{"pages":{"search":{"query":"Infinitys Limit","originalQuery":"Infinitys Limit","serpid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","parentReqid":"","serpItems":[{"id":"4935837338397118328-0-0","type":"videoSnippet","props":{"videoId":"4935837338397118328"},"curPage":0},{"id":"10531360181147179930-0-1","type":"videoSnippet","props":{"videoId":"10531360181147179930"},"curPage":0},{"id":"16384901230978630696-0-2","type":"videoSnippet","props":{"videoId":"16384901230978630696"},"curPage":0},{"id":"13395074150512684620-0-3","type":"videoSnippet","props":{"videoId":"13395074150512684620"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEluZmluaXR5cyBMaW1pdAo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","ui":"desktop","yuid":"2261907331769321018"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"7556318400744009121-0-5","type":"videoSnippet","props":{"videoId":"7556318400744009121"},"curPage":0},{"id":"4217212220756163423-0-6","type":"videoSnippet","props":{"videoId":"4217212220756163423"},"curPage":0},{"id":"11778500548217325331-0-7","type":"videoSnippet","props":{"videoId":"11778500548217325331"},"curPage":0},{"id":"17443056076493149486-0-8","type":"videoSnippet","props":{"videoId":"17443056076493149486"},"curPage":0},{"id":"13196971563633638923-0-9","type":"videoSnippet","props":{"videoId":"13196971563633638923"},"curPage":0},{"id":"4715407121043398010-0-10","type":"videoSnippet","props":{"videoId":"4715407121043398010"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEluZmluaXR5cyBMaW1pdAo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","ui":"desktop","yuid":"2261907331769321018"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"8205084018232082264-0-12","type":"videoSnippet","props":{"videoId":"8205084018232082264"},"curPage":0},{"id":"13740603701027274258-0-13","type":"videoSnippet","props":{"videoId":"13740603701027274258"},"curPage":0},{"id":"3719524781422017083-0-14","type":"videoSnippet","props":{"videoId":"3719524781422017083"},"curPage":0},{"id":"5709725060998087251-0-15","type":"videoSnippet","props":{"videoId":"5709725060998087251"},"curPage":0},{"id":"12522410816199270600-0-16","type":"videoSnippet","props":{"videoId":"12522410816199270600"},"curPage":0},{"id":"1052593913824911905-0-17","type":"videoSnippet","props":{"videoId":"1052593913824911905"},"curPage":0},{"id":"1394655536215481647-0-18","type":"videoSnippet","props":{"videoId":"1394655536215481647"},"curPage":0},{"id":"4051593808259550198-0-19","type":"videoSnippet","props":{"videoId":"4051593808259550198"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"correction":{"items":[{"kind":"misspell","url":"/video/search?text=%C4%B0nfinity%20Limits","params":{"text":"İnfinity Limits"},"query":"\u0007(İ\u0007)nfinit\u0007(y\u0007) Limit\u0007(s\u0007)","helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"61367466548"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEluZmluaXR5cyBMaW1pdAo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","ui":"desktop","yuid":"2261907331769321018"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DInfinitys%2BLimit"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2043065844719093085731","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455698,0,85;1472323,0,14;1466868,0,79;1457620,0,52;1468855,0,72;1470058,0,26;1460717,0,67;1464561,0,7;1459297,0,65;1312967,0,70;1456929,0,59;1472029,0,59;1471624,0,82;1461638,0,48;1383553,0,30;1431646,0,97;1339938,0,68;66185,0,20;1464524,0,36;1455767,0,72;1470249,0,98;1282205,0,74;1466295,0,99;1466085,0,84;1452015,0,79;1466618,0,46;1188718,0,78;260562,0,1;1465688,0,71;1471671,0,67;1404017,0,21;1357005,0,82;1304310,0,69;284409,0,69;151171,0,46;1281084,0,30;287509,0,79;1447467,0,42;1231503,0,45;1468028,0,47;681841,0,61"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DInfinitys%2BLimit","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Infinitys+Limit","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Infinitys+Limit","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Infinitys Limit: Yandex'te 4 bin video bulundu","description":"Результаты поиска по запросу \"Infinitys Limit\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Infinitys Limit — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yd20d0f699295ce33f7ee459e603888ab","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1472323,1466868,1457620,1468855,1470058,1460717,1464561,1459297,1312967,1456929,1472029,1471624,1461638,1383553,1431646,1339938,66185,1464524,1455767,1470249,1282205,1466295,1466085,1452015,1466618,1188718,260562,1465688,1471671,1404017,1357005,1304310,284409,151171,1281084,287509,1447467,1231503,1468028,681841","queryText":"Infinitys Limit","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2261907331769321018","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769321061","tz":"America/Louisville","to_iso":"2026-01-25T01:04:21-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1472323,1466868,1457620,1468855,1470058,1460717,1464561,1459297,1312967,1456929,1472029,1471624,1461638,1383553,1431646,1339938,66185,1464524,1455767,1470249,1282205,1466295,1466085,1452015,1466618,1188718,260562,1465688,1471671,1404017,1357005,1304310,284409,151171,1281084,287509,1447467,1231503,1468028,681841","queryText":"Infinitys Limit","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2261907331769321018","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2043065844719093085731","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":162,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2261907331769321018","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"4935837338397118328":{"videoId":"4935837338397118328","docid":"12-9-14-ZD0FE0155D4203109","description":"Keep going! Check out the next lesson and practice what you’re learning: https://www.khanacademy.org/math/ap-c... Introduction to the idea and notion of limits at infinity (and negative infinity).","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4534430/af6c81cc3148aa8e03ed66232424bc30/564x318_1"},"target":"_self","position":"0","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Deh_ATp0hbB0","linkTemplate":"/video/preview/4935837338397118328?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to limits at infinity | Limits and continuity | AP Calculus AB | Khan Academy","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eh_ATp0hbB0\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChM0OTM1ODM3MzM4Mzk3MTE4MzI4WhM0OTM1ODM3MzM4Mzk3MTE4MzI4aq4NEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8TpgGCBCQBgAQrKosBEAEaeIH7AfkI_AUA7f4FAgcB_wD6_ffz-f39AOP6A_cH_AIA_wIF-f8BAADuBQf9-QAAAPf-_Aj1_wEA-QcAA_wAAAASAAQE_QAAAAIL-Ab-AQAA9v_0AgP_AAAGBO72_wAAAPML__77_wAA8v34AAAAAAAF__v2AAAAACAALaLU4Ts4E0AJSE5QAipzEAAaYBn_ADT4BebI4VDO9xjL-vDLCe4BxhT_6ez_zgrI1r34xJUKFP8j-QsQogAAACgO3i4FAON88-HTPOwY3PeB4RgJSg0G6fDH-O-kDPYrRgIgDQEX_QDTE9hDHsjcZhM6JyAALa58HDs4E0AJSG9QAiqvBhAMGqAGAAAAwgAA4MEAAIC_AAAYwgAADMIAACBCAAD-QgAAAEAAAIA_AAAkwgAAyEEAACTCAADowQAAqMEAAHRCAADgQAAAoMEAAPjBAAAcQgAAmMEAACDBAACQwQAA4MAAAIDAAABAwQAA6MEAAFDBAABwQQAAGEIAANhBAAB0wgAAgL8AADzCAAAAQgAAosIAAABAAAAMQgAAgkIAAODAAACwQQAA2EEAABxCAAAsQgAAUEEAAEBBAAAswgAAYMEAADBBAAAIQgAAJEIAABBBAAAgwgAA4EAAABDBAABMQgAAgD8AAADDAACIwQAA4MAAAEBBAAA8QgAAgMIAACzCAAC2wgAAgMAAANTCAAAAwAAApsIAAKDBAAA0wgAAqkIAAARCAABYwgAADEIAAADAAADAwAAAAMIAALBBAACAQgAAnkIAAJDCAABcQgAAgEAAADDBAACCQgAAAEEAAExCAACgQQAAgEEAAATCAABAQAAAnkIAAHDCAAAswgAANEIAAMbCAAAMQgAAGMIAAERCAABcQgAAXMIAAGDBAACwwQAAAAAAAFzCAACAQQAAIEEAABxCAABAQAAAMEIAAOBBAAAsQgAA6MEAAKhBAACgQQAAgMAAAMBAAACYwQAAgMEAAJjBAAAAQAAAyMEAADBBAABgwQAAgMEAAFBBAABMQgAAAAAAAGTCAAA4QgAAAMEAAAjCAACCwgAAgEAAAJjBAABAQQAAoEEAAKDBAACYwgAAwMEAAPjBAAAwwgAA4EEAAKDAAACQQQAAiEEAAGDBAAB0QgAA2EEAAIBBAAAAwQAAEEIAAHxCAABAwQAADEIAACDBAACYwQAAhMIAAETCAACAQgAAEMIAAOBBAADwQQAA8MEAANDBAACAPwAAyEEAAFxCAACIQQAAgMEAALDBAABQQgAAqMEAAIzCAABIwgAAgMIAAIDAAAAswgAAgL8AAJhBAADYwQAAoMEAAGDCAACIwQAAHEIAAODBAADuwgAAwEAAACBBAACAQAAAMMEAAAAAAADAwQAAYEEAAHBBAADoQQAAQEEAAARCAACAPwAAgEAgADgTQAlIdVABKo8CEAAagAIAAEA8AABMvgAAxj4AAOA8AABMPgAAyD0AAKI-AAAVvwAAbL4AACS-AAAEPgAAmL0AACw-AABsPgAAir4AAPi9AACaPgAA6D0AAIg9AAAfPwAAfz8AAEC8AABMvgAAoj4AAEC8AACgPAAAhj4AAAS-AAAwPQAAuj4AADw-AACavgAAXL4AAHC9AACoPQAATD4AAKA8AADCvgAAvr4AAMi9AAC2vgAANL4AABw-AAAMvgAAFD4AALi9AACWPgAAfL4AAEA8AABMvgAAEL0AAKC8AACYPQAAdD4AAES-AADIvQAAMT8AAJg9AAAMvgAA4j4AAHA9AADIPQAAiD0AAJg9IAA4E0AJSHxQASqPAhABGoACAAAUvgAAFL4AABy-AABbvwAA4DwAAKo-AABAvAAAqD0AALa-AACuPgAAgLsAADC9AACCvgAAML0AABA9AABwvQAAmL0AADM_AACIPQAA2j4AAOi9AAC4PQAAQLwAADC9AABwvQAAXL4AAIA7AAAQPQAA6D0AAEA8AADoPQAAqL0AABA9AACgvAAAmj4AAHS-AABkPgAA4LwAAL6-AACgPAAAqL0AANg9AAAkvgAAoDwAAI6-AACIPQAAf78AADQ-AACKPgAA6D0AANi9AAA8vgAAML0AAIY-AABEPgAAiD0AAIg9AADYPQAAbD4AADC9AABQPQAAZD4AACQ-AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eh_ATp0hbB0","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4935837338397118328"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"88925629"},"10531360181147179930":{"videoId":"10531360181147179930","docid":"12-9-16-Z17414143760C43DF","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/old-... Here we consider the limit of the function f(x)=1/x as x...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4234514/0a35c1e39e97ebd6f4e030e983d2c3cb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lcqBugAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Da2Ia_ZlUCaQ","linkTemplate":"/video/preview/10531360181147179930?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Infinite limits intro | Limits and continuity | AP Calculus AB | Khan Academy","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=a2Ia_ZlUCaQ\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoWChQxMDUzMTM2MDE4MTE0NzE3OTkzMFoUMTA1MzEzNjAxODExNDcxNzk5MzBqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxPMA4IEJAGABCsqiwEQARp4gQH9-gUAAADy_Qn-DQP-AfX4-_z6_v0A3fcC_Pn6AwADBA_9_gEAAOwFCP34AAAA9v77CPT_AQD9CAX-BAAAABMABQT8AAAABA_7BAoAAQH2__QCA_8AABAE-PL_AAAA_AgBAfz_AAD49_sBAAAAAAUGAfYAAAAAIAAtLGDVOzgTQAlITlACKoQCEAAa8AF_ERP-2_auAdIu0ADW__UBxB8UAAog5f-66fIAuCDuAArlBwD4CcL_4iTi_7Mq-P_v790AAucYACXV8P5G3_kA_BL7ARXaBAIoGhz_DwHi_wIM_P8SzggAGdXRAx8axADw8wr9LQf7Ae0DwAIKHzYD8_YUAv_hJAMTsyH-3hH_-xvt2_35LvgBC98P-NYbIQIg2vUK-isJ--Yh6AL2FA0E7fAK_wcC3_olDvcFIPv0-L3qFf3j7PwBFgcTBs797gTW8S8GzyAO9f3xE_gc9fYBzfrwDwnc6QEQGwf_7uoACgYM8vv29wz5yRfpAOAn-AYgAC0dRhA7OBNACUhhUAIqzwcQABrABx-8zr6xEpg7Ru3AO7-Nfj0erhA9NDDNvPgzPLyHSzM9xMGUu9SBDD5SvYC9AtLAu4Qs670k5iM8jCuuPP29dD6SVEu9A7HsPHE9Wr7nFr89hUyovFhjP73bNow6RBTTvP8sTL2E1Tg9tdm_u3YJPT2OY1q8i1IfvCS6Ir0JDIO9S-okvYzHiz0q0548j6zXvGOMmbwdTVy7D_JVvOvgsD1_eIy8fBVPvNFjyj3Ofi49mpfDuxlYF74VTRG9Lh1zPEMEdzw_RZQ9ANUuvJuNWr3Dd6y8swhFPBBGpjvUnQc-N3fPO41_nzuhjn09_wkuvCfyqT1HH3M9gzvIu22s5L2mES49lE7BO16dAz270ec9uBAYPNzvhb3dCfY9yJ3rujS1UT1n_w09xontu2AhEz0b3IE9TojOO8LUG72zYS09bx49vJCxhL0jMqw8q_4tPHNprD1Y1qe95-iMPATwBT0la_27QRM8PNyLHr0D0n48icAJvOMz2T1ZZoY93LkwPFfk_DyiYpy7nYiZvAUjpT3WAju-SeWaOg_d4jx1dBy-GGL6ucHkxjxS_rQ9zdmMvFs-lz34pMO9qNQ6uyh22bxXCKu9NIiLuxq5E73YeFW8nkrdusc5AL26GrS8P3kzvOkLYb3Zzre8ZOK9u6DM9TxwysE8b7iPu6c95bzrjA--Jd69t_sC2j3medA9-DL2ult5ST0yLmY8yVo_u94c0zz0U9y9g-GWOljsar23mUg79FjMOzGXhL2oiSO948SmODy98j1KyFG9V8GOOaLHVju4zaQ9cRnCODCUjb1p5iS9yekFuITgpz0BaDm8B9Rsub7F4DusUxW-pozJOYGvKD2MLm-9IYr8ubT-t7ochC89H6O4uj5Cnb3oqlS9lodOuYfiaT2WNbu8YtPBuMh0jTzHmzy9xKCQuMGMCT0sLPo736FXOgIDUj1anPG8Kbw1uW0IqTz4zEg8JsnjNBGgUD26SZy9qLB5Of1Ylz3ct_o9HVbENbJwSDx_6YM92_2AN-ZVYj1TklU9AC4qOLETgzy2sbO9FanpOIxzCr0W6h89T_mKOGZVP721gms9Rl-4OG8Egz2AYKO94wTqOK86FTz5f3o8ckY8OKKUFLwp5sG7Pkg4OIJVRT50yDc9ydyEuc3Her3TFey95pv4uGItPr3sT0K-2EzROPC7Dr3HFj09v9KzNuTVnrx6ifG9ZVUwuCL_7D01KQU-835buHF8Y736JQI-qYEsuTV6Fb0rYTc8LrIPN262gzszLda8VH1xtyAAOBNACUhtUAEqcxAAGmAi7QA38ynP_sRI5OHs7wDO2vfOEcQJ_-zi_9QgxwXq-8WiHRkAEA7676EAAAApAc4U8gD0fNH02kDsBQLpgcE0EVL_4wfMvwv5rPMjKSb7GRf_Gh8A5BqgajrQtDoiOf4gAC3L6hY7OBNACUhvUAIqrwYQDBqgBgAAEEEAAADCAADAwAAASMIAAFBBAAAwwQAAnkIAAMBBAAAAAAAA4MAAAIBBAADIwgAAPMIAAGTCAADIQQAAHMIAADDBAACAwQAAiEEAADTCAACIwQAAMMIAAADBAACAQAAAIMEAAPjBAACEwgAAcMEAAGxCAAAYQgAA8MEAAFDBAACgwgAACEIAAJjCAAAwwgAAoEAAAKpCAADgQAAADEIAAPBBAAAAQQAASEIAAAxCAACAQQAAaMIAABDCAAAAAAAAqkIAAIhBAACIwQAA-MEAABBBAAAQQQAAoEAAACBBAADuwgAAMEEAAHTCAAA4QgAAnEIAAOjBAAAwwQAAYMIAADzCAABgwgAAgL8AADjCAAC4QQAALMIAAExCAABMQgAAFMIAAIhCAABwwQAAiMIAALDBAAAEwgAASEIAALhBAACwwQAAYEEAANhBAAAAQgAAAAAAAFDBAAC4QQAA0EEAAERCAADYwQAAAMEAAJpCAADgwQAAvsIAAHDBAABIwgAAkEEAAEBBAAAEQgAAIEEAAHjCAABcQgAAmEEAAGzCAABswgAAiMEAABDBAACiQgAA4MEAAFRCAADYQQAADEIAAIDBAADQwQAAuEEAANhBAADwwQAAoMEAAMBAAACYwQAA2MEAAGDCAADYwQAAkMEAAMBAAAA4QgAARMIAAARCAABswgAAiEEAAKBBAAAUQgAAwMEAAJhBAACAPwAAQEEAAIDAAAAAQAAAIMIAAGzCAAAgwgAAYEEAAIBAAACQwQAABEIAAGBBAAAIwgAAUMEAAFDBAABwwQAAEEIAAPBBAABMQgAADMIAAHBBAAAAQgAAEEEAANTCAAB8wgAAWEIAAGTCAAC4QQAAIMEAAIA_AADAwQAAdEIAAJJCAACIQgAAnEIAALhBAACIwQAAHEIAAPjBAAAgwQAAYMEAAAzCAADAwAAAUMEAAMDAAAC8QgAAAMAAAMDBAACAwAAAQMEAAOhBAAAAwAAAyMIAAGxCAAAAwAAA0MEAAMDAAACmwgAAMMEAAADBAAAwQQAAHEIAACBBAABAwAAAksIAAFzCIAA4E0AJSHVQASqPAhAAGoACAABQPQAAgr4AAM4-AACAOwAAFD4AAJI-AAA0PgAAK78AAJa-AABQPQAAfD4AAHC9AAA8PgAAPD4AAMK-AAAUvgAAxj4AAOA8AACovQAACz8AAH8_AACgvAAAyr4AAJY-AAAMPgAAXL4AAJo-AABkvgAAMD0AAKI-AABEPgAAVL4AAHy-AACgPAAA2D0AABA9AAAMPgAAXL4AANK-AAB0vgAA5r4AAKC8AACqPgAABL4AAGw-AABsvgAAhj4AAGy-AACoPQAALL4AAOC8AABEvgAAUD0AAEw-AADGvgAA-L0AADc_AAAcPgAAFL4AANI-AACYPQAAFD4AADQ-AADYPSAAOBNACUh8UAEqjwIQARqAAgAARL4AAES-AACqvgAAWb8AADC9AADKPgAAoDwAABC9AACuvgAAvj4AADC9AACAOwAAXL4AAJi9AADoPQAAqL0AAKC8AABBPwAAuD0AAAU_AAAkvgAAED0AAIg9AAC4PQAAML0AAFC9AADoPQAAcD0AADw-AAC4vQAAqD0AAES-AACIPQAA6L0AAII-AAAMvgAAuD0AALi9AACOvgAAED0AAHC9AABsPgAAEL0AAHA9AAB8vgAA4DwAAH-_AACAOwAAHD4AAEQ-AAA8vgAAdL4AAIi9AACWPgAAFD4AAHA9AACIPQAAZD4AALg9AAD4vQAA-D0AANI-AACOPgAAuL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=a2Ia_ZlUCaQ","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10531360181147179930"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1825119565"},"16384901230978630696":{"videoId":"16384901230978630696","docid":"12-7-10-Z96896CE8CEDD510B","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... A