{"pages":{"search":{"query":"Local Minimum","originalQuery":"Local Minimum","serpid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","parentReqid":"","serpItems":[{"id":"11353210308688933767-0-0","type":"videoSnippet","props":{"videoId":"11353210308688933767"},"curPage":0},{"id":"18230680025483879236-0-1","type":"videoSnippet","props":{"videoId":"18230680025483879236"},"curPage":0},{"id":"13792573514891280674-0-2","type":"videoSnippet","props":{"videoId":"13792573514891280674"},"curPage":0},{"id":"16981329343793929496-0-3","type":"videoSnippet","props":{"videoId":"16981329343793929496"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dExvY2FsIE1pbmltdW0K","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","ui":"desktop","yuid":"1782009731769604983"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"9252765891168975751-0-5","type":"videoSnippet","props":{"videoId":"9252765891168975751"},"curPage":0},{"id":"3656261643137805098-0-6","type":"videoSnippet","props":{"videoId":"3656261643137805098"},"curPage":0},{"id":"5726821341984677891-0-7","type":"videoSnippet","props":{"videoId":"5726821341984677891"},"curPage":0},{"id":"14900443963943334405-0-8","type":"videoSnippet","props":{"videoId":"14900443963943334405"},"curPage":0},{"id":"13285432627413121646-0-9","type":"videoSnippet","props":{"videoId":"13285432627413121646"},"curPage":0},{"id":"11433720328487257697-0-10","type":"videoSnippet","props":{"videoId":"11433720328487257697"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dExvY2FsIE1pbmltdW0K","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","ui":"desktop","yuid":"1782009731769604983"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"14668031113569799756-0-12","type":"videoSnippet","props":{"videoId":"14668031113569799756"},"curPage":0},{"id":"6843836119813282091-0-13","type":"videoSnippet","props":{"videoId":"6843836119813282091"},"curPage":0},{"id":"6688311659655098689-0-14","type":"videoSnippet","props":{"videoId":"6688311659655098689"},"curPage":0},{"id":"1375268707782296414-0-15","type":"videoSnippet","props":{"videoId":"1375268707782296414"},"curPage":0},{"id":"11954521115619858956-0-16","type":"videoSnippet","props":{"videoId":"11954521115619858956"},"curPage":0},{"id":"6171931366382445205-0-17","type":"videoSnippet","props":{"videoId":"6171931366382445205"},"curPage":0},{"id":"15984695455036694831-0-18","type":"videoSnippet","props":{"videoId":"15984695455036694831"},"curPage":0},{"id":"11721295327752496376-0-19","type":"videoSnippet","props":{"videoId":"11721295327752496376"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dExvY2FsIE1pbmltdW0K","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","ui":"desktop","yuid":"1782009731769604983"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DLocal%2BMinimum"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0228669692986409757319","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1450763,0,43;1466867,0,46;1457615,0,53;1433082,0,93;1424968,0,34;1459297,0,57;1456929,0,9;1459323,0,25;1383553,0,3;1469893,0,16;1464523,0,10;1470855,0,98;1467160,0,57;1475651,0,5;1464404,0,40;1146114,0,79;1349038,0,47;120692,0,16;90501,0,8;1404022,0,9;1475773,0,39;912217,0,69;124080,0,2;151171,0,84;1269693,0,94;1281084,0,92;287509,0,40;1447467,0,69;1254301,0,30;1473595,0,37;1466396,0,28;912280,0,53"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DLocal%2BMinimum","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Local+Minimum","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Local+Minimum","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Local Minimum: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Local Minimum\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Local Minimum — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y48f875203a139bd75f47a050a73252be","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1450763,1466867,1457615,1433082,1424968,1459297,1456929,1459323,1383553,1469893,1464523,1470855,1467160,1475651,1464404,1146114,1349038,120692,90501,1404022,1475773,912217,124080,151171,1269693,1281084,287509,1447467,1254301,1473595,1466396,912280","queryText":"Local Minimum","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1782009731769604983","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769605011","tz":"America/Louisville","to_iso":"2026-01-28T07:56:51-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1450763,1466867,1457615,1433082,1424968,1459297,1456929,1459323,1383553,1469893,1464523,1470855,1467160,1475651,1464404,1146114,1349038,120692,90501,1404022,1475773,912217,124080,151171,1269693,1281084,287509,1447467,1254301,1473595,1466396,912280","queryText":"Local Minimum","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1782009731769604983","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0228669692986409757319","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":144,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1782009731769604983","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1757.0__1e42d45c824ef14ef6767326055fb713b0c3a145","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"11353210308688933767":{"videoId":"11353210308688933767","docid":"34-6-3-ZC77FB539FB23CD73","description":"This calculus video tutorial explains how to find the local maximum and minimum values of a function. In order to determine the relative extrema, you need to find the first derivative, set it...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4077160/f151fed6c9ba1c3485b3009815588abf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ihxKLQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWCq3sRzsJfs","linkTemplate":"/video/preview/11353210308688933767?