AABQPQAAFL4AAPY-AADOvgAAUL0AAII-AADmvgAAFD4AAGw-AACYPQAA0r4AANg9AAAwvQAAED0AAHy-AABAvAAAML0AAKa-AACYvQAAzr4AALg9AACGPgAAqL0AALq-AADIvQAAkj4AAPa-AAD4PQAAEL0AAHA9AAC4PQAAhj4AAOo-AADuvgAAuL0AAH8_AAAEPgAAEL0AANI-AADIvQAAJD4AAEw-AABEviAAOBNACUh8UAEqjwIQARqAAgAADL4AAEC8AAD4vQAAW78AAFS-AABsPgAAVD4AACw-AABAvAAABD4AAFA9AACIvQAAoLwAALg9AADgPAAAmL0AABA9AAADPwAA4LwAAAc_AAC4vQAAHL4AAKg9AABEvgAAcD0AANi9AADgvAAAUL0AABw-AADYPQAAUL0AABA9AAAEvgAAPL4AAFA9AABEvgAA6L0AAOA8AABwvQAATD4AAEC8AADYvQAAoLwAALg9AADIvQAAQDwAAH-_AABkPgAAoDwAAII-AABQPQAAQLwAAIi9AACiPgAAEL0AANg9AADgvAAAmL0AAMg9AAAcvgAAJD4AAOi9AAAkPgAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_d2gtMzq42A","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["3738467596660731803"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18047139751631415245":{"videoId":"18047139751631415245","docid":"34-0-5-ZA7A9DF225F38673C","description":"definition of the limit of a function. We will explain the definition of a functional limit in depth, see some visualizations of it, discuss the negation of the definition of a limit, and then...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3908092/7c50d010c7e4e4b2d275cf59ae68e14e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2q2oRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkVQNhAIFZYc","linkTemplate":"/video/preview/18047139751631415245?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Epsilon-Delta Definition of Functional Limits | Real Analysis","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kVQNhAIFZYc\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFgoUMTgwNDcxMzk3NTE2MzE0MTUyNDVaFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1aogXEgEwGAAiRRoxAAoqaGhjY2F4emhienNtamxpYmhoVUN5RUt2YXhpOG10OUZNYzYyTUhjbGl3EgIAEioQwg8PGg8_E5EKggQkAYAEKyqLARABGniB9voC_gEAAOz6CPoEAAAAD_0GAvcBAAD2-vv8_gP_AOwPCfoEAAAA_gjzB_wAAAD7AwQF9f4BABL1-AgCAAAAGvb1Cf0AAAAAGPUH_gAAAPD7_AMDAAAADfv0-f8AAADy-f_7-___APv0_wkAAAAAGQvz-wAAAAAgAC2tPtE7OBNACUhOUAIqhAIQABrwAX8W7wP77AgC4g7lAMET7gCM7xr_IRHpAMbfAgHdC8cB4BPZAOXuF_8EAwYAxiMXAQ3k1wAX6P4AKvEA_xEBCwDmIP0BD9ECADv1BADn-uoA4gwX_xwCFQAI4ez_PhcI_wj1D_vXBMn_DP_cAircIAEE-hcBGfEPAv_lCPveBhAD1ADi_QcGDgYNBgr96igdAv8HCwIFCugA2vb3Agz17QAA8wsC8wb9-jEM_wnz9AQEzQfwAN4U5_sZ-x0F7wD8__gEEvTk4AAAFRQN-QzzAQXtFwcCG-DtAhEL-QD1-xgD6_sC-PQJ_P3v_A_77O36FCAALZ11NTs4E0AJSGFQAirPBxAAGsAHCVLZvkUEkLqMoPE8moKbvam1F7wDBV69S9O2vZbLKz2s7ge9avuSPQfr_zx3Ch49nE2Xvuo9XLlkjxa8LQtWPrCKXL1BLSa9K_66vcz3Qj2bOQS95_4qvl3L_zxIdCo8bLDwPAproTsO2aO6wX6-PfL3wb0XrW28AZzFu33-wbugkm69joErvZ8d8L0_8W87-4qaPNoqd7zlrcQ8nYV4Pbw-kLuKBT683kB8vZy_qjuXe7e8F96APQMszTzVXK68lMIcPuST37t6oxs9nIS5O347ybzqq1C8E1EjvMGGELxQtOG897e6vIWmmTvLZ7m8aaMfPdIjIblaiVS82T_vvZz59T0DNm-73WA4PimmXD3jGz46fNyivb9g9zxMRC68ZmUePAkCnrtWFoG7nJ8nPWvvE71N8448A5jyPRPKzDxcWeK88jO_PKpr4zx0Yg893Ws3PYycqj0EfoO8qOyqPKFeFT39HcC7wwqcvUk1xzwkKYq7k_7evClHzD39n-Q7OU_rvD8ZEjrvm1I7hJ6dPUPyhL2Zt2o8e8mVvRgc77zbZHm83cF-Pby7JD2Ie5G8IhsoPrFpyrzbpcs6SAjFvNoXFjxpGIS7N6ruPCqZUr0LR2s8KVvkvRv3IT1eq5C7biKpPIymTj2bUda7r2Z4vC03kj2eVQ87lY14veuuh7wMIk47bVhTPdXtRzwy59e6LYuTPZ6vHj2gog861ZUPPtTsRr3lRxm5lZ7pPCKhEr1H5DE6DynEuxrrMT1qJek5EcIoPTRfyryp67u68oV_PO0gQLzzOuI4G-qhvbJblT0s2Zk4m_NCPCSBAjzhJKc4qMfWvVkNU73JJz-4X9y8vdXiuLy0JVy3ynoAPTmobj3cEpg6AvSLvUU1kL07hjE4J_eLveZ5Cz2fC7i28UWQPVKtTzyesr84vo4TO574ID2VO0242vdyvZoMAr1JrqI5ngMwvQ_yKj69xd-4LmKevaD5YT1-cm65FAQPPRBdAD6Nw3G4qE-XPCNCLT3P2n44CJvwPLn90j1HaWU49f9DO8d5ZL2vY7W3ifC6PcMRpDznjKC4SlGovWNu7Tz7BT44joi1OtnKcL3_CWc3Cqi7PVxaoDlpqxo4zEouPZtSQ71atku4H58APqTkkL0V6Dq5jJ6bvcl9oTykdbm31V2ZvBGXgr0HcQO4hs2LvQiw6D1Us5Y4HZcMPUkPQ75UMU25zn3mOzwflD29Er84uOARve_UEDzoxgS5ORdzu3pf2bn4bYu33_ivPZMp8LxSIrk3IAA4E0AJSG1QASpzEAAaYBMEADPdGtD7HzTqGfbt89H17QEnxCL_9NsA5vXY6vwz0MMQ9AA11R7vswAAAB326inRAPFo7hDTM-MV3umi8xgUfzcTGtXtAvCw-QgzDeYS__QKKADnAacpOQfGMREsJyAALdAjLjs4E0AJSG9QAiqvBhAMGqAGAACIQgAAYMIAAEBBAAAYwgAABMIAAAhCAACMQgAA2MEAAIDAAAAIwgAA6EEAAEDBAADAwAAAMEEAACxCAAAwQQAAGMIAALDBAADgQAAAdMIAACRCAAAUwgAAVEIAAJDBAADYwQAAHEIAAMjBAADAwQAAAEEAAAAAAAD4wQAAQEAAANjBAAAcQgAALMIAABBBAACoQQAAsEIAABBBAABgQQAAQEIAAMDAAACEQgAA0EEAAOhBAACIwgAAAMIAADDBAAAUQgAAkMEAAILCAABAQAAAOMIAACzCAADwQQAAuMEAANzCAAC4wQAA2EEAABxCAAA4QgAAYEEAAJjBAAAEwgAAoMAAAL7CAACAvwAAcMIAACzCAABEwgAAikIAAJBBAABgwgAAcEEAAGhCAAC6wgAA0MEAAKBBAAB0QgAABEIAANDBAAD4QQAAAEAAANDBAABQQQAAMMEAAKJCAACAQQAAGEIAAJjBAABwwgAA_kIAAAAAAAAswgAAcEEAAL7CAADowQAAAEEAAEhCAADAQAAAwMAAAJBBAAA8QgAA2MEAABzCAABMQgAAsEEAACxCAAAwwQAAEEEAACxCAADoQQAAsMEAAKDAAAAEQgAA8EEAAAhCAAAEwgAAyMEAABzCAADAwAAAdMIAAPhBAABgwgAAwEEAAHzCAAAswgAAEMEAADDCAAAAQgAAoEAAAARCAABgwQAAfEIAAABBAADgQAAAsEEAADTCAACkwgAAqMEAAAxCAACAPwAAPMIAAADBAAAMQgAA8MEAAAxCAADYwQAAOEIAAMBBAAAQQQAA4EEAAAhCAADIwQAAhkIAAAhCAABEwgAAjMIAAODBAADIQQAAQEAAAKBBAACgQQAAXMIAALDBAABoQgAAYEIAADxCAACwQQAAeMIAAHzCAAAcQgAAmMEAABDBAACAPwAA0MEAAADCAABYwgAAuEEAACBCAACiwgAAAMEAACDCAAD4QQAAkEIAAODAAAAAwQAAcEEAAGDBAAAIQgAA4MEAAKDCAACYQQAAQMEAACzCAAAkQgAA0MEAAIDBAADgwQAAiMEgADgTQAlIdVABKo8CEAAagAIAADy-AACivgAARD4AAPi9AACgvAAAqj4AADA9AAAtvwAAwr4AAKA8AACGPgAARL4AADA9AACOPgAAir4AAAS-AAA0PgAAgLsAAHw-AAABPwAAfz8AAKg9AACoPQAAHD4AAFy-AADIvQAA-D0AABC9AAAQPQAAcL0AAIo-AACKvgAAbL4AAIa-AAAsPgAAtr4AABw-AAA8vgAA9r4AAEC8AACyvgAANL4AAFA9AACKvgAAED0AAIA7AADaPgAA_r4AAHw-AACivgAAyL0AABy-AABAvAAAvj4AAHC9AACIvQAAOz8AAJg9AACgvAAACT8AABw-AADgPAAAUD0AADS-IAA4E0AJSHxQASqPAhABGoACAAAUvgAAgDsAAMi9AABJvwAAfL4AAMY-AAC-PgAAbD4AAIA7AADaPgAAgDsAAKg9AACoPQAAPD4AAHS-AAAQPQAAmD0AADM_AACIPQAADz8AAKg9AABsvgAALD4AAAS-AADovQAAqL0AAAQ-AAAQPQAAMD0AADQ-AABAPAAAmL0AACS-AAC4vQAAyD0AAFy-AAAwvQAAgr4AADS-AAD4PQAAUD0AAJg9AAB8PgAA4LwAAFA9AAB0PgAAf78AAII-AACAOwAA2D0AAKg9AACiPgAAuD0AAMY-AABwPQAADD4AAEC8AACYvQAAkj4AAGS-AAAEPgAADL4AABC9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=kVQNhAIFZYc","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["18047139751631415245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3258919429"},"7410965610038659343":{"videoId":"7410965610038659343","docid":"34-7-17-Z7E5FFC4B3E315698","description":"continuity is the end of our quest for a rigorous definition of continuity. All quirks of continuity we have seen are consistent with this definition which mostly comes from the definition of a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4231465/741934fd8e77b7f5030d5b3a79ab4312/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TEZ0MwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO98eOlHyWmQ","linkTemplate":"/video/preview/7410965610038659343?