limit at infinity (like any other limit) describes the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4229267/4d576ce923f195530226b2dcfc4821b4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/n1zbWgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH_Nm3qGE65s","linkTemplate":"/video/preview/16384901230978630696?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Functions with same limit at infinity | Limits and continuity | AP Calculus AB | Khan Academy","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H_Nm3qGE65s\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoWChQxNjM4NDkwMTIzMDk3ODYzMDY5NloUMTYzODQ5MDEyMzA5Nzg2MzA2OTZqkhcSATAYACJEGjAACiloaGRvdml3eHNldmZxcmdoaFVDNGEtR2Jkdzd2T2FjY0htRm80MGI5ZxICABEqEMIPDxoPPxPhAYIEJAGABCsqiwEQARp4gf38_Q7-AgDx-___CAL_AAH89vz4_f0A5AQD9f78AgD5Cgv5_wAAAO0FCP35AAAA9_P9Cff_AQD8BwEA8AD_ABMABQT8AAAA9wr3DP8BAAD2__QCA_8AAAsD7gEAAAAA8wv__vr_AAD6_fQDAAAAAAwE_fsAAAAAIAAt06TaOzgTQAlITlACKoQCEAAa8AF_zzr91hWyAsfVEwDMPawCv14u_xT73wDRBAsA9egFAMfoDADeGsX-DEb-_7Ba8AAbBeIAxb_hAE-13P_Py0AB5Pn7AQRJ5QFUHAT_4u_5__n9Ef727PkA7SXp_hVP9_sxDuP8Cevm_-03FQJF6SoCxTDlBfkaB_3w8doB6BkCB4QI6PrlBP0FFQoQ-wQPQ_0Q-vsK3TPy9u788fIv_N0DJLIb_OtiFgD7mBAAJ18VArYayPgH8QkE3hAD_6s65wUI6ffq8N0L_dTwD-wN_gTw6_rU8EHf8_P2xQYKz_zq9ykn6-rzLNsDz8ftC_jC7AEgAC28p946OBNACUhhUAIqzwcQABrAB7-6ur6AC9c8kf1ivFzX-bzve2-9tAUEvSMT8L3XLSc99_1AvG8uHj4t4K-8YRWUvIQs670k5iM8jCuuPBSUQj5GRRy9c-gAvHV0_L0vE5o9CwIQvb7vub3Wj009QRa9POKB-bv0tkO91cfovKA0xD2m1VC9Ef_WOaW1Dr0nySk8XdwGPNxqGTr1EVi9E3xYvedhVz1GuCS9ZNdMPbefZzxFMZS8kAEPvI832T2Lu2Y8e2RWO-r2KL3fWty80-OtvB3owT2G_H656kmPPEq4i72tMtO8R1ACvNlsNj3cAKI8NhLXO2ijxDxcKPC7nUUUvRAC0r0-WQG-b-bCuq35Ab5UpZI8IdHfO6j8Cz6lg5U9JI6GvBgkXb0s_kW9a7NzugO6yjxUYFe9GXdePH6syz3sbnm8VFWJu2M9ij0gIIQ8-UiKPJCxhL0jMqw8q_4tPCsVVLw33bK8ooalvJZZqTyiAYY8wD2yOxkEMTyQyC28Crq9vCOJubyRnuA7TxI_O1X9BT2MmoS9nvshvCGfxj1izCe9Cs4HPMeDbb1XEI69nbdWvJJWsT25Nek9ukyPuldYFT2LVHi9khDduwH2UT1f_D494kDlu9-uETxMqeu9vd3UO96Fd70gJ8w9KAgXN2jI3TwMNrs7QckuvHrkCr0Teyo7_xLpu8xslr3zSpO9B_9cN-K_Kr2Nbcg8IPDhul1_ajq2R7Q9o16SuaCNLD7LrgW9IAINuYR1Db2L2Ay9vyNwuzThLb3KdAW8PbShOaqCoT0aGJm9R0qgOOxApzw51iW9PO5xuSZstL1kQNY9XCYQOIPhVz2G3LG8TLIUuVQb_L1iu_u9E9PyOcrmIrq3lO65o7NWOryUOj2KP8o8BSDhN8wgw73UDQS-CFOFObouTL7OcrQ8yLhVOZOpAj5cdXy7w8gQOUDZOTzMKUE9lGaduS-lzr0cSzO9geixOaxMgr0xZ7E9q_tIOHAKK71xOZ68yz6FuIro9z0_kKw9gu5mOGqJpT0bxYg9z6_QN6JTwT2lI2o9aKdMOB75470b65y9HMKFuNPmrj1VniW9ihrRN_j3fr1bxSw9GCm-ON6IuDzCbjO97Zyvt8TPDz48aum7nsuVNmpcDj0Wd3I8U7nCtwssWz2m-C68ktCXuJdWE74MIKy9OY3xNZ_kDr5IZIS9x7m2t60kQ70Mc0c9HsEWN_Z0ej3gD9-9P5mbtwoQJT3u1YI9T_-7ODwp-rtVKm094DKNuK1t6r0UO788b9LjN94BHr0ZsY071QM-OCAAOBNACUhtUAEqcxAAGmAX6QAs4Ava-cw81_Hk7Ovby_neJc8n_x7f_9Ydxu6X8MmvFRIAJgsJ5p4AAABEIt0bEgDOf-H3Ji_UDO_bl9oz61D9_xy_wwgBpQsaNh4MJgsdJBEA3hm1YizGyUsvOVIgAC1xUxM7OBNACUhvUAIqrwYQDBqgBgAAMEEAAFDBAACgwQAA8MEAAMDAAAAAwQAA1kIAAIDAAADQwQAAoEAAACRCAACQwgAAPMIAAGTCAADwQQAAUMIAAIDAAABowgAAAEAAAITCAACQQQAADMIAAKDAAACgQQAAUEEAAPjBAACWwgAAFMIAAIZCAADAQQAAPMIAABBBAACWwgAAwEAAAJrCAABAQAAAmMEAAJxCAAAAwgAAWEIAADBBAAA4QgAA8EEAAKhBAACgQAAAqMIAAETCAAAgQQAAwEIAAMhBAACowQAAiMEAAKBAAABAQQAATEIAAMDAAAD6wgAAYMEAAIjBAAAQQgAA6EEAACDCAAA8wgAAwsIAACBBAAAowgAAFMIAAETCAAA0wgAAPMIAAJJCAACCQgAA2MEAALhBAACAvwAAZMIAAIjBAACIwQAAPEIAAJBBAAAowgAADEIAAKjBAAAUQgAAgEEAAIhBAABAQgAACEIAAHBCAAA8wgAAYEIAADRCAABIwgAAssIAAODAAACwwgAAIEIAAFBBAAAMQgAAwMAAAKDCAAAEQgAACEIAACTCAABMwgAAQMEAAIA_AABEQgAAMEEAAGxCAACoQQAANEIAAODBAACIQQAAAEAAAEBBAABQQQAACMIAAJjBAAAEwgAAAMAAAPDBAAAIwgAATMIAADBBAADIQQAAEEEAAKBAAABEwgAAAEEAADDBAAAAQQAAWMIAAADAAADQwQAAmEEAANhBAAAQQQAA0MEAAIDCAACQwQAAuMEAAPhBAACQQQAAFEIAAIC_AAB0wgAAwEAAAARCAAAUwgAAgMEAAFBCAACIQgAAoEAAAOBAAABYwgAAsMEAAATCAAAUwgAAGEIAAMjBAAAEQgAAIMEAADzCAAAAAAAA4EEAABRCAACuQgAABEIAAADBAABAwQAAaEIAALjBAABQwQAAAMEAAPDBAAAwwQAA6MEAABhCAADQQQAAgEEAAODBAACIwQAAyEEAAM5CAACYwQAAksIAAARCAACAQQAAQMEAABzCAACGwgAA4MAAAIBBAAAQQgAAqEEAANDBAAAgwQAAQEAAAOjBIAA4E0AJSHVQASqPAhAAGoACAABwPQAAbL4AAKY-AABQvQAAmj4AAKI-AADuPgAAFb8AAGy-AABMvgAADD4AAPi9AAA0PgAAjj4AAKq-AACgPAAAlj4AAMg9AACoPQAAFT8AAH8_AAC4vQAAiL0AANo-AAAwvQAAoDwAALI-AABcvgAAuD0AALI-AABcPgAAVL4AADS-AACIvQAAhj4AALg9AACAOwAABb8AABe_AADovQAA3r4AADS-AABMPgAALL4AALg9AACgPAAAij4AAJq-AAAQvQAAmr4AAKC8AABAvAAAqD0AAJY-AABUvgAADL4AAD8_AAAsPgAAoDwAAOo-AADYPQAABD4AADC9AABAPCAAOBNACUh8UAEqjwIQARqAAgAAHL4AAGS-AAB0vgAAV78AAIi9AACePgAAoLwAAKg9AACSvgAAij4AAIC7AACoPQAAXL4AABC9AAAwPQAAcL0AACy-AAA9PwAAuD0AAPI-AACIvQAAmL0AAOA8AADIvQAAEL0AAAy-AACYvQAAQLwAACw-AACAuwAAUD0AAOi9AADgPAAAcL0AANY-AABEvgAARD4AAAy-AAC2vgAAiD0AABC9AADYPQAA2L0AAHA9AABkvgAAQDwAAH-_AAD4PQAAdD4AAEA8AAAMvgAARL4AAOi9AACiPgAAVD4AAJg9AAAwPQAA4LwAADQ-AACgvAAAuD0AAEQ-AAAcPgAAML0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=H_Nm3qGE65s","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16384901230978630696"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1929549395"},"13395074150512684620":{"videoId":"13395074150512684620","docid":"12-10-0-Z2E1070CCCFA43CFD","description":"Learn how to find limits at infinity as well as the limits of sequences. This lesson is part of the precalculus course. Geometry, and PreCalculus), midterm & final exam reviews, ACT and SAT prep...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3117801/2d19c0fc5ae92b06baf43f32b0635ff6/564x318_1"},"target":"_self","position":"3","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9dBuOMqVETQ","linkTemplate":"/video/preview/13395074150512684620?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limits at Infinity (PreCalculus Course Ch12)","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9dBuOMqVETQ\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoWChQxMzM5NTA3NDE1MDUxMjY4NDYyMFoUMTMzOTUwNzQxNTA1MTI2ODQ2MjBqrw0SATAYACJFGjEACipoaHhvdWNycXBjbHV6amRkaGhVQ2xPUjFCaVB5T2trSUFudjlDbWo0aXcSAgASKhDCDw8aDz8T_QaCBCQBgAQrKosBEAEaeIH7-gEE_gIA9vkGCQ4G_AH1A_z4-f39AOj7_P4E_gEA_wIG-f8BAAD3BAn8_wAAAPYH-BD-_wAABgX9-vsAAAAW-fsA_wAAAP4G_gr_AQAA_wHz_QL_AAARBff9AAAAAPII9wkBAAAA9vz8CAAAAAAA-vz5AAAAACAALcKk2js4E0AJSE5QAipzEAAaYAYRAEX_EdnoGEHJDhXlHO7R9QHlnRH__AkAxfur2NwcxMIjDf88zg4LqQAAACPv7xzOAMJ5yPu1FBYq_9HI5xskf_cBxhObC93F3O8VK-Yt-gYG4QCsFNAnBQvbVdUxECAALQjNGTs4E0AJSG9QAiqvBhAMGqAGAAAQQgAAgL8AALRCAACwwQAAkMEAAIjBAACwQgAAiEEAAMjBAACowQAAkMEAAAhCAACAvwAAYEEAABDBAACAwQAAkkIAAODAAAAoQgAAGMIAAEBBAABQwgAAZMIAACBCAAAwwgAAQMEAADDCAAA0QgAAZEIAADxCAAAgwgAA2EEAAMDBAADoQQAAqMIAAGBBAABAQQAAQEIAAIDBAACQwQAAHMIAAFDBAABAwQAAJMIAABBCAAA8wgAAoMAAAODBAAAMQgAAgEEAABTCAAAgwQAAuMEAAABCAACAQAAAEMIAAFDCAABAQQAAWEIAAHhCAAAgQgAA4MEAAJrCAACCwgAA-MEAAKLCAADYwQAAvMIAAMDBAAAwwQAAFEIAAHBBAACwwQAAQEEAAPDBAABUwgAAjsIAABDCAADAQQAAoMAAAMDBAABEQgAA2MEAABjCAABEQgAAjkIAAGTCAACEwgAAUEIAALhBAACAwAAAUEEAANBBAAAEQgAANEIAAJrCAAAgQQAAcMEAAFBBAACAQgAA0MEAAIhBAAAMQgAAmMEAAGDCAAC4QQAAUMEAAJRCAABQwQAAcEIAAJRCAABQQQAAgMEAADDBAAAwQQAAVEIAAIBAAAD4wQAAgL8AAJLCAAAEQgAAAMIAALhBAAC6wgAAMMEAALDBAABAwQAAisIAAFDCAABAwAAAAEEAAEzCAACowQAAhkIAANhBAABwQQAAAEAAABBBAADwwQAAoMIAAGhCAABAQQAAAEIAAPDBAAAAQgAAkMEAAEDAAAAAQAAAUMEAAAAAAACAwQAAoEEAAHBBAABgwQAAfMIAADzCAADGwgAAqMEAAFDCAAAQQQAAOMIAAIpCAADwQQAAwMAAAHRCAAAkQgAAAAAAACBCAAC8QgAADMIAADDCAACwQQAAIEEAAIBAAAAgwQAA6EEAAOBAAADIQQAAgD8AAJJCAACgwgAAusIAACDBAAAAwQAA2EEAABjCAADgwQAA4EAAAMjBAAAAQAAAmEEAAEBBAADowQAAmMEAAAAAAACAPwAA4EAAABDBAAAwQQAALMIgADgTQAlIdVABKo8CEAAagAIAAIa-AABkvgAArj4AAOC8AAAcPgAAAT8AAAM_AAAjvwAAor4AAJ6-AAD4PQAAlr4AAIo-AACCPgAA-L0AAKa-AABEPgAAPD4AAKg9AABRPwAAfz8AAJK-AACyvgAAPD4AALg9AADYvQAA2j4AAMg9AACIPQAAMz8AAKI-AABMvgAAkr4AAFA9AABAvAAATD4AAEC8AACWvgAAD78AAKi9AACyvgAAcL0AAMo-AAAcvgAAHD4AAOA8AABkPgAAmL0AADy-AADIvQAALL4AAKi9AAD-PgAAdD4AACS-AAC4PQAAeT8AADQ-AABEPgAAlj4AALg9AABkPgAAmD0AANi9IAA4E0AJSHxQASqPAhABGoACAAAwvQAA-L0AAKC8AAA9vwAAcL0AAJY-AACoPQAAmD0AAIK-AAAEPgAAqD0AACy-AACAOwAAmL0AAOC8AACgvAAAQDwAACk_AAAkvgAAoj4AAKi9AADYPQAA4DwAABy-AACAOwAAVL4AAEy-AABQPQAA4DwAADC9AAAcPgAAqD0AAFS-AAAQPQAArj4AAFy-AACaPgAA4DwAAMq-AABQvQAAEL0AADC9AACOvgAAQDwAAJ6-AACgvAAAf78AAIY-AADIPQAAiD0AAIC7AABAPAAABL4AAN4-AACYPQAAuD0AAIC7AAAEPgAA-D0AAHA9AACIPQAAUL0AAJY-AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9dBuOMqVETQ","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13395074150512684620"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7556318400744009121":{"videoId":"7556318400744009121","docid":"12-2-13-Z86004BB5059CB461","description":"This is a discussion of having a limit of infinity, using 1/x^n as a family of functions, some of which have a limit of infinity and some of which do not. #Limits #InfiniteLimits #Calculus #STEM...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3526807/db94f066bd8812e8702aa0d652fba59f/564x318_1"},"target":"_self","position":"5","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DscXRH2mfP00","linkTemplate":"/video/preview/7556318400744009121?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Infinite Limit Examples #Limits #InfiniteLimits #Calculus #STEM #Math #Maths","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=scXRH2mfP00\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChM3NTU2MzE4NDAwNzQ0MDA5MTIxWhM3NTU2MzE4NDAwNzQ0MDA5MTIxaq8NEgEwGAAiRRoxAAoqaGhqa2pndXFwcnFzc3V3YmhoVUMxWXpfa2VtbGFGbExNZ0x0TkhZZklnEgIAEioQwg8PGg8_E6kBggQkAYAEKyqLARABGniB8vr7B_8CAPntCQkGB_wBAAP_-Pj-_gDr-PvzAv8BAP34Dv_4AAAA_AYE__cAAAAE-_wL__0BAAsBAP_sAP8AGQL9APcAAAD9EQEP_gEAAPkB-fgD_wAADPv0-f8AAAD8AQMG_v8AAPYG_goAAAAA_P0D_AAAAAAgAC0jf9g7OBNACUhOUAIqcxAAGmDsHwA_D_XG6wsmzgXy_RDm6ffw5tUeAPz2AOIEz9b-C-zYDyP_KtwQEMMAAAAu_gQM7ADFUdn34Ace3O7XwQQPC38bAK8W_vnvuPf6_RPnGfrs6e0A1xIBFjMN0h3-CB0gAC0u60w7OBNACUhvUAIqrwYQDBqgBgAAFEIAAOBAAABgQQAA6MEAABxCAABQQQAAQEIAAHDBAAD4wQAAsMEAAEBBAABYwgAA2MEAAHjCAACIQgAAwMAAAKBAAABQwgAAyMEAAFTCAAD4wQAAsMEAAPjBAAAEQgAAAMEAAAjCAADawgAAOMIAALpCAAD4QQAAMEEAAGBCAAB8wgAAIEEAAHzCAADgQAAA4EEAAP5CAABYwgAAEEIAAIDAAAAEQgAAAEIAAIA_AAAwQgAAHMIAAATCAACAwAAAikIAAFBBAABIwgAAFEIAAJBBAABAwAAA2EEAAKBAAAAAwwAA-EEAAEBAAADgQQAABEIAABTCAAAQwgAA3MIAADDBAABgwgAACMIAAPDBAAAgwQAAEMIAAEBCAACAQgAAwMEAALBBAAAAwAAApMIAANjBAADgwQAAGEIAAMBBAACYwQAANEIAABjCAABIQgAAgMEAABBBAAD4QQAAyEEAAKZCAAC4wQAAcEEAAEBCAAAwwQAAnsIAAABBAAAIwgAAwMAAAABAAAAIQgAAQEAAAKDCAACOQgAAZEIAAATCAACwQQAAgMEAAPDBAABAQgAA8MEAAFDBAAAAQgAAgEEAANDBAABYwgAAIMEAANhBAAAAQQAAKMIAADBBAACwwQAA2MEAADjCAAAAwgAA2MEAAHRCAAAQwQAAEMEAAMBAAACQwQAAHMIAAMDBAAAMwgAAZMIAADxCAACowQAAQEEAAJBBAADgwQAAAAAAAKTCAABEwgAAPEIAAAhCAABAwQAAGEIAAPBBAABowgAAuEEAAPBBAABowgAA4MAAAJBBAADIQQAAYEEAAJjBAABwwQAAUMEAAETCAACowgAAQMAAALDBAADQwQAA8MEAALjBAAAEwgAAEEIAACBBAABsQgAA2EEAAABBAACAwAAAqEEAABjCAACAwAAAoMEAAIC_AABgQQAA4MEAAExCAAAAAAAAkMEAAIrCAACgQQAAUEEAAM5CAADQwQAA0MEAAAxCAAAAAAAA4MAAADDBAAAQwgAA2EEAADBBAABgQQAAkEIAAODBAACQwQAAYMEAAAzCIAA4E0AJSHVQASqPAhAAGoACAADovQAAVL4AAFw-AACCvgAAHD4AAMI-AAAMPgAAI78AABy-AACIPQAAED0AAHy-AADoPQAAZD4AAAS-AAAUvgAAcD0AAOA8AAAkPgAA2j4AAH8_AAAcvgAAgLsAANg9AADIvQAAbL4AAEQ-AABwPQAAJD4AALo-AABUPgAAor4AACS-AABAPAAAmD0AAIA7AAAwPQAAqL0AAOa-AAAwvQAArr4AAHC9AAAEPgAAFL4AAOA8AABkvgAAhj4AAAS-AAAQPQAAuL0AAPi9AABsvgAAkj4AABw-AAA8vgAA4DwAACc_AAAsPgAA2L0AAJY-AABAPAAARD4AACQ-AABQvSAAOBNACUh8UAEqjwIQARqAAgAA4DwAADA9AABMvgAAI78AADS-AACCPgAAkj4AAFQ-AACYvQAAoj4AAEC8AACIvQAAEL0AAIg9AACgPAAAiL0AABC9AAARPwAAir4AAO4-AACYvQAAyL0AAOC8AADIvQAAqD0AANi9AABMvgAAiD0AAIC7AABAPAAAoLwAAIC7AABEvgAAmD0AAGQ-AAB8vgAApj4AAOC8AABsvgAAcL0AAFA9AABQvQAABL4AAOA8AAD4vQAAgLsAAH-_AACqPgAAcL0AAIA7AAAMvgAARD4AANi9AADCPgAAcL0AACQ-AAAQvQAAFL4AAJY-AADIPQAAqD0AAKC8AAA8PgAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=scXRH2mfP00","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7556318400744009121"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4217212220756163423":{"videoId":"4217212220756163423","docid":"12-8-15-Z59978E1A801E1FA9","description":"In this video we start by some examples on infinite limits and vertical asymptote for different functions and then see some examples on limits at infinity and horizontal asymptotes. In the last...