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Local Maximum and Minimum Values of a Function - Relative Extrema","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=WCq3sRzsJfs\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDExMzUzMjEwMzA4Njg4OTMzNzY3WhQxMTM1MzIxMDMwODY4ODkzMzc2N2qTFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxPZBoIEJAGABCsqiwEQARp4gfQI-wf9AwD39Q8H-wb-AQYC8_X3__8A5w79-Qf9AQDiAwL8CP8AAP4GBAoEAAAABvf3AgL9AQD8A_n9-wAAABIABQT8AAAA_gEEBggBAAD8B_4GBP8AAAAA-Av_AAAA9wsR-_8AAADxAgEEAAAAAPb9_gAAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF_-SgB2A7cALEG2QDVEhcBqQ0d__w10QDJDOcAuQPgAAXx7wD5Gt8AFx4EAJIs_wEm69f__-MIAD3b_ABG3_kA5QXtAR779wA-FC__IB_5ANsNC_3s6vIA89mxAAIY5wP65Pv3CPvYAewDwAIQ_kAB5OgaAAvjGP7wwwj_5_b0Agrl6f8JCBEI-fL6--sWPAH_3wT4QBgPAOYh5wL2F_8F6tkQAPMT1_8J-e4AIf8NBbzqFv0i6QkKFggUBtAg9wfW8S8G3yH_99j_BPkc9fYB3Ab29Onl5P81HAP3-fEPBRHs8gDs6QPx_gDnCOUa3fEgAC3nWA87OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawO6oLnb3Lgb87wP6QvCMT8L3XLSc99_1AvBR2ET7fDt68Jr6DO4v7z71urpA8nVPiu_29dD6SVEu9A7HsPIc0Kr6eaag9tnJlvBd-AL7qYDg9-a63PCQFi70DFo-95Ps9vLJ1mj2ly9G8LegBvMP4RLxMiUQ9LVlavSgTMj2wXyu9sac9vQ044rdYjcY7QkSouy5ZpT1jQky8HwhaPLdXSz1WdNa7xqcgvaYQg70fACc9Mxv_vC9Ndj3GlYk9wutEPFj-vL3F2Z69KktfO98Ykr3Zv-E8AZnGOyZAqD2QqCs9b9GuvNjCBz1Ex5m98juyvLHhSb4ukvY8TwidPKj8Cz6lg5U9JI6GvK7XBL4Nnz497EWZvLxtUD2QJf-7KWm0vKdJ3zz8ooy7UoTvPMhtarvMkZk7riKKO5AkELwQ36M9pmIDPez6BT3ZmeK9q6unvE6OzD0eeiE9Pi7gu9sBEr0olgC96kQbura1ar16r1U9v9YlPJuoijy6JNi8EeZRPN9mxj05tfO9hx8YPJXcPL088cG9Q-nmu3R-yjxqJHM9hcSou07wzT1mM-e9_1cAPJEuMjuilPU8t_7pO7idrLy0HA29l1MnPFpquL2bNPI8FasGvK2BMr23VsU8_jD8uw5PrzyDNek8A_j6O5k20ry8Ws69GJwvOvUrXT1zET89sJXpui2Lkz2erx49oKIPOhJQwT3BeEG9YdMKutHVkb31Nqy8IifhOtq65bzANbG9UlkOuk8jHT6VuA69DXvSOILkPb0Fsqo7epIuOxvqob2yW5U9LNmZOCKI8zy1nqu8ssYUOVxUC72cFfG93J51OV3aNT0BDoa8QDpauU5hJbys1bg9joYWuAYkRr3DV7W9CMhdNy09Hjw5SU68IehzuAyEsz2PLwY9SHXmuGdIgL1KkNs8uqC9t20xyTwoSfK8tJ6sODzpEz2voSo9_9u1OEHxAz1xT8G91zh7Oae9Fz1oTmg9hmA6OecfOD0P77k9tGi5OOg_NT1kHwQ-Z7EbOFJIz7s-PKu9T7LkOM_g3Tn6umc9CgWHuL2P4704Zc49OHOROBbVhzxeCIM7c0yUOE0DdbvxGio8CNS-OGGgUD302UY9K5gmOMHjKz7cpWi8B4l0uavfFr0N-x2-o7z-uG9FZ720Fpu9TnD4t-2Rl7xB9oU9foWfth3jDDxnRt-9aVASuMr0cD0i4Ss-8cuKOJe7A7zS08E9UWrJuOEti72bf8s65gAKOPrXvb0WOLS749tYtyAAOBNACUhtUAEqcxAAGmA1_wBKFyrG-e8e4fbqGQrFsv3F5LAK__HjAAUl8PMCLtDXAiUABL8-2qQAAAAb5uQp7QDvfMrl5wIEMCWTgc0xHmcE-iTLExvoq88b-hkD5Cj6Jv8AEfy1N1bdmTwCHwIgAC36FhQ7OBNACUhvUAIqrwYQDBqgBgAAREIAAGDBAAAwQgAATMIAAKDAAADAQAAA3EIAAERCAABEwgAAHEIAAOBBAAAEwgAATMIAANBBAAAQQQAA8EEAAJxCAAAYwgAAREIAALBBAACAQAAAqMEAAI7CAADwwQAAbMIAAABBAAAAQQAAQEAAACDBAACwQQAABMIAAIhBAACEwgAAIEEAANLCAABwQQAAiEEAAExCAAAwQQAAMEEAAAxCAACwQQAAUEIAAHDBAACIQQAA5sIAAMBBAABgQgAAwEAAAGBCAABAQQAA-MEAACDCAABgQQAAgD8AAJBCAADOwgAAwEAAABBBAAAYQgAADEIAAI7CAABgwgAAuMEAAHDBAACSwgAANMIAAHTCAADoQQAAiMEAACRCAACIQgAAIMEAAERCAABwwgAAAEAAACDCAABAQQAAMEEAAJBBAABQwgAAvEIAAADAAAAYQgAAoEAAAPhBAACYwQAAFMIAAFRCAAAAwgAAAEEAAFRCAABAwgAAgEAAAIhCAADQwQAAWMIAABzCAAAMQgAArEIAAEDCAACYQQAAgEEAAAxCAACYwgAAQMEAAFBBAADgQAAAgMAAAHhCAAAcQgAAVEIAAJDBAACIQQAAIMEAAIxCAAAEQgAAJMIAAEzCAACgwAAAEMEAADzCAAAAwQAA4MAAABzCAAAQQQAAwMEAAIA_AACgwAAANEIAAAjCAABgwQAAEEEAAIxCAAAUwgAAjkIAAEDAAAAwQgAAMMIAAILCAABwwQAAcEEAACBBAAD4wQAAgEAAAAhCAADgQAAAoEEAACDBAAAgQgAAHMIAAGBBAADgQQAA4MAAAGRCAABgwQAAOMIAABzCAABcwgAAEMEAAJbCAAAgQQAACEIAAKDAAACgwAAAcEEAAKDBAADgQQAAmEIAAEBAAAAwwQAAJEIAAODBAABgwQAAcMIAAADAAADgQQAAHMIAAEDAAAAcQgAAqsIAAPDBAAAswgAAgEEAAFhCAAAswgAAUMIAAMDBAACQwQAAoMAAAKhBAACIQQAAAMAAAADBAACQQQAAjkIAAKhBAADAQAAAoMEAAMjBIAA4E0AJSHVQASqPAhAAGoACAADgvAAAyL0AAFw-AAAUvgAAQLwAALI-AADePgAAIb8AALK-AAAMPgAA4DwAADy-AACoPQAATD4AAKC8AABAvAAABD4AAOA8AABUPgAAtj4AAH8_AACYvQAAuj4AAPg9AADavgAA4LwAAHQ-AAD4vQAABD4AAEQ-AAA8PgAATL4AAKC8AACYPQAAdD4AAKC8AAC4vQAABL4AAPK-AABkvgAAuL0AAIC7AADOPgAAHL4AAJa-AAAQvQAAXD4AAJq-AAAwPQAAvr4AAFA9AADYPQAAxj4AAGw-AACYvQAAcL0AABk_AACgPAAAED0AADA9AACgvAAAoLwAADQ-AACIvSAAOBNACUh8UAEqjwIQARqAAgAAhr4AAAw-AABwvQAAQb8AAIC7AAC4vQAAmj4AADQ-AACAuwAAML0AAOA8AABAvAAAEL0AAJa-AACAOwAAcL0AAAS-AADaPgAAyL0AAKY-AADIvQAAMD0AALi9AAD4vQAAqL0AADS-AACAOwAAUD0AAMi9AACIvQAAiD0AABw-AACCvgAAcD0AAHC9AACCvgAAgj4AAGw-AACmvgAAjj4AAHC9AADGvgAA-L0AAIY-AADgPAAAgLsAAH-_AABwvQAAjr4AAFw-AADoPQAAHD4AAK4-AABQvQAAoLwAAHA9AACIvQAAQLwAADw-AAAsvgAA4DwAAOg9AADYvQAAUL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=WCq3sRzsJfs","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11353210308688933767"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"230623520"},"18230680025483879236":{"videoId":"18230680025483879236","docid":"34-8-4-ZB202B335A323CD43","description":"Finding Local and Absolute Maximum and Minimum from a Graph In this video, we delve into the world of calculus as we explore how to identify local (relative) maximums and minimums, as well as...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/219373/a3a7443c2533b28b7f28f1790fd2bbf1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/IIocgAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvotVWz-wKeI","linkTemplate":"/video/preview/18230680025483879236?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local and Absolute Maximum and Minimum from a Graph","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=votVWz-wKeI\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDE4MjMwNjgwMDI1NDgzODc5MjM2WhQxODIzMDY4MDAyNTQ4Mzg3OTIzNmqTFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxPOAYIEJAGABCsqiwEQARp4gfD9CgD-AgAQABAAAgf_AegE8Pn6AAAA6_j78wL_AQD19wP_9wAAAAYD_AoJAAAACfwD_vf-AQD3BgP7AwAAAAz-BPoHAAAADQoDAAj_AQEFBwQHA_8AAP4P_wP_AAAA9g8BAwEAAAD7AfwEAAAAAAL69gYAAAAAIAAt6A3XOzgTQAlITlACKoQCEAAa8AF__x4A1_WlAcH1zwC7G9r_mjQp__w7zADG4OkB6-7oAfzm4ADLLhMALP4VAMoPCwApD-D_4sUsAE_y9__YDycA6w8rAArg7gIhDQD_9tP__gNAHAHLGBgC_b_aAAAt-P8lBQT79T4FAukq0AQ6ziwC8-8HAjztHAHsH_H_4xgSAt_00v0SDen97dj_-dIeJQIV_hIJETwSAxEO6ffX-wMC_toa_A8VygA09gfyAQEO98wZ-PfaIAIBRRAD9dkC_AbjHCf--LsE_-Xk-_wb1BEKyT7sCDgO8fzw_wH9_fHn-vze9-AH-uvyJv_yCA72AvsgAC04HAI7OBNACUhhUAIqzwcQABrAByAqxb4sloe8pbb5vKoLnb3Lgb87wP6QvEvTtr2Wyys9rO4HvZ_Woz0h8PY8RfacvL2OkL5851y92KYpO9tP5j2FtMa9P5STvZ5ihb6Run09LHOEvFexOL5HpX08pdQKPUBcKDy4bm-8_QSGu3IeaT07anG9vLQ8vV9lSDzQnWA885hcvOvmfb2JrpC9_h4jPOWAeD1HIUS9GwsOu1FGsT3J7lg9XkIEOlwQYD0Al1a9jlGovBaSYr0RXnW7PvTTvGn-KD6LXdM7RwsrPFszaDx87iS9qGSpO-v2s73WviU8VdfGuxNnwbuWhi-7509AvPRsablgqyS-gDKAuz9vKr1RTnQ9EUgyuycXEz5P1XM9FamwPANzWb0N5po9L2MvvLsqUD36jUC8v---OsvHZD1Dl4u83rKeO8QxwTw0DtU9KkBvPCTRDbyZaCs9WJBmPLJVuDzFL4a87xIHvMSx8Dt4wCs9sZ7_O4cEYr03rno9_jZ6vFLtoz3F4Ma8JnyEO8zJpT3Xfpc8hf6