{"pages":{"search":{"query":"LIM","originalQuery":"LIM","serpid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","parentReqid":"","serpItems":[{"id":"17283634130819181775-0-0","type":"videoSnippet","props":{"videoId":"17283634130819181775"},"curPage":0},{"id":"4854704034011771436-0-1","type":"videoSnippet","props":{"videoId":"4854704034011771436"},"curPage":0},{"id":"16425514083851026161-0-2","type":"videoSnippet","props":{"videoId":"16425514083851026161"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"One-sided limits","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=One-sided+limits&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Taylor series","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Taylor+series&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Limit calculator","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Limit+calculator&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Derivative vs limit","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Derivative+vs+limit&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Indefinite integral","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Indefinite+integral&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Limits at infinity","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Limits+at+infinity&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"16604177198580507826-0-4","type":"videoSnippet","props":{"videoId":"16604177198580507826"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dExJTQo=","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","ui":"desktop","yuid":"2749282931769250424"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"17172360438050835267-0-6","type":"videoSnippet","props":{"videoId":"17172360438050835267"},"curPage":0},{"id":"4932103128310317999-0-7","type":"videoSnippet","props":{"videoId":"4932103128310317999"},"curPage":0},{"id":"16869108634055247080-0-8","type":"videoSnippet","props":{"videoId":"16869108634055247080"},"curPage":0},{"id":"11384685492776537482-0-9","type":"videoSnippet","props":{"videoId":"11384685492776537482"},"curPage":0},{"id":"1517196291537944431-0-10","type":"videoSnippet","props":{"videoId":"1517196291537944431"},"curPage":0},{"id":"847745485155000854-0-11","type":"videoSnippet","props":{"videoId":"847745485155000854"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dExJTQo=","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","ui":"desktop","yuid":"2749282931769250424"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"17121486827325814383-0-13","type":"videoSnippet","props":{"videoId":"17121486827325814383"},"curPage":0},{"id":"15078514460659736121-0-14","type":"videoSnippet","props":{"videoId":"15078514460659736121"},"curPage":0},{"id":"17138608207320744499-0-15","type":"videoSnippet","props":{"videoId":"17138608207320744499"},"curPage":0},{"id":"6933706395137267311-0-16","type":"videoSnippet","props":{"videoId":"6933706395137267311"},"curPage":0},{"id":"7715238162303438392-0-17","type":"videoSnippet","props":{"videoId":"7715238162303438392"},"curPage":0},{"id":"5630990719574320490-0-18","type":"videoSnippet","props":{"videoId":"5630990719574320490"},"curPage":0},{"id":"14804681058292170072-0-19","type":"videoSnippet","props":{"videoId":"14804681058292170072"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dExJTQo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","ui":"desktop","yuid":"2749282931769250424"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DLIM"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4808259878189965827220","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,75;1472324,0,84;1466868,0,47;1457618,0,44;1424968,0,93;1468855,0,13;1460956,0,86;1460717,0,3;1462157,0,56;1459297,0,65;1312967,0,25;1472029,0,38;1383553,0,24;1339938,0,22;66186,0,65;1464523,0,37;1470249,0,4;1470223,0,22;1466295,0,72;1465958,0,13;1463530,0,72;1467161,0,40;1467148,0,30;1349071,0,41;1466619,0,51;1215704,0,38;1470514,0,4;133992,0,78;1404017,0,41;1466271,0,0;1469414,0,54;1470414,0,41;151171,0,28;126331,0,38;1281084,0,87;287509,0,98;1447467,0,89;788004,0,78;912284,0,41"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DLIM","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=LIM","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=LIM","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"LIM: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"LIM\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"LIM — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yc310a6f2ba86c3ff642da2c2b83c27a7","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1472324,1466868,1457618,1424968,1468855,1460956,1460717,1462157,1459297,1312967,1472029,1383553,1339938,66186,1464523,1470249,1470223,1466295,1465958,1463530,1467161,1467148,1349071,1466619,1215704,1470514,133992,1404017,1466271,1469414,1470414,151171,126331,1281084,287509,1447467,788004,912284","queryText":"LIM","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2749282931769250424","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769250478","tz":"America/Louisville","to_iso":"2026-01-24T05:27:58-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1472324,1466868,1457618,1424968,1468855,1460956,1460717,1462157,1459297,1312967,1472029,1383553,1339938,66186,1464523,1470249,1470223,1466295,1465958,1463530,1467161,1467148,1349071,1466619,1215704,1470514,133992,1404017,1466271,1469414,1470414,151171,126331,1281084,287509,1447467,788004,912284","queryText":"LIM","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2749282931769250424","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4808259878189965827220","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2749282931769250424","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"17283634130819181775":{"videoId":"17283634130819181775","docid":"34-1-13-Z3F950ED8F104F4A9","description":"Evaluating Limits. We learn how to evaluate the lim x-›-2^+ 1/(x^2-4). We learn how to find and evaluate a limit at a given point of lim x-›-2^+ 1/(x^2-4). These limits are at essential...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2073607/d1cf14155b1c7c87a142993731cb369e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ASkaagEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DM7lvFKCCJys","linkTemplate":"/video/preview/17283634130819181775?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›-2^+ 1/(x^2-4)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=M7lvFKCCJys\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNzI4MzYzNDEzMDgxOTE4MTc3NVoUMTcyODM2MzQxMzA4MTkxODE3NzVqtg8SATAYACJFGjEACipoaG5samFrenh5cnltdmdkaGhVQ1pRUHkwa1JNVmtHU0tWQkFxLW82M2cSAgASKhDCDw8aDz8TxwGCBCQBgAQrKosBEAEaeIEB_foFAAAA9PwIB_cF_gH0-u7_-f7-AO7wBPwHAAAA7AkOA_4AAAAJFv4BCQAAAAUJ9A79_QEAEgv19gQAAAAH-v3_-QAAAAoG9wn-AQAA7v4A9gIAAAAHBO31_wAAAAAIAvcDAAAA8PcH-wAAAAD__QDwAAAAACAALSxg1Ts4E0AJSE5QAiqEAhAAGvABfw_5AMn48_8SFPIA_iD2AZgJJf8sM-X_0_j_AML4zwAAA_EAv__5_yXf8gDmDgwAFgTb_w7N9_8f9AP__QD8APfr7gAQ2_ECMxAn_wQF2AC5LBn--ekPAN_R5v8aFc4AHNsL_xD5yQHwA8sBFekmAgsHJQMU9h0C9PX0Ae_3DAXU4dP8CgD3COPk-vzIHBUDC-v9Bw0aFfr26O0F8ejsBQ7u8v4ZF-b-B_Pc_-scBwEN8wX9FP8A-wIHFwLp6hf9AQop_PT1_v0B__j0--YB9wX78f3s3QACFN8LDen1_Pfk7_r45_UCA_UQBgIF__oGIAAtbQMtOzgTQAlIYVACKnMQABpgPAQAIvYOwfc2Lu4BE_gq3s_J-MfuBf8ZBv8T9NPsJBnn3PwF_w_h_b-mAAAAL8XYAyUAA3ggDPFi4g3t5YXe_w9_ASZGrg8e9uDtMu0L0yMAyBQ-ALMDs1E79O4NFBgSIAAtVEQdOzgTQAlIb1ACKq8GEAwaoAYAAJjBAABMwgAA2EEAAJrCAABYQgAAyMEAAMZCAADYQQAAcEEAAMhBAACAQAAAOMIAADDBAABAwAAAEEEAAHBBAABwwQAAuMEAAKhBAACAwQAAoMAAAABBAADYwQAA8EEAAAzCAADQwQAAsMEAAMzCAABwQgAAqEEAAOjBAAAwwQAAisIAABDBAACewgAAQEEAAIA_AACWQgAAoMEAACDBAADgwAAAsEEAADRCAACgwAAArEIAAPLCAACAvwAAGEIAAI5CAACIQQAAgD8AAEDBAACwQQAACEIAAGxCAACYQQAAsMIAAHBBAACgwAAASEIAAHBCAADOwgAAcMEAAJLCAAAAwAAAgMEAAJzCAACwwgAAqEEAAFTCAABAQgAAJEIAAJTCAABUQgAAGMIAAGzCAACwQQAAcMEAAODBAAAAwAAAwMEAAFRCAAAQwQAA0EEAAGBBAADYQQAA-EEAAARCAAAAQgAAgMIAABjCAACSQgAAqMEAAEBBAAAwQQAASMIAALhBAACAQQAAbEIAAIxCAADgwAAAHEIAACBBAAAQwQAAxMIAAFDCAADgQAAAAMAAAMDAAACGQgAAXEIAAChCAABUwgAA0MEAAMDAAACgQQAAsEEAAJDBAABEwgAAIMEAACDBAABcwgAAHMIAAMBAAABEQgAAYMEAAIjBAAAQwQAAAMEAAIC_AAAQwgAAAMIAAADCAADAQQAAUMIAADRCAACgQQAAoEEAADDBAAA0wgAAmEEAADDBAABQQgAAoMEAAPhBAABQQQAAYMEAADDBAAAwQQAAMMEAADDCAADQQQAAMEIAAKBAAADoQQAAhMIAAIDBAABwwgAASMIAAAxCAABcwgAAMEEAAJhBAABswgAAUMEAALhBAAAAAAAAqEIAAAxCAAAAAAAAUEEAAHBCAAAowgAABMIAAODBAACAwQAAqMEAAGDBAAAYQgAAAMAAAABAAADAwQAANMIAAOBAAAA4QgAADMIAAEDAAAAkwgAAIEEAAKDAAADAwQAADMIAAADAAACowQAAmkIAAEhCAABgQQAAGMIAAKjBAACwwSAAOBNACUh1UAEqjwIQABqAAgAA6L0AAFA9AAA0PgAALL4AADA9AADWPgAAnj4AAEe_AACCvgAAHD4AAJY-AABUvgAAED0AAOg9AADovQAAhr4AAMo-AACAOwAAhj4AAP4-AAB_PwAABD4AALI-AABEPgAAQLwAAAQ-AABAPAAAgLsAADA9AADiPgAAjj4AAI6-AACgPAAAEL0AABA9AACePgAADD4AAGy-AAD2vgAALL4AACS-AACOPgAADz8AAAQ-AABsvgAA6D0AAOC8AAA8vgAAyL0AAGS-AAAcvgAAQLwAAI4-AAARPwAAuD0AAKA8AAAFPwAA4LwAAHS-AAAsPgAAoLwAAPg9AADGPgAAiL0gADgTQAlIfFABKo8CEAEagAIAADC9AAAMPgAAVL4AAEe_AADSvgAABD4AAN4-AAAcPgAABD4AAMo-AAAsPgAAQDwAABS-AACAOwAAuL0AABC9AACOvgAA3j4AAJq-AADWPgAAqD0AACy-AAA0vgAA-L0AAFC9AACIPQAAgDsAAGQ-AADYvQAA6L0AADA9AABAvAAA6L0AAIC7AADgPAAAHL4AAOI-AACePgAAkr4AAJi9AABkPgAA2L0AADA9AACgvAAADD4AAJi9AAB_vwAAtj4AABA9AAAQPQAALL4AAFw-AAA8PgAABD4AAOA8AAAkPgAAuL0AAKC8AACOPgAAEL0AABw-AACovQAAgDsAAKY-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=M7lvFKCCJys","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["17283634130819181775"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3712888459"},"4854704034011771436":{"videoId":"4854704034011771436","docid":"34-3-6-Z706B8AE33576E3A7","description":"Evaluating Limits. We learn how to evaluate the lim x-›0^- |x|/x. We learn how to evaluate a limit at a given point of lim x-›0^- |x|/x. This is a great introduction into Limits and Calculus.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3770812/9bebc9ca92d02ce116c2ce5b2b70d5ed/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/L1WLewEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLwhQhfNCpEY","linkTemplate":"/video/preview/4854704034011771436?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›0^- |x|/x","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LwhQhfNCpEY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoVChM0ODU0NzA0MDM0MDExNzcxNDM2WhM0ODU0NzA0MDM0MDExNzcxNDM2aq8NEgEwGAAiRRoxAAoqaGhubGpha3p4eXJ5bXZnZGhoVUNaUVB5MGtSTVZrR1NLVkJBcS1vNjNnEgIAEioQwg8PGg8_E5YBggQkAYAEKyqLARABGniB9Aj7B_0DAPv-DQT7Bv0CAPz2_fj9_QD08fn_BQL_AO0ECPMAAAAA-hAD_gYAAAABBPsD_f4BAAwE-e4DAAAAFfkADPkAAAAKBvcI_gEAAPYG7_kCAAAABwTu9f8AAAACAxP8_wAAAPD-EfoAAAAA_PL97wAAAAAgAC0jP9w7OBNACUhOUAIqcxAAGmAfGwAp8PnE1DYY6_IP_h_65Nfsz_bzACEMAP8B5sQHB-_nFif_D-gN2LYAAAAY0eQAJAD3XicYujcb6v_vi-YEF3_lBR4JNxvv2uclyyrbFQHmMwsAvwXkJzD7GQEX-CogAC3kmDg7OBNACUhvUAIqrwYQDBqgBgAA2MEAAETCAADIQQAAcMIAADxCAADowQAAkkIAAMhBAAAgQQAAoEEAAKDAAABMwgAAIMEAAKDBAACgQQAAQEEAAPDBAAAAQAAAiEEAAHDBAADAwAAAgD8AAIDAAAAgQgAABMIAABDBAAAUwgAAvsIAAHRCAACYQQAAqMEAAODAAACAwgAAQEAAAKjCAABAQQAAQMEAAKZCAABAwQAA4MEAAIA_AACAvwAAPEIAANBBAACMQgAAxsIAAMBAAAAgQgAAmkIAAPhBAACAPwAAEEEAABBBAAAgQQAASEIAACDBAACCwgAAwEAAAODAAAB8QgAAhkIAAMbCAADgwAAAqMIAAIA_AAAAwAAAdMIAAKDCAACIQQAANMIAAGBCAAAEQgAAusIAAGhCAACIwQAAwMIAAEBBAACgwQAAEMEAAEBBAAAAwQAATEIAAIjBAAAwQQAAuEEAABRCAAA0QgAAFEIAAMhBAABkwgAAQMIAAKZCAABgwQAAgD8AAKBAAABAwgAALEIAAKBBAACKQgAAbEIAAFBBAADwQQAAMEEAACDBAAC0wgAAgMIAAIBBAACgQQAAQMEAADxCAABIQgAAwEEAAHjCAAAwwgAAUEEAAODAAABwQQAAkMEAAMDAAAAgwQAAgL8AAIjCAAA0wgAAgMAAABxCAAAswgAA0MEAACDBAACAwAAABMIAACzCAAAowgAABMIAAIBBAABYwgAAAEIAABBCAAAAQQAAwEAAAFzCAACgQQAAgMEAAKJCAADowQAA-EEAAKBAAADIwQAAiEEAADBBAAAQQQAAEMIAAKBAAADIQQAAgMEAALhBAABkwgAAsMEAADTCAABowgAAOEIAAFjCAABAwAAAuEEAAEjCAAAAwgAAIEEAABBCAADMQgAA8EEAAADAAAAAQgAApkIAAETCAACgwQAAEMEAAPjBAACwwQAAkMEAAPhBAADIQQAAMEEAAOjBAABYwgAAwEAAALhBAAAYwgAAkEEAAMDBAABQQQAABMIAADDCAAAkwgAAgL8AANjBAABgQgAAVEIAAIBBAADQwQAAoMEAAKjBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAPL4AAKo-AABwPQAAmD0AAIo-AACAuwAA4r4AADC9AACAOwAAcD0AAHS-AADYPQAAuL0AAJi9AABwPQAAZD4AAHC9AAAMvgAAXD4AAH8_AAAMPgAAQDwAANg9AACYvQAAgDsAAKi9AACAOwAA4LwAAGQ-AABsPgAAkr4AAOA8AADgPAAAmL0AAKA8AACoPQAAkr4AAM6-AABAPAAAhr4AAAy-AAC2PgAAML0AAEA8AAD4PQAAdD4AAGS-AAAEvgAAVL4AAOi9AACYvQAAJD4AAOg9AAAMvgAAEL0AAAk_AAAQPQAAQDwAAMI-AACgPAAAcL0AAAQ-AADgPCAAOBNACUh8UAEqjwIQARqAAgAA4DwAAAw-AAAwvQAAEb8AAI6-AACyPgAAGz8AAAQ-AADgPAAACz8AAII-AACovQAAyD0AAFC9AAC4vQAAQLwAABy-AAAtPwAAkr4AAJo-AACKPgAAcL0AAEA8AADIPQAAQLwAANi9AADIvQAAoj4AAIA7AACCvgAA2D0AACy-AADIvQAAoLwAAHw-AAA0vgAA7j4AAHA9AACyvgAAEL0AAKI-AADoPQAAPD4AAGy-AABMPgAAoDwAAH-_AAABPwAALD4AAAy-AABUvgAAwj4AAII-AAA0PgAAuD0AAEQ-AAD4vQAAEL0AAEQ-AADgvAAAMD0AAEC8AAAEPgAAkj4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=LwhQhfNCpEY","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4854704034011771436"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2886736646"},"16425514083851026161":{"videoId":"16425514083851026161","docid":"34-5-15-ZF94E05F9DD44A616","description":"Evaluating Limits. We learn how to evaluate the lim x-›-3^+ (x+2)/(x^2+5x+6). We learn how to find and evaluate a limit at a given point of lim x-›-3^+ (x+2)/(x^2+5x+6). These limits are at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4586719/49dc2abad182487412192025e584cb22/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kpsAVQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DA7nk-wGDtXM","linkTemplate":"/video/preview/16425514083851026161?