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"This is the Epsilon Delta Definition of Continuity | Real Analysis","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O98eOlHyWmQ\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTNzQxMDk2NTYxMDAzODY1OTM0M1oTNzQxMDk2NTYxMDAzODY1OTM0M2qIFxIBMBgAIkUaMQAKKmhoY2NheHpoYnpzbWpsaWJoaFVDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdxICABIqEMIPDxoPPxPdBYIEJAGABCsqiwEQARp4gf799_3_AgDt_xL6BwAAAAAD__j4_v4A8QH_BfYBAADv_AD0-QAAAAD7-Ar-AAAA_v0L_vT-AQAPAff8BAAAABn29Qj9AAAADA7vAv8AAAD5-P4GA_8AAAcE7vX_AAAA9_gM8gAAAADxAgEEAAAAAA0N9_4AAAAAIAAtCm_ZOzgTQAlITlACKoQCEAAa8AF_AO8C3OP8APb16wDbIOcBigAB_ysy5f_L_BwA2wXlAQAD8QDj9AMB5_zy_9YdEADk3OQA8uIO_zv2-QA1_AAA6_D4ACTF9wE5AhP_4gIG_-QeD__-ABUA-ODZ_zoF6gHy9Bj--gHR_wnuxAcf_CcBHw8wAAsDEwHn4hD95AYe_w0Y4_31BhEJ8uny--kpHgIF8Qb8CwT0-9n29wIBCwQJAPIMAv__AgIrH-v87wvzANv-8P_tBdwC9fEXAf3v5P0E_BH7-ef3AvkRCgAN_AH_ARf8-AfW-QH2C___A_oT-t4CAwfa9gcH7QH9_d7nAQQgAC19nDA7OBNACUhhUAIqzwcQABrABxKD4L5P_ei8_CJcPaWdj71E5M-8hUu9vEvTtr2Wyys9rO4HvRR2ET7fDt68Jr6DO_aWYr4FeIE8eT8NvMVVhT5UMG-9m38qvFjH0b0MvIk8bAN8vRd-AL7qYDg9-a63PNz1Ej2RC868oAcQu1RTAj7cSzq9dswQvLOudr3rPfC8IIAvvZfUnjusW5i9odCXvGc9AjwAEhm8pgcHPK7ufTzgQBA8dRQQvPQVCb2SUIS824sovbfVrDvnzDE92T4EvckibT1FhNo7JTMoPHgANb1Xp_M6xYLvu_kUgLw2dLO8PQpXvGNebDw7Dg09LU7rvOV6wD0pFeA7wwnxvMqpPb7bFrU9tEz7uOSG_z05dvU8jG-ePNJXm73dSFQ9GvQtuyNsdLsQ37I6UDqRvDBjqj2hkZk8JmmjPIkXmj3VAh68IRSluoshND2oUSg932GHu1wTHL0I8My7HJ-kvM8-kD1c-vw8Kh_CvFWPur2-OTc8F5klvD21Hz24c2Y9ds9wvOk2lzzjmze8S6DzOt9mxj05tfO9hx8YPFi_rr0yVTC8MaEZvOi-zD0AMGM9ruYMO-QsTD7qV4-9AwyFO4-6ZzznZy-9wz-yuwPBLT3svHK9l7hBuClb5L0b9yE9XquQu9O2qzywOpI9ifH1u8uY57xaDbk97IyIOyjMlb2A-SC8y0OuOwuosT3xw_e8mIz7uTVsuj0uYaM8e1LJOKCNLD7LrgW9IAINuWSrsLyW54a9iOTYunNWWr1HEHg72rldOx-i0T1Y-B-9edGKOBZ2Bz2RtMC8VXCHOaw84b1pQ1Q9lVuyOKgFyryxHL46pYRzuRSdi72JeuG9xidwOUMIg71DlqC8X6cBui4nVz0j5rg9Z1SZuGN0ar3gGWi9WW_9t8SxTr2V_5o8aUFhuJ5Qnj3Y6Sw9mfx1uMayC7xvXVa8dDCQt6AfAb1JLKk86xtaOYlFDL0IBPo9b3E6uAq1qrszse-8Ek68uMN3LD3uSKA9be0bOZvO6TzW8lQ9VMseuGCJLD0wVxA9EgwqN6_YGTzz2pa9SVoft4vXlj2fDwU9II0VuCL7AL7GXyQ9F5hlOPXabLw6Weq9YPq4N3L_nD13O7E8qBfANYEVgb1QQh-9h4kdOPcBKD5wYd298We_uewJ3LzhKV-9xKVjuL-Iob2z7fS8S4JluIbNi70IsOg9VLOWOOTVnrx6ifG9ZVUwuIqWVz0QWPk9jRdAOJKoHL1HVTM95q98uH8vxbzk1ik9TDOIuIERajwt-CG85Gv-NyAAOBNACUhtUAEqcxAAGmAlAAAs8R7g9B1H9Q3_5ermDPEKHMoMANvoAOUC3-AMLtrKDPn_NNIa57UAAAAU5e0cxwD-ZtgKzxXvC-jds9AZC38XAQ_k3gLfy971NfbxJff-GTgA1v6hPCEKyzAAMzEgAC1TgTM7OBNACUhvUAIqrwYQDBqgBgAAkEIAACTCAAAQQgAAAMIAAATCAACgwAAAVEIAABjCAABQwQAAdMIAAEBCAACYwQAAUMEAAIBBAACoQQAAQEAAAADCAACEwgAABEIAADjCAADoQQAAQMIAAExCAAAAwAAAqMEAADBCAADIwQAALMIAAMDAAACwwQAAXMIAADBBAAAwwQAAgD8AAPjBAADAQQAAAEEAAGRCAACgQQAA0EEAAOBBAADAQAAAnEIAAODAAABAQQAAXMIAAIDBAAAMwgAAfEIAACDBAABowgAAoEAAABzCAABQwgAAZEIAAMjBAAC6wgAAOMIAAARCAACgQQAA8EEAAPBBAACowQAAGMIAAOBAAAC6wgAAQEAAAIjCAABQwgAAHMIAAIxCAAAIQgAAMMIAAABBAAB0QgAAqMIAACDCAAAAQgAAIEIAAOBBAACwwQAAcEEAAKBAAABgwQAAUEEAAMBAAACqQgAAQEAAADhCAAA4wgAAVMIAANJCAAAAwQAA4MEAAJhBAACuwgAAuMEAAIhBAAAMQgAAMMEAALjBAADgQQAAkEEAAMDBAABMwgAASEIAAODAAACWQgAAUMEAAABAAADoQQAAwEEAAGDBAAAQwQAAAEEAAPBBAAAUQgAAgMEAAKDAAACQwQAAiMEAALDCAADQQQAAeMIAAChCAAAswgAANMIAAExCAABkwgAAAAAAAABBAAA8QgAAiMEAAEBCAACIQQAA8EEAAIC_AAAwwgAAJMIAANDBAABUQgAAHMIAAIDCAACwQQAAcEIAACDBAAAUQgAAyEEAAExCAACIQQAAAEEAAKhBAAC4QQAADMIAAFBCAADgQQAANMIAACzCAACgQAAAOEIAAJjBAACoQQAAKEIAAFjCAAAQwQAAYEIAADhCAAAgQgAAMEEAAKrCAADAwQAAhEIAAFDBAACYwQAA4EEAAPhBAACYwQAAiMIAAFDBAAAIQgAAbMIAADBBAAAYwgAA2EEAAIJCAADgwQAA4MAAAOBAAAAcwgAANEIAAI7CAADWwgAAFEIAAEDBAAAIwgAAeEIAAADCAAAAwAAAAMEAALDBIAA4E0AJSHVQASqPAhAAGoACAADOvgAAZL4AADw-AACYvQAAZL4AAIo-AACKPgAAHb8AAHS-AADIvQAAyD0AADA9AADYPQAAiD0AAHy-AABQvQAAPD4AAIC7AACKPgAADz8AAH8_AACoPQAARD4AAL4-AAAsvgAA4LwAAOA8AADIPQAAHD4AAIC7AABkPgAAtr4AAIq-AACKvgAAUD0AAJq-AAA0PgAAPL4AAOK-AACgPAAAFL4AAJK-AADYPQAAHL4AAKC8AACSPgAA3j4AAA-_AAB0PgAAgr4AABA9AABQvQAAyD0AAKY-AACYvQAAEL0AAHM_AAA0PgAADL4AAL4-AAAcPgAAML0AADC9AADGviAAOBNACUh8UAEqjwIQARqAAgAAjr4AAPg9AADIvQAAU78AAJK-AABUPgAAhj4AAFw-AACAuwAApj4AAJi9AADYvQAAEL0AANg9AABMvgAAED0AAIo-AAA1PwAAyD0AAAc_AABwvQAAcL0AAOC8AADovQAA-L0AAIg9AAAMPgAAML0AANg9AABMPgAAQLwAAFC9AACgvAAATL4AAIg9AAAEvgAAEL0AAHy-AAD4vQAAmD0AAMi9AACoPQAAqD0AADA9AAAMvgAAfD4AAH-_AAC4PQAAfL4AAHQ-AABUPgAAfD4AAJg9AAC2PgAAyD0AAIg9AACAuwAAqD0AAHw-AABUvgAARD4AAMi9AADYPQAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=O98eOlHyWmQ","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["7410965610038659343"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2039892774"},"18112810240028558651":{"videoId":"18112810240028558651","docid":"34-11-5-ZDE4D78CE8F25AA51","description":"then check out Krista’s website // http://www.kristakingmath.com ● ● ● Connect WITH Krista ● ● ● Hi, I’m Krista! I make math courses to keep you from banging your head against the wall. ;)","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/928463/86d83e271b7936b52a625d0cd05cd999/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/s8NrNwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DftAuCXNAvtE","linkTemplate":"/video/preview/18112810240028558651?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding delta from a graph and the epsilon-delta definition of the limit (KristaKingMath)","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ftAuCXNAvtE\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFgoUMTgxMTI4MTAyNDAwMjg1NTg2NTFaFDE4MTEyODEwMjQwMDI4NTU4NjUxapMXEgEwGAAiRRoxAAoqaGhyZHVmd3pzeXhsYmlzYmhoVUNVRGx2UHAxTWxuZWdZWE9Yemo3REVREgIAEioQwg8PGg8_E5IDggQkAYAEKyqLARABGniB-_8B__sGAPADBgYAA_8B-_wE_fr9_QD3-_v9_gL_AOkB_QD7_wAAAPz4Cv4AAAD4_QYD_P8AABT7AgsDAAAADfXuAf4AAAAUBf8A_gEAAP4A-AYD_wAABQP69_8AAADz-v_8_P8AAPcG_gkAAAAAAQQF_v8AAAAgAC3En-M7OBNACUhOUAIqhAIQABrwAX_fPwADy80DxfbSAJ88-P-wI_gA_DfPAMgSBP_WHQwB2Okr_-gMDgAk_gL_wEnzACfq1f_u2hL_P9r8AA_e8gC4HRIAFPwlASocHf__8d_-9DL7_ffjEwAa088DHzwO_SHzBP0J-tYB_uPGACf7MgHtDOoDKewAAQS-EwDlJub_4fXV_ScXFwQJACP-BAw2_hX-6QoNLQf54N3f_gIOBQz97gb0CDHS_TsK8fvUGQQE7vf9Bhr0_QX5IwABDTj1APUFGPDrCQr5Dh0PAAwHEf7gAPYGPtbw-T_f7QTf9AUE0v_58-QRAwj9AOYI1_H0-SAALa2XCTs4E0AJSGFQAirPBxAAGsAHsg7HvudZJDzfCpe8TmP7vTfpDL136fC8FNqYvSdPeT0LEYm7GJgFPoAz6zt_s727oKhMvuyrZr2pUaM7FJRCPkZFHL1z6AC8cT1avucWvz2FTKi85_4qvl3L_zxIdCo89_OcPQL0O71LYRS9b8ACPTjRU70KCaK8bYqMPRdtaT2pToe83JsEPNST3rz87QG9fQA3PftcDb11P6c64yDMPeA-_Dxekes69SVAPIe_prygbIq8v7WDvXmKgTxaaQy7BA_CPSImhz0QSk48b4dhPKoKbb3inp273wkMvc8pUDm2jh68rMJrPZ1_YD3XRXa82MIHPUTHmb3yO7K8l-QwvkRvLD3sgma8-wU7Pto31z1Edco7aUgGvcWydLsisZO8t4zlPLcPVLyBzM48XB0APpBmkTwzV4I73lq2PY8mDT2233M7brYjvflYcD0JEsA8UFObPbaeBLyGrkS8seuLO3B6VbuyCsC8KLGQvNeddrsn5hE8XadRPVWXnTxNg6I8LpmpPbpXPD2dbjQ8BSOlPdYCO75J5Zo6x4NtvVcQjr2dt1a8tZEmPX-rMD27Hcy78PlhPRRfDb53hBG771GkvG743bw4xJE6pf9APNnqsr1Tkje6IY8AvtV7uj0ri6G6aMjdPAw2uztByS68Qp--PFwxjT1He5M7TgJlvPCsiL349cc6ioaWvIvJ1TvIa5A7ULyvPMDNAj3tjEa71ZUPPtTsRr3lRxm57c9qvdX_nrzq-Xu6iHqLPHRirLrQDm26lEC0PeDNZL3ih2o5_ZUfvS6TXD2-WKe41g1qvQK_YT3zKHu4BF-HvMWaIL1G4T85FJ2LvYl64b3GJ3A56z9mPSHYJ7wwpvm4O7-dPeCHXjznV664Y3RqveAZaL1Zb_23beLkvb7enT2HPwO5WRyZPXWFaD3hTo44M-4ZvHxXTj0edQg52fmKO0Goob3lN7w5eH1mPDtU8z1THCg4sTlivSFyH7xCIwK5_ViXPdy3-j0dVsQ16FGMvFpAcj0J5bw39kczPaY0cT0K7bG4b_YHvQIQd714-IE3DCl1PB7mBj2DLVg3Q368vZtGSbx4S8g34TSzPNxheL0496q38wKsPYMXXb0SKsA4bBPdPJBSJD2Ldek4Ol3WPexKjTsc-0m5VMXUvf97S70YUVe2IY1Pve6CfL1GFY64eXbcuxG1ozyB6oy4nW3JvdTUEr4fPpG4QstfPWMatz1ukI44uB-wvK-IKz0i05W4Wu3GvQ8UMz1o2_s33kn6O--4tz1uY0c4IAA4E0AJSG1QASpzEAAaYP73AEbtG_UOFkPo4OXk8erQANUprir_9Mn_zfa98d8TrcEC-AAQzTDgnQAAABf_3gwKANx_5Or6MQDaIuWQ6hQISBT3OuH3FBjW4yIfAew83ApvQADAHr5BSQPCLPtRPyAALdQoGDs4E0AJSG9QAiqvBhAMGqAGAABgQQAABMIAAKhBAADgwQAAoMEAAFBBAACaQgAAyMEAAGDBAACowQAAgEAAAARCAACIwQAA0EEAADBCAAAAwAAAMEIAAADAAAAMQgAAoMAAACTCAABYwgAABMIAAABAAAAAQAAAOEIAAIDCAACAQQAA-EEAALZCAADIwQAAoMEAANDBAACQQQAA0sIAAFTCAABwwQAA2EEAAGDBAAAQQQAAAMAAAFBBAACoQQAA8EEAABRCAAAEwgAAAEAAAKBAAACCQgAAHEIAAKDBAACAPwAALMIAAMBBAADgQAAAwMEAAKjCAAAAQAAAMEEAAMBCAAAsQgAAcMIAAKTCAAAUwgAAgMAAAKLCAAAYwgAA1sIAACTCAAAMwgAAHEIAADhCAABAwgAAFEIAAOBAAACgwgAAosIAAGDBAAAEQgAA4EAAADjCAAA0QgAA8MEAAHjCAADgQAAAmkIAADTCAACgwAAAfEIAAAAAAADQwQAAFEIAAADBAADgQAAAKEIAAGjCAACAPwAAgMAAACRCAACgQgAAIMIAACxCAADgwAAAMMEAAPjBAABcQgAAAEEAABBCAAAgwQAAsEIAAIRCAAA8QgAAwMAAAODAAADAwAAAZEIAAJhBAAAowgAAFMIAAKrCAACAvwAA8EEAAPBBAACIwQAAgL8AAABAAAAgQQAAsMEAAJDBAAAAQAAAUMEAACDCAACAwQAAcEIAABBBAACAwAAAyEEAALjBAACawgAAxMIAAGRCAACoQQAAFEIAACBBAAAgQQAAJEIAAIBBAAA8wgAAgD8AAETCAAA0wgAA4EAAAGDBAABUwgAAMMIAAETCAACewgAAuMEAAMjBAABMQgAAUMIAABhCAADQQQAAMEEAAIA_AACAQQAAQMAAAIBAAACMQgAATMIAAKDAAABcQgAAcEIAAIBBAAAEwgAAoEEAAMBBAAAQQQAA4MAAAIhCAABQwgAAJMIAAEBBAADgwAAAcEIAAKBAAADgwQAADEIAAFBBAABgQQAAwEAAAADCAAAAwQAAUMEAAPDBAACIQQAAqMEAAERCAAAwwQAARMIgADgTQAlIdVABKo8CEAAagAIAABS-AAB0vgAAgj4AAHy-AABAvAAAsj4AAKg9AAA9vwAAgr4AALg9AADYPQAAmL0AAOg9AAAcPgAAuL0AAES-AACGPgAAoLwAADS-AADWPgAAfz8AABQ-AABEPgAAoj4AACy-AACgPAAAbD4AAPi9AAAQvQAAqL0AADw-AACgPAAADL4AAFC9AAAwPQAAir4AAIY-AAAUvgAAtr4AAIK-AAC-vgAAiL0AAJg9AAAsvgAAmL0AACQ-AAB0PgAANL4AAMi9AACmvgAAQLwAAIK-AAAUPgAA7j4AAHy-AACYvQAAaT8AAIg9AAC4vQAACz8AAEQ-AACYPQAABD4AAEC8IAA4E0AJSHxQASqPAhABGoACAAAEvgAAgLsAAHC9AABFvwAAcL0AAEQ-AAB8PgAAcD0AAKC8AABMPgAAyL0AAEA8AACovQAAMD0AAIi9AAAwvQAAqD0AACM_AABwvQAAFz8AAHC9AABMvgAAQLwAAFS-AAAwPQAAML0AAEA8AACAOwAAqD0AAGw-AACgvAAAQLwAAIi9AADovQAA-D0AANi9AADgPAAABL4AANi9AAAkPgAAuD0AAOi9AACIPQAA-D0AAGS-AACoPQAAf78AADA9AABMvgAAnj4AAEC8AABcPgAAgLsAAFw-AABQvQAAcD0AAFC9AACovQAAND4AALi9AACoPQAAMD0AABQ-AABAvCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ftAuCXNAvtE","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18112810240028558651"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1758656482"},"1051802901966789010":{"videoId":"1051802901966789010","docid":"34-0-10-ZDF7BC8384B52693B","description":"We will prove that the limit of x^2 is 4 as x goes to 2 with the epsilon-delta definition. We will also do it without the usual trick (setting deleta=min{1, something}). Will this be any easier?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1773140/7d371fe7887bec4f21c5ef12a8ace813/564x318_1"},"target":"_self","position":"15","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFobFTlT81W8","linkTemplate":"/video/preview/1051802901966789010?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to find a formula for delta (epsilon-delta definition of a limit)","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FobFTlT81W8\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTMTA1MTgwMjkwMTk2Njc4OTAxMFoTMTA1MTgwMjkwMTk2Njc4OTAxMGqvDRIBMBgAIkUaMQAKKmhocndwaXprY25xbmFneGJoaFVDX1N2WVAwazA1VUtpSl8ybmRCMDJJQRICABIqEMIPDxoPPxO7BYIEJAGABCsqiwEQARp4gQL1AAj9AwDmAAEC_AABAAsA-_r3AAAA9gf8__8C_wDnAfj2AP8AAPsH-hACAAAA9wMH_Pz_AAAX_PoAAwAAAAf79wUBAAAADgv8A_4BAAD__Pv_A_8AAAUD-vf_AAAA8_r__Pz_AAD6AgMHAAAAAAEEBv7_AAAAIAAtHePeOzgTQAlITlACKnMQABpgEf0AN_Lv2gIZM-se-eT3--Xr9Ra2JgDg5ADq-Mz2Fh7Q2RHeADHyHPe3AAAAKPUFFeEAJVIF9NAgEQr2EMTbBhd_WAkEGBYREbbqBxQe_yvoIwYTAOrn-AgqA9b3CUUwIAAtFFZDOzgTQAlIb1ACKq8GEAwaoAYAAJ5CAAAowgAAyEIAAFDBAAAAwgAA4EAAAIpCAABoQgAAYMIAAMBAAACgQAAAsEIAABDCAAAAwAAAAEAAABhCAABgQQAARMIAABBBAACAvwAAmEIAALBBAAA0wgAA0EEAAABBAACgQQAATMIAACDCAABMQgAAYEEAAOBBAACoQQAAyMEAAIC_AAB4wgAAREIAAJhBAACuQgAAoEAAANDBAAA8wgAAEMEAACxCAAAAwgAAQEEAACTCAAAMQgAAKEIAAIRCAABwQQAAgMAAAGDBAABgQQAAeEIAAGBBAABAQQAA2MEAANhBAACaQgAA0EEAAAjCAAAowgAApMIAAAzCAACgwQAAbEIAADhCAAA4wgAAwMEAAIhBAAB4QgAAEEEAAHzCAACyQgAAoEEAALTCAACgwgAAgMAAACTCAAAAwgAAQMEAAEDAAABAwAAAgEEAAMBBAABEQgAA4MAAACDBAABAwAAAIMIAABDCAAAYQgAAAEEAANDBAACAQQAALMIAABzCAACoQQAArkIAAAxCAADgwAAADEIAAGxCAACAPwAAlMIAAPBBAADgQQAApEIAAODAAAB4QgAAkkIAAABBAACMwgAAgD8AAGRCAAAQQQAAgEEAANjBAAAgQQAAlMIAAIC_AAAEwgAAYEEAAGTCAAAAQAAA6MEAAKDAAACuwgAAMEEAABjCAABAQAAAwMAAAAhCAABIQgAAEMEAAHBBAAAwQQAAQMEAAPDBAACCwgAAQMEAAHBCAAAAwAAAyMEAACBBAADoQQAAAMEAAIBBAAAowgAATMIAAEBBAABAQAAAMMEAAJbCAAAwQgAAgD8AAIjBAAAAAAAAgEAAAGxCAADowQAAYEEAAFBBAABgwQAADEIAAIDAAACAQAAAoMEAAABBAAAAAAAAIMIAAIBAAABgQQAAMEEAAJDBAACgQQAAJEIAABzCAABsQgAApEIAAGDCAACAwAAAGMIAAJjCAABMQgAA6MIAAFBBAAAEQgAAmMEAAKDAAADYQQAAIEIAAEBBAAAAQgAAsMEAADBCAADQwQAAMEEAAJDBAAAAwiAAOBNACUh1UAEqjwIQABqAAgAADD4AAMK-AABkPgAA9r4AAKg9AABUPgAALD4AAFG_AAA0vgAAyD0AAMY-AABkvgAABL4AAJI-AACCvgAALL4AAJI-AACgPAAAyD0AALY-AAB9PwAAZD4AACw-AACuPgAAtr4AAAS-AABEPgAAkr4AABw-AACgvAAAdD4AAIq-AACIvQAA-L0AAAQ-AAAJvwAARD4AAGy-AADivgAAcL0AAEy-AAAcvgAA-D0AAHS-AABEvgAAVD4AAEQ-AACSvgAAnj4AACy-AABwPQAA4DwAAEC8AACiPgAAuL0AAMi9AAB_PwAAqL0AAHC9AADyPgAABD4AAHA9AABwPQAAiL0gADgTQAlIfFABKo8CEAEagAIAABS-AABwvQAAUL0AAE-_AACKvgAAND4AADw-AABsPgAAiD0AADQ-AADYvQAAcD0AADC9AADYPQAAPL4AABC9AAAQvQAAFT8AAFA9AAATPwAAqL0AAMK-AACgvAAAbL4AAEA8AAAEvgAABD4AANi9AAAkPgAAJD4AAHC9AAAwPQAAuL0AAIC7AAD4PQAARL4AAJg9AAAQvQAAFL4AAEw-AAAQPQAA4LwAAAQ-AACgPAAAqL0AAKA8AAB_vwAAZD4AANi9AAA8PgAAED0AANg9AAAkPgAAgj4AAJi9AACIPQAAQLwAAKi9AACYPQAA2L0AABw-AABMvgAA2L0AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=FobFTlT81W8","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1051802901966789010"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1979499066400446951":{"videoId":"1979499066400446951","docid":"34-10-3-Z1857913A5939864A","description":"in no way is this video intended to be demeaning towards any culture, race, nationality, or ethnicity. this is a skit video, teaching students how to epsilon-delta in 3D.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/467677/31a904306cb13f76e0f1cd9998b3425d/564x318_1"},"target":"_self","position":"16","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-Z5x45KZCL4","linkTemplate":"/video/preview/1979499066400446951?