yOz3NzTv4O4-9qJg5PFxNqLy5clG9b1azvHxH7T0gNw09U10fu3Y0Dj1phwS9sjJYu4fmFbzlmoI8qkBSvAqHGb3yBj292TobPIkVxL2mf-k96xAsur9rp7s6w7k81jV_vFCLAT6v2DU9gAiDOd7gUL1gIfO92gh-ujBQkTnkN7A9OXeeO7qenT3Te9M7eTWKOhiyCj5lnsO7GNGCON7gD7uLfE094WGduR0Rnb0YLmE8wPYHOo2Jkz1HfF084omOOI0OAz3isBS9yP27OQh_Fb1bRK89mIH4OHhbvr3o8DU9GRcxNxSdi72JeuG9xidwOXD7Lzxtxkm9BewOOZ1K5j1KhEG9q7yCuZSk670Rwf462PPSuCm6JL0N5T89WbHZuJ5Qnj3Y6Sw9mfx1uItrfDzJY_w8J0YtuW0xyTwoSfK8tJ6sOAIyT70jgtE9dbe8OJhRh7zyOcE8AntUuEWc7zs90dU94glHuV2uODuB8509sxhitodTkT30X8Y9qrkkN1JIz7s-PKu9T7LkONZi5jwLKR8-SAeNOOwll70Dm868RHgROMVCKL0_YDS9atiVNvYnAT5EUku9G2w4ONdGYT3GVFU8PVamt6XTvz3vrH29oCwOuc3Her3TFey95pv4uHqXAb2rA2W9tWLmtxkTjL0nUEQ8FfhVuFUvX70bxoO9VXspt2pPGT6pbpk9CAIyt4Fe-Lwl7xc9PNmmuH2Jgr203jQ9RWE9OF_S2LxJqbq8keoLtyAAOBNACUhtUAEqcxAAGmD4AQAv6Bq86QkTyvH9LBjBrdfL28Aa_wEPAAsvBvSwK7zKLQ0AGtgw66EAAAAou9gZ1wDrf9vn8gMBARK-s8QvBXroLzyM8vflm9nd4-seMjkHQhMAqw28FkCt2yEF-yggAC2AJw87OBNACUhvUAIqrwYQDBqgBgAAAEIAAIA_AABgQgAAkMEAADDCAAAMQgAAkEIAAJhBAADwQQAAHMIAAGBBAABQQQAATMIAACDCAADgwAAAoEEAACRCAAAQwgAApEIAAOjBAAAAwgAADMIAAPjBAABQQQAABMIAANBBAAAgwQAAiEEAAKBAAAA0QgAADMIAABRCAAC6wgAAgEAAAJbCAABoQgAAcEEAAERCAAAcQgAACEIAABDBAAAIQgAABEIAAMBAAADgQQAAEMIAACBBAAAgQQAAAAAAAGDBAADAwQAAbMIAAADBAADowQAAJEIAAABAAAAkwgAABMIAAARCAABAwQAAgkIAAHDCAABMwgAAYMIAAMDAAADcwgAAgMIAAOrCAAAUwgAAyMEAAARCAAAgQQAAYMIAAAAAAACowQAA8MEAALjBAAAMQgAAYEIAADBBAAAIwgAAqEIAAAjCAACwwQAALEIAACBBAADAQQAAhsIAAOhBAACYwQAAEMIAAFBBAACgwAAAgL8AALZCAACAwgAAoEAAAIDBAADIQQAA2EIAAEzCAAAgwQAAEMIAAOBAAAA0wgAALEIAAFDBAAAMQgAA4EEAAEBCAABMQgAAwEEAAODBAACQQQAABEIAAIZCAABgQQAAiMEAAMDBAAD4wQAAsEEAALjBAACwQQAAEEEAACDCAACIQQAASEIAAADCAAA4wgAAdEIAAIDAAABkwgAAgEAAAExCAACgwQAADEIAABhCAADAQAAAnMIAACjCAACoQQAAKMIAABBBAACAwQAAAEIAANhBAACwQQAAMEIAAABBAABgQQAAKMIAAODBAACAQQAAAMEAABxCAAAAQQAAosIAAADAAABUwgAAQEEAACTCAAAYQgAAQEAAAMjBAACowQAAsEEAAAzCAABoQgAA1kIAACDCAADowQAAmEEAACBBAAAgwQAA6MEAADDBAAAAQQAAYEEAADTCAABgQQAApMIAAHjCAADQwQAAQEIAACRCAAAQwQAAUMIAAEjCAACQQQAAMEEAAChCAADAQQAAgMEAAMjBAABAwQAALEIAAFBCAADAQAAAkEIAAKjBIAA4E0AJSHVQASqPAhAAGoACAAAEvgAAHL4AAII-AAD4vQAAPD4AANY-AAD-PgAAbb8AAHy-AAAQvQAA0j4AAOC8AABEPgAAiD0AAHC9AACYvQAArj4AANg9AADgPAAAFT8AAH8_AADgvAAADT8AAEA8AACOvgAAEL0AAM4-AACAOwAAuD0AADw-AADePgAA-L0AAEC8AAAHPwAAFD4AAMg9AADYPQAAnr4AAAe_AABsvgAAML0AAMa-AAAkPgAAiD0AAI6-AABAPAAAhj4AAKq-AACgvAAAtr4AAIg9AACIPQAAVD4AAMo-AACgPAAAgDsAAHE_AAAEvgAAUD0AACy-AABcvgAAQDwAACQ-AAC2viAAOBNACUh8UAEqjwIQARqAAgAAFL4AABA9AACYvQAARb8AABS-AACYPQAAgj4AAOA8AACAOwAAuD0AAJi9AACYvQAAQDwAAKC8AACIPQAAmL0AACy-AAAPPwAAqL0AAAM_AABAPAAAiL0AAAy-AAAsvgAAgLsAADy-AABQPQAAgDsAAJi9AACoPQAAQDwAADA9AABAvAAAqL0AAIg9AABMvgAAyD0AAEA8AABkvgAAXD4AAKi9AAAEvgAA4DwAAPg9AADovQAA-L0AAH-_AABAPAAADL4AAOg9AACYvQAAND4AAKg9AAAcPgAAED0AAMg9AACIvQAAMD0AACw-AABAPAAAHD4AAMg9AADIPQAA4LwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=votVWz-wKeI","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["18230680025483879236"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1126352646"},"13792573514891280674":{"videoId":"13792573514891280674","docid":"34-8-2-Z39FC6163A650999D","description":"Finding Local Maximum and Minimum Values of Functions with Two Variables In this video, you'll explore how to find local maximum and minimum values for functions of two variables using derivatives.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3467851/a2296c99d569f230f49d57fb517b3705/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eyrdbwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHm5QnuDjNmY","linkTemplate":"/video/preview/13792573514891280674?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local Maximum and Minimum Values/ Function of Two Variables","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Hm5QnuDjNmY\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDEzNzkyNTczNTE0ODkxMjgwNjc0WhQxMzc5MjU3MzUxNDg5MTI4MDY3NGrBDxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxODBYIEJAGABCsqiwEQARp4gfT89v4B_wAE9BEE-wn8AgEM7v_2_v0A9A729AMBAADiAQoA-v8AAAUO9AoFAAAABwYDBfn9AQD2-_YBAwAAABP5Av73AAAAFgb_AP4BAAABBwgG9wIAAQD_AAoAAAAA9wwS-_8AAADyEfIIAAAAAP74_goAAAAAIAAthUHROzgTQAlITlACKoQCEAAa8AF_9AX-5eHeAs8GvQDLLtwBmw8h__w-yQC9AhIA0u62Ac452__W7wUB1gkN_8I3_v9W9dsAE7n0_yzO7f4QzNsA2gQSARjUBQJeGhQBHxH-ALTZKQAHq939Hc7JAyAg1wDu0vgAEgjnAivzyAMcAyQBLBVFAPr7PwTWoPwB7On__vX61wD4NfYBDu8Y_bLTLgIC-RQDEgYK8tM18gPqAAj40uc0_Qk3zP0m7_QHPAj-CqPMEP8d8_wGMgIXAvAC4PfP7zcHz_L5APkHC__-7gP2_CntCwUC7w8f8REFA_L9-gsGDencGAvx9dvzAt0Z__sgAC1F4vY6OBNACUhhUAIqcxAAGmA3_QBLCCvD7wL-CvnvHgTiu-Gy_cj3__kDAPIfCwr8KvnjBxUADe0e2KwAAAAnyfAe3gAIcPLt_gv7DgWBv8IvFUooGyGv7x_30_kX-fL9-PTX_ksA8wKqL0DR1ioCAf0gAC30Di07OBNACUhvUAIqrwYQDBqgBgAAbEIAAMhBAABQQgAAwEAAAJhBAAAwQgAAqkIAANhBAACkwgAAiMEAAMhBAAAEwgAAoMEAAEDAAAAwQQAA6EEAAHhCAACwwQAAAAAAABDBAABAQAAAwMEAAMbCAAAMQgAAdMIAACDBAAAowgAADEIAAGRCAABAwQAARMIAAFBBAACQwgAAlEIAACTCAABAwQAAPEIAABBCAABAQQAA4EEAAGxCAAAkwgAAAEIAABzCAADgwQAAkMIAAOhBAAD4QQAAEMEAAEhCAAAIwgAACMIAADDBAAAAQQAALEIAAKJCAADcwgAAIMEAAIBBAAA4QgAAkEEAAKLCAABAwQAA2MEAABBBAABcwgAAcEEAAJDBAACAQAAACMIAAHhCAACUQgAAYMEAADhCAABAwgAAUMEAANDBAAAgQQAAgEEAAEBBAAAEwgAAikIAAIDAAADIQQAAAMIAADhCAAAcwgAAiEEAALhBAAAQQQAA4EEAAIhCAACqwgAA-MEAAERCAAAAwQAAUMEAADzCAAAQwQAAYMEAAFTCAAAkQgAALEIAABBCAAAUwgAAAEEAAADCAAAAQAAAXMIAABxCAABEQgAAYMEAAEBBAADQQQAAqMEAAJZCAAAAAAAACMIAAKBBAAAAwgAAiMEAAHTCAAAAQQAASMIAAKDBAACYQQAAQMAAAMBAAACAQAAAMEEAAJDBAACwwQAAEEEAAHRCAAAgQQAAyEIAAGBBAABgQQAAyEEAAIbCAADAwQAA2EEAAIBAAAAowgAAZEIAAI5CAAA4wgAABEIAAEDBAADYwQAAYMEAAPhBAADAQQAAdMIAAARCAADAQQAAmMEAAEjCAACQwgAA4EAAAJjBAAAAQAAAQMEAAAxCAACgQQAAsMEAAAzCAADoQQAAsEEAAIhBAACowQAAUEIAAHBBAABwwQAAbMIAANBBAACgwAAAUMIAAADBAAC0QgAAvMIAAHjCAAAAwQAAGMIAAChCAAAwQQAAnMIAAODAAABgwQAAoEAAAI5CAACIwQAAgEEAAGBBAAAEwgAAqkIAAFDBAAAgQQAAMMEAAEBAIAA4E0AJSHVQASqPAhAAGoACAADgvAAAkr4AABA9AAAsvgAAcD0AAPo-AADSPgAAZb8AAIa-AABEPgAAoDwAAAS-AABUPgAAuD0AAMi9AAAwPQAAfD4AAPg9AAC2PgAA4j4AAH8_AABQvQAA_j4AACQ-AAC6vgAA-D0AAI4-AACCvgAAuD0AAPg9AACKPgAAEL0AACy-AABEPgAATD4AAEw-AACYvQAAgDsAANK-AACyvgAABL4AAMi9AAAUPgAAiD0AAJq-AADIvQAAED0AAIq-AABQPQAAgr4AADw-AACgPAAAvj4AAFw-AAAEPgAAiL0AAEc_AAAQPQAAcL0AAEC8AACgPAAAML0AAMg9AACAOyAAOBNACUh8UAEqjwIQARqAAgAA-L0AABA9AAD4vQAAR78AAOi9AABwvQAAgj4AAHA9AACIvQAAqD0AAJg9AAD4vQAADD4AAEy-AADYPQAA2L0AABC9AADePgAAEL0AAK4-AABwvQAATD4AAMi9AAAQvQAAoLwAAIK-AAAsPgAAgDsAAFC9AABAPAAAmD0AAIg9AABEvgAAQLwAAOi9AABUvgAADD4AABQ-AAC2vgAAdD4AAGS-AAAUvgAAiL0AAI4-AAAQPQAAEL0AAH-_AADYPQAATL4AANg9AACAOwAAiD0AAGQ-AABAvAAAML0AAKg9AACAOwAAJD4AABw-AAA0vgAAyD0AACQ-AACgPAAABL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Hm5QnuDjNmY","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["13792573514891280674"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3459234896"},"16981329343793929496":{"videoId":"16981329343793929496","docid":"34-4-8-Z1596CE196EFE9AE4","description":"This video focuses on how to find the local minimum maximum values of f(x) = 4x^3 - 4x^4. In this video, I show how to use the First Derivative Test to find the local extrema of a function.