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›-3^+ (x+2)/(x^2+5x+6)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=A7nk-wGDtXM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNjQyNTUxNDA4Mzg1MTAyNjE2MVoUMTY0MjU1MTQwODM4NTEwMjYxNjFqiBcSATAYACJFGjEACipoaG5samFrenh5cnltdmdkaGhVQ1pRUHkwa1JNVmtHU0tWQkFxLW82M2cSAgASKhDCDw8aDz8TqgGCBCQBgAQrKosBEAEaeIH2_vQB_AQA9QILAAIE_gEKAPAB9v__APv2Bf4GBP4A6wMGAAL_AAAJFf4BCAAAAAcGAwX6_gEADwH4_AQAAAAG-v7_-gAAAA4A_Ab-AQAA-QH6-QMAAAAA__T6_wAAAAD_AwEEAQAA9____wAAAAD__gDwAAAAACAALVAZ4Ts4E0AJSE5QAiqEAhAAGvABeukNAOzd-QHu_P0AzCD4AIEiCv4wOOL_wQX9AO3-3AD2_fkA3_8P_zXlBQC9BwH_Iu3a_-fPJAAgxPf_8OnxAO8MJAAj2woAFBYdAeT55__gIhH_CfsKAOPg0f8ZDeb-AxP7_O8V7v__580AMfAeAuEjGAIWxvcAF-AQBP7-8wjt39v-Fx36BAMCBvrtFDcB_Q7kBQwnB_rg9PD99Q3y-_zkA_sbGuP-FwcEBAco9AMQCPT5GfT58tswCQjqFvkFAQst-wa_-gcYDAoHC_f1De0M7fouDPP9IAf9BvP6_uvV9wX-7vP9_wL--A3S1fsNIAAt_yEdOzgTQAlIYVACKs8HEAAawAdn8q2-DHAGvVJqCr1Vpc291JbfPJU4QDsjE_C91y0nPff9QLxRu689ns46vAiiOLy9jpC-fOdcvdimKTsgeRc-XNHBPN1y_brc9Be-ftQ1PapiDTxPeJG-ZxVMPanmi7rBOj4-ia4QPeUrQb3Woi89VD30vNqkKrv-bnA9qug5vXjZDDxRlmu8gXSmvZtz0zsTXLS7McwOvS_6yDu8Wu49QGNLvCsBpzzmbRa9cg_TPAmHg7trbpo7Sfhjuu-RCTwRACw-llsaPdsd7Tx24xs8tXp2ulbojTzlXgC9TZi6vNj_b7wccv08ha1-PdeE_DfI8PM8NABqvbyfyzuoyCG-AnwcPejpbTzshu09jPeDPXJbkTtc8aI7kRbdPLRtPbzDJ8K8rEaFPZD5mzwKStE9JDxrvaq-TrxDVME9siI0PDkrfbwErNU8M6KZPPTzSzwiRAM9RYBTvETf3bw2LUe9-6i7PU2h0ruSHcC895ijvBXpWTwsuP89AmEHPRXNnjwtuBo9LZm-ujIcQDrfZsY9ObXzvYcfGDyV3Dy9PPHBvUPp5rvvopo7PTDbO3t6lTsTygw9mCSFvJhCsbta42K9N8PtvQxLEbxktmC7qASPvZo0GbtovQ69dM50PQyqMjwJmVU9qkeaPPkJELzB6h-7SOxJPNKXFDybFZa9BycBu-Ky5bvIk8m8sOU1PUatFzxCMlO8mLUePUv6pLrVlQ8-1OxGveVHGblKShW9MVrMvbIjVbcf9Oy8WAqWO5WRZbuTjKw9XP4oPUpHOrlmCbw8vXDGOxTvnTpjN4E7sazPPIKwEjgRDIY9z0lvvBUlijizE7S91kWQvbRnMDl1wnC8puXRvN1LQTbFxIs8bFTxvFX2g7kC9Iu9RTWQvTuGMThDcYe9y7wXvAMhn7hcDLQ9VW2SPFU0GjhOFu286AgqPEVbYjeh5a-8VE0VvbUYMbjZU3w96rMDPj5FCrld_gO95e8cPDgTr7jOr8E8SZPMPd9Eh7gvs1k94fX0OkETsLel1Mo8YnnjuuSC4rixE4M8trGzvRWp6ThiV4m8qGJXO95gQbi6ag6-5qzvvX6KuDe8lLq87r2-vUmLmzf2JwE-RFJLvRtsODjuUbm93dZxPFdXjzed2e49n5WTuqNqDrlnROm9fVsQvZoSO7jOcjS8XQ_Lvahwm7e7iKU8zsg7PUUchbfk1Z68eonxvWVVMLgi_-w9NSkFPvN-W7h1yfY7Rxk2PcKSjbhvyPW8vbNsPb83NjiPuTw9UMHGPG10lTcgADgTQAlIbVABKnMQABpgOfwAOPoNwv43KuXvAgIl1svG79gA9v8m7gAYBc_yDw7myxQL_xLp89erAAAAINnXBh4ACW4jDf1V9_AF5YHg9fR9Cwk41xkaDufzMu0P4kAhzRskAK0Gv2Ij-_EGIxQ2IAAt7_okOzgTQAlIb1ACKq8GEAwaoAYAAKDAAADIwQAAKEIAAJDCAAAcQgAACMIAAJRCAAAAQgAAwEAAALhBAADoQQAASMIAANDBAADAQAAAoEEAABBBAAAAwQAAIMIAAAxCAADQwQAA-MEAABBBAADgwQAADEIAAMDBAAA0wgAAsMEAALrCAAA8QgAAQEAAAODBAAAwQQAAlMIAALDBAABowgAAkEEAABDBAACyQgAA2MEAAIBAAACAwAAAcEEAAFBCAADowQAApEIAAOLCAACAwQAAoEEAAJhCAACoQQAAEMEAALhBAACQQQAA6EEAAFhCAACIQQAA8sIAAABBAAAAQAAAbEIAAJJCAACuwgAAYMEAAITCAAAwQQAAHMIAAJzCAACywgAA4EAAABzCAABQQgAAXEIAAILCAAA4QgAAEMIAAGzCAACYQQAAkMEAAKDAAADgQAAAuMEAAChCAABgwQAAmEEAAAAAAAA0QgAAcEEAANBBAAAoQgAAfMIAACDCAACWQgAAKMIAAJhBAACIQQAASMIAAABBAAAcQgAAIEIAAFxCAACQwQAAFEIAABBBAAAAAAAAtMIAAATCAAAAwAAAAMEAAKDBAABwQgAAFEIAAChCAABIwgAAkMEAAIDBAAA8QgAAQEEAAEDBAABAwgAAIMEAABTCAABswgAA0MEAAKBAAAAkQgAAYMEAAIjBAACgwAAAmMEAABDBAAAowgAAEMIAAMjBAACQQQAAQMIAAGBCAACwQQAAcEEAAABBAABYwgAAMEEAAIDBAAA0QgAAsMEAAFBCAABwQQAAmMEAAKBAAADAQAAAAMEAAADCAABQQQAADEIAABBBAAAMQgAAhsIAAKjBAACKwgAAPMIAALBBAACCwgAAcEEAANBBAABwwgAAYMEAADBBAAAAwgAApEIAAARCAAAgwQAAQEEAAIJCAABkwgAA4MEAAMjBAAAAwAAAuMEAABzCAABAQgAAUMEAAADBAADAwQAAHMIAAMBAAABMQgAATMIAAJjBAABIwgAAQMEAAIA_AADowQAAqMEAAIA_AACYwQAAhEIAADhCAACAvwAAYMEAAMDBAADAwSAAOBNACUh1UAEqjwIQABqAAgAAtr4AAIg9AAC2PgAAgDsAAJ4-AACKPgAAJD4AACG_AACovQAAmD0AAPg9AACGvgAAED0AALg9AACgvAAAoLwAAIo-AAAwPQAAij4AAAE_AAB_PwAA6D0AAEw-AACYvQAAcL0AAKg9AABAPAAAFL4AABS-AAB8PgAAND4AAOA8AAA0PgAAVL4AAFC9AAAcPgAA4LwAACy-AAAHvwAAqL0AACS-AAAkPgAAjj4AAHA9AADovQAABD4AADQ-AADovQAAmL0AAJi9AABMvgAAmD0AAII-AAAJPwAArr4AAIA7AAD6PgAAHD4AAJi9AADoPQAALL4AAPi9AADIPQAAcL0gADgTQAlIfFABKo8CEAEagAIAAJg9AACYvQAAUL0AAEm_AABMvgAAND4AAOI-AABMPgAA4LwAAN4-AADOPgAA2D0AAES-AABUvgAAPL4AAHA9AAAkvgAAHT8AAKq-AACyPgAAyD0AAIA7AABMvgAAiL0AAOi9AACgPAAAoDwAAII-AACYvQAAJL4AAAQ-AACAuwAAFL4AAAy-AACoPQAAQDwAADQ-AABEPgAAyr4AAEA8AACiPgAATL4AABC9AABMvgAAoDwAAOA8AAB_vwAAkj4AACQ-AAB8vgAAlr4AAJo-AAAUPgAAQLwAADQ-AADYPQAAcL0AAAw-AABkPgAAiL0AAHC9AACWvgAA4DwAAPY-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=A7nk-wGDtXM","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["16425514083851026161"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2568161362"},"16604177198580507826":{"videoId":"16604177198580507826","docid":"34-8-10-ZAC2AAF4DF95876F8","description":"Evaluating Limits. discontinuities. Visit our website for links to all of our videos: https://www.MinuteMathTutor.com Need a Math Tutor? https...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3372419/f1ac7e8cad424404fc9224f4f1634f9f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/owAp9AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"4","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQaR3mefaAoY","linkTemplate":"/video/preview/16604177198580507826?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›2 f(x) where f(x)={-x^2+2 when x 2; -5 when x=2","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QaR3mefaAoY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNjYwNDE3NzE5ODU4MDUwNzgyNloUMTY2MDQxNzcxOTg1ODA1MDc4MjZqiBcSATAYACJFGjEACipoaG5samFrenh5cnltdmdkaGhVQ1pRUHkwa1JNVmtHU0tWQkFxLW82M2cSAgASKhDCDw8aDz8TigGCBCQBgAQrKosBEAEaeIH3BPr--gYA-P0I_vwD_wH2BfD5-f39APTx-v8FAv8A9AAI_PwAAAD6DwP-BgAAAAcE_gUF_QEADwH4_AQAAAAD8_71-gAAAA4D-P_-AQAA9voG-QIAAAD9CPn4_wAAAP7__fsCAAAA8wEF-wAAAAD__gDxAAAAACAALVpU5Ds4E0AJSE5QAiqEAhAAGvABf9cQ_83L4gGo5ukAzBO0AJg1Kv88Rdv_zeoN_9PuuAHp7gMA5wAnABb5Cf_TANoAJuL7_gS-Gf8W0AYA7ODRAP0cNgAn7QUBHfQYAvTm9ADsJCMACOofAPTUyv4LC_4FD9wT_u3ozf4M560KPMwtAv0LFQIUyxIH7rwJ_88JFwTe9NH8FBfIAdna-Pu_Uw8C-yjRBfkxCvry9OsCAg8M-hDnC_wiINz9QPwCBeop7wTxD_718gDw_edQHPboAfr_AQ43-g7OGf8tz__5AvkHA8gc4vc0IugEBfX9A_3x5_rQxwPzyv_p9PYQ-fzC1P37IAAtTAn-OjgTQAlIYVACKs8HEAAawAecTa--6sJZvEln_bvfGCK-1G-VO68-Qzz75zm-YsJDPPut3by8P4493ZMoO4ngKb34wYG-f-j4vERpTz0geRc-XNHBPN1y_bp6Fy--CDwwPSmf1Lz1oYO-PHfxOy7FlzvrxUA-wynlOYTNiryg4tg9YTyevMVPiLzus0o9t5mrO_3IULkPWEO9PxljvGyJ5rx4wAo8BLcEvcZKsTyUhOQ91i63PPwRUDwrV469MXMmvIB8LrxHWoU8xI2APNuRA7wRACw-llsaPdsd7Twumdm8f_h5PBHC4LjshNm7kjRpvV3Ay7x88UU9-wQ9OcWHYbsDaIo9d0ZAvUqC7Dr5oAe-9BqbPS-BgDsnFxM-T9VzPRWpsDydhZi83hB0u6UNZTpkPiC97qkBvSMKdzycnyc9a-8TvU3zjjw3TIk9jf02Pcsqz7oIzUk9fm2iPOr_xTsrA_08zbcZvbZvCby-aNG7kN5LPawjIrwHv8O7II3UvGQBuDy9n8Q9ap1dPKnvoTwhjS88qkeaPLzPcTzfZsY9ObXzvYcfGDz6WKa9y1CQvR2nrrvnzFE9uKCIPVl9Hrwiiuk9_fsnvcH-a7xIfJu6MVs3vegjOrwrrmC8JmMmvVu0nbrehXe9ICfMPSgIFzcJmVU9qkeaPPkJELz_sHY6-iT7uyxSFzzQTye9d6KEvaH3hDrM_zO7Y3KUPVQ4xLogAtg8aP03PZe5jjsLJOg9qwEvvezJ0zlpGB-8FCIgvTompDqS5g-9bEYBPU98b7oBo-s9EttdPDPuhzgH9WM7ghaWOt6aDTttOZe8Tt6GPWWuT7pDCII7FPDGvJxEUjiJD7e9t0K4vTFCujhGuS-93MUKvXhFs7l9BUk9C3-ju6sIo7gC9Iu9RTWQvTuGMTjMNVa91ovjO0ZKALlGmtg9sjMAPdYLkDi_aKq8AdFdO3Fgi7lRn2S9ZompvJnxVzmeAzC9D_IqPr3F37i16f68ZYScPNcmgLif8XE7pdgBPqiuMbl06Bm7ybAlPaTDETgXH7A8S6CHPTgzx7iq-QU9Hw4yvcHhvzfi1_66inqsPdVYlbgqvsu9qLI-vedGlTdpFQK9kLwjvs2DhLiuDkA-eNMtveyKfbZXwgO8AAiOPIzimjixFQQ-xv_4OzLZU7hOwZC9P75OvVNOZTfML568yhLCvNkhcTcgDee8FSoOPR4uvjazMQa7CK-9vRx9prci_-w9NSkFPvN-W7j4C-y8_Zs8PM9kA7dSCaS9H_hTPQlDMDjOK6i8-qkHOj1V4zcgADgTQAlIbVABKnMQABpgHfkAQPsVzxglK_f3-P8N6dvq8uIM6QAj8wAB9d3gGwDi3yYO_wP3-vO5AAAAL_ToBBcA71AlF_VS_On4Ap7o-PR_C_cc2RIp-AHtPPEK5iEA1CMeAMkN3T0b8d0HFvMvIAAtfs5JOzgTQAlIb1ACKq8GEAwaoAYAAMBAAAAwwQAA2EEAAHjCAAC4QQAAGMIAAKRCAABgQQAA4MAAAJhBAABkQgAAVMIAABTCAACYQQAAiEEAADBBAACgQAAAEMIAADhCAACAwQAABMIAAAAAAABMwgAAoEEAABTCAABkwgAAMMEAAJTCAABEQgAAAAAAAPDBAACwQQAAnMIAAJDBAACWwgAAiEEAAIBAAACUQgAAIMIAALBBAACgwAAA0EEAADBCAAAkwgAAhEIAAO7CAAAgwQAAAEIAAI5CAADoQQAA4EAAAADAAADAQQAAGEIAAEBCAACQQQAA5sIAAIA_AABgQQAAEEIAAGhCAACIwgAAqMEAAHTCAAAQQQAAOMIAAJzCAACKwgAAsEEAACDCAAAwQgAArEIAABTCAACIQQAAZMIAAFjCAACAwAAAqMEAAEDAAAAwQQAAiMEAAIRCAACAwQAA4EEAAOBAAAB0QgAAiEEAAABBAAAMQgAAisIAALDBAACMQgAAUMIAAPBBAADYQQAAcMIAAIDAAADwQQAA8EEAAGxCAADIwQAAkEEAALBBAABAwAAAosIAAEDBAACAPwAAQMAAAIjBAACGQgAABEIAAExCAAAwwgAAQMEAAKDBAACSQgAAoEAAAJDBAABQwgAAAMEAAFDCAAB0wgAAEMIAACDBAAD4QQAAQMAAAGDBAACAwQAA2MEAAJBBAAA8wgAAAMIAALDBAACQQQAAbMIAAHRCAAAAAAAADEIAAKBAAABowgAAAEAAAIjBAAAAQgAA2MEAAGBCAABQQQAAwMEAAChCAABAwAAAYMEAAODBAADAQQAAAEIAAOBBAADIQQAAgMIAAKDBAACOwgAAGMIAAABBAACMwgAAoEEAALBBAACCwgAAEEEAAIhBAAAAwgAAgkIAAEhCAACIwQAA4EAAAIZCAAA8wgAAQMEAAPjBAACgQAAAYMEAACDCAAA0QgAAqMEAADDBAAAswgAAZMIAALhBAABIQgAAiMIAACTCAAAIwgAAwMAAAIDBAAD4wQAAgMAAAODAAABAwAAAQEIAACRCAACgwAAA4MAAAMDAAABAwSAAOBNACUh1UAEqjwIQABqAAgAAVD4AADy-AAAQPQAAur4AACS-AACSPgAAoLwAAHm_AAAcvgAAyL0AAAw-AABMvgAAJD4AAI4-AACGvgAAcL0AAPo-AADoPQAAEL0AACU_AAB_PwAAmD0AACw-AADgvAAAoLwAAEC8AAA0vgAAfL4AAHC9AAAQvQAAbD4AAIi9AACKPgAA1r4AADC9AAAQPQAAEL0AACS-AAC6vgAAHD4AABQ-AACqPgAAyj4AAMg9AACSvgAAqL0AABS-AACavgAAHD4AAN6-AAAQvQAAxj4AAA8_AAAvPwAAyL0AAKC8AABXPwAAfD4AAOA8AAC2vgAAlr4AAJa-AAC4PQAADL4gADgTQAlIfFABKo8CEAEagAIAAPi9AABAPAAAyL0AADO_AACGvgAAQLwAAOI-AAA0PgAAcD0AAEw-AACiPgAAgLsAAAS-AAD4vQAA6L0AADA9AAB8vgAADz8AAIK-AABsPgAAJD4AAOC8AAB8vgAAgDsAAMi9AADYPQAAmL0AABw-AABwvQAAuL0AAOg9AABQPQAAjr4AAMi9AAAQPQAAcL0AACQ-AAAkPgAAur4AAIi9AAA8PgAAML0AAHA9AACYvQAARD4AADy-AAB_vwAAfD4AAFQ-AACyvgAA2L0AAKI-AAA0PgAAQDwAAFw-AAAEPgAAyL0AALg9AADYPQAA4LwAAFA9AABkvgAAgDsAACQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=QaR3mefaAoY","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16604177198580507826"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1762311129"},"17172360438050835267":{"videoId":"17172360438050835267","docid":"34-10-15-Z24DF92E0C9C06042","description":"Evaluating Limits. We learn how to evaluate the lim x-›-2^+ 3x/(x+2). We learn how to find and evaluate a limit at a given point of lim x-›-2^+ 3x/(x+2). These limits are at essential...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3383014/e723ab46035c7bb65a6831ccc0ed35c5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Vm6uhQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0Ray_YTfWNg","linkTemplate":"/video/preview/17172360438050835267?