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"how to prove a limit using the epsilon-delta definition","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-Z5x45KZCL4\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTMTk3OTQ5OTA2NjQwMDQ0Njk1MVoTMTk3OTQ5OTA2NjQwMDQ0Njk1MWquDRIBMBgAIkQaMAAKKWhodnhxd2N0c3h5dXZyZGhoVUMwTmdDUjhwZ1lSaE5oSF8zaFlkRWFREgIAESoQwg8PGg8_E5EDggQkAYAEKyqLARABGniBAfoKBv4DAO36B_sEAAAAE_UHBvcAAAD_A__7-QX-AOgB_f_6_wAA-gf6EAIAAAD4_QcD_P8AABf8-QADAAAADvT4BAMAAAASEQYJ_gEAAP_8-_8D_wAAAP_0-v8AAAD2AQL7-AD_Af_8AwoAAAAACAn7AwAAAAAgAC1prdo7OBNACUhOUAIqcxAAGmAhAwAu3PzzC_8S6Bft1_Tr8AwH_qMl_-7mAOkL0eYEJsPT9BIALdcPBLkAAAAfDvYe_wAZWBX0w_0iGe0Es9YJCX8i_uMDCvMNxOwBHjbVNewMFyQA4PwWAyz53BILJkQgAC3TbUM7OBNACUhvUAIqrwYQDBqgBgAAgL8AAIBAAADIQgAAcMEAAIjBAAAAwQAAmkIAAEDAAAAIwgAAoMAAAAzCAACgQQAAyEEAAJhBAABwQQAAkMEAAARCAACowQAAyEEAAOjBAACwwQAA6MEAAOjBAACYQgAAgL8AAADAAACmwgAAAMAAAGhCAACaQgAAAEAAAADCAAAwwgAAMEIAAMLCAABQQQAAPMIAAAhCAADgwAAABEIAANDBAABgwQAAUEEAAOjBAACgQQAAqEEAAAAAAADAQAAAWEIAAMhBAAAYwgAAcEEAACBBAADYQQAA0MEAALbCAACQwQAAFEIAAMDAAACIQQAAAEEAAGDCAABowgAAEMIAAJjBAACSwgAASMIAAOTCAAAcwgAAMMEAABhCAABQQgAAiMEAAERCAACAQAAAlsIAAIzCAACgwAAAAMAAABDBAACEwgAASEIAAEBAAACowQAATEIAAJZCAAAcwgAA2MEAAARCAAAcQgAAmMEAAPBBAAAAQQAAmMEAAEBCAABIwgAAJEIAACDCAABAQQAAIEIAAEzCAABgQgAAcEEAAAjCAABswgAAaEIAAEBAAABkQgAAuMEAAK5CAADIQgAAikIAAEBBAAAgQQAAQMEAAIpCAAAAwAAAQMAAACDBAADAwgAAoEAAAFBBAACAwAAAZMIAAMhBAACgwAAAkEEAAGDBAABAwQAAGMIAAAAAAAAEwgAAYMEAAMJCAABAwAAAMMIAAChCAAAgwgAAoMEAAMDCAAAIQgAAFEIAAARCAAAAwQAAMEEAAKBBAABAwAAAwEEAAJBBAACwwQAAAEEAAIDAAABgQQAAcMEAAJjBAACGwgAAgsIAAEDBAAAMwgAAgMAAAILCAADwQQAAAEEAAFBBAABgQgAAoEAAAODAAABoQgAAaEIAAHzCAAAEwgAAoEAAAKBBAADAwQAA4MAAAOBBAAAgQgAAcMEAADxCAABwQgAAUMIAALjCAADAwQAAHMIAADxCAADowQAAgEAAAOhBAADQwQAAAEEAACDBAAAAQAAAVMIAAABBAAAAAAAAyMEAABjCAADYQQAA2MEAAAjCIAA4E0AJSHVQASqPAhAAGoACAAC4vQAANL4AAIo-AAAQvQAA6L0AABQ-AAAMPgAA6r4AAM6-AAD4PQAAgj4AAJi9AACgvAAAJD4AALi9AAAkvgAAbD4AADA9AAAkPgAAuj4AAH8_AACOPgAAEL0AAPY-AAC6vgAAML0AAFA9AACqvgAAqD0AABQ-AACYPQAALL4AAHC9AACAuwAAuD0AAEy-AAD4PQAAzr4AANK-AAAQPQAA2r4AAAy-AADovQAA-L0AACS-AAAkPgAA6D0AAFS-AAAMPgAANL4AAPg9AACIvQAAHD4AANI-AACovQAAyL0AAFc_AACgPAAA4LwAAAM_AACgPAAAMD0AAKg9AABwvSAAOBNACUh8UAEqjwIQARqAAgAABL4AAMi9AAA0vgAAL78AAOi9AACKPgAAQDwAAIo-AACYvQAABD4AAHy-AACIPQAAcD0AACw-AABQvQAAiL0AAIg9AAAlPwAAqL0AAAc_AAAMvgAANL4AAAQ-AABEvgAAML0AAOi9AACoPQAA2L0AAEw-AAA8PgAAgLsAAIC7AABwvQAAQLwAAAQ-AADYvQAAiD0AAFA9AACYvQAAiD0AAMg9AABQvQAAuD0AADA9AAAUvgAAmD0AAH-_AAA8PgAABL4AAHw-AACoPQAAED0AAHA9AADSPgAAgLsAAKg9AACgPAAAuL0AALg9AADgvAAAHD4AADC9AACAOwAANL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-Z5x45KZCL4","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1979499066400446951"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3256150442330517954":{"videoId":"3256150442330517954","docid":"34-6-6-Z39C537A106E3B850","description":"We prove f(x)=x^3 is continuous on the real numbers using the epsilon delta definition of continuity. this course! https://amzn.to/3CMdgjI ★Donate★ ◆ Support Wrath of Math on Patreon...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3263765/93ea9b13a339b3996a3f864d0ac2d895/564x318_1"},"target":"_self","position":"17","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D01tcpSonAJs","linkTemplate":"/video/preview/3256150442330517954?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof x^3 is Continuous using Epsilon Delta Definition | Real Analysis Exercises","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=01tcpSonAJs\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTMzI1NjE1MDQ0MjMzMDUxNzk1NFoTMzI1NjE1MDQ0MjMzMDUxNzk1NGqvDRIBMBgAIkUaMQAKKmhoY2NheHpoYnpzbWpsaWJoaFVDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdxICABIqEMIPDxoPPxPJA4IEJAGABCsqiwEQARp4gQb4BfAD_ADx_Qr-DgP-ARQCBfn1AQEA8QD4DgUC_wDrBAnxAAAAAP3z9AoHAAAACvwD_vf-AQAa-_kABAAAABQB8gP_AAAADQ_uAv8BAAD49fQJBP8AABIF9v3_AAAA_AUO7gAAAAD1-wcJAAAAABQLAPoAAAAAIAAtWh7IOzgTQAlITlACKnMQABpg8gsALAUA8Ng9NOL5Cfj2A__tCAbJFwDkAAD1BvrG_CHhyRT2_0jfBv-7AAAAFPPYGgkADlfzA8wTAAP13MDdGiB_FfMI__8K1c7z9ykg8DHM9BodALoD4hUV6coz7S4qIAAtF2ZGOzgTQAlIb1ACKq8GEAwaoAYAAKBBAAA0wgAAokIAAJTCAABAQQAA4MAAAEhCAAAMwgAA6MEAAKDBAACgQAAAMMIAAPhBAADAwQAAMMEAAEDAAACoQQAAwMEAAExCAAAwwgAAmMIAACDBAAAwQQAA0EEAAOjBAACgwQAAYMEAAIjBAACaQgAA4MEAAILCAACIQQAALMIAAAzCAAA0wgAAiEIAAOhBAAC2QgAAQMIAADhCAADgQQAACEIAAABCAAAQwgAA0EEAADzCAABAQQAAIEEAALBCAADQwQAAAMAAAIDAAABQQQAAgMAAAIJCAACAPwAAxMIAAMDAAADgQAAA8EEAACBBAAAQwgAAsMEAALbCAACowQAA8MIAAJjBAADIwQAAcMEAACTCAAAwQgAA0EEAANDCAADwQQAAoMAAAHDBAAAYwgAAYMEAAADBAACQQQAAUMEAADBCAAAAwQAAmMEAAPhBAADoQQAAcEIAAFRCAAA4QgAADMIAAFDCAACYQgAAhMIAANBBAAAEQgAAWMIAAGDBAACYQQAA-EEAACRCAACAwgAAsMEAAMBAAABEwgAABMIAAJBBAADgQAAAUEIAAIjBAABAQgAAgEIAAMhBAAAMwgAAMEIAAHTCAAD4QQAAwEEAAJjBAAAQwgAAUMIAAGTCAACYwgAAUMEAAKhBAAAAAAAAVMIAADzCAACAPwAAOMIAABDCAACowQAAQMEAAGDBAABIQgAAPMIAACRCAAAAwAAAAAAAADBBAADgwQAAiEEAABTCAAAAAAAA-MEAAGxCAADoQQAA0MEAALhBAABgwQAAQMAAAADAAACgwAAAWEIAAJBBAAAYQgAAEEEAACDBAAAAwgAAlsIAACBBAADAwQAAgEAAAFDBAAB0wgAAwMEAAHRCAADAwQAAhkIAAHBBAAAAQAAA4EAAAKjBAACYQQAAIMIAAHjCAABgQgAAjMIAANjBAAA4QgAA8EEAACjCAAAYwgAAAMAAACDCAAAQQgAAPMIAADjCAAAQwgAAAMAAAFhCAAAAQAAATMIAAGhCAADgwAAAUMEAAOhBAAAcwgAAwMAAAADBAAAswiAAOBNACUh1UAEqjwIQABqAAgAAor4AAOC8AAC2PgAA4LwAAOi9AAAkPgAAij4AAC2_AACSvgAAML0AADA9AADgvAAAuD0AAKo-AAAEvgAADL4AAJY-AAC4PQAAgj4AABM_AAB_PwAAyD0AABQ-AACGPgAARL4AAEC8AABQPQAABL4AACw-AACAOwAAyD0AALa-AADgPAAAVL4AABA9AABwvQAA2D0AAJq-AACivgAA6L0AAHy-AABAPAAAFD4AADS-AACYPQAAND4AAEw-AADCvgAAXD4AAFS-AACIPQAAHD4AAIA7AADKPgAAyr4AAJi9AABtPwAAUD0AAJi9AAC2PgAAcL0AAHC9AAD4PQAAdL4gADgTQAlIfFABKo8CEAEagAIAAHy-AACovQAAEL0AAD-_AAAsvgAA-D0AAJo-AACIPQAAEL0AAGQ-AADgPAAAQDwAAKA8AADIPQAAoLwAAOA8AACoPQAAMz8AAHA9AAD2PgAA4DwAAJi9AACgPAAALL4AAOC8AADgvAAAQDwAAIC7AABQPQAAND4AAKC8AACYPQAA-L0AAJa-AAB0PgAAmL0AABA9AADovQAAPL4AAKg9AABQPQAAEL0AAEC8AACgPAAAQDwAAKA8AAB_vwAAED0AAOC8AACAuwAAND4AAOg9AAAEvgAAdD4AADw-AAAEPgAAgLsAAHC9AAAsPgAAUL0AAFw-AAAUvgAAyD0AAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=01tcpSonAJs","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3256150442330517954"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6676744592070853645":{"videoId":"6676744592070853645","docid":"34-8-13-Z2993BB8EC97A2CAF","description":"📝 Access all videos and PDFs: https://tbsom.de/s/ra 👍 Become a member on Steady: https://steadyhq.com/en/brightsideofm... 👍 Or become a member on Patreon: / bsom Other possibilities here...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1627711/4124c4992b9668ee25ffa3f23bb80ab5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MQGFuQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4xhyqdjmxHU","linkTemplate":"/video/preview/6676744592070853645?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Real Analysis 28 | Epsilon-Delta