{"pages":{"search":{"query":"Integral Centering","originalQuery":"Integral Centering","serpid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","parentReqid":"","serpItems":[{"id":"8554624226668521797-0-0","type":"videoSnippet","props":{"videoId":"8554624226668521797"},"curPage":0},{"id":"673064110671974179-0-1","type":"videoSnippet","props":{"videoId":"673064110671974179"},"curPage":0},{"id":"1865887572765399260-0-2","type":"videoSnippet","props":{"videoId":"1865887572765399260"},"curPage":0},{"id":"16692387885863915745-0-3","type":"videoSnippet","props":{"videoId":"16692387885863915745"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEludGVncmFsIENlbnRlcmluZwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","ui":"desktop","yuid":"8587452391769373535"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"13798424086104835081-0-5","type":"videoSnippet","props":{"videoId":"13798424086104835081"},"curPage":0},{"id":"15088118330494702344-0-6","type":"videoSnippet","props":{"videoId":"15088118330494702344"},"curPage":0},{"id":"4642436473067307856-0-7","type":"videoSnippet","props":{"videoId":"4642436473067307856"},"curPage":0},{"id":"14140659303003165401-0-8","type":"videoSnippet","props":{"videoId":"14140659303003165401"},"curPage":0},{"id":"17399147963250611273-0-9","type":"videoSnippet","props":{"videoId":"17399147963250611273"},"curPage":0},{"id":"503816849767302892-0-10","type":"videoSnippet","props":{"videoId":"503816849767302892"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEludGVncmFsIENlbnRlcmluZwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","ui":"desktop","yuid":"8587452391769373535"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"1681406875938763357-0-12","type":"videoSnippet","props":{"videoId":"1681406875938763357"},"curPage":0},{"id":"3671103772263866200-0-13","type":"videoSnippet","props":{"videoId":"3671103772263866200"},"curPage":0},{"id":"5606454476905001904-0-14","type":"videoSnippet","props":{"videoId":"5606454476905001904"},"curPage":0},{"id":"15328646867886314621-0-15","type":"videoSnippet","props":{"videoId":"15328646867886314621"},"curPage":0},{"id":"14375383146039888609-0-16","type":"videoSnippet","props":{"videoId":"14375383146039888609"},"curPage":0},{"id":"6106676314309675549-0-17","type":"videoSnippet","props":{"videoId":"6106676314309675549"},"curPage":0},{"id":"14594359860301322231-0-18","type":"videoSnippet","props":{"videoId":"14594359860301322231"},"curPage":0},{"id":"2706475575197962368-0-19","type":"videoSnippet","props":{"videoId":"2706475575197962368"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEludGVncmFsIENlbnRlcmluZwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","ui":"desktop","yuid":"8587452391769373535"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegral%2BCentering"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"7381952126117660337162","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,61;1466868,0,95;151171,0,97;1269694,0,4;1281084,0,45;287509,0,88;1447467,0,35;1231503,0,21;1466397,0,59;912280,0,22"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegral%2BCentering","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Integral+Centering","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Integral+Centering","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Integral Centering: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Integral Centering\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Integral Centering — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yd1f131d458cc4c7a0c1a90dec92ad42c","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1466868,151171,1269694,1281084,287509,1447467,1231503,1466397,912280","queryText":"Integral Centering","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8587452391769373535","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,310194,278842,331010,338398,378416,359879,415420,571985,644350,652605,645301,679708,689693,690449,696466,696473,698168,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769373543","tz":"America/Louisville","to_iso":"2026-01-25T15:39:03-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1466868,151171,1269694,1281084,287509,1447467,1231503,1466397,912280","queryText":"Integral Centering","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8587452391769373535","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"7381952126117660337162","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":157,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"8587452391769373535","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"8554624226668521797":{"videoId":"8554624226668521797","docid":"34-4-5-Z26B529662C541C8E","description":"Bryan Bayer, Decker Cunov & Robert McNaughton www.integralcenter.org Bryan, Decker and Robert share their views on circling, development, and the vision of the Integral Center.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2742678/edd5e96facf0d8e3844b5e22f7cdb1f2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9kM5LwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXqI_gkNuiEQ","linkTemplate":"/video/preview/8554624226668521797?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Circling Summit | The Integral Center Vision","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XqI_gkNuiEQ\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFQoTODU1NDYyNDIyNjY2ODUyMTc5N1oTODU1NDYyNDIyNjY2ODUyMTc5N2qIFxIBMBgAIkUaMQAKKmhodXJ3YWdkZWh2YXNxd2NoaFVDZExkX2pYblhVd2tUZEFHUlM3YlZtZxICABIqEMIPDxoPPxP0EIIEJAGABCsqiwEQARp4gfsPAgb9BADxAvz_-gIAAQUQCAj3AP8A_QwF-_oE_gDp-QMGCP8AAP4GBAoEAAAA9QYA-P0AAAANAgb9_QAAAAnz9wv7AAAA_gb-Cv8BAADoAf0AAwAAAAn3CgIAAAAA_PML_QAAAAD3BwEAAAAAAALq9gMBAAAAIAAtMsjcOzgTQAlITlACKoQCEAAa8AF_EvkDt-0S_EL5_AD6FucBsvwKADr-8wDr6_IBv_jvAAURFAD-8fv_NRgCAe3__QDc5gsAD_j3APID_QAsF_kAIAEHACL6AwAg-PwA-fH5AN369_8iAAsB_P8P_yAY8gEA_fcA9vj5ABEICv8a-fMACQDxAyv7BwIT-vwBGPPyAxYE-f4KDv7-5PAG-gwgBwcE9fP_CQQCAfsV__wS9_j8_BLy_gD3-_8YDwP_7f4B_OUQBwIDDgT_3QkWAgYYAAbu4Qz9EAPxA_MI-QT7BwgIC-oUAgrkEfv4CQD_-woPAwQYBf315_YEEPb9AxQW_AUgAC1GwVs7OBNACUhhUAIqzwcQABrAB6w4Cb-6Fd08v0UGvHA_ED5E7Si9bOegvEkrvjxXsqO8mfLfu6vMVL46TIU8A0AXvNGuUr6fZIE9Lq6MPP7Viz4gxJ88hqkxOwlCuL27NZ89Q59ZPPWha76E0wc9dDXDuxBcBT6bk1W77awru8SboL3cxlW9a-VSux0ELT6FwMA8PmgsvIApAz6jgS49O8HEu442szwZj1I8obovOuMgzD3gPvw8XpHrOmd3EDxXfnQ9MgfeOy0SqT2sb4U9zpg4POM1Tz552uu8g13DPP92iT3RsQO7Lx45PKx6rzyUxG29Ck8DvUew0b1t68A6Y03API0lEb04wZK9n7enPG2s5L2mES49lE7BO7oCsD0uuZ-70JjJvDL7Qb2kZAO9ILMzPNunw72oaZu71BbNPMB1arx0E6u8NFwbudRI6z36Gc08aJGtPE12nT0zSKa83fssuoxyH72RLGA81ELuu_9Bf7zQA4S8MoxgvJDAD77SdJG8tT8EvC-wXb2d0ge7NTIhPJuoijy6JNi8EeZRPP0vNz2n0qo9oH9MvEUZ4LwmBOU7Q5OfvLBuIb3Hd_O8jY1tu5aLgjyPeZM8tOJAvKRuRz1e06g8Nz6Lu6pEWTzZKho8eot5Ome1oD1sMW69Y1LwugpHhb1_IiW9R2aiu_V2lTwd_wk8zKLJul0VDb1L3Z-8QTvxO3SbcDyM0DS9BBKgOpl7Db2OqaK7VSMqO2nk0z3J0r28UrAGuFjsar23mUg79FjMO2rCdjzDqzY9hUy9uS_yt71j5ke9rsDKuVPqAj60-N68YBy_uSdmvTxp7hc8NMnQuP_FebtvkJq86AQ2uTbPnD37y-48mZooOM-B5b3VaKg8FqYoORW1arwSiSK9ARbduPaQOrwLVmY8PVeEOSyoXrwfzo27N9cEuvFFkD1SrU88nrK_OPgJpj3iiF-9aybLufKAjT3nkkU9-e2suYYzZL01zR48D21ZuAXsWbzAGca7udw5OfJgUjpXKw-8VXGEtweWxDtar_G6tkuxty-ZtL2NiQW81_41uOKFvryREIC899rmN57H8jwGblg9bJR2uEpRqL1jbu08-wU-OBYggDwIVMG7JeR6thaX9Dy5t4w9C6gcODChgj24UY694oREuCnvoTpc5z45c7iNuAVGiD0QbKa8MvmONnMIIT0c7dk7zQGoNwi8wDv-K2u9kSuYt7V1Kz2kEoM8Q3A_uNC4Dzy0ub076H4HOOIYrjxvpaI9TCdSuPs3FL2Jzjc9rw2Pt45bzDxwP6C8MSS8NyAAOBNACUhtUAEqcxAAGmBHBAAA7gr53vY_5Pf_AhTmBAYB3JkO__fe__RUAtAHDsCUGwn_BZzyBKEAAADu-xYkRgDpfw7M0TD5Ksv9rw0qF10-GRQS_A__68G96ezTwfw07ToAziO8RSfgzDAWMgcgAC10bho7OBNACUhvUAIqrwYQDBqgBgAAcEEAAGBBAACwQgAAqEEAAHBBAAAwQgAAFEIAAFTCAAAAwAAAuEEAAODAAAC4QQAAZMIAAKDBAAAgQQAAiEEAAKjBAAAAQQAAgMAAAMbCAAAcQgAAJMIAABjCAACUQgAAiEIAAJBBAAAswgAAyMEAAJRCAAAUQgAAAMEAADBCAAAwQQAAIEIAAFTCAACAQAAAMMEAAABCAABwQQAAEMIAABzCAADAQQAAwEEAAOhBAAAQwQAAHEIAAOjBAAA0wgAASEIAAILCAAAsQgAAMMEAAATCAABgQQAAysIAAEDCAACgQQAAREIAAGjCAABMQgAAyMEAAJjBAAAkwgAAkMEAAIjBAAAIQgAAPMIAALjBAAAQwgAAfEIAAHRCAACIQQAAIMIAAJ5CAABwQQAAwMAAAIC_AABAQQAAuMEAAGBCAAB4wgAAAAAAAIA_AACwwQAAgMAAADxCAAAcwgAAmMEAAIpCAAAAAAAAQEIAALBBAAD4QQAAoMAAAGDBAACgQAAATEIAAADAAADIQQAAAMIAALDBAABkQgAAokIAAILCAACKwgAAgD8AAPjBAACYQQAA4MIAABRCAAAAwAAAkEIAANDBAACgwAAAgEIAACxCAADQwQAAVMIAAKhBAAAkwgAAPMIAAODBAAAAwAAAmMEAAFBBAAAYQgAAQEEAAIhCAAAowgAATMIAAOBBAABUwgAAIEEAAIBCAADAQQAA0MEAANBBAACAwQAAMMIAACzCAACgwAAAuMEAAPBBAACYQQAAZEIAAEhCAACoQQAAHEIAALBBAAAAAAAAREIAAEBAAADAwQAAgD8AAHxCAABAQQAAikIAAKDAAAAAAAAAgMEAAHTCAAAMQgAAQMIAADTCAACAwQAAosIAAMBAAAAwQQAAQEEAAMDAAAAwwgAAEMIAABDCAAAAQQAAgD8AAIBAAADwQQAACMIAAChCAACIQgAA-EEAAKDCAACYwQAALMIAAChCAADgwAAARMIAAFxCAACCQgAAcMEAABjCAACcQgAABMIAAAxCAADwQQAA-EEAAKDBAACAwAAAlMIAABBCIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAbL4AACw-AADgPAAA4LwAACw-AADoPQAAA78AABy-AABUPgAAgLsAAKC8AABsPgAAND4AAKC8AACgvAAAtj4AAHA9AAC4PQAAvj4AAH8_AABQvQAAbD4AAAQ-AAA0vgAAdD4AAIA7AAA0vgAA4LwAAIo-AABQPQAADD4AAJq-AABQPQAAoLwAAKA8AABwvQAANL4AAJK-AACGvgAALL4AAFC9AACgPAAAED0AACy-AACoPQAAEL0AAPi9AACyvgAAXL4AAIC7AACAOwAAtj4AAII-AACOvgAAQLwAAEk_AABQvQAAUD0AAIY-AAAQvQAADL4AABC9AACSviAAOBNACUh8UAEqjwIQARqAAgAAuL0AABA9AADovQAAWb8AAOi9AACgPAAAVD4AAAy-AADgvAAAoj4AABQ-AAD4vQAAuL0AAKi9AADgvAAAQLwAAIA7AAAVPwAAiD0AAKI-AAAwPQAAiL0AAFA9AADIvQAAgDsAADQ-AAAkvgAAqD0AADA9AABAPAAAgLsAAOA8AADoPQAANL4AADC9AAC4vQAAqD0AAAw-AACYvQAAJL4AAK4-AACYPQAAQDwAAOi9AABQvQAA2D0AAH-_AADIPQAARD4AALg9AAAMPgAA2L0AAEA8AAD4PQAAiL0AANg9AAAQvQAA6L0AAJg9AAAEvgAA2D0AAFS-AAA0vgAATD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=XqI_gkNuiEQ","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8554624226668521797"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4192238606"},"673064110671974179":{"videoId":"673064110671974179","docid":"34-10-7-ZCADCB113D95A72BD","description":"This video is part of Higher Several Variable Calculus http://web.maths.unsw.edu.au/~potapov...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1005905/e15c81bc01ac41b868f96c2676e5fc0e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0SBLLQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DV8P-Y3o0je0","linkTemplate":"/video/preview/673064110671974179?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Week 6 Lecture 22 -- Change of variables in triple integrals and centre of mass","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=V8P-Y3o0je0\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFAoSNjczMDY0MTEwNjcxOTc0MTc5WhI2NzMwNjQxMTA2NzE5NzQxNzlqiBcSATAYACJFGjEACipoaGtpYWh4bWV5c2plcHNjaGhVQ0UyOEhJb3pQcG9aUmNMQVVabkowekESAgASKhDCDw8aDz8TmRKCBCQBgAQrKosBEAEaeIH7BPsAAf8A-gsA-_0DAAEGB_gA9v__APABAvz-AQAA8gABB_4AAAD_FAgLBgAAAP78C_3z_gEAFfnz9AMAAAAT-AL-9wAAAA0LBAAI_wEB6QEBAPYCAAH4_QcRAAAAAA77BvoAAP8A7wz8BQAAAAAL8u_7AQAAACAALe3fzjs4E0AJSE5QAiqEAhAAGvABdPokAc385v_O5-YA1iTkAYEiCv7pIdYAzw8D_9zxxgH17PT_5yrpAAcXJf-5J_n_PPbN_93W_QEe4_7_IvEHAP7zJwAY6vYBPfLsAAjU7AHeDAr-3eAg__3K4AAdKuX_KukC_tMm8f_0FNsBDv47AeEQF_87CBYA_-AJ-uT2G_8FGdEA-RAD_PHf__rkDhEHIN0KAhwuFgAMDNIB_usKBu8A-PooK_ABFvgHCPkaAwX9Dt8HAQUHAiz-__Xi8usB4PwIBtnnAPgEzAf6BdsQ9Qck8voJD-358_8B_gDO-QEY5_X06RfyBAXn6f_26PLpIAAt_yEdOzgTQAlIYVACKs8HEAAawAenIL--LZPGPCkQLL1OY_u9N-kMvXfp8Ly8ytq9QBjDPSJPs7sYmAU-gDPrO3-zvbvEl1m-jGZlvPW6Jb3LgDM-5tGIvZhiMzxaLlu-6o-VPG5ikrz1oWu-hNMHPXQ1w7uazLg8vjmCvX_DHzzBfr498vfBvRetbbzomYM8JFT6PJspI72YrWu9F-VDvbxJAr3nWs88y_QLvZH1Lz0uWaU9Y0JMvB8IWjxcEGA9AJdWvY5RqLxPJHO8uIIcPVoNibyCQsg92hPuPCLY3Tz9Wr29ggNWO9eefryXV869oKkyvBD8ubysYws9DQYyPFrsm7z0bGm5YKskvoAygLttrOS9phEuPZROwTv1vCs-zSx4PPp6vjx02T69VqLHPTkP57yc2VM80LHovMdVkjlYfi89dPU-PDt4XDw8Xbc91iV5PYo1CjpyE_e7LLmKPHMyzDwiRAM9RYBTvETf3bxGgZk9oaA0PVLfaLsbFGi95qzPPNZcibyqcxY9BJ4qPXz0xDtFTvy7knUYPZ0m2DzFNUM9-FENvglvLLvHg229VxCOvZ23VrzdwX49vLskPYh7kbxbPpc9-KTDvajUOrtJ42a9ihL-PGa28boW9W48MJAWvYFcYjsKeb69mAAXPYMuBjy_a6e7OsO5PNY1f7xCn748XDGNPUd7kzt7LS29R2OzvfC-iDltWFM91e1HPDLn17r7m2s99gtWPQ4rJ7pU-p49mug4vXhaTzj2K_g59O9EPCssnzrGpD-85AS3vDz--biUQLQ94M1kveKHajmZtTk8i3xJuzzpVboIfxW9W0SvPZiB-DhvYgi9DSyRvHznWDlcVAu9nBXxvdyedTlGuS-93MUKvXhFs7kXqJs9jLIduncZbLlKCxe-Ctyavamq4bbrS4C9QAenPFvERrkUfK49K8KNPeBkZTipsfO87omfPR1vOLmfuzO9JTubPNJ4Izlpewo9kxVoPBuQqTh3fpM6z_NMvCl7R7n9WJc93Lf6PR1WxDWtMsO97rXgPVD2QjgcEq09R6F2PM1QajiBOko9bdhAvTker7eHnwQ9aj2SPTQipLgi-wC-xl8kPReYZTgBByO9H65rvVa-crYKqLs9XFqgOWmrGjh5JDk9U0FFPJGYPbaSXRk-2U9QvazCP7n5SuC9DI_dvWMzRLgrtD286ZoJvZ59TbdAkIK9prxxPaB-9baGECE9XHfTvd7zm7fK9HA9IuErPvHLijiVXys8z7yMPcX8Brmyq4-9fLr6PHOUNDeVEbK8ZTCrPIsVjzYgADgTQAlIbVABKnMQABpgEwAAFicRz8ELF-vS0Q3_7tnt5gPc-P_0sQD1G_oFBQ0BqBYGAAq9L9mwAAAAEfDzGdsABmUJ-SDyAjIX68DeK-V_KxL2weI_A9HLBhMN_xLiKxleANYFwhk00eY2Diw0IAAt_JEtOzgTQAlIb1ACKq8GEAwaoAYAALBBAABQQQAAkkIAACjCAAAQQQAAWEIAAP5CAADgwAAAJMIAANDBAACAvwAAEMEAAFzCAABAwQAAAEIAAKBAAABAQQAAQMIAANBBAAAAwQAAAAAAAPDBAABIwgAADEIAAADAAADIQQAAQEAAADTCAABQQgAAcEIAAOBAAADAQQAAhMIAAMBAAADewgAAUMEAACBCAAAEQgAAIEIAAIC_AADIQQAAFEIAAOBBAAC4QQAAqEEAAKzCAADgwAAA8EEAAAhCAABEQgAAjsIAABjCAACYwgAAwEAAACRCAAAMQgAASMIAAMjBAABAQQAAVEIAAExCAACowQAAuMEAAIDCAACYQQAAvsIAAEzCAAA4wgAASMIAAHTCAACUQgAA4EAAACDBAAAEQgAATMIAAOjBAACIwgAAgMAAAHBBAACAQQAASMIAALJCAABAwQAAiEIAAIBCAACAQQAAUMEAAEDBAABMQgAA0MEAAFhCAAD4QgAAcMEAAEjCAADAQQAAGMIAAIDBAADgwQAAtkIAAMhBAAAswgAAAAAAAFhCAACowgAASMIAAFBBAAAYQgAAQMAAANDBAABEQgAAOEIAAMBAAADAwQAA4EEAAIA_AAC4QQAAoEAAAGDBAAAYwgAAgL8AAEBAAAAAQQAAQEAAABDCAAB0wgAAQEAAAAxCAACAvwAAiMEAAIBAAADAwQAAXMIAAMjBAADIQQAAMMIAAHBCAAAcQgAA2MEAAIjBAAC4wQAAQEAAAMhBAAAcQgAAMMIAAIA_AABgQQAABMIAAADBAACgQQAAEMEAAIbCAABgQgAA2EEAAEBAAABMQgAAOMIAAFjCAABwwQAALMIAAIA_AAAAwgAAJEIAAJBBAAAAQAAAAMIAAEBAAADwQQAApkIAADhCAADgwQAA6MEAAEhCAACYwQAAkMEAABzCAACQwQAA8EEAABDCAADQwQAAgD8AAN7CAADowQAAmMEAAADBAABsQgAAMEEAAODBAADgwAAAgD8AAAAAAACAQQAAWMIAAJhBAACAPwAA0MEAAPBBAADoQQAAsEEAAMDBAABQQSAAOBNACUh1UAEqjwIQABqAAgAAPL4AAFy-AADYPQAAiD0AAKC8AAAUPgAA2D0AADu_AADovQAAbD4AAAy-AAAwvQAAuD0AAK4-AADovQAAPL4AAEQ-AAAQPQAAuD0AAA8_AAB_PwAA6D0AAJo-AABMPgAABL4AAHQ-AABkPgAAHL4AAIA7AACgvAAAqD0AAFA9AACavgAAoDwAAOC8AACAOwAAQDwAABC9AACKvgAArr4AABy-AACYvQAAiD0AAFC9AABMvgAA4LwAAKg9AAD4vQAAVL4AAGy-AAAMvgAA4LwAAK4-AACGPgAAur4AAJi9AAB7PwAAED0AACS-AAAEPgAABL4AABQ-AACAOwAAqL0gADgTQAlIfFABKo8CEAEagAIAADC9AAAEvgAABD4AAFW_AAC4vQAAFL4AAIA7AAC4vQAAJL4AAII-AACAOwAA6L0AAKA8AABEvgAAgDsAAEA8AAA0PgAAJz8AAIo-AADCPgAAED0AAFQ-AABwvQAAqL0AANi9AACAOwAABD4AADA9AAD4vQAAhj4AAFA9AADYPQAA2D0AAJq-AAAEvgAA2D0AAIC7AABMPgAAXL4AAMg9AACoPQAAoLwAAOi9AACIPQAAQLwAAMg9AAB_vwAAVL4AANi9AABwPQAAFD4AAIA7AAAkPgAAEL0AAEC8AAAwPQAAgLsAACQ-AACgPAAAPL4AABQ-AAAUPgAAyL0AAFC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=V8P-Y3o0je0","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["673064110671974179"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4074731268"},"1865887572765399260":{"videoId":"1865887572765399260","docid":"34-11-14-ZA70B3F806F524EEC","description":"Computing