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›-2^+ 3x/(x+2)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0Ray_YTfWNg\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNzE3MjM2MDQzODA1MDgzNTI2N1oUMTcxNzIzNjA0MzgwNTA4MzUyNjdqrw0SATAYACJFGjEACipoaG5samFrenh5cnltdmdkaGhVQ1pRUHkwa1JNVmtHU0tWQkFxLW82M2cSAgASKhDCDw8aDz8TjgGCBCQBgAQrKosBEAEaeIH3_vwA_gMAA_4K-_0D_wEB_Pb9-P39APTx-f8FAv8A6wMGAAL_AAD6EAP-BgAAAP4G_QoD_gAADwH4_AQAAAAM-fj8_gAAAAwB-QII_wEB9wQC-AIAAAAHBO71_wAAAPcDC_wBAAAA9voK_wAAAAAL_PrtAAAAACAALQBT2zs4E0AJSE5QAipzEAAaYCYZADANBNHYNyXq_ynoJO7N3fzC6-3_GQIACPrZ0BUD5dT6Ef8e4gjPsAAAABvK6AE_APhoPATKUxD68f6T2PcUfwILGwAyAuvd8z3HL9sfBNkVIgC97uk6LesK9wwQLyAALf7BLDs4E0AJSG9QAiqvBhAMGqAGAABQwQAACMIAAARCAACYwgAAKEIAAPDBAACmQgAA2EEAAABBAAC4QQAAkEEAAEzCAACgwQAAQEAAAIhBAAAAQQAAkMEAAAjCAADIQQAA4MEAAPjBAACAQQAAoMEAABBCAADIwQAA8MEAAPDBAAC4wgAAUEIAAOBAAAAAwgAAgL8AAHzCAAC4wQAAjMIAAHBBAADAwAAApkIAANDBAAAAwAAAQMEAALBBAABAQgAAEMEAAJZCAADqwgAAgEAAAKhBAACmQgAA0EEAAIDAAACwQQAA2EEAAOBBAABwQgAAIEEAALzCAABAQQAAgMAAAFxCAACOQgAAxsIAAKDAAACSwgAAAAAAAKDBAACWwgAAtsIAAIhBAABQwgAAPEIAADhCAACYwgAAQEIAAMjBAAB0wgAAYEEAAKjBAAAQwQAAoEAAAMjBAAAkQgAAgMEAADBBAAAQQQAAJEIAAOhBAAAUQgAAFEIAAITCAABYwgAAjkIAANjBAABQQQAAUEEAADTCAADAQQAAGEIAAFBCAABoQgAAwMAAACRCAAAgQQAAgMAAAMzCAAA4wgAAAEAAAKDAAACowQAAfEIAACRCAAAQQgAAdMIAAKDBAACgwAAAyEEAAABBAAC4wQAA8MEAAFDBAADQwQAAgMIAAATCAAAgQQAALEIAAPDBAACYwQAAgMAAAKjBAABwwQAAMMIAABzCAACAwQAAsEEAAFjCAABAQgAAkEEAADBBAACgQAAATMIAAFBBAACgwQAATEIAANDBAAA4QgAAiEEAAGDBAAAQQQAAoEAAACDBAAAkwgAAIEEAAABCAACAPwAAqEEAAIrCAACAwQAAcMIAAEjCAAAsQgAAcMIAAIBAAACoQQAAjMIAAGDBAADgQAAAoMEAALJCAABwQQAAAMAAAMBBAACCQgAASMIAABDCAACYwQAAQMEAAADCAAAAwgAAQEIAAIC_AABAQAAA2MEAACDCAACgQAAANEIAAFTCAABAwQAALMIAAABBAABAQAAABMIAANDBAAAwQQAAQMEAAHBCAABIQgAAgL8AALDBAADwwQAAmMEgADgTQAlIdVABKo8CEAAagAIAAJa-AADIvQAArj4AALi9AAA8PgAA1j4AAIg9AAA_vwAAJL4AAHA9AAA0PgAADL4AAIC7AAAkPgAAyL0AAKi9AADmPgAAoDwAAHw-AAAPPwAAfz8AAKA8AADIPQAAmD0AABC9AAAMPgAAcL0AAAy-AABEPgAAuj4AABQ-AACOvgAARD4AAFC9AACgvAAAlj4AAKA8AABsvgAAur4AAPi9AACYvQAAgj4AALo-AAAkPgAAJL4AAIC7AACYPQAAqL0AAKA8AACYvQAALL4AAKg9AAA8PgAABT8AALK-AACoPQAAET8AAEA8AABQvQAAPD4AAJq-AACAuwAAij4AAPi9IAA4E0AJSHxQASqPAhABGoACAACovQAAND4AAKi9AABTvwAAtr4AALg9AAABPwAA-D0AAFQ-AADKPgAAlj4AAJg9AAA8vgAAiL0AAAy-AADgPAAAgr4AAAc_AADGvgAAwj4AAJg9AABcvgAAdL4AADC9AAD4vQAAUD0AADC9AACKPgAADL4AAAS-AACIPQAAgLsAAMi9AABAvAAAuD0AAOC8AACmPgAAbD4AAJq-AABAvAAAbD4AAGy-AABAvAAAuL0AAMg9AADgvAAAf78AALI-AADgvAAAFL4AAES-AACyPgAAoj4AABA9AACIvQAAND4AAOi9AAAwPQAAtj4AANi9AACIPQAATL4AAKC8AADyPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=0Ray_YTfWNg","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["17172360438050835267"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3476446148"},"4932103128310317999":{"videoId":"4932103128310317999","docid":"34-2-3-Z11E0E8F19158A925","description":"calculus, Trigonometry, basic calculus, advance calculus, limit, math...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4302647/983cd13cb3fae322e1c2886ba11db5ac/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hkzCbQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dmfk13JFFE0o","linkTemplate":"/video/preview/4932103128310317999?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim(x 1) x^3-1/x-1 | Evaluating the limit | Calculus and Trigonometry","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mfk13JFFE0o\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoVChM0OTMyMTAzMTI4MzEwMzE3OTk5WhM0OTMyMTAzMTI4MzEwMzE3OTk5arUPEgEwGAAiRBowAAopaGh2amJ0aHNsYnVtd2duaGhVQ2h6dzdPN3dVQy1seG1hRHUwcEdrcXcSAgARKhDCDw8aDz8TrgGCBCQBgAQrKosBEAEaeIHu9gcIAv4A9_byDggH_AIQ9_P29gAAAPb6-_z-A_8A9gEUAQEAAAAGFPUA_QAAAAUK9A79_QEAFfnz9AMAAAAR-vUB9AAAAA8M-wT-AQAA9f_zAgP_AAAA__P5_wAAAAX-AvcBAAAA8PH6BgAAAAD8-Ab1AAAAACAALZ39zDs4E0AJSE5QAiqEAhAAGvABf9sA_cfQvgDl6bsB-zwCAbUmGQBBS9j_lPkjAeUZ5QHO68D_--P3_9VH6v7F__3__tbRANHI_AEGrAr_-dn5AOQp1wEo7tkBLvkJAS_19f_gCvz-0P8Y__PQxf7mGrz-Hf8Z_iUbAgDoBLECQ9AXAhEKNwX5-0MEBLIWANT6-wP09rf90yrJAuL4-fiu0DACK9ENA-MhOvuKQAsD3ejj-v69_u77A_D6J9XYAC03G__P0wUC8vsC-LYtI_67KQ0Lze46B-Dh_gMf5A0B-ArUBkgJ9w7oC9EADSwMDibO_wrR9xPsBvj8EQbe4f_lQ_gOIAAtFvvpOjgTQAlIYVACKnMQABpgSvYAMvYAlfUHLerqwCYf8cTs8dC0FP8QBP8PI8wPIDHW5gMo_wfx89yfAAAAIvnVJRcA4XrkDf5CDiQmyJvqMxVsBvf05tD4Hb6BKU4l6A8G9CMlAMrbzkU67vAcTBAYIAAtJIQXOzgTQAlIb1ACKq8GEAwaoAYAANhBAAAowgAAxEIAACTCAABwQQAAEMIAAHxCAAAgQgAAEMEAAPBBAABwQQAAwMAAALhBAAA0QgAABMIAAOBBAADwQQAAFMIAACRCAAAwwQAAgEEAADxCAABAwgAAgL8AAHjCAABMwgAAUMEAACDBAADiQgAADMIAAADBAACYwQAALMIAAADCAAC2wgAAbEIAAExCAAAYQgAAcMEAAKDAAAAUwgAAmEEAANhBAAAowgAA0EEAAKTCAADwQQAAKEIAANBBAACYwQAAyMEAAFBBAACgQAAAFEIAAJhBAAAcQgAA0MIAAHDBAABMQgAAUEEAANBBAACOwgAAHMIAAATCAACAvwAArsIAABzCAACIwgAAcMEAAGDCAADAQQAAoMAAAKLCAABEQgAAYMIAACBBAAAQQgAAQMEAAIDAAACgwQAAAMEAAJ5CAAAgwgAA8MEAABBBAAC4QQAA6EEAAIjBAAAkQgAAAEAAAEDCAAAcQgAAAAAAAKBBAACqQgAAAMIAAPDBAADoQQAAqMEAAKRCAACYwQAAPMIAAAhCAADoQQAABMIAAKDAAAAAQQAAgEEAAKBAAABwQgAAbEIAAEhCAABEwgAAgEAAABDCAACcQgAAoEEAAPDBAAAQwgAAgMEAAJjBAACAwgAAUMEAAIBAAAAwwQAASMIAABDCAACAwQAAoMEAACRCAAC4wQAA-MEAAAAAAAA0QgAAZMIAALBCAAAQQQAAAEIAAHTCAAD4wQAAMMEAANBBAADwQQAARMIAAOBBAABwQgAA6EEAAIA_AABwwQAA-MEAADjCAAAQQQAAQEEAAFhCAADgwAAAMMEAAMjBAAAQwgAAIMEAAEDCAABYwgAAIEEAAMjBAABYwgAAEEEAAFBCAACwwQAAlkIAABhCAAAgQQAAEEIAAOhBAAAwQQAAdMIAAMDBAADAQQAALMIAAKjBAABEQgAAeEIAAGzCAABowgAAFMIAACjCAACAQAAAsMEAAGDBAABYwgAAoEEAAHBBAABEQgAAUMEAAIhBAAC4wQAA4MAAADRCAADAwAAADMIAAARCAABAwCAAOBNACUh1UAEqjwIQABqAAgAAUL0AADC9AAB0PgAAVL4AANg9AABUPgAADD4AAOa-AACIvQAAQDwAAJK-AABwvQAAkj4AAIA7AABEvgAAiD0AAII-AAAwvQAA-D0AABc_AAB_PwAAoLwAAFA9AAA8PgAAjj4AANg9AACIPQAA2L0AABC9AAC-PgAAMD0AALK-AABwPQAAcL0AAOg9AABAvAAAML0AAKa-AAB8vgAAbL4AAGy-AAAQvQAAzj4AACy-AAAEPgAAJL4AADA9AACIvQAAZL4AADS-AAAMvgAAJL4AAMg9AAAMPgAADL4AAOC8AAAjPwAAFL4AABC9AACGPgAA4DwAAHQ-AACIPQAAqL0gADgTQAlIfFABKo8CEAEagAIAAAw-AABQPQAAHL4AAC-_AACuvgAAFD4AALY-AAAUPgAAyL0AAEQ-AADgvAAAyL0AAKA8AABAPAAAqD0AAMi9AAAkvgAA2j4AAFS-AADCPgAA4LwAANi9AAAEvgAAmL0AAIA7AACKvgAAEL0AAIA7AACIPQAAqL0AABC9AABwPQAAbL4AABS-AADYvQAAiL0AADw-AAB0PgAANL4AAMi9AABAPAAA2D0AAEC8AABQPQAAFD4AAIi9AAB_vwAAlj4AAJo-AABwPQAAoLwAAMg9AABAvAAAZD4AADC9AAAcPgAAEL0AAOA8AADgPAAAmD0AABw-AACIPQAAHD4AAOi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=mfk13JFFE0o","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["4932103128310317999"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3875985935"},"16869108634055247080":{"videoId":"16869108634055247080","docid":"34-11-2-ZCA76E4E7EA1E39DD","description":"Join this channel to get access to perks: / @calculusphysicschemaccountingt Here is the technique to solve this question and how to find them in here #Integral #Limits #Techniques...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/218762/c01e6b111d39d6d61d8271b506b6f14b/564x318_1"},"target":"_self","position":"8","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKVIowp1RjIo","linkTemplate":"/video/preview/16869108634055247080?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus Help: Find the Limits: lim (x ) (x^2+1)/(x+1) - Techniques - Solutions - Answer","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KVIowp1RjIo\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNjg2OTEwODYzNDA1NTI0NzA4MFoUMTY4NjkxMDg2MzQwNTUyNDcwODBqrg0SATAYACJEGjEACipoaHlvYm5jZnNva3JiZHFiaGhVQ0ZocUVMU2hES0tQdjBKUkNEUWdGb1ESAgASKg_CDw8aDz8TZ4IEJAGABCsqiwEQARp4gfkP9P4C_gD4_vkEDQX9AQ3--gn2__8A4wDwCQD9AgDyAAj8-wAAAP0U-vMEAAAABQr0Dv39AQD9Afnz8wAAACABCf_5AAAADQ7uAv8BAAD26vQDA_8AAAwD7QEAAAAA_PIM_QAAAAD28gQDAAAAAAEEBv7_AAAAIAAtjvrLOzgTQAlITlACKnMQABpgOhgALQHtntv8ascv3QEB7P3J5My_DP8b7QDHD9-nAETyoh0s_x3K8xGXAAAAMhLPNvcA438KDu0_CvgXGZHBECBzDwvX-xII7czxQvFL_h0M2EANAIQj8wdAq8FJBSIXIAAtdOMLOzgTQAlIb1ACKq8GEAwaoAYAAIhCAABQwQAAykIAAJLCAACgwAAAgEEAAIpCAAA8QgAAbMIAAJhBAABAQQAAuMEAAIC_AACAQQAAIMEAAEBBAAAAQgAA8MEAAARCAAAQQQAAREIAAMhBAACkwgAAFEIAACzCAAAwwgAA6MEAAEDBAAAEQgAAIMEAAKDBAAA0wgAAmMIAAKDAAACCwgAAmEIAAETCAAB4QgAAEMEAAMhBAABwQQAAgD8AAJhBAADgwAAAREIAADzCAAAsQgAATEIAAGBCAADoQQAAKMIAAODBAACAwAAAqEEAANDBAACQQQAAyMIAAADBAADwQQAAikIAAIC_AACmwgAAYMEAAPjBAACgQAAAfMIAABjCAADgwAAAXMIAAKjBAAAQQgAAMEIAADDBAACeQgAAbMIAALjBAACgwQAAgMEAAARCAACAwAAAHEIAAK5CAAAQwQAA0MEAAOjBAAAQQgAA6EEAABDCAAAAQgAAqEEAADBBAAC4QQAAQMEAAOjBAADQQQAAmMEAAGDBAADAQQAAkMEAAMJCAABIwgAAoEEAABBBAAAAQgAAyMIAAOjBAAAgQQAAUEIAAOBAAABAQQAA8EEAAFBCAABwwgAAAEAAALBBAACcQgAAwEEAADzCAAAAwAAAwMAAAMBAAABMwgAAoMEAAADAAADowQAAMMIAAPjBAAAwwQAA8MEAANhBAABgwQAAGMIAANBBAAAcQgAAyMEAAFBCAABQQQAAREIAAAzCAADIwQAAJMIAACxCAABYQgAAGMIAADxCAACEQgAAgEEAAIjBAACAQQAAAAAAAGDCAABwQQAAJEIAAEBAAAC4QQAAqMEAAFDCAAAwwQAATMIAAJjCAACYwQAAiEEAAIBAAADAwAAAYMEAAOhBAACgwAAALEIAADRCAABgwQAAsMEAAFBCAACQwQAAFMIAAPjBAADAQAAAmEEAAGjCAABQwQAAfEIAAO7CAACSwgAAKMIAAGDBAACeQgAAaMIAAIjBAAAgwQAAQMAAAEBBAABEQgAA4MEAAIA_AAD4wQAAIEEAAIBCAADwwQAA4MAAAPBBAAC4wSAAOBNACUh1UAEqjwIQABqAAgAA4DwAADy-AACGPgAALL4AAOi9AACuPgAAyL0AADG_AAAwPQAAEL0AAFw-AABMvgAAhj4AAHA9AACmvgAAMD0AAN4-AACAuwAAgDsAAAc_AAB_PwAAFD4AABQ-AAAMPgAAiL0AABA9AACWPgAAZL4AAIA7AACIPQAAJD4AAHS-AABAvAAA2D0AABQ-AACoPQAAcD0AAJi9AACKvgAAzr4AAPK-AAD4PQAA5j4AAES-AACgvAAAML0AAFw-AACAuwAAcD0AALK-AACIvQAAmD0AACQ-AAAZPwAAqL0AAES-AABPPwAA4LwAAEA8AACAuwAAQLwAAEC8AAAsPgAABL4gADgTQAlIfFABKo8CEAEagAIAABy-AAAMPgAA4LwAAD2_AACGvgAA2D0AALI-AABcPgAAuD0AAAw-AAAwPQAAmL0AAOC8AAAMvgAAiD0AAIi9AAB0vgAA4j4AAKK-AACWPgAAcD0AAAy-AAD4vQAAcL0AADA9AADgvAAAqL0AADQ-AACIvQAAPL4AAOC8AAAQPQAABL4AAAy-AADgPAAAHL4AAHQ-AAB8PgAAZL4AALg9AACgvAAARL4AAJg9AABQPQAARD4AALK-AAB_vwAAtj4AABC9AAA0PgAA2L0AAEQ-AAB0PgAADD4AAFC9AACoPQAAuL0AABA9AACoPQAAuL0AAPg9AACoPQAAgj4AACQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=KVIowp1RjIo","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["16869108634055247080"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11384685492776537482":{"videoId":"11384685492776537482","docid":"34-8-10-Z80FB8486E90DCA11","description":"calculus, trigonometry, limit, maths...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2838383/26b3c58967300d7aa6090f2491c7a7c2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DhWlaAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dv4wR4aXNLSI","linkTemplate":"/video/preview/11384685492776537482?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim(x 2) x^3-8/x-2 | Calculus and Trigonometry | Evaluating the limit","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=v4wR4aXNLSI\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxMTM4NDY4NTQ5Mjc3NjUzNzQ4MloUMTEzODQ2ODU0OTI3NzY1Mzc0ODJqhxcSATAYACJEGjAACiloaHZqYnRoc2xidW13Z25oaFVDaHp3N083d1VDLWx4bWFEdTBwR2txdxICABEqEMIPDxoPPxPFAYIEJAGABCsqiwEQARp4gfD9CgD-AgD2-QYJDgb8AQ_39Pf2AAAA_fL0-P4E_gD3ARMBAQAAAP0Y_AUDAAAABRECDP_9AQAU-vT0AwAAABD69QH1AAAAGf32BP4BAADuDAIDAwAAAAHz7vf_AAAAAAQD9vv_AAD49_sBAAAAAAEEBv7_AAAAIAAt6A3XOzgTQAlITlACKoQCEAAa8AF43vf79t6wBKIm8QDj_P8BrUYRAPtHwQCe6w8B0A_1AcAU2QD2AgwA7VHa_8oq-QDMu6QC970CABTG8P8GnukB7vrjARrF6ANSGj7_GNoR_tsfCf0K5yQA8szA_gsPv_0S9gT4QCPm_-8dygIQ7y7_MhhPADv8VAQDgQEJ1OkLBygNrvrMAvUFBMX-97L-KwEuAvv36RQc_8w97wPa5uH6FMcR-hQ06QY5y_MCMTsd_6biHfzwAO78-_chD9RIBRHI7D8It9_p-vcAIBMw8N36Piz3EQjp1AUrI_8DCP0EB_LMFfX2__8E_QHfCtY19QkgAC08Tdc6OBNACUhhUAIqzwcQABrAB8_3A7_58JG9n3IRvXvCjT2Wr-w7lIeFvD6JuT2QpSo9VcVxu9SBDD5SvYC9AtLAu_aWYr4FeIE8eT8NvC0LVj6wily9QS0mvYbjCb7fIPU8rAEqvfGE3r2AH588t0EOPE4_Db3NkCq8DM4AvX-hhz1DuBe71Hx6vcoufb1J56474JcfvVwAHjt5yDm8RiI0vNdWB72D5WO9qcNlvMjUGD1sy0W9iFyZu7xPjz0r1oU9O59LvGQG6r2aJBY9lluaPJPpmz1K6go8zf7lu2X7Vb2bvJK8aUb1vEy0Gr2PkQe8rbYNPPcm4TxdhpQ98LXxvGKTqTtxKsi9yGqpvIZ3hL1HVC0935m7u_fWtj2q8NQ5aFcEO9zvhb3dCfY9yJ3rup8aM7vnjv68C9XovNKRmjt83qK7MG7dO-l2AD0wYgQ9GwfFO21eCz2JTXo9EGIhO8eLOz3gle48tIC_vEFZYj3tGw49F5Vcu9qIjD1SlHA8z_amO6VDTDwgGpc9hRzjOzlP67w_GRI675tSO0VcpTxzuPa95AQ3PJPHM72drZK9VnknPN3Bfj28uyQ9iHuRvG786T1M5K29K3Opu4ibWD28kuS88N0JPAPBLT3svHK9l7hBuPggH72DjBs9vPpCvGYev72FLWw9ajFbu5SpjT23Oio9xJmdO6c95bzrjA--Jd69tw1u6zwAm2I8EKXmOkHjuLxdKkA9RKkwuuZbADxEkJ68JSFTu_fqI73WKcU8vPpHukGaEb1ZNWO9M0gHuaGd0z1RgZi9l51ROXSUCL0aaU48T1GaOipih73w65E8DsS9OPb4Uz36gxy9ATZCuRSdi72JeuG9xidwOZLpcD0NYhE9FfY4uPacbz29tcI8pq5qOH9-ZL2jsTG9YN3jOh7OUr1z7IW8_BoVuXlhRj3MA_08KQbgOEOaKTuhXro7-bV5OD39lDscHQG9L6WiuB2ItLsMDmU9EmcHOJi0Ujs_cMW99y5gOS3Abb2gTfM8Al0buWVFHj0ygTE9NFyVtkjWqzwbEKE9EflvNzm0mD2mj4q9zB3aN8lDOrwfWZo9N_MGN25LibzKawU9qE1xOEFpYjvwQNM8Yvv8NkEXqD1TNSu9tJakOHhYkr1JfQc6SxRSOJJdGT7ZT1C9rMI_uVxJAb3K3tK9FyIEuYmf-7tmgVu9TGXwt-Y7OL2oLX89yhDIsi9FA72r6Vq9LTD0t8r0cD0i4Ss-8cuKOA-G1byGfMY8KLLGt7QWwL1UNLs9PF-yOFhY8L2_tdW7OqkRuCAAOBNACUhtUAEqcxAAGmAj9AAoAQKBBA8PAPTiAgni0-753csN_w3zABQr5QEqH9reDCIADuUR5q0AAAAs--IPDwDoatoSE1IWFf7Zl-IdH0kO-BH04_8K47I1Lx_bCOrpECQA5NnNQSv64CIlJxsgAC32jDU7OBNACUhvUAIqrwYQDBqgBgAAHEIAAPjBAAC8QgAAksIAAAAAAABAwgAAikIAAIhBAACAwQAAoEAAAKBBAACAPwAAEEEAADxCAADYwQAAyEEAADBCAABowgAAVEIAAMjBAADAwAAAMEIAAPjBAABgQQAAIMIAAFDCAAAAwQAAAAAAAMBCAAAcwgAAuMEAADDBAACGwgAAMMEAAJjCAABgQgAABEIAAChCAACYwQAAQEEAAPjBAAA4QgAAHEIAALDBAAC4QQAAhsIAABxCAACQQQAAEEIAAEDBAADYwQAA4EAAAFBBAAAcQgAAGEIAAOBBAADUwgAAIMEAANhBAAAAQQAAFEIAAJrCAADowQAAQMIAACBBAAC6wgAATMIAAHzCAAAgwQAANMIAAMBBAACQQQAApMIAACxCAABowgAAuEEAAFBBAAC4wQAAgD8AAEDAAADgwQAAcEIAAETCAADwwQAAAEEAAKhBAAAYQgAAYMEAACRCAADgwAAAKMIAAFxCAAAAAAAAiEEAAJxCAABUwgAA0MEAAABCAACAvwAAkEIAADTCAAAswgAAuEEAAAAAAACAwQAAIEEAACBBAADAQQAAUEEAAGBCAABcQgAAOEIAADjCAACIQQAALMIAAJhCAAAAAAAADMIAAOjBAAC4wQAA6MEAAHDCAABQwQAAFEIAAPDBAAA4wgAACMIAAHDBAAAowgAAqEEAABzCAABYwgAAAMAAABxCAACOwgAAsEIAAODAAAAMQgAAZMIAALjBAAAQQQAAUEEAAHBBAAA4wgAA-EEAAHRCAAAgQQAAMEEAACDBAADAwQAAZMIAAKDAAACYQQAAikIAAADAAABAwQAAYMIAACDCAACowQAAMMEAAGjCAACoQQAA2MEAAGzCAAAAwAAA8EEAAFTCAACWQgAAAAAAAKBAAADYQQAAoEAAAABAAACEwgAAyMEAANBBAABswgAAQMEAAHBCAABcQgAAZMIAAFDCAAAEwgAAGMIAAIBBAAAwwgAAyMEAAFzCAAAwQQAAFEIAABxCAACgwAAAGEIAAHDBAACgQAAA0EEAAJDBAADgwAAA6EEAAMDAIAA4E0AJSHVQASqPAhAAGoACAAC4vQAADL4AAJ4-AACuvgAAFD4AAJ4-AAAEPgAAL78AAMi9AAAQPQAAML0AAAS-AACWPgAAnj4AABy-AAAwPQAAsj4AAEC8AAA8PgAAMT8AAH8_AABcvgAAoDwAABw-AACYPQAALD4AAIA7AAB0vgAAFD4AAAk_AACYPQAAir4AABA9AABEvgAAZD4AABA9AADIvQAALL4AAGy-AAAkvgAAFL4AAKI-AADKPgAA2L0AAPi9AAA8vgAAJD4AAIK-AADYvQAANL4AAFS-AACoPQAAXD4AAJ4-AAAMvgAAMD0AAB0_AADIPQAAyD0AAJ4-AABUvgAAFD4AAPg9AAA8viAAOBNACUh8UAEqjwIQARqAAgAA-D0AAIi9AAAQvQAAOb8AAMa-AADIPQAAhj4AAGw-AACYvQAAVD4AABQ-AADgvAAAcD0AAKC8AACgPAAAEL0AAPi9AADaPgAA2L0AAJ4-AABMPgAAEL0AABC9AAAsvgAAQDwAADy-AAAQvQAA2D0AAIi9AADgvAAAQDwAAKg9AABkvgAANL4AADC9AAAQvQAAUD0AAMI-AACCvgAAgDsAAEQ-AAAQvQAA4DwAAIC7AACiPgAAqL0AAH-_AADyPgAAxj4AAPi9AABAvAAAiD0AADC9AAA8PgAAED0AADw-AACgvAAAgLsAABA9AADYvQAAcD0AABS-AABQPQAAcD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=v4wR4aXNLSI","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11384685492776537482"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3310128241"},"1517196291537944431":{"videoId":"1517196291537944431","docid":"34-3-1-Z874EC8D4E2E56213","description":"Join this channel to get access to perks: / @calculusphysicschemaccountingt Here is the technique to solve 3 limits and how to solve them in here: lim┬(x→64)〖(√x-8)/(∛x-4)〗 lim┬(x→6)〖(2-√(x-2)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382066/31eb1dabe4ab8c623b1a28cfe2aa301e/564x318_1"},"target":"_self","position":"10","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXqu3FzF5WOs","linkTemplate":"/video/preview/1517196291537944431?