Definition","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4xhyqdjmxHU\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTNjY3Njc0NDU5MjA3MDg1MzY0NVoTNjY3Njc0NDU5MjA3MDg1MzY0NWqHFxIBMBgAIkQaMAAKKWhoZ2ljbGdqaXZlbHludmhoVUNkd280azFSUUhUY3FfLVdTN0NhenFnEgIAESoQwg8PGg8_E5oEggQkAYAEKyqLARABGniB__n8-_wFAO36B_sEAAAABAAAAvj__gD1CwMG_QL_AOcB-PYA_wAA-wf6DwIAAAD-_Qr-9P4BABf8-gADAAAAB_v3BQEAAAAGC_r9_gEAAPb__AwE_wAAEfP69_8AAAD7_QL9_f8AAPb9_AgAAAAACAj7AwAAAAAgAC1bBuE7OBNACUhOUAIqhAIQABrwAX8ICAHN-87_y-XlAOsa6ADL_CcA_DTSALvp8gDM_-wB7kDpAOwD7v_9DxIAyhXzAADg7f8EyuIAKtcO__zT7QHuEQ4BAvP7AEbfCP8e8eIByyEc_uj-Hv_22tL_Hy3j_xPpKP0ODNkB0hOx_A_-PgH4ASYGF_QiAu7MGwPoBOsA0xPT_eANCgPSzSL_4PUwBx_b9QoBFgL60tzsA_QO8fsLAAkFLDbV_yDz4AUDCwsG5dryCyYF_gkWISP--RbZ_MbzFfbm7g38CAwI_x_vBffGGfIICc74AQT3_QPV5wwFCM7t8eXv9Q8UDPMMC-z29iAALY27Ezs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe75hBnvRaoQL0sH4O9UYf1vdeXhj2Fp2G9TTISPpmJvTxjh-e8BFQ4vpahorsESL68LQtWPrCKXL1BLSa9dXT8vS8Tmj0LAhC9V7E4vkelfTyl1Ao9OC_OPM5twrwxb588wX6-PfL3wb0XrW28qarIu7JdJr1fwQy9-KEaPB-F6728kXm8bjC5PNkFSL1qocc7sV4bPRCknDyK9de8QsFWPdeEGb3VUeG7XR5GvBAGnjxhmS29RWRYPb2g6jxffI-6LpnZvH_4eTwRwuC4TLQavY-RB7yttg08JkCoPZCoKz1v0a68kaiGu79G8r3pIxU8-aAHvvQamz0vgYA7JxcTPk_Vcz0VqbA8FTkUvk-VbzyrGaO8YYg8PSHJLL1h3Z07LuciPsGquj2qvkC6e_QGPkouuTvWur-7MS1FvSRgtjv0sIY8KwP9PM23Gb22bwm8hI4MPR-CKryWlaa8qjiPvSEjWz2zO6g7rec6Pb8QEj3Ytk28FhgNPG5zXzspr3g7BSOlPdYCO75J5Zo6x4NtvVcQjr2dt1a8d9zwPEb7Lj32Dae8ZfBhPWlRxLw_dP86pj-QvXzgurvAnic7pf9APNnqsr1Tkje62fWxvUhHKbojMBm6VK7su-RZeD2WFRa8MGbLPCqnDT5ukyi6vxE4vJzslbwBVG27kySuPYD3ab1ASzq7JUi7PZ6gIz1gTyu5aeTTPcnSvbxSsAa4xLkfu-zstbyZUYM7ZdOAvJAomb1SAxM7ZrZQPYnu2b0hlb050wgHPVYXS7ynxuu5Cr9PvSYe0D2AIzm5TcdSvATsfrwyhqQ6qz2RvRpSFb4wUQo6GaHpvJQ7Aj20XdG56MpWPGpcSTygN5E5L1DyvahcnL1DgL-3MGmXva2_RT3ecwa5eWFGPcwD_TwpBuA4sGVoPUU3ET0AQ304CgahPN7fRbzey_Q5vyAzvKwbzz1JDDQ1exLYvM8Gar3xp6E4_ViXPdy3-j0dVsQ149yLvMYNyTyTw4-25TqXPVL-pDxQSfy2b_YHvQIQd714-IE3yOsBPlbRhDzwXoO49aKxvahs_bxnsJq4YUz-u9SYtb0ztII2oM5rPc0muLuuq703qC9VPUQK0DrWkw42weMrPtylaLwHiXS5hd5MvVSojr3qysO4OOeWvEbAN71q4gO45js4vagtfz3KEMiy5NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu4D4bVvIZ8xjwossa3fYmCvbTeND1FYT044m1vPDVu-zzOSNc3IAA4E0AJSG1QASpzEAAaYAzvACzsJPD5JSv3-u7q7cgX4PYhuRcA7u8A4vDq2QMm49T48f861RTuswAAAAnp_iv_APNiAin2GvoxDOWo0hskfxj3-dzIBe3Z3ggtAwJX1vYrMADKErgdDxTFJgMdNiAALfOiNDs4E0AJSG9QAiqvBhAMGqAGAACIQQAAOMIAAIBCAACYwQAAbEIAAERCAADSQgAAgD8AAIDCAAAwwgAAEEIAAI7CAACYQQAAkMEAAJhBAAAQwQAAQMEAAMjBAACQQgAAAEAAAEBAAAAgwgAAQMEAABBCAAAYwgAAOEIAAOjBAAAAwAAAiEEAAFDBAAA8wgAAWEIAACDBAAAgwQAAnsIAALBBAABEQgAAxkIAAGDBAAAUQgAAIEEAAARCAADYQQAAAMAAAKBBAAD4wQAAgMAAANhBAABEQgAAkMEAAMDAAABgwgAAAEEAALDBAABwQQAAQMIAAMDBAADgQQAAEMEAAGBCAACSQgAATMIAANjBAABwwgAAMEEAAObCAADIwQAAjMIAAITCAABswgAADEIAAFBBAACqwgAALEIAAAxCAABowgAAcMIAAJBBAADwQQAACEIAADzCAAC6QgAAqMEAACBCAAAgwQAACEIAAFRCAABoQgAAsEEAAFTCAABAwgAAskIAADBBAACAwAAAQEEAAKLCAABMwgAAIMEAAJhCAABgQQAAwMEAAODAAAAQQQAAUMEAANTCAABAQAAAUEEAAFBCAACQwQAAkkIAAEhCAAAgQgAAsMEAAJhBAACAwAAAoEEAALBBAAAswgAALMIAADTCAABAwAAAlMIAADjCAACIQQAAYMEAAPjBAADYwQAA2EEAADTCAAAIQgAAAEEAAABBAABEwgAACEIAALjBAACAQQAAoEEAAMDAAADwwQAAWMIAAOBAAADgwAAAQMAAAIDBAAA8QgAAMMEAADDBAACgQQAABEIAAPBBAADowQAA2EEAAIhBAAAAQQAAUEEAAJBBAABQwgAA-MEAAGzCAABoQgAAHMIAAOBAAACoQQAAjMIAAADBAACgQAAAuEEAAKhCAADIQQAAgD8AAIBAAABAQAAAAMEAANDBAAAgwQAAIMIAAOjBAAAQwQAAUMEAADxCAACgwgAAKMIAAATCAABMQgAAoEEAAIDAAADAwAAAUMEAAMBAAACAvwAA2MEAAGDBAACuQgAAAMAAAAAAAAB4QgAA4EEAACDBAAAAAAAAIMIgADgTQAlIdVABKo8CEAAagAIAAJi9AABcvgAA4DwAAFC9AAAcvgAA6D0AAKC8AAA1vwAAur4AABw-AACGPgAAoDwAABA9AAAJPwAA4LwAAK6-AACaPgAAcD0AAHA9AADqPgAAfz8AAIo-AABEPgAAwj4AACS-AADIPQAAcL0AAKC8AAC4PQAAgLsAAEw-AAAMvgAARL4AAES-AAAwPQAAPL4AADQ-AACIvQAA_r4AAFy-AABcvgAAoLwAAOA8AABEvgAAML0AAPg9AABkPgAA5r4AALY-AABkvgAAPD4AAOi9AAAMPgAA0j4AAIa-AABQvQAAZT8AABw-AAD4vQAAIT8AADA9AABQvQAAij4AAFy-IAA4E0AJSHxQASqPAhABGoACAACavgAAgLsAAPg9AABVvwAAyL0AAKY-AACIPQAAND4AADC9AAAkPgAAqL0AAEC8AABQvQAAMD0AAIa-AACoPQAAmD0AADc_AABsPgAAwj4AAII-AAAEvgAA6D0AAFS-AAAEvgAAoLwAALg9AADgvAAAuD0AAI4-AAAQPQAAoDwAAKi9AAA8vgAA6D0AAOi9AADIvQAAhr4AAHS-AAD4PQAAML0AAOA8AACaPgAAoLwAAKC8AAA0PgAAf78AADw-AACoPQAAbD4AAMg9AADIPQAAUD0AAKI-AABsPgAAqD0AAOA8AAAwvQAA-D0AADS-AADYPQAAlr4AAFA9AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4xhyqdjmxHU","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6676744592070853645"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"524394918"},"9094627377712248312":{"videoId":"9094627377712248312","docid":"34-10-12-ZD3A301D3E93EF18E","description":"2 is continuous on the real numbers using the epsilon delta definition of continuity. This will require some finesse with our delta, inequalities, absolute value, and the triangle inequality...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3645155/1e93d2f25e2e5407a9578f10037a688b/564x318_1"},"target":"_self","position":"19","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhwhbvPwMXcI","linkTemplate":"/video/preview/9094627377712248312?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof x^2 is Continuous using Epsilon Delta Definition | Real Analysis Exercises","related_orig_text":"EpsilonDelta","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"EpsilonDelta\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hwhbvPwMXcI\",\"src\":\"serp\",\"rvb\":\"EqkDChM1MTk3NzgxMTUyNjg1MzkyMTUzChMxMjE3MzQ3NTY1ODA4ODMxODQyChMyOTU2OTQ2MjA2ODU4MDE3OTUxChQxNjY5MzU1MzEzMjk3NTg4NzUzNwoUMTAwMjIwNTE5NDA3ODIzOTM3OTYKETgxMDE5MTc4Mzc2MzExMjA3ChQxMjg5NDE5MzM4MDc5NDU3OTg2NwoUMTAzMzQyNDc1MTA1NjQ3NzgxNTUKEzIyMTMzMjkzODgwMTEzMTM0ODUKEzM3Mzg0Njc1OTY2NjA3MzE4MDMKFDE4MDQ3MTM5NzUxNjMxNDE1MjQ1ChM3NDEwOTY1NjEwMDM4NjU5MzQzChQxODExMjgxMDI0MDAyODU1ODY1MQoTMTA1MTgwMjkwMTk2Njc4OTAxMAoTMTk3OTQ5OTA2NjQwMDQ0Njk1MQoTMzI1NjE1MDQ0MjMzMDUxNzk1NAoTNjY3Njc0NDU5MjA3MDg1MzY0NQoTOTA5NDYyNzM3NzcxMjI0ODMxMgoUMTgxMzQ0MjgxNDI4NzA2ODY2NjYKEzU1MzAwODA5MjgwMjI4ODY1MTMaFQoTOTA5NDYyNzM3NzcxMjI0ODMxMloTOTA5NDYyNzM3NzcxMjI0ODMxMmqvDRIBMBgAIkUaMQAKKmhoY2NheHpoYnpzbWpsaWJoaFVDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdxICABIqEMIPDxoPPxOtAoIEJAGABCsqiwEQARp4gQr0DvUI9gDw_Qv-DwP-AQ8G_wL1AAAA8AD4DwUC_wDcDQP4_f4AAPzy8wsHAAAAC_wD_vb9AQAb-_gABAAAACL98fn8AAAADhDtAv4BAAD49PMKBP8AAB377vj_AAAAAAUE9fv_AAD0-wcKAAAAACEX_QMAAQAAIAAt_R27OzgTQAlITlACKnMQABpg8QwAMP4F7d9COtn8Efb6_gHnCAzEGwDg_gD3Avy_8iPXyhD6_07XDPe0AAAAEvjTIQkADGLyB8sPAgP35rvgFx9_GPj7_wAD2db9-ycn7S7F_R80ALEH4BsQ57g75z43IAAtGU82OzgTQAlIb1ACKq8GEAwaoAYAALhBAABQwgAAoEIAAJTCAAAgQQAAEMEAAExCAAAEwgAA4MEAAHDBAADAQAAAOMIAAARCAACowQAAAMEAAEDAAADIQQAA4MEAAEhCAAAswgAAkMIAADDBAACAQAAA8EEAAPjBAABwwQAAMMEAAFDBAACaQgAA-MEAAGzCAABwQQAARMIAAADCAABEwgAAikIAAOhBAADCQgAARMIAADRCAADYQQAACEIAAPhBAAAAwgAAuEEAAFTCAAAgQQAAcEEAAKpCAADIwQAAQMAAAIDAAABAQQAAoMAAAGhCAADAQAAAysIAAODAAAAwQQAA2EEAAIhBAAAgwgAAwMEAALLCAACQwQAA7MIAALjBAAD4wQAAMMEAACzCAAAkQgAA2EEAANbCAADwQQAAEMEAAFDBAAAQwgAAgMEAAFDBAABQQQAAkMEAADhCAABQwQAAkMEAAOBBAADQQQAAaEIAAFhCAAAoQgAAEMIAAFzCAACUQgAAdMIAAOhBAAAUQgAAUMIAAHDBAACQQQAAAEIAACRCAACKwgAAqMEAAEBBAAA0wgAA0MEAAKBBAAAAQQAAUEIAAHDBAAA8QgAAeEIAAOBBAAAUwgAAPEIAAHjCAAAIQgAA0EEAAHDBAAAIwgAAUMIAAGjCAACcwgAAMMEAANBBAACAPwAAYMIAAETCAACAPwAAJMIAAADCAADIwQAAcMEAAADBAABMQgAANMIAADBCAABAwAAAoEAAAIBAAADwwQAAoEEAAAjCAACgQAAA6MEAAGxCAADQQQAAyMEAAIhBAABQwQAAAMAAAADAAAAAwAAAbEIAAIBBAAAcQgAAwEAAAGDBAAAEwgAAjsIAAIBAAADgwQAAAEEAAEDBAACEwgAAsMEAAHBCAADAwQAAiEIAAIhBAACAQAAA4EAAALjBAABgQQAAHMIAAGjCAABcQgAAisIAALjBAABAQgAABEIAACTCAAAQwgAA4MAAACjCAAAQQgAAPMIAACjCAAA0wgAAwMAAAFRCAADAQAAAUMIAAFhCAAAgwQAAEMEAALhBAAAowgAAwMAAAIDAAAAgwiAAOBNACUh1UAEqjwIQABqAAgAAZL4AADy-AAAUPgAAJL4AAIq-AABcPgAArj4AAEe_AACmvgAA4LwAAGQ-AAAwvQAAuL0AAM4-AABkvgAABL4AALY-AABQPQAA4j4AAA0_AAB_PwAAQLwAAJg9AACSPgAAlr4AAAw-AAAUvgAAHL4AAHQ-AACAOwAALD4AAMq-AADgvAAApr4AAFQ-AACovQAAqD0AABS-AADGvgAAML0AABC9AADIPQAADD4AANi9AACgvAAABD4AAIo-AADWvgAAzj4AADy-AACYPQAA-D0AAAQ-AADOPgAALL4AAKA8AABTPwAAyD0AAMi9AACaPgAAoLwAADC9AAAUPgAAjr4gADgTQAlIfFABKo8CEAEagAIAAIa-AAAQvQAAoLwAAEO_AABMvgAADD4AALY-AABQPQAA4DwAAIY-AACIPQAAMD0AAEC8AACoPQAAUL0AAKA8AAAwPQAAHz8AAOA8AAAFPwAAuD0AAMi9AAAwvQAAHL4AAOC8AABAvAAAiD0AAHA9AAAQvQAAND4AAIC7AACYPQAABL4AAIK-AAA0PgAAqL0AADA9AACgvAAAZL4AAPg9AACIPQAAqL0AAKg9AADgPAAAuD0AABC9AAB_vwAAFD4AAOC8AADgPAAABD4AAAw-AAC4vQAAVD4AACQ-AAAUPgAAoLwAADC9AAAsPgAAUL0AAEw-AAAsvgAA2D0AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=hwhbvPwMXcI","parent-reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9094627377712248312"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"5197781152685392153":{"videoId":"5197781152685392153","title":"\u0007[Epsilon\u0007]-\u0007[delta\u0007] definition of limits","cleanTitle":"Epsilon-delta definition of limits","host":{"title":"YouTube","href":"http://www.youtube.com/v/w70af5Ou70M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/w70af5Ou70M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":418,"text":"6:58","a11yText":"Süre 6 dakika 58 saniye","shortText":"6 dk."