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2032883/3b93266000f094f6c43c3b5098bac5c6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Yfh-ugAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUTmmq8xoZIM","linkTemplate":"/video/preview/16981329343793929496?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding local minimum maximum values of a function","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UTmmq8xoZIM\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDE2OTgxMzI5MzQzNzkzOTI5NDk2WhQxNjk4MTMyOTM0Mzc5MzkyOTQ5NmqRFxIBMBgAIkMaLwAKKGhocXVuZGR2ZmZ4ZXV3aGhVQ1hON3gwaVVnRFAzcTRsZDQyR01BV1ESAgAQKhDCDw8aDz8T6QOCBCQBgAQrKosBEAEaeIH3_vwA_gMAAPsFCfgI_QL9AfQG-P39AOcO_fkH_QEA7fwD-gP_AAAGA_wJCQAAAP34-AL7_gAA-QcAA_sAAAANCAYD_AAAAP4BBAYIAQAABAL-BQP_AAALBPkFAAAAAPkFEgb-AAAA9QX2BAAAAADz-AQFAAAAACAALQBT2zs4E0AJSE5QAiqEAhAAGvABf-oX_sb6x_-uw-UAwE3nAbYmO_8KOO8A5fUBANPuuAHdMfb_2R7yAAT_Lf_SLdkASfTB_9W5EAAlAff_Ku0JAPgA-QAl8NwAaQciAPnY5_73-DD__sMVAP2-2QALM-sAG87x_hII6ALqBLgCJRgsAeQROwEs6wABrqkfBtLFDf_p2NP9BRv9BvqtD_vSBScCDMn8_iM4GwAD8eT9_eYMB_7aG_wRLOwFK-UI-hcHyAGwJO75CQzx-DRE8QTpAfr_8PUsAurgFfgK5e_5D-MK_PYV9QEL7PMJH94AAwvw9wvhwOcByQEB-w788gH3DfXvIAAtv04AOzgTQAlIYVACKs8HEAAawAdPPsW-ftjcPDHGsDtOY_u9N-kMvXfp8LxRh_W915eGPYWnYb0kQx4-k2uvOnOULb1U_B--J8wqPXfzuTzLgDM-5tGIvZhiMzyG4wm-3yD1PKwBKr0VHE6-rE3IPDWXHzvGjRY9wvC2O-Qb5TzBfr498vfBvRetbbxhgmC7bxYKPRi6bbxPCHw7ctJFvd-KRLxnPQI8ABIZvKYHBzwgB7o9gpE3vYiynLzK54A9hte_vI9sLjymEIO9HwAnPTMb_7wNubM9k398PVxDX7xvh2E8qgptveKenbuyAp29H2E9vJJY0jwHJGE8MdC1PACmMbxpM_M8Hm_yvdcl0zplF1y-eKeMPCgEvLtGCuU9o5YgPFPN7jvv5LO995GbPc39urwJX6k9dt0bvZA6cLwA8oQ9iSsCPfgrLjw3TIk9jf02Pcsqz7qQJBC8EN-jPaZiAz0iRAM9RYBTvETf3bx7oDW9h22LPFYur7uHBGK9N656Pf42eryoTow9VhEOPbRsdzytX7q8r5qlO20lKrwtyhE9XxeEvZpD8zvO8ga9kDiKvZzLQ7wdbcE9OWkQPS4Ff7yLy5w9pBd6vV94Sry8uyW7_RCLvdODo7faZN48_Oo-OkTEKDySKJ-9zhd7vBPj5ztUruy75Fl4PZYVFrxzB1s9A1PHPXIMwTmg-qi7e8BcvYRRpLtjTDU9UF8mu3TCOrwn9K89X0CUPYjbFrcJjcA9p9uovd-s2rnAXsy9YBhVvSmlELvfHde6vltvvZKdjjqTYpE9poE_vYOTrLlBpLo87FPpvB72QTkKv0-9Jh7QPYAjObkJKEg5fbCMPN_3kDqrPZG9GlIVvjBRCjqd9jS9dK2DuuqIf7l7T8A8BsfbPFOpwLprHsG9xK6ivVn4Ijg4lqA6Av7fPODFSLcQyXA9NIDXPR_SI7cTCUu9WdqOvO-NJbmFf6y8Q5iRupS0Xzasuru6UMiOPWTM-jeYtFI7P3DFvfcuYDnDdyw97kigPW3tGzk-Jg09I-CbPbDrHLhyb949L1iwPa3xqDiIJKO79aYdvUh2RDhP0aw9w40KPancibia_5y90JCbPQLbLjgvgrs9HqjTPEyT_jgBe5Y9lvP_O-YN5TdcRMq7fcXDO31dkzf3ASg-cGHdvfFnv7luHmK9sSuyvRO_v7jDJv23s0OMvU2KDjek0Ai9JEQJPpsWwTYa52W91qOVvKi4mLci_-w9NSkFPvN-W7g8Kfq7VSptPeAyjbjnI5-9N8BxPO1kl7dtDpa9LoRmPQTvtzcgADgTQAlIbVABKnMQABpgUAEAJfoczwf5DuMi-w8K2rnuwNrAJP_1EP_qJ-_u2yS71BkYAAzjN9mlAAAANNrJBOsA93rr9wn7-z8EgZfcKfBoIA033_QP1sPIEPwcB8gc-R0YAA30pjda4ppLFw8vIAAtktAVOzgTQAlIb1ACKq8GEAwaoAYAAEBAAADYwQAAskIAACDCAABAwAAAIMEAAPJCAADIwQAAEMIAAOBAAAAAQQAAPEIAAMBAAAAAwAAAAAAAAGDBAADgQQAAjMIAAHBBAABAwgAAMMEAAADCAADowQAA-EEAAGBBAADgQAAALMIAAIC_AACOQgAA0EIAAMDAAABgQQAAIMEAAIhCAAC0wgAAyEEAAABAAADYQQAAIEEAAPBBAACAwQAA-EEAAAAAAAAwwgAAmMEAADzCAADgQQAABMIAAFBCAACowQAAgMEAAIBBAAC4wQAAgEEAALBBAAAAwQAAOMIAAEhCAACEQgAAKEIAAADBAADYwQAAOMIAAOjBAABAQAAAXMIAAJjBAAC4wgAAuMEAALDBAABYQgAAAEIAAEDCAABgQQAAgL8AAFTCAACYwQAAAEEAADBBAAAQwQAAWMIAALhBAACowQAAPMIAAERCAABQQgAAeMIAAKDBAADYQgAAIEEAAIBAAAA8QgAAFEIAAJhBAAAEQgAAcMIAABRCAACQwQAAGEIAAK5CAABYwgAAwEEAAJhBAABwQQAAGMIAACBCAABAwAAAsEEAABTCAABMQgAAOEIAAGxCAAAAwgAAmMEAAMBAAADiQgAAyEEAAHDCAAAQwgAApMIAAIDAAAAQwQAAFEIAAGzCAADAQAAAAEIAANBBAAAIwgAAkMEAALhBAAAUwgAArMIAAABAAAB8QgAAwEAAAJhBAAAAAAAAoEAAANDBAAA8wgAAcEEAAGDBAACoQQAADMIAAMDAAAC4QQAAoMEAAIA_AAAAwQAAAEAAAIC_AAAQQgAA8EEAAAAAAAAAQAAAjMIAAJrCAAAMwgAAMMIAAEDBAABgwgAAgkIAAGRCAABAQAAAOEIAACBBAAAcwgAAgEAAAPhBAACgwgAAAMIAAKDAAAAAQQAAgL8AAIA_AAAkQgAAokIAAADBAACgQQAAFEIAAJrCAACUwgAAAEEAAATCAACwQQAAiEEAAIzCAADgQQAA4MAAAIBBAACAQAAAsEEAAIDAAACwQQAAAAAAAGBBAACAQAAADEIAADDBAABUwiAAOBNACUh1UAEqjwIQABqAAgAAqD0AAHy-AABsPgAARL4AAAQ-AAC2PgAAij4AADu_AACOvgAAVD4AAKA8AACqvgAAFD4AADA9AABwvQAAiL0AAAQ-AADoPQAARD4AAKo-AAB_PwAAQDwAALY-AADYPQAAtr4AAIi9AACSPgAA2L0AAEQ-AACaPgAAgj4AAIq-AAAQvQAAhj4AAEw-AABAPAAAqL0AADy-AADavgAARL4AAJi9AADgvAAArj4AAPi9AADWvgAAMD0AAEA8AAA0vgAAiD0AACy-AACoPQAA2D0AAJI-AAA8PgAAuD0AAJi9AAAzPwAAgDsAADC9AAC4PQAAQLwAAIi9AAA0PgAA4LwgADgTQAlIfFABKo8CEAEagAIAAKq-AACoPQAAuL0AAFe_AACYvQAARL4AAI4-AABsPgAAiD0AAAS-AAC4PQAAiD0AADC9AABcvgAAoDwAAJi9AAD4vQAAnj4AADC9AACaPgAA4DwAAAw-AADYvQAAQDwAALi9AACavgAAyD0AAOg9AACgvAAA2L0AAJg9AAD4PQAA-L0AALg9AADYvQAAZL4AAJY-AACYPQAAdL4AAAU_AADIvQAAC78AAGy-AAC-PgAAJD4AAOi9AAB_vwAABD4AAJq-AACiPgAAgDsAADw-AAB0PgAAQDwAACS-AAAsPgAA6L0AAKg9AACiPgAAhr4AAIC7AAAwPQAAHL4AAHA9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=UTmmq8xoZIM","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16981329343793929496"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1146395667"},"9252765891168975751":{"videoId":"9252765891168975751","docid":"34-1-13-ZAC4EC20B939F6396","description":"😎 Stuck on your homework? No more missed deadlines, join GeeklyHub today and get 20% off your first order - https://bit.ly/3kA5Acd Learn about the Maximum and Minimum of a Function. We’ll use...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4576047/6de5fd5bfb2ac056390458fc0eaa8e5d/564x318_1"},"target":"_self","position":"5","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpxGWnc7NYPw","linkTemplate":"/video/preview/9252765891168975751?