the center of mass of an object with a varying mass density requires a triple integral. This example tackles that setting it up in a whiteboard and executing the triple integral in Matlab.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4078396/24acf8c6f7511e22ee7cf8a69d7f6404/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QKvwLgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnVOz2e-LtQ8","linkTemplate":"/video/preview/1865887572765399260?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Triple integral to compute the center of mass of a 3D volume with varying density Matlab Calc 3","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nVOz2e-LtQ8\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFQoTMTg2NTg4NzU3Mjc2NTM5OTI2MFoTMTg2NTg4NzU3Mjc2NTM5OTI2MGqIFxIBMBgAIkUaMQAKKmhodXd4Z3ZxY2RjdGR6b2NoaFVDZWdiWWdPcTVHSUQwd01MZUhIUDFTURICABIqEMIPDxoPPxPoBYIEJAGABCsqiwEQARp4gQIFAv7_AgD-AO4I_wf9AgYH-AD3__8A7gT8-AUAAAD18An8_gAAAAoUAQn-AAAAAwH5BfL-AQD-Afn09AAAABD69QH1AAAA-xD6__4BAADr9gwIAwAAABP2D_3_AAAA-voG_AEAAAAFDfkDAAAAABH1_f0AAQAAIAAtMyDXOzgTQAlITlACKoQCEAAa8AF_--ABzvzn_9zyBQC5A_sAzPUR_905FQDF-x8A6hHVAQDi-gDS3s7_xhgWAKXwCQD00u4Auu4QATsNBf9Z1hIAFi4LACvmAgAFDAwC-hwB_-MBOP7q_hz_0PX8Af7z-_wmzjj-AwgfBADX3wQc6hUC4AUIBBDWDwbr8P4D0P8tAgUZ0gD0FPsGBxEA-QjJCgMM6f0I6-gE-gwM0gH56_gA-7Tu_xrl5QXyBAQACe8D7xP81P7VA-YE9j0RDtLh-fzs7wkA2ucA-BMyBQMUCvQG5AD4BSPp9wfm3gQUDgkP_Cf6BQ7bE_777grsBukLCO4gAC1eAB87OBNACUhhUAIqzwcQABrAB_rvAb-BG287_tJivY178z0ww4W9eOkluT_pX73wZJw9Eo9avU3DS7yAUuO84rwuPaFHDL5S3Iy8sCwCvSdvyz2X0JO8m1u8vJ5ihb6Run09LHOEvPQzJb6AiW49CNouPXHoHb7PjFk9GUbwvAqdFz6TmxW8EYqtvGcM0z0k2X68WBEBPBH5kzzTI5e83DYCvPyPPL6eHG-91_6pPCAHuj2CkTe9iLKcvM72DT1zi9S839Gxu7pnrb1BUhq9mdlCPBEALD6WWxo92x3tPOWDeT3_gD084DBRvCgwOD3W6Zu8S8vlO8x6ET4WhxM9fJOLvHRGrzw712E9R76cvCayur2hLFy9o37NPNl8Vz3qEG67OCXmO8Zhqr2rW5097tSaOxCniD3gyFG6ZFTfujCQlrxYrjc9GeYAOzMtNj0gKk09pSseO0qpNb0MlJQ9v77Ou8-krT1gZDg85uKUvOFioDtslb87GCS_OyRVZT0mvp89D-lcPJ_Sxz3elbg8CY6mvPEplT3BxQo9RdA9vDO707yEI6291A7nOK55er3APAm9-b44O-fMUT24oIg9WX0evGQCo7zPrMu9cXHUO4yB1T3d3-q8zFsHucM-mz0TjzW9JSQSPCy9Mb36jDU97QivOlSu7LvkWXg9lhUWvF8gTT373Ho9h5fUO9PMaT0O3ey9j4o4unkToj0nAQO7kMPcu9Nrg72lsL07tM6VOgUg5Lz-70q7RyQnOzWD8LvxuIc7oRENPP8h_b2FpXA8PVaiOco0-j0Te828WYZhOErxTLwRemy8EWPBOP7rkb1nh1M9nEjxuAi1qr2ifpc86q1MNpLzVL0nNoq9n6oJuZSnNjrpa4y9w7Fqupm49rselOY8ox8ROxeFuL1arLK8fyLuucw1Vr3Wi-M7RkoAuacwwDwsPHk9ggOgNk4K0z0fY9G7vgoBOWszhDybi-Q8lA3luPgFCzwRiu28D7wxtVqvgz0Bj8O9ptFaOZp1u71_xMo9_AAuuWqJpT0bxYg9z6_QNzS5vbyA24s7LWynuNS6SL1qpZC9DrU2uLouPD3U4RM8gWUVuGvx6b151iS87i9gNh3siD1vIZk825A8OCtv4rwhXHy9BlGzNNKrAb65IBY9roDVNwTp_TxZlCi9v7xjuLRmur11gxc9RgoSt30M8TwRc4S9Tb6VN9dnHr4sRMc8hPwAOYNXJr11giy9Stwbt__Naz2pekM9ykWnOCqqjr0mDT-9jYx9t-dkczyoqtA9Ejhht1PCfT0j2Li8YZEXOCAAOBNACUhtUAEqcxAAGmAe_QBZLQ_d2SNIuPWd_-bT4vTMBdrq__P2AOIH9eok8tOy_xEA8ZEfup8AAADz9eMa1AACf-AK9PkCMOnP2_AkK3MPVu_IEhzRldbmKyEE9wzvF3cA4ca0Ohr520Q9KukgAC3I8BA7OBNACUhvUAIqrwYQDBqgBgAAgD8AAKDAAAAgQgAAoEEAAKDBAACIQQAAiEIAAGDBAADQwQAAAEAAAJjBAAAQQgAAWMIAAIhBAABgQgAA2MEAAFDBAAAQQQAAgMIAALjBAAAAQAAAaMIAACzCAAC0QgAANEIAACBCAAB8wgAAuMEAAKRCAABcQgAAgEAAAADCAAAAQAAAMEIAAPDBAAAoQgAAIMIAAFxCAAAgwgAAcEEAAFDBAADIQQAAsMEAAEBBAAAwQQAAgEEAACDCAAAowgAALEIAAEDCAACAQAAA-EEAAMhBAACAPwAAEMIAAEBBAAAcwgAANEIAAEDBAABAQgAAyMEAAMDAAABYwgAA8MEAAKBBAAAIQgAAQEAAAHDBAAAAwgAAJEIAADRCAABsQgAANMIAAFBCAAAowgAAeMIAAOBAAADIQQAAAMAAAFzCAACSwgAAsMEAABjCAAA8wgAAgD8AAGRCAAAMwgAAgMAAAOBBAAAAwAAA4MEAAChCAABcQgAAyMEAAFBBAAB4wgAAgL8AADDBAAAwQQAA2EEAAABBAADYQQAAFEIAADjCAABUwgAAqEEAAADCAAAgwgAAPMIAAGBBAADwwQAAgEAAAKBAAABAwQAA4EEAAKxCAAAQQQAAjMIAAABBAABAwQAAiMEAAABBAABgQQAAjsIAAIBAAADgwAAAQEEAAIjBAADIwQAAwsIAAExCAAAQwQAAwEEAALhCAACgQQAAIMIAAKDAAAAAwAAARMIAAMrCAABAQQAAiEIAAGhCAADIwQAANEIAAK5CAADgwAAAIEIAAIBAAABcwgAAqEEAADDCAAAAQAAAjsIAAOBAAADgwAAAeMIAAHzCAAAQwQAAPEIAALLCAAAAQgAAAEAAAAjCAADQQQAA8MEAADBCAACIQQAAgMAAADzCAACWwgAAqMEAABjCAACgwAAAAEAAAABBAAC0QgAAoEAAAIhBAABsQgAAGMIAAKDCAAC4QQAAjMIAAChCAAAgwQAANMIAAIRCAADwwQAAEMIAABzCAAB4QgAA0MEAAFBCAAAAAAAA-EEAACjCAAAAwgAAHMIAACDBIAA4E0AJSHVQASqPAhAAGoACAAAMvgAA-L0AABw-AAA8PgAAqL0AAPg9AACoPQAALb8AADy-AACIPQAAgr4AABC9AACuPgAAQDwAACQ-AACWvgAAoj4AAAw-AABQvQAALz8AAH8_AABwPQAAZD4AABw-AACIPQAABD4AABw-AACYvQAAVD4AAEA8AACoPQAAiL0AANi9AAAcPgAA4DwAAKg9AABAvAAALL4AAGS-AACuvgAA2L0AAKg9AACgvAAAEL0AAFA9AAB0PgAAiD0AADS-AADSvgAApr4AADS-AADIPQAAnj4AAOo-AACevgAA4DwAAHk_AADgvAAAqL0AABw-AAAkPgAAoDwAAIA7AADmviAAOBNACUh8UAEqjwIQARqAAgAAfL4AAAQ-AACAOwAAa78AAJK-AADIvQAAyD0AAAS-AACIvQAArj4AAHA9AAAcvgAAVL4AAOC8AACYvQAAMD0AAOA8AAA7PwAADD4AAM4-AAAQPQAAyL0AAIi9AABcvgAA-L0AAHA9AADYvQAAcD0AADS-AAAcPgAAQLwAAAQ-AABAPAAAhr4AAOA8AACAOwAAcL0AAAw-AAAEvgAA2L0AABQ-AAAQvQAATL4AAMi9AAAwvQAAHD4AAH-_AAAUvgAAQLwAABS-AAB0PgAAgDsAADC9AABkPgAA4LwAALg9AABAvAAAPD4AAPg9AAD4vQAAVD4AAFS-AACovQAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=nVOz2e-LtQ8","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["1865887572765399260"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2383069293"},"16692387885863915745":{"videoId":"16692387885863915745","docid":"34-7-3-Z001DA2EB9D9E5284","description":"Contact us (Watshap only) Mob :8235675255 Watshap link https://chat.whatsapp.com/IIKUAN7z3mF... Telegram link https://t.me/joinchat/GeBTI5UWhwo6R0s0 #centerofgravity #planelamina #rod #centroid...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1576333/f8d971978d9c7ac5f36a6ed85f2cd108/564x318_1"},"target":"_self","position":"3","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRa7WIuqquWA","linkTemplate":"/video/preview/16692387885863915745?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Application of definite integral | Center if Gravity of plane lamina | Rod | Centroid | Moment","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ra7WIuqquWA\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFgoUMTY2OTIzODc4ODU4NjM5MTU3NDVaFDE2NjkyMzg3ODg1ODYzOTE1NzQ1aq4NEgEwGAAiRBowAAopaGh4ZWV1eXJ6Zmdxbm9yaGhVQ3BfREU4V1hvOWFMWUF0MjMzbUl6cncSAgARKhDCDw8aDz8TpA-CBCQBgAQrKosBEAEaeIH_Ef_zAv0A8vgCAPoDAAENBv8C9gAAAOn1Afz5_wEAAer5-v4AAAD6CPkRAgAAAPkI-vL1_gEADw79_vcAAAAN8P3_-QAAAPsR-v_-AQAA-AH8AgP_AAAE-_72_wAAAPkFEwb-AAAA9AgC9wEAAAAG9AntAAAAACAALZKEyjs4E0AJSE5QAipzEAAaYCv7ADQJ98LLEy3m8vrl9e3b9fH1-ggA9vEA-xIAtggh5b_z8v8V_gsLugAAAAD5-jLNANdT9A3AAwM46gTp5xIgfxAF9_0DDO25ygb3I_oj6xPzFwC5FwnvGS39OgsCKiAALScUSjs4E0AJSG9QAiqvBhAMGqAGAABEQgAAEMEAAExCAADAwQAAAEAAAIA_AAAEQgAAiMEAAMDBAADAQAAAiMEAAIBBAACywgAAgMEAAL5CAAAwQQAAgMAAAABAAACYQQAAPMIAAHDBAADowQAAUMIAAABCAAC4QgAAwMIAAEDBAAA4wgAAoEEAAERCAACowQAAQEEAAPDBAAAAwAAAaMIAAAjCAAAwwQAAkkIAALjBAAB0QgAAMEEAAHBBAAAQQQAAcMEAAABAAAD4wQAAbMIAANBBAACIQgAAoMAAAMDBAAAwwgAAkEEAAIJCAADYQQAAuEEAALbCAADQQQAAnMIAAEBBAAAsQgAAgEAAAHjCAACMwgAAgEEAANhBAACgQAAACMIAAKjBAACgQAAAbEIAAEBBAACQwQAA0kIAAABAAAAAwgAAwMAAAEDCAADIQQAAAEAAAEzCAAAEQgAAEEEAAMpCAAAAQQAAOEIAAEjCAAAwQgAAoEEAAGzCAADAQAAAWEIAAEBAAABwwgAANMIAAFjCAAAowgAAAEAAAMxCAABgwQAAAMAAAARCAAC4QQAAAMMAAJrCAAAgQQAAYEEAABBCAABAwgAAbEIAAIA_AADgwAAAyEEAAMjBAACSQgAAAEIAAMjBAAAIwgAAYMEAAOjBAABwwQAAiMEAAIBAAADowQAAAAAAAERCAAAwQQAAhsIAANjBAACYwgAAYMEAAKBAAAAQQQAAOEIAABDBAAAwwQAAiEEAAExCAACIwgAAHMIAANhBAAAgQgAAYEIAAMDAAAAMQgAA-EEAAEzCAACgwAAA2MEAANDBAADAQQAACEIAAARCAABowgAAUEEAAMBAAAAAAAAAWMIAADDBAACyQgAAJMIAAMBAAABAwgAA4EAAAIDBAABAQAAAIEIAAGRCAAAAQQAA-EEAABTCAACoQQAAoEAAAEDAAAAIQgAAAMAAALBBAACYwQAAIEIAACRCAADAQAAAgEAAAEDAAAAAQAAACEIAADzCAAC6wgAAGEIAALjBAACwwQAA8MEAAEBBAABQQQAA2MEAAOBBAADgQQAANMIAAARCAAAUwgAA-MEgADgTQAlIdVABKo8CEAAagAIAABC9AABAPAAAkj4AAAQ-AACAOwAAFD4AAHA9AAARvwAAmL0AAJg9AAAUvgAAiD0AAIY-AADoPQAAPL4AAHC9AAAUPgAAuD0AAEA8AACqPgAAfz8AADC9AAD4PQAAjj4AABS-AADgPAAAqD0AAAy-AAA8PgAAiD0AAEC8AAAsvgAAPL4AAEQ-AACIPQAAiL0AAEA8AAC-vgAANL4AAAS-AAD4vQAADL4AAOi9AACAOwAA6L0AAIi9AABMPgAAyL0AAFS-AAB8vgAATD4AAKg9AADoPQAAZD4AAFy-AACIvQAAMT8AAKC8AAAkvgAAUD0AAHC9AAD4vQAAQDwAAJ6-IAA4E0AJSHxQASqPAhABGoACAACAOwAAXD4AAEC8AABvvwAAqr4AADA9AACYPQAAFD4AAJi9AAB0PgAAqD0AAEy-AAAMvgAAyL0AAAw-AAC4vQAAFL4AABs_AAAQPQAAlj4AAMi9AACqvgAAmD0AAAS-AACIvQAAMD0AAEy-AACAOwAAmL0AAFA9AACIvQAAgLsAABA9AADovQAAgDsAANi9AACgvAAAuD0AAPi9AABwPQAAuL0AAEC8AADovQAAuD0AABC9AACgvAAAf78AAPg9AAC4PQAABD4AAIg9AADIvQAAqD0AAIY-AAD4vQAAUD0AAOC8AACIPQAAcD0AAOi9AACSPgAAuD0AANg9AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Ra7WIuqquWA","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16692387885863915745"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"13798424086104835081":{"videoId":"13798424086104835081","docid":"34-4-1-ZB04084F1F5F6FA90","description":"Mass (Dimension),integral,moment,Calculus (Concepts/Theories),double,Multiple Integral,center,intertia,gyration,radius,centroid,density,variable,region,Center Of Mass,math,education...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4219332/b55ac377cf3304517c177cf18b7a8009/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1i1UjAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dv8Ht_AV0pNM","linkTemplate":"/video/preview/13798424086104835081?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calc III 2014 14.4 Mass, Moments, Center of Mass with Double Integrals","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=v8Ht_AV0pNM\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFgoUMTM3OTg0MjQwODYxMDQ4MzUwODFaFDEzNzk4NDI0MDg2MTA0ODM1MDgxaogXEgEwGAAiRRoxAAoqaGhqeWJkbXZweXdqamtjZGhoVUNRaUFSNHdqRjZ1bUE4WjF6QnF2UDV3EgIAEioQwg8PGg8_E4ATggQkAYAEKyqLARABGniBBQoBAPwEAPgG9QD6A_8BAQvv__f-_QD2B_z__wL_APP6BwEEAAAABQT-Cv8AAAD-_v7_-P4AAAb--PUDAAAAHf3z-vwAAAD4BvoA_wEAAPH8_AMDAAAA_gEQ-v8AAAAC_Q0BAAAAAP0E_v0BAAAAFvT2AgEAAAAgAC3FJN87OBNACUhOUAIqhAIQABrwAX_cJgC9CtoAGgT4AOYg-QGeMij_OEHd_7Tn8f_N7v4Azdj9AeQVz_7KAgL_sjAfARrS3v_W8fkAFNMGACnP7QH2_zkBUNvtAU_xBQAQAeD_7fMUAArW-_8a0s4D2fXk_gHvBv4Dy_sA6wO8AhH-RAH_HhkG-O8ZBO_ACP_vCAn_9vfA_gkJEwnw7wj2wA4SA_fCBAANLgj4qSP0_eYZAvvMDwr2FvTZACPw9QYiDfID_tP6Cx_15PfoMQ4CujDrBBEbCQXj7Q_77fkGDRv5F_MA2Q3yFtz5C0wQ8wHt9gn-2g4B8PX3DPnI7vv0-Dzu-yAALXyzBjs4E0AJSGFQAirPBxAAGsAHeNDkvqk8kTsMDd-8sd_DvTyoX71wvge9vMravUAYwz0iT7O7by4ePi3gr7xhFZS8FOgzvvvv3DxZ04a8xVWFPlQwb72bfyq8ehcvvgg8MD0pn9S8owUIvuPh_bxEyb88msy4PL45gr1_wx88VFMCPtxLOr12zBC8yi59vUnnrjvglx-9-Ua5vVOXnL1lmt-89JX2PHsgCL14j308xr6pPU8qUDxJHAs8t1dLPVZ01rvGpyC9phCDvR8AJz0zG_-8dWYsPaaLwzz_dKg8Lz_Duy-xiTtygpu8aIBBvWuZsbz-nKO7aKPEPFwo8LudRRS9A2iKPXdGQL1Kguw6rfkBvlSlkjwh0d87F5iKPdlCzjsLEYs87-SzvfeRmz3N_bq8VTwEPRB6Vr0qUwy9C5YqPXCVJ7yqzDk86XYAPTBiBD0bB8U7dq6TPR1VzT0408o7IEuqPagW9rxcdoi85CfZO2xpBL2U2zS7rBQnvfKrHj3Y7y68s7AMPSuBqT3LOz282S4GvMyh-zzaM_A6xTVDPfhRDb4Jbyy7LvIdvG8umb3Ny367HW3BPTlpED0uBX-8EiIvPeT-Pr06eZG7x3lJvHVnmjrNGyu7fp-bPe-WP7z8CBU8M96Gvef34rxk29S7_H8mvQBKbT2Slue7nfiou-mRcD1V50W7n6a7PFH8s72XBps7DW7rPACbYjwQpeY6k6X7POj4aD0e5xG7SQ59PUXA_LwrMte7gNO7vWVQrbwO6o27POtHO-7fVjoMYlq7NJe1Pbqp3LzmWHi4QaS6POxT6bwe9kE5Jmy0vWRA1j1cJhA4eF7PvFlf7rzdghg5HhGovc78Sr4Byw45QLgnveN9pjzcgSI6uxqPuhb33z1wBOs4zCDDvdQNBL4IU4U5Pz5puckDkTw5ygK5gxPRPSHz9bswSxA4uJ1MvU7RMb3A1BI5k499vd3q-Tys0pw54xaYvNeufz3XUzg4Wq-DPQGPw72m0Vo5Hs6yPLYlVz2rSUy3_pIePM2EsDy30ZW1hPIAPKB62jxO72m3UkjPuz48q71PsuQ4LueSPRbgNj0nJxa5RB8nvVH6kj028ME46CVwPdlUJ738n6c4_PVUPYYUDT19Ss62alwOPRZ3cjxTucK3kl0ZPtlPUL2swj-5hd5MvVSojr3qysO4PHHUvMmdCL3xG4C3jrmhvMkJrj1kbhS32YTqvCJXtb3SQjC4yvRwPSLhKz7xy4o4lV8rPM-8jD3F_Aa5tAH4vbVYRT1R4Fw44_G-vXOTQr02x7C3IAA4E0AJSG1QASpzEAAaYDruAHgGFePi-hbT88ouF_Xw274C8-v__uP_GyDfyAEv1bBBBP8OrPDIoQAAAP4F7QPLAPh_GxjUNANLIerF0hjwWxwaHry4N--guhrq8OYGD83aVwDP_Y4tEwr_LQouRSAALZBEEzs4E0AJSG9QAiqvBhAMGqAGAACAwgAAUEIAANhBAADoQQAACEIAAKpCAABYQgAAgEAAAIbCAACSwgAAQEAAAHzCAADgwAAABMIAAPhBAABAwQAAwEEAALLCAACoQQAAIMEAAAjCAACowQAAyMEAAARCAADAwAAAQEAAAAzCAACAQAAAkkIAAMDAAAA0wgAA0MEAAIrCAADYQQAARMIAAPjBAAAQQgAAMEIAABzCAAD4QQAAQMAAAPhBAADYQQAAoMAAADjCAABAQQAAoEAAAIC_AADAQQAAREIAAJLCAABkwgAAuMEAAPBBAABwQgAAqEEAAMjCAABgwQAAcEEAAFBBAADYwQAAuMEAAIBAAABUwgAAsEEAAILCAADIwQAACMIAAOzCAAA4wgAA4EEAAJBCAABAQAAALMIAAEBBAAAMwgAAsMEAAMjBAACAvwAAMEIAAFTCAACOQgAAoEAAAHBBAABQwQAAOEIAAMBAAAAQwQAA6EEAAHBBAAAAAAAAKEIAAOjBAAAAwgAAQMEAAEzCAADAQQAAgMAAALBBAACAvwAANMIAAADAAADYQQAADMIAAFBBAAAAwQAA0MEAAIDAAAAowgAANEIAAABCAAAAQQAAwEEAAPhBAACAvwAAbEIAABDBAADMwgAA4EEAAIDBAAAgwQAABMIAAGBCAACwwgAAAMIAAFDBAABgwQAA0EEAAEDAAADYwQAAiMEAAHDCAAAYQgAAIEEAAMjBAAAwQQAAVEIAAIBAAACoQQAAZMIAAIBAAABQQQAAmEEAAKDBAACEQgAAWEIAABDCAAAMQgAA4EEAAJBCAACAwAAAwMAAAOBCAAAwwgAAuMEAAKDAAAB0wgAAbMIAAIBAAADIQQAAAAAAAHBCAADAwQAAoEEAAEDAAABAwQAAIEIAALpCAABAQAAAJMIAAADAAABAQAAAwMEAAIBAAAAAwQAALEIAABDBAADAQAAAJEIAAIxCAACOwgAAjMIAAIjBAAAQQQAAHEIAACBBAACywgAAkEEAAHBCAAAQwQAAMEIAABzCAACoQQAAAEEAAEBAAACQQgAAiMEAAIBAAADYQQAAoMAgADgTQAlIdVABKo8CEAAagAIAABy-AABMvgAAED0AABQ-AACivgAA6D0AAMi9AAAjvwAAPL4AAHA9AACuvgAAuL0AAGQ-AABwvQAAmr4AAMi9AAC-PgAAED0AAKg9AAApPwAAYz8AABC9AAA8PgAAnj4AAMg9AADIPQAAND4AAHS-AADyPgAAiL0AADC9AAAsPgAAqr4AABC9AAAcvgAAmL0AAKA8AACWvgAAFL4AAB2_AAAkvgAARD4AAHC9AADovQAAur4AAOA8AAAQvQAA6L0AAIK-AACWvgAAuL0AAIC7AACoPQAADz8AAI6-AABQvQAAfz8AANg9AAAQvQAA-D0AAAS-AAA8vgAAQLwAAKq-IAA4E0AJSHxQASqPAhABGoACAACGvgAA2L0AAKC8AABxvwAAqD0AAKi9AACAuwAAfL4AAJi9AACOPgAA-D0AAOA8AAD4vQAAFL4AAOC8AAAQPQAABL4AADM_AAC4PQAAij4AABC9AAAQvQAAuD0AAKi9AAA0vgAABD4AAAy-AABAPAAAiD0AAEC8AACgPAAAyD0AADw-AACSvgAAgLsAAKg9AABQvQAAgLsAALi9AABwvQAADD4AAEC8AADYvQAAHL4AABy-AAD4PQAAf78AAJi9AAB8PgAAqL0AANg9AACSvgAA6D0AACQ-AADgvAAAED0AAKA8AAC4vQAAQDwAABy-AACAuwAAor4AACy-AABsPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=v8Ht_AV0pNM","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":900,"cheight":720,"cratio":1.25,"dups":["13798424086104835081"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1138766615"},"15088118330494702344":{"videoId":"15088118330494702344","docid":"34-6-12-ZE9F25A05AA78F3A0","description":"This is a Lecture for Intermediate Analysis II Course at Yarmouk UniversityReferences: Howard Anton, Irl C. Bivens, Stephen Davis, Calculus: Early Transcende...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4331390/87d2bfcdab93e4882bdc19459f66f5b0/564x318_1"},"target":"_self","position":"6","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-tfSHJElBvE","linkTemplate":"/video/preview/15088118330494702344?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"M202-7-Some Applications of Multiple Integrals; Center of Gravity","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-tfSHJElBvE\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFgoUMTUwODgxMTgzMzA0OTQ3MDIzNDRaFDE1MDg4MTE4MzMwNDk0NzAyMzQ0aq8NEgEwGAAiRRoxAAoqaGhwYnp2YXhmY2Znd3BoYmhoVUNIbnFpVWJVazBxRmE0TWtKZEs1ZGt3EgIAEioQwg8PGg8_E9QHggQkAYAEKyqLARABGniB8BECCAj3APIE_QIABP4BBwj3APX__wDx_AHz9AEAAP8FD_IJAQAA8BH2CPsAAAAC_v308f0BAP0JBf4FAAAACuT1-_0AAAD8EwIR_gEAAPv2Av8D_wAAEPMH9v8AAADrBA_0AAAAAPgS_QgAAAAADvMU_QABAAAgAC1X6Lk7OBNACUhOUAIqcxAAGmA8DgA2-vDI1wgyzvvJ1xUy2d8GDwAA_-nh_w8o9MPzEduyEAT_QeEb8KwAAADnCAM55QDWcPLyxuUXMw_6z-IlL3_-Iejy9CjWvMz8ATQWDekbAQwApx7x_fPu21o4Eh0gAC1teSk7OBNACUhvUAIqrwYQDBqgBgAAAMEAAGDBAACEQgAAksIAAOBBAABAQAAAqkIAADBBAABAQAAAYMEAADBBAADAQAAAwMEAAGBBAADAQAAA6EEAABBBAACYwQAAKEIAAKBAAAAwQQAAcMEAAIrCAADgQQAAOMIAAIC_AAAAQgAAHMIAAChCAAAQQgAAAMAAACBCAAA0wgAAoMAAAKzCAAAQQQAAAEIAADRCAAAYwgAAYMEAADRCAACAwAAAAEEAAODAAACYQgAASMIAAFzCAAA8QgAAgMEAANDBAABcwgAALMIAAHDBAACQQQAAwEEAAGBCAADIwgAAyEEAAChCAAAAQgAAKEIAACzCAAAowgAAWMIAAMBBAACewgAAEEEAAMDCAABAQQAAiMIAAJZCAABQQQAAnMIAAKBAAAAwQQAAQMEAAKDBAABAwAAAyMEAALjBAADgwQAAtkIAAKBAAAAAwQAAuEEAABxCAADgwAAAPMIAAIC_AABwQQAAqMEAAFRCAADowQAAQEIAAEBCAABQwQAAgMEAAABAAAAoQgAAIEIAAITCAABUwgAAvkIAAKjBAAAAAAAAgEEAAERCAAAIwgAA2EEAAMhCAACIQgAAOEIAACDCAABgwgAAuMEAAK5CAACWQgAAAAAAALDCAABAwgAADMIAACDCAAAwQQAAAEEAAABAAAAwQQAAgEEAAODBAACAPwAAlkIAADjCAAA0wgAA6MEAAFRCAACYQQAAJEIAAKBAAABQQgAAksIAACDBAABwwQAA4MAAAHxCAAAkwgAAMEEAAFBBAAAkwgAAiEEAAMjBAADIwQAAMMEAAIBCAADIQQAANEIAAGBBAAAgwQAAoMEAAAjCAABEwgAAPMIAABzCAACoQQAABMIAAEDAAAC4QQAAOEIAALDBAACeQgAAUEIAAIjBAABAQAAAyEEAAIDBAAAcwgAAosIAAIC_AAAAQAAAwMEAACBBAADYQQAAuMEAAKbCAAAQwQAAwMEAABBCAAC4wQAA2MEAABTCAAC4QQAAgMAAADBCAAAIwgAAgD8AANDBAAAAAAAAAEIAAAjCAAAQQgAAoEEAABBCIAA4E0AJSHVQASqPAhAAGoACAAC4vQAAcD0AAGw-AABUPgAAHL4AAKg9AABwPQAACb8AAES-AAAcPgAA6D0AACw-AACAuwAAZD4AAEy-AADgvAAAZD4AADA9AACAOwAA6j4AAH8_AAAwPQAA2D0AAJY-AABsvgAAcD0AAHC9AACGvgAAXD4AAHC9AABQvQAAPD4AABy-AAAEPgAA-D0AAOi9AABEPgAAkr4AABS-AABcvgAAJL4AAGS-AAAMvgAAMD0AAJK-AAAMvgAAmD0AAI6-AACIvQAAmr4AAHQ-AAAcPgAAqD0AAL4-AACOvgAAqL0AACs_AADgPAAA4LwAACQ-AADYvQAAHL4AALg9AACYvSAAOBNACUh8UAEqjwIQARqAAgAAiL0AAOA8AAAsvgAAQb8AACS-AADIvQAA2D0AABA9AAAwvQAARD4AAKC8AACAOwAA-L0AALi9AAD4PQAAQLwAAOC8AAAHPwAABL4AAL4-AABUvgAAiL0AAAS-AACovQAA2L0AAOg9AABwvQAA-L0AAMi9AAAcPgAAUL0AAOg9AAAQPQAATL4AAOi9AACYPQAA2L0AABQ-AABwvQAAoLwAAIC7AABAvAAADL4AANg9AADgvAAAiL0AAH-_AAD4vQAAoLwAAFC9AAA0PgAAML0AAGQ-AAAwPQAAiL0AAKA8AABAPAAAML0AAIC7AACYvQAABD4AAOg9AACIvQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-tfSHJElBvE","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15088118330494702344"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4642436473067307856":{"videoId":"4642436473067307856","docid":"34-6-4-ZD8E5C3396F1864D1","description":"This is an example of double definite integration demonstrating different choices of integral axes & limits in 1 example. For part 1: • Double integration - centre of area/m... For part 3...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3185573/a9e3792f7802b6012833eac729c8a4d7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zrxToAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dhc5aMKu5B5A","linkTemplate":"/video/preview/4642436473067307856?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Double integration - centre of area/mass between 2 curves part 2 梁 Sir","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hc5aMKu5B5A\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFQoTNDY0MjQzNjQ3MzA2NzMwNzg1NloTNDY0MjQzNjQ3MzA2NzMwNzg1Nmq2DxIBMBgAIkUaMQAKKmhoZWd0YXBwY250Y3BldWNoaFVDLVZsNFNlOGxNa0t2SUh2QkJ0OXZOURICABIqEMIPDxoPPxOlAoIEJAGABCsqiwEQARp4gff-_AD-AwADA_3--wP_AQEM7__3_v0A_Qn4CAMF_gDzAAj8-wAAAAwF-wICAAAA6v329f0BAAAO_f4DBAAAABXw9_f9AAAAAgYD_wf_AAD8-_33AgAAAAMCCAcAAAAA9wIG9v__AAABCPj6AQAAABD9CQQAAAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AF_JDL9xc67AMoGtwAZLLsDvgsW_8050gDg7tL_-dbaAfb3z__o6dwBHg8Q_68FzP4lAbEA6eLlADDJ6_710CEAzwL7ARAX4QNZAx7_I-EA_dgz-f_QBQL_2NO__ighswAR9gT55D3ZAMzwxgBDxjMCvv8ZAgjhC__V9uz_sxIPAPT2tP3mBP0F_eU7-udADwVJ6B0GHO4IBQoh1v3o4gH7HfIKAk4CBQ392P4Btwry-88V9gT-9_gBHCsu_uPVvwLzBh3sCL3_9Sav8wAC9RzxElP29l7X_AYNvwIFD87eARH0-_Ld6fITTN_e_xTN4_kgAC0jQeI6OBNACUhhUAIqcxAAGmAZ8QAbAQnq3iUZ8P7e3AzW3djz9dvxAOLhAA4JAuwUGvHGFvX_LNga37kAAAD-8gMq6wAGWPzt9ggCNQXtvNsF7X8GLA-46yEQA9sQ6B4BI_oT_DwA0QvNGCkD4Eb3MDsgAC1_m0c7OBNACUhvUAIqrwYQDBqgBgAAgD8AABDBAACCQgAAYMIAAPDBAACIQQAAtEIAAMDAAADAwQAAHMIAAIjBAAAMQgAA4MAAAEBBAACgQQAAMMEAAKhCAADgwQAAPEIAACDCAADAwQAATMIAAGzCAADgQQAA2MEAAJBBAABAwQAAoEAAAARCAAA8QgAAmMEAAADAAABswgAA8EEAALbCAAAgwgAAEEIAAIxCAAAAQAAAPEIAAADAAACAwQAAmEEAAKBBAAAwQgAAwMAAAEBAAACAPwAALEIAAODBAABcwgAALMIAAFjCAABgQgAAqEEAACBCAAAcwgAAEEEAAPBBAADgQQAAHEIAALjBAACAwgAA4MEAANjBAACewgAAmMEAAJLCAABAwgAAmEEAADxCAAC4QQAAYMEAACRCAAAQQQAAIMIAAMDCAAA4wgAAoMAAAADAAADQwQAAbEIAALjBAABQwQAAmEEAAGRCAABAwgAAUMIAAFhCAAAAQAAAPEIAAEBAAACAwQAAwMEAACDBAAA0wgAAQEEAAFDBAABAQAAArEIAACTCAAAQQgAAAEIAAPjBAACYwQAAkEEAAJjBAABgQgAAkMEAAIBAAAA0QgAAmEEAABBBAABwQQAA8MEAADRCAACwQQAAlMIAALhBAAB8wgAA2MEAAKBAAABQQgAAPMIAAPDBAACgwAAALMIAAIA_AABgwgAAwMAAAGRCAABYwgAAAMEAAJZCAABAQQAAMEEAAFhCAABgQQAADMIAAGDCAAAsQgAAgEAAAOhBAACAwQAAwEAAAPBBAACAPwAAFMIAAJBBAADQQQAAiEEAAIC_AACQQgAAAMEAAEzCAAAIwgAAwsIAALDBAAAIwgAAMMEAACDCAAAsQgAAMEIAACxCAABgQQAALEIAAMhBAACYQgAA2kIAAEDBAAAYwgAAQMIAAKBAAAC4wQAAgMEAAKBAAABQwQAA6EEAAEzCAACKQgAAgMIAAMzCAADYQQAAUMEAAIpCAAAcwgAAqMEAAMBAAACQQQAAAEAAAIhCAAAAAAAACMIAADTCAACAQQAA-EEAAJDBAACoQQAAIEEAAITCIAA4E0AJSHVQASqPAhAAGoACAABEvgAAHL4AAKA8AABwPQAABL4AAMI-AABsPgAA5r4AAAS-AACOPgAAVL4AABS-AABwPQAAcD0AADy-AAC4vQAA_j4AAIA7AADWPgAAJz8AAH8_AAAQvQAAZD4AAGw-AAAcvgAAXD4AAIA7AACAuwAAoj4AACQ-AABAPAAA6D0AALi9AABwvQAA4DwAACy-AAAwPQAAuL0AADy-AABsvgAAEL0AABA9AAAQvQAAyL0AABy-AAAwvQAAmL0AAGy-AABMvgAAdL4AABC9AAD4PQAAij4AAAc_AABMPgAA4DwAADk_AABEPgAA4LwAAAw-AAAcvgAA6L0AAKC8AAAcviAAOBNACUh8UAEqjwIQARqAAgAA-r4AANi9AACAuwAAdb8AAFA9AADgvAAADD4AAKi9AACgPAAAbD4AAJI-AAC4PQAAVL4AAAS-AABAPAAAyD0AAAy-AABJPwAAmD0AAHw-AABQvQAAMD0AAMg9AABEvgAARL4AAFQ-AADIvQAA6D0AABy-AAAwvQAA2D0AALg9AACgPAAAir4AAKY-AADIvQAAHD4AAGQ-AACuvgAAqL0AABw-AAA0vgAAVL4AABC9AAAwvQAAcL0AAH-_AABMvgAAqD0AALi9AAB0PgAAoLwAAHw-AAAQvQAAmj4AAIA7AACgvAAAoLwAAI4-AACCvgAAJD4AAFC9AAAsvgAAHD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=hc5aMKu5B5A","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["4642436473067307856"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3547106670"},"14140659303003165401":{"videoId":"14140659303003165401","docid":"34-3-11-Z1B68BEE07BD6A90E","description":"Cálculo,Calculus Conceptstheories,Integral,MASS,Center OF,Integrated,Center Of Mass,Integrals,davidbuiles100,Videomática,tutoriales,Db100...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4428155/3c7a0f0400c97f5ae65df16552837cb8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/iuCEWwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-GNZ1e3rjtU","linkTemplate":"/video/preview/14140659303003165401?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Centro de masa; aplicaciones de las integrales","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-GNZ1e3rjtU\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFgoUMTQxNDA2NTkzMDMwMDMxNjU0MDFaFDE0MTQwNjU5MzAzMDAzMTY1NDAxarUPEgEwGAAiRBowAAopaGhhY3dhbGRocGZhZXVjaGhVQ0ZuTEQ5RnpfQmZUY0VyTmtKS0t5Y0ESAgARKhDCDw8aDz8T6AOCBCQBgAQrKosBEAEaeIEECP8FAAAAAPn_A_oH_gIMAPv69gAAAPgFDPkDA_4A8_oIAgQAAAD2BPgC-AAAAPUBA_zz_wEADQIG_fwAAAD9-_AJ_wAAAAkI_PcJ_wEB9Pv-_AMAAAAPAAj7_wAAAPf1EQf_AAAAAwML9wAAAAAA8PoNAAAAACAALQAH1Ts4E0AJSE5QAiqEAhAAGvABfx4eAJwFyP3d3-IAABPZAd0GM__8Os0AtibxAOn-1QAFEwgA-BzcAAo7_gCsLvf_5jHh_tbO_QEu6O__H_wYAOwTDwFhBuP-TtsJ_wDsBAChB_kAx-ERAPfyywDpF8T-_uQZ_w8T9v7T888AEf5GAfHVRwIE8_4GtsgD_8z6CgP297_-2iADCQjGDgHRAvoIMOAmAh8aKwD-BvH__gEm_B_f__xWCwD-7_vw_eANDPjh1fAM3Aj9AOUOKQQJ-9sH1_8N8Q3QGP8n6v8B7eEV-eET7wnZ3_AL0uAD8_vY8hcW-wYIFsrtAA707BH_1_YNIAAtak0EOzgTQAlIYVACKnMQABpgLgAAEyAU7tsCGN774wsDveMSzQm_If_f3f8D79_pOwfcxbj2AOnbAtOwAAAA_uwBFQAA62IH7vXx8T8048z4Rv5_1CMXzggGCsDJ4vj38B78G9o0AMAAxSr-HsEiAyJaIAAtL2AuOzgTQAlIb1ACKq8GEAwaoAYAAOBBAAAIwgAAlkIAAADCAACAwAAAMMEAALZCAACAPwAAUMEAAKDAAACgwAAAJEIAAAAAAADYQQAAoEEAAABAAAA8QgAAuMEAAARCAAAgwgAAgD8AACDCAABgwgAAyEEAAMjBAAAQQQAACMIAAARCAAAkQgAAYEIAADzCAAC4QQAAmMEAAFxCAADIwgAAAMEAAJhBAACwQQAAgD8AANjBAADwwQAAAEEAAPjBAACQwQAAGEIAAPjBAAAAwAAAkMEAAFBBAAD4QQAA4MEAAOjBAAA0wgAA8EEAAIA_AAAEwgAAOMIAAABCAABkQgAAHEIAACBBAAA4wgAAlMIAAEzCAADIwQAAVMIAALDBAADCwgAA4MEAADDBAAB0QgAA-EEAAKDBAABAQQAA0MEAAAzCAABMwgAAuMEAAIC_AAAQQQAAoMEAAAhCAADowQAANMIAAChCAAC0QgAADMIAAEDCAADQQQAAgMAAAPDBAACQQQAAYEEAAABBAAA0QgAAisIAAJhBAACowQAA6EEAAM5CAADAwQAAsEEAAGRCAABIwgAAGMIAAAxCAAC4wQAAIEIAABDCAAC-QgAAxEIAANhBAACAwAAAqEEAADBBAACsQgAAoEEAACDCAABwwQAA2MIAAEDAAADYwQAAwEEAAKTCAAAgwQAAQMAAABDBAACEwgAAyMEAAMDAAACAvwAAOMIAAKDAAACkQgAAJEIAAMBBAADAQQAAqEEAALjBAACewgAAKEIAAKDAAACQQQAAuMEAAIBBAACAPwAAwMEAAEDAAACAvwAAqMEAAIDAAADAQQAA6EEAAMDBAADowQAAEMIAAK7CAAAAAAAAXMIAAEDAAAB8wgAAREIAAHBBAAAwQQAAZEIAADBBAABQQQAAWEIAANBCAAAQwgAAisIAAPhBAAC4QQAAwEAAACzCAAC4QQAAHEIAAGBBAACAQQAAjEIAANjBAADewgAAMEEAAIDBAAAsQgAAEMEAAGDBAABQQQAAoMEAAIC_AADgQQAAuEEAAMjBAAAAwQAA4EAAAIC_AADAwQAAoEEAAAAAAAAgwiAAOBNACUh1UAEqjwIQABqAAgAA2L0AACy-AAB0PgAAED0AAOi9AAC4PQAA-L0AAM6-AADovQAA2D0AABQ-AABQPQAAED0AACw-AAAkvgAAiL0AAAw-AACgPAAAQDwAANI-AAB_PwAAQLwAAOC8AABkPgAAHL4AAHC9AACgvAAANL4AAHw-AACoPQAA4LwAAIg9AAAMvgAAgLsAAMg9AAAMvgAAUD0AAGy-AACOvgAAhr4AALi9AAA8vgAAEL0AACS-AACCvgAAML0AAFQ-AABAvAAAFL4AAGS-AACYvQAAMD0AAFw-AACaPgAAzr4AAEA8AAA3PwAAoLwAABQ-AABUPgAAuL0AALg9AAAQPQAAVL4gADgTQAlIfFABKo8CEAEagAIAAPi9AAAMvgAAQDwAAFW_AACAuwAAcL0AADA9AADYvQAA4LwAAEw-AACYPQAAiL0AADA9AADovQAAiD0AAIC7AADoPQAARz8AAJg9AACSPgAAmr4AAOC8AAAsPgAAqL0AAJi9AAAkPgAAyD0AAFA9AADYPQAAUD0AAIC7AAA0PgAAuL0AAGy-AABwvQAAuD0AAFC9AADGPgAAiL0AABy-AACePgAAQLwAAGS-AAAQvQAADL4AAKA8AAB_vwAAXL4AAFA9AADoPQAALD4AABS-AABwPQAAqD0AABA9AAAQPQAAED0AAPg9AAAEvgAAXL4AAHw-AACIvQAAHL4AAPi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-GNZ1e3rjtU","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["14140659303003165401"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3783180828"},"17399147963250611273":{"videoId":"17399147963250611273","docid":"34-2-5-Z6B3BB30A65B4E3AA","description":"Solved Problem: A tank is filled with water. Determine the force and center of pressure on a inverted triangular gate located at a depth of 6m with a height of 3m and width of 2m .","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/996220/8835511fcb6026b805ccacafeecba079/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/63rZFQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAbxI_sDZPtc","linkTemplate":"/video/preview/17399147963250611273?