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus Help: Find the limits lim (x 64) ( x-8)/( x-4) - lim(x 6) (2- (x-2))/(x^2-36)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Xqu3FzF5WOs\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoVChMxNTE3MTk2MjkxNTM3OTQ0NDMxWhMxNTE3MTk2MjkxNTM3OTQ0NDMxaq8NEgEwGAAiRRoxAAoqaGh5b2JuY2Zzb2tyYmRxYmhoVUNGaHFFTFNoREtLUHYwSlJDRFFnRm9REgIAEioQwg8PGg8_E5gDggQkAYAEKyqLARABGniB7gH5_fwFAPH4AggDBP4BEvcB9_cBAADw-P0F_wEAAPMAAAb-AAAA_gsHAgAAAAAFCfUN_f0BABAEAfLzAAAACQUQ9vkAAAAN_PQL_wEAAAEG__cCAAAAEAX3_QAAAAAF9QQHAAAAAPj4AvsAAAAA_goG-P8AAAAgAC1xht47OBNACUhOUAIqcxAAGmAiFgAz8_id4SA1xRHpCxnv8eEBrfPy_zLzAOYJzL0MIAG_CyH_9drxCK0AAAAgC9oQ9QDsaB8lzEwfAwENks79EX8OIMf5Bvzt-_1U1Sb7CgXJEBAAoCMAGTze8x0nBDIgAC06tCQ7OBNACUhvUAIqrwYQDBqgBgAAOEIAAADCAAC2QgAA5MIAAEhCAADAQAAAaEIAALBBAACAwAAA4EAAAIDBAABAwAAAXMIAAADBAADgwAAA8EEAAEBBAACIwgAAwEEAAIBAAADgwAAA2MEAAKLCAAAQQgAAoMAAAFjCAABQQQAANMIAALhBAACgQAAAdMIAAADCAAC-wgAA4MAAAKDCAAD4QQAAqMEAAHRCAAAAwgAAKEIAALhBAAA0QgAAQMEAAIBAAAC-QgAAUMIAACDBAADwQQAAyEEAAEBBAACEwgAAAMEAACDBAAAUQgAAwEEAAABCAADqwgAAuEEAAGBBAABoQgAAEEIAAKDCAAAkwgAAMMIAAKBBAACIwgAA8MEAAPjBAAAYwgAAHMIAAAhCAAAUQgAAhMIAAHRCAAD4wQAAAMEAABTCAADYwQAA4MAAAIBAAAAQwQAAREIAANjBAADIwQAA2MEAAKBBAABwQQAAEMEAABhCAAAAAAAAAEAAACRCAADAwQAAYEEAAHRCAAAMwgAAoMEAAEBBAAAYQgAAYEIAAGTCAACAwAAAsEEAAGDBAABswgAA4EAAAMhBAACYQQAAoEEAAHxCAAAQQgAADEIAAATCAAAAQQAALMIAAJBCAABgQQAANMIAAKbCAAC4wQAAuMEAABzCAAAgwQAAYEEAADDBAACAQQAAcEEAAADCAABgwQAAgEEAAMDBAABAwQAAEEIAAHBCAAAQQQAAiEIAAEBAAAB0QgAAtMIAABDCAACAQAAAYMEAAPBBAADAwQAAoMAAABBCAADAwQAA8MEAAMBAAACIwQAAfMIAAMhBAACAQgAAQEIAABRCAAAEwgAARMIAAEzCAABQwgAAVMIAAILCAAAQQgAAYEEAAATCAABAQQAAoEEAAAzCAAB8QgAALEIAAMBAAACgQAAAAMAAANDBAAAUwgAAYMIAADBBAAAwwQAAJMIAAExCAAAAAAAADMIAALjBAAAAAAAAkMIAAIxCAABgwQAAUMIAAJLCAADYQQAA8EEAAARCAACowQAAIEEAAAAAAABcQgAAGEIAABzCAACIQQAAAEAAAKDBIAA4E0AJSHVQASqPAhAAGoACAACAuwAAoDwAAL4-AABkvgAADD4AAAQ-AAAEvgAACb8AAEy-AADovQAAND4AANi9AABsPgAAuD0AAFy-AACAOwAAdD4AAHA9AAA8PgAA-j4AAH8_AACAOwAAyD0AAKA8AAA0vgAA4DwAACQ-AABUvgAAUD0AAPg9AAAcPgAAML0AALg9AABEvgAAoj4AADA9AACgPAAA6L0AAKq-AABcvgAAXL4AAFw-AABQPQAARL4AAAy-AAAEPgAAkj4AANi9AAAUPgAARL4AACy-AABMPgAAcD0AAAc_AADYvQAAcL0AAAE_AAAMPgAA6D0AAEQ-AAC4vQAAhr4AAHA9AACYvSAAOBNACUh8UAEqjwIQARqAAgAAQDwAAOC8AAAwPQAARb8AAFy-AAAEPgAAZD4AAAQ-AABAPAAADD4AAAw-AAAQvQAAQLwAACS-AAAQPQAAEL0AAIa-AAAZPwAAPL4AAJ4-AAAcPgAABL4AADC9AAA0vgAAgDsAAOC8AACAuwAAPD4AAKi9AACYvQAAcD0AAKA8AAAsvgAADL4AABw-AAD4vQAAED0AAEw-AAC-vgAAmD0AALg9AAAQvQAAFD4AAOC8AACAOwAAjr4AAH-_AACmPgAAPD4AAOC8AACWvgAAND4AAKA8AAA8PgAAbD4AAJg9AAAQvQAA2D0AABC9AAC4vQAAmD0AABC9AACmPgAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Xqu3FzF5WOs","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["1517196291537944431"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"847745485155000854":{"videoId":"847745485155000854","docid":"34-3-8-Z9F63C4C9DF34BC9B","description":"lim[(x-1) Divides (x^2-(1))] REAL Numbers Function AS x Tends TO (1) IN Precalculus. Real numbers are all the numbers found on the number line, including zero. Limit functions that tends to zero...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3507180/7dd77dc5e765f09c56bebe6ad5a5095d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kt734wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0pjPXRJ5k5U","linkTemplate":"/video/preview/847745485155000854?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim[(x-1) Divides (x^2-(1))] REAL Numbers Function AS x Tends TO (1) IN Precalculus","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0pjPXRJ5k5U\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoUChI4NDc3NDU0ODUxNTUwMDA4NTRaEjg0Nzc0NTQ4NTE1NTAwMDg1NGqHFxIBMBgAIkQaMQAKKmhoa3N0dnNwcGllYnZwY2JoaFVDc3ZiQmdjamhqV3llSHFfSW9ZRFA3ZxICABIqD8IPDxoPPxNYggQkAYAEKyqLARABGniB9AMC_v8BAPj--QQNBf0BEPf09_YAAADz8Pn_BQL_APwR_Pr8AQAA9hEH8wAAAAAH9_YCA_0BAP0B-fT0AAAAD_r89PUAAAAGDPr9_gEAAO0I8AUD_wAAGQ71Bf8AAAD8Av_uAAAAAPwCDQ8AAAAABf_69gAAAAAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAX_uAADS-9P_-gnwANb_2QCs-AoALjbj_-ACBwDF7OIB8AcFANYS6P_TGAYAvCX5_yHu3P8RAg0AHsb3_zTc6wDg9RwBMN3dABIVCAHk5e7-8fURAOjmCQEt9u4A9xHk_xHrJP0eBOkA69zbACH8KgED_zwACfYg_fLLB__YFAIB3dbm_vgJ1wAs_eX-xd4iAgXy7__3GPb58y3l_S7wEQPu_CUBDBHVADH9AQQMEQAD1eXp_SIE_ggM5QsJvgsU_-kXH_7aAvn_Gefw_fLy-_wF-_D97Ojn_-0J_w7vA_77IRL7-wUS9e---AX26_7tBCAALRggJDs4E0AJSGFQAirPBxAAGsAHIayuvrgdvzqxw5g89wvRvHrZQDx4bPq8dxVCvngJjryMHzm9UbuvPZ7OOrwIoji8f4MWvqILajshUAc9FJRCPkZFHL1z6AC8dXT8vS8Tmj0LAhC99DMlvoCJbj0I2i49YNYaPbM2hz3cyRa8POmuPejUursTYGY6IKjouh11ETwz3AC93GoZOvURWL0TfFi9HJ2fOft157zVgs28L1H9PbEFYLqfq628oZR6PWRoq7zBqrq8BTQxvvO6FD0-B5a8CXmTPQ3WyTz8jmE8L22YvSsoNj1ajZs8BmJ-vR2lXLwE5r46gYmJPYQSQbyVrFS8FK7nPaQYgL1THn67XZGzvYxCGDw-NYe78H9sPWapwD3lZQk8F-8Xvvfdjj1qULQ8s03gvIL_jDvqBYK7C12JPSOYvz1YyYe8F1z9vJQ8LT1f4e47XOvGvT60zzwhfe48tDjGO0UdLL1eVIG8U6m-PMGrhrvsQ4e7KRTYvKFvAT0diUC6qLieO0IZVD1hn2e6YyZRPZ8dUL1RS3O8j-AWPlt4Dr4D5w68-ePuu1th-r2FAr473Ua-PSYnybxYebw7djQOPWmHBL2yMli7vLslu_0Qi73Tg6O3ZLZgu6gEj72aNBm7kNlZvbAjabw1pQi8AGpvvb7YezwQXSG6cwdbPQNTxz1yDME5o2iUPEWupbyWk7O7IojzPWqxJb3ve-26YDkiPq4s0bxwlQq6DjRZOg3FHb0f23C7SKTtPH-NP70SpE672rrlvMA1sb1SWQ667q8OPp8Skb1-0JQ5gQpCPQ_VEDxhzTO4X61_vS7isD0JAjo5OUGwPR428b2SEu04avYju--dp71iSNy46z9mPSHYJ7wwpvm4mbj2ux6U5jyjHxE7bT5JvWL0TL7q7qw5_Lf9Oksvf7tqCVm3N_8PPRjbOr1sYMS1tdGvPC1_eb1kbwc5dpkrPC2IUr1W6Vy4yC9yPJeonj2EkAe4QfEDPXFPwb3XOHs5kR-7vKPuXj00e-O2P8l4PJ4Bvz17QIe2Fx-wPEughz04M8e4EtG3uwz9iL1QZfo3nsfyPAZuWD1slHa4zXDJuohRSz3_6xo5I9GwvHJTw7zjEDu4HF7wPX0E_jz055C4bBPdPJBSJD2Ldek4sRUEPsb_-Dsy2VO4jxT4u1vfwb0t73W4h2cOvfRlLr3N0hC4lLSsvGytND0EGPO1XqpIvTrpHb60Y_q4Iv_sPTUpBT7zflu4BRxdPdYQ5jz4EM-4TJ4cvRbKurok3si3U1DLvSyEDzwuLky3IAA4E0AJSG1QASpzEAAaYBAAAEXnOc0QByzrDecUHd7FHvwBzez__tL_Fh7DF_YwrLDs__8x8QbXogAAACQVIC7xAOV79BTyTesT99Wu0Coxf_kcDa3hKOCo4DP87g8JPuc3OQDJBqArWQjRXCYLLyAALVrwEzs4E0AJSG9QAiqvBhAMGqAGAAAcQgAASMIAAFBCAAD4wQAAyMEAAMDBAAB4QgAAAEAAABBBAAAAQQAAQEIAAGBBAAAcwgAA0EEAANhBAABwwQAAqMEAACDBAAAAQgAAgD8AAARCAACQwQAALMIAAHDBAAAIwgAASEIAAKhBAAAEwgAAoMAAADBBAABwQQAAIEEAAFDBAAAoQgAAwMEAAABBAAAgwgAAaEIAAEDBAAAQQQAABEIAAFDBAACEQgAAWMIAAOBAAADEwgAAkMEAAIDBAABQQQAAUEEAAEDBAADQQQAAwMEAAABBAAAAwAAAoEAAAJjBAABAwQAAxEIAALJCAAAkQgAASMIAAHjCAADAQAAAOEIAAADBAACIQQAAyMEAACDBAACYwQAAzkIAAFxCAACgwgAAGEIAALDBAACmwgAArsIAAMDAAABAwQAA-EEAAFDBAABYQgAAuMEAAOBBAADAwQAAGEIAAHBBAABAwQAAoEEAAGDCAACwwgAAeEIAAHDCAACIwQAA8EEAALbCAABAwgAANEIAAKBCAAAAQgAAAMAAAHBBAAAAwAAAQEEAAILCAACgQQAAIEEAAGhCAAAAQAAAOEIAABRCAADwwQAAmsIAAEBBAADwwQAAYEEAANhBAABowgAAFMIAADjCAADAwQAAfMIAALBBAACEwgAAwEEAAOjBAACowQAAAMAAAPjBAABwwQAA6MEAAMhBAAAAwQAA-EEAAIrCAADsQgAAqMEAAKDAAADowQAAkMEAAABCAACAwgAAUMEAAMBAAADoQQAAUEEAAFBBAAAgQQAAiEIAAPBBAABEwgAAoMAAAMDBAAA8wgAAMEEAAGDBAABgwgAAOMIAACDCAADQQQAAOMIAABxCAABgQQAANMIAAFhCAABAQAAANEIAAGRCAADoQQAAsMEAACDBAACCQgAA8MEAAODAAADgwQAAwEAAAKjCAACswgAAmEIAAIA_AAB0wgAAwEAAAOjBAAA8QgAAAEIAAETCAACAvwAA8MEAAMBAAAAAQQAAQMEAAOBAAADwQQAAUEEAAOBBAADoQQAAMMEAABDBAADgQQAAgEAgADgTQAlIdVABKo8CEAAagAIAAIA7AAA8vgAAZD4AAEC8AAAQvQAA5j4AAHQ-AAAhvwAANL4AADA9AACgvAAAdL4AAKY-AACSPgAAuL0AAFA9AAC4PQAAED0AADQ-AAApPwAAfz8AAEA8AACYvQAAbD4AABy-AACIvQAAxj4AAFC9AACgvAAAHD4AAIg9AAAkvgAAir4AAOg9AACOPgAA4LwAAOg9AACOvgAAqr4AAES-AACGvgAAHL4AALo-AACgvAAAND4AAPi9AACoPQAA6L0AAJi9AAAbvwAAUL0AAKg9AACOPgAA1j4AAHS-AACgvAAAcz8AAHC9AAAkPgAABD4AABw-AACCPgAAQLwAAMq-IAA4E0AJSHxQASqPAhABGoACAAAkvgAAQDwAAAS-AAAXvwAAmL0AAFA9AACSPgAAQDwAAEC8AAD4PQAAUD0AADC9AACgvAAAcL0AABQ-AABwvQAAEL0AAA8_AABEvgAA0j4AAIC7AADovQAAML0AANi9AAD4PQAADL4AAOC8AAAQPQAAmD0AAIC7AACAuwAAuD0AAJK-AAAUvgAAHD4AAIi9AADoPQAALD4AAGS-AACAuwAAiD0AAIi9AACAOwAAoDwAALg9AAD4vQAAf78AAJg9AACgPAAAQLwAAIC7AABwPQAA2L0AANg9AABwPQAA2D0AADC9AACgPAAAgDsAAOg9AACoPQAAEL0AAGQ-AABwvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=0pjPXRJ5k5U","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":490,"cratio":2.61224,"dups":["847745485155000854"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2486965866"},"17121486827325814383":{"videoId":"17121486827325814383","docid":"34-6-3-Z8AEFCE62FA2F6640","description":"A math video lesson on the Evaluating Limits which is a topic on Limits in Calculus. This video discusses how to evaluate the lim x^3-x^2-4 as x approaches 2 #limits #evaluatethelimit #calculus...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4900596/e92dbbe9d7512d43fa45f7860c464c1a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QYG5bgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOFPHvh6jbM0","linkTemplate":"/video/preview/17121486827325814383?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate: lim (x^3-x^2-4) as x approaches 2","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OFPHvh6jbM0\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNzEyMTQ4NjgyNzMyNTgxNDM4M1oUMTcxMjE0ODY4MjczMjU4MTQzODNqiBcSATAYACJFGjEACipoaG5samFrenh5cnltdmdkaGhVQ1pRUHkwa1JNVmtHU0tWQkFxLW82M2cSAgASKhDCDw8aDz8TlwGCBCQBgAQrKosBEAEaeIH7-gEE_gIA-ggN_PsE_wELAPv69wAAAPTx-f8FAv8A7Qf9_gP_AAD9C_wFDAAAAAgE_gUF_QEADQb1AwQAAAAIAgAA9AEAABEFAAz-AQAA8Qj68gIAAAAA__T6_wAAAAAIAvcDAAAA-QMM-wAAAAAL_PrtAAAAACAALcKk2js4E0AJSE5QAiqEAhAAGvABfw_5AJ_j7fwbCegA7v4AAY0fCf9FF_QBxgT9ANsF5AEWEBAA0-v3ABQA7QDtAQcA8vLjAAPQEv8r5N3_PQzqABbo-QAlxPYBDfwpANbs3_7pEwX--foiAObj1v8GCvD_7QoHAPLv2v7wA8sBDegNAgsHJQMF7Af_D-8R__wLEP0ZCM38FQDwA_Li__rbKg0A2ub1AAAGCfvY9vYCCf_bASXc-gIHJ9v-AQTqA-XzDvoM-Q73CeoS9d0XDvzqChAE6hUd_gfo_wABBwT1GNj0BAX78f3i5_QJAAYGAvX6_u37_vgB5wj59vTx_gLW2fwMIAAtbQMtOzgTQAlIYVACKs8HEAAawAdihAC__XMHvcIwATzJd4S61TXkPPvxzbzThG07ioKNu16kKzwfptg7QZS5vB_f1jqz8HW-x9CWvEVkQDnFVYU-VDBvvZt_Krxi2Sy-cgKqO8NkCr1MxDu-gpxFu1Yy17ojZfA8zNT_PCu9W7w7lQI9n0Q6PCe0EzvSaDc9QGxJvf9107wriMG8wxccvUlb5rwl0Bo8mxSwu_922by8Wu49QGNLvCsBpzwWrCc8cbWpPPvEJrt-raa8MA0DPTJ0bDyt3Cs-yaBEvYuoCbvEeTi8sky_u4P44Tsc5qC9tPg-vc_ZIr1Y8y28dRE1PXrhTrzPMNU9T71kvTtPAT1Rh9W9FQ5TPahZe7yV3Fw9BkI3PXC2yDnc74W93Qn2Pcid67oFmS68L8ttPUOIEL28ti-7cRsyPGrLbzyyp5M8wFMSvYOOMbybsYM9-h7_vAD6ojzGxLa9PihDPRm5nbxrg668yUgsPN7Gi7zDCpy9STXHPCQpirtQCBM9VWMuPMYWgjvMyaU9136XPIX-sjvNpHc9h2SyvW0Iabx1-FW9wf4rvRcqf7w9FUY96munPHoGQ7y0IAQ-GAgCvdggN7pqoF694m9AvQcPLjyOddE9X-JZvJsqjjzHOQC9uhq0vD95M7xPJ4Q9xu4KPALLW7x4iSA9PBz4PJvIijt4Tf68gAX6vLTHD7s6nJ892jq4PFx8QDv7m2s99gtWPQ4rJ7oLJOg9qwEvvezJ0zlKShW9MVrMvbIjVbfCKFI8qCA6vTv2nzk8vfI9SshRvVfBjjlJWos9N5ptvHYgOLkWzM6806FzPetDbjraP-o8CUbvvHJtarqJD7e9t0K4vTFCujg4nSk9-XZcPIREMbj1FBk92A4pO4Bk0rhpWXK90wY2vS7g6br0Xgo8TzbKvELJgrji5Qk-ybnDPSDIFTlCBtG7tlDNvItFJrnxDD89MqkCvEQMq7i1jXo9yKGkPS3UAThB43i8fEftvWETqznd81c9x1dRPQd6HzcXhXg9J7zkPeiOMreob5m8FjvQPMPeZDj_l-s9R4g3vQuJlTbrhCE9_4HovOHKpzjfbKO9_C0JvM19qrYnpiY9afKevGQ8VThP1Gg9d342vRMJIzeLAji9n6cmvS3qeDgfnwA-pOSQvRXoOrm-g9-8eAkOvXl7eLi77YK8l-ahvfo4_7eb0o-74uSOPWDeRzcU9E09tL2