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local and General Maximum and Minimum of a Function | Extrema Points","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pxGWnc7NYPw\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhUKEzkyNTI3NjU4OTExNjg5NzU3NTFaEzkyNTI3NjU4OTExNjg5NzU3NTFqrw0SATAYACJFGjEACipoaHBxYXhmeGFnZWNoaHliaGhVQ3NoV2sxVG1CMEtOS2RtOUJQMGpnTVESAgASKhDCDw8aDz8T1wKCBCQBgAQrKosBEAEaeIHwEwAAAQAA-_QIAPoF_gL1FPP8-P38AOIEA_X--wIA6fL8_Pz_AAAGDf8GBAAAAAL-_fbz_QEA9fv2AQMAAAAQ_Qnx_QAAAA4a-gL9AQAA9QQCCvYCAAEGC_wB_wAAAPcLB_r7_wAA-Ar5_gAAAAAD7wAFAAEAACAALXZQzjs4E0AJSE5QAipzEAAaYOYeAFTt7tLNGzTRCxIfBgK_DNzJwAv_BP3_CzPyyeg42LgASv8LvxDtpwAAACC_7T3kANpyIvu4_gQ95Mmtuin6f-cP7dgMA9Gk5szWN_YFDPX_1gDrFvQ-WvHRUA79FiAALZWMFzs4E0AJSG9QAiqvBhAMGqAGAACAwAAAAAAAAExCAAAQwgAAoEEAAKhBAADKQgAAMEEAAIrCAABAwQAAZEIAAETCAAAowgAAAMIAADBBAACAQAAAgMEAAHDCAABQQQAAUMEAAJjBAAAIwgAAmMEAABBCAADQwQAAIMIAAFzCAABUwgAAOEIAANhBAACowQAAcEIAALLCAAAEwgAAhMIAAODAAADwQQAA1kIAAOBAAAAUQgAAgEAAAMBAAAAMQgAAgD8AACRCAACOwgAAhMIAAMBBAAA8QgAAGEIAANDBAABAQQAAMMEAAFDBAABwQgAAwEAAALLCAABAwQAAoEAAAIC_AAA0QgAAcMIAAGzCAACawgAAIEIAAMzCAABQwgAArMIAAMBAAACUwgAAgEIAAOhBAAB4wgAAFEIAAMDBAACwwQAAIMEAACxCAABkQgAAyEEAAJbCAABoQgAA2MEAAARCAAAAwQAAyEEAADBCAABQQQAAkEEAAPjBAABQwQAAkkIAAPDBAAAgQQAAwEEAAKrCAACAPwAAuMEAAKJCAADIwQAAqMEAAGBBAAC4QQAAgL8AACzCAAAgQQAAiEEAAOhBAABQwQAAZEIAAMhBAABQQQAACMIAAAAAAAAQwQAAuEEAAAAAAACoQQAAQMIAAPDBAABAwAAAmMEAAGTCAACIQQAAQMAAABhCAAAoQgAAEMIAABDBAAC4QQAAQMEAAM7CAAC4wQAAMEEAAIBBAACAwAAAHEIAABjCAAAIwgAAbMIAAKDBAADgwAAAQEEAAADAAADgQQAAAAAAACDCAACAQAAAoEEAAKDAAAAEwgAAsEEAAKBAAAD4QQAAgEAAAAzCAAAgwgAAsMEAAATCAACIQQAAWMIAAABBAACIQQAAmsIAAJDCAADgwQAAQMEAALRCAACAvwAAgMAAAOjBAABQQgAAaMIAAEDAAACYwQAA4MAAAIC_AADIwQAABEIAALDBAACCwgAAmMEAAJrCAABAwAAAbEIAAOjBAACQwgAAwEAAAEDAAAAAQQAAEMIAANjBAAAoQgAAmEEAAABBAAAQQgAAgMAAAKBBAADowQAACMIgADgTQAlIdVABKo8CEAAagAIAAKi9AACivgAARD4AAAS-AAAwvQAAoj4AAL4-AABLvwAA1r4AABQ-AABAPAAAXL4AAJI-AAAUPgAA2D0AABC9AAA8PgAA6D0AAK4-AADaPgAAfz8AAFy-AAABPwAAQDwAAL6-AACAOwAAjj4AABC9AAAQvQAAED0AAJI-AABsvgAA-L0AAAQ-AADSPgAAFD4AAFC9AABcvgAAyr4AAFS-AADgPAAABL4AAJI-AADgvAAAvr4AAFS-AACIPQAAZL4AAMg9AACuvgAAyL0AAKA8AACaPgAAZD4AABA9AABQPQAATT8AAEy-AAA8PgAALL4AAAS-AAAMvgAAFD4AAOi9IAA4E0AJSHxQASqPAhABGoACAACavgAAfD4AAPg9AAA_vwAA6L0AAGy-AAB0PgAA6D0AAPg9AAAMPgAAqD0AAOC8AAAMPgAARL4AADC9AAAwvQAAiL0AAMo-AABEPgAAtj4AADC9AABEPgAAmL0AAKi9AACovQAAqr4AAGQ-AADYPQAAHL4AALi9AACgPAAAVD4AABy-AAAEPgAALL4AAKK-AAB8PgAALD4AAKa-AACyPgAAfL4AAGy-AAB0vgAAND4AADQ-AACovQAAf78AAEw-AADovQAAND4AAKg9AAD4PQAA2D0AAOg9AACgvAAAHD4AAHC9AACAOwAAFD4AACy-AABwvQAAPL4AANi9AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pxGWnc7NYPw","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9252765891168975751"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3656261643137805098":{"videoId":"3656261643137805098","docid":"34-8-2-Z13D0B419A4AF03E3","description":"Derivatives can be used to find a function's local extremal values (i.e., local maximum or minimum values). If f(x) is a continuous function defined on a closed interval [a, b], then it always...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1784139/c32fbfa44a0e479ba18e3c6cb04ed658/564x318_1"},"target":"_self","position":"6","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dg7PAW8270TI","linkTemplate":"/video/preview/3656261643137805098?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local maximum and local minimum","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=g7PAW8270TI\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhUKEzM2NTYyNjE2NDMxMzc4MDUwOThaEzM2NTYyNjE2NDMxMzc4MDUwOThqrw0SATAYACJFGjEACipoaHhxc3JqZXlpZW5obWVjaGhVQ0c0eTI5bm5fY1VneWVZRks1UHNxVmcSAgASKhDCDw8aDz8ThQuCBCQBgAQrKosBEAEaeIHxBQMB-wUA_PUHAPsF_gH2BfD5-P39APYH_P__Av8A6vT8_fz_AAAFA_wJCQAAAP7-_v_4_gAA9wYD-wMAAAAM_gT7BwAAAAgDBwf_AQAABP4FCQP_AAAFB_X9AAAAAPYHCAP__wAA_wX2AgAAAAD68gIGAAAAACAALRIG4Ds4E0AJSE5QAipzEAAaYAEgACz5CejUCTjrHww7I-rK8dzDxAT_9zwA7yUa2PQn3-8PJQAZ8w3luQAAABTH_zPaAP9d3_y72wo37q7KuSn3fw0MAuXrFMjL6-XJMAj-F_wA7wAQ_-kKQdYJIgnlECAALbPAMzs4E0AJSG9QAiqvBhAMGqAGAABkQgAAAMEAAGBCAABIwgAACEIAALhBAADWQgAAyMEAAPDBAABIQgAAFEIAADzCAAAMwgAAqMEAABBBAAD4QQAAgEEAABjCAADoQQAAqMEAAHBBAACIQQAASMIAAADBAAAQwgAARMIAADDCAACawgAAkEIAAEDAAABEwgAAuEEAALzCAAAAQAAAuMIAAKBAAACIQQAASEIAAPDBAAD4QQAAIEEAAARCAAAcQgAA-MEAAKpCAACiwgAAIMEAAJBBAACkQgAAmEEAAGDBAAAwwQAAGEIAAMhBAADwQQAAOEIAAPzCAADgQQAAgEAAACxCAAAYQgAAlMIAAHDBAACgwgAAFEIAAILCAAAIwgAA2MEAAKDAAAAowgAAQEIAALJCAACCwgAA4EAAAGjCAAAQwQAAOMIAAIDAAACoQQAAUEEAAOBAAACCQgAANMIAAAxCAACgQAAAQEEAAOBAAAAAQAAAbEIAALjBAAAMQgAAQEIAAFDBAAAAwAAAbEIAAGzCAADgQAAA2MEAAAhCAAAQQgAAhMIAANhBAADwQQAACEIAAHzCAAAAwAAAmMEAADBBAACgwAAA8EEAABxCAAAsQgAAQMEAAOBAAAAcwgAAREIAAJBBAADYwQAAiMIAAADBAAAIwgAARMIAACDCAABgQQAAMEEAAOhBAABAQgAAAMAAAJDBAADYQQAACMIAABDCAAAAwAAAOEIAAEDAAABUQgAATEIAACBBAADAwAAAHMIAAMjBAADAwAAAYEIAAFTCAACYQQAA8EEAAIDCAACYQQAAoEEAAATCAAAQwgAAAAAAABhCAACQQQAAIEIAAODBAAAEwgAA2MEAANjBAAA8wgAAisIAAHBBAABAwAAARMIAAEDBAADgQAAAeMIAAOhBAABkQgAAoEAAAAAAAABQQQAAoMAAAFTCAAAYwgAAAEAAACxCAAAcwgAAOEIAAFjCAADIwQAAFMIAABjCAABAwAAAoEIAAJTCAAA8wgAAAMIAAKhBAADYQQAA4EAAAIC_AAD4QQAAgEAAABxCAADYQQAAuMEAABDBAACIwQAA4EAgADgTQAlIdVABKo8CEAAagAIAADS-AAD4vQAAuD0AANg9AACYvQAA0j4AAOY-AAAxvwAAjr4AAGQ-AADIPQAAgr4AABw-AACAOwAAQDwAABC9AADaPgAABD4AALY-AACePgAAfz8AAAS-AAC-PgAABD4AALK-AACovQAABD4AAJi9AAD4PQAAdD4AAJY-AADyvgAAMD0AAKY-AAAEPgAALD4AABy-AADOvgAA4r4AADS-AABwPQAAiL0AABQ-AACAuwAAgr4AAKi9AABAvAAAhr4AADy-AACmvgAA4LwAAAQ-AAB8PgAA6D0AAOg9AADgPAAAQz8AAEC8AACgPAAAgLsAACy-AABwvQAAyD0AAIq-IAA4E0AJSHxQASqPAhABGoACAAC4vQAAjj4AACS-AAApvwAALL4AAEA8AABkPgAAtj4AAOA8AAAsPgAA6D0AAMi9AABAPAAAHL4AAJi9AAAwvQAA2L0AAL4-AAAUvgAAsj4AANg9AAAEPgAAiL0AAHC9AACgvAAALL4AAKC8AADYPQAAPL4AAOC8AADgPAAA2D0AAAy-AAD4PQAAir4AALa-AAAUPgAAcD0AADy-AACmPgAAqL0AAOa-AAAMvgAADD4AACw-AADgPAAAf78AAEQ-AABUvgAATD4AAFC9AAB0PgAA6D0AAMg9AADYvQAAHD4AAPi9AAAQPQAAmj4AAIC7AADgvAAADL4AAOi9AABwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=g7PAW8270TI","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3656261643137805098"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5726821341984677891":{"videoId":"5726821341984677891","docid":"34-9-17-Z918A8B1D311C0E82","description":"This calculus video explains how to find the local maximum and minimum values of a function. In order to determine the relative extrema, you need to find the first derivative, set it equal to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4293551/4468579d1a9f1e8802cd883d5fd5696e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NZaPHAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Do68okf6-Nyk","linkTemplate":"/video/preview/5726821341984677891?