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3509934/5cd62599b65b4169f0e3950595b8d501/564x318_1"},"target":"_self","position":"6","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCoKlOaphOXE","linkTemplate":"/video/preview/4217212220756163423?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus: Infinite Limits and Limit at Infinity","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CoKlOaphOXE\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChM0MjE3MjEyMjIwNzU2MTYzNDIzWhM0MjE3MjEyMjIwNzU2MTYzNDIzaq8NEgEwGAAiRRoxAAoqaGhwaW1lcGJhanFyZ25vYmhoVUNVR1dWMjhWamg5WjNsZExxd1VQUWJ3EgIAEioQwg8PGg8_E9gIggQkAYAEKyqLARABGniB-wH5CPwFAPr1_wEEBf4B9gP9-Pn9_QDs-Pz0Av8BAPYGBQEBAAAA9xAH9AAAAAD2AQIHBP8AAAUGB_n4AAAADgP-__0AAAD-Bv4K_wEAAP8B9P0C_wAAAP_0-v8AAADzC__--_8AAOr6_AYAAAAA-Pr--QAAAAAgAC2i1OE7OBNACUhOUAIqcxAAGmD4EABA9vy4BgEn2g0d7gPbzQMF3Mcj__TmALwCvuLgGNDOISgALfEHDrQAAAAp6R0axgDbZdL_1AYTJ_LsofsUBn8V7LEO0Azjqu75Ezn7Ku8G_dUAxCPrGi_v4jLzCS4gAC0h8Ss7OBNACUhvUAIqrwYQDBqgBgAAEEIAALDBAABEQgAAYEEAAAAAAABAwAAAfEIAAKjBAABkwgAABEIAAFhCAACYwgAAMMEAAFzCAACIwQAAMMEAABBBAACwwgAAkEEAAJDBAAAMQgAAQMAAAMBBAAAAAAAAMEEAAAAAAACewgAAMEEAADBCAACQQQAAUEEAAIhBAADQwQAAYMEAANjBAAAYQgAAsEIAANhBAACQwQAAnkIAAPhBAABAQgAAUEEAAARCAABgwgAAFEIAANDBAAAEwgAAvkIAALhBAADQQQAAFMIAANDBAABowgAAQMEAAEBAAACSwgAAcMEAAMDAAAAAQAAAgMAAAEDBAADgwAAAYEEAAIA_AABQwgAAoEAAAKDCAAD4wQAATMIAAFBBAAB0QgAAgL8AANhBAABQQQAANMIAAKDBAACWQgAAwEAAAIDAAACmwgAAAMAAAGDBAAB8QgAAgEAAAMhBAACoQQAAEEEAAHBCAABgwgAA6MEAADBCAABsQgAANMIAAKjBAAAIwgAAXMIAAHBBAAAgwQAAqEEAADDCAADwQQAAwEAAAGDBAAAQwgAA8MEAAIhCAADgQQAAHEIAADhCAACiQgAAUEIAACBCAACqQgAAAMAAAADAAAAAwAAAgEAAACBBAACYwQAAQMIAAMjBAABwwgAA4MEAANjBAAAYQgAAqMIAACxCAACKwgAAGMIAABxCAADAQQAAiEEAAEhCAABwQQAA4EAAALDBAACAwAAAgEEAAIbCAABAQQAAgL8AAIzCAAAAQgAAiMEAAMDAAACQwQAAnEIAANDBAAAQwQAAyEEAAGDCAACgQQAAgsIAAAxCAACIQgAAQEEAAHjCAACgQAAABEIAAGDBAABAwQAA6MEAAKDAAABIwgAACMIAAJjBAACgwQAAYEEAAODBAADQQQAAkMEAACzCAACEwgAAEMEAAHBCAABgQQAALMIAALhBAAD-QgAA4MAAABBCAAAAwAAAIEEAAEBCAAAQwgAAUMIAAOBBAACwwQAAkEEAAPDBAACSwgAA1EIAAOBBAABQwQAA8EEAALDBAAAAwAAAdMIAADDCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAA-r4AADw-AAC2vgAAZD4AALI-AACyPgAATb8AAFy-AAB0vgAAND4AAKq-AAAMPgAAkj4AAJK-AAC6vgAAoLwAAOg9AABwPQAAOz8AAH8_AAB8vgAAHL4AAKo-AABAPAAAbL4AAJo-AACGPgAAQLwAAOY-AADiPgAAJL4AALK-AAAcvgAAJD4AAOC8AAB8PgAAdL4AAFe_AAAQPQAAjr4AACS-AADqPgAArr4AAHQ-AACIPQAAgj4AAOi9AACSPgAAED0AANi9AAAJvwAAfD4AAM4-AAAUvgAAmD0AAHc_AABMPgAAhr4AACM_AAAMPgAAdD4AABw-AACoPSAAOBNACUh8UAEqjwIQARqAAgAAgLsAAHS-AABkvgAAQ78AAFC9AACCPgAAoDwAADQ-AAD4vQAALD4AABC9AADIPQAAPD4AADw-AAAcvgAAcL0AAAS-AAAtPwAAXL4AAPo-AAC4vQAAmL0AADQ-AAA8vgAAMD0AAJa-AACovQAAcD0AAFQ-AABAvAAAuD0AAOC8AADovQAAqD0AAJY-AACuvgAAZD4AAMi9AAAsvgAAgDsAABw-AAD4vQAAgr4AAFC9AACSvgAABL4AAH-_AAC2PgAAED0AACQ-AAAUvgAAdD4AAFy-AAAlPwAA2L0AACw-AADovQAAoDwAAII-AAAwvQAAcD0AAJi9AABUPgAAXL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=CoKlOaphOXE","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4217212220756163423"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11778500548217325331":{"videoId":"11778500548217325331","docid":"12-5-1-ZFA4923A056E43237","description":"This is an intro to limits at infinity. We discuss what it means to consider the limit of a function as x goes to infinity or positive infinity, connecting it to end behavior and looking at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/761001/f20ece1514a99bab8b515b9bdbdc8596/564x318_1"},"target":"_self","position":"7","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVtvpppevZao","linkTemplate":"/video/preview/11778500548217325331?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limits at Infinity and Horizontal Asymptotes | Calculus 1","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VtvpppevZao\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoWChQxMTc3ODUwMDU0ODIxNzMyNTMzMVoUMTE3Nzg1MDA1NDgyMTczMjUzMzFqrw0SATAYACJFGjEACipoaGNjYXh6aGJ6c21qbGliaGhVQ3lFS3ZheGk4bXQ5Rk1jNjJNSGNsaXcSAgASKhDCDw8aDz8TzAaCBCQBgAQrKosBEAEaeIHw_QoA_gIA7_v7CQsE_QAAA__4-P7-AOYDBP0J_QEA_QL_BP8BAAD5BAT3BwAAAP4G_QoD_gAAEAQB8fMAAAATAPMC_wAAAAYM-v3-AQAA_wPrBAL_AAARBfb9AAAAAPX__wb6_wAA3wIABQAAAAAC9_PzAAAAACAALegN1zs4E0AJSE5QAipzEAAaYAsgAEMOD7jjCTPVFhHj-fLU9QfcxQz_AtMApAms7PYZ27kANQAa6R76qwAAACDa-Sa6ALxx2OvNABge4Ni79RH9f-75yQDXD92o3_MjQ-z9_ugCsgC2BNAxGenoRuc2EiAALURPHjs4E0AJSG9QAiqvBhAMGqAGAABQQgAATMIAAIBBAAAAwgAAWMIAAOBAAACgQgAAEEEAAOjBAACwwQAA8EEAAMTCAAAUwgAA4MEAAERCAAA8wgAAHMIAAKTCAADYQQAAFMIAAEDBAABwwgAAkEEAAODAAACgwAAAmEEAAIzCAABAwgAAoEEAAIDBAAAQwgAA6EEAAHDCAACYQQAAoMIAAABCAACAQAAAwkIAAKjBAAAwQQAAREIAADxCAAA8QgAAREIAABBBAAA4wgAAIMIAAOjBAACQQgAAEMEAALDBAAAkwgAAAEAAACDCAAA0QgAAQMEAAADDAABAwQAA4EAAACBCAABIQgAAcMEAABzCAABcwgAA-MEAAFzCAADAwQAApsIAACTCAAA4wgAAXEIAAHxCAABcwgAA0EEAANhBAABkwgAAQEAAAAAAAAAoQgAAIMEAAITCAABwQQAA2MEAAEBCAADoQQAAAAAAAEhCAADgQQAAuEEAAFjCAAAAQAAArkIAAKDBAABMwgAAuEEAALLCAAAAwAAAAMAAAAhCAABgQQAAUMIAABxCAAAcQgAA6MEAAFDCAAAgwQAAgMEAAHxCAABAQAAAiEEAAIJCAABIQgAAwMEAAMDAAABAQQAAeEIAAOBAAAAUwgAAIMEAACzCAACAQQAAIMIAAATCAAAEwgAADEIAAHDBAAA8wgAA8EEAACjCAADIQQAAIEEAADRCAACAQAAA4EEAAIhBAAD4wQAAAMAAABBBAAD4wQAAcMIAAIBBAAAswgAAAMEAAIDAAAAEQgAAQMAAAKhBAAAgwQAAaEIAAMhBAACIQQAAoEEAACBCAABEwgAAcEEAAEBBAACIwQAAQMIAAADBAABwQgAACMIAAERCAACgQAAAdMIAAADAAABUQgAAFEIAAI5CAABwQgAAIMIAAJjBAAD4QQAA6MEAAHzCAADIwQAAQMAAACDBAAAQwgAA2EEAALBCAAAMwgAAuMEAAIDAAABAQAAAqEIAAEBAAABkwgAAMMEAAIDAAACAQAAAuMEAAIDCAABwQQAAMEEAAKBBAADwQQAAuMEAAEDBAAAgwQAAAMIgADgTQAlIdVABKo8CEAAagAIAAOi9AACyvgAARD4AAIa-AABAPAAArj4AAGw-AABDvwAAdL4AAGS-AACAOwAAsr4AADQ-AACCPgAAmr4AAFS-AAD4PQAAiD0AAAQ-AADuPgAAfz8AAIC7AABAvAAAuD0AAKA8AAAUvgAApj4AACQ-AACIvQAAXD4AAIY-AAAsvgAAnr4AADA9AABwvQAAyL0AAGQ-AACSvgAAA78AACy-AAC2vgAAQDwAAOI-AABwvQAA6D0AAFC9AAAcPgAA4LwAAKC8AABsvgAABD4AAHS-AABMPgAArj4AAKi9AADgvAAAZz8AABQ-AAAMvgAAkj4AALI-AABkPgAA6D0AAM6-IAA4E0AJSHxQASqPAhABGoACAACoPQAAoLwAABC9AABLvwAAuL0AAJ4-AABEPgAALD4AAOi9AAB0PgAA2D0AAEC8AACgPAAAMD0AAAS-AACIvQAADL4AACM_AAB0vgAA-j4AAKi9AADIvQAAcD0AACy-AADgvAAA1r4AAEy-AAD4PQAAPD4AAHC9AAC4PQAAMD0AAKK-AABQPQAAjj4AAJK-AAC6PgAADL4AAJq-AADgPAAAuL0AAAS-AAC2vgAAoDwAAIa-AAAMPgAAf78AALI-AADIPQAAFD4AAIq-AACSPgAAXL4AABk_AADIvQAARD4AAKi9AABwvQAAuj4AAFA9AABAPAAAuL0AAMI-AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VtvpppevZao","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11778500548217325331"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17443056076493149486":{"videoId":"17443056076493149486","docid":"12-2-10-Z0AA9A8981638339B","description":"An Introduction to Limits as I have taught several times in Princeton University (Mat103: Calculus I). We will study the most basic example of a limit that equals +infinity/-infinity right from...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4079336/2d5c2eb748bdf84013ea4034711fa553/564x318_1"},"target":"_self","position":"8","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCVbeIvPHXfA","linkTemplate":"/video/preview/17443056076493149486?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Let's understand Infinity limits!","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CVbeIvPHXfA\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoWChQxNzQ0MzA1NjA3NjQ5MzE0OTQ4NloUMTc0NDMwNTYwNzY0OTMxNDk0ODZqrw0SATAYACJFGjEACipoaHR6amt4cWtmdnN1Zm1kaGhVQ0dkakctOWZVa09LNTJiTDBqb3NfTVESAgASKhDCDw8aDz8TpAWCBCQBgAQrKosBEAEaeIH7AfkI_AUA9vkGCQ0G_AH9CPj9-P79AO4E_PkFAAAA9gYFAQEAAAD3BAn9_wAAAAMA9AD9_gEAAw0FBvkAAAASAAQE_QAAAAYJAQn-AQAA__z7_wP_AAAA__T6_wAAAPIJBg8AAAAA9wb-CQAAAAAA-vz5AAAAACAALaLU4Ts4E0AJSE5QAipzEAAaYPkSAETqBMbr-RraCBTL9fTqGQby0Qj_2_oA5wi85_H92cQLC_8pwvETugAAACYiEy71AMpe7-fdMBQO7_nDIBYsf-8FzQT8_t6w9vIKJ_I_7v0F6AC0IOcgJNn7K_4PFiAALSjXOzs4E0AJSG9QAiqvBhAMGqAGAABQQgAAEMIAALpCAACAwQAAQMAAAAjCAADAQQAAgEAAAJDCAADQwQAAMEIAAGRCAAAwwgAA0MEAAGhCAADgwQAAsEEAALDBAACgwQAADMIAAFhCAAAAQQAAYMIAADxCAAAsQgAAKEIAAGzCAACAvwAAjEIAABxCAAD4QQAAWEIAAPDBAADQQQAAJMIAABRCAACQQQAAxEIAADxCAACwwQAAoMEAAMBBAADAQAAAwMEAAPhBAABMwgAATMIAAMDAAAB4QgAAyMEAAEDBAAC4QQAAwEEAAIBBAABEQgAAgMAAANDBAAAAQAAAEEIAADxCAACYQQAAFMIAAIbCAAAcwgAAAMAAAChCAACoQQAAcMIAAAzCAADgQAAAjEIAAKDAAACQwgAAjkIAAMBBAAAAwwAA8MEAACjCAABsQgAALMIAAADBAAAAAAAAYEEAABRCAAAAQAAA4EEAAEjCAAAwQgAAUMEAAPDBAACQwQAABEIAADBBAAAswgAAQEEAAETCAAAwQQAAwEEAAGBCAAC4wQAAIMIAAGhCAABEQgAAcMEAAEDCAACYQQAAgL8AAPBBAADYwQAAyEEAANBBAABEwgAAUMEAADjCAACSQgAAlEIAAKBBAAAwwQAAoMEAAJLCAACwwQAA8MEAAIA_AACKwgAAsEIAAIBBAABAwQAAnMIAAGDBAAAUwgAAQMEAANDBAAAAAAAAjkIAAKDAAAAQwQAA0EEAAADAAACQwQAAJMIAAHBBAACYwQAAgEAAAODBAABgQgAA2EEAACTCAACwwQAAwMAAAGzCAABAQgAAEEEAABTCAABEwgAAgMEAABzCAABIwgAABMIAAGjCAACMQgAAUMEAAAhCAADIQQAAYMEAAAhCAAAQQQAABEIAAJhBAAAAQgAAUMEAAL7CAAAAQQAAoEAAAMBAAABgQQAAYMEAAEDBAADwwQAAxEIAAExCAAAowgAAPMIAACzCAADwwQAAKEIAAPDBAADAwAAAJEIAAITCAAAoQgAAiEEAAMBBAACAQAAAoEEAADDCAAA4QgAAAMEAAIA_AAAgwgAAPMIgADgTQAlIdVABKo8CEAAagAIAAIo-AADmvgAAFD4AAPg9AABsPgAAdD4AALY-AAAPvwAAnr4AAEA8AADYPQAAQLwAABw-AADKPgAAVL4AACS-AABUPgAA6D0AAGw-AAAfPwAAfz8AAAS-AACgvAAAPD4AAOA8AACIvQAAcD0AAMi9AACIvQAAmj4AAII-AACavgAAlr4AAIC7AAA0PgAAcL0AAEA8AAA8vgAAN78AAIA7AACKvgAAoDwAACw-AABkvgAAcD0AAFC9AAB0PgAAFL4AAIA7AABUvgAArr4AAGy-AAB0PgAAiD0AADS-AAAQPQAARz8AAOC8AAAwvQAAwj4AACw-AACCPgAAoLwAAOi9IAA4E0AJSHxQASqPAhABGoACAADYPQAAgLsAAEy-AAA9vwAAJL4AAJI-AAAcPgAAZD4AAMi9AAAsPgAAcD0AAJi9AAAEvgAA4LwAAJg9AADgvAAA-L0AAD8_AAB0vgAA9j4AADy-AAAkvgAAQDwAADy-AADgvAAAHL4AAAy-AAAwPQAAqD0AADC9AACIPQAAUL0AAOC8AABQvQAAsj4AAFS-AAAkPgAAQLwAAIK-AAAwPQAA6D0AAOC8AABEvgAA4LwAAKK-AABAPAAAf78AADA9AAAQPQAAoDwAAPi9AAAUPgAABL4AAIY-AABcPgAAuD0AAFC9AABQPQAALD4AAOg9AAAkPgAADD4AAFQ-AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CVbeIvPHXfA","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17443056076493149486"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13196971563633638923":{"videoId":"13196971563633638923","docid":"12-11-13-Z111AA68534C130E3","description":"Difference between limits at infinity & infinite limits | Limit of function | Calculus | Science Valhalla Hi, thanks for watching our video. In this video, we understand the difference between...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1002091/021f4b5220fffe9ef20c9122973fae82/564x318_1"},"target":"_self","position":"9","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVpN3OGYLUwU","linkTemplate":"/video/preview/13196971563633638923?