},"views":{"text":"509,4bin","a11yText":"509,4 bin izleme"},"date":"11 oca 2013","modifyTime":1357862400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/w70af5Ou70M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=w70af5Ou70M","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":418},"parentClipId":"5197781152685392153","href":"/preview/5197781152685392153?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/5197781152685392153?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1217347565808831842":{"videoId":"1217347565808831842","title":"\u0007[Epsilon\u0007]-\u0007[delta\u0007] limit definition 1 | Limits | Differential Calculus | Khan Academy","cleanTitle":"Epsilon-delta limit definition 1 | Limits | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/-ejyeII0i5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-ejyeII0i5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":767,"text":"12:47","a11yText":"Süre 12 dakika 47 saniye","shortText":"12 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"10 nis 2009","modifyTime":1239321600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-ejyeII0i5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-ejyeII0i5c","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":767},"parentClipId":"1217347565808831842","href":"/preview/1217347565808831842?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/1217347565808831842?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2956946206858017951":{"videoId":"2956946206858017951","title":"\u0007[Epsilon\u0007]-\u0007[delta\u0007] limit definition 2 | Limits | Differential Calculus | Khan Academy","cleanTitle":"Epsilon-delta limit definition 2 | Limits | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/Fdu5-aNJTzU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Fdu5-aNJTzU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/user/khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":655,"text":"10:55","a11yText":"Süre 10 dakika 55 saniye","shortText":"10 dk."},"views":{"text":"642bin","a11yText":"642 bin izleme"},"date":"10 nis 2009","modifyTime":1239321600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Fdu5-aNJTzU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Fdu5-aNJTzU","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":655},"parentClipId":"2956946206858017951","href":"/preview/2956946206858017951?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/2956946206858017951?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16693553132975887537":{"videoId":"16693553132975887537","title":"\u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition of Limits: Easy Explanation","cleanTitle":"Epsilon Delta Definition of Limits: Easy Explanation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8qi-hv48Hws","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8qi-hv48Hws?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTTBfWlczeWhiSjdWclBScDhnb3RNUQ==","name":"Math with Alex","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+with+Alex","origUrl":"http://www.youtube.com/@mathwithalex","a11yText":"Math with Alex. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":357,"text":"5:57","a11yText":"Süre 5 dakika 57 saniye","shortText":"5 dk."},"views":{"text":"6,1bin","a11yText":"6,1 bin izleme"},"date":"1 ara 2023","modifyTime":1701388800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8qi-hv48Hws?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8qi-hv48Hws","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":357},"parentClipId":"16693553132975887537","href":"/preview/16693553132975887537?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/16693553132975887537?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10022051940782393796":{"videoId":"10022051940782393796","title":"\u0007[epsilon\u0007]-\u0007[delta\u0007] definition ultimate introduction","cleanTitle":"epsilon-delta definition ultimate introduction","host":{"title":"YouTube","href":"http://www.youtube.com/live/DdtEQk_DHQs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DdtEQk_DHQs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1167,"text":"19:27","a11yText":"Süre 19 dakika 27 saniye","shortText":"19 dk."},"views":{"text":"514,4bin","a11yText":"514,4 bin izleme"},"date":"15 oca 2022","modifyTime":1642248011000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DdtEQk_DHQs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DdtEQk_DHQs","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":1167},"parentClipId":"10022051940782393796","href":"/preview/10022051940782393796?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/10022051940782393796?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"81019178376311207":{"videoId":"81019178376311207","title":"How to find a \u0007[delta\u0007] for a specific \u0007[epsilon\u0007] (\u0007[epsilon\u0007]-\u0007[delta\u0007] definition of a limit)","cleanTitle":"How to find a delta for a specific epsilon (epsilon-delta definition of a limit)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pk7vxTbKpxk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pk7vxTbKpxk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":461,"text":"7:41","a11yText":"Süre 7 dakika 41 saniye","shortText":"7 dk."},"views":{"text":"6bin","a11yText":"6 bin izleme"},"date":"16 kas 2025","modifyTime":1763309230000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pk7vxTbKpxk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pk7vxTbKpxk","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":461},"parentClipId":"81019178376311207","href":"/preview/81019178376311207?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/81019178376311207?