nvZeXjbci_-w9NSkFPvN-W7h6U5G82dX_PC8FBbkBLUK9JDo1PSjZHbfIQQm9rq3JvW1JuLcgADgTQAlIbVABKnMQABpgMQkAKfQTnej1MPn1FPEi4d_I9Mb46f8UD_8IDMfp-h7evRAY_wbEAOmmAAAAG-HWGCcAAW0L8cxA8f3x0Kj0Dux_DPMnqBI-8dvsGOv29ybytTAAALrwu2oa6ugnGxMDIAAtJcIjOzgTQAlIb1ACKq8GEAwaoAYAAJhBAAC4wQAAYEIAAJjCAAAQQgAAsMEAALZCAAAQQgAAEMEAACDBAAC4QQAAUMEAAAjCAADgwAAAXEIAALBBAACYQQAAwMEAABhCAABwwQAAkMEAAEjCAACGwgAAQEAAAGDCAAAAwAAAAMEAADzCAACQQQAAAEAAAFDCAADIQQAAwsIAADDBAACawgAAmEEAAGBBAADsQgAAgD8AAABAAACowQAADEIAAFhCAADYwQAALEIAAEjCAADgQAAAsEEAABBCAAAAQgAAoMEAAAAAAABAQAAAiEEAAAhCAAAMQgAAysIAAJhBAAD4QQAAdEIAAAhCAACwwgAAyMEAALTCAACAwAAAisIAADTCAADowQAA6MEAABjCAAB4QgAAsEIAAILCAACcQgAAVMIAADzCAACIwQAAJMIAALDBAAAgwQAAcMEAAFhCAABAwQAAPEIAANjBAAAwQgAAEEIAAJhBAAAgQQAAQMIAAGDCAACUQgAADMIAAEBAAABQQgAAwMEAACBBAADgQQAACEIAAIhCAAA8wgAA6EEAAIA_AADwwQAAsMIAAKDAAABwQQAAwMAAAMDBAAAYQgAAEEIAAFDBAAC4wQAAGMIAANDBAACUQgAAEMEAABTCAAAQwgAAiMEAABjCAAB8wgAAwMAAAOBAAADgwAAAIMEAAMBAAAAkwgAA0MEAAODAAADwwQAAbMIAANjBAABAQgAAoMEAACxCAADYQQAAMEIAAGDBAACuwgAA4EAAADBCAACQQQAAwMEAAAhCAAAgQgAAPMIAANhBAACQwQAAgL8AAEDAAAC4QQAAIEEAAJjBAAAQQQAAFMIAABDBAAB0wgAAdMIAAEBBAABcwgAAuEEAAEBAAACIwQAAQMEAAFBBAABMwgAA3EIAAFRCAACAPwAAyMEAAMBBAABAwQAAQMEAAHTCAACgwAAAQEAAACzCAADYQQAAEEIAAPjBAADYwQAA0MEAAMjBAAD4QQAAQMIAAHTCAAA4wgAAiMEAAGBBAAAQwQAAFMIAAHBBAACgQAAAaEIAAGxCAABAwQAAsEEAAJDBAADIwSAAOBNACUh1UAEqjwIQABqAAgAAPL4AAEw-AADePgAA4DwAAAw-AAD-PgAA6j4AADe_AABsvgAAND4AAMi9AACIvQAAED0AAJo-AAAUPgAAbL4AAM4-AACgvAAAQDwAAB8_AAB_PwAAML0AAAQ-AADgvAAAiD0AAAQ-AAA0PgAAbL4AABy-AAD2PgAALD4AAFy-AAAEPgAAMD0AADA9AADYPQAAED0AABS-AAAdvwAANL4AAMi9AAD6PgAAsj4AAFA9AAAUPgAABD4AAEQ-AACYvQAAEL0AAI6-AAB8vgAAcL0AAIo-AADCPgAARL4AAJg9AAAPPwAAyL0AABy-AADGPgAAmL0AAOA8AAC2PgAAMD0gADgTQAlIfFABKo8CEAEagAIAABC9AACYvQAAqL0AAB2_AAAMvgAAkj4AAM4-AABMPgAAqL0AAKY-AACGPgAAUL0AAAS-AAD4vQAAUL0AAKA8AABAvAAACz8AAIa-AAC6PgAAND4AANg9AABQvQAAqL0AABA9AAAQPQAAqL0AAEw-AABAvAAA-L0AAOg9AABQPQAAgr4AAAS-AAA8PgAAqL0AALY-AABkPgAAvr4AAFC9AACGPgAAiL0AAFA9AAD4vQAAmD0AADA9AAB_vwAAlj4AAOg9AAAwvQAAZL4AAEw-AAAwPQAAHD4AAEQ-AADYPQAAML0AAEC8AAAEPgAA4DwAAKC8AAA0vgAATD4AAKo-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OFPHvh6jbM0","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17121486827325814383"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3219913308"},"15078514460659736121":{"videoId":"15078514460659736121","docid":"34-8-9-Z2E7A238E2FE5EE19","description":"Evaluating Limits. We learn how to evaluate the lim x-›5 -(x^2-5x)/(x-5). We learn how to find and evaluate a limit at a given point of lim x-›5 -(x^2-5x)/(x-5). These limits are at removable...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1997898/07d8984181eabf6411ff488f7fd48660/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OeULNgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DwKMmE0QymIY","linkTemplate":"/video/preview/15078514460659736121?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate lim x-›5 -(x^2-5x)/(x-5)","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=wKMmE0QymIY\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNTA3ODUxNDQ2MDY1OTczNjEyMVoUMTUwNzg1MTQ0NjA2NTk3MzYxMjFqhxcSATAYACJEGjEACipoaG5samFrenh5cnltdmdkaGhVQ1pRUHkwa1JNVmtHU0tWQkFxLW82M2cSAgASKg_CDw8aDz8TbYIEJAGABCsqiwEQARp4ge4B-f38BQD7_g0E-wb9AgoA8AH2__8A_fL1-P4E_gDrAwYAAv8AAAQRAf7_AAAAAAQJ__v-AQAJBvv5BAAAAAj4AAf9AAAADgD7Bv4BAAD9C_f4Av8AAP_87QP_AAAAA_4GCAMAAAD7_wT4AAAAAAv8-u4AAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_-f8Bven8_hEOAQD8KAEBigAB_zUa5gDjAgcAxPjQAAQOBgDX_QAAE_IOAe4BBwAvCd__A9ES_xvm___8-gkA7wn8ACTF9wEn_BQB__TY_7orGP4F8ggC-ODZ_xj_4P8D3gQA9Pzn-_ADzAEr2yABCwckAxILHwPq59z-2xICAdXi1PwVCPr98uP_-8ocFQMK_P0GAygXAfb48QHy-egI_OcD-w4S9AAH-_IA3hMDA9nw-fkLCwr3CBYOBNz-HwUBCij8_fTy-gD6_AP1_vEC9wDuAuzeAAIC7hAJ6fX89_DjAPjfDfEJ9hAGAvH5_AwgAC2cfzE7OBNACUhhUAIqzwcQABrABxFumr5V5py8QxaAus7-AL4ZYUA8Tp3iPJrPOb5S8DQ94gZXvepRgjwRPm-8B_XIvDhpir7RDD087a59PITvwj1xE_88AK5EPWLKxr1awF88A-cxvPWhg748d_E7LsWXO0gXkz6_oQ08Of4VPPrV3D03fnI8q6AWPM_dqb0Dt2m9EayFPLIrhb4HbD08gHWHO02foTvKuHO9GI4RPRiX6j2mhFs9ZundOTP3FLxNmuu80EMNvQ8exz2RBlw8Y1jPvOM1Tz552uu8g13DPCttEb4lBdi7AazEvHhki7rjv2W9pdhyu4NDmDkBpPY8FtmCOnkqhj1FBym9CpAXvSY19L1-Ay49q7oCPXqHID057IM9QkWYudiOgz1f5C-88gBgPGu58zwwDUg94zUOPNKRmjt83qK7MG7dO95atj2PJg09tt9zOwwbKj0Fndo74qmsPLQ4xjtFHSy9XlSBvCOi2LzEtTU94cCavFBBNL1gYbe8KeWaPBEqsj0aICg7elASuy6ZqT26Vzw9nW40PKtgDz1AYsW84vA4PNzNursg9Ge9SbJUuygsDL1dkp68EX8BPJFk9j1po1-8AJOSu7PN7b0Zuii9tAHYuxeZI7xnLHW9i7hKPHP-XDyKAdQ7A5hwuwcjNr28HJs7o8owvMuY57xaDbk97IyIO5AzSD3I1k69YZymurolwTvAAGc8K-FHu8cYDj3h4ME8uyjZu5YvHj2u2I-99j_hupvc1LzzTSS9_lwXO4OD4jy9V0i9siIOuQX-Cz3iqWy8Oej5OJnAiD3zdt88xQeKt-zTG73ZO0g81sLsNu5vmjyjLDK9vPebuHBK1DzIUUq9zYWKubvsF758IlM7yCncOH0FST0Lf6O7qwijuFMekr1KG8i94XObN6mEZ72-Kjy9pitquP7ymT3M1Wq7r9XEOEhZer0kJii89RcOuZOPfb3d6vk8rNKcOeGWzz1wXlw9ppRwuEsN4zzqjJS8dt3qtxEeyLuRfVA97x2MNiwOt71_Jkw9SqzEOB9Hczy_EuE77BYvuIHtiz0Iyk2956ygOEXYcL2TmSI8gl8iN2vx6b151iS87i9gNhYggDwIVMG7JeR6toxI-bySPBe95C8bN08keL04JlU8fbc9N0Hutz08YdO7QRn8uKNA_73GXjm87Vg2uHX19LxZ3eq9DSPxNZtLW72SPKc9bXCBOHQwsT2OVtq8QV-xtyL_7D01KQU-835buJvYcLvVmAs9vxThuLQWwL1UNLs9PF-yOFE4Mzp3Jjm9_wXjtyAAOBNACUhtUAEqcxAAGmAkAgAU7wy_5hcb8BQHGS_y1uT41gEK_zH5AO78zuMBI-LWHAT_CPYJ17EAAAAo2fr_FwD9ZhIA40n0__nil9kB_X8OGye8ASfu1Ooa7wbJEB3RLS8AtgrEWDTn7BUo9B8gAC2BMjI7OBNACUhvUAIqrwYQDBqgBgAAAAAAABjCAAAkQgAAnMIAADRCAAAowgAApEIAALBBAAAQQQAAmEEAALBBAAAgwgAA2MEAAEBAAAC4QQAA4EAAAMDAAAD4wQAA4EEAAMjBAAD4wQAAAEEAAOjBAAD4QQAAsMEAACDCAADAwQAAuMIAAFxCAAAAAAAAuMEAAABBAACSwgAAgMEAAIjCAADIQQAAgMAAAMBCAADgwQAAcEEAAADBAADAQQAAXEIAALDBAACcQgAA3MIAAMDAAADYQQAAmkIAAKhBAAAAwQAAgEEAAGBBAADIQQAASEIAAGBBAADcwgAAoEAAAIA_AABYQgAAlEIAAKbCAACQwQAAmsIAAAAAAAAcwgAAoMIAALDCAACIQQAAMMIAACxCAABMQgAAeMIAAEhCAAAcwgAAYMIAABBBAADgwQAAgMEAAIBAAADwwQAAJEIAAMjBAADAQQAAwEAAADhCAAC4QQAA4EEAABBCAABEwgAAIMIAAJhCAAAUwgAAkEEAAAhCAABMwgAAwEAAABxCAABcQgAAgEIAAIjBAAAIQgAA4EAAALDBAAC0wgAAHMIAAIBBAABAQAAAcMEAAGhCAAAoQgAAOEIAAEjCAACAwQAAmMEAACRCAAAQQQAAcMEAADzCAACIwQAAAMIAAFTCAAAAwgAAEEEAABBCAADQwQAA0MEAAMDAAACgwQAAMMEAABzCAAAYwgAAwMEAAIBBAABswgAAVEIAALBBAABQQQAA4MAAADjCAACAQQAAcMEAABBCAACYwQAAKEIAALhBAACAwQAAwEAAAKBAAAAAwQAAIMIAAFBBAAAUQgAAIEEAAARCAACSwgAAwMEAAHzCAABMwgAAsEEAAGDCAABwQQAAsEEAAIzCAABgwQAAIEEAALDBAACwQgAABEIAAIDBAACAQQAAYEIAAFzCAACowQAAwMEAAMDAAAAIwgAA4MEAAChCAABgwQAAAEAAAJjBAAAgwgAAoEAAACxCAABYwgAAoMEAAFDCAACAwAAAQEAAABTCAADwwQAAAEEAADDBAACKQgAAHEIAAMBAAAAwwQAAsMEAAEDBIAA4E0AJSHVQASqPAhAAGoACAACGvgAAQDwAAMo-AADovQAA6D0AAK4-AAAMPgAAIb8AAPi9AAD4PQAAcD0AAKC8AAB0PgAANL4AAIK-AAAwvQAAyL0AADA9AACqPgAADz8AAH8_AAAQPQAAND4AAIC7AAAMvgAAED0AAAw-AAB8vgAAiL0AAAU_AAAMPgAAcD0AAEA8AACovQAAcD0AAEw-AAAEPgAAbL4AAJK-AACgvAAADL4AABC9AACWPgAAmD0AADy-AABsPgAA4DwAABC9AABUvgAARL4AAAy-AAC4PQAAcD0AAL4-AAAQvQAAED0AAAk_AAAUPgAA2L0AAHA9AACovQAAuL0AAJg9AAA8viAAOBNACUh8UAEqjwIQARqAAgAAMD0AADA9AACgPAAAO78AADS-AAAMPgAAzj4AANg9AADoPQAAlj4AADw-AABwvQAA4LwAALi9AACYvQAAgDsAADS-AAAPPwAAtr4AAJY-AACAOwAAmL0AAOi9AADgvAAAUL0AAIA7AAC4vQAAFD4AAHC9AACYvQAAiD0AAKg9AABMvgAAuL0AADA9AACIvQAAjj4AADQ-AACmvgAAUL0AAAw-AACAuwAA4LwAAMi9AAAQPQAAFL4AAH-_AAC-PgAAND4AABy-AAAcvgAATD4AABQ-AAD4PQAA-D0AAAw-AAAQvQAAUL0AAHA9AACAOwAAiD0AAFS-AADYPQAAdD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=wKMmE0QymIY","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15078514460659736121"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3196987377"},"17138608207320744499":{"videoId":"17138608207320744499","docid":"34-11-13-Z239E10691316D4EF","description":"Limits Lesson: • Calculus First Lesson on Limits with Stude... Limits Examples: • Calculus Limits Lesson 2 Strategies to Ev... YouTube Channel: / @mathematicstutor Learn From Anil Kumar...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/932516/6b5a623b1d641a1e2659073c942e38bd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gw0eMwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9HexiJr_bRM","linkTemplate":"/video/preview/17138608207320744499?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Limit of Function lim (x 1)〖(x^5-1)/(x^3-1)〗 with Three Methods","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9HexiJr_bRM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNzEzODYwODIwNzMyMDc0NDQ5OVoUMTcxMzg2MDgyMDczMjA3NDQ0OTlqrw0SATAYACJFGjEACipoaHhzbHhoYWt0bGRsZ2JiaGhVQzRZb2V5MVV5bFJDQXh6UEdvZlBpV3cSAgASKhDCDw8aDz8T9QOCBCQBgAQrKosBEAEaeIHuBfwFAf8A7gP--wQBAAAQ8_kB9gD_ANv09_YH-QMA9gEUAQEAAAALC_cK_AAAAPsDBAX1_gEABv739QQAAAAJ9gEG8gEAABMSBgr-AQAA-Pf3_QP_AAAJ_fAMAAAAAAX-AvcBAAAA9vIEAwAAAAAF9AnuAAAAACAALWoszzs4E0AJSE5QAipzEAAaYA0OAEXzEa_yHCrlH-4VKe7DDvbM7PD_Au__FBjt4PXpv6E_Df8Fwgv9owAAAC0uuw7rAO90L-7pZhPo5tST9AD9fxsHowsf8d6W-kDoTgvN9OoD8gDNBvf5SdrQMBoQMSAALXJoFzs4E0AJSG9QAiqvBhAMGqAGAAA8QgAAYEEAAIJCAADIwQAAkMEAAAAAAACeQgAAMEIAACzCAAAgwgAAQEAAAMjBAABgwQAAcMEAAAxCAAAgQQAAgEAAACDBAABAQQAAqMEAAHDBAAAwwgAAysIAAADBAABYwgAAQMEAAGBBAAAEwgAAgEEAABRCAAAAwgAAyMEAALDCAACAwQAAWMIAACDBAACQQQAAZEIAAGBCAACsQgAA4EAAAGBBAABAQAAAoMEAAPhBAAAAwgAAuMEAAIA_AAB0QgAA0MEAAIDAAAA0wgAAQEAAAEBCAACGQgAAsMEAALTCAAAEwgAAiEEAAIBAAADgwAAAUMIAABzCAADAwQAAUEEAAFjCAAC4wQAAVMIAAPjBAABQwQAA8EEAAOBAAABAwQAAiEEAAEBBAAB0wgAAlMIAAFDCAACGQgAAAEIAAGTCAAA4QgAAgEAAAATCAACgwAAAcEEAAKhBAAAswgAADEIAAHTCAACAQAAAFEIAAIDAAAA0wgAAmEEAAKbCAADAQQAAwMAAAIZCAAAoQgAA6sIAAIhBAAAwQQAAQMIAAMjBAACIQQAAIMEAAFBCAAC4QQAAlEIAADBCAABAQQAAsMEAAIA_AABAQQAAZEIAADBBAACkwgAAIMIAAIjCAAAgwgAAsMEAAJDBAADAwAAAwMEAAIC_AADgwQAAgMEAACTCAAAcwgAAEMEAAATCAABAwAAAmEIAAIjBAABAQQAAfEIAAABAAABwwQAAYMEAAARCAACAvwAAMEIAAKDBAACYQgAAaEIAAADCAAAswgAAEEIAAERCAAD4wQAAoMEAAEBCAAAAQQAAwEAAALDBAACewgAAOMIAAKDCAABQQQAAAMAAAAxCAACwQQAAoEAAAMDAAACoQQAASEIAAFxCAADMQgAAVMIAACDBAADgQQAAAAAAAHBBAADowQAAUMEAABTCAAAMwgAA-EEAANhBAABwwgAAuMIAAKDBAAAwQQAA0EEAABjCAABIwgAAQMEAAPBBAAAAwAAAXEIAAODBAAAQwgAAmEEAAMhBAAAAQAAAgMAAAFxCAADwQQAAAMIgADgTQAlIdVABKo8CEAAagAIAAES-AABwvQAAnj4AAIC7AAAUPgAAfD4AAKg9AAATvwAAQLwAADC9AABAPAAAHL4AAFw-AAC4vQAA4LwAAEA8AACgPAAAcD0AABw-AAATPwAAfz8AAAw-AABQPQAA-D0AAOC8AAAEvgAARD4AABy-AAAkvgAAXD4AADQ-AADovQAA6D0AAMi9AABcPgAAmD0AAFA9AADKvgAArr4AAKA8AACavgAAhr4AAII-AAA0vgAA6D0AAOC8AABEPgAAoLwAAHS-AADyvgAAJL4AAOC8AAAwPQAABz8AANi9AACgvAAARz8AALi9AABQPQAA2D0AAII-AAAwPQAAQDwAAGy-IAA4E0AJSHxQASqPAhABGoACAAAkvgAAmL0AAIq-AABFvwAAbL4AAOA8AAABPwAAQDwAAEC8AABsPgAAJD4AAIA7AACAuwAAMD0AAFA9AABQvQAARL4AAOo-AACKvgAAsj4AAHA9AABwvQAAFL4AAFC9AAAwPQAAqL0AADC9AACIPQAAoDwAAHC9AACAOwAAMD0AAIa-AABEvgAAmD0AABy-AACePgAAgDsAAIq-AADIvQAAQDwAALi9AABQvQAABD4AACw-AAD4vQAAf78AACQ-AACIPQAAqL0AABC9AAAkPgAAEL0AAOg9AABQvQAAJD4AAFC9AADgPAAAqj4AAEA8AAA0PgAAEL0AAIg9AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9HexiJr_bRM","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17138608207320744499"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2438390490"},"6933706395137267311":{"videoId":"6933706395137267311","docid":"34-3-1-Z4544082284AB19B8","description":"Join this channel to get access to perks: / @calculusphysicschemaccountingt Here is the technique to solve 3 limits and how to find them in here #Limits #Techniques #Solutions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2353022/ab2568197f95526a62a641b947197478/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AgYeBAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQzUSYAXhbHI","linkTemplate":"/video/preview/6933706395137267311?