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Difference between limits at infinity & infinite limits | Limit of function | Science Valhalla","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VpN3OGYLUwU\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoWChQxMzE5Njk3MTU2MzYzMzYzODkyM1oUMTMxOTY5NzE1NjM2MzM2Mzg5MjNqrw0SATAYACJFGjEACipoaGNhYmluaW5wcXhkY25iaGhVQ0RCeUxkaEFiTzJjb2paWm5OX2dvVmcSAgASKhDCDw8aDz8T0gOCBCQBgAQrKosBEAEaeIH9_P0O_gIA_Pf_-f0CAAH6A_8B-f39AOUC8fcD_AIA9wESAQEAAAD4BQICAAAAAPoH-wf7_gAA_AcBAPAA_wAM9wgC-wAAAAUB-xH_AQAA_v_5AAz7AAAHBO71_wAAAPYBAvv4AP8B7QP5DgAAAAAG9gD1AAAAACAALdOk2js4E0AJSE5QAipzEAAaYAQMAEHxCa_38jXkKAPd9frMBPjsyhX_8eYAvAzG0eL74rwbJwAW6R8OrQAAACIA_RrMAM9p--bQBvYY7eyqFyD0f0PX0hbyCemP6uoIVP4l3_Xz7gDNAvUGH-rFNPMmFCAALYcxKTs4E0AJSG9QAiqvBhAMGqAGAAAwQgAAdMIAAGhCAAAAAAAAmMEAACBCAAD4QQAAgsIAAGzCAACAwgAAgEIAAKDBAAAAwQAA0MEAAJpCAACYwQAAoEEAACDCAACgwQAAqEEAAABAAACKwgAAEMIAAERCAACgQAAAmEEAALDBAABEwgAA8EEAACBBAAC4wQAA_kIAABDCAACowQAACEIAABBCAABgQQAA_kIAAGBBAABAwQAAqEEAAHBBAABoQgAAREIAAATCAACAwAAA4MAAAEDAAAAkQgAANMIAAMDBAABgwQAAkMEAAEDAAADIQQAAiEEAAGTCAADQQQAAcEEAALDBAABkQgAAGEIAAABBAABwwQAAYEEAACBCAACwwQAAQMAAAHzCAAAAwAAAHEIAANJCAAA4wgAAAEIAAIA_AABAwAAADMIAAHxCAAAAAAAABMIAALTCAABAwAAAREIAAIhCAABYwgAAoEEAAKxCAACgwAAAwEAAAIBAAAD4wQAAsEEAAMBAAAAgwgAAkEEAAKhBAAAAwQAAKEIAAKBAAADowQAAAMEAADTCAABAwAAAiMEAAAzCAAAQQgAAwEEAAGRCAADAQAAA4EEAAGxCAABQwgAAhsIAAGjCAAAMQgAA0EEAAHDBAAAowgAAOEIAADBBAACwQQAAhsIAAAjCAAC4wQAA2EEAAIBBAACQwQAAOMIAAIjBAAAwQQAAAAAAACBBAABcwgAA2EEAAPBBAAAwQgAAgD8AAIC_AAAwQQAAeMIAAJhBAABwQQAApMIAAKjBAACIQQAAgEIAAIA_AAD4QgAAUMEAAAjCAAAQQQAAEEIAAGTCAAAcwgAAgL8AAODAAAAwQQAAPMIAAHDBAAA8QgAAoEAAACRCAACgwAAAwMAAAPDBAACAvwAAgD8AAKBBAACgwAAAyEEAAAzCAAAAQQAAwEAAAPDBAAAoQgAAQEEAAJTCAACAwgAAOEIAAIhCAAAUwgAAKMIAAJDBAABQwQAAUEIAAABCAABUwgAAokIAAETCAAAAQAAA8MEAAJrCAAAsQgAACEIAABzCAADIQQAAwEEAALhBAADgQQAASMIgADgTQAlIdVABKo8CEAAagAIAAIC7AAAPvwAA6D0AAJa-AAAUPgAAvj4AABw-AABXvwAAQLwAAIA7AACKPgAAir4AAAw-AAA0PgAAUL0AABy-AABQPQAAUD0AAFA9AAAnPwAAfz8AAFS-AAAkPgAATD4AABA9AACOvgAAJD4AAKg9AAB0PgAA1j4AAO4-AACAOwAAkr4AAEy-AABwPQAAQLwAAHA9AABQvQAAP78AAOg9AACSvgAA-r4AAMI-AACmvgAALD4AAMi9AAB0PgAAdL4AACQ-AACuvgAAkr4AAAu_AADWPgAAyj4AAFQ-AAAMPgAAfT8AAPg9AACCvgAA_j4AANY-AAAkPgAABD4AAEQ-IAA4E0AJSHxQASqPAhABGoACAACoPQAAtr4AAIa-AABXvwAA2L0AAIg9AACePgAA6D0AAJq-AAD4PQAAMD0AAAy-AACAOwAAiL0AAOC8AACovQAAoLwAABE_AACAOwAA9j4AAJg9AABwPQAAcL0AAKC8AACYPQAApr4AAAy-AACgPAAAuD0AAMg9AAD4PQAAuL0AAIi9AADYPQAAjj4AANq-AACiPgAAZL4AALa-AABcPgAAPD4AABA9AADIvQAABD4AAIq-AACoPQAAf78AADQ-AAD4vQAABL4AAEy-AACOPgAAML0AAHQ-AADIvQAAJD4AAJi9AAAEPgAAxj4AAAS-AABQPQAAfD4AAHC9AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VpN3OGYLUwU","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13196971563633638923"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4715407121043398010":{"videoId":"4715407121043398010","docid":"12-10-6-Z0E3409F52F412E1A","description":"See the difference between these two limit types which involve infinity. #infinitelimits #calculus #limitsandcalculus #limits #professorcalculish #calculusfundamentals #functions #shorts...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2812366/0d4b36e42f7f6e27f81358afc15925c0/564x318_1"},"target":"_self","position":"10","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4a2EN7A_BmQ","linkTemplate":"/video/preview/4715407121043398010?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"\"Infinite Limits\" & \"Limits at Infinity\" Defined","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4a2EN7A_BmQ\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChM0NzE1NDA3MTIxMDQzMzk4MDEwWhM0NzE1NDA3MTIxMDQzMzk4MDEwaq4NEgEwGAAiRBoxAAoqaGhsa3VnYWh4YXlmeWdyYmhoVUM2NkZmU3NwYTM0X3UtMmlmZDFnSVNBEgIAEioPwg8PGg8_EzyCBCQBgAQrKosBEAEaeIH7AfkI_AUA-vX_AQQF_gHxCvn8-v79AOn7_P4E_gEA9P0KCPwAAAD3BAn9_wAAAP3__AED_gAA_AcBAPAA_wAM-wAAAQAAAP4G_gr_AQAA_wX7_wP_AAAA__T6_wAAAPX__wb7_wAA8v34AAAAAAD__gDwAAAAACAALaLU4Ts4E0AJSE5QAipzEAAaYOkNAEUHDrgR7DjOChTw_ergAAvmuiT_4uoAvwSw3t0Y6cUSGwAp5xcXsgAAABf9HRnQAMNl1A7CFBYj6Pe4BQ8MfynyninIC-2p7ewcM-kw-v_r4ADWIfcHGQjiKhD4MiAALca_KTs4E0AJSG9QAiqvBhAMGqAGAACoQQAAgL8AAJpCAAAswgAAmMEAAIA_AABAQgAAeEIAAAjCAADQwQAACMIAAJhBAACgwQAAwMAAAIA_AAAcQgAAIEIAAIA_AAAAAAAAIMIAAIBBAACgwQAAlMIAALJCAACowgAAbMIAAATCAACgQAAAJEIAAEBAAADAwQAAYEIAAPDBAABQQgAAQMIAAHBCAAB0QgAAgEIAALDBAADIQQAA6MEAAAjCAABAQAAAAAAAAGRCAAAAQQAAgEAAAHBBAACGQgAAIMEAAEBAAABEwgAAbMIAABDBAAAwwQAAgD8AAIrCAADQwQAAuEEAACDBAADQQQAAgEEAAKrCAAAUwgAAAMAAAJDCAACAwQAAgMIAAIDAAABwwQAAvkIAAABCAADAwAAAFEIAAEDBAACQQQAAnsIAAAAAAADIQQAAKEIAABRCAACqQgAACMIAAJjBAAAwQQAAXEIAAEDBAACMwgAAKEIAANBBAADYQQAAqkIAACzCAAC4wQAAmMEAACzCAADwwQAAUMIAAKjBAACuQgAARMIAAGBBAAAwQgAAKMIAAJTCAAAAwgAAIEEAACBCAAAwQQAA0EEAALRCAAAwQgAAQMIAAEDBAAAQwQAAHEIAAIBAAADgQQAA4MAAAFzCAAAAQAAAVMIAAEBBAADgwQAAkMEAAEDAAAC-wgAADEIAAKjCAABQwQAAgL8AAOjBAACQwQAA-EEAABDCAADgQQAAgEAAALhBAAAIwgAAtsIAAABAAACAQQAA8EEAAFDBAAAgwQAAAMAAAIBBAABIwgAAAAAAAEBCAACgQQAABMIAAEBCAADYQQAAgL8AAKjBAADYwgAAgMAAAJzCAAAgQQAAwMEAAMBAAADgQQAAMEIAAGDCAADoQQAAgD8AAFhCAACUQgAAwMAAAHDBAADgQAAAGMIAAFDBAACwwQAA4MAAAODBAACAQAAAgL8AAAxCAADAwgAAXMIAABBBAACgQAAAMEIAAPDBAADIwQAA0EEAAFDBAAAkwgAAQEIAADBBAAAAwgAAIMEAAIDAAADgQAAAEMEAAPDBAAC4QQAADMIgADgTQAlIdVABKo8CEAAagAIAAFA9AAC6vgAAdD4AAHS-AACCPgAAhj4AAJ4-AAArvwAA2L0AABS-AADGPgAAPL4AADw-AAB0PgAABL4AACS-AACgPAAAyD0AANg9AAALPwAAfz8AALi9AACgvAAA2D0AAFC9AACKvgAAVD4AAKg9AACoPQAADz8AAOY-AACgvAAAdL4AAIC7AADYPQAAQDwAADQ-AABwvQAAJb8AADQ-AABUvgAApr4AAAQ-AACCvgAATD4AABA9AACaPgAAbL4AABw-AACIvQAAoDwAALK-AACKPgAAuD0AAOg9AAC4PQAAWT8AAFA9AAAkvgAAAT8AAFw-AAC4PQAAmD0AAOA8IAA4E0AJSHxQASqPAhABGoACAAAUPgAALL4AAJa-AAA_vwAARL4AAFw-AACIPQAALD4AADS-AABsPgAAoDwAAPi9AACgPAAAUL0AAEC8AADYvQAAuL0AAC8_AADovQAA8j4AADy-AACovQAA6D0AAHC9AACgPAAA6L0AADy-AABwPQAAPD4AAMi9AACgPAAAmL0AAMi9AADIPQAAdD4AAI6-AAB0PgAA6L0AADy-AACoPQAA6D0AAEC8AACSvgAAgDsAAL6-AACAuwAAf78AABQ-AAC4vQAAmD0AAKa-AAAEPgAANL4AAPo-AABwvQAA2D0AAKi9AADYPQAAFD4AAEA8AADYPQAA2D0AAEw-AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=4a2EN7A_BmQ","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4715407121043398010"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8205084018232082264":{"videoId":"8205084018232082264","docid":"34-3-2-Z4CCE6B2CAF1967E0","description":"Keep going! Check out the next lesson and practice what you’re learning: https://www.khanacademy.org/math/ap-c... Introducing the notation of infinite limits. View more lessons or practice this...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/471039/982273a8335bc9bb98577cb0a56dd478/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/dwOFOwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWS-76fFFICY","linkTemplate":"/video/preview/8205084018232082264?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to infinite limits | Limits and continuity | AP Calculus AB | Khan Academy","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WS-76fFFICY\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChM4MjA1MDg0MDE4MjMyMDgyMjY0WhM4MjA1MDg0MDE4MjMyMDgyMjY0arUPEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8ThgKCBCQBgAQrKosBEAEaeIEB_foFAAAA9PgIAQIE_gH6_fby-f38AN33Avz5-gMA_wsDAAABAADsBQj9-AAAAPb--wj0_wEA_QgF_gQAAAAeAAn_-gAAAAAX9gf-AAAA9P32A_UCAAARBfb9AAAAAPwIAQH8_wAA-Pf7AQAAAAAFBgH2AAAAACAALSxg1Ts4E0AJSE5QAiqEAhAAGvABXfBl-s7zkgHCBCz-tC_0AN819f_9FdYA1tXjARnoAgHcrhYB_0IgAA012_-ePCcCGd3j_9y5NQAg6_n-tczkAeTcHQHaNAIAMkEVAvLh8gAbPBf_5OQmAwDc6gDKLBj-Li3pAScntf0bHvIFXQkjAtjQ2AEVEPsAAf3h_vQM7vyYKfUAFRz8_Rbr8vcrSikBAyDtCLlM4_r6BNQDGAUb9gacBf8tfwQMFdfp9DIFAf6Z6fT98OvuCfVkAgTPNNr-9xL878fb__XGASj4TAX_--hf9PV8Cu8IJub_8xYa-iX_CvLoBvf8Eg7F6RT1D_PsIAAtbMPWOjgTQAlIYVACKnMQABpgFeAAK-Ug3PvxOs7o99cI1JrnwRnSK_8B2f_QFs0FrgrXqA8WABwB-PmdAAAAHwraMfAA-n_DCCo4A-gUAonL_wlW9wEi27fLSc_3DyUo-i8dGkEdAPcgyEcU1dZAKFF-IAAt_FAROzgTQAlIb1ACKq8GEAwaoAYAACzCAACAwQAA8MEAABzCAAAQwQAAYMEAAORCAABwwQAAYMEAAFDBAAAQQgAAHMIAADzCAADwwQAAuEEAADTCAACIwQAA4MEAAKhBAACAwQAAwMAAAEDAAACAwAAA4MEAAIA_AACQwQAAhMIAAEDAAAAMQgAADEIAAOjBAAAMQgAAoMIAAMhBAACqwgAAAAAAAIjBAACsQgAAoMEAANhBAABAQQAAUEEAACBCAACAwQAAgEEAAK7CAABYwgAAkEEAAChCAAAwwQAAuEEAAIDAAABAQAAAYMEAADhCAAAwwQAAAMMAAMjBAADgwAAAQEEAAFxCAAAcwgAALMIAAMLCAAAAQQAApsIAAPDBAACUwgAACMIAADzCAABQQgAAVEIAAEzCAABwQQAADEIAAHzCAABgwQAAAEEAAGRCAADoQQAANMIAAJRCAAA4wgAAEMEAAHRCAACIQQAAREIAAAxCAAD4QQAAaMIAAABCAACAQgAAOMIAAOjBAAB0QgAAqMIAADRCAADAwAAAMEIAAKhBAAC4wQAACEIAAKDAAAAAQAAAcMIAADBBAADAQAAAWEIAAIBAAAAcQgAAYEEAADhCAADgwQAAIMEAAMhBAABEQgAADEIAAEBBAAAQwgAAwMEAAIBAAAAUwgAAuMEAAIjBAACYQQAAFEIAAFhCAAAwwQAAPMIAAGBBAADYwQAAkMEAAIbCAAAwQQAAuEEAADDBAAAkQgAAoMEAAPjBAACCwgAAEMEAAITCAAAwQgAAQEEAAFBBAADwwQAA4MEAABBCAADwQQAAAMAAAIjBAABgQQAAaEIAAIDAAACwQQAABMIAABDCAAAgwgAAoMEAAOhBAABAwgAA8EEAAEBBAACWwgAAgMEAAOBBAAAkQgAAZEIAAGRCAAAAwgAA6MEAAEhCAAAAwQAAiMEAABTCAAAQwgAAEEEAADjCAACIQQAA-EEAAGBBAAAwwQAAWMIAABBBAACMQgAAgL8AAL7CAABwQQAABEIAAMDAAAA0wgAA6MEAABzCAAAQQQAAsEEAAIBCAACgQQAAoMEAABTCAACQwSAAOBNACUh1UAEqjwIQABqAAgAAgDsAAHS-AADKPgAAMD0AAHw-AAAcPgAARD4AABm_AABkvgAA2L0AAOg9AABwvQAAHD4AAHQ-AACqvgAANL4AAJ4-AABwPQAAgDsAADc_AAB_PwAAoLwAAI6-AABcPgAAgDsAANi9AACWPgAAFL4AANg9AADCPgAAdD4AAMK-AAAMvgAA4LwAABQ-AAA0PgAAiD0AAJq-AADKvgAAmL0AANK-AABwvQAAkj4AAIq-AAB8PgAAuL0AAKo-AACGvgAA-D0AAHS-AAA8vgAA-L0AAEA8AABsPgAALL4AANi9AAA3PwAA4DwAAAS-AAADPwAAQLwAAIg9AADoPQAAdD4gADgTQAlIfFABKo8CEAEagAIAAIK-AABUvgAAfL4AAFe_AACgPAAArj4AAKg9AADgvAAAtr4AANI-AACAuwAAiD0AAHy-AACgvAAAED0AAFC9AADgvAAAOT8AABQ-AAABPwAAuL0AABQ-AAAQvQAAiD0AAHC9AABUvgAAFD4AALg9AAC4PQAAoDwAAAw-AAD4vQAAgDsAAEC8AACqPgAAdL4AAEw-AAC4vQAA2r4AALg9AACYvQAAHD4AAMi9AADIPQAANL4AAEA8AAB_vwAADD4AAII-AADYPQAA6L0AADy-AAC4vQAAdD4AAHw-AADYPQAAmD0AACQ-AABsPgAA2L0AAJg9AACuPgAAPD4AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=WS-76fFFICY","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8205084018232082264"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3764546928"},"13740603701027274258":{"videoId":"13740603701027274258","docid":"12-10-6-ZA673EC0C91F4B57C","description":"This calculus video tutorial explains how to find the limit at infinity. It covers polynomial functions and rational functions. The limit approaches zero if the function is heavy at the bottom...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1609748/be61b04ba77b212a16df31be6439542a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y2IpnwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNmLljBAg82o","linkTemplate":"/video/preview/13740603701027274258?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How To Find The Limit At Infinity","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NmLljBAg82o\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoWChQxMzc0MDYwMzcwMTAyNzI3NDI1OFoUMTM3NDA2MDM3MDEwMjcyNzQyNThqkxcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TmQaCBCQBgAQrKosBEAEaeIH7AfkI_AUA9PkCAPoDAAELAPv79wAAAOUB9_8J_AIA7gMFCgUAAAD3BAn9_wAAAPkEAQD__wAACAoEAgQAAAAH__75_gAAAAUB_BH_AQAA_wX7_wP_AAD__O0D_wAAAPAIAgb-AAAA9QX2BAAAAADz9gPz_wAAACAALaLU4Ts4E0AJSE5QAiqEAhAAGvABegwm_9X1oQGPTOf_9_YVAeolKv8WOQIArRDEAdLu6QHpCOUABBID_88M8QCBM_8BF9GmA_3w1QFT8fb_PdwJAeUj7wEY1AUCRxc2_-HuEwDG_g0A_OACAPHTpf8QHu_98toLACbu-fvpBLYCCyU_A_beEwYN3hv97roJ_-4JCv_z4RL9_AgCBR3zHPva8zkJ9vf_-vD1-ff4MMACEvDkAOAOIPXxFtH-Cu7N_jkAHAyhAxoD7ukVBBD3I_uhFQMLAQ45-v8g-fsONxj4Lxnd-uIw6AnpCtMAIzcRAw4uCgsj8PsCyvIKCug45_obFOkMIAAtWnj4OjgTQAlIYVACKs8HEAAawAe858C-FaPTO-7X0zyp9xS8RCXDu3cuzLzjoLm9HG2LPF4FI7z2tkk-klKKvVFXDT0gNVe957cePdE6jzzLgDM-5tGIvZhiMzxxPVq-5xa_PYVMqLwXoaO9GfSvPNMFKzzZuIm910W2vF8grbx-eXw9GcWyvBaePDzKLn29SeeuO-CXH73UOps9NFVGvQ6fdL3pQ6e9Q-icu6SDP7xbMaI9sZFavU9sTzxu6z09gMCcu0Sqg7xrEbG9x8jIPB8R07wv4tY8ztyoPTDHoTyJzw2-InyOvZhvmDxPZjK9CkJ-PbOXrTyctLo9Su1FPLB6m7zYwgc9RMeZvfI7srwMdw6-TdoWO5ZhFz319fw9nKIIPesrWbwY0gG-SYOrPZYmJbxz2P08SfaEOeXHKby0yWE8FaePPf8WLjxCvvi6K1bovF0v8rtutiO9-VhwPQkSwDzs-gU92Znivaurp7ygm4c9CPh_PGu-iLseJSW9v9lBvNpr6ruDid-9XGupPfujOTxTsIY8sSU1vfZFoTsFI6U91gI7vknlmjqV3Dy9PPHBvUPp5ru1kSY9f6swPbsdzLtDqR0-H2rbvcSaqTkw-mU8kqu7O93NFbtKOg-9qTkUveUJqbt_bBK9My9MvZgD1rv8ZYG9jqFSPN_rWryvZni8LTeSPZ5VDztsAee7MEfvvT-aoLoUeRI9K1ovPST7FLveHuQ9T8THPIhXIzlRl9Y85dFtvaAaTLtWYai9X3AXveOgrbl-aDC9KSuhvZROuLihndM9UYGYvZedUTmOwCm92-CfPMWavTmbOs-9uO5BPC0nCrlTsyc90pBMvTMalDitL7c6_RLxvbwjiTnA7SQ9W--uOR6PxblOYSW8rNW4PY6GFrgSKt28Z3ukvXqeVbn34s26R7s7vajDE7n-Lic9qEVQO9gq4ji5jLy7omrsO0NNujowJkI96TIrvSdMALm3VxA9KrTmOt4_DTkjrIw99GwGvs9wpTln0uY8Au0zPfBKgzl6jkg9yuRPPVxTpTgIm_A8uf3SPUdpZTga5-U8XQ9rvbiwjTeQmTC8reYPPccmFjicenO910vTPZ-Nlzg3yF89uhJBPc_QkzjYbrG9ZQPEvLzs3rf9GVk9p9vIPDuQ5jfB4ys-3KVovAeJdLmr3xa9DfsdvqO8_rgeKng7JQTrvSO_ZzhNNyS9jbvMPazuDjdDIsg8pU3VvVAHd7jK9HA9IuErPvHLijjwsjW9XMzPPQxGCrnnI5-9N8BxPO1kl7fkOaG9UtkjOkQd37cgADgTQAlIbVABKnMQABpgBvYANQAbwRniEfAF7vP55MkH9g_bFwDl4QDYCccA_f-_1BcXAAbqK-a5AAAAKQMIDsIABl_e5_sX7xv21ZTZGwV_LQACDc8P_bPgFiAzChwgBBT-AAoQzDk-7LQgBB0hIAAtIt02OzgTQAlIb1ACKq8GEAwaoAYAAPhBAADQwQAAsEEAAFTCAAAQQQAAAMAAANxCAAAAQgAAHMIAAEBCAAAQQgAAIMIAACjCAAAIQgAAAMEAABBBAACiQgAALMIAAARCAAD4QQAAEEEAABjCAADAwgAAIEEAAFzCAADgwAAAAEEAALBBAABAwQAAMEIAAADCAADowQAAmMIAAAhCAADcwgAAYMEAAIBBAABoQgAAQMEAAABCAACIQQAAcEEAAPBBAACYwQAAQMAAALDCAAB8QgAAlkIAAKBBAACeQgAAgEAAAMDBAAAowgAAKEIAAEBAAABoQgAAlsIAACBBAABQQQAASEIAAABBAABcwgAASMIAAKjBAACQwQAAUMIAADjCAAAAwgAAuEEAADDBAABAQAAAmkIAAHDBAAAcQgAAJMIAACzCAACIwgAAiEEAAEBBAADwQQAABMIAAOZCAAAAAAAAgEAAAIA_AADQQQAAAMIAAPDBAAB8QgAAoMAAAHBBAAA8QgAALMIAAEBAAADIQQAAoMAAAPDBAABwwQAA2EEAAKxCAAAcwgAAGEIAADBBAAAQQgAAzMIAAEBBAADAQQAAoEAAADDBAABwQgAATEIAAHhCAAAEwgAA-EEAABDBAABgQgAADEIAAFjCAAD4wQAAcMEAAMDBAAB8wgAAgD8AAEDCAADowQAAgL8AAKjBAADAwAAAmMEAABRCAAAkwgAAQMEAAABAAACMQgAA2MEAAFhCAABgwQAApEIAAATCAACIwgAAkMEAANBBAAAoQgAAIMIAAGBBAADgQQAAUMEAAEBAAACAPwAA2EEAAFTCAACwQQAALEIAAEDBAAAQQQAAwMEAAEzCAAA0wgAAbMIAAPjBAACIwgAAkEEAAJBBAACAQQAAMEIAADBBAAAgQQAA6EEAADhCAAAgQQAAgEAAAKBBAAAQwQAA6MEAAEDCAACAQAAAcEEAANjBAAAgQQAAgEIAAL7CAABgwQAADMIAAIhBAABAQgAAoMEAABjCAAAAwAAAgMEAAPDBAAAIQgAAEEEAAFDBAAAgwQAA4EEAADhCAAAAwAAAUMEAALjBAAAEwiAAOBNACUh1UAEqjwIQABqAAgAAVD4AAN6-AAC-PgAAqr4AANg9AADYPQAAuD0AAC-_AADovQAAJL4AAOg9AACOvgAA4DwAADQ-AAAcvgAAML0AAAw-AAAUPgAAuD0AAKI-AAB_PwAABL4AADQ-AAC-PgAARL4AAGS-AAAcPgAAmL0AAFQ-AABcPgAAjj4AACS-AADIvQAA-L0AADQ-AACgvAAAUD0AAM6-AAAdvwAAqL0AAPi9AAAkvgAAqD0AAKK-AABsvgAAoLwAAFQ-AAAQvQAA-D0AAPi9AACYvQAAdL4AAHQ-AACyPgAAcL0AAOA8AABVPwAA4DwAABy-AAC-PgAARD4AAHQ-AADoPQAAUL0gADgTQAlIfFABKo8CEAEagAIAAJi9AAB8vgAA2L0AAFu_AAAUvgAAFD4AAJi9AAD6PgAABD4AAAS-AAAsvgAAFD4AAEC8AAAsPgAATL4AAOC8AAAEvgAA7j4AACS-AAAXPwAAmL0AACS-AACgvAAAVL4AAMi9AAC6vgAA6D0AAIA7AAAMPgAA-D0AAJg9AADoPQAAiL0AANo-AAB0PgAAur4AALo-AACgvAAAbL4AAKY-AABwPQAAqr4AAES-AAC4PQAAqr4AAEC8AAB_vwAA3j4AAJK-AAAUPgAAtr4AAL4-AACoPQAAET8AACS-AABkPgAAEL0AABC9AADyPgAA2L0AABC9AACGvgAATL4AAMg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=NmLljBAg82o","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13740603701027274258"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1038244942"},"3719524781422017083":{"videoId":"3719524781422017083","docid":"12-0-11-ZB1EB8ADCBE74BCB4","description":"In this video we will do more examples of limit of functions as x approaches infinity. These limits includes exponential functions. We occasionally want to know what happens to some quantity or...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/895386/e864b655b6d4230a1a57203d799f9ae1/564x318_1"},"target":"_self","position":"14","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Ds1U6iGxy6kc","linkTemplate":"/video/preview/3719524781422017083?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limits at Infinity of Exponential Functions | How to find limits at infinity | Calculus - Part 4","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=s1U6iGxy6kc\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChMzNzE5NTI0NzgxNDIyMDE3MDgzWhMzNzE5NTI0NzgxNDIyMDE3MDgzaq8NEgEwGAAiRRoxAAoqaGhobm9weWxqZWxybHZjZGhoVUNBOTQxQWYwZHpqc2Y2anc0TzlqbGl3EgIAEioQwg8PGg8_E-MHggQkAYAEKyqLARABGniB-wH5CPwFAPr1_wEEBf4BBgb4APf__wDp-_z-BP4BAO0JDQP-AAAA9wQJ_f8AAAD7_f4H_v4AAPwHAQDwAP8ABgYB__4AAAAJBvcI_gEAAPkI9wID_wAABgTu9v8AAAD1__8G-_8AAPUF9gQAAAAA_AP_-P8AAAAgAC2i1OE7OBNACUhOUAIqcxAAGmACDwBPBvnU--Q_2h391-_1zxEM7c0h_-TK_8MNpfHhDtmvGS8AFOwYD60AAAAqDBIZwADnb-fxxh8XJObCoO3_G38c87v80xTmleYCJjrzE_TW4eAA1A7QIy_t3jf8GyggAC1SeiA7OBNACUhvUAIqrwYQDBqgBgAAFEIAAKjBAADYQQAAkMIAAOBBAAC4wQAAzEIAAIBBAADgQAAAuEEAAARCAAD4wQAAVMIAAEDAAADAQAAAuEEAAAhCAABIwgAAwEEAANDBAACowQAAFMIAAGzCAAAIQgAAkMEAAGDBAAAAwAAA-MEAAAAAAAAAAAAAHMIAANjBAACewgAA-EEAAGjCAABgQQAAoEAAAJxCAACAPwAABEIAAERCAACAvwAAUEIAANjBAAA4QgAAysIAAAxCAAAkQgAAgEAAAARCAAAwwgAAEMEAAAjCAACwQQAAAEIAAOBBAADEwgAAwMEAAEDAAACgQgAATEIAAFjCAADwwQAAOMIAAOBAAACEwgAAGMIAAKrCAACgwAAAJMIAAFxCAACMQgAAksIAAFBCAACAwQAAeMIAAEDAAADIQQAAoEAAALBBAAAgwgAAgkIAABBBAAAgwQAAmMEAAOBBAACgQAAAJEIAABxCAABwwQAAIMIAAMpCAAB4wgAAOMIAAADAAADAQAAADMIAAPBBAABMQgAANEIAAGTCAADIQQAAgMAAAABBAABcwgAAoEEAADDBAADAwQAAMMEAAEhCAAAwQgAAwEAAADTCAAAEQgAAqMEAAKBCAADYQQAATMIAALDBAAAQwQAA-MEAAEDCAADgwAAA2MEAAIDBAABQwQAAIEEAAIhBAAAkwgAA2EEAAIzCAACIwQAA-EEAACxCAAAAAAAAeEIAAMDAAAAUQgAACMIAACjCAABgQQAAUMEAAIJCAACgwQAAJEIAAMBBAAC4wQAAYEEAAKhBAABgQQAA4MEAAABBAACAPwAAAMIAAKhBAACQwQAABMIAACzCAAC2wgAAQMEAAILCAADAQQAAwMAAABTCAACYQQAAAMAAAGzCAACwQgAACEIAABBBAACAQQAAMEEAAIC_AACgwQAAcMIAAADAAABwQQAAkMIAAAxCAACUQgAAtMIAAMjBAABQwQAAwEEAAAhCAABMwgAAXMIAAEzCAADwwQAAUMEAAAxCAABQwQAAIEEAAPDBAADgQAAAFEIAAATCAADgQQAAIEEAAFDBIAA4E0AJSHVQASqPAhAAGoACAACePgAAPL4AAEQ-AACyvgAAqD0AANI-AACiPgAAIb8AADS-AAAsvgAA-D0AAHS-AABcPgAAJD4AAKK-AAAcvgAA4DwAACQ-AAC4PQAAvj4AAH8_AAC4vQAA4DwAAI4-AABkvgAAUD0AAAw-AADgvAAALD4AAMY-AACKPgAANL4AALq-AACovQAAyD0AAIi9AADYPQAAur4AAAe_AABkvgAA-L0AAFC9AADIPQAAdL4AAMg9AAC4PQAAmD0AAMi9AACoPQAAPL4AAOg9AABAPAAAlj4AAGQ-AAAMPgAAQLwAAEc_AACAOwAAMD0AALI-AAAMPgAAgDsAAKA8AAA0viAAOBNACUh8UAEqjwIQARqAAgAAUL0AAEy-AAAQPQAAWb8AADC9AABcPgAAiD0AAEw-AAAMvgAAuD0AABA9AACgPAAAQLwAAFA9AABwvQAA4LwAAFC9AAAnPwAARL4AAOo-AACCvgAAqL0AAKA8AABkvgAAgLsAAKK-AACovQAAEL0AACw-AACIPQAAUD0AAAw-AAC2vgAAQLwAAJI-AADovQAAhj4AAIA7AACKvgAAQLwAABS-AAAcvgAAzr4AAMg9AACevgAAQDwAAH-_AAAcPgAA4LwAALg9AADovQAAPD4AAKi9AADuPgAADL4AANg9AACgvAAAgLsAAIo-AADgvAAABD4AAPi9AABkPgAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=s1U6iGxy6kc","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3719524781422017083"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5709725060998087251":{"videoId":"5709725060998087251","docid":"12-1-9-ZFCE723629806C4D1","description":"In this video you will learn about infinite limits, limits at infinity and Continuity.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4339855/0ff8288c431124d89ec6e1afb9b6b468/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cQKSRAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwVr4fgw-AiY","linkTemplate":"/video/preview/5709725060998087251?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Infinite Limits, Limits @ Infinity , Continuity","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wVr4fgw-AiY\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChM1NzA5NzI1MDYwOTk4MDg3MjUxWhM1NzA5NzI1MDYwOTk4MDg3MjUxaoEVEgEwGAAiRRoxAAoqaGhvYWF0enl0Y2l6bGhhYmhoVUNZdTZqbkxLRFZMV0p4a1BQMTJoVVl3EgIAEioQwg8PGg8_E-gWggQkAYAEKyqLARABGniB-wH5CPwFAPv-Av8DBP4B8Qr5_Pr-_QDp-_z-BP4BAPz_BwMBAAAA9wQJ_f8AAAAB_gID_v4BAPwHAQDwAP8AEgAEBP0AAAD-Bv4K_wEAAPkB-vkDAAAABgTu9v8AAADxBAT8_v8AAPL9-AAAAAAA-Pr--QAAAAAgAC2i1OE7OBNACUhOUAIqzwcQABrAByAqxb4sloe8pbb5vF8eHD3zVt2848SHvbml9T05J4Y9GspfvT9zRj4O7jO9lvl9O5xNl77qPVy5ZI8WvIwRCT5dFjO9RyabvXoXL74IPDA9KZ_UvPGE3r2AH588t0EOPLpWsbzDVGk89q5mvMF-vj3y98G9F61tvL8tM71VZm89WTq6PPihGjwfheu9vJF5vHjACjwEtwS9xkqxPFZOFj3P1zE9hU8EvNFjyj3Ofi49mpfDu_r_gry691C9cXexu3AHCj6rss-9BBAtPJyEuTt-O8m86qtQvKnEkD0RSJM8x0SxO60Nmr05Tfq6teX3vJV75ryx6Cw9dKA9vILUO7tuePA8jjEgPHonFT1qYzE92hNuvH_qmb2mmKQ7kyA3vFN_2Ly2l569OzFSO0sPmT0hGKy8P4gmu5chyT2BBss9fIyDvMOjaL3-Tgk9a5T_PKZqMT0zzlU9S0KeuikKz7xqrY49B4gEOmJTgjyd7wy9Y1zWvHm-EL1NMcc9f6VzvJuoijy6JNi8EeZRPKtgDz1AYsW84vA4PGJ7Mj0XZ7y950YBuwrqpbsfQIA9x8xWNdhJu7uXrqu9xzJYvENtID2UyBQ9t__2OTUpZT2hgbi9alAPOxx9DL3hbOk8GWuHOy260LuRhFi9ngd7u2LYAb4QejG9Wci3uoXoVT01cLG9IscZOiuhO7y6xZc8aiYpPIT1v7yAC1e8Z0tzOxiyCj5lnsO7GNGCOL_tTr38Lxw90MdnO1OToL0XprU9g9B4uUWMrT0aGJk96w8IuUrxTLwRemy8EWPBOG05l7xO3oY9Za5PuqxTpTweWGm8f3ahOXpDEL1rBTK9QWhCuBbzmD1_VrI7WQT3uiWvzj0jPbu8o64Pucwgw73UDQS-CFOFOZpoJr2vJp-9_utIuWd8hDy3XKK8zVYauKmx87zuiZ89HW84udn5ijtBqKG95Te8Obtmbb2u4049sy4jt8K0ubxMip-9BmB2OAdcjD2rgSE9-8enOPc8f73OGAY-8x0yt7hHJbwXgtw9Jh3lN3Zv5b0Ugsu8EHa0uJgrKD0opyy8DI-IOMQj1Dvh1dG7eEvzOC_IUT3PVem8-VIzOCIXDD5ZovM9PmJCuPA2L73SRdQ8O-c_OGGhuzzrzo874rLSuO99sL1kikO9FC5BuKpOYjzK4bS7vpA3OO2Rl7xB9oU9foWftibckLwWMDG-QaBauYqWVz0QWPk9jRdAOCmeabx4zZA9oeaauNoROL0tK6g89CIkuI-5PD1QwcY8bXSVNyAAOBNACUhtUAEqcxAAGmDwEAA79ALK9_sw1v8T7frw1gz97dkbAPb3ANUAytfs9encGRQAE-YJFcUAAAAmFQEW3QDXS9j41hMQFufpuxIDD38S88EY2v_myPMAEDL1GfoR7-4A1x0FFR3-7R4H_zcgAC0PoVU7OBNACUhvUAIqrwYQDBqgBgAAAMEAACBBAACOQgAAeMIAAFBBAABAwQAA0kIAALDBAACwwQAAaMIAAADCAAAgwQAAuMIAAOBAAAAMQgAAKMIAAOBBAAC4wQAAXEIAAODBAADgwAAAKMIAACjCAABQQgAALEIAAEDBAAAQwQAA4MAAAKBBAAB0QgAAJMIAAIjBAABAwgAAgL8AANjCAAAIwgAAIMEAAEhCAAAAQgAAEEIAAPjBAAA0QgAAXMIAALDBAADIQQAAFMIAAFDBAACAPwAAYEIAAMBAAAAAwgAA2MEAABzCAAAsQgAATEIAAABBAAC6wgAAyEEAAIBAAABUQgAA6EEAADDCAABgwgAAhsIAAODAAACAwgAAmMEAAGjCAACSwgAA4MAAABhCAABAwAAAcMEAAHhCAAAwwQAACMIAABzCAABgwgAAYEEAANhBAAC4wQAAEEIAABxCAAAwQQAAdEIAAJpCAAAAwAAAQEAAALhBAACgwQAA6EEAADhCAAAwwQAAMMEAAMBBAACswgAA4MAAAABBAADCQgAASEIAAOjBAAAUQgAAcEEAAKLCAACCwgAAuEEAAKBBAACYQgAAIMEAAGxCAAAgQQAAmEEAAABBAADAwQAAIEEAACxCAADQQQAAgMEAAFDBAACAwgAA8MEAADDBAABgQQAArsIAAIBAAADgQAAAcEEAAMDCAACYwQAAMMEAALDBAABcwgAAMEEAAExCAACIQQAAuEEAAJBBAAAAQgAAQMIAAATCAACCQgAA4EAAABhCAABgwQAAJEIAAMDAAAAowgAAMMEAAPDBAACoQQAAiMEAAPBBAAAsQgAAiMEAALDBAADgwQAAgsIAALjBAAB8wgAAsEEAAIzCAAAgQgAABEIAADDBAABIQgAAoEAAAIC_AACGQgAASEIAADDBAADgwQAAXEIAAMjBAABwQQAAIMEAAIC_AACgQAAAkMEAAKhBAABMQgAADMIAAIbCAABYwgAAiMEAAHBCAADowQAApsIAADBBAADQwQAAgMEAAIBBAAAQwgAAMMEAAHBBAABQQQAAmEEAAOjBAACIQQAAiMEAACzCIAA4E0AJSHVQASqPAhAAGoACAAAwPQAApr4AAK4-AACovQAAmD0AAJ4-AACIPQAAE78AAHC9AACYPQAAmj4AAAy-AAB8PgAAPD4AAIK-AAAkvgAAoDwAAAQ-AABQPQAA6j4AAH8_AACovQAArr4AAJI-AABwPQAArr4AAPg9AABQvQAADD4AAOY-AAA8PgAAuL0AAEy-AAAQPQAA4DwAAEA8AAAUPgAA4LwAAA-_AACYvQAAkr4AACS-AAA0PgAAVL4AAOA8AAA8vgAAJD4AAKA8AABEPgAAoLwAAAw-AAB0vgAAsj4AABw-AABMvgAAMD0AAFU_AACKPgAA6L0AAMI-AABcPgAAcL0AABw-AABAPCAAOBNACUh8UAEqjwIQARqAAgAAmD0AANi9AAB0vgAAO78AAOC8AACCPgAAiD0AAOg9AACCvgAAgj4AABA9AAAwvQAAiD0AADA9AABwPQAA2L0AANi9AAA_PwAAZL4AAMo-AACGvgAAFL4AAPg9AAAEvgAA4DwAABS-AAAQvQAAQDwAAHw-AABAPAAAED0AANi9AADYvQAAMD0AACQ-AABEvgAAgDsAAKC8AACIvQAAUL0AAAQ-AACIvQAAJL4AABA9AADavgAAUD0AAH-_AABQPQAAoLwAADQ-AAAkvgAAqD0AAKA8AACiPgAA6L0AADA9AAAQvQAA6D0AACQ-AACovQAA-D0AADQ-AAAEPgAAdL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=wVr4fgw-AiY","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5709725060998087251"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2398350574"},"12522410816199270600":{"videoId":"12522410816199270600","docid":"12-2-12-ZA59F5C524A424751","description":"In this video I look at infinite limits as x approaches either infinite or negative infinite. I also go over some very useful examples in dealing with infinite limits. Download the notes in my...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2745402/b9e178e6eda8ba5985f4dee5db701b99/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_yGpAAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqXLYInFkW7Y","linkTemplate":"/video/preview/12522410816199270600?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Infinite Limits at Infinity + Examples Part 1","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qXLYInFkW7Y\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoWChQxMjUyMjQxMDgxNjE5OTI3MDYwMFoUMTI1MjI0MTA4MTYxOTkyNzA2MDBqtg8SATAYACJFGjEACipoaHZkZXppbXhjaWp5dmhkaGhVQ1VVQnExR1BCdnZHTno3ZHBnTzE0T3cSAgASKhDCDw8aDz8TiwOCBCQBgAQrKosBEAEaeIH7AfkI_AUABvQHAgQH_QL5DAD6-f79AOn7_P4E_gEA8wAABv4AAAD3BAn9_wAAAP8EBf8E_gEABQYH-fgAAAAOA_7__QAAAAYJAQn-AQAA__z7_wP_AAAKA-4BAAAAAPX__wb7_wAA9QX2BAAAAAD4-v75AAAAACAALaLU4Ts4E0AJSE5QAiqEAhAAGvABfx0fAebv0QHOAuoBxxbg_40JKf_pItUAxsj2AK0SzP_iDQIA1hgCAA4pFgCuI9YAMdjT___lBwAS2QUANvMUAf0JHAEI5fEBNQ8WAgvw_P7zIAn_Cdz8__3K4AAdK-X_DPkD-9n25QAbFc0BCdc7A-4cEAMy8BcB37T9Ae72Dgb3-cn-CiMEAwPX__nXLw4AAtwICAMtGgHXF9sA9vr3_evlCfUbGuP9GvoZBwAH9frb3gQB_Az9_RISBgHxC_4F6PEX-fb2DPAC4_kMAOQa_-QA9wUk6PcHBPf-Av7iAgYE4fn62g_vCvcD_wbD6f77IAAt4-sbOzgTQAlIYVACKnMQABpgEP4ASAEZuSz3NdL_7gT6zcz97ArAIP_v3ADL8MT44hDj0RgaAB3GGPqvAAAAKt8IGd4A52_I-AIjKhH3z5j1BBl_BBXl3q0l5p7fDhQb3D3uFe_7AOkSpjxB8MItA_U8IAAtng8gOzgTQAlIb1ACKq8GEAwaoAYAAADAAAAQwQAAIEIAAIDBAAAUwgAAbEIAABBCAABAQQAAWMIAANBBAACIQQAAGMIAAHjCAABQwQAADEIAANDBAADQwQAA5sIAABBBAADYwQAAMMIAAKDBAABwwQAAjkIAAMjBAAAIQgAArMIAAARCAAAcQgAAkEEAADjCAACAwQAAoMIAABDBAAAowgAAAMEAAChCAADiQgAA0MEAAIBCAADAQQAAuMEAAFhCAADAwQAAAMAAABBBAACYQQAA4EEAANhBAABQQQAAhMIAACDBAAAMwgAAYEEAABhCAACYwQAAIMIAAIDBAACAQQAAEEEAABhCAACwwQAATMIAAEzCAACwwQAAOMIAAKDBAAAcwgAAosIAAGDCAABEQgAAaEIAANDBAACAQAAAAEAAAHjCAACEwgAAKMIAAJZCAAA8QgAAOMIAACBCAADgwAAA4EAAAAzCAAAYQgAAIEEAACDBAAAsQgAAoMEAAIA_AADAQQAAWMIAAJjCAAA0wgAAMMIAACjCAABYQgAAhEIAAGTCAABMwgAAgEIAADBCAAAgwgAAlsIAAABBAAAswgAAxEIAABzCAACwQQAAMEEAALBCAAAowgAAyEEAACRCAACoQQAAwMAAAKDBAABwQQAA4MAAAFDBAABAQQAAUEEAADDCAAC4QQAAoEAAAATCAAAgQQAAgsIAAMhBAAD4QQAAgEEAAFBBAABQQgAAgEEAAIBAAACYwQAA6MEAAAhCAACAwgAAKEIAAIBAAAA4wgAAwEAAAKhBAAAgwQAAgD8AAKhBAADAwAAAMEIAAEBAAACIQQAASEIAANjBAABgwQAAoEAAAFjCAAAAwgAAUMEAAEhCAADAwAAAyEEAAFBBAADYwQAAgD8AAARCAAD4QQAACEIAAOBBAAAAwgAAgMEAAABBAACwwQAAIMIAAIhBAADQQQAAHMIAAEzCAABgQQAA0EIAAOzCAADIwQAABEIAAIA_AACAQgAAJMIAAJ7CAAA8QgAAqMEAAMBAAAAgwgAAyMEAAJBBAAAAwAAAmMEAAChCAADAwQAAWEIAAADAAACgQCAAOBNACUh1UAEqjwIQABqAAgAAmD0AAP6-AACgPAAAPL4AAKg9AACGPgAArj4AADW_AACovQAAor4AAEQ-AACmvgAAUL0AAGw-AAA0vgAAdL4AAEC8AADYPQAAUL0AABU_AABrPwAA4DwAACy-AAAcPgAA4LwAALa-AACCPgAAiD0AAAQ-AACqPgAA_j4AAOA8AAAMvgAAiL0AADA9AADIPQAAvj4AABS-AAA1vwAAED0AAAy-AAD-vgAALD4AAES-AAAUPgAAgLsAAIY-AACIvQAAMD0AAES-AACAuwAAGb8AAHw-AABUPgAAyL0AACw-AAB_PwAA4DwAAHy-AADePgAAdD4AAMI-AABEPgAA2L0gADgTQAlIfFABKo8CEAEagAIAAMg9AACivgAAfL4AAEG_AADovQAAPD4AAIA7AABEPgAA2L0AAOA8AAAwvQAAML0AABQ-AADgPAAA2L0AAKi9AADYvQAAMT8AALi9AADyPgAA-L0AANi9AAC4PQAAyL0AADA9AACKvgAAgDsAAIg9AABcPgAAiD0AAPg9AABAvAAARL4AAIY-AACWPgAAzr4AAJY-AAAUvgAAkr4AAEQ-AAA8PgAA2L0AAHy-AAD4PQAAwr4AAMi9AAB_vwAAZD4AAAS-AADYPQAAmr4AABw-AAB8vgAA7j4AADA9AAA0PgAAqL0AADw-AAAkPgAAgLsAAAQ-AABwPQAAUD0AAIK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=qXLYInFkW7Y","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":984,"cheight":720,"cratio":1.36666,"dups":["12522410816199270600"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"747231305"},"1052593913824911905":{"videoId":"1052593913824911905","docid":"12-2-5-Z9E27AA82D5AE2C6F","description":"Epsilon Definition of a Limit In this video, I illustrate the epsilon-N definition of a limit by doing an example with an infinite limit. More precisely, I prove from scratch that the limit of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1384902/3584dd034d94db3fdf27461cc297d182/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/C0FlKQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2_DcTWx18nM","linkTemplate":"/video/preview/1052593913824911905?