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12894193380794579867":{"videoId":"12894193380794579867","title":"Introduction to the \u0007[Epsilon\u0007]-\u0007[Delta\u0007] Limit Definition","cleanTitle":"Introduction to the Epsilon-Delta Limit Definition","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TzFjhxLwA_g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TzFjhxLwA_g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWGlMVVpqaFpZNnk3R2pDUUNJSWM3dw==","name":"John's Solution Set","isVerified":false,"subscribersCount":0,"url":"/video/search?text=John%27s+Solution+Set","origUrl":"http://www.youtube.com/@johnssolutionset","a11yText":"John's Solution Set. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":982,"text":"16:22","a11yText":"Süre 16 dakika 22 saniye","shortText":"16 dk."},"date":"24 şub 2024","modifyTime":1708732800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TzFjhxLwA_g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TzFjhxLwA_g","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":982},"parentClipId":"12894193380794579867","href":"/preview/12894193380794579867?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/12894193380794579867?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10334247510564778155":{"videoId":"10334247510564778155","title":"Taming the \u0007[epsilon\u0007] \u0007[delta\u0007] definition of limits.","cleanTitle":"Taming the epsilon delta definition of limits.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JlP_1PLEXW8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JlP_1PLEXW8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk5yNUUtRHFmVGlvcGs4RnhzZ24yZw==","name":"The Why of Maths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Why+of+Maths","origUrl":"http://www.youtube.com/@WhyofMaths","a11yText":"The Why of Maths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":753,"text":"12:33","a11yText":"Süre 12 dakika 33 saniye","shortText":"12 dk."},"date":"13 mar 2025","modifyTime":1741824000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JlP_1PLEXW8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JlP_1PLEXW8","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":753},"parentClipId":"10334247510564778155","href":"/preview/10334247510564778155?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/10334247510564778155?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2213329388011313485":{"videoId":"2213329388011313485","title":"What the \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition of a Limit Really Means","cleanTitle":"What the Epsilon Delta Definition of a Limit Really Means","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=a7YLaMqCbjY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/a7YLaMqCbjY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOHZHTUhUSE8xWlc3Q1BpYm9jNFprZw==","name":"EasyDubs","isVerified":false,"subscribersCount":0,"url":"/video/search?text=EasyDubs","origUrl":"http://www.youtube.com/@easydubs1","a11yText":"EasyDubs. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":626,"text":"10:26","a11yText":"Süre 10 dakika 26 saniye","shortText":"10 dk."},"date":"21 tem 2024","modifyTime":1721520000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/a7YLaMqCbjY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=a7YLaMqCbjY","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":626},"parentClipId":"2213329388011313485","href":"/preview/2213329388011313485?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/2213329388011313485?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3738467596660731803":{"videoId":"3738467596660731803","title":"Calculus, \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition of Limit II Exercise Solutions","cleanTitle":"Calculus, Epsilon Delta Definition of Limit II Exercise Solutions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_d2gtMzq42A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_d2gtMzq42A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSnF1elprVGphYU4tME5XVmZxVFVKQQ==","name":"MathProf","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathProf","origUrl":"http://www.youtube.com/@MathProfTurkiye","a11yText":"MathProf. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1576,"text":"26:16","a11yText":"Süre 26 dakika 16 saniye","shortText":"26 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"7 kas 2024","modifyTime":1730937600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_d2gtMzq42A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_d2gtMzq42A","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":1576},"parentClipId":"3738467596660731803","href":"/preview/3738467596660731803?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/3738467596660731803?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18047139751631415245":{"videoId":"18047139751631415245","title":"\u0007[Epsilon\u0007]-\u0007[Delta\u0007] Definition of Functional Limits | Real Analysis","cleanTitle":"Epsilon-Delta Definition of Functional Limits | Real Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/live/kVQNhAIFZYc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kVQNhAIFZYc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1297,"text":"21:37","a11yText":"Süre 21 dakika 37 saniye","shortText":"21 dk."},"views":{"text":"36,7bin","a11yText":"36,7 bin izleme"},"date":"20 haz 2023","modifyTime":1687219200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kVQNhAIFZYc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kVQNhAIFZYc","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":1297},"parentClipId":"18047139751631415245","href":"/preview/18047139751631415245?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/18047139751631415245?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7410965610038659343":{"videoId":"7410965610038659343","title":"This is the \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition of Continuity | Real Analysis","cleanTitle":"This is the Epsilon Delta Definition of Continuity | Real Analysis","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=O98eOlHyWmQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O98eOlHyWmQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":733,"text":"12:13","a11yText":"Süre 12 dakika 13 saniye","shortText":"12 dk."},"views":{"text":"39,3bin","a11yText":"39,3 bin izleme"},"date":"28 haz 2023","modifyTime":1687910400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O98eOlHyWmQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O98eOlHyWmQ","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":733},"parentClipId":"7410965610038659343","href":"/preview/7410965610038659343?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/7410965610038659343?