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus: Find the limits: lim(x 3) (x-3)/(x^2-9), lim(x 2) (x^2-5x+6)/(x-2), lim(x 0) tanx/secx","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QzUSYAXhbHI\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoVChM2OTMzNzA2Mzk1MTM3MjY3MzExWhM2OTMzNzA2Mzk1MTM3MjY3MzExaogXEgEwGAAiRRoxAAoqaGh5b2JuY2Zzb2tyYmRxYmhoVUNGaHFFTFNoREtLUHYwSlJDRFFnRm9REgIAEioQwg8PGg8_E54BggQkAYAEKyqLARABGniB7gH5_fwFAPUBAwUHBP0BD_f09_YAAAD08fn_BQL_APT9Cgj8AAAADgz__QMAAAANCPkG-gAAAAj89v34AAAAAgUG_PgAAAAOAPsG_gEAAPkJ9gID_wAACwPuAQAAAAAF_gL4AQAAAPj4AvsAAAAAAAAI9_8AAAAgAC1xht47OBNACUhOUAIqhAIQABrwAX8bCv_SENYA0CMTAPUdEwGWNiv__D3KAMITBP-tDf4B9TDtAc4nyQAIGwYArDMiASIBuAAO9wEARtb7AAzD_ADe2wIBJu_bAEcWNv_05fQA1g8N_e_NBv79vNgAJB66AP7iGv8nBuEA2TbnBBsDJAEc6UUAM_v0__Ww8gTGBN8A6fv699chAwkN2hL2s9MtAhbaC_4PMgj43wXvARkZ_AHuDxD9BB7eBgIF4QQbGQz739fWAN__Eg0y1iMDvyYMCtDvNge74gX-WzgQ7Bwe7fr7G-T58AzuE_QCFRHg8frzCwYM6snvBvPmAvv8DAPq9yAALe5a-To4E0AJSGFQAirPBxAAGsAHNbXMvqF0WDy9TQQ9_1TBvLN-s72YEBi8XyV_vRSvMjwZopK7by4ePi3gr7xhFZS8jOKbveb0K7zF4wI9y4AzPubRiL2YYjM8dXT8vS8Tmj0LAhC9vu-5vdaPTT1BFr08Tj8Nvc2QKrwMzgC9qcHUPeqoNDztSqa8qv-NvdaDs73Unee8KBMyPbBfK72xpz29reUkvXyBGb0Jpa87hh5xPU-bJ73Vgi29qRW2PTq9Yzm9H_U7OC_uvScRQT24jCC90CAqPHd2BTtUO8M6Dav4vTr0TD1hWoq83MdAvbM4zrvW2Zq8TZ4CPqXMF73INxy5YpOpO3EqyL3Iaqm8L4byvXSQfLz9Iaw8_c-7PXi5iD2rJoi8f-qZvaaYpDuTIDe8PptyO7AeN737kYW6xMwePenVED6L6Rm878ouPNgHgjvyiIC828ANvtbUCbs_enk8UIQau432g71FwpK86CFoOvTzK73zrno8lWJHvOmbFD2x6Iy8fVvwvEmUhz1EUqa8-8uOPUDperxV10Y8BSOlPdYCO75J5Zo67EO4vY9QA75_QBC7IrCYPRbGcTwju3e8kWT2PWmjX7wAk5K7qa0HPcfVCL2m2A88FvVuPDCQFr2BXGI7coedvVthFb08CAs8tcWxOxRYJbwuOdG7xJJ2O99vpD1cQMM6OjmIvVOOvr1IDhS63rs8PO-UiT2Zi-y7lbUtPj4enzxJJ9i4Yi9UPSmjwLy_dyO70dWRvfU2rLwiJ-E62rrlvMA1sb1SWQ661Td1PSsWj73usMs58nE3vG6JjL1DaJw3Ed8Jvh9n2j3Ey5u4OUGwPR428b2SEu04XFQLvZwV8b3cnnU5vFMGvXYceDrLxPY5fQVJPQt_o7urCKO4Ux6SvUobyL3hc5s3NZUqvdvitby6Qg-5YABhvJSllr0iMk25ErjKPeswgL0KZQw4hX-svEOYkbqUtF82FZXovDfh3jvlKi-4PPn0PSs9ab11D2U5sRKYPWdv2zsyv0k4JLbLPT_jIr3GcPY4TytbPTsnrD08TIS49f9DO8d5ZL2vY7W3T6XAPZvHQT2yyNy4cYKlPEpwND2zPIU4LkEBPUP2Cz1IvQ04ySIovEj_Jr3Tmk222GOivEHbA7sZZTQ4weMrPtylaLwHiXS5VMXUvf97S70YUVe2r2IsPXiUb72CXCQ3pn_pvYxktD08KOk4SfeOPK1QxL1znPK4VRimPW0LxT2Dx-c4Jc1dOy0eYz1BEQu5FY6wvbHhKT44a_o4bWsQvcV5kz3VICg4IAA4E0AJSG1QASpzEAAaYCADACb-Ha4CBjDgFuULDb3R1urn3P__D-kA_PPP5xQg-b8ACv_85uzargAAADcD6grnANdrAyH4QvMi-OyBvyMHbRkXAdjxIwHn4Uf5Efwc-tgXIADQDbYiXPfYKyYaMSAALW0uKzs4E0AJSG9QAiqvBhAMGqAGAAAgQgAAiMEAAKZCAAAAwwAAPEIAAEDAAACWQgAAAEEAAABAAACQQQAAMEEAALjBAADgwQAAYMEAAMBAAAD4QQAA8EEAAEjCAABwQQAAgMEAAEBAAABAQAAAiMIAAGxCAAAAAAAAKMIAAIDAAACGwgAAREIAAOBAAACgwQAAKMIAAJbCAADAwAAAXMIAAKBBAAAQwQAAlEIAAFDBAACCQgAA6EEAACRCAADYQQAAgEAAAIxCAACAwgAAgMAAAAxCAAB4QgAAAEAAAHDCAAAQQQAAgEAAAPhBAAAkQgAAMEEAAADDAAAQQQAAQMEAAJhCAABEQgAAmMIAAPjBAACCwgAA4EAAAKjCAABEwgAAjMIAAAjCAAB8wgAASEIAAEBCAACewgAAZEIAAAjCAADAwAAAGMIAABTCAACoQQAAuEEAALDBAACEQgAAEMIAAIC_AAAQwQAAqEEAAIhBAACAwAAAcEIAAIhBAABwwQAAcEIAANjBAACAwQAAAEIAAOjBAADowQAAcEEAACBCAAA0QgAAeMIAABBBAACgQAAABMIAACDCAACoQQAAgEAAAIA_AABQQQAAYEIAAABCAAD4QQAABMIAAADBAAAEwgAAgEIAABBBAAAgwgAASMIAAPjBAAAAwQAA6MEAAEDBAAAEQgAAAMAAAABAAABQQQAAwMEAAJjBAABwQQAA6MEAAAzCAAAAQgAAIEIAAGDBAACQQgAAUMEAANhBAABgwgAAgMEAAEBAAAAswgAAHEIAALjBAAAAAAAAHEIAAODAAAAwwgAAoEEAADDCAACQwgAAwMAAADxCAAAkQgAAEEEAADzCAABQwgAAJMIAAGjCAADowQAAJMIAAABBAAAQQQAAfMIAABDBAABAQAAAMMIAAKRCAADAQQAAgMEAAPBBAADAwAAAyMEAACTCAACwwQAAqEEAAKBAAADAwQAAHEIAAADAAACGwgAA2MEAAEDBAACAwAAATEIAAGTCAAA0wgAAssIAAFBBAACAQQAAyEEAABzCAAAAQgAA4MAAACxCAAAAQgAAgMAAAPBBAAD4QQAAMEEgADgTQAlIdVABKo8CEAAagAIAAJi9AACYvQAAuj4AAAS-AADgPAAAHD4AALi9AADqvgAAED0AABC9AAAkPgAABL4AADQ-AADoPQAAuL0AAHC9AABEPgAAgDsAAJg9AACyPgAAfz8AAJi9AABAvAAAND4AAAS-AAAwPQAAoLwAAOC8AAD4PQAAyD0AADA9AAC4vQAAcD0AAIi9AACgPAAA4LwAAJi9AADovQAAur4AAMi9AACKvgAAVD4AABw-AABcvgAA4LwAANi9AACePgAAgLsAANg9AAAEvgAA6L0AAAw-AACyPgAAvj4AAKq-AAAwvQAADT8AAPg9AABwPQAA6D0AAMi9AABUvgAAuD0AABC9IAA4E0AJSHxQASqPAhABGoACAABwvQAAcL0AAKA8AABTvwAALL4AAHw-AAD6PgAARD4AAFC9AAAcPgAAfD4AAIA7AACYvQAAyL0AAHC9AABAPAAAJL4AAAU_AACSvgAAlj4AACw-AACgvAAAcL0AABS-AABQvQAAUL0AAHC9AABMPgAAcL0AAAS-AADoPQAAEL0AACS-AABsvgAA6D0AANi9AAC4PQAAyD0AAKa-AACYPQAALD4AADS-AAA8PgAAoLwAAKA8AAAMvgAAf78AALY-AABEPgAAuD0AAAy-AACmPgAAHD4AAAw-AAAMPgAAqD0AAJi9AACIPQAARD4AADS-AAAwPQAAqL0AAHw-AACOPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=QzUSYAXhbHI","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":848,"cheight":480,"cratio":1.76666,"dups":["6933706395137267311"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2089854157"},"7715238162303438392":{"videoId":"7715238162303438392","docid":"34-9-14-ZC2B39F2B5A1334EE","description":"to improve your performance and Clear your concepts from basic for Class 6-12 School and Competitive exams (JEE/NEET) - https://doubtnut.app.link/POyZDvv5Lyb Contact Us: 👉 Have Any Query?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1029070/ae057a6457c064739af182d7d6e1da41/564x318_1"},"target":"_self","position":"17","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdgxIkE-_XMM","linkTemplate":"/video/preview/7715238162303438392?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim_(x rarr 3) (sqrt(x+3)+sqrt(x+6))/(sqrt(x+1)-2)=_. | 10 | Limits | Maths | Pearson IIT ..","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dgxIkE-_XMM\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoVChM3NzE1MjM4MTYyMzAzNDM4MzkyWhM3NzE1MjM4MTYyMzAzNDM4Mzkyaq8NEgEwGAAiRRoxAAoqaGh4Y2xwaGtieXhscnltZGhoVUNjdjdwc3BHSG1NN0FPeXd1TE0xdWZBEgIAEioQwg8PGg8_E5cDggQkAYAEKyqLARABGniB8QUDAfsFAPMJBAEDA_4BBgLz9vf__wD08fn_BQL_APP6BwEEAAAADAX7AgIAAAAD-_37_f4BAAj89v34AAAA_wMEBf0AAAAAAgH8_gEAAP_8-_8D_wAABQP69_8AAAAH_QABAQAAAAECCQAAAAAA__4A8AAAAAAgAC0SBuA7OBNACUhOUAIqcxAAGmAGCAAzCTO_3Bsg8Pr-ATnq8wAB5fkZ__j9ADcnwsf9JOjQPAj_Es7646sAAAApBO77DQDXaPr35Vjy-f0Uiev_AH_0Jc0IAN3Z5g44xAYVCS3zGhIAnhINGh3n4hg7KkMgAC3PFio7OBNACUhvUAIqrwYQDBqgBgAAIEIAAKBAAACCQgAAusIAAKDBAACAwAAABEIAANBBAAAUwgAAYMEAAOhBAADQwQAA8MEAAIBBAABAQAAAQMAAAIBBAAB0wgAAHEIAAKhBAADQwQAAgMEAAPrCAACKQgAAJMIAACDCAACgQQAAgMEAAIDAAABgQQAA0MEAABBBAAA4wgAAgEAAALrCAAAAQQAAcMEAAIxCAABcwgAAlEIAAOBBAABAwQAAgMAAAOjBAAAgQgAAQMIAAABAAACeQgAAMEIAABBBAACQwQAAgMIAALDBAAB8QgAAiEEAAHBBAADcwgAAUMEAAHBBAACgQQAAAEEAADjCAACOwgAAPMIAAKBAAADCwgAA6MEAADzCAABcwgAAZMIAAAhCAAAoQgAAAAAAAOBBAADQwQAAoMAAAMDBAACowQAAMEEAABBBAACAQQAAikIAAEBBAADAwAAAuMEAAJBCAAAgQQAAoMEAANhBAACAQAAAGEIAADBCAACQwgAACEIAAHBBAACAwQAAOMIAAMhBAAA0QgAAMEIAAHDCAABAQAAAMEIAAADCAABAwAAAwMAAAKhBAAAQQgAA4MAAAJRCAAA4QgAAdEIAACDCAACAPwAAYMEAAIBCAAAQQQAA4MEAAJjBAAAswgAAYMEAADzCAAAAQAAAXMIAALjBAAAwQQAAUMIAALjBAACowQAA0EEAAJjBAADQwQAA0EEAAJhBAAA0wgAA2EEAAIBAAABkQgAAsMEAAAjCAAAAAAAAgEAAAMBBAABMwgAAoEEAAAxCAACAQQAAwMAAAADBAAAAQgAAJMIAABxCAACkQgAAREIAALhBAAAUwgAAiMIAALDBAABMwgAAFMIAAFzCAAAEQgAAYEIAAMBAAAD4QQAAiEEAAEDAAADKQgAAcEIAAAzCAACQwQAAAEEAAKDBAAAgwgAAEMIAAARCAADAwQAAoMEAAFhCAABAQgAApsIAAFDCAAAgwQAAIMIAAEhCAAAcwgAADMIAAADAAACAvwAAuMEAAFhCAAAgwQAAgMAAAMBAAACgQQAAKEIAAEjCAACAQQAABEIAAABAIAA4E0AJSHVQASqPAhAAGoACAACovQAAEL0AAK4-AAAkPgAAgLsAAM4-AABQvQAA3r4AANi9AADovQAAQLwAAES-AABQPQAAqD0AAOC8AAAQvQAABD4AAIC7AAAsPgAAlj4AAH8_AAAEPgAAiL0AAOA8AAC4PQAAdL4AAEC8AAC4vQAAMD0AAAQ-AACoPQAAcL0AAFC9AAAwvQAAQLwAAOC8AABwPQAA-L0AAN6-AAAsvgAAXL4AAKg9AAAUPgAAuL0AANg9AAAsvgAABD4AADA9AADYPQAAfL4AACS-AADoPQAAJD4AAJg9AAB0vgAAQLwAABs_AADgvAAAfD4AAPg9AAAQvQAAoDwAAHA9AAAwPSAAOBNACUh8UAEqjwIQARqAAgAAUL0AALi9AAAwPQAAM78AALg9AABsPgAAkj4AALg9AAAsvgAAmj4AAFQ-AACgPAAAqL0AAAy-AACAuwAAUD0AALi9AABbPwAADL4AAK4-AACgvAAAFL4AAKA8AAA0vgAAQDwAAFA9AAAwvQAA-D0AAIg9AABwvQAAED0AAEC8AAC4vQAAlr4AAFw-AAC4vQAAoDwAAFC9AACOvgAAqL0AADw-AACovQAAQDwAACS-AAAUvgAAQLwAAH-_AADYvQAAFD4AAOC8AADIvQAAJD4AALi9AADgPAAAhj4AAIA7AADgvAAAMD0AAMg9AADYPQAAqD0AABS-AAA0PgAA2D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dgxIkE-_XMM","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7715238162303438392"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5630990719574320490":{"videoId":"5630990719574320490","docid":"34-0-2-Z4F8FE55029B12D8B","description":"A math video lesson on the Evaluating Limits which is a topic on Limits in Calculus. This video discusses how to evaluate the lim -sqrt(2x+4) as x approaches 3/2 #limits #evaluatethelimit...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3141677/c9946d286a1973e12d64cddb4edc680a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1btgogAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH7udDWr9r88","linkTemplate":"/video/preview/5630990719574320490?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Evaluate: lim - (2x+4) as x approaches 3/2","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H7udDWr9r88\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoVChM1NjMwOTkwNzE5NTc0MzIwNDkwWhM1NjMwOTkwNzE5NTc0MzIwNDkwaocXEgEwGAAiRBoxAAoqaGhubGpha3p4eXJ5bXZnZGhoVUNaUVB5MGtSTVZrR1NLVkJBcS1vNjNnEgIAEioPwg8PGg8_E3qCBCQBgAQrKosBEAEaeIH0_Pb-Af8A-_4D_wME_gEUCvv89QICAPPw-f8FAv8A5w8CAwj_AAD9GfwFAwAAAAUJ9A79_QEADBDuAAMAAAAaAv0A9wAAAAkDCAj_AQAA8Qj68gIAAAAA__P6_wAAAAEKC_n-_wAA8P4S-QAAAAAM_PrsAAAAACAALYVB0Ts4E0AJSE5QAiqEAhAAGvABfw_5ALvp_P4oDPIA7Bn6AY0fCf8qBu8A2xv9AdkV7wEWC_cByPD_ABrs8AH37wwADuPVAPrWAQAz0On_KPwFAAjX-AEK1dQAGg0-_eb02gDjHxD_AQoL_uoH1_79A-kACfQQ-gf73wHwA8sBGewTAvjqHgQL4v_--Pgb__MVHAH-4sr_CgD3CAnkDfndFxwB7_YAAxIQB_vZ4e8DCf_bARjn__0ZF-b-AQTqA-ADIv8C8AD3FuP48_EaBQvkFiAB9w4bAuvYCgMFHAfyFvUMB-8L7_ry6vb6EvwFDALf-fT69Pjy4xbz9eb1_Qzf9Pb6IAAtbQMtOzgTQAlIYVACKs8HEAAawAdPrNu-Y0sqvWIwf7xCpPC8cUQtPQnmw7yazJ28612yvFzDFDwfptg7QZS5vB_f1jqbHaG-RqGbvMhnqDwUlEI-RkUcvXPoALxi2Sy-cgKqO8NkCr1EGF--1GRnO6WdPzwrP189fl9xu5_NKryawak7E_mJu30B4jv-bnA9qug5vXjZDDyvYNu9zuLFvGjUFTscnZ85-3XnvNWCzby8Wu49QGNLvCsBpzxYbs48fxscO9jVZDygJZ49SPhePMm0kTqt3Cs-yaBEvYuoCbt4ADW9V6fzOsWC77uGywq-whqCvcNjP7xY8y28dRE1PXrhTrxRwQE-ULHAvQtVezwW89i8Qfm2Pa2nsboq0Yg9ig0MPSymyDyhXY-8yXcJPgfSJDvOKKe8J_GOPVXgv7vAdWq8dBOrvDRcG7l6AKY8YuBUvcQfSTtwXYE9tatrvTklhTzGxLa9PihDPRm5nbyx64s7cHpVu7IKwLx6rJS9yJblPOEziDzd9EI7_QURPWNFqjsumak9ulc8PZ1uNDzlQXo8sT1pPEmgQbyueXq9wDwJvfm-ODtUZB49WFUAOu96RLyRZPY9aaNfvACTkrsW39C9-qw8vTW_UDxCpsY9HTCZPIOc3jro5_q6CeYBvE8YXrwJmVU9qkeaPPkJELweMmU9xzX0PLZi5juhWF29Dk8KvJaOHrxowIo9tcCDPBQmiDujbYE9kuOTPcOJHLigjSw-y64FvSACDbk8fKO8guepvdZ_X7gKzJQ8qA3YvCnghbofotE9WPgfvXnRijhJWos9N5ptvHYgOLkLMc08DxqQPXXrczmF-SE9ydAMvWo2_LWzE7S91kWQvbRnMDlqUE89E3wTPJRLErl9BUk9C3-ju6sIo7gUHIO9xyStvRpRFTiG7gi9NW4AvfkrpLg4FN49iz2fPTKtt7iT2N47A0xPvUZfBbiEqXw9Re8WugsKJLm1jXo9yKGkPS3UATjnItk8A8z8vVJJyDliQ5w8wx2JPViwoTk-Jg09I-CbPbDrHLhTJaU7AnLTO20kVriYT_Y9aXl5vJ1ubDhPOYs8IfaTvJYUALnuiY-9a5-pvXJkLzdA1c08CuJROwIOyjdtNEU9bZqtvVb1rTiLAji9n6cmvS3qeDjjbvA9Dkzuvclll7nsCdy84SlfvcSlY7i77YK8l-ahvfo4_7ckxEu8jqLYPMDtq7fTM4g9hQv5vEB6JLhqTxk-qW6ZPQgCMrej7dK7pn5ePL-GB7n86gW9hrC1PFnKarep5f28MsanvQshebggADgTQAlIbVABKnMQABpgLv0ALAcZpO38NO7oDOc42NfB69LYAv8cCv_5Br3q7yLfuBYS_wzHCuCXAAAAJMbBKCMA3n8L17w59Bb2ztjzDwBs8_wjlQVT8r7e7wj48DL0xTYdAK7dsmYF4-YSOxjvIAAt1LQWOzgTQAlIb1ACKq8GEAwaoAYAALBBAADgwQAAhEIAAKbCAAAYQgAAgMAAALRCAAA8QgAAcMEAAIBAAAAAAAAAAMEAAOjBAAAAQQAAYEIAACBBAACAQAAAMMEAAOhBAAAwQQAAQMAAAAzCAACwwgAAiEEAADDCAAAwwQAAwMAAACjCAACQQQAAoEEAACDCAAAAAAAAzMIAAJDBAAC6wgAAsEEAAIBAAADWQgAAAAAAACBBAABQwQAA2EEAAOBBAACgwQAAeEIAAIjCAACAPwAAPEIAAARCAAAwQgAAuMEAAFDBAAAAQQAAGEIAAGBBAACQQQAA4sIAAPBBAADwQQAAXEIAAPBBAAC8wgAAHMIAAKbCAACQwQAAVMIAADTCAADwwQAAuMEAACDCAAAsQgAAfEIAAGjCAADEQgAAgsIAADTCAAAwwQAAMMIAAPjBAADAwAAAIMEAAHBCAACAQAAAOEIAABTCAAAkQgAA6EEAAABAAACAvwAADMIAADDCAABsQgAAgMEAAOBAAABUQgAAiMEAAIBAAACQQQAAGEIAAK5CAAAYwgAA-EEAAMBBAABQwQAAvMIAAPjBAAAIQgAAoEAAAKjBAABcQgAAFEIAABBBAADYwQAAHMIAAKDBAABIQgAA4MAAADzCAAA0wgAA2MEAAEDBAAA8wgAAQMEAAEDAAACAvwAAgD8AAEBBAABowgAAqMEAAMBAAAAQwQAA4MEAAIjBAAB4QgAAmMEAAERCAADAQQAAQEIAACTCAACkwgAAiMEAAFhCAADwQQAAyMEAAARCAAAUQgAA6MEAAIC_AACAQAAAQMEAAADCAAAUQgAAoEEAAJjBAAAQQQAAKMIAALjBAABAwgAAjMIAAEBAAABswgAAmEEAAIBBAACowQAA4MAAAKBBAABgwQAArkIAAGRCAAAwQQAA0MEAADhCAADgwAAAmMEAAHTCAACwwQAAEEEAABDCAACgQQAAJEIAABTCAABAwgAAQMIAANDBAABYQgAAJMIAADDCAAAAwgAA4MAAAHBBAABAQAAAEMIAAIDBAADAwAAAeEIAAGxCAAAQwQAAwMAAAODAAAAcwiAAOBNACUh1UAEqjwIQABqAAgAAQDwAACw-AADePgAAgj4AAIo-AACqPgAA1j4AABm_AAAMvgAAPD4AAMi9AABwPQAARD4AAFQ-AABsPgAA4LwAAAk_AACYPQAA-L0AABE_AAB_PwAAQDwAAIA7AACoPQAA2D0AACy-AABEPgAA-L0AAEA8AACKPgAAFD4AALa-AACYPQAA-D0AALg9AAAwvQAA4LwAAPi9AAArvwAAur4AACy-AADGPgAAHD4AADS-AABUPgAAuL0AAHw-AABUvgAARD4AALK-AAAQvQAAML0AAAQ-AAB8PgAAXL4AAIC7AABDPwAAhr4AAEC8AACqPgAAUD0AAFy-AAB8PgAAoDwgADgTQAlIfFABKo8CEAEagAIAAOi9AAAwvQAA2L0AAC2_AADIvQAALD4AACQ-AABwPQAAFL4AAMI-AACoPQAAcL0AABy-AADgvAAAcD0AADC9AAAwvQAAHz8AAOi9AAC6PgAAED0AAJi9AAAQvQAAyL0AAKA8AACoPQAA2L0AAOA8AADIPQAA4DwAAOC8AAAQPQAAyL0AAEy-AAAMPgAAgLsAADQ-AABEPgAAPL4AAAy-AAAEPgAAUD0AAIg9AAAMvgAAoDwAAKg9AAB_vwAABD4AAAQ-AACIvQAAuL0AAIi9AADYPQAALD4AAEA8AABwPQAAED0AAMi9AABwPQAAcD0AALg9AAAMvgAAyD0AADQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=H7udDWr9r88","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5630990719574320490"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"627560575"},"14804681058292170072":{"videoId":"14804681058292170072","docid":"34-6-12-ZBFE0A21AE0AAE3D7","description":"In this video I have solved a question on limit of sequence.lim {1/(n+1) + 1/(n+2) +...+ 1/2n} as n tends to infinity. * * Connect with me on social media: 1)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2176385/c6a7ae6cf416604addd2a7b8f5c6b64d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W4YaFQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJPLri-Dj7ag","linkTemplate":"/video/preview/14804681058292170072?