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Infinite Limits (Limit Example 10)","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2_DcTWx18nM\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChMxMDUyNTkzOTEzODI0OTExOTA1WhMxMDUyNTkzOTEzODI0OTExOTA1aogXEgEwGAAiRRoxAAoqaGhncnRnZnRxeGJtc2VrZGhoVUNvT2pUeHotdTV6VTBXMzh6TWtRSUZ3EgIAEioQwg8PGg8_E7YCggQkAYAEKyqLARABGniB8vr7B_8CAAbzBwIECP0CAAP_-Pj-_gDc9Pf2BvkDAPz_CAMBAAAA_AYE__cAAAD9__wBA_4AAP0QAPr4AAAAEwAFBPwAAAAJEPsO_gAAAP3-BfMCAAAAAP_z-v8AAAD1BwgD__8AAPECAQQAAAAAAPr8-QAAAAAgAC0jf9g7OBNACUhOUAIqhAIQABrwAXX99v6aBsf98_HjAN4N8gGBGA__Pxa9AOAa8wG059oBzyEHAOEz5ADz6RD_0jg3ACEBugDWuRAAFdEGACrN7AHx5QIAF9YcAUcB_AD05vQA-R1SAgfiOf8e8h0BEP_eAObaJf8IGeEC6gS5Ag3xJv84AC4B9_nM_-nN5QTQCRYE9fe9_skbCgEq5fv7y-kiAgzD6AX1H_P3_gfx_yrvAv7d6xr_EBbJADLtBghNCvX_5hboAw757QwECDP-zg_9Bwb7F_nO-gv15wni-Afb9_v9J-4LH_PyDh_eAAMi0_8J7Nzp9dr4_Pj0yfX_6_f7ECAALQGwADs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6HMg_vQnqjDuczC69jY8AvYDMuD0WkiO7Hk_rPdqfhb1zM7e8WcBUvgSMjDkqz9c8y4AzPubRiL2YYjM8ehcvvgg8MD0pn9S89aFrvoTTBz10NcO7rpjGPasynbu79Om7ch5pPTtqcb28tDy9MzilvIAl2ztbAGS8Q-f1vX-2H71aIgG9-4qaPNoqd7zlrcQ86-CwPX94jLx8FU-8z0mfPYWZkbwuqoe7yL_FvA5ANDoSjrC7j_3sPbQVZT38ZGC6LYiSuliMX7ym3gm962sivf6DozwW-0s74hMfvOj_8Dzozh29zAFMu8LPiTzvswS8l-QwvkRvLD3sgma87IbtPYz3gz1yW5E7sOLUvXU2yT08jlU8e_KVPAKsIbwj4Ra9KJ4DPqytWLzx5c87wJaHPUk7lD0PsWa8JNENvJloKz1YkGY89PNQPdPAD727kq68ufIjvKJ55TwaqVK8WGttvUKP3ruLPtW8zBmLPd31aD1LOYQ8v8ODPTQqlTwLD6m5xTVDPfhRDb4Jbyy7Yyp9vKNFzL2HKka8imSePSAuFD14Zry68PlhPRRfDb53hBG71skZPXV7RL3ey9y7vgpaPdcnyrxFB2o77MmCvd4oKD2hwDc7rrCqPFx8AD2rBsC76ezJPEwYzT1f6Jq5mTbSvLxazr0YnC86tGBYPc_56TzEL6s6IAj1PPSm5DsUMJG78WhjPfZuYr3Btym6q5PTvdyIIr1riwQ7B8j8vNPMKb2DpVu60UjKPQvqgLyO7eC4SvFMvBF6bLwRY8E4G-qhvbJblT0s2Zk4b2IIvQ0skbx851g5rS-3Ov0S8b28I4k5ePf2vFjypzx765k4RY04PcFsBz0K0h45PkKdveiqVL2Wh065xiX9vPd8qLxvp524vZjcPCrxSj0CryI4i2t8PMlj_DwnRi25tLDlu9t7Ir2AHPA4w3iSPRRUiT2x_DU4jBgxPRcYiL0zlRw5UIiFPUYIbz0f1iY4ksyqPCJVBD4FDR83SNarPBsQoT0R-W83EtG3uwz9iL1QZfo3baljPag04jyxRbS4IvsAvsZfJD0XmGU46CVwPdlUJ738n6c4Cqi7PVxaoDlpqxo47CwfvWvJVD1buaA4kl0ZPtlPUL2swj-5qCanvVQ9xL0cuIO4Hip4OyUE670jv2c4IE2rvc5Ehz1nPDQ4whWAvRR4573ZtKC4yvRwPSLhKz7xy4o4PCn6u1UqbT3gMo24naYqvc3deLx-6Lu3WCSBvRYKYj2Mkji4IAA4E0AJSG1QASpzEAAaYP8BADjuF8QIDC_wEu8dF9zgBu4E2B__7t8A4uLK8_755LoSFQAX0QLlsgAAAEv98_zRAPJr0vsTJgwA-8y63hwXcjMJDv3MA9mB-BgKHuMgFw79HwDcAqE2XP_FBRL-DyAALQ4XLTs4E0AJSG9QAiqvBhAMGqAGAADQQQAANMIAAIZCAAA4wgAALEIAAADBAACAQgAAMEEAAGBBAABQQQAAgEAAACDCAAAAwgAAgL8AAFDBAAAAQAAAhkIAAODAAADgQQAAAAAAAMBAAACAwAAAIMIAAIhBAAAEwgAADEIAAAzCAAAYwgAAKEIAAPjBAACYQQAADEIAANjBAADowQAAmMIAAFBCAACoQQAAykIAAAjCAAD4wQAAQMAAAEBBAAAsQgAABMIAAGBCAACYwgAAFEIAAEhCAACwQQAAmEEAAKBAAACwQQAA4MAAALBBAACgQQAAoEEAADTCAADAwQAAkkIAABxCAACQQQAAoMIAALDBAACMwgAAUEEAAFTCAADowQAAAMIAALDBAAC4wQAAWEIAANBBAAC8wgAA8EEAAABAAABAwgAAqMEAAKjBAAAMwgAAAMEAAHBBAACKQgAAEMEAAADBAABAQAAAAMAAAPBBAABwQgAAKEIAAI7CAAAMwgAA5kIAAIjCAABgwQAAYEEAAJDBAABwwQAAAEIAABRCAACAQgAAeMIAAPhBAAA4QgAA8EEAAEzCAACgQAAA4EAAAADBAAAQwQAAjkIAAKhBAAAowgAAAMIAABRCAABUwgAAgD8AAKxCAAAgwgAAUMIAAADBAAAswgAAgsIAAEjCAADAQAAAgL8AACzCAACAPwAAoMAAAODAAADAwAAAgMAAALjBAAAcwgAATEIAAAzCAADIQgAAaEIAABzCAACwwQAAmMEAAKBAAADAQAAA2EEAAAjCAABAwQAA8EEAACzCAAAQQQAAAMEAAHBBAADIwQAAdEIAAGBBAACowQAAYEIAABjCAADwwQAAOMIAAHTCAACgQAAANMIAAIjBAACowQAAAMIAAAjCAAAwQgAAAEAAAKBCAAB0QgAAkEEAAODAAAAwwQAAQEAAAPjBAAAIwgAAQMAAAIjBAABUwgAAYEIAAKBAAACowgAA8MEAAIDAAADgwQAAZEIAAITCAAAQwgAANMIAAFzCAAAAwQAAgL8AAJTCAADgQQAAcMEAAMhBAACMQgAAqEEAAIjBAAAwQQAAGMIgADgTQAlIdVABKo8CEAAagAIAACQ-AABUvgAAmD0AADC9AABcPgAA_j4AAI4-AAADvwAABL4AAIC7AAAQPQAAVL4AABA9AACmPgAAoLwAAKC8AACAuwAA4LwAADC9AAATPwAARz8AAAw-AACAOwAAjj4AABw-AACOvgAAnj4AAJi9AACOvgAA3j4AAOo-AAB0vgAAcL0AAJ6-AACOPgAAqL0AAHw-AABQvQAAf78AAFA9AACWvgAANL4AAII-AAB0vgAAbD4AALg9AACCPgAABL4AAM4-AABsvgAAnr4AAB-_AABQvQAAJD4AAGw-AAD4PQAAVT8AAKo-AACYvQAANz8AABA9AACCPgAALD4AALI-IAA4E0AJSHxQASqPAhABGoACAABQPQAAuL0AAFy-AABLvwAAHL4AAFw-AACaPgAAJD4AAMi9AACKPgAABD4AAEC8AACYPQAAoDwAAFC9AACovQAAqL0AAC8_AACIvQAACz8AABC9AABkvgAAPD4AADS-AAAwPQAAhr4AAES-AACoPQAAqD0AAKC8AACgPAAAcL0AAJi9AABQPQAAqj4AANq-AABkPgAAHL4AAEy-AAB0PgAAXD4AADS-AAAMvgAAgDsAAGy-AAAcPgAAf78AABw-AADovQAAiD0AAAS-AABkPgAAyL0AALY-AAC4vQAAFD4AANi9AACYvQAAtj4AAFC9AADIPQAAgDsAABC9AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=2_DcTWx18nM","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1052593913824911905"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1251671661"},"1394655536215481647":{"videoId":"1394655536215481647","docid":"34-9-13-Z3B46749C1F763BE3","description":"Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/diff... Watch the next lesson: https://www.khanacademy.org/math/diff... Missed the previous lesson...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1587965/4473c2b364da36a356d49543189425d0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sVRvnwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnDXFgexOM5c","linkTemplate":"/video/preview/1394655536215481647?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limits at infinity using algebra | Limits | Differential Calculus | Khan Academy","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nDXFgexOM5c\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChMxMzk0NjU1NTM2MjE1NDgxNjQ3WhMxMzk0NjU1NTM2MjE1NDgxNjQ3arUPEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8TxQKCBCQBgAQrKosBEAEaeIH9B_4N_gIA7_v7CQoD_gALAPv69wAAAOv4_PMC_wEA9QYGAQEAAAD2EQfzAAAAAP4D_xD3_gEA_AP5_fsAAAATAAUE_AAAAAIL9wb-AQAA_wX7_wP_AAAHBO71_wAAAPME9wP7__8B8vz4AAAAAAAG9gD1AAAAACAALY2P2js4E0AJSE5QAiqEAhAAGvABfyMA-8DKtgDAQL0A1hDvAcYjNAAMResAm-XGAN4ZvgEAFNIA3xvhAAAv7f-VOvX_G8iUAwWwHv9VsNr_OK22_-MQ-AFB3uQATxYhAzAQHQASEwz-K577AiHrrP4GM8r9670e_EAwAv_lBKgCEB80_ygBCP8P2CH90oo0AeTd8AUsy97-0jAc_hHsHf3jH1MBG_4XCxE7CvbcLt4D6xIc8gnq-vUp_rH5IvQLDR8F__uj4R787-vuCSv2Mgir9dP_xuxBCNIt__T1Fzj4NQXt9vU4DBoGAuwSFf39-gLoBgom_uvzCfnl7tkx-wrbI9DsIAAt8GHQOjgTQAlIYVACKnMQABpgGecARQ4t3gzeKuT15vD8vtEP0hCzGv_d3v-6EM8A-BCj0AUdABsGBfeiAAAAL-_2BOsACnri4-xG_hPH-oHIMf5J8-Qd-6z-ELMCGUgV5gouBA02ANQSsVgR5KAp7k0aIAAtA4sYOzgTQAlIb1ACKq8GEAwaoAYAAPBBAACAwAAAcMEAAJbCAACAQQAAwEAAAKpCAAAQwQAA0MEAADBBAAAAQQAAksIAABzCAAB8wgAADEIAAPDBAAAQQQAAsMEAAKBAAAAwwgAAAMIAAIzCAAAYwgAAGEIAAIDBAAAMwgAAKMIAAADCAAAUQgAABEIAACzCAAAAwQAArMIAAAhCAACewgAAHMIAAPhBAADOQgAAoMEAAIxCAAA4QgAA0EEAAI5CAACQQQAAgEEAAK7CAACQwQAAqEEAAKZCAAAMQgAAqMEAAGDBAADgwAAAMEEAANBBAACAQQAAAMMAABBCAAAYwgAAdEIAAEhCAAB4wgAAUMEAAKDCAABUwgAAeMIAALjBAAAYwgAAEMEAACjCAABQQgAASEIAAGDBAABgQgAAcMEAAIDCAAAwwQAAqMEAADxCAADgQQAA6MEAAAhCAABAQQAAIEIAAIBAAABgQQAAgD8AACBCAABcQgAAYMEAAPBBAAB8QgAASMIAAMbCAAAgwQAADMIAAKBAAADAQAAAJEIAAJhBAACywgAAaEIAADBCAACYwgAA4MEAADDBAACAwQAALEIAANDBAAAgQgAAKEIAAMhBAABAwQAAwMAAABDBAADgQQAAwMEAACzCAACwQQAAUMEAAADBAABEwgAA2MEAAPDBAAAAQQAAHEIAAEjCAACgQAAADMIAAAAAAACAQAAAoEAAAMDAAAAYQgAAAMIAAKBAAADQwQAA2EEAAPDBAACAwgAAyMEAABhCAAAEQgAAYMEAAERCAABwQQAANMIAAJjBAADAwAAAwMEAACDBAAA4QgAAQEIAAATCAACAwQAAEMEAAKBAAABkwgAArMIAAOBBAADIwQAAMEEAAADAAACAvwAAoEEAAAxCAAAUQgAAZEIAAGhCAADYQQAA-MEAABhCAADIwQAAAAAAAAzCAACgQAAAwMAAAOjBAAAwQQAAjkIAAGDBAABYwgAAgEAAACDBAABsQgAACMIAAJ7CAADYQQAAAEAAAJjBAACAQQAAaMIAAFDBAACAPwAAiEEAANBBAAA8wgAAQEAAADzCAACKwiAAOBNACUh1UAEqjwIQABqAAgAAUL0AAEy-AADiPgAADL4AAHQ-AAARPwAAZD4AACG_AACevgAAmL0AAIo-AACWvgAAlj4AADw-AAAwvQAAdL4AAKo-AADgPAAABD4AAOI-AAB_PwAAPL4AABy-AAAEPgAAyL0AADC9AAAsPgAAXL4AAIA7AAAHPwAAjj4AAKi9AAAUvgAADD4AAIA7AAC4PQAAoDwAAFS-AADCvgAAUD0AACm_AABAvAAAVD4AALi9AACyPgAAQLwAAKg9AACSvgAAuL0AABA9AAAQvQAAxr4AAGw-AACgPAAAnr4AAIA7AAAtPwAAEL0AALi9AAABPwAAcD0AAJg9AAAsPgAA6D0gADgTQAlIfFABKo8CEAEagAIAACy-AAA0vgAAZL4AAF2_AAAcvgAAij4AAEw-AAAEPgAAfL4AAEw-AADgvAAA4LwAALa-AACYPQAAUD0AAFC9AAAkvgAALz8AABC9AAD2PgAAgLsAAIi9AAAEvgAAcL0AALi9AAA8vgAA4LwAABA9AAA8PgAAUD0AAJg9AABQvQAAqL0AAAy-AACiPgAABL4AAJo-AAAkvgAApr4AABA9AABAvAAAiD0AAAS-AAAEPgAANL4AAMg9AAB_vwAAUD0AAEw-AACgvAAARL4AAEC8AAAcvgAAhj4AAHw-AAAcPgAAMD0AANg9AACqPgAAUD0AADw-AAAcPgAADD4AABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=nDXFgexOM5c","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1394655536215481647"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3525901817"},"4051593808259550198":{"videoId":"4051593808259550198","docid":"12-0-6-Z186017C798B8324A","description":"All types of limits at infinity, analyzed on the Cartesian plane, for the basic functions. functions analyzed Available and translatable with Google translate on Google Blogger...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4010203/c1dad4c5b77043b2d5bfc1913f796241/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/avn6EQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeGQ2iG2RMqk","linkTemplate":"/video/preview/4051593808259550198?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Infinite limits and limits at infinity: answers and solution in all basic functions","related_orig_text":"Infinitys Limit","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Infinitys