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"1.2.2 Determine Force and Center of Pressure on Triangular Gate - Example 2","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AbxI_sDZPtc\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFgoUMTczOTkxNDc5NjMyNTA2MTEyNzNaFDE3Mzk5MTQ3OTYzMjUwNjExMjczarYPEgEwGAAiRRoxAAoqaGhpc3JhbXZ2cG90Z2RqY2hoVUNUenNqM0hMN0V5b2hKZmVTQWxKM0tnEgIAEioQwg8PGg8_E6wFggQkAYAEKyqLARABGniBCfoC-_0DAPwF_AYBBv0CBgf4APf__wDm8fsACP0BAPL49wb7AAAAChQBCf4AAAD3APUC-_8AAAb39Q0CAAAACAIAAPQBAAAJ_P__9vr9BPUGAgIDAAAAFvv8_gAAAAD4Cf8I_AAAAAsI-fwBAAAAAvgFBwAAAAAgAC2Gwdw7OBNACUhOUAIqhAIQABrwAWsZGQDQ-9H_3RDgAN8t_QCBIgr-2Ebo_8sBDgDGMtwAAA3hAOAY9QAbCCEBuSf5_0Xf7_7x8gUAJuwS_wXrBQDgBiIBAPcKAVrrDwAEzPz-zx8a_vUUCwDDy_ABCAvT_gUE_v8S-cQB2vXXACL8LAH09xMBBtj4BN4HGQPzBSQD1RLV_gUWDQTg4fr85i4hAhnq_gEZMf8IAunwA_7rCgYR-_AIJwv7Ax7y9wXQDA_55-r9_BAB3wEY8BMA6-HRAe0BBvr41SD_-NYPCQH4FPXmCgEAC_kH9iAHEPf22gD8BQvz_NoP8Ar27uwKDMgF_CAALf8hHTs4E0AJSGFQAipzEAAaYB3sAC_vCOoMISDp8cnxEdS3B-MF7dz_2L__8gX7AA_w2aXp-gAslTfXngAAADIA3gcWAOl_-rQeCNkUIOoC3xf3VS0yAtz-UijWyCj7EPgI6-cENAAF9qU4WuKUPCZMJSAALT8xGzs4E0AJSG9QAiqvBhAMGqAGAAAEwgAAwEAAAHxCAABMwgAAAEAAAADAAACGQgAACMIAAHDBAAAAAAAAgMEAAEBBAABAwAAAoEEAAHBBAABQwQAAYEEAAODAAABIQgAAEEEAADDBAAB0wgAAkMIAAJBBAADwwQAAQEIAAODAAADwwQAA4EAAADBBAABAQAAAoEEAAKLCAACwQQAA4sIAAIDBAAAAQQAAAMEAAKDAAACQQQAA4EEAACDCAAAgQQAAcEEAAJhCAACSwgAA-MEAAABCAACwwQAAQEEAAIDCAAD4wQAApsIAABRCAAAAwQAAUEIAAI7CAADIwQAA-EEAABBCAABEQgAALMIAAFTCAAAIwgAAMMEAAETCAACgwQAADMIAAKBAAADYwQAAyEEAAEBAAADAwgAAIEIAAHDBAACgQAAATMIAAMjBAACAQAAA-MEAAHDBAACkQgAAyMEAAJjBAADoQQAAMMEAAGDBAACSwgAAKEIAAHDBAAAEQgAAkEIAAODBAAAAQQAAuEEAANDBAACQwQAAhMIAANhCAABsQgAAEMEAALhBAABwQgAAQMEAAITCAAA8QgAA6EEAALhBAAAAQAAASEIAADBBAABAwAAAgD8AAGxCAAAswgAAgEEAAARCAABgQQAAysIAAFDBAABAQQAAMMIAANhBAAAwwQAAHMIAAMBBAADoQQAAsMEAAIjBAAA0QgAA4MAAAETCAADgwAAAlEIAAIhBAAA4QgAAmEEAAABBAAB0wgAAgL8AALhBAABgwgAAgD8AAKjCAAAQwQAAAMAAAODAAABQwQAAIEEAAJDBAADAwQAATEIAAFBCAACgwAAAgEIAAGDBAAB4wgAAgEEAAJ7CAACIQQAAXMIAAHRCAACAQAAAoMEAAADAAAAgQQAAEEIAAMBCAABkQgAAMEEAAIDBAAAIQgAA-MEAANDBAABYwgAAUMIAAFBBAACAwAAAHMIAAJhBAAB8wgAAIMIAAAAAAAAgQQAAtEIAAAxCAACQwQAAAMAAAMBBAACgwQAAQEAAAKjBAADAQAAABMIAAHBBAADIQgAAAEEAABzCAAAYwgAAcMIgADgTQAlIdVABKo8CEAAagAIAAAQ-AAC4vQAABD4AAFA9AAAUvgAAMD0AAEC8AAA7vwAAXL4AABw-AAD4vQAA4LwAAEA8AABMPgAAgr4AALi9AABkPgAAgDsAAPo-AAAzPwAAfz8AAJg9AABkPgAAoj4AAKC8AADIPQAAuD0AAOK-AAAkPgAAiD0AAIi9AACYvQAAEL0AAKC8AAAcPgAAEL0AANi9AABsvgAAnr4AAJa-AACWvgAAQLwAAFQ-AABwPQAArr4AAAy-AABUPgAAbL4AAOi9AABUvgAAML0AAFA9AADYPQAA5j4AAIq-AABwvQAAUT8AAEC8AAAMvgAAmL0AAAw-AAAkPgAAMD0AAK6-IAA4E0AJSHxQASqPAhABGoACAACovQAAML0AAEC8AABLvwAAQDwAANg9AAA0PgAALD4AAHS-AADWPgAA-D0AACy-AABwPQAAXL4AAIi9AACovQAAQDwAACE_AABkPgAARD4AAIi9AABwPQAAXD4AAKC8AAAwPQAAUL0AAFA9AAAUPgAAQDwAAMi9AABAvAAA4DwAAAS-AACgvAAAJL4AAMq-AACmPgAAjj4AAIq-AABAPAAADD4AAMi9AAAQvQAAoLwAABQ-AAAkPgAAf78AAMg9AAAwPQAAhj4AAFA9AACovQAARD4AAIC7AACYvQAAED0AAKA8AACoPQAAJD4AACS-AAAMPgAAoLwAAKa-AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=AbxI_sDZPtc","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17399147963250611273"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3504154197"},"503816849767302892":{"videoId":"503816849767302892","docid":"34-2-16-Z2FBB3DC8A89D3726","description":"In this video we will talk about application of double integrals. To be precise we will see how to find: 1. Mass of an object / lamina / plate using double integration. 2. Center of mass of an...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4814791/99547d462286874f402de3e303fc667a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1mstcwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2A1oUiRWvOo","linkTemplate":"/video/preview/503816849767302892?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Session 11:Center of Mass, Centroid, Moment of Inertia & Radius of Gyration using Double integration","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2A1oUiRWvOo\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFAoSNTAzODE2ODQ5NzY3MzAyODkyWhI1MDM4MTY4NDk3NjczMDI4OTJqtg8SATAYACJFGjEACipoaHB0amltc2FzYWF1eWNiaGhVQ3JPbGZ3U0o4MGdZNGVaNkQyUF8tSHcSAgASKhDCDw8aDz8TkAmCBCQBgAQrKosBEAEaeIECDwf-_gIA9wb0APoE_wELAO8B9v__APMJCPv2Af8A7Qf9_gP_AAAGDP8FAwAAAPUBA_zz_wEADQL4EAIAAAAd-QL1_QAAAAUVAPr-AQAA9gQC-AIAAAAABPr-AAAAAAAFCgMBAAAA_gn_AwAAAAAO9wb7AAEAACAALWhX1js4E0AJSE5QAiqEAhAAGvABf9cQ_9_rxgHNzdD_xhoFAI89BP8jLdsAwxME_6z1vQHdMvb_6-zgAQfuIQDeMwgAVtjr_gS-Gf8qz-7-OfHaANQC_AFO7tsARhY1_xwE8f_DBiH_E-f__xi26AD0F9v-7vEL_TPwAgMM_ucAIPkUBSsUQwAj6xUC1sEOAdAp5AD917b-BRv9BgPO_vi-_iQBEOz5-ef-CvfMB-ACBtL7CxDnC_wJNs79AgXiBPIL_gm4DgQJ2ObXBDg6BAW699v_4u0c98Lk7PsLCyAHEvsB_9AmAQkL6_MJNPML-SHeFQjN1e74yu8G9OkM5wft4PD9IAAtTAn-OjgTQAlIYVACKnMQABpgHvYAIgMc6-0DFuwJ8v_25OUC0BP06QDp6AAIGu7fDgzXvQ0G_x_S--TBAAAAIf8EG-UA_Vbu9uQmAiL587DiHgB_DwsZ69Ic-qPvHCEDBP4QAwo6AOkRtBwcENA6ABUwIAAtB4lLOzgTQAlIb1ACKq8GEAwaoAYAAAhCAAAMwgAAoEIAAIBBAAAUwgAAcMEAAGBCAAAcwgAAFMIAAIBAAAAAAAAAIEIAAOjBAAAEwgAAyEEAAAAAAAAMQgAAVMIAAIDAAACYwgAAQMIAAAAAAACCwgAAbEIAACRCAAAQwgAAMMIAAHTCAAAkQgAAaEIAAODAAADgQQAAYMEAAFBBAAC6wgAAcEEAAFRCAAAoQgAAAMIAAFBBAABwwQAA6MEAAMDBAADowQAAMEIAAABBAAAAwgAAAMAAAFRCAAAAwQAAgMEAAMjBAADIwQAAREIAALBBAACYwQAArsIAAEBBAABQQQAAoEAAAIjBAABAwQAAxMIAAEzCAACAwQAAMMEAAAxCAABcwgAANMIAAMDAAAA8QgAAuEEAAEjCAAAoQgAAMEEAAHTCAACAwgAASMIAAKDBAACgwAAAcMEAACBCAABwwQAA4EEAAEBBAAC0QgAAisIAADDBAAC2QgAAHMIAAHBBAABEQgAAgMEAAEDAAACAwQAAJMIAANhBAAD4wQAAFEIAAHBBAAAowgAAoEIAABBBAACiwgAA4EAAAKBAAAAMwgAAAAAAANDCAABoQgAAQEIAAIBAAADgQAAAIMEAAIBBAAB4QgAAqMEAABzCAACIwQAAVMIAAKDAAAAgwgAAcEEAAJDCAADAwAAAMMEAAATCAACSwgAAkEEAACzCAADAwQAAgsIAABBBAAB8QgAAmEEAABTCAACQQQAAIMEAAADBAAC4wgAAOEIAAOBBAABMQgAA4MEAAHBBAAAcQgAAIMIAABDBAAAAwAAAAAAAAMBBAACgQAAAbEIAAIDBAACAwQAAgMAAAMjBAACwwQAAiMEAAIJCAAC4wQAAAEAAACBBAADAwAAAHEIAAIDAAAA0QgAA8EEAAAxCAADQwQAAhMIAAEBAAABwQQAA6EEAAABCAAAsQgAAJEIAALBBAADAQQAAJEIAAIbCAADEwgAAIEIAAADBAAAMQgAAPMIAALrCAACOQgAAgMAAAJjBAADgQAAAMEEAAIBAAAC4QQAAAEEAADRCAAAgwgAAcEEAAIC_AAAgwiAAOBNACUh1UAEqjwIQABqAAgAAmL0AALi9AABUPgAADL4AAIC7AABwPQAAJD4AADu_AAAsvgAAND4AAMi9AAA8vgAAfD4AABw-AABcvgAAqD0AAJ4-AAAwPQAAmj4AABc_AAB_PwAA2L0AANY-AAD4PQAA6L0AAIY-AAC4PQAAcL0AAAQ-AABsPgAA-D0AALg9AABsvgAAUL0AAOC8AAAQPQAABL4AAIK-AACSvgAA-r4AAAS-AAAcPgAAgDsAAIa-AADuvgAAcD0AALg9AACGvgAAyr4AAPq-AACgvAAAoDwAAKY-AADGPgAAML0AAMi9AABxPwAAJD4AAOC8AABcPgAAgLsAAEy-AAAEvgAAcL0gADgTQAlIfFABKo8CEAEagAIAAMK-AAC4vQAA6L0AAH-_AAAUvgAAmL0AAMg9AACYvQAAqL0AADQ-AAAwPQAAFL4AAEy-AAAMvgAAQDwAAKA8AACIPQAAAT8AAFQ-AACOPgAAMD0AABQ-AABsPgAAqL0AAIK-AAA0PgAAZL4AAIg9AACYvQAA6L0AAOg9AACYPQAAHD4AAJ6-AADIPQAAQLwAAFw-AADoPQAAJL4AAFA9AAAcPgAADD4AADS-AACAOwAAqL0AAEw-AABvvwAAUL0AAOg9AAC4PQAAbD4AAHS-AAAEPgAAxj4AANg9AADIPQAA4DwAADC9AACYPQAAxr4AABA9AAAQvQAA6L0AACQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2A1oUiRWvOo","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["503816849767302892"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3712668086"},"1681406875938763357":{"videoId":"1681406875938763357","docid":"34-7-7-ZE4769CC30E17407E","description":"Visit http://ilectureonline.com for more math and science lectures! In this first of the four part series I will show you how to find the center of mass of a triangle using integration.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4432764/ca527a6b6ae55773928861ebc69fa87a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/m_DAEgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSWDDj0qpQcw","linkTemplate":"/video/preview/1681406875938763357?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Physics - Mechanics: Finding the Center of Mass (4 of 4) Triangle","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SWDDj0qpQcw\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFQoTMTY4MTQwNjg3NTkzODc2MzM1N1oTMTY4MTQwNjg3NTkzODc2MzM1N2qTFxIBMBgAIkUaMQAKKmhodHh5eWNxcGJpZWpsamRoaFVDaUd4WWF3aEVwNFF5RmNYMFI2MFlkURICABIqEMIPDxoPPxPsBIIEJAGABCsqiwEQARp4gfsL_gD_AQDxC_IJ-wT_Af0J9_z4_v0A9A729QMBAADzAAEH_gAAAB4C-wv9AAAA_v7-__j-AAD8A_n9-wAAABP5Av73AAAAEfb-Bv4BAAD2__QCA_8AAA_-AQgAAAAAAAUKAwEAAADkCQf5AAAAAAn-BAYAAAAAIAAtCGHVOzgTQAlITlACKoQCEAAa8AF0IS3-1fWhAabm6AAoJfcAuiQXAPYl7ADfG_IB9w3YAQAF6wDrQsAAFxfy_4Ez_wEYBOUA1Mv8ATDnFv8r7QkA5PAOAfcD_QFy5RMA-dfm_sInIf3KEwb_tusOACQeugAX5DD89A3bAtUOzAIs-jcBzusQAg7Y4QTZ9u7__xMyAMoXyv22Ah8Gz84MANAFKQImCPsJ-UkIAjDM5Qb30QX8_93qBi4kAQEP-v36x_kJ-Mz96f_h__MT-_UQ_OTf9u_lGBH07M4T7xb0IwjjBBHz8BgH-gCzCBTf3BUA_cAM9Aj15O7QGf76z_ro8xLS5vogAC1aePg6OBNACUhhUAIqzwcQABrABz5d3b7KnCM63naRvQhojTv0jH29u892vfN3DrxiHDI9Xwh5vT7sVT6O5d08PVcFPXTq6r04QhC9tmAQvImZDT7MP1-9652fuRmBor1Atbs94aRfvfNZDr44bzc9dvssu7MVSr2I-OK8LtW7PHIeaT07anG9vLQ8veiZgzwkVPo8mykjvalP8j2A84K9wAESvT_jIr2PyV294IWIPLFeGz0QpJw8ivXXvG7rPT2AwJy7RKqDvL-1g715ioE8WmkMu5o_hj3p1UA9hNnfuwr4NbzI9tA8ZZ27vMYo0jkPh1u8Nvogu9vbzT2huqk9pojCvPBuYD1bVTu9VthnvK35Ab5UpZI8IdHfO_X1_D2cogg96ytZvMhFJb5p0YE9nQjHvD6bcjuwHje9-5GFuqVLrz0A25Y9mWGjukNUwT2yIjQ8OSt9vHbhB70qMp89GbRrPHBzTztndoI9SJK7vHv067ypV8K7P2_qvCRVZT0mvp89D-lcPD21Hz24c2Y9ds9wvFF3ND17wUc9wPAlu8U1Qz34UQ2-CW8su6fGwL2iKRi8gCctPGo2DTyfeyo9McltvPD5YT0UXw2-d4QRuy8yojsUFPW8GPaLO9lC0D2UFNi9IhEJuI-sF71HcW49qlAVvE-5GL0wZus9U2bCuensyTxMGM09X-iauTuJDLwEaRC9QRaeOwwDFj19CCq8-tRSu0mKA71OLTY85lE3OxiyCj5lnsO7GNGCOIDTu71lUK28DuqNu3cXw7xSIhE8BFSbO8oInjxrPji9JIlpOc2h1jx4UpU8PMqXOKw84b1pQ1Q9lVuyOO5vmjyjLDK9vPebuEdUuL1de3W9jlFRuoHobryXFIk9qP0KuYftnT2PgYa8wNAWuJTGQ73iTN08D4acuNUPpb3wOhY9MtjSud-4lDpHV-k9BZPWuP6htLz7KYQ9a3kouFPsyD3fU3S9mrPRuAIyT70jgtE9dbe8OI2u97zAycu9oaWBOcbzrj3kn6k95AJqNl0X4buXbLE9XaNlOE8rWz07J6w9PEyEuKAVPbxhyIW83Ts_OKYr2D1GmAI9gUZ_uAMaVr0XI_e8M7c2t9YfvDwlNkS8wkIIOGIvlD2taR68P3XctUd0z73UV-E8HdaUtsHjKz7cpWi8B4l0uW4eYr2xK7K9E7-_uCr9JbvjZt28oBnJNuY7OL2oLX89yhDIso2Rob2hYIu93O5PuPlk5T3I2Zo9tUDWNqVPK71mhg09DqvnuKclBr7PGYu79I40NpTMoL0sBjQ9ui2CNyAAOBNACUhtUAEqcxAAGmA27AAyGwvc8ikM-e6__xbD7_LiC9bu_9j0__4u4v329tzEFf0A5pIgx6MAAAAbAMARwQAJfcqfDhsKMA_Mw_QDA38QLO7cF1j_mswt_A4IICz9MDAA3BSNUxjfr0MKODMgAC1mEhI7OBNACUhvUAIqrwYQDBqgBgAAgEEAAHTCAAB8QgAAwEAAABhCAAAIQgAAskIAAIBBAACQwQAAwMEAAEDAAABgwQAAqMEAAAAAAACQwQAAsEEAAIA_AAAMwgAAbEIAAGBBAACmQgAARMIAAGTCAABMQgAAgD8AAFRCAABYQgAA4MAAANDBAADgQAAAEMEAAOjBAABYwgAAAMEAAFjCAAAgQQAACEIAAABAAABgwQAAEMIAAMBAAACAPwAACEIAAGxCAAAAQgAAyMEAAFDBAACQwQAAEMEAALDBAADgwQAAnsIAAOjBAAAwQQAAmMEAABRCAAA4wgAAuMEAAIBBAADOQgAAsMEAAMzCAADowQAAZMIAAOhBAABcwgAAwMEAACjCAABUwgAAOMIAACxCAAAwwQAAjsIAAARCAABgwQAAqMEAAGDBAAAAAAAAIMIAALjBAAC4wQAArkIAAJDBAAAsQgAAkEIAAKDBAADAQQAAkMEAAABAAABAwQAAoEEAAIZCAABIwgAA4MAAAJhBAAAUwgAAuMEAAILCAAB0QgAAjkIAAKDCAADwQQAAFEIAAHDBAADAwQAAGEIAABBBAACAQgAAQEEAAOhBAAB4QgAAAMIAALDBAADIQQAAgL8AAKBBAAAkQgAA6MEAAKrCAAAgwgAAcEEAAPDBAACYwQAAoEAAAGBBAAAAQQAAkEEAAIDAAABAwAAAFEIAAPjBAADYwQAAAMIAAGBCAABgQQAAXEIAAKRCAADgwQAAgsIAAFzCAACAwQAAEMIAAJhCAADYwQAAoMAAAARCAAAEwgAA0MEAADRCAABgwQAAEMIAAATCAAAUQgAAgEAAADDBAADAQQAAhsIAAFzCAAAMwgAAWMIAAEDBAADgQAAAmsIAAFDBAAAAAAAAkEEAAMBBAACgQAAAVEIAAEDBAADgwQAAMEIAAABBAACwwgAAuMIAAHDBAAAcQgAAHMIAABzCAACAQAAASMIAAFTCAAD4wQAAYEEAAJxCAAAAQQAATMIAAJDCAADIQQAAgD8AAOBBAADAQQAAMEIAAIhBAABQQgAAjEIAAIhBAACYQQAAEEEAAHDBIAA4E0AJSHVQASqPAhAAGoACAAAMPgAAmL0AAL4-AAC4vQAADD4AAIg9AACYvQAARb8AAIa-AAAQPQAAiD0AAKi9AACAOwAAiD0AAGS-AABkvgAAnj4AABy-AAAQPQAA5j4AAH8_AACgPAAABT8AAIY-AABEPgAAgDsAADQ-AADIvQAA1j4AAK4-AABMPgAAgDsAAKK-AAB8PgAAoLwAAJq-AAAkPgAAAb8AAPK-AACCvgAAFL4AAOg9AAAkPgAATL4AAMK-AACiPgAAjj4AAOi9AAAwvQAA4r4AAHy-AAA0vgAAUD0AAKo-AACaPgAAcL0AAHM_AACevgAADL4AADw-AAAQvQAAQLwAAHA9AAAwvSAAOBNACUh8UAEqjwIQARqAAgAAlr4AAHS-AABUvgAAYb8AADA9AACAuwAA4DwAAJi9AABcvgAAkj4AAJi9AABAPAAAkr4AAEy-AACYvQAA4LwAAEA8AAAbPwAAmD0AANY-AAAQPQAAJD4AALi9AACoPQAA6L0AAIi9AAAwPQAAED0AAIC7AADYPQAA2D0AAIC7AAB8PgAAVL4AAHA9AACIvQAA-D0AAKg9AABkvgAAqj4AACw-AAAMvgAAQLwAAEA8AACIvQAAcD0AAH-_AACYvQAAyL0AAFA9AACIPQAATL4AAJo-AACIvQAAcD0AAOA8AABAPAAAHD4AAKg9AAA8vgAAoLwAAGw-AAA8vgAALD4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SWDDj0qpQcw","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1681406875938763357"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1591881747"},"3671103772263866200":{"videoId":"3671103772263866200","docid":"34-0-16-Z78DCE61E9A3E3507","description":"Solved Problem: Determine the force and center of pressure on a rectangular wall of a tank filled with gasoline (sg=0.68) with depth=3m and wall length=10m.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3299848/d164f79e40ed846e1b9f83cc574a218f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/oOKdOAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEXAu_f2XNBM","linkTemplate":"/video/preview/3671103772263866200?