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18112810240028558651":{"videoId":"18112810240028558651","title":"Finding \u0007[delta\u0007] from a graph and the \u0007[epsilon\u0007]-\u0007[delta\u0007] definition of the limit (KristaKingMath...","cleanTitle":"Finding delta from a graph and the epsilon-delta definition of the limit (KristaKingMath)","host":{"title":"YouTube","href":"http://www.youtube.com/v/ftAuCXNAvtE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ftAuCXNAvtE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVURsdlBwMU1sbmVnWVhPWHpqN0RFUQ==","name":"Krista King","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Krista+King","origUrl":"http://www.youtube.com/@kristakingmath","a11yText":"Krista King. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":402,"text":"6:42","a11yText":"Süre 6 dakika 42 saniye","shortText":"6 dk."},"views":{"text":"199,5bin","a11yText":"199,5 bin izleme"},"date":"12 ağu 2012","modifyTime":1344729600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ftAuCXNAvtE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ftAuCXNAvtE","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":402},"parentClipId":"18112810240028558651","href":"/preview/18112810240028558651?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/18112810240028558651?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1051802901966789010":{"videoId":"1051802901966789010","title":"How to find a formula for \u0007[delta\u0007] (\u0007[epsilon\u0007]-\u0007[delta\u0007] definition of a limit)","cleanTitle":"How to find a formula for delta (epsilon-delta definition of a limit)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FobFTlT81W8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FobFTlT81W8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":699,"text":"11:39","a11yText":"Süre 11 dakika 39 saniye","shortText":"11 dk."},"views":{"text":"17,7bin","a11yText":"17,7 bin izleme"},"date":"11 kas 2025","modifyTime":1762872761000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FobFTlT81W8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FobFTlT81W8","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":699},"parentClipId":"1051802901966789010","href":"/preview/1051802901966789010?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/1051802901966789010?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1979499066400446951":{"videoId":"1979499066400446951","title":"how to prove a limit using the \u0007[epsilon\u0007]-\u0007[delta\u0007] definition","cleanTitle":"how to prove a limit using the epsilon-delta definition","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-Z5x45KZCL4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-Z5x45KZCL4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDME5nQ1I4cGdZUmhOaEhfM2hZZEVhUQ==","name":"yuemii","isVerified":false,"subscribersCount":0,"url":"/video/search?text=yuemii","origUrl":"http://www.youtube.com/@yuemiika","a11yText":"yuemii. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":401,"text":"6:41","a11yText":"Süre 6 dakika 41 saniye","shortText":"6 dk."},"date":"14 mar 2024","modifyTime":1710374400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-Z5x45KZCL4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-Z5x45KZCL4","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":401},"parentClipId":"1979499066400446951","href":"/preview/1979499066400446951?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/1979499066400446951?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3256150442330517954":{"videoId":"3256150442330517954","title":"Proof x^3 is Continuous using \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition | Real Analysis Exercises","cleanTitle":"Proof x^3 is Continuous using Epsilon Delta Definition | Real Analysis Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=01tcpSonAJs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/01tcpSonAJs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":457,"text":"7:37","a11yText":"Süre 7 dakika 37 saniye","shortText":"7 dk."},"date":"10 eki 2024","modifyTime":1728518400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/01tcpSonAJs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=01tcpSonAJs","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":457},"parentClipId":"3256150442330517954","href":"/preview/3256150442330517954?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/3256150442330517954?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6676744592070853645":{"videoId":"6676744592070853645","title":"Real Analysis 28 | \u0007[Epsilon\u0007]-\u0007[Delta\u0007] Definition","cleanTitle":"Real Analysis 28 | Epsilon-Delta Definition","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4xhyqdjmxHU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4xhyqdjmxHU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZHdvNGsxUlFIVGNxXy1XUzdDYXpxZw==","name":"The Bright Side of Mathematics","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Bright+Side+of+Mathematics","origUrl":"http://www.youtube.com/@brightsideofmaths","a11yText":"The Bright Side of Mathematics. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":538,"text":"8:58","a11yText":"Süre 8 dakika 58 saniye","shortText":"8 dk."},"views":{"text":"27,6bin","a11yText":"27,6 bin izleme"},"date":"5 ağu 2021","modifyTime":1628188305000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4xhyqdjmxHU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4xhyqdjmxHU","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":538},"parentClipId":"6676744592070853645","href":"/preview/6676744592070853645?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/6676744592070853645?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9094627377712248312":{"videoId":"9094627377712248312","title":"Proof x^2 is Continuous using \u0007[Epsilon\u0007] \u0007[Delta\u0007] Definition | Real Analysis Exercises","cleanTitle":"Proof x^2 is Continuous using Epsilon Delta Definition | Real Analysis Exercises","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hwhbvPwMXcI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hwhbvPwMXcI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":301,"text":"5:01","a11yText":"Süre 5 dakika 1 saniye","shortText":"5 dk."},"date":"9 eki 2024","modifyTime":1728432000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hwhbvPwMXcI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hwhbvPwMXcI","reqid":"1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL","duration":301},"parentClipId":"9094627377712248312","href":"/preview/9094627377712248312?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","rawHref":"/video/preview/9094627377712248312?parent-reqid=1769431034973722-13792488398690990306-balancer-l7leveler-kubr-yp-klg-221-BAL&text=EpsilonDelta","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7924883986909903067221","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"EpsilonDelta","queryUriEscaped":"Epsilon%20Delta","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}