Limit\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eGQ2iG2RMqk\",\"src\":\"serp\",\"rvb\":\"EqsDChM0OTM1ODM3MzM4Mzk3MTE4MzI4ChQxMDUzMTM2MDE4MTE0NzE3OTkzMAoUMTYzODQ5MDEyMzA5Nzg2MzA2OTYKFDEzMzk1MDc0MTUwNTEyNjg0NjIwChM3NTU2MzE4NDAwNzQ0MDA5MTIxChM0MjE3MjEyMjIwNzU2MTYzNDIzChQxMTc3ODUwMDU0ODIxNzMyNTMzMQoUMTc0NDMwNTYwNzY0OTMxNDk0ODYKFDEzMTk2OTcxNTYzNjMzNjM4OTIzChM0NzE1NDA3MTIxMDQzMzk4MDEwChM4MjA1MDg0MDE4MjMyMDgyMjY0ChQxMzc0MDYwMzcwMTAyNzI3NDI1OAoTMzcxOTUyNDc4MTQyMjAxNzA4MwoTNTcwOTcyNTA2MDk5ODA4NzI1MQoUMTI1MjI0MTA4MTYxOTkyNzA2MDAKEzEwNTI1OTM5MTM4MjQ5MTE5MDUKEzEzOTQ2NTU1MzYyMTU0ODE2NDcKEzQwNTE1OTM4MDgyNTk1NTAxOTgKEzg3Nzg5Nzg5NDg2ODQyODExMDEKEjI0MjE5MTQ1NTIwNDI0NTIzORoVChM0MDUxNTkzODA4MjU5NTUwMTk4WhM0MDUxNTkzODA4MjU5NTUwMTk4aogXEgEwGAAiRRoxAAoqaGhra2F1bXhoeXZ0dGhoZGhoVUNlQW9lTEtIYnNSRjBmN0dYcHgtdV93EgIAEioQwg8PGg8_E_EBggQkAYAEKyqLARABGniB8_8DC_0DAPP0A_gIAQABCQn_-PcAAADd9fj2BvkDAPUGBgEBAAAA7QUI_fkAAAAB_gMD_v4BAP4E___eAP8AEwAFBPwAAAD4CwEF_gEAAPgB_AED_wAABwTu9f8AAAD1BwgD__8AAPoC8w0AAAAAAPr8-QAAAAAgAC1Csds7OBNACUhOUAIqhAIQABrwAX_Hc_rnt84CyOoI_78XogDbU-QAABr3AJ3f7P_SAxkB2bM9AhlVBADP2_IAuBY5AAHcEf_LpxT_WfQc___jHQCfJxgB6zcsAT010gET5MwAKj8E_gbQEwBI7-P_8UIx_TomDvwSGA0AyO8XBDX5QwHlCcoBLQQi-Q8LJwIL9eIAtcy0-b0iKwFTGg7z8NU7Bhv-FwsaSOj_tQkG-wVEMP0ayegDH1vf_mL07__4KjcAFukJ_AS_-QjgGBX4zTbY_uIACAzI0tz44zEOBSfx8gEA3gb3YwTw-y0l_gMY4wwU4U4R-lMGF_8M4fv_FR7w6SAALRABzTo4E0AJSGFQAirPBxAAGsAHlfPtvoBYID3Nmm69e8KNPZav7DuUh4W8eLQBPjnqDT0ODEU7SRPPPSImFzuwr3W9z0xQvvZ6170UI4u8QL05PuIbqjkMpdi5cT1avucWvz2FTKi8yqKVveZHMjzxfgE929s9vgDgHb2Dodk5Qd4jOxk5m71sKma88Eq3PHJSOD2POU-8EfmTPNMjl7zcNgK8qhjdvLgJEr0NkKK7wFH8vPDU7TsHgyA5DCMdPoEgBb2wEiA7K_jNvRE53b0z7Q08_m6QPcfscjuhcw09nIS5O347ybzqq1C8pOt4PCU2RLzWsPy7g0OYOQGk9jwW2YI6l4I_vXY8_7sHyKG8T7qEu__xubz1tVO8Xp0DPbvR5z24EBg8ZDvEvRV1gTykC3u8UOqBPQUCeDyTdKg8qTLsPfE_g70RFbI7-6REPdF_qjxNW628a2ZovXZTyrxNGwQ9j0LIPBOF8buHGmA8e6A1vYdtizxWLq-78TpxPbiLlbzqTkG8oTYgvYkxn7y2LF889OlnvPqcNj0-vxw8xTVDPfhRDb4Jbyy7keZZPAdJur3qLj88Yy-fPSb_oz24YjW8Y9COvTGzT7wTfZ2771GkvG743bw4xJE6SjoPvak5FL3lCam73oV3vSAnzD0oCBc3rpK5vcwIz73Pi4-6-OxvvXb1L72X-ly7mTbSvLxazr0YnC86RTG3u48Y3T1Nn3c6rVwluocxCT0YcpW781nePW727Dz6gZy4IviEvYfrAzzJ8w27qDa4vJB7tD0c0v64jzfZPZ1pbbrhBgm58DvhvCwv1DwR7iU7S5kvPHhciT3-F1W4rCwbPSsBDD1fZGY5qMfWvVkNU73JJz-4THs5PQdNQb0owp-58UZmPWh-EDxFZZ64IvBRvAjX0ryzcqs384S_vWlRZD38Mji5qWIPPRsBC7zxGMs4gb6hO_UP4jwOJSk53zFhOxd-xb30ikw3GgDFPI2JYz2RfTo3hQcNvs4o57z4Za64p70XPWhOaD2GYDo5rTLDve614D1Q9kI4UyWlOwJy0zttJFa4sC44POZ2T70ZLZw4eNs7vGSaBL1aiJI4mv-cvdCQmz0C2y44xzafvEnyHjwlWmq4yF86PtyVwjzNr0s47CwfvWvJVD1buaA4oFTLPffxxrwtj9W4OcXEvWe3Jr7WR3I4UbkOvely1Lw4_u820d0_va5uqzwSgde3va8FPaVJCb6tnoW4mQ6dvOWooj38XTA4SK0LPQN3JT2G9ni4squPvXy6-jxzlDQ3htlVvX4JCz2TYHA4IAA4E0AJSG1QASpzEAAaYBD6AFbyD9Ag-R3Y_dXdBuW13N0Myw7_3dn_yBbZ4OL86rsbEwA07ALurAAAACoK8DHHANFp5fcbIQ0fDeigGh__fyLk3s27CACOBBAbU_9D_OPyDQDpC8cWNQ0GHQcUSCAALeZ_Ijs4E0AJSG9QAiqvBhAMGqAGAAAAwgAAAEAAAHDBAACAwAAAAMAAADRCAADGQgAAAMEAAIA_AABwwQAAoEAAAEBBAACWwgAAjMIAAChCAAAAQQAAwMAAAHDBAAAwQgAAYMIAABxCAACQwQAACEIAAIC_AAD4QQAAcMEAAHjCAACgwAAAQEIAAPhBAAAgwQAAYMEAAIrCAADgwAAA5sIAAIC_AADgQAAANEIAAIBAAADwQQAADEIAAJJCAAAMQgAAIEEAAIhCAAAwwQAAAMIAACBBAAAQQgAAcMEAAODAAAAQwgAA4MEAADzCAACAwAAAoEEAAJTCAABEwgAAgEAAAKhBAABAwAAApsIAAAjCAABQwgAA4EAAAMjBAADQwQAAjsIAAPDBAACAQAAASEIAAPhBAABYwgAAfEIAACDBAACewgAA6MEAAKjBAACAQgAAUMEAAJLCAAAIQgAAoMAAAIBAAACYQQAA6MEAAKhBAABAQgAATEIAAGTCAAAoQgAAkkIAAABAAAA0wgAAMEIAAPLCAABgQgAAiMEAAMDAAAAUQgAAAMAAAOBAAACAQQAAEMEAAPbCAABwwQAAgEEAAGBBAADQQQAAiEEAAFBBAABAQQAAAMIAAGDBAAA4QgAAAEEAAPjBAABcwgAAqMEAAIDCAACQwQAAFMIAAODAAAAgwgAADMIAAIDAAABwQQAABMIAAGTCAABMQgAAhEIAABBBAAAAwgAACEIAAIA_AAAAQAAAmEIAAIDAAACKwgAAzMIAAEBAAACQwQAAUEEAAADAAAAcwgAAgL8AAKDBAABwQQAAMEIAAJhBAACgwAAAwMAAAChCAAA8wgAAIEEAAIhBAABEwgAAUMIAAILCAABkQgAAGMIAACxCAAAgwQAAAMEAAIDBAAAgQQAAZEIAAHBCAACaQgAAsMEAAIDBAAB0QgAAksIAAOjBAAAgwQAARMIAAIDAAADwwQAAMMIAAIBCAAAwwgAA2MEAAHzCAACYQQAALEIAAKDAAACAwQAAwMAAAADAAACowQAAsMEAAODBAAD4wQAAiMEAACxCAAD4QQAAUEIAABTCAABQwQAAJMIgADgTQAlIdVABKo8CEAAagAIAAHA9AADOvgAAbD4AAHS-AAB8PgAAxj4AAGw-AAAxvwAA2L0AAGS-AADgPAAAlr4AABQ-AACYPQAAZL4AADC9AABQvQAAiD0AANg9AADmPgAAfz8AAHA9AABAvAAA-D0AAKi9AAAkvgAAgj4AAJg9AABQPQAAjj4AALI-AAAQPQAATL4AAKA8AAD4PQAAUD0AAIY-AAAkvgAAEb8AABA9AADCvgAAJL4AAAQ-AAA0vgAAdD4AAJi9AABcPgAAiL0AAAQ-AABEvgAAyD0AAJ6-AABMPgAAij4AAAQ-AABAPAAAPz8AAKC8AADIvQAAvj4AAFw-AAAcPgAAqD0AAIA7IAA4E0AJSHxQASqPAhABGoACAABAvAAAir4AALi9AAA9vwAAED0AAGw-AAAMPgAAkj4AAIq-AAA0PgAAQDwAANg9AADgvAAADD4AAJi9AAAQvQAADL4AAC8_AABEvgAA6j4AAIC7AABQvQAAgDsAAGy-AABAPAAAkr4AAMi9AAAQPQAAuD0AACQ-AAC4PQAA4LwAAES-AACYPQAAsj4AAIK-AABsPgAABL4AAIq-AAC4PQAAPD4AAHy-AAA0vgAAyD0AAIK-AACAOwAAf78AAGQ-AAAwvQAAEL0AAFy-AACWPgAAuL0AALo-AADgvAAALD4AAHC9AABwvQAAzj4AAIC7AACAOwAAoLwAAOA8AAAMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eGQ2iG2RMqk","parent-reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1440,"cheight":1080,"cratio":1.33333,"dups":["4051593808259550198"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1911871591"}},"dups":{"4935837338397118328":{"videoId":"4935837338397118328","title":"Introduction to \u0007[limits\u0007] at \u0007[infinity\u0007] | \u0007[Limits\u0007] and continuity | AP Calculus AB | Khan Acade...","cleanTitle":"Introduction to limits at infinity | Limits and continuity | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/eh_ATp0hbB0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eh_ATp0hbB0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":166,"text":"2:46","a11yText":"Süre 2 dakika 46 saniye","shortText":"2 dk."},"views":{"text":"34,5bin","a11yText":"34,5 bin izleme"},"date":"21 ağu 2018","modifyTime":1534809600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eh_ATp0hbB0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eh_ATp0hbB0","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":166},"parentClipId":"4935837338397118328","href":"/preview/4935837338397118328?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/4935837338397118328?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10531360181147179930":{"videoId":"10531360181147179930","title":"\u0007[Infinite\u0007] \u0007[limits\u0007] intro | \u0007[Limits\u0007] and continuity | AP Calculus AB | Khan Academy","cleanTitle":"Infinite limits intro | Limits and continuity | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/a2Ia_ZlUCaQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/a2Ia_ZlUCaQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":460,"text":"7:40","a11yText":"Süre 7 dakika 40 saniye","shortText":"7 dk."},"views":{"text":"669,3bin","a11yText":"669,3 bin izleme"},"date":"22 oca 2013","modifyTime":1358812800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/a2Ia_ZlUCaQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=a2Ia_ZlUCaQ","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":460},"parentClipId":"10531360181147179930","href":"/preview/10531360181147179930?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/10531360181147179930?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16384901230978630696":{"videoId":"16384901230978630696","title":"Functions with same \u0007[limit\u0007] at \u0007[infinity\u0007] | \u0007[Limits\u0007] and continuity | AP Calculus AB | Khan Ac...","cleanTitle":"Functions with same limit at infinity | Limits and continuity | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/H_Nm3qGE65s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H_Nm3qGE65s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":225,"text":"3:45","a11yText":"Süre 3 dakika 45 saniye","shortText":"3 dk."},"views":{"text":"45,2bin","a11yText":"45,2 bin izleme"},"date":"29 haz 2017","modifyTime":1498762175000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H_Nm3qGE65s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H_Nm3qGE65s","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":225},"parentClipId":"16384901230978630696","href":"/preview/16384901230978630696?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/16384901230978630696?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13395074150512684620":{"videoId":"13395074150512684620","title":"\u0007[Limits\u0007] at \u0007[Infinity\u0007] (PreCalculus Course Ch12)","cleanTitle":"Limits at Infinity (PreCalculus Course Ch12)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9dBuOMqVETQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9dBuOMqVETQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbE9SMUJpUHlPa2tJQW52OUNtajRpdw==","name":"Mario's Math Tutoring","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mario%27s+Math+Tutoring","origUrl":"http://www.youtube.com/@MariosMathTutoring","a11yText":"Mario's Math Tutoring. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":893,"text":"14:53","a11yText":"Süre 14 dakika 53 saniye","shortText":"14 dk."},"date":"6 ağu 2025","modifyTime":1754438400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9dBuOMqVETQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9dBuOMqVETQ","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":893},"parentClipId":"13395074150512684620","href":"/preview/13395074150512684620?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/13395074150512684620?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7556318400744009121":{"videoId":"7556318400744009121","title":"\u0007[Infinite\u0007] \u0007[Limit\u0007] Examples #\u0007[Limits\u0007] #InfiniteLimits #Calculus #STEM #Math #Maths","cleanTitle":"Infinite Limit Examples #Limits #InfiniteLimits #Calculus #STEM #Math #Maths","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=scXRH2mfP00","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/scXRH2mfP00?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMVl6X2tlbWxhRmxMTWdMdE5IWWZJZw==","name":"Henry Smith","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Henry+Smith","origUrl":"http://www.youtube.com/@blackspanielgallery1","a11yText":"Henry Smith. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":169,"text":"2:49","a11yText":"Süre 2 dakika 49 saniye","shortText":"2 dk."},"date":"1 ağu 2024","modifyTime":1722470400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/scXRH2mfP00?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=scXRH2mfP00","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":169},"parentClipId":"7556318400744009121","href":"/preview/7556318400744009121?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/7556318400744009121?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4217212220756163423":{"videoId":"4217212220756163423","title":"Calculus: \u0007[Infinite\u0007] \u0007[Limits\u0007] and \u0007[Limit\u0007] at \u0007[Infinity\u0007]","cleanTitle":"Calculus: Infinite Limits and Limit at Infinity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CoKlOaphOXE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CoKlOaphOXE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVUdXVjI4VmpoOVozbGRMcXdVUFFidw==","name":"Let's Get Complex","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Let%27s+Get+Complex","origUrl":"http://www.youtube.com/@getcomplex","a11yText":"Let's Get Complex. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1112,"text":"18:32","a11yText":"Süre 18 dakika 32 saniye","shortText":"18 dk."},"date":"3 nis 2025","modifyTime":1743638400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CoKlOaphOXE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CoKlOaphOXE","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":1112},"parentClipId":"4217212220756163423","href":"/preview/4217212220756163423?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/4217212220756163423?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11778500548217325331":{"videoId":"11778500548217325331","title":"\u0007[Limits\u0007] at \u0007[Infinity\u0007] and Horizontal Asymptotes | Calculus 1","cleanTitle":"Limits at Infinity and Horizontal Asymptotes | Calculus 1","host":{"title":"YouTube","href":"http://www.youtube.com/live/VtvpppevZao","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VtvpppevZao?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeUVLdmF4aThtdDlGTWM2Mk1IY2xpdw==","name":"Wrath of Math","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Wrath+of+Math","origUrl":"http://www.youtube.com/@WrathofMath","a11yText":"Wrath of Math. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":844,"text":"14:04","a11yText":"Süre 14 dakika 4 saniye","shortText":"14 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"31 tem 2023","modifyTime":1690761600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VtvpppevZao?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VtvpppevZao","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":844},"parentClipId":"11778500548217325331","href":"/preview/11778500548217325331?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/11778500548217325331?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17443056076493149486":{"videoId":"17443056076493149486","title":"Let's understand \u0007[Infinity\u0007] \u0007[limits\u0007]!","cleanTitle":"Let's understand Infinity limits!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CVbeIvPHXfA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CVbeIvPHXfA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR2RqRy05ZlVrT0s1MmJMMGpvc19NUQ==","name":"Math Mastery with Amitesh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Mastery+with+Amitesh","origUrl":"http://www.youtube.com/@MathMasterywithAmitesh","a11yText":"Math Mastery with Amitesh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":676,"text":"11:16","a11yText":"Süre 11 dakika 16 saniye","shortText":"11 dk."},"date":"9 eyl 2024","modifyTime":1725840000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CVbeIvPHXfA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CVbeIvPHXfA","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":676},"parentClipId":"17443056076493149486","href":"/preview/17443056076493149486?