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"1.2.1 Determine Force and Center of Pressure on Wall - Example 1","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EXAu_f2XNBM\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFQoTMzY3MTEwMzc3MjI2Mzg2NjIwMFoTMzY3MTEwMzc3MjI2Mzg2NjIwMGq2DxIBMBgAIkUaMQAKKmhoaXNyYW12dnBvdGdkamNoaFVDVHpzajNITDdFeW9oSmZlU0FsSjNLZxICABIqEMIPDxoPPxPOBIIEJAGABCsqiwEQARp4gQD3Bf78BADrB_4CAQEAABoOAAb1AwMA7f0BBAkAAADy-PcG-wAAAAUE_gr_AAAA_fj4Avv-AAAE-QT-AwAAAAnz9wv7AAAABgv6_f4BAAD4AfwBA_8AAAf8-woAAAAA7Q4J_f8A_wAHDv34AQAAAAv-_gEAAAAAIAAtzm3eOzgTQAlITlACKoQCEAAa8AFUCBr_2BPvAOoJ7wDTHPkAgRXw_yER6QC8EBAB1f_wAQAM5gDn_t8A9Pv__9gMIAA6-OcA9vQRAAnqAf8GABIA8Q4LAAzhIQE55QYA9O8E_rwqGP756g4A_tHkAPv24_78_RAA3ujWAQjuxgcI3TMCHg4vAB7VCgH_5Qj7CAwSAPn60f4S9x8C9tEDAd8WGgEGBPD-CiIG-uno-QQW9ff77ukI9hcW5_4MBfQF3hMDA_UK_vjsBe3_Ehsc_-4T9_b19__2-90EAfECDPou7w38CvEFBw3hBgMMGvXz7dcWAd3_-_bfIP0D0-P6BeH09_ogAC1R9DU7OBNACUhhUAIqcxAAGmAz-gAu9CbYDgZW8wTBDSYFtu3lFd_V_wPN_-P_BfYNFOapE_4APZQu4ZwAAAAx8_YSJwDhfwvE9SQbER7K6vHeEV4WKS34LVEbueoaHOQRJeIOKFQA6_GdOE_bhC9PKgkgAC381hI7OBNACUhvUAIqrwYQDBqgBgAAUEEAAIA_AAAkQgAABMIAANBBAAAQQQAA0kIAAIDAAADwwQAAgD8AAHDBAADgwAAAQMAAABDBAACAPwAAgD8AAAjCAAA8wgAAQEAAABjCAACAQAAA2MEAAJDBAAAAAAAAkMEAAMBBAADIwQAA1sIAAADBAAAwwQAADMIAAAxCAADowQAAuEEAAMjCAACgwAAAcEEAABBCAAAQwQAAsMEAAExCAACAwAAA4MAAAIDBAACuQgAA7sIAAHDBAACKQgAAMMEAACRCAACuwgAAoMEAAIzCAADQQQAAAMAAAGBBAAA8wgAAsEEAAKhBAACoQgAAmEIAAITCAACAwgAAhMIAAHxCAACQwgAAgD8AAADCAADAwQAAIMIAAJxCAADAQQAASMIAAEhCAADIwQAAcMIAADjCAADgwQAA8EEAALhBAADgwAAA0EIAANjBAABAQAAAIMEAAEBAAABAQAAAIMIAAGxCAACgwQAAUEEAAKRCAAAkwgAAAEAAAMBAAADAwQAAoMEAAMDBAADSQgAAsEEAADjCAAAYQgAAjkIAAOjBAABwwQAAoMAAAIBBAADQQQAAQEAAAIBCAAAQQgAAAAAAANBBAACSQgAAkMEAAMDAAAC4QQAAQEEAAETCAABAQAAAEEEAABjCAAAcQgAAwEAAACjCAACgwAAAUEEAAIA_AADgQAAAAEAAAHzCAAAwwgAAiEEAANBBAADYwQAAUEEAABhCAAAwwQAACMIAAEDBAAAQQgAA4MEAACRCAACEwgAAwEAAAIC_AABgwgAAsMEAANBBAAA8wgAAbMIAAFRCAADQQQAAoMAAAFhCAAAIwgAAHMIAAMDAAACCwgAAEEEAAADAAAB0QgAAAAAAAEDBAAD4wQAAYEEAANhBAACwQgAAWEIAAKjBAAAAQQAAcEIAALBBAABYwgAA8MEAADjCAAC4QQAAIMIAAHBBAABwQQAAVMIAAODBAAAwwQAAFEIAAKBCAACgQAAAQMIAADDBAADwQQAAsEEAABDBAAAwwgAAyEEAALDBAACwQQAAoEIAAIA_AAAQwQAAwEEAAEDAIAA4E0AJSHVQASqPAhAAGoACAAAsPgAATL4AABA9AADoPQAAir4AAES-AAAwPQAAOb8AAAS-AABQPQAAVL4AAIC7AACIvQAAED0AAFS-AABUvgAAQDwAADA9AABkPgAAGz8AAH0_AABwvQAAbD4AAAQ-AADgPAAA6L0AAIY-AADovQAAoLwAAJi9AABwPQAAmD0AABC9AACOPgAAND4AADA9AACYPQAA4r4AAJa-AAAkvgAAgr4AAFS-AABUPgAAiL0AAJK-AAC2vgAA6D0AAKg9AABsvgAARL4AABC9AABwPQAA4DwAAMY-AADovQAAEL0AAH8_AAAsvgAAcL0AAL6-AAB0PgAA-D0AALg9AAC2viAAOBNACUh8UAEqjwIQARqAAgAAoLwAAKC8AAD4vQAALb8AAJg9AAAsPgAAhj4AADQ-AAA0vgAAzj4AAKi9AADovQAAML0AAEy-AAAMvgAAmL0AAIi9AAARPwAAgDsAAKo-AADovQAAQLwAAOA8AAAQPQAAyD0AALi9AADYPQAAcD0AAIC7AAAwPQAA4LwAAOA8AABkvgAAoDwAAIq-AADKvgAAnj4AAOC8AACavgAAFD4AABC9AAC4vQAAMD0AALg9AAC4PQAAUD0AAH-_AACYPQAAcL0AAHw-AADIvQAAoLwAAMg9AACYvQAAgLsAABA9AACAOwAAQDwAALg9AACIPQAAmD0AABA9AABEvgAAmL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=EXAu_f2XNBM","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3671103772263866200"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"738956279"},"5606454476905001904":{"videoId":"5606454476905001904","docid":"34-10-12-ZA8709C63A97098ED","description":"In this video we find the centroid of triangle by integration method or from first principle #centroidoftriangle #centreofgravityoftriangle Mechtube India...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4023388/f37b16d5fdddf6b90f1c5eec7f8eaf7e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fVu5OQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzrZiNlQLVWc","linkTemplate":"/video/preview/5606454476905001904?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Centroid of Triangle by Integration Method | Engineering Mechanics | M03 L09 | Mechtube India","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zrZiNlQLVWc\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFQoTNTYwNjQ1NDQ3NjkwNTAwMTkwNFoTNTYwNjQ1NDQ3NjkwNTAwMTkwNGq2DxIBMBgAIkUaMQAKKmhoaHBoaWhzY2pqY25sZmJoaFVDYnZNRnJXUUJ0WFVScTZFQUlyZzZuZxICABIqEMIPDxoPPxPRBoIEJAGABCsqiwEQARp4gfcMB_z-AwD0_vcG-AT_AR32-fr1AgIA8QII8gMBAAD1BgYBAQAAAAoAAgH9AAAA9QED_PP_AQAO_f4DBAAAABIEBvn4AAAAEAgGAv4BAAD1_wD9-QEAAA7-AQgAAAAA_gsIBPr_AAAEAQP8AAAAAPv4CQEAAAAAIAAtxELYOzgTQAlITlACKoQCEAAa8AF_Gwr_twvXANLuBv8RJegBvfIV_wo57wDu_CMB2trqAScl1gDm5RMADO3r_rwB6_8bNOr-ygXy_xzCGv8Q2vEA5_r8ASDY1QBA7AoABRva_b4WQgH2-DABwhvjACL_0v_UxAP8CvrSAcfl5AArH_kE6P_3A7oABQTk8xz-6hYBBsoXyv3B7QcCz84MANX-DAlX39gHBDkgAczZAP4GxuQHNdPg_RlL5f_vEeT5kiUFA-0q2wQcA_EB0B8T-gLq8voG-hj5zOAX9v__Gvm83ffwKwzpDOvq-QwB0xj8MN748QUY8A31KN8DAxbpBELd8P4gAC3uWvk6OBNACUhhUAIqcxAAGmA89gAb-AT4oCUb2vna3iLl-unbE7ri_-rI_1I3-hMTCdmgBgn_6rgb654AAAAJ-9Mf6AD5f9vTHhngYAHZ3-NIFXYMKcrK7Ff3jOskHQHl7BcdFxkA7yHEXSLCxWoPERUgAC17hBE7OBNACUhvUAIqrwYQDBqgBgAAmMEAAEBBAABgQQAA6MEAAIBCAAAAwQAAXEIAADDCAACQwQAAmMEAAKhBAAAAwgAAEMIAABxCAAAwQQAAAEEAAAzCAABAwAAAVMIAAJBBAAAgQQAAMMIAAMDAAABwQgAAAEIAABRCAACgQAAAvsIAACBBAAAMQgAAgD8AALBBAAB4wgAAYMEAAHjCAAAAQQAAUMEAAKhCAAA8wgAAuEEAAKxCAAAAwAAAeEIAAAhCAACgQAAAiMIAAKLCAABgQQAAyEEAAMhBAAAEwgAA4EAAABBBAABAwQAAhkIAAMhBAADOwgAAoEEAAEzCAABwQgAAEEIAADjCAABwwQAAQMAAAEBCAADgwAAASMIAABDCAAAgQQAAYMEAABhCAAAwQQAAiMEAAMBAAACgwAAAAMMAADBBAAAIwgAAEMIAAAhCAAAcwgAATEIAAMBAAAAUQgAAdEIAABBBAAA0QgAAeEIAAFxCAABUwgAANEIAAMJCAAAgQQAALMIAAODBAACowgAAkEEAAGDBAAAgQgAAUEEAAADCAACEQgAA4EEAADjCAAAEwgAAyMEAAFTCAAAAQAAA0MEAAMBBAADoQQAAwMAAALDBAABAwAAAEMEAAFxCAAAQwQAAisIAAJDBAAA4wgAAwEAAAKDBAAB4wgAAcMEAAKhBAAAgQQAAkMEAABzCAACAvwAA0EEAAAAAAABowgAAKMIAAEhCAAAAwQAALEIAAHRCAACQwQAACMIAAL7CAABwwQAAoMAAAPBBAACYwQAAFEIAAIC_AACIwgAAQMEAANhBAACIwQAA2MEAAMBAAABYQgAAMEIAABzCAAAQQQAAqMEAAHDCAACwwQAAVEIAADDCAACQwQAAVMIAAJhBAABAQQAAyEEAADRCAADwQQAAgD8AACBBAABwwgAAREIAAEzCAADowQAAIMIAAAxCAAAAQAAA0MEAAExCAABgwQAAAAAAAMjBAAAkwgAAgkIAALxCAAAIQgAAwMAAAODBAAAgQQAAPMIAAAjCAACYwQAAeEIAAIA_AACEQgAACEIAADTCAABQwQAAhMIAABDBIAA4E0AJSHVQASqPAhAAGoACAAAsvgAAEL0AAMY-AACovQAAJD4AANg9AADgvAAAJ78AALq-AAAMPgAA6D0AAKi9AAAEPgAAND4AADC9AADgvAAADD4AAFC9AADYPQAA1j4AAH8_AADovQAADD4AAIC7AAAcvgAAPD4AADA9AAAsvgAA2D0AAKo-AADIPQAAgDsAAHy-AABAvAAAUL0AAPi9AAAQvQAAPL4AABS-AACYvQAALL4AALg9AAAMPgAAoLwAAKa-AAA8PgAApj4AAIq-AAAkvgAAdL4AAMi9AADgvAAAdD4AACw-AAA0vgAAgLsAAA8_AAAkvgAAcD0AAKY-AACAOwAAED0AAKg9AAA8viAAOBNACUh8UAEqjwIQARqAAgAAJL4AAIi9AABQvQAAJ78AABS-AACIvQAA6D0AADA9AAAcvgAAbD4AAIi9AAAkvgAAEL0AAEy-AABAPAAA4DwAADQ-AAArPwAABD4AAK4-AACgvAAA6D0AAIC7AACYvQAAXL4AAKg9AADgvAAAMD0AAHC9AABwPQAAmD0AAOg9AABQPQAALL4AAFA9AAC4PQAAZD4AALY-AAAsvgAAMD0AAJI-AACAuwAA6L0AADC9AAAwvQAAmj4AAH-_AACCvgAALL4AAOi9AACaPgAAmL0AAII-AAAwPQAALD4AAHA9AACgPAAA4DwAAEA8AACovQAAMD0AAHA9AACSvgAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zrZiNlQLVWc","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5606454476905001904"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15328646867886314621":{"videoId":"15328646867886314621","docid":"34-0-5-ZA3154D9ADCBC8AC8","description":"The centre of pressure of a vertical immersed lamina.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4079332/1f3375a684c9d41f461061a4708eb117/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xslDOQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dqvp5wJGCSUM","linkTemplate":"/video/preview/15328646867886314621?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Double Integration - Centre of Pressure Derivation and Example","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qvp5wJGCSUM\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFgoUMTUzMjg2NDY4Njc4ODYzMTQ2MjFaFDE1MzI4NjQ2ODY3ODg2MzE0NjIxaogXEgEwGAAiRRoxAAoqaGhkY3hzcHVubGRyeWtmYmhoVUNUWFhoVHhRVEk1bnNFNE55Sk5IVmlnEgIAEioQwg8PGg8_E50HggQkAYAEKyqLARABGniB_QUF-wH_APYI_QT4Bf8BEQgDC_UBAQDs_Af6BwAAAO77APP4AAAACQgGEQEAAAD47PT9-f4AAAn6AAwDAAAAFwb98PsAAAACEQAE_gEAAO4BBv8DAAAADAT4BQAAAAD8CQEB_P8AAAUI_v4AAAAACvj5EgAAAAAgAC2Il847OBNACUhOUAIqhAIQABrwAX__HgDD--H_ovbHAOYP0AG3Jjr__DvMAOMuBQDd2gAB9y4hAPMF2f8Y5SwAyeQIAEYZ7wDbDeIAJrf1_ugBDwHl0PEB-dPSASn6CAH05vQA7CMiAKTV5gH28coAHh7ZAPr8FgD0Mbv--g7r_BziMwPF8ioG2fEOB9Hm1_-uH_3_08rg_ewCDwL7yDP_3PQ2CB3yCf4YFQr5CgL_Btf7AwIMKAEFIR_d_fPg7f23NysBDfHgB_b7Bg8w2CID5uH28P72APwCoQb2P8nx_RveIvnV8O4C9vHpBBfWFfrbswYFFxH38OPc_QEhs-oKEdTn-iAALTgcAjs4E0AJSGFQAirPBxAAGsAHsg7HvudZJDzfCpe8CGiNO_SMfb27z3a9jY8AvYDMuD0WkiO7ZhA_PnoRNzwHN2O8dOrqvThCEL22YBC8mN0jPoFJkL1D9PW8dXT8vS8Tmj0LAhC9R48Pvm2kkTxoOMo8K0t0vLO-97zHJEg77xEbPcHEv70IkAG9kVZGPLSOqryUgB29vlKxvOGLArx9Qcu8orIGvfgaor1tRVG8bEhXPbHs-LxUhpa8vE-PPSvWhT07n0u8ZAbqvZokFj2WW5o8BA_CPSImhz0QSk48z9kCvQkrALsGt1o8k5jGvYaPiDyO0ZU8HHL9PIWtfj3XhPw3gqv8vDif-r0yRS-9UwlqvUQ2oD2YZ0U68H9sPWapwD3lZQk8rvQqvm3F3j2K1Au75oKnu7sOFT0vCSE914rWPXBt9jtUi6m6g8LgPRXAObwvY9S8brYjvflYcD0JEsA8v1paPHkXyT3DUAG8oJuHPQj4fzxrvoi7LGw8vLqh6T0cORg7vtuMPUtV-zo7tak8PnspvXXjIj3o8DU8RPO1PdjU2b06cSC8fCCDPNjIorulwpa63cF-Pby7JD2Ie5G8EiIvPeT-Pr06eZG7mkZuvTwLZzyfK4A8kOXVO4UZR7vqs8E7c9nIvWIzez0J7cm7NJGIvfSmYj1-Ztq7nyoVPbAAZj0DZra7o2iUPEWupbyWk7O7IVK4PI8sqr3buyu8DHPCvNF987uzZ-i7aeTTPcnSvbxSsAa4lhV5PV_R7bzKf1Q6TegEPdAr3r0pOYo4fZXcPRZuKb58PPK5WZNdPFhS8jtzYJy6B5bjvfub6zw0lXo3m_NCPCSBAjzhJKc4THhYva1RbrttWVK6Bz7rvA9YQ715vQK6r5-0PaaX2DxDyps52FuUvcQ-JrySkdS6E-gdvZRptDy80Pk54DH6O34glLw5FNC4ulCUvBdfuT2nSAC3qZQNvVTuFD3LyYI4sfPLPeF56T3dEoM3O9ZWPClgdr3JUFC4izMWPjQO9T2uJYc2P8l4PJ4Bvz17QIe214cFPn2Xkr2QAQm4YshiO2xfPDtFEiY4q6xyPbkbwDv_rNG4AxpWvRcj97wztza3AQcjvR-ua71WvnK2rg5APnjTLb3sin22qz_CvG_DnrweNmw0gKBXPVjZiL1OyYW4-UrgvQyP3b1jM0S4NtwRu3P6pT3z1BA442AFPREBR73ZDHQ4hhAhPVx3073e85u3DmXovHU90T2iE0g47cSbPEVJyD3uUgq5TJ4cvRbKurok3si33kn6O--4tz1uY0c4IAA4E0AJSG1QASpzEAAaYBPyABs4BfP-EDTf--Hb9efM2PERxPf_9coACP4K_h3rEsjN0gBGlBLzrAAAAP75CCL8ABBwDu3_DyEKLNfs3BAAfyk8Crz0Qwq89Anx-sD-JjwxWgDLB8ExF9vLTuk8USAALYb0Hzs4E0AJSG9QAiqvBhAMGqAGAACYQQAAEMIAALJCAACwwgAAMEEAAKhBAACcQgAAYEEAABzCAABAQAAAwMEAADBBAAAwwQAAgMEAAKBAAADAQAAAUEEAALDBAACgwAAAkMEAAKBBAABowgAAcMIAAMBBAAAUwgAAMEEAADBBAABkwgAAFEIAALhBAACgwQAAAMEAAPjBAAAkQgAA7MIAAIBAAAAAQQAAbEIAALDBAACQwQAAbEIAAGBBAAAkwgAAqEEAAOJCAADSwgAAUMIAAHRCAACIQQAAkMEAAEDCAAB8wgAAqsIAACxCAADQQQAAoEEAAIbCAACAvwAAEEIAAKBCAACkQgAAosIAAITCAABgwgAAUEEAALzCAACgQQAALMIAAGDBAAAowgAAiEIAAPhBAAC-wgAANEIAAADBAAAkwgAA8MEAAMDBAADAQAAAUEEAALjBAACaQgAAHMIAAARCAABQQQAAQEIAAJjBAAAswgAAQEIAAABAAAA4QgAAoEEAAODBAAAAQQAAiEEAAJDBAAAgwQAAuMEAAKxCAADQQQAAMMIAAEBAAABEQgAAJMIAAHDBAACowQAA4MAAACBCAAAgwQAAkkIAAOhBAADIQQAAgEAAAAhCAAAQwQAAEEEAANhBAACAwQAAhMIAACDBAACAwAAAsMEAALDBAACgQAAA-MEAAKBBAADIwQAABMIAAIBAAAAgwQAAiMEAACDCAADAwQAAaEIAAKjBAACAQQAA8EEAAIhBAADQwQAAEMEAAEBBAACAwAAAhEIAALzCAACgQAAAEMEAACDCAABcwgAAgL8AAEDBAACGwgAA2EEAAOBBAABwQQAAqEEAAFDBAABIwgAAQMEAAFzCAACwwQAADMIAADBCAADQQQAAoMAAAADAAADQwQAAGEIAAHBCAACKQgAAoMEAABBBAABAQgAADMIAADTCAAD4wQAAgMEAAEDAAACAPwAAIEEAAGBBAAAYwgAARMIAAEDCAAAAwAAAWEIAAEDAAABgwQAAMMIAAKBBAACAQAAAPEIAAFjCAAAoQgAA8MEAAMBBAAAoQgAAEMEAAEDBAADAwQAAgMAgADgTQAlIdVABKo8CEAAagAIAABC9AAAkvgAAgj4AACw-AAAkvgAALD4AAOA8AAAnvwAAJL4AAEQ-AABcvgAANL4AAMg9AABcPgAALL4AAKg9AADgPAAAoDwAABQ-AADSPgAAfz8AAKC8AACSPgAAij4AAOi9AACWPgAA-D0AAKi9AABEPgAAcL0AAOC8AABUPgAANL4AAEQ-AABAPAAAJL4AAIA7AACmvgAAir4AALq-AABQvQAAcD0AAKg9AADovQAA9r4AAHy-AAC4vQAAbL4AAFy-AACKvgAAFD4AACw-AABMPgAApj4AADS-AACovQAAZT8AABw-AACgvAAAJD4AABA9AACYvQAAMD0AAK6-IAA4E0AJSHxQASqPAhABGoACAACKvgAA6L0AAEA8AABXvwAAuL0AAKA8AADIPQAAUD0AAOA8AADoPQAA6L0AABS-AABwPQAA2L0AAJg9AABAvAAAgDsAABk_AAD4PQAAgj4AAIC7AABAPAAALD4AAIi9AAC4vQAADD4AAPi9AABQvQAAQDwAADC9AACIvQAAyD0AACQ-AACSvgAA4DwAAIi9AAA8PgAADD4AANi9AABQPQAAcD0AAIg9AACoPQAAiL0AAKA8AAAwPQAAf78AAFA9AABAvAAAED0AADw-AABEvgAAlj4AADw-AAAwPQAAUD0AAFA9AABcvgAAED0AADS-AAAcPgAADL4AAHS-AADoPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=qvp5wJGCSUM","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1254,"cheight":720,"cratio":1.74166,"dups":["15328646867886314621"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"150763663"},"14375383146039888609":{"videoId":"14375383146039888609","docid":"34-5-15-ZC1494A2AE33DD284","description":"Visit http://ilectureonline.com for more math and science lectures! In this video I will find the center of gravity of a general spandrel (y-coordinate). Next video in this series can be seen at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4518462/2918248298cfe38bab9c5f499a877fa8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/JGQJtAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5byG2AO-Pmk","linkTemplate":"/video/preview/14375383146039888609?