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"lim {1/(n+1) + 1/(n+2) +...+ 1/2n. || What is this limit?","related_orig_text":"LIM","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"LIM\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JPLri-Dj7ag\",\"src\":\"serp\",\"rvb\":\"Eq4DChQxNzI4MzYzNDEzMDgxOTE4MTc3NQoTNDg1NDcwNDAzNDAxMTc3MTQzNgoUMTY0MjU1MTQwODM4NTEwMjYxNjEKFDE2NjA0MTc3MTk4NTgwNTA3ODI2ChQxNzE3MjM2MDQzODA1MDgzNTI2NwoTNDkzMjEwMzEyODMxMDMxNzk5OQoUMTY4NjkxMDg2MzQwNTUyNDcwODAKFDExMzg0Njg1NDkyNzc2NTM3NDgyChMxNTE3MTk2MjkxNTM3OTQ0NDMxChI4NDc3NDU0ODUxNTUwMDA4NTQKFDE3MTIxNDg2ODI3MzI1ODE0MzgzChQxNTA3ODUxNDQ2MDY1OTczNjEyMQoUMTcxMzg2MDgyMDczMjA3NDQ0OTkKEzY5MzM3MDYzOTUxMzcyNjczMTEKEzc3MTUyMzgxNjIzMDM0MzgzOTIKEzU2MzA5OTA3MTk1NzQzMjA0OTAKFDE0ODA0NjgxMDU4MjkyMTcwMDcyChM2NjAxMTgzOTg3NzgzNDEwNjc2ChQxMzExMzM4MTM5ODI4MDA1MzM0OAoTNzUzOTc0NDcwMjY4MjE0NzM4ORoWChQxNDgwNDY4MTA1ODI5MjE3MDA3MloUMTQ4MDQ2ODEwNTgyOTIxNzAwNzJqrhcSATAYACJrGlZWKLUv_SMfIE95VkUCAHPEDxGAAAAGEIHM6q7sVT1F6tFT7IwgHVIGK1jBClgwau3xeDyQtB3ODHGG9xG_6vF4PKDN53Ey6NuAQKHn8QTBAwEAJHUHyyoRwg8PGg8_E_oCggQkAQCABCsqiwEQARp4gfMN-v38BQDx_fwN_QX-Aen9-QT7AAAA5vH2__z9AQDzAAAH_gAAAP0Y_AUDAAAA_gP_EPf-AQAJBvv5BAAAAAT5AgcG_wAABQH9Bv8BAAAC9wP4AgAAAAIK8QgAAAAA9Av49AAAAADy9v4QAAAAAAnvAf4AAQAAIAAtU2bdOzgTQAlITlACKoQCEAAa8AF_9P8A2_avAdYFxwDoDdUB7SAk_xlM-QDM5OsB1AbfAe8u0QDnFgIA9kn6ALQT7f8dAcIABMnhADzc_AAgzQIAwBL7ABQi8_89Ey7_DO_8_scTOQHx1AX-QPXTABA8-f0N-AP6NSnd__cu6gIP_j8B69UgA__hJAP2u_QD7PYPBvP67v_9BwIEDREV-eD1MQfw8PL-FhMJ-esT3P36ABEH8tUk_x0c4P0x6-0IDh4Z_tDLDv4J6vsJ_CYbC-UT3wjX8S8G_xv6_AgMCf5GFO4E6-vqCggJ2gz_4wQC8AsGBCb26fkC6gEP9Q_3DQ715wEgAC2kNxE7OBNACUhhUAIqzwcQABrABy4gpL4iuNs8Z_NQOVQ2TL2ZPC-9EbaOukvTtr2Wyys9rO4Hvfa2ST6SUoq9UVcNPY8b_rwUNLc8KSq0O6DiKD5R28a8RA42PBmBor1Atbs94aRfvSg9-LzWfuE8vVY9PYJEibx1K4q9_CtYu_M7DT52FMy8hktYPC6Sdr2JpkI9G-7Iu9xqGTr1EVi9E3xYvRfSZr12dDc8tS2vPF7oqz2AwQk93BFOPDaWKz3s7os8EilSvTgv7r0nEUE9uIwgvYORrT2w8Y89DHAmPdz0F77kIki9l576u_kpU70EAwg8b7l6PD0KNz2mRmi8k8aovFHBAT5QscC9C1V7PNAqQ76Yc5-8D6iIPIjqF70IAI486OMQOypcKr23a_g8oFKlvHvylTwCrCG8I-EWvWST3D1u_U88ZzHMPMOrdjwHAgm9IKEcPJn7j72bRY49Z23JPFuVlD3qDqi9MDCGvEaBmT2hoDQ9Ut9oux4lJb2_2UG82mvqu7a1ar16r1U9v9YlPNwebj2Kd3u9kAlCPI_gFj5beA6-A-cOvNh3Kr0czTG-1zSMuvxbjb3pOp48v13ZO0OpHT4fatu9xJqpOSh22bxXCKu9NIiLu0dU6DzMKDa9KoUIvDPehr3n9-K8ZNvUu-bCor0p4aM9tCr4u3MHWz0DU8c9cgzBOf5ByTxbDI69Hd9mOy-yD7wmjrw8IDJ-uy2Lkz2erx49oKIPOgsk6D2rAS-97MnTOYR1Db2L2Ay9vyNwu2BCgL2AX2i9Cs5oOeJbmD26JJi8HZ97OXLCBL0DEDK9TXmTuQeW4737m-s8NJV6N__FebtvkJq86AQ2ucui8LxbQh6-NwXjOU89Aj6xs_Q7bZNquWdrM706ckm8zMNcuswgw73UDQS-CFOFOUf4KLyQXt48bl2WuKliDz0bAQu88RjLOBoW472wS369KVJRNwBWJ71YuaG82o2hObuPq7q1Bbo8Y_gFOVGUFT2Ue2u94rh7OXYesL0GT3O68IXgOElTgz3mHUy853rzNLC0gj1jCCA-C-RAORrn5TxdD2u9uLCNNw9UNz3xgug96UGCN6KTqr1Xp8Q9vTagOGLfCDyP_nc9bQ5rODxpAT39cbE9zKHQOA6mPDw6Atm74jZBOCILoj2-rrW92uwCud68gjy0rxy-_IdluEKvtL16zky9csuItxe8KD2FQSk-XF93OFNlTjx7XJW9XnW8t0LLXz1jGrc9bpCOONziUD0B5SU9ftX2t5_HuL0KHH-9mzfYt0lep71GrKo9VDKIOCAAOBNACUhtUAEqcxAAGmA35wAP_TXaIyQV8xDiISnky87a9NoA___2_wgM6vwlAMHPAOUAGdkO6KwAAAAq7esM5QD6bCILCmfgKe3yn8cWGn8d9xPWxgLro9Yj5SkBGh34DkoA6BnHBx0AyQEvLTQgAC229yg7OBNACUhvUAIqrwYQDBqgBgAAEEIAAADAAAAMQgAAjMIAAEDBAAAIwgAAykIAABRCAAAwQgAAAEIAABhCAACAwQAAyMEAAAAAAACwQQAA4EAAABDBAAAYwgAAeEIAABzCAABgQQAAQEAAACDCAAAQwQAAUMEAAHDBAADowQAAUMIAAExCAAAAwAAAQEAAAOjBAACIwgAA2MEAAJzCAAAAQgAAqEEAAKJCAADQwQAALEIAAIBAAAAkQgAAgkIAAMDBAACUQgAA1MIAAMDAAADgQQAASEIAAABAAADAwQAAoEEAACDBAACQQQAAgEEAAMBAAADuwgAAsMEAAGBBAAA8QgAAWEIAAIbCAACwwQAAUMIAAJDBAACCwgAAssIAAKTCAABAQAAA-MEAADhCAACMQgAAOMIAAMhBAAAowgAA8MEAAAAAAABQwQAAGEIAAOBBAAAAwgAAkEIAAIC_AADwQQAAEEEAAMBAAABAQQAAEMEAAFRCAACgwQAAYMEAAMRCAABAwAAAIMEAAIRCAAAowgAAJMIAACBBAABoQgAAiEIAAGjCAADIQQAAYEEAAEDBAABIwgAAgL8AAPBBAABwQQAAwEEAAFRCAAD4QQAAQEIAAFjCAAAwQQAAcMEAAIRCAADgQAAAIMIAAGTCAAAAwQAA6MEAAHDCAABQwQAAwMEAAJBBAABwwQAAwEAAAMBAAAAIwgAAmEEAAIbCAACAwAAAgMAAAKhBAABIwgAATEIAAMhBAADAwAAARMIAAMDBAADAwAAAIEEAAARCAAD4wQAAXEIAANhBAAAAwQAAQEEAAIhBAAAgwgAAKMIAAMBAAAAgQQAA4EEAAFxCAAA0wgAA8MEAAILCAAAAwQAALMIAACTCAAAsQgAAwEAAAJrCAABAQAAAQEIAAMDBAAAoQgAAhkIAAKjBAAAIQgAAPEIAABDBAAAQwgAAAMIAAEDAAAAgQQAAZMIAAFhCAAAQwQAAgMIAAKDBAADAwAAACEIAAFRCAADEwgAAWMIAAJbCAABgwQAAgEAAAHBBAACIwQAAkMEAAIC_AADYQQAAQMAAAEDAAADAwAAAYEEAAABAIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAmL0AABQ-AACYvQAAmL0AAJI-AADYvQAA4r4AAEy-AACiPgAA6D0AAOC8AACIvQAAPD4AAKi9AAAEvgAAFD4AAOi9AACmPgAAtj4AAH8_AAA0vgAA-D0AAFQ-AAD4vQAABL4AAMg9AAAkPgAARL4AAP4-AAD4PQAAoLwAAFy-AACYPQAAQDwAALi9AACAOwAAJL4AAOq-AAAcvgAAfL4AACS-AAC6PgAAkr4AAFC9AABEvgAAdD4AAIg9AABAPAAAlr4AAMi9AABUvgAApj4AAFw-AABEvgAAQDwAADc_AABwvQAABD4AAGQ-AACIPQAAbD4AACw-AAAwvSAAOBNACUh8UAEqjwIQARqAAgAAbL4AADA9AABcvgAAJ78AACS-AACYvQAA6j4AAIi9AABEPgAAJD4AAFA9AAD4PQAADD4AAIg9AACgPAAAiL0AAOC8AAD-PgAAuL0AABk_AAAcvgAALL4AAIC7AAB0vgAAoLwAAKi9AADYPQAAMD0AAAw-AADovQAAgLsAADA9AAAwvQAAEL0AAEw-AAAEvgAALD4AAKI-AADgvAAAQDwAALo-AABwvQAA4DwAAJi9AAAUvgAAUL0AAH-_AAAQPQAABL4AAHQ-AAAUPgAAfD4AAIg9AACOPgAAoDwAAPg9AAAMvgAAJL4AAIg9AAC4vQAAED0AAJi9AABAvAAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=JPLri-Dj7ag","parent-reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["14804681058292170072"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3684915393"}},"dups":{"17283634130819181775":{"videoId":"17283634130819181775","title":"Evaluate \u0007[lim\u0007] x-›-2^+ 1/(x^2-4)","cleanTitle":"Evaluate lim x-›-2^+ 1/(x^2-4)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=M7lvFKCCJys","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/M7lvFKCCJys?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":199,"text":"3:19","a11yText":"Süre 3 dakika 19 saniye","shortText":"3 dk."},"views":{"text":"6bin","a11yText":"6 bin izleme"},"date":"23 eyl 2020","modifyTime":1600889663000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/M7lvFKCCJys?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=M7lvFKCCJys","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":199},"parentClipId":"17283634130819181775","href":"/preview/17283634130819181775?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/17283634130819181775?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4854704034011771436":{"videoId":"4854704034011771436","title":"Evaluate \u0007[lim\u0007] x-›0^- |x|/x","cleanTitle":"Evaluate lim x-›0^- |x|/x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LwhQhfNCpEY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LwhQhfNCpEY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":150,"text":"2:30","a11yText":"Süre 2 dakika 30 saniye","shortText":"2 dk."},"views":{"text":"13,1bin","a11yText":"13,1 bin izleme"},"date":"16 eyl 2020","modifyTime":1600214400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LwhQhfNCpEY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LwhQhfNCpEY","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":150},"parentClipId":"4854704034011771436","href":"/preview/4854704034011771436?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/4854704034011771436?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16425514083851026161":{"videoId":"16425514083851026161","title":"Evaluate \u0007[lim\u0007] x-›-3^+ (x+2)/(x^2+5x+6)","cleanTitle":"Evaluate lim x-›-3^+ (x+2)/(x^2+5x+6)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=A7nk-wGDtXM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/A7nk-wGDtXM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":170,"text":"2:50","a11yText":"Süre 2 dakika 50 saniye","shortText":"2 dk."},"views":{"text":"4,1bin","a11yText":"4,1 bin izleme"},"date":"23 eyl 2020","modifyTime":1600889665000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/A7nk-wGDtXM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=A7nk-wGDtXM","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":170},"parentClipId":"16425514083851026161","href":"/preview/16425514083851026161?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/16425514083851026161?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16604177198580507826":{"videoId":"16604177198580507826","title":"Evaluate \u0007[lim\u0007] x-›2 f(x) where f(x)={-x^2+2 when x 2; -5 when x=2","cleanTitle":"Evaluate lim x-›2 f(x) where f(x)={-x^2+2 when x 2; -5 when x=2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QaR3mefaAoY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QaR3mefaAoY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":138,"text":"2:18","a11yText":"Süre 2 dakika 18 saniye","shortText":"2 dk."},"views":{"text":"6,9bin","a11yText":"6,9 bin izleme"},"date":"22 eyl 2020","modifyTime":1600803093000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QaR3mefaAoY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QaR3mefaAoY","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":138},"parentClipId":"16604177198580507826","href":"/preview/16604177198580507826?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/16604177198580507826?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17172360438050835267":{"videoId":"17172360438050835267","title":"Evaluate \u0007[lim\u0007] x-›-2^+ 3x/(x+2)","cleanTitle":"Evaluate lim x-›-2^+ 3x/(x+2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0Ray_YTfWNg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0Ray_YTfWNg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":142,"text":"2:22","a11yText":"Süre 2 dakika 22 saniye","shortText":"2 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"23 eyl 2020","modifyTime":1600889664000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0Ray_YTfWNg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0Ray_YTfWNg","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":142},"parentClipId":"17172360438050835267","href":"/preview/17172360438050835267?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/17172360438050835267?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4932103128310317999":{"videoId":"4932103128310317999","title":"\u0007[lim\u0007](x 1) x^3-1/x-1 | Evaluating the limit | Calculus and Trigonometry","cleanTitle":"lim(x 1) x^3-1/x-1 | Evaluating the limit | Calculus and Trigonometry","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mfk13JFFE0o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mfk13JFFE0o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaHp3N083d1VDLWx4bWFEdTBwR2txdw==","name":"Grasp Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Grasp+Education","origUrl":"https://www.youtube.com/channel/UChzw7O7wUC-lxmaDu0pGkqw","a11yText":"Grasp Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":174,"text":"2:54","a11yText":"Süre 2 dakika 54 saniye","shortText":"2 dk."},"views":{"text":"14,7bin","a11yText":"14,7 bin izleme"},"date":"20 tem 2020","modifyTime":1595203200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mfk13JFFE0o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mfk13JFFE0o","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":174},"parentClipId":"4932103128310317999","href":"/preview/4932103128310317999?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/4932103128310317999?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16869108634055247080":{"videoId":"16869108634055247080","title":"Calculus Help: Find the Limits: \u0007[lim\u0007] (x ) (x^2+1)/(x+1) - Techniques - Solutions - Answer","cleanTitle":"Calculus Help: Find the Limits: lim (x ) (x^2+1)/(x+1) - Techniques - Solutions - Answer","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KVIowp1RjIo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KVIowp1RjIo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvUQ==","name":"Calculus Physics Chem Accounting Tam Mai Thanh Cao","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Physics+Chem+Accounting+Tam+Mai+Thanh+Cao","origUrl":"http://www.youtube.com/@calculusphysicschemaccountingt","a11yText":"Calculus Physics Chem Accounting Tam Mai Thanh Cao. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":103,"text":"1:43","a11yText":"Süre 1 dakika 43 saniye","shortText":"1 dk."},"date":"16 mar 2022","modifyTime":1647388800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KVIowp1RjIo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KVIowp1RjIo","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":103},"parentClipId":"16869108634055247080","href":"/preview/16869108634055247080?