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/17443056076493149486?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13196971563633638923":{"videoId":"13196971563633638923","title":"Difference between \u0007[limits\u0007] at \u0007[infinity\u0007] & \u0007[infinite\u0007] \u0007[limits\u0007] | \u0007[Limit\u0007] of function | Sc...","cleanTitle":"Difference between limits at infinity & infinite limits | Limit of function | Science Valhalla","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VpN3OGYLUwU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VpN3OGYLUwU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDREJ5TGRoQWJPMmNvalpabk5fZ29WZw==","name":"Science Valhalla","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Science+Valhalla","origUrl":"http://www.youtube.com/@sciencevalhalla","a11yText":"Science Valhalla. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":466,"text":"7:46","a11yText":"Süre 7 dakika 46 saniye","shortText":"7 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"24 haz 2021","modifyTime":1624492800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VpN3OGYLUwU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VpN3OGYLUwU","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":466},"parentClipId":"13196971563633638923","href":"/preview/13196971563633638923?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/13196971563633638923?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4715407121043398010":{"videoId":"4715407121043398010","title":""\u0007[Infinite\u0007] \u0007[Limits\u0007]" & "\u0007[Limits\u0007] at \u0007[Infinity\u0007]" Defined","cleanTitle":""Infinite Limits" & "Limits at Infinity" Defined","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4a2EN7A_BmQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4a2EN7A_BmQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNjZGZlNzcGEzNF91LTJpZmQxZ0lTQQ==","name":"Functions & Calculus by Professor Calculish","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Functions+%26+Calculus+by+Professor+Calculish","origUrl":"http://www.youtube.com/@professorcalculish","a11yText":"Functions & Calculus by Professor Calculish. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"3 haz 2023","modifyTime":1685750400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4a2EN7A_BmQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4a2EN7A_BmQ","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":60},"parentClipId":"4715407121043398010","href":"/preview/4715407121043398010?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/4715407121043398010?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8205084018232082264":{"videoId":"8205084018232082264","title":"Introduction to \u0007[infinite\u0007] \u0007[limits\u0007] | \u0007[Limits\u0007] and continuity | AP Calculus AB | Khan Academy","cleanTitle":"Introduction to infinite limits | Limits and continuity | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=WS-76fFFICY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WS-76fFFICY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":262,"text":"4:22","a11yText":"Süre 4 dakika 22 saniye","shortText":"4 dk."},"views":{"text":"29,4bin","a11yText":"29,4 bin izleme"},"date":"21 ağu 2018","modifyTime":1534809600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WS-76fFFICY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WS-76fFFICY","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":262},"parentClipId":"8205084018232082264","href":"/preview/8205084018232082264?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/8205084018232082264?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13740603701027274258":{"videoId":"13740603701027274258","title":"How To Find The \u0007[Limit\u0007] At \u0007[Infinity\u0007]","cleanTitle":"How To Find The Limit At Infinity","host":{"title":"YouTube","href":"http://www.youtube.com/v/NmLljBAg82o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NmLljBAg82o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":793,"text":"13:13","a11yText":"Süre 13 dakika 13 saniye","shortText":"13 dk."},"views":{"text":"4milyon","a11yText":"4 milyon izleme"},"date":"9 eyl 2017","modifyTime":1504915200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NmLljBAg82o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NmLljBAg82o","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":793},"parentClipId":"13740603701027274258","href":"/preview/13740603701027274258?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/13740603701027274258?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3719524781422017083":{"videoId":"3719524781422017083","title":"\u0007[Limits\u0007] at \u0007[Infinity\u0007] of Exponential Functions | How to find \u0007[limits\u0007] at \u0007[infinity\u0007] | Calcu...","cleanTitle":"Limits at Infinity of Exponential Functions | How to find limits at infinity | Calculus - Part 4","host":{"title":"YouTube","href":"http://www.youtube.com/live/s1U6iGxy6kc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/s1U6iGxy6kc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQTk0MUFmMGR6anNmNmp3NE85amxpdw==","name":"Calculus","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus","origUrl":"http://www.youtube.com/@calculus997","a11yText":"Calculus. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":995,"text":"16:35","a11yText":"Süre 16 dakika 35 saniye","shortText":"16 dk."},"views":{"text":"64,1bin","a11yText":"64,1 bin izleme"},"date":"7 nis 2022","modifyTime":1649289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/s1U6iGxy6kc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=s1U6iGxy6kc","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":995},"parentClipId":"3719524781422017083","href":"/preview/3719524781422017083?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/3719524781422017083?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5709725060998087251":{"videoId":"5709725060998087251","title":"\u0007[Infinite\u0007] \u0007[Limits\u0007], \u0007[Limits\u0007] @ \u0007[Infinity\u0007] , Continuity","cleanTitle":"Infinite Limits, Limits @ Infinity , Continuity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wVr4fgw-AiY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wVr4fgw-AiY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWXU2am5MS0RWTFdKeGtQUDEyaFVZdw==","name":"Señor Pablo TV","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Se%C3%B1or+Pablo+TV","origUrl":"http://www.youtube.com/c/Se%C3%B1orPabloTV","a11yText":"Señor Pablo TV. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2920,"text":"48:40","a11yText":"Süre 48 dakika 40 saniye","shortText":"48 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"5 mar 2024","modifyTime":1709640906000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wVr4fgw-AiY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wVr4fgw-AiY","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":2920},"parentClipId":"5709725060998087251","href":"/preview/5709725060998087251?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/5709725060998087251?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12522410816199270600":{"videoId":"12522410816199270600","title":"\u0007[Infinite\u0007] \u0007[Limits\u0007] at \u0007[Infinity\u0007] + Examples Part 1","cleanTitle":"Infinite Limits at Infinity + Examples Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qXLYInFkW7Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qXLYInFkW7Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVVVCcTFHUEJ2dkdOejdkcGdPMTRPdw==","name":"Math Easy Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Easy+Solutions","origUrl":"http://www.youtube.com/@mes","a11yText":"Math Easy Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":395,"text":"6:35","a11yText":"Süre 6 dakika 35 saniye","shortText":"6 dk."},"date":"16 tem 2013","modifyTime":1373932800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qXLYInFkW7Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qXLYInFkW7Y","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":395},"parentClipId":"12522410816199270600","href":"/preview/12522410816199270600?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/12522410816199270600?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1052593913824911905":{"videoId":"1052593913824911905","title":"\u0007[Infinite\u0007] \u0007[Limits\u0007] (\u0007[Limit\u0007] Example 10)","cleanTitle":"Infinite Limits (Limit Example 10)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2_DcTWx18nM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2_DcTWx18nM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb09qVHh6LXU1elUwVzM4ek1rUUlGdw==","name":"Dr Peyam","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr+Peyam","origUrl":"http://www.youtube.com/@drpeyam","a11yText":"Dr Peyam. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":310,"text":"5:10","a11yText":"Süre 5 dakika 10 saniye","shortText":"5 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"9 tem 2020","modifyTime":1594252800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2_DcTWx18nM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2_DcTWx18nM","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":310},"parentClipId":"1052593913824911905","href":"/preview/1052593913824911905?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/1052593913824911905?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1394655536215481647":{"videoId":"1394655536215481647","title":"\u0007[Limits\u0007] at infinity using algebra | \u0007[Limits\u0007] | Differential Calculus | Khan Academy","cleanTitle":"Limits at infinity using algebra | Limits | Differential Calculus | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nDXFgexOM5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nDXFgexOM5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":325,"text":"5:25","a11yText":"Süre 5 dakika 25 saniye","shortText":"5 dk."},"views":{"text":"128,9bin","a11yText":"128,9 bin izleme"},"date":"6 kas 2013","modifyTime":1383763942000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nDXFgexOM5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nDXFgexOM5c","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":325},"parentClipId":"1394655536215481647","href":"/preview/1394655536215481647?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/1394655536215481647?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4051593808259550198":{"videoId":"4051593808259550198","title":"\u0007[Infinite\u0007] \u0007[limits\u0007] and \u0007[limits\u0007] at \u0007[infinity\u0007]: answers and solution in all basic functions","cleanTitle":"Infinite limits and limits at infinity: answers and solution in all basic functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eGQ2iG2RMqk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eGQ2iG2RMqk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZUFvZUxLSGJzUkYwZjdHWHB4LXVfdw==","name":"Nicolò Vignatavan","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Nicol%C3%B2+Vignatavan","origUrl":"http://www.youtube.com/c/Nicol%C3%B2Vignatavan","a11yText":"Nicolò Vignatavan. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":241,"text":"4:01","a11yText":"Süre 4 dakika 1 saniye","shortText":"4 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"2 mayıs 2020","modifyTime":1588377600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eGQ2iG2RMqk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eGQ2iG2RMqk","reqid":"1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL","duration":241},"parentClipId":"4051593808259550198","href":"/preview/4051593808259550198?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","rawHref":"/video/preview/4051593808259550198?parent-reqid=1769321061066642-12043065844719093085-balancer-l7leveler-kubr-yp-sas-31-BAL&text=Infinitys+Limit","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2043065844719093085731","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Infinitys Limit","queryUriEscaped":"Infinitys%20Limit","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}