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mechanical Engineering: Centroids & Center of Gravity (11 of 35) C. G. of a General Spandrel 1","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5byG2AO-Pmk\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFgoUMTQzNzUzODMxNDYwMzk4ODg2MDlaFDE0Mzc1MzgzMTQ2MDM5ODg4NjA5arYPEgEwGAAiRRoxAAoqaGh0eHl5Y3FwYmllamxqZGhoVUNpR3hZYXdoRXA0UXlGY1gwUjYwWWRREgIAEioQwg8PGg8_E8kCggQkAYAEKyqLARABGniB-wr-CQL9APD7_v8JAv8BFQr7_PQCAgDn-vv-BP4BAPIAAQf-AAAAEAEA-gUAAAD7BAnx-v4BAAn_BQQFAAAAA_L-9PkAAAAOGvoC_QEAAPoA8A8D_wAABwMF9_8AAAD8AQMG_v8AAP0Q8wIBAAAAAvQRBgAAAAAgAC3gdcw7OBNACUhOUAIqhAIQABrwAX8NJ__U9J0BsNn1_wwV7wG3JhgACjzuAMsn_ALbMrUB8_z2Ad834gAp_QL_ozP2_xkF5ADStBEAP70p_ynZEgDJ2hUAP_QFATn7HgEjzPj-1i0X_8caGgLRvNr_Jjjc_hDaFP4jI7396QSzAgzKTQP2AS8HD9bgBNrn5wLtHygB9fa4_cQIBQfO4wr24wkuAjIDLgQEOyEBDc7X_v_XHQUd8vn2Ei_rBugN0grNHQQE8efvAvrYDRL0BRL7zfTx8-AfKv3V0AAADeMT_PIgBuveFu0K_t759g7nDfnM5_vxFOjv_7cJDe706eYNE9Dl-SAALdyU7zo4E0AJSGFQAipzEAAaYDXkAD_k_gcFDAPu9r7nGdzZAvIWzeX_5N3_EjHsBiUM4M4GIwD0rx7DpAAAAC_1y_y-AAd75KoWERVJFfvc6w0bf-UKHtH0WRLAxfodC-xCDu4G_gCqGadEMtKgPP4iZCAALc4BFjs4E0AJSG9QAiqvBhAMGqAGAAAQwQAACMIAADRCAAAIwgAAmEEAAPBBAACeQgAA0MEAAIDBAADAQAAAUMEAAMjBAADYwQAAqMEAAKDBAACQQQAAIMEAAFBBAAAgQQAAAMAAAEBCAADIwQAADMIAAERCAADAwAAAJEIAABxCAAAAwAAA4EAAAADAAABYwgAAuEEAAADCAABEQgAAosIAALDBAACmQgAAFEIAAAjCAABQwgAAgMEAAMjBAACAvwAA4EAAAJJCAAAQwgAAHMIAAFBBAACgwQAAQMAAANDBAADowQAANMIAAFBBAACgwQAA4EEAACDCAABwwQAALEIAAJpCAAD4QQAAzsIAAEDBAAA0wgAAgEEAAEDCAADgwQAA-MEAACBBAABQwgAA8EEAAMDBAAAAwwAArkIAAMDBAAAAQQAAUMEAAOhBAADIwQAAgEAAAODBAABUQgAAFMIAAERCAACQQQAAfMIAAIBAAACAwAAAwMEAAEDBAADQwQAAgkIAANjBAACEQgAAUEEAAAjCAAAwwQAAYMIAAIJCAAA4QgAADMIAAKjBAACcQgAAuMEAABzCAAAoQgAAYEEAACxCAACGQgAAEEIAAIRCAACwQQAAEMEAAChCAADwwQAAgMEAAIRCAADAQQAAjsIAAHDBAABAQQAAWMIAAEBBAADYwQAAAAAAAFBBAAD4QQAA4MEAADDBAACgQQAAyEEAACTCAABwwQAADEIAABBCAABUQgAAQEIAAIDAAAB0wgAALMIAAEBAAADAwQAAjkIAACDCAACAvwAAMMEAAMBAAAB8wgAACEIAACBBAAAswgAAsEEAAFRCAACAwQAAEEEAAKBBAAB4wgAAisIAACjCAAAAwAAAAMIAAKhBAABIwgAAisIAAKjBAAAgwQAAAMAAAJBCAABEQgAAsEEAAIjBAAB0QgAA6EEAAHDCAABQwgAANMIAACBBAACQQQAAgD8AAIA_AADAwQAAsMEAADTCAABwwQAAvEIAAOhBAADIwQAAJMIAALBBAAAgwQAAKEIAALhBAAAAQgAAEMEAANhBAACqQgAAkEEAAKDBAAAIwgAAWMIgADgTQAlIdVABKo8CEAAagAIAAPi9AACoPQAAvj4AAIg9AABsvgAA6L0AALg9AAARvwAA6r4AADw-AAAEvgAAiD0AADA9AABEPgAAuD0AAJ6-AAAkPgAAgDsAAK4-AADiPgAAfz8AAIi9AACSPgAA2D0AAPi9AABAPAAAFD4AAGS-AABQPQAAjj4AAKC8AAAsPgAADL4AAJg9AABUPgAAML0AAEA8AABMvgAAuL0AAEy-AAAwvQAAyL0AAMg9AAAMvgAALL4AAKC8AAA8PgAAUL0AADS-AACCvgAABD4AAIC7AACIPQAAdD4AAIC7AABAvAAANz8AAKi9AAD4vQAAcD0AAFw-AAAQvQAAND4AAAS-IAA4E0AJSHxQASqPAhABGoACAAA8vgAA-D0AAGy-AABhvwAAur4AAGy-AACgPAAAyD0AABy-AACiPgAAQDwAAIq-AACSvgAAdL4AAPi9AABQvQAAEL0AAPY-AACYPQAAsj4AABS-AAAwPQAANL4AAJi9AAAcvgAA4DwAAFC9AAAwvQAAML0AAEA8AADgPAAAcD0AAIC7AADgvAAANL4AAPi9AAAsPgAAFD4AADy-AAAMPgAA2L0AAEA8AACavgAAUD0AABy-AAA0PgAAf78AAJi9AABMvgAAEL0AANg9AAD4vQAAkj4AAOg9AACIvQAAQLwAAEC8AACSPgAAED0AADy-AABAPAAAED0AABS-AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=5byG2AO-Pmk","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14375383146039888609"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4195424112"},"6106676314309675549":{"videoId":"6106676314309675549","docid":"34-11-7-Z53BD081402DD964B","description":"Visit http://ilectureonline.com for more math and science lectures! In this video I will find the center of gravity of a general spandrel (x-coordinate). Next video in this series can be seen at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4328544/14f2e250d624042a07cd07be6c511cf2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/szdEOAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3zczcNFNerM","linkTemplate":"/video/preview/6106676314309675549?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mechanical Engineering: Centroids & Center of Gravity (12 of 35) C. G. of a General Spandrel 2","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3zczcNFNerM\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFQoTNjEwNjY3NjMxNDMwOTY3NTU0OVoTNjEwNjY3NjMxNDMwOTY3NTU0OWqIFxIBMBgAIkUaMQAKKmhodHh5eWNxcGJpZWpsamRoaFVDaUd4WWF3aEVwNFF5RmNYMFI2MFlkURICABIqEMIPDxoPPxOrBYIEJAGABCsqiwEQARp4gfsK_gkC_QDw-_7_CQL_ARUK-_z0AgIA5_r7_gT-AQDyAAEH_gAAABABAPoFAAAA-Qj68vb-AQAJ9QEEBAAAAAPy_vT5AAAADhr6Av0BAADq-_IJA_8AAP8JDO__AAAA_AEDBv7_AAD9EPMCAQAAAAL0EQYAAAAAIAAt4HXMOzgTQAlITlACKoQCEAAa8AF_JDL91xWzArns9f8pIdYA4xce_yBh9wDUPO__uR3JAAz82ADfGsb-HwHkAJ429v8FIO3_q8ALAk7dIQAN-AUA070MARbt_QJe7wYAJcn4_psOLP7FFQf_2NO__ighswAp7Bn6DjLKAQ3kogxE6SoC3Pc7BQnlzgLQ__z70Cgc__T2tP3ACAUIw70t_-MkIgE42iwDBD8jAUPO9P4IvCb_DeD-CCIhDAnuE-H5mRHw-vvj4vXr0vwG8wYT-uLc9O7iGhPz-MgHAhf6Fvv1ERbt5Sn2ARXNCgT-2gUD8swB-wn04e2sEPcI4PbqAhTN4_kgAC0jQeI6OBNACUhhUAIqzwcQABrAB4iCub7FJQG8WkX_vAhojTv0jH29u892vfN3DrxiHDI9Xwh5vaDiaD4Ljv06MNYauth-Er1Ndyi9wpidOx-gCz7pPbq8e8n1vBmBor1Atbs94aRfvfNZDr44bzc9dvssu7pWsbzDVGk89q5mvO8RGz3BxL-9CJABvSCo6LoddRE8M9wAvdnZtj3cRsO9C3G2vLd_hb3n09m80I_QOttv7Tpchkk8-efzvPEFlz0LJh69p7QZvfIowL2vrcQ8hXMRO5o_hj3p1UA9hNnfuwr4NbzI9tA8ZZ27vIO-lL1T_RQ722POvNvbzT2huqk9pojCvGKTqTtxKsi9yGqpvDJ9qr33iYg9cXxlu_3Puz14uYg9qyaIvE89Ur63CIE9f-1Lu7eM5Ty3D1S8gczOPM98oz24MlI9p9BUPJPDJz6yONI8HtZlvJn7j72bRY49Z23JPFEzv7zFVlA90Ui6vF3_KT0MtcE8P3ScvMg9BDyGE2I9aZ5tPBrfpz0xwFQ9TyDLuh8U77zLl-E8aCQfvI_gFj5beA6-A-cOvLINsb12u-i8f4-TO9HH3zsz3as8l0MBvPD5YT0UXw2-d4QRu-cWH72NR6m8-QOzujUpZT2hgbi9alAPO1V0mr2bVHQ92j4ePE-5GL0wZus9U2bCuUI9IjwtcWk9WemkOzD8Fr1QJ488Jo4bPAVdsTz8FoK8pe4xu2OFlTt_log9ML-ROePFAj7ZnQk9sOXFuZhER72a0yA9Ir56u15gHjxJlGe9okYdusoInjxrPji9JIlpObHiL7z4MrS6Uad6OyMSFb4U9Rc8dbsCuj8Zo7yy9le9Q_ULuPyzVb13PbK9hRswuHwZ-7wYCW09GVmNNwa44D0hK648_vgPuf7u_b2HyyA9yDD-uShEAL5rK7Y8tMC-uHuzuDtf9kY9NKPduIvoEj0xtss9y-0WuWJQwT12CBK99oFzubWNej3IoaQ9LdQBOI2u97zAycu9oaWBOf1Ylz3ct_o9HVbENepTs70yfJ89SJ1uOAHGTj0mmrY8vyqGuHgMVroz9HQ8njsAOJmCBT7581I9Hq4Gucov6LyPD4S8Eqb0N0E9aDsc6-K8AbH1t0uPuz1CPgi9PGN8OGDylb2dY7U9XkWBN8HjKz7cpWi8B4l0uW4eYr2xK7K9E7-_uC8lATvnOo08SSaJt60kQ70Mc0c9HsEWN7NGqL16urS9F7mguFUYpj1tC8U9g8fnOC_BKbwKxMY8W0yWuHxOhb1jhEu8wsjotlQfaL0IEzA9PRyMOCAAOBNACUhtUAEqcxAAGmA16gA-2fME7xQC5vrH8BPU4A_vDOnd_93m_xA-9_ggCOPS-BkA86Mb1awAAAAi9tT90AAOb_GuBxQeQgQR6OoDHX_mERHm_lYazNj0FQ_wQQPo-goAqh3BOTDRnzcBJWMgAC3sSCE7OBNACUhvUAIqrwYQDBqgBgAAUMEAAADCAAAgQgAAPMIAAMhBAAC4QQAAqEIAACDBAAAQwQAAQEAAAADBAABgwQAAsMEAALDBAACwwQAA-EEAAGDBAABAwAAAgEEAAMBAAAA4QgAAGMIAACjCAABUQgAAgMAAAOhBAAAsQgAAAMEAAADAAABAQAAAhsIAAHBBAAAYwgAAVEIAAKDCAACAwQAApEIAAAxCAADwwQAASMIAAFDBAABAwQAAAAAAAOBAAACUQgAA-MEAACjCAAAgQQAAyMEAACDBAADQwQAA8MEAABDCAACoQQAA4MAAANhBAAAswgAA4MAAAPhBAACcQgAAsEEAAMTCAAAAwQAAIMIAAGBBAAA4wgAAAMIAAPDBAADAQAAAXMIAAAxCAADgwQAAAMMAALRCAACIwQAAEEEAAHDBAAAoQgAA0MEAACBBAADwwQAAMEIAAAjCAAAoQgAAUEEAAFjCAACgQAAAoMAAAJjBAABwwQAADMIAAGhCAAD4wQAAgEIAAOBAAADowQAAcMEAAFDCAABwQgAAGEIAACDCAADAwQAArEIAALjBAADowQAAFEIAAHBBAAAcQgAAlkIAACRCAACYQgAAoEEAADDBAAA0QgAAEMIAAKDBAAB4QgAADEIAAKLCAADAwQAAUEEAACzCAACoQQAAoMEAAIDAAABQQQAA6EEAABDCAAAAwQAAsEEAAGBBAABAwgAAMMEAADhCAAAoQgAAOEIAABRCAACAPwAAfMIAACzCAAAAQQAA0MEAAJZCAAAMwgAA4MAAADDBAADAQAAAZMIAAOhBAAAwQQAAQMIAAOBBAABYQgAAAMAAAIBAAABwQQAAdMIAAJbCAAAswgAAEMEAAOjBAADoQQAAKMIAAHzCAADYwQAAIMEAAIA_AACMQgAAIEIAAKBBAABAwQAAVEIAAKBBAACKwgAAeMIAAADCAACYQQAAqEEAACBBAAAAwAAAqMEAAKDBAAAQwgAAYMEAAMpCAAAMQgAA6MEAABzCAADYQQAAEMEAABxCAACwQQAAiEEAACDBAADIQQAArEIAADBBAABQwQAAwMEAAFjCIAA4E0AJSHVQASqPAhAAGoACAAAEvgAAJD4AANI-AACoPQAAVL4AAAS-AADYPQAAD78AAAG_AADoPQAABL4AADA9AACoPQAAND4AABQ-AAC6vgAAdD4AAEA8AACiPgAAuj4AAH8_AAC4vQAAlj4AAIg9AAAcvgAAgLsAAIg9AABEvgAAED0AAJY-AACgPAAA-D0AAAS-AAAEPgAABD4AADC9AADgPAAATL4AAKi9AAA0vgAAcD0AAKg9AACgPAAA2L0AADS-AABAvAAALD4AANi9AADovQAAPL4AAMg9AACgPAAAiD0AACw-AACoPQAAoDwAACE_AAAkvgAAFL4AADw-AACIPQAAcL0AAEw-AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAdL4AABw-AAB8vgAAZb8AAMq-AACOvgAAoDwAAOg9AAAEvgAApj4AAFA9AACKvgAAlr4AADS-AAAcvgAAML0AAHC9AAABPwAAUD0AAKI-AADIvQAA4DwAADS-AACovQAANL4AAIg9AACYvQAAoLwAAFC9AABQPQAAMD0AAJg9AACIvQAAgLsAACS-AAAMvgAARD4AAPg9AABEvgAAqD0AANi9AADgvAAArr4AAHA9AAAMvgAAVD4AAH-_AACIvQAAbL4AAOi9AADIPQAAcL0AAJI-AAAsPgAAmL0AAEA8AABAvAAApj4AAPg9AABEvgAA4DwAADC9AAAsvgAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=3zczcNFNerM","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6106676314309675549"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3945334448"},"14594359860301322231":{"videoId":"14594359860301322231","docid":"34-7-17-ZFD74315EE44DB7BC","description":"Greeting all Sharing current process on Mirror Effects and how it can serve us in transformation, integration and centering ourselves. Private reading, session and more...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/471039/c1865b81761b2a650393962f9cb396f5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gmWy9AAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0GNZcbv-qkY","linkTemplate":"/video/preview/14594359860301322231?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integrating & Centering - Mirror Effects","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0GNZcbv-qkY\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFgoUMTQ1OTQzNTk4NjAzMDEzMjIyMzFaFDE0NTk0MzU5ODYwMzAxMzIyMjMxarUPEgEwGAAiRBowAAopaGhmcHR3ZW5zYnlkZGJraGhVQ1g5U3RBTDZERjJPdlZibGtPbnB6bGcSAgARKhDCDw8aDz8T_geCBCQBgAQrKosBEAEaeIHwEwAAAQAAAwP8_vsE_wERCAML9QEBAOr9Dfj5_wEA-vkL-QIAAAD7Av78_gAAAPcG-v3z_wEAGwbv_gMAAAAX7_b2_QAAAA8M-wT-AQAA-wcICAP_AAAFA_r2_wAAAOzyAAL-AAAAAwQL9wAAAAAL9AUNAAAAACAALXZQzjs4E0AJSE5QAiqEAhAAGvABf_gJBM3yD_5jFAUAGAIGAOMSGgBJBP8AwO__AOT18gAOBAYA8AgKAAT1FAA2EBAA9_nz_-_5-gAaCtwA3hUhAeUB_QEdAQkB7OADAOUP6v_4Cvf_9w8IAAIb9gADBwf_B_YN-_bm_wQW9QsB9g7-ATUG9gT37Qj_8wgT_uPx_P0H7fD_2uIYAesi_vv4AgP84Or3ANQdAQD2Bf4DDAIO-xINFwPYBAcEFR8RA_7S__8M5f7-Bgf3-wMHCQIR_v8GBAgOCN0mEQEC5gD98hTuBAAVC_z_9_sB6hL7DO7tDwP7FvgDF_4M8vnz8QfpBvjyIAAtq0pPOzgTQAlIYVACKnMQABpgFAgAHx_5IsINUefw-_Eh-NgD8e_-Ff_h4AD_EPbCAiXZxgkj_zn2zeu0AAAAAuwTL9MA2GMD57wWEEYFAPDSHgh_JCs_ENAf2Nbd98bU-RAaEPY4ALZTtBcECv48GuXpIAAtphQtOzgTQAlIb1ACKq8GEAwaoAYAAAzCAAAswgAAqEEAACRCAAAUwgAABEIAAAzCAAAAQAAAnMIAAJDBAAAgwgAAiMEAAJbCAAC4QQAAcMEAAERCAAAQQgAAAMAAAFhCAABQwQAAUEEAAOBAAABcwgAAkEEAAIRCAAAQQQAAoEAAAMDAAACQQgAAosIAAGRCAABIwgAAmMEAAIDBAABUwgAAAEAAAEDAAAD8QgAAQEEAAJBBAABQQQAA6EEAADBBAAAwwQAAAMAAAIjBAADowQAA4MAAAGxCAAD4QQAAMMIAAABBAABAQAAAMMEAAIDBAADAwAAAgMIAAJhBAAAMQgAAVEIAAODAAAC4QQAA6MEAAAAAAAAAQQAAcEIAAMDBAAAYwgAAVMIAADDBAACQQQAABEIAAMDBAAAoQgAAYEEAALBBAACywgAAKEIAAARCAACQwQAAYEEAAJBBAABAQgAABEIAAFBBAACSQgAAQEAAAMpCAADgQQAAjMIAAChCAACoQQAAjEIAAOBAAACIwQAAgEAAAEDBAABwQQAAnEIAAIBAAACgQQAA-MEAAFDBAACIwQAAQEEAADxCAADQQQAAFEIAAAzCAACgQQAAgD8AALZCAACmwgAAgL8AAIBCAACQQQAAgEIAADTCAAAkwgAAIMEAAKjBAABwQQAALEIAAETCAACIwQAAYMIAAKBBAABAwAAAeEIAAIrCAABAQQAAwMEAAChCAADIwQAAEMEAAKDAAACgQQAAYMEAALrCAAAcwgAAMEIAAI5CAACwQQAApkIAADBCAABwQQAAKEIAAMDAAACGQgAAwMAAAIhBAACwwQAAIEEAAFBBAADgQQAA8MEAAADAAAAMQgAAsMEAAJ5CAADIwQAASMIAAFDCAACoQQAAsMEAAJLCAADwQQAAusIAABhCAACgQQAAFEIAAOhBAAAUQgAAPMIAAHRCAADgQAAA0EEAAPDBAAD4wQAAeEIAAEBBAAB8wgAAPMIAAEBAAAAcQgAADMIAANDBAACsQgAAOEIAADDBAAAEQgAAAMAAACTCAADIwQAAMMEAADBBAAAQwQAAKEIAACTCAABYwiAAOBNACUh1UAEqjwIQABqAAgAAmL0AANg9AAAUPgAAgj4AAIC7AACAuwAAJD4AAOK-AACqvgAAQLwAABC9AAAQPQAAtj4AAFQ-AAD4vQAAqL0AAI4-AAAkPgAAJD4AABs_AAB_PwAAjr4AAKC8AADoPQAAiD0AALg9AACIvQAAir4AABA9AADSPgAAuD0AAPi9AAAQPQAAJD4AAIg9AAAkPgAAmL0AAOq-AACKvgAA2L0AAJa-AAAwvQAAuD0AADC9AABQPQAAuD0AAOg9AADmvgAA1r4AAKi9AACIPQAAgLsAAM4-AAAQvQAAjr4AAEC8AAAxPwAALD4AACw-AAAMPgAAgLsAADA9AAD4vQAApr4gADgTQAlIfFABKo8CEAEagAIAAAQ-AABAPAAAjr4AAEm_AABsvgAAqD0AAAQ-AACovQAATL4AACQ-AAAQPQAApr4AAMg9AACSvgAA-D0AABS-AACgPAAABT8AAKC8AACSPgAAyD0AALi9AABMPgAAUL0AADA9AACAuwAAjr4AAOA8AAC4PQAABL4AAIg9AACIvQAABD4AANi9AABAvAAA-L0AANg9AABcPgAAiL0AAOA8AACqPgAAcD0AABA9AADgvAAA2L0AADw-AAB_vwAAmD0AAKi9AABEPgAAFD4AAES-AAA0PgAAJD4AAHy-AABwPQAAiL0AAMg9AADIvQAARL4AAFA9AAB8PgAAEL0AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0GNZcbv-qkY","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14594359860301322231"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1525468658"},"2706475575197962368":{"videoId":"2706475575197962368","docid":"34-4-0-ZE3A0358EE57D0F48","description":"Visit http://ilectureonline.com for more math and science lectures! In this video I will find the center of gravity of a semi-circular wire. Next video in this series can be seen at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/760159/f6adebbbd2655ac9ca1e289abaa108a3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UpCLtAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtCAVwcwtqOQ","linkTemplate":"/video/preview/2706475575197962368?