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local Maximum and Local Minimum of a function- Relative Extrema","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=o68okf6-Nyk\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhUKEzU3MjY4MjEzNDE5ODQ2Nzc4OTFaEzU3MjY4MjEzNDE5ODQ2Nzc4OTFqtg8SATAYACJFGjEACipoaGxxYmlkbm90aWdydXFiaGhVQ3Mtc194TVlPLXk0ODRFQ3Z1ckhWOGcSAgASKhDCDw8aDz8T5AqCBCQBgAQrKosBEAEaeIHxBQMB-wUA8vEGBPsD_wEGAvP29___AOkB-Pv5_gEA7fwD-gP_AAAA-wENBQAAAAHz9vgA_QEA7_4C_AMAAAAT-gn9AQAAAAYJAQn-AQAA-wYHBwP_AAABAfYDAAAAAPYHCAP__wAA-gIDBwAAAAD_-f4KAAAAACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABfwTq_7sd4v_L99YA1SXjAYsKKf_9MtQAvurzAKwTzP4E8vAA3Pbw_xL6B_-mEgsB_PnO_v_lBwAg5iUAMeMHAesdGQAg8AQBNicYABgE9P-wMRz96f4d__3J3wAdGMcAHvET_A0L2gEK67sID_48ARHyAv8z8BgB6vYX_vwMEv0NBeH9BBb9BQDo-f7lLyIC9QUAAwMx-wHXEvP9_AIBAwHwDQIDGOUFDgbyBiMDAP7S7vf49fL0Bvz5Fwrw-uEK5_AY-f3--_n0A_n-NusP-94HDwHy8w0H7vTy_wTo9_rpAvcB2f72Bd4xAALb8vX5IAAtrqMZOzgTQAlIYVACKnMQABpgFwEAOvoY0df0QOIN7CEUwrP2zsyz-P_3AP_-Q__3_DXVxh4dAAHFGcqkAAAAIM39OuMA9n_Q-tzw8EX3qZLEOSB4DBwzoQQV5qznB_kT6egg-hH6AAoBlihx57YvEAT5IAAt8DMROzgTQAlIb1ACKq8GEAwaoAYAAIC_AABgwQAAMEIAAGDBAACAQgAAwMEAAGxCAABgwQAA6MEAABTCAACYQQAAeMIAAIC_AACYwQAAhEIAAPjBAACQQQAAkEEAACBBAACgwAAAEMIAAITCAABwwQAACEIAABDBAACEwgAAtsIAAJDBAACwQQAAnEIAAGjCAABwwQAAJMIAAIjBAADIwgAAJMIAADBBAABMQgAAsEEAABxCAAAAwQAAqEEAAGBBAADQwQAAKEIAANDBAACowQAAkEEAAK5CAAAEQgAAGMIAAMBAAABAwQAAOEIAAGBBAAAcwgAAvsIAAAxCAADgQAAAWEIAACBBAAB4wgAAqMEAAIDAAAAAwAAAwsIAAMDBAAB8wgAAMMIAAAAAAAAoQgAA6EEAAIjBAACIQgAAkMEAALTCAAAswgAAgMIAAADAAACQwQAAmsIAAHBCAAAAAAAAEEIAAKBAAABkQgAA2MEAAABBAADQQQAAQEEAAAAAAABoQgAAJMIAAKDBAACCQgAAmMEAABhCAAAEQgAAWEIAALBBAACAwgAAEEIAALBBAAA8wgAATMIAAJBBAACgQAAAEEEAAIA_AABQQgAAOEIAABDBAABQQQAAqMEAAIjBAACmQgAAgMEAAEzCAAAAQAAAcMIAAHDBAAAwwQAA4MAAACDCAACAQAAAoEAAADDCAABgQQAAQMEAAMDAAADgwAAALMIAAMjBAACgQgAAMMEAALDBAACAQQAA8MEAAAzCAACYwgAAYMEAAMhBAACWQgAAUMIAAABCAACgQQAApsIAADBCAACIwQAAoMAAAKBBAABoQgAAXEIAAFzCAAC4wQAAoEAAAADCAABgwgAAosIAAIBBAABgwgAAUEEAAKDBAACAvwAAIEIAAEDAAAAEQgAAgkIAAI5CAAAowgAA2MEAABBBAACQQQAAwEAAACDCAACIQQAAwEAAAAAAAADYQQAAMEIAABTCAADOwgAAAEEAAOjBAACQQQAAdMIAAEDCAAAAwAAAAMAAAIhBAAD4wQAAcMIAAADBAACAwAAAoMEAAHBBAAAAwgAAYEEAADTCAAA4wiAAOBNACUh1UAEqjwIQABqAAgAAyL0AAOA8AAAUPgAA6D0AABC9AABMPgAAbD4AABu_AACmvgAAgj4AAIg9AAD4vQAAgLsAADQ-AAAQvQAAcL0AAIY-AACoPQAAXD4AAKI-AAB_PwAAUL0AAHQ-AAAMPgAAlr4AABC9AACIPQAADL4AAIg9AAAMPgAA6D0AADS-AACIPQAA2D0AACQ-AABAPAAADL4AAJa-AACuvgAAVL4AAJi9AAAEvgAAXD4AAOi9AAAUvgAAPL4AALg9AACevgAAQLwAAJ6-AAA0PgAATD4AAI4-AAA0PgAA2L0AAKi9AAAZPwAAQDwAALg9AACovQAA-L0AABC9AAAcPgAAJL4gADgTQAlIfFABKo8CEAEagAIAAFy-AACCPgAAEL0AACm_AAAwvQAA4LwAAI4-AAAUPgAAcD0AAAQ-AADgPAAA2L0AAFA9AACOvgAAEL0AAHC9AAC4vQAA4j4AAOi9AACSPgAAqL0AABA9AADgvAAAcL0AAOC8AADovQAAiD0AAKg9AAAcvgAAcL0AAFA9AAAUPgAAnr4AANg9AABMvgAAjr4AAHw-AABMPgAAnr4AAFQ-AAAUvgAAlr4AAFC9AABMPgAA-D0AABC9AAB_vwAAMD0AAI6-AACKPgAAcD0AABQ-AACePgAAoLwAABC9AAAwPQAAiL0AAHA9AAC4PQAAiL0AADA9AAAwPQAA4LwAABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=o68okf6-Nyk","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5726821341984677891"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14900443963943334405":{"videoId":"14900443963943334405","docid":"34-7-15-Z8D58E234E031803B","description":"Thanks to all of you who support me on Patreon. You da real mvps! $1 per month helps!! :) https://www.patreon.com/patrickjmt !! Finding Local Maximums and Local Minimums using the Second...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/992157/b0145ad892f7ccefba20020a8089ea5b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/uoFeEwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLKOwTnHGu_g","linkTemplate":"/video/preview/14900443963943334405?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Local Maximums and Local Minimums using the Second Derivative Test","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LKOwTnHGu_g\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDE0OTAwNDQzOTYzOTQzMzM0NDA1WhQxNDkwMDQ0Mzk2Mzk0MzMzNDQwNWqIFxIBMBgAIkUaMQAKKmhoY25hcXdneHRvbGZ4eGNoaFVDRmU2amVuTTFCYzU0cXRCc0lKR1JaURICABIqEMIPDxoPPxOuBYIEJAGABCsqiwEQARp4gfD9CgD-AgAA-wYJ-Aj8AhwA_P70AwMA9gf7_v8C_wDy9wrzCAAAAAD7AQ4FAAAA_-71CP39AAAEAu0GAgAAAB35AvX9AAAA_wIMBP4BAAAIBA8GA_8AABMEAf3_AAAA-hUI_P7_AAD1BfYEAAAAAOn4BwT__wAAIAAt6A3XOzgTQAlITlACKoQCEAAa8AF__QT9wsy4ALTzxQDzLcwCpAYp_vtHwQC21RkC5-rjAdIo5ADe_QAA1xoCAOYgA_9Hxb_-zcP8AVHP-wAOufwA3-4QARrE6ANNFiADPPUc_83QE_7TuPgBOtXJAwYxy_0Usgb9QCPm_xX_wwQjFBb-URgkBRDrVAHQkfwB6eX__Qclu__5UN4E_egeANXxQgoU1ykAAvcT-8II2gMA9hX72xEl8xMavgEY2AQKRgn-C5XEEv8R-OkOWUIc8cALwfzI7D8Iqr318_jUIQAX5_T03TflCw3o8Qsy3g0STwf2_RL0-_Hz9BD35rrZA-oSAf4gAC3MyNY6OBNACUhhUAIqzwcQABrAB24T1r5Rau-8gtYPPFNgHL0kQuO8b5EFvRTamL0nT3k9CxGJu9SBDD5SvYC9AtLAuxToM77779w8WdOGvMuAMz7m0Yi9mGIzPHE9Wr7nFr89hUyovIkLEL42aq66zo_5O_Q2Nryd-pu8cSSrvLJ1mj2ly9G8LegBvCGys71NO627qzFXvPlGub1Tl5y9ZZrfvGmO7Ly35KK9JxHGPOvgsD1_eIy8fBVPvIOh7j2LWjC9_AfHu3q2qL2u4sO7KYvrO1pHNT2Dxqe7yIPjPO7QML1Yeoi8iyrPu_p9P70alB89xgVkOjbsMj0ADQU9xNI7vbybIj3AA6i9wz-yO12Rs72MQhg8PjWHuz7qvz3otPg8dgqPtxjSAb5Jg6s9liYlvCpwkj1lcX-8G_ZWvADyhD2JKwI9-CsuPCCihzz5pG49oEiBvP1xsTx4RLU9tVd6PIbiTj2Q_nK9RqBVvJwEpTxdAHU8oyeAvNO2hjugJmk83ejIvLa1ar16r1U9v9YlPOFG5Ty2HYm8qr6OPAUjpT3WAju-SeWaOmHeozyGPOK9WUlxuyKwmD0WxnE8I7t3vE7wzT1mM-e9_1cAPJb40jxBdgi9IrH2uj2RcT34YS69-eaKu8c5AL26GrS8P3kzvDSRiL30pmI9fmbau9OUoz17jn49AfXqO3JT_zu_gtS9OouDOm1YUz3V7Uc8MufXurqenT3Te9M7eTWKOnVEtLzMYfe8kd8MurHoLL1mHcS8jluKu2e8mL166_K81BQMOZRAtD3gzWS94odqOQf1YzuCFpY63poNO6komL398QM9y0V9OP_FebtvkJq86AQ2uRSdi72JeuG9xidwOaXvHDxWX8I8BVi7uq2bVz00Jkk9LeiFuFMekr1KG8i94XObN0Nxh73LvBe8AyGfuMKi4jwGuKC8HrEkuNTjCD1fPTO98WvLuK4dezzceSy9F0IGNxoAxTyNiWM9kX06N5i0Ujs_cMW99y5gOe2DLDzeZKo9Xum9uAgDL70Utqo9P-glN4O41zwZfxM8C0WUOJgarD3X8Km9AuheuKrty7zTgZE9BpNmt5r_nL3QkJs9AtsuOLqsGD3xxU093NLLOAu9WTxQyRQ8Bxk8t0GOd72iDBU9lsz7N5JdGT7ZT1C9rMI_uVxJAb3K3tK9FyIEue4B3zzVXQm-RxjEOIbNi70IsOg9VLOWOL2vBT2lSQm-rZ6FuMr0cD0i4Ss-8cuKOP8KdD0YwJo9T3RxN2KCWr1bIGY9ZDW7N68Mxb0j7hs9Bw3dtiAAOBNACUhtUAEqcxAAGmAd_wA7CifIAPEI7fXd-ifn4u7P2ckf_wUkAM4kBPX9G8TXHfj_Iegb964AAAAz594P1QAGa93m_AA2F_OKkd4kC38k-ivO6SrPz8wn-Cff_xvvBCYAL_7cOBDCxTwq3CcgAC1B9iM7OBNACUhvUAIqrwYQDBqgBgAAXEIAACDBAABwQgAAXMIAADzCAACYQQAATEIAABxCAAAkwgAAXMIAACDBAACIwQAAAMEAAADAAAAQQQAAoMAAAFxCAADwwQAAnkIAADDCAACYwQAAIMEAAFjCAABIQgAAUMIAAIDBAACAvwAAMMIAAPhBAADwQQAAqMEAAKBAAAAgwgAAEEIAACjCAAAMQgAAEEEAAKxCAAAQQgAAYEIAAKhBAADgQQAAwEAAAPDBAADYQQAAAEAAACBBAAAcQgAAAEIAAKDBAACgwQAAOMIAALjBAABgQQAAIEEAAEBBAABcwgAAoMAAALhBAAAEQgAAkMEAAHDCAAAYwgAAIMIAADBBAAAcwgAAMMIAACTCAAB0wgAAPEIAAKhBAACwwQAAEEEAABBCAABQwQAAZMIAALbCAADIwQAAIEIAALjBAADowQAAyEEAAKDBAACQwQAA4MAAAHBCAACQQQAAHMIAANBBAAAMwgAAQEEAAABAAACgQAAAEMEAAFBBAACawgAAKMIAACRCAADgwAAAokIAALbCAACYQQAASEIAANjBAABowgAAIEEAAPDBAACeQgAAAMAAALhBAACAQQAA0EEAACDCAAAgwQAAUEEAAGRCAABEQgAAnMIAANBBAACKwgAAQMIAAMjBAADgQQAACMIAACDCAABMwgAAlMIAABzCAAAUwgAAcMEAAFRCAACAwAAA-EEAAIhCAAAMwgAAQMAAAIRCAAAgQgAAgEAAAGDCAACgQAAAYMEAACxCAAAAwQAAuEEAABBCAAAAQAAA-MEAAIBBAAAwQgAAqMEAAIBBAAB0QgAAqMEAAHDBAAA4wgAAmsIAAKBBAABEwgAAgMAAAAAAAAAUQgAAQEIAAADAAACgQQAAaEIAAJjBAABsQgAA6kIAAKLCAABgwgAAgEEAAKBAAADowQAAgL8AABDBAACYwQAAiMEAAIC_AACAQgAAdMIAAPTCAACIwQAAAMAAAFhCAACCwgAAwMEAAMhBAACAQQAAoEAAAIRCAABgwQAAwMEAACjCAACQQQAAYEEAADBBAABQQQAAfEIAADjCIAA4E0AJSHVQASqPAhAAGoACAACAOwAA4DwAAJI-AACgvAAAML0AAGw-AACaPgAAQb8AANa-AAAkPgAAmD0AAJ6-AAAUPgAAXD4AAIC7AAAQvQAAZD4AACw-AABcPgAAfD4AAH8_AADoPQAAPD4AAFA9AACIvQAA-L0AAHA9AACKvgAABD4AADw-AABEPgAARL4AACQ-AADgPAAA4DwAAEC8AAAsvgAARL4AANq-AAA8vgAA-L0AAHA9AAC4PQAANL4AAGS-AADgPAAAMD0AAJa-AAA8PgAALL4AAK4-AAAcPgAArj4AAJg9AABkvgAAqL0AAEU_AAAwPQAAMD0AAHA9AADgvAAAiL0AADw-AAB0viAAOBNACUh8UAEqjwIQARqAAgAARL4AAMg9AAAwPQAAOb8AAIC7AABAvAAAFD4AAKA8AAAUvgAAij4AAMg9AABQPQAAQDwAAAS-AACIPQAAcL0AAKi9AAAZPwAAcD0AAK4-AADovQAAiL0AAKC8AABwvQAAqL0AAPi9AACAOwAAoLwAAIg9AAAQPQAAEL0AALg9AADIvQAAFL4AAHC9AADgvAAA4DwAABQ-AAAUvgAAmD0AADS-AAAsvgAA6L0AAKg9AADoPQAAED0AAH-_AADgvAAA4DwAANg9AAAkPgAAML0AAHw-AAAQPQAARL4AAFA9AACAuwAAqL0AANg9AABQvQAA2D0AAKA8AACAuwAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=LKOwTnHGu_g","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["14900443963943334405"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1261000582"},"13285432627413121646":{"videoId":"13285432627413121646","docid":"34-7-8-Z508E15750163322A","description":"In this video, we use the First Derivative Test to find the local maximum and minimum values of a rational function. How to find the local extreme values? We first need to find critical numbers...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4219512/972a2d88ef2b9f89492c657702583daa/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vdFlHQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Ddw_ujbbN8ys","linkTemplate":"/video/preview/13285432627413121646?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Find Local Maximum and Minimum Values of a Rational Function | Calculus | Glass of Numbers","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dw_ujbbN8ys\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2WhQxMzI4NTQzMjYyNzQxMzEyMTY0NmqIFxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxO7BoIEJAGABCsqiwEQARp4ger4_PsC_gD29BAI-gb9Ag3--gn2__8A7AT8-AUAAADrBAnxAAAAAPoRBP4HAAAA9vf2BAL_AAD_B_z1BAAAACABCf_5AAAADwz7BP4BAAD7C_YNBP8AAAsG_fz_AAAA-gEKAPr_AAD2B_4KAAAAAPv3CgEA_wAAIAAtjk7LOzgTQAlITlACKoQCEAAa8AF_Avr_6ebjAs8W9wG_LAoAnjUD__w00gCxFwEBuwPhAP4Y8wDmFNP_DywXAMwv_v8U2LMC_-QHADzc_AAl0-4B2gL8ASbT8wE5KRkA_gL3_ssFHf8B9Ov9_NP6ACAu4_7z-Sn8B_DsAPQV2AEKHzUDDQgsBDXvGQHfqyUA3fv8AvXq7_vgDQoDC98P-L7aJwILyusFFhMI-tEnDAQTAvQH8vMc-Agv1P0Y-AgJFgP__NT97P_08fMHAwkcA98O7wPl4R7_uAfr-u0CD_kb9fYB5BLwCCHY6AIM6wv6-fEPBQTf-PnoGfEFzx33Dt8I9OwgAC34xhE7OBNACUhhUAIqzwcQABrAB3pR475vUSC6hTJDPHdlJ74VRJO8QcnuvO1-1b076oO855RbvB5P6z3an4W9czO3vPaWYr4FeIE8eT8NvMuAMz7m0Yi9mGIzPIc0Kr6eaag9tnJlvLeyJL4pFcM8RNBivNz1Ej2RC868oAcQu6nB1D3qqDQ87UqmvAK1Xb1fehs907AuvYlH_byTnai9a3ARvfSV9jx7IAi9eI99POvgsD1_eIy8fBVPvBasJzxxtak8-8QmuxCUmbvIK4s97ubOvHVmLD2mi8M8_3SoPBMJi70KN1S9sraOvGwHg73NFto8ljCJvOITH7zo__A86M4dvcjw8zw0AGq9vJ_LO_mgB770Gps9L4GAO_CLCz7zP7O74jrGOzHCCr3b0B49-d9Gu1KHDzxQE6K8oGyKvM98oz24MlI9p9BUPOlrET1NGn68TPIOPG62I735WHA9CRLAPPTzUD3TwA-9u5KuvPelsz1myKe8_GXBvCcHrb0XVmC89Pt-vJZLOT3WJHM9EzXqOyGNLzyqR5o8vM9xPMU1Qz34UQ2-CW8su_pYpr3LUJC9Haeuu-i-zD0AMGM9ruYMO_YFqT3BvNG8b3zxu6xx9rx8j2S9gMKPOtpk3jz86j46RMQoPCGGZ706aAQ8XYyeu9i_xrzE3lU8f_ExvDd1-TzVQik94B-Au_GeY71ddo69idXGuTqcnz3aOrg8XHxAOyVIuz2eoCM9YE8ruYFb9z0IS5a9-F_uOM41Cju_jY69tkHUup2ovroD2ZG9GkoIuu6vDj6fEpG9ftCUOZnAiD3zdt88xQeKt6w84b1pQ1Q9lVuyOLnSYT0u3pS9c0_dOMui8LxbQh6-NwXjOUC4J73jfaY83IEiOh4IfzzmaUo967MEOu_14juIKpG9bYMMOTdTobyzrxU5_TI1OZH4cD2779g81Y9POONMODw_FzI84v4Bup-7M70lO5s80ngjOWl7Cj2TFWg8G5CpOEHxAz1xT8G91zh7Oae9Fz1oTmg9hmA6OZvO6TzW8lQ9VMseuFWZlDuTTIM9lA-ZuN5Z-zzY8Z-9GA2XOE-lwD2bx0E9ssjcuCL7AL7GXyQ9F5hlOJpWs7udwwu93ei-N686FTz5f3o8ckY8OFfCA7wACI48jOKaOPcBKD5wYd298We_uVxJAb3K3tK9FyIEubvtgryX5qG9-jj_tzILs70S_kA9snK2Nw0SRzx0fPS9VlhZuMr0cD0i4Ss-8cuKOO3EmzxFScg97lIKubKrj718uvo8c5Q0N5hnSr1BFCc88kRMNyAAOBNACUhtUAEqcxAAGmAs-wBJ-RjR7_A-6xjfERHIyPPK6LwO_wXn_-Uh6ggCOrXUDB8ADu0dyaQAAAA0xuwX2wDmf9LnxBkAJ-KXnrQiEGPwBh-14xjXp94HCBkK7yACJiEA_fmNM2UWy0XkA_wgAC2ooRQ7OBNACUhvUAIqrwYQDBqgBgAAmEEAAGDBAAAYQgAA8MEAALDBAABAQAAA5kIAAHBBAAAgwgAAFMIAABxCAACQQQAAGMIAAKjBAAA0QgAAmEEAAFRCAAAAQAAAkEEAAEzCAACYQQAAiMEAAETCAAAMQgAAHMIAABBCAAAgwQAAgL8AANhBAACgQQAAHMIAAMBBAACmwgAAgEAAAJDBAACAPwAAQEEAANRCAACoQQAAgEIAAIDBAABkQgAA_kIAAIBAAACAQAAAnMIAAFRCAACwQQAAgEIAAIpCAADAQAAANMIAAFDBAACAQAAAmEEAAGBBAACcwgAACMIAAKDBAAAkQgAATEIAANDBAAAgQQAAaMIAAMDBAADgwQAAaMIAAADCAADgQQAAUMIAAExCAAC-QgAAgMEAAChCAAAgwgAAwMEAAIjCAAAIQgAAKEIAAARCAABQwgAAWEIAAOBAAAA0QgAAGEIAAIA_AACgQQAAqEEAAJBCAACAPwAAwMAAAKxCAADgwAAAtsIAAJBBAABIwgAAIMIAAMhBAACKQgAAGEIAAJjCAAAkQgAANMIAABDBAACUwgAAKEIAAABBAABAwAAAgL8AAKBBAABQQgAAHEIAAMDBAAD4QQAAQMEAAEBAAABgQQAAUMIAAHBBAABgwQAA-MEAAIjCAAAcwgAAGMIAAABAAADIwQAAkMEAAIC_AACQwgAAMMEAACjCAADIQQAAVMIAAKhBAACOwgAACEIAAMhBAABgwQAAJMIAAKDBAABQQQAA6EEAAKDAAAAQwQAAUEIAAAAAAAAcwgAAOEIAABBBAABgwQAAGMIAABDBAACgQAAATMIAANhBAAAwwgAAsMEAAIjCAACOwgAA0EEAABBBAACAQAAAkEEAAODBAAAkwgAAEMEAADBBAAAkQgAAMEEAAODAAAAwwQAAAEAAAEjCAAAUwgAAcMEAACDBAAAcwgAATMIAAMDBAAAgQQAAuMIAAABAAAAMwgAAWEIAAChCAAAQwgAAwMEAAFBBAAAUwgAAYEEAADDBAABUwgAAIEEAAEzCAAAQwQAAoMAAALhBAACaQgAAGMIAAPhBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAmr4AAI4-AABkvgAAQLwAAKY-AACOPgAAT78AAPi9AACAOwAAEL0AAMq-AABcPgAAgDsAADS-AAAwPQAAqD0AAMg9AAAUPgAAxj4AAH8_AAAMvgAAij4AAII-AACOvgAAgDsAAFw-AACgPAAAtj4AAEw-AABsPgAA4r4AAHy-AABsPgAAHD4AADA9AAC4vQAArr4AAMK-AACivgAAUL0AAFA9AACaPgAAFL4AAO6-AADIvQAALD4AAIa-AACgvAAAXL4AAKA8AADoPQAArj4AACw-AACAOwAAqL0AAD0_AACYPQAAcL0AAOg9AABwvQAAgDsAAKg9AADgvCAAOBNACUh8UAEqjwIQARqAAgAAmr4AAKC8AADgPAAATb8AAGS-AAA0vgAAJD4AAIY-AAC4PQAA6L0AAIi9AABAvAAAqD0AAJi9AAAwPQAAUL0AAKA8AACqPgAAcD0AAMo-AACIvQAA-D0AAAS-AACgvAAAUL0AAHS-AABkPgAAiD0AAIC7AACIvQAAgDsAAHQ-AAAMvgAAcD0AAOi9AAAcvgAA2j4AAGQ-AACGvgAAij4AAGy-AACivgAAjr4AAI4-AABUPgAALL4AAH-_AABkPgAAfL4AAIo-AACoPQAAqD0AAKA8AAB8PgAANL4AADw-AACgvAAA2D0AAIo-AAC4vQAAFD4AAAS-AACovQAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dw_ujbbN8ys","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13285432627413121646"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2099950270"},"11433720328487257697":{"videoId":"11433720328487257697","docid":"34-0-17-Z21055469CC2123E9","description":"This calculus video tutorial explains how to find the absolute minimum and maximum values as well as the local max and local min. It explains the extreme value theorem for finding absolute...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4319142/a3ad50d9ad7172e934881fb4706f71c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KZG-sQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVZuJ4bGj2D0","linkTemplate":"/video/preview/11433720328487257697?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Absolute & Local Minimum and Maximum Values - Relative Extrema, Critical Numbers / Points Calculus","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VZuJ4bGj2D0\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDExNDMzNzIwMzI4NDg3MjU3Njk3WhQxMTQzMzcyMDMyODQ4NzI1NzY5N2qTFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxPsIIIEJAGABCsqiwEQARp4gfgJDwEAAADx8AYE-gT_AQsA7wH2__8A4gX9AQD8AgD6-Qv5AgAAAAsVAQn-AAAA-Pn6EP__AAD9Afnz9AAAABoC_QD3AAAAAAf9AP4BAAD7C_cNBP8AAAUD_QQAAAAAAAQE9vv_AAD2____AAAAAP74_goAAAAAIAAtygDROzgTQAlITlACKoQCEAAa8AF_9P8AzPrO_8j21AAAEd0Bqg0c_wgx8QDa4P0A1AbfARviFgDLDvb_L_vw_7cIAf_eBwH_AucYADTJIv8w3EICCyzpASQX6wEhEzACDPz__s8wAv7J8CEC9NqyAAQk2f4d3gT-6Bv-_wrqtwnv8EcDG9EIBBv5C_7gEwgCzykL__f4xf4ZIPoEGNv4_-QyJAIC-hECBDT7AQga3_7u6B39CO8Y9hT13AD4GO4BHAQO9dbjIAGz5vsCEMkR9fLX8w7m7xn459EMA-0CD_kK_gP0zzjuB-8T_wAH-w4D_uADBgYM8vwM8vQAAS398Ab_-QggAC2kNxE7OBNACUhhUAIqzwcQABrAB7fs2L5dd6k8sdTEvNAQyT1Qvb88CzDiu_gzPLyHSzM9xMGUuz7Q6j2ZzvM8nYdRu3Tq6r04QhC9tmAQvBSUQj5GRRy9c-gAvNlDS75DknY7KX-CvWLerr1hGZu8vjcfPPZzNL1_vq28Rjniul6Norw1OUa9uAGEvNJoNz1AbEm9_3XTvOFeGT138aO8kb4kvDb7aL1WgkU8NMqpvJSUBT3nON25GbsQPFwQYD0Al1a9jlGovJkp7b3VKQs88qG6PAQPwj0iJoc9EEpOPEl0Jb0IXBK9_lx6u5EM2b3rIuA8ibW4vH7-Cz7NsZw9xg6PvErExT2X0xS9MGOKvMxQS71Yy709HQbOPNwEqT2Dv989HDGpvK70Kr5txd49itQLu3PY_TxJ9oQ55ccpvKdJ3zz8ooy7UoTvPDLPJT0kTRc95rrfPAib8Lz_Yxw9Fw2ZPJ5XgT3AX6c8ioYWvMesuD00iZU8SmoZPLt8a72Dw2Y8IHucO7nfQT38I6c90yk0PFoM4LujWK68YMegu8U1Qz34UQ2-CW8suxOJGL3nujq8pPGVvHR-yjxqJHM9hcSou1s-lz34pMO9qNQ6u33oQr3wOxy9_Y33OcTCOr3-95u9kzYVPCMrhL0H9J09csADukvYrbyrFbe9xZoCvIsC2Dx0RhS9g_Q5PN7gUL1gIfO92gh-uuPjvj2oNR0-FjSpOn-Kvry4A3U9gxZQu8gjrT3eEd88CFVNuxgj0jy1sGE7eZ9bOwkQb71wyCu8NDwLOx-i0T1Y-B-9edGKOPA74bwsL9Q8Ee4lO_7rkb1nh1M9nEjxuBJz_7zrUgg9BDIwuVxUC72cFfG93J51OUMg9z1ILJO9ovcYua-ftD2ml9g8Q8qbOW3dUr1jXLM7eQeCucYl_bz3fKi8b6eduI-ggj3oijK6Qr4iOJ2bNjyqj8E9I3q-Nm2dyTyioC-9f6OmuRcDFT2_fHc9PQcHOTtWJD0JkYg7aHmEtv1Ylz3ct_o9HVbENSAYNLvTbPm8DTpJuCNhhDy6Z709JV93t2CbBbyMRE29dp0vOBd4-LzWjdc9ONS6OMk4q738lD69U5T7tzaL_Lz72--8kvuHuPYnAT5EUku9G2w4OETe0j0aHWs9MOXKN5JdGT7ZT1C9rMI_uavfFr0N-x2-o7z-uB4qeDslBOu9I79nOIEmYr1NqBs9dgd1OOTVnrx6ifG9ZVUwuKhTvj0idKs8VymcOJKoHL1HVTM95q98uLQWwL1UNLs9PF-yONH_1zyz6x6-2-qQNyAAOBNACUhtUAEqcxAAGmAm-wAoGQjS5_ZN3evxGgC4suTY2c00__ES_wYQBwv-XcbhBCYAGscqxJ8AAAAOwus4zgDsf7rK1vsr9gSwj7RIHX3kHPaoGfYFxMUB99r-Bjn_QQEAyvyfE2XlskAZAw0gAC3oIAw7OBNACUhvUAIqrwYQDBqgBgAAgEEAALDBAABAQQAAXMIAAKDAAABAwAAA_kIAAAhCAAAQwQAAAMAAANhBAADIwQAAXMIAAMhBAAAwQQAAmEEAAKBCAABgwQAAiEIAANBBAAAEQgAAQMEAAIDCAACgwQAAoMEAAOhBAAAQwQAAkEEAACDBAAAYQgAAiMEAACDBAAA4wgAAAEIAANrCAABgwQAA2EEAAABCAAAAQAAAFEIAAPBBAABAQgAAbEIAAHDBAAAgwQAApMIAABBCAABMQgAAgD8AAHxCAADAwAAAuMEAADTCAAAgwQAAAAAAAIRCAADEwgAAwEAAAMBAAAAYQgAACEIAAJbCAAAEwgAAcMEAAIjBAAA4wgAANMIAAGzCAAA8QgAAgMEAABxCAACQQgAAQMEAACBCAAAEwgAAQMAAAJbCAACQQQAA0EEAACBCAAB4wgAAzEIAAEDAAACYQQAAJEIAAMBAAACIwQAAEMIAAFhCAACIwQAAIMEAAEhCAAC4wQAAwMAAAAhCAAAQwgAAMMIAADzCAABMQgAAuEIAAHzCAACoQQAAwMAAAAxCAACUwgAAwEEAAOhBAAAgQQAAgEAAAERCAAB0QgAAcEIAAPDBAADwQQAAUMEAADhCAABkQgAAUMIAACzCAACgwAAAuMEAAHTCAAAAwAAAGMIAACDCAAAAwAAAwMAAAFBBAADIwQAAOEIAAAzCAABAQAAAwMAAADxCAAAswgAAaEIAAIBAAAAgQgAApMIAAFDCAAAQwgAAQEAAABBBAABAwQAAQEAAANBBAAAgwQAAsEEAAODAAAAcQgAANMIAADBBAABgQgAAyMEAAABCAABAwAAAVMIAAGjCAABAwgAAAEAAAIDCAACoQQAAMEIAAGDBAAAAQQAAEEIAAEBBAABQQQAALEIAAEBAAACgQQAAMEEAAODBAABAwAAAQMIAAJjBAAAgQQAAAMIAAGDBAACAQgAAksIAACzCAACQwQAACEIAADhCAACQwQAAHMIAAJjBAACgwAAA4MAAAABBAACwQQAAUEEAACDBAACYQQAAMEIAAMBBAABgQQAAHMIAALDBIAA4E0AJSHVQASqPAhAAGoACAAAUvgAA-L0AAKo-AABEvgAAgDsAAI4-AAABPwAAKb8AACS-AAAEPgAA6L0AAAy-AAAcPgAADD4AADC9AAAMPgAALD4AADA9AAC4PQAA_j4AAH8_AACOvgAAfD4AAFA9AAC6vgAA4LwAAKI-AAAcPgAAZD4AAEQ-AAAkPgAAir4AADC9AAC4PQAALD4AAOC8AAAwvQAAmL0AAK6-AABcvgAAgLsAABA9AACmPgAAHL4AAK6-AAC4vQAAnj4AAJK-AABwPQAANL4AAJg9AADoPQAAjj4AAHw-AABcvgAAgDsAAC0_AABAPAAAQLwAAFA9AADovQAAuL0AAFw-AAAsviAAOBNACUh8UAEqjwIQARqAAgAAhr4AAMg9AACoPQAAU78AAOC8AAAwvQAARD4AAFA9AACAOwAAEL0AAIA7AABAPAAAcL0AAKi9AAAsPgAAML0AAFy-AAANPwAADL4AAMY-AADIvQAA6L0AACS-AABEvgAAML0AAES-AAAQvQAAQDwAANi9AAAwPQAAQDwAADQ-AAAkvgAAmL0AAOg