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/16869108634055247080?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11384685492776537482":{"videoId":"11384685492776537482","title":"\u0007[lim\u0007](x 2) x^3-8/x-2 | Calculus and Trigonometry | Evaluating the limit","cleanTitle":"lim(x 2) x^3-8/x-2 | Calculus and Trigonometry | Evaluating the limit","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=v4wR4aXNLSI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/v4wR4aXNLSI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaHp3N083d1VDLWx4bWFEdTBwR2txdw==","name":"Grasp Education","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Grasp+Education","origUrl":"http://www.youtube.com/@GraspEducation","a11yText":"Grasp Education. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":197,"text":"3:17","a11yText":"Süre 3 dakika 17 saniye","shortText":"3 dk."},"views":{"text":"19,4bin","a11yText":"19,4 bin izleme"},"date":"20 tem 2020","modifyTime":1595203200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/v4wR4aXNLSI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=v4wR4aXNLSI","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":197},"parentClipId":"11384685492776537482","href":"/preview/11384685492776537482?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/11384685492776537482?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1517196291537944431":{"videoId":"1517196291537944431","title":"Calculus Help: Find the limits \u0007[lim\u0007] (x 64) ( x-8)/( x-4) - \u0007[lim\u0007](x 6) (2- (x-2))/(x^2-36)","cleanTitle":"Calculus Help: Find the limits lim (x 64) ( x-8)/( x-4) - lim(x 6) (2- (x-2))/(x^2-36)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Xqu3FzF5WOs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Xqu3FzF5WOs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvUQ==","name":"Calculus Physics Chem Accounting Tam Mai Thanh Cao","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Physics+Chem+Accounting+Tam+Mai+Thanh+Cao","origUrl":"http://www.youtube.com/@calculusphysicschemaccountingt","a11yText":"Calculus Physics Chem Accounting Tam Mai Thanh Cao. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":408,"text":"6:48","a11yText":"Süre 6 dakika 48 saniye","shortText":"6 dk."},"views":{"text":"5,1bin","a11yText":"5,1 bin izleme"},"date":"3 şub 2022","modifyTime":1643846400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Xqu3FzF5WOs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Xqu3FzF5WOs","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":408},"parentClipId":"1517196291537944431","href":"/preview/1517196291537944431?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/1517196291537944431?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"847745485155000854":{"videoId":"847745485155000854","title":"\u0007[lim\u0007][(x-1) Divides (x^2-(1))] REAL Numbers Function AS x Tends TO (1) IN Precalculus","cleanTitle":"lim[(x-1) Divides (x^2-(1))] REAL Numbers Function AS x Tends TO (1) IN Precalculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0pjPXRJ5k5U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0pjPXRJ5k5U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc3ZiQmdjamhqV3llSHFfSW9ZRFA3Zw==","name":"Kelvin Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Kelvin+Academy","origUrl":"http://www.youtube.com/@KelvinAcademyYouTube","a11yText":"Kelvin Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":88,"text":"1:28","a11yText":"Süre 1 dakika 28 saniye","shortText":"1 dk."},"date":"19 ara 2021","modifyTime":1639872000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0pjPXRJ5k5U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0pjPXRJ5k5U","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":88},"parentClipId":"847745485155000854","href":"/preview/847745485155000854?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/847745485155000854?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17121486827325814383":{"videoId":"17121486827325814383","title":"Evaluate: \u0007[lim\u0007] (x^3-x^2-4) as x approaches 2","cleanTitle":"Evaluate: lim (x^3-x^2-4) as x approaches 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OFPHvh6jbM0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OFPHvh6jbM0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/user/MinuteMath","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":151,"text":"2:31","a11yText":"Süre 2 dakika 31 saniye","shortText":"2 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"20 şub 2018","modifyTime":1519084800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OFPHvh6jbM0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OFPHvh6jbM0","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":151},"parentClipId":"17121486827325814383","href":"/preview/17121486827325814383?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/17121486827325814383?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15078514460659736121":{"videoId":"15078514460659736121","title":"Evaluate \u0007[lim\u0007] x-›5 -(x^2-5x)/(x-5)","cleanTitle":"Evaluate lim x-›5 -(x^2-5x)/(x-5)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=wKMmE0QymIY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/wKMmE0QymIY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":109,"text":"1:49","a11yText":"Süre 1 dakika 49 saniye","shortText":"1 dk."},"views":{"text":"7,2bin","a11yText":"7,2 bin izleme"},"date":"22 eyl 2020","modifyTime":1600732800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/wKMmE0QymIY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=wKMmE0QymIY","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":109},"parentClipId":"15078514460659736121","href":"/preview/15078514460659736121?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/15078514460659736121?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17138608207320744499":{"videoId":"17138608207320744499","title":"Limit of Function \u0007[lim\u0007] (x 1)〖(x^5-1)/(x^3-1)〗 with Three Methods","cleanTitle":"Limit of Function lim (x 1)〖(x^5-1)/(x^3-1)〗 with Three Methods","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9HexiJr_bRM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9HexiJr_bRM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNFlvZXkxVXlsUkNBeHpQR29mUGlXdw==","name":"Anil Kumar","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anil+Kumar","origUrl":"http://www.youtube.com/@MathematicsTutor","a11yText":"Anil Kumar. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":501,"text":"8:21","a11yText":"Süre 8 dakika 21 saniye","shortText":"8 dk."},"views":{"text":"10,2bin","a11yText":"10,2 bin izleme"},"date":"8 ağu 2019","modifyTime":1565222400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9HexiJr_bRM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9HexiJr_bRM","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":501},"parentClipId":"17138608207320744499","href":"/preview/17138608207320744499?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/17138608207320744499?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6933706395137267311":{"videoId":"6933706395137267311","title":"Calculus: Find the limits: \u0007[lim\u0007](x 3) (x-3)/(x^2-9), \u0007[lim\u0007](x 2) (x^2-5x+6)/(x-2), \u0007[lim\u0007](x 0)...","cleanTitle":"Calculus: Find the limits: lim(x 3) (x-3)/(x^2-9), lim(x 2) (x^2-5x+6)/(x-2), lim(x 0) tanx/secx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QzUSYAXhbHI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QzUSYAXhbHI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmhxRUxTaERLS1B2MEpSQ0RRZ0ZvUQ==","name":"Calculus Physics Chem Accounting Tam Mai Thanh Cao","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Calculus+Physics+Chem+Accounting+Tam+Mai+Thanh+Cao","origUrl":"http://www.youtube.com/@calculusphysicschemaccountingt","a11yText":"Calculus Physics Chem Accounting Tam Mai Thanh Cao. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":158,"text":"2:38","a11yText":"Süre 2 dakika 38 saniye","shortText":"2 dk."},"date":"8 mayıs 2022","modifyTime":1651968000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QzUSYAXhbHI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QzUSYAXhbHI","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":158},"parentClipId":"6933706395137267311","href":"/preview/6933706395137267311?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/6933706395137267311?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7715238162303438392":{"videoId":"7715238162303438392","title":"\u0007[lim\u0007]_(x rarr 3) (sqrt(x+3)+sqrt(x+6))/(sqrt(x+1)-2)=_. | 10 | Limits | Maths | Pearson IIT ..","cleanTitle":"lim_(x rarr 3) (sqrt(x+3)+sqrt(x+6))/(sqrt(x+1)-2)=_. | 10 | Limits | Maths | Pearson IIT ..","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dgxIkE-_XMM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dgxIkE-_XMM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":407,"text":"6:47","a11yText":"Süre 6 dakika 47 saniye","shortText":"6 dk."},"date":"1 kas 2021","modifyTime":1635724800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dgxIkE-_XMM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dgxIkE-_XMM","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":407},"parentClipId":"7715238162303438392","href":"/preview/7715238162303438392?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/7715238162303438392?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5630990719574320490":{"videoId":"5630990719574320490","title":"Evaluate: \u0007[lim\u0007] - (2x+4) as x approaches 3/2","cleanTitle":"Evaluate: lim - (2x+4) as x approaches 3/2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H7udDWr9r88","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H7udDWr9r88?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFQeTBrUk1Wa0dTS1ZCQXEtbzYzZw==","name":"Minute Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Minute+Math","origUrl":"http://www.youtube.com/@MinuteMaths","a11yText":"Minute Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":122,"text":"2:02","a11yText":"Süre 2 dakika 2 saniye","shortText":"2 dk."},"date":"20 şub 2018","modifyTime":1519084800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H7udDWr9r88?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H7udDWr9r88","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":122},"parentClipId":"5630990719574320490","href":"/preview/5630990719574320490?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/5630990719574320490?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14804681058292170072":{"videoId":"14804681058292170072","title":"\u0007[lim\u0007] {1/(n+1) + 1/(n+2) +...+ 1/2n. || What is this limit?","cleanTitle":"lim {1/(n+1) + 1/(n+2) +...+ 1/2n. || What is this limit?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JPLri-Dj7ag","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JPLri-Dj7ag?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO2h0dHA6Ly93d3cueW91dHViZS5jb20vQHVnLXBnbWF0aGVtYXRpY3MzOTI1","name":"Ug-Pg Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ug-Pg+Mathematics","origUrl":"http://www.youtube.com/@ug-pgmathematics3925","a11yText":"Ug-Pg Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":378,"text":"6:18","a11yText":"Süre 6 dakika 18 saniye","shortText":"6 dk."},"views":{"text":"43,2bin","a11yText":"43,2 bin izleme"},"date":"15 mayıs 2020","modifyTime":1589493069000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JPLri-Dj7ag?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JPLri-Dj7ag","reqid":"1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL","duration":378},"parentClipId":"14804681058292170072","href":"/preview/14804681058292170072?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","rawHref":"/video/preview/14804681058292170072?parent-reqid=1769250478525103-11480825987818996582-balancer-l7leveler-kubr-yp-klg-220-BAL&text=LIM","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4808259878189965827220","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"LIM","queryUriEscaped":"LIM","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}