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mechanical Engineering: Centroids & Center of Gravity (14 of 35) C. G. of a Semi-Circular Wire","related_orig_text":"Integral Centering","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integral Centering\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tCAVwcwtqOQ\",\"src\":\"serp\",\"rvb\":\"EqwDChM4NTU0NjI0MjI2NjY4NTIxNzk3ChI2NzMwNjQxMTA2NzE5NzQxNzkKEzE4NjU4ODc1NzI3NjUzOTkyNjAKFDE2NjkyMzg3ODg1ODYzOTE1NzQ1ChQxMzc5ODQyNDA4NjEwNDgzNTA4MQoUMTUwODgxMTgzMzA0OTQ3MDIzNDQKEzQ2NDI0MzY0NzMwNjczMDc4NTYKFDE0MTQwNjU5MzAzMDAzMTY1NDAxChQxNzM5OTE0Nzk2MzI1MDYxMTI3MwoSNTAzODE2ODQ5NzY3MzAyODkyChMxNjgxNDA2ODc1OTM4NzYzMzU3ChMzNjcxMTAzNzcyMjYzODY2MjAwChM1NjA2NDU0NDc2OTA1MDAxOTA0ChQxNTMyODY0Njg2Nzg4NjMxNDYyMQoUMTQzNzUzODMxNDYwMzk4ODg2MDkKEzYxMDY2NzYzMTQzMDk2NzU1NDkKFDE0NTk0MzU5ODYwMzAxMzIyMjMxChMyNzA2NDc1NTc1MTk3OTYyMzY4ChQxMTA4MDY1ODczOTQzNDY4NjAzNQoUMTI1NDAxMjcwODk3MTc2MjY1MjgaFQoTMjcwNjQ3NTU3NTE5Nzk2MjM2OFoTMjcwNjQ3NTU3NTE5Nzk2MjM2OGq2DxIBMBgAIkUaMQAKKmhodHh5eWNxcGJpZWpsamRoaFVDaUd4WWF3aEVwNFF5RmNYMFI2MFlkURICABIqEMIPDxoPPxPKAoIEJAGABCsqiwEQARp4gfsL_gD_AQDw9wIIAwT-ARP2Aff2AQAA8QEC_P4BAADtAwULBQAAAAD_AgX-AAAA-Qf68vb-AQAY_PkAAwAAAP_7APn7AAAADhn6Av4BAAD6APEOA_8AAAr3CgIAAAAA8gv__vr_AAD_BfYDAAAAAAYDAQAAAAAAIAAtCGHVOzgTQAlITlACKoQCEAAa8AF_Bw0AxvrH_7zID__yBeMBuzoOAPw7ywDaNPH_wRrQAAT9BwDhM-QAGwDnAK4yIAEF9tf_4sUsADvCJv8X7P8AtM0FADr1BQEtHh__D9f7_8wbAf3U_xX_1MDd_yQ03_4W5S78LwbS_uoEuQIc4TMD9wEsB-7e9P7k-AsE8S8aBPX3vf6zERUD5NIX--UIKwEW_hMJET0SA_Lf5wb02AIILfoJ9gk1zv3pDNUJ0RsEBOfT7vgDzPoG5Q4qBNvv5gHiHSf94-T-AvncHADdBfr-3gD2Bivj9QkP1_cHz-j88v70AQLk8xfy5PfsAvPj7-QgAC1c0QA7OBNACUhhUAIqcxAAGmA34wA27wEF_QQL5RrH2yjN1g3fGNLU_-LE_xU5AgofDMzKHw8AGMgAzKYAAAAl9un0zAAGf-K1Dwb_TgLv3M4JInr6IhXIDloIv9zeCwgFNyvk_hQAwRSjSCLJpDIAVGEgAC2BpxY7OBNACUhvUAIqrwYQDBqgBgAAAEEAADjCAAAUQgAAdMIAAEDAAABQQgAAtEIAAHBBAAAwQQAAkMEAAMBAAAAAQQAAQMIAANhBAAAAQgAAXEIAAJBBAADAQQAAwEAAACDBAAC8QgAAAEAAAOjBAACAwAAAcMEAADRCAACQQgAAJMIAAKBAAAAAQQAAyMEAAEBCAAAQwgAAiEIAAFjCAAAQwQAA0EEAAIA_AACYwQAAQEAAAIhCAADoQQAAQEEAAJBBAAB0QgAAMMEAAHBBAADgwAAAHMIAAEzCAADMwgAAMEEAANjBAADQwQAAKMIAAJhCAAC-wgAAHEIAALxCAACUQgAAgEEAABTCAADwwQAARMIAAChCAAAAwgAAQEAAAIjBAABAQQAAUMIAAIhCAACQwQAAuMIAAPhBAACAQAAA4EAAACzCAABwwQAAgMAAABDBAAAswgAAKEIAABzCAACYQQAAYEEAAODAAAAsQgAAcMEAADBBAABQwQAAbMIAAEBCAAAAwAAAOEIAAIA_AACMwgAAcMEAANjBAAAkQgAAMEIAAIrCAAAswgAAUEIAAIA_AACwwQAAnEIAACBCAACgwAAA4EEAAARCAABcQgAA2EEAAMjBAAAgQQAAEMIAAIDBAABgQgAANEIAADDCAABQwgAAoMEAAEzCAACQQQAAFMIAAIBBAADIwQAAkMEAAKDBAAC4wQAAXEIAABzCAADgwAAAgMEAAGxCAAAAQQAAEEEAAEhCAAD4QQAAsMIAACxCAAAAQQAAAMAAAAxCAADgwAAA-EEAAIC_AACAvwAACMIAAIA_AABAQQAAEMIAAAhCAAB8QgAAQMEAALBBAAC4QQAAWMIAAJzCAAB0wgAAgMEAAGBBAACwQQAAyMEAAGjCAAAwQQAAoEIAAIDAAADgQQAAoEAAADDBAAD4QQAAFEIAALDBAACqwgAANMIAALjCAAAgwQAAPMIAADDBAADgQQAAwMAAAFTCAACAwAAA4EEAADhCAABIQgAAgMAAAIC_AAAAQQAAiEEAAABCAABsQgAAYEIAACDBAABAQAAA8EEAAIC_AACgQAAAwMAAAMDBIAA4E0AJSHVQASqPAhAAGoACAACGvgAAUD0AAK4-AAAEPgAAQLwAADy-AABEPgAAK78AAPq-AAAUPgAAmD0AAHA9AAAcPgAADD4AAIi9AACavgAAjj4AAMg9AACKPgAAGT8AAH8_AABwPQAATD4AAKg9AADgPAAA6D0AAGQ-AADGvgAADD4AAIY-AADgPAAAQLwAAAy-AAA8PgAAJD4AAMg9AABwPQAAmr4AAES-AACevgAA2L0AAEC8AADYPQAAED0AAIK-AACYPQAAXD4AABS-AABQvQAATL4AABA9AAAkPgAAuD0AAP4-AADgvAAAmL0AACc_AACIvQAAqL0AAFQ-AAC4PQAAcL0AAPg9AAA8viAAOBNACUh8UAEqjwIQARqAAgAAFL4AAKg9AADWvgAAWb8AAJa-AABMvgAA4DwAAOA8AAAEvgAArj4AAEA8AABcvgAAvr4AAFS-AADYvQAAcL0AABC9AADuPgAAqL0AAMY-AAAEvgAAQDwAAAS-AAAQvQAAuL0AABQ-AACYvQAAML0AAKC8AADYPQAAcD0AABA9AADovQAA2L0AAFy-AAC4vQAA2D0AAOg9AAA0vgAAiD0AAEC8AABQPQAAZL4AAKg9AADYvQAALD4AAH-_AADovQAATL4AAOC8AAAQPQAA6L0AAFw-AACoPQAAQLwAAOC8AACAuwAAkj4AAOC8AAAUvgAAED0AACQ-AADgvAAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tCAVwcwtqOQ","parent-reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2706475575197962368"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3273952690"}},"dups":{"8554624226668521797":{"videoId":"8554624226668521797","title":"Circling Summit | The \u0007[Integral\u0007] \u0007[Center\u0007] Vision","cleanTitle":"Circling Summit | The Integral Center Vision","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XqI_gkNuiEQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XqI_gkNuiEQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZExkX2pYblhVd2tUZEFHUlM3YlZtZw==","name":"Integral Centered Leadership","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Integral+Centered+Leadership","origUrl":"http://www.youtube.com/@IntegralCenteredLeadership","a11yText":"Integral Centered Leadership. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2164,"text":"36:04","a11yText":"Süre 36 dakika 4 saniye","shortText":"36 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"19 eyl 2014","modifyTime":1411084800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XqI_gkNuiEQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XqI_gkNuiEQ","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":2164},"parentClipId":"8554624226668521797","href":"/preview/8554624226668521797?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/8554624226668521797?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"673064110671974179":{"videoId":"673064110671974179","title":"Week 6 Lecture 22 -- Change of variables in triple \u0007[integrals\u0007] and \u0007[centre\u0007] of mass","cleanTitle":"Week 6 Lecture 22 -- Change of variables in triple integrals and centre of mass","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=V8P-Y3o0je0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/V8P-Y3o0je0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRTI4SElvelBwb1pSY0xBVVpuSjB6QQ==","name":"Denis Potapov","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Denis+Potapov","origUrl":"http://www.youtube.com/@durackpl","a11yText":"Denis Potapov. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2329,"text":"38:49","a11yText":"Süre 38 dakika 49 saniye","shortText":"38 dk."},"date":"28 nis 2015","modifyTime":1430179200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/V8P-Y3o0je0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=V8P-Y3o0je0","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":2329},"parentClipId":"673064110671974179","href":"/preview/673064110671974179?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/673064110671974179?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1865887572765399260":{"videoId":"1865887572765399260","title":"Triple \u0007[integral\u0007] to compute the \u0007[center\u0007] of mass of a 3D volume with varying density Matlab Cal...","cleanTitle":"Triple integral to compute the center of mass of a 3D volume with varying density Matlab Calc 3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nVOz2e-LtQ8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nVOz2e-LtQ8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZWdiWWdPcTVHSUQwd01MZUhIUDFTUQ==","name":"Calc3 MathGeek","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calc3+MathGeek","origUrl":"https://www.youtube.com/channel/UCegbYgOq5GID0wMLeHHP1SQ","a11yText":"Calc3 MathGeek. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":744,"text":"12:24","a11yText":"Süre 12 dakika 24 saniye","shortText":"12 dk."},"date":"23 oca 2016","modifyTime":1453507200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nVOz2e-LtQ8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nVOz2e-LtQ8","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":744},"parentClipId":"1865887572765399260","href":"/preview/1865887572765399260?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/1865887572765399260?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16692387885863915745":{"videoId":"16692387885863915745","title":"Application of definite \u0007[integral\u0007] | \u0007[Center\u0007] if Gravity of plane lamina | Rod | Centroid | Mome...","cleanTitle":"Application of definite integral | Center if Gravity of plane lamina | Rod | Centroid | Moment","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ra7WIuqquWA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ra7WIuqquWA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcF9ERThXWG85YUxZQXQyMzNtSXpydw==","name":"Number 1 classes","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Number+1+classes","origUrl":"http://www.youtube.com/@Number1classes","a11yText":"Number 1 classes. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1956,"text":"32:36","a11yText":"Süre 32 dakika 36 saniye","shortText":"32 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"13 şub 2021","modifyTime":1613174400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ra7WIuqquWA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ra7WIuqquWA","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":1956},"parentClipId":"16692387885863915745","href":"/preview/16692387885863915745?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/16692387885863915745?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13798424086104835081":{"videoId":"13798424086104835081","title":"Calc III 2014 14.4 Mass, Moments, \u0007[Center\u0007] of Mass with Double \u0007[Integrals\u0007]","cleanTitle":"Calc III 2014 14.4 Mass, Moments, Center of Mass with Double Integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=v8Ht_AV0pNM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/v8Ht_AV0pNM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUWlBUjR3akY2dW1BOFoxekJxdlA1dw==","name":"Mr. Beamer's Math Videos","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mr.+Beamer%27s+Math+Videos","origUrl":"http://www.youtube.com/@MrBeamersMathVideos","a11yText":"Mr. Beamer's Math Videos. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2432,"text":"40:32","a11yText":"Süre 40 dakika 32 saniye","shortText":"40 dk."},"date":"18 mar 2014","modifyTime":1395100800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/v8Ht_AV0pNM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=v8Ht_AV0pNM","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":2432},"parentClipId":"13798424086104835081","href":"/preview/13798424086104835081?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/13798424086104835081?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15088118330494702344":{"videoId":"15088118330494702344","title":"M202-7-Some Applications of Multiple \u0007[Integrals\u0007]; \u0007[Center\u0007] of Gravity","cleanTitle":"M202-7-Some Applications of Multiple Integrals; Center of Gravity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-tfSHJElBvE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-tfSHJElBvE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSG5xaVViVWswcUZhNE1rSmRLNWRrdw==","name":"Shadi M. Shaqaqha","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Shadi+M.+Shaqaqha","origUrl":"http://www.youtube.com/@shadim.shaqaqha7571","a11yText":"Shadi M. Shaqaqha. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":980,"text":"16:20","a11yText":"Süre 16 dakika 20 saniye","shortText":"16 dk."},"date":"25 tem 2022","modifyTime":1658707200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-tfSHJElBvE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-tfSHJElBvE","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":980},"parentClipId":"15088118330494702344","href":"/preview/15088118330494702344?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/15088118330494702344?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4642436473067307856":{"videoId":"4642436473067307856","title":"Double \u0007[integration\u0007] - \u0007[centre\u0007] of area/mass between 2 curves part 2 梁 Sir","cleanTitle":"Double integration - centre of area/mass between 2 curves part 2 梁 Sir","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hc5aMKu5B5A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hc5aMKu5B5A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLVZsNFNlOGxNa0t2SUh2QkJ0OXZOUQ==","name":"lulutotom718","isVerified":false,"subscribersCount":0,"url":"/video/search?text=lulutotom718","origUrl":"http://www.youtube.com/@lulutotom718","a11yText":"lulutotom718. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":293,"text":"4:53","a11yText":"Süre 4 dakika 53 saniye","shortText":"4 dk."},"date":"24 eki 2015","modifyTime":1445644800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hc5aMKu5B5A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hc5aMKu5B5A","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":293},"parentClipId":"4642436473067307856","href":"/preview/4642436473067307856?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/4642436473067307856?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14140659303003165401":{"videoId":"14140659303003165401","title":"Centro de masa; aplicaciones de las integrales","cleanTitle":"Centro de masa; aplicaciones de las integrales","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-GNZ1e3rjtU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-GNZ1e3rjtU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRm5MRDlGel9CZlRjRXJOa0pLS3ljQQ==","name":"juan david builes grisales","isVerified":false,"subscribersCount":0,"url":"/video/search?text=juan+david+builes+grisales","origUrl":"http://www.youtube.com/@davidbuiles100","a11yText":"juan david builes grisales. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":488,"text":"8:08","a11yText":"Süre 8 dakika 8 saniye","shortText":"8 dk."},"views":{"text":"35,7bin","a11yText":"35,7 bin izleme"},"date":"4 mayıs 2011","modifyTime":1304467200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-GNZ1e3rjtU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-GNZ1e3rjtU","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":488},"parentClipId":"14140659303003165401","href":"/preview/14140659303003165401?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/14140659303003165401?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17399147963250611273":{"videoId":"17399147963250611273","title":"1.2.2 Determine Force and \u0007[Center\u0007] of Pressure on Triangular Gate - Example 2","cleanTitle":"1.2.2 Determine Force and Center of Pressure on Triangular Gate - Example 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AbxI_sDZPtc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AbxI_sDZPtc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVHpzajNITDdFeW9oSmZlU0FsSjNLZw==","name":"Linda Fahlberg-Stojanovska","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Linda+Fahlberg-Stojanovska","origUrl":"http://www.youtube.com/@scitechmath","a11yText":"Linda Fahlberg-Stojanovska. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":684,"text":"11:24","a11yText":"Süre 11 dakika 24 saniye","shortText":"11 dk."},"views":{"text":"16,2bin","a11yText":"16,2 bin izleme"},"date":"14 mayıs 2012","modifyTime":1336953600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AbxI_sDZPtc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AbxI_sDZPtc","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":684},"parentClipId":"17399147963250611273","href":"/preview/17399147963250611273?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/17399147963250611273?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"503816849767302892":{"videoId":"503816849767302892","title":"Session 11:\u0007[Center\u0007] of Mass, Centroid, Moment of Inertia & Radius of Gyration using Double \u0007[integ...","cleanTitle":"Session 11:Center of Mass, Centroid, Moment of Inertia & Radius of Gyration using Double integration","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2A1oUiRWvOo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2A1oUiRWvOo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDck9sZndTSjgwZ1k0ZVo2RDJQXy1Idw==","name":"Dr. Mathaholic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr.+Mathaholic","origUrl":"http://www.youtube.com/@DrMathaholic","a11yText":"Dr. Mathaholic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1168,"text":"19:28","a11yText":"Süre 19 dakika 28 saniye","shortText":"19 dk."},"views":{"text":"10,4bin","a11yText":"10,4 bin izleme"},"date":"13 oca 2021","modifyTime":1610496000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2A1oUiRWvOo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2A1oUiRWvOo","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":1168},"parentClipId":"503816849767302892","href":"/preview/503816849767302892?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/503816849767302892?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1681406875938763357":{"videoId":"1681406875938763357","title":"Physics - Mechanics: Finding the \u0007[Center\u0007] of Mass (4 of 4) Triangle","cleanTitle":"Physics - Mechanics: Finding the Center of Mass (4 of 4) Triangle","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SWDDj0qpQcw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SWDDj0qpQcw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUd4WWF3aEVwNFF5RmNYMFI2MFlkUQ==","name":"Michel van Biezen","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Michel+van+Biezen","origUrl":"http://www.youtube.com/@MichelvanBiezen","a11yText":"Michel van Biezen. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":620,"text":"10:20","a11yText":"Süre 10 dakika 20 saniye","shortText":"10 dk."},"views":{"text":"92,6bin","a11yText":"92,6 bin izleme"},"date":"1 nis 2013","modifyTime":1364774400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SWDDj0qpQcw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SWDDj0qpQcw","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":620},"parentClipId":"1681406875938763357","href":"/preview/1681406875938763357?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/1681406875938763357?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3671103772263866200":{"videoId":"3671103772263866200","title":"1.2.1 Determine Force and \u0007[Center\u0007] of Pressure on Wall - Example 1","cleanTitle":"1.2.1 Determine Force and Center of Pressure on Wall - Example 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EXAu_f2XNBM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EXAu_f2XNBM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVHpzajNITDdFeW9oSmZlU0FsSjNLZw==","name":"Linda Fahlberg-Stojanovska","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Linda+Fahlberg-Stojanovska","origUrl":"http://www.youtube.com/@scitechmath","a11yText":"Linda Fahlberg-Stojanovska. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":590,"text":"9:50","a11yText":"Süre 9 dakika 50 saniye","shortText":"9 dk."},"views":{"text":"6,6bin","a11yText":"6,6 bin izleme"},"date":"14 mayıs 2012","modifyTime":1336953600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EXAu_f2XNBM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EXAu_f2XNBM","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":590},"parentClipId":"3671103772263866200","href":"/preview/3671103772263866200?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/3671103772263866200?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5606454476905001904":{"videoId":"5606454476905001904","title":"Centroid of Triangle by \u0007[Integration\u0007] Method | Engineering Mechanics | M03 L09 | Mechtube India","cleanTitle":"Centroid of Triangle by Integration Method | Engineering Mechanics | M03 L09 | Mechtube India","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zrZiNlQLVWc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zrZiNlQLVWc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYnZNRnJXUUJ0WFVScTZFQUlyZzZuZw==","name":"Mechtube India","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mechtube+India","origUrl":"http://www.youtube.com/channel/UCbvMFrWQBtXURq6EAIrg6ng","a11yText":"Mechtube India. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":849,"text":"14:09","a11yText":"Süre 14 dakika 9 saniye","shortText":"14 dk."},"views":{"text":"5,1bin","a11yText":"5,1 bin izleme"},"date":"31 mar 2020","modifyTime":1585612800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zrZiNlQLVWc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zrZiNlQLVWc","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":849},"parentClipId":"5606454476905001904","href":"/preview/5606454476905001904?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/5606454476905001904?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15328646867886314621":{"videoId":"15328646867886314621","title":"Double \u0007[Integration\u0007] - \u0007[Centre\u0007] of Pressure Derivation and Example","cleanTitle":"Double Integration - Centre of Pressure Derivation and Example","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qvp5wJGCSUM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qvp5wJGCSUM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVFhYaFR4UVRJNW5zRTROeUpOSFZpZw==","name":"KeysToMaths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=KeysToMaths","origUrl":"http://www.youtube.com/@KeysToMaths","a11yText":"KeysToMaths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":925,"text":"15:25","a11yText":"Süre 15 dakika 25 saniye","shortText":"15 dk."},"views":{"text":"3,2bin","a11yText":"3,2 bin izleme"},"date":"3 eki 2013","modifyTime":1380758400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qvp5wJGCSUM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qvp5wJGCSUM","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":925},"parentClipId":"15328646867886314621","href":"/preview/15328646867886314621?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/15328646867886314621?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14375383146039888609":{"videoId":"14375383146039888609","title":"Mechanical Engineering: Centroids & \u0007[Center\u0007] of Gravity (11 of 35) C. G. of a General Spandrel 1","cleanTitle":"Mechanical Engineering: Centroids & Center of Gravity (11 of 35) C. G. of a General Spandrel 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5byG2AO-Pmk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5byG2AO-Pmk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUd4WWF3aEVwNFF5RmNYMFI2MFlkUQ==","name":"Michel van Biezen","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Michel+van+Biezen","origUrl":"http://www.youtube.com/@MichelvanBiezen","a11yText":"Michel van Biezen. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":329,"text":"5:29","a11yText":"Süre 5 dakika 29 saniye","shortText":"5 dk."},"views":{"text":"55,1bin","a11yText":"55,1 bin izleme"},"date":"17 eki 2015","modifyTime":1445040000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5byG2AO-Pmk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5byG2AO-Pmk","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":329},"parentClipId":"14375383146039888609","href":"/preview/14375383146039888609?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/14375383146039888609?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6106676314309675549":{"videoId":"6106676314309675549","title":"Mechanical Engineering: Centroids & \u0007[Center\u0007] of Gravity (12 of 35) C. G. of a General Spandrel 2","cleanTitle":"Mechanical Engineering: Centroids & Center of Gravity (12 of 35) C. G. of a General Spandrel 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3zczcNFNerM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3zczcNFNerM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUd4WWF3aEVwNFF5RmNYMFI2MFlkUQ==","name":"Michel van Biezen","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Michel+van+Biezen","origUrl":"http://www.youtube.com/@MichelvanBiezen","a11yText":"Michel van Biezen. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":683,"text":"11:23","a11yText":"Süre 11 dakika 23 saniye","shortText":"11 dk."},"views":{"text":"37bin","a11yText":"37 bin izleme"},"date":"18 eki 2015","modifyTime":1445126400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3zczcNFNerM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3zczcNFNerM","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":683},"parentClipId":"6106676314309675549","href":"/preview/6106676314309675549?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/6106676314309675549?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14594359860301322231":{"videoId":"14594359860301322231","title":"\u0007[Integrating\u0007] & \u0007[Centering\u0007] - Mirror Effects","cleanTitle":"Integrating & Centering - Mirror Effects","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0GNZcbv-qkY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0GNZcbv-qkY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWDlTdEFMNkRGMk92VmJsa09ucHpsZw==","name":"NalineeDiosara","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NalineeDiosara","origUrl":"http://www.youtube.com/@nalineediosara7654","a11yText":"NalineeDiosara. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1022,"text":"17:02","a11yText":"Süre 17 dakika 2 saniye","shortText":"17 dk."},"date":"2 şub 2020","modifyTime":1580601600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0GNZcbv-qkY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0GNZcbv-qkY","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":1022},"parentClipId":"14594359860301322231","href":"/preview/14594359860301322231?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/14594359860301322231?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2706475575197962368":{"videoId":"2706475575197962368","title":"Mechanical Engineering: Centroids & \u0007[Center\u0007] of Gravity (14 of 35) C. G. of a Semi-Circular Wire","cleanTitle":"Mechanical Engineering: Centroids & Center of Gravity (14 of 35) C. G. of a Semi-Circular Wire","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tCAVwcwtqOQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tCAVwcwtqOQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUd4WWF3aEVwNFF5RmNYMFI2MFlkUQ==","name":"Michel van Biezen","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Michel+van+Biezen","origUrl":"http://www.youtube.com/@MichelvanBiezen","a11yText":"Michel van Biezen. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":330,"text":"5:30","a11yText":"Süre 5 dakika 30 saniye","shortText":"5 dk."},"views":{"text":"99,7bin","a11yText":"99,7 bin izleme"},"date":"25 eki 2015","modifyTime":1445731200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tCAVwcwtqOQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tCAVwcwtqOQ","reqid":"1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL","duration":330},"parentClipId":"2706475575197962368","href":"/preview/2706475575197962368?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","rawHref":"/video/preview/2706475575197962368?parent-reqid=1769373543406642-11738195212611766033-balancer-l7leveler-kubr-yp-vla-162-BAL&text=Integral+Centering","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"7381952126117660337162","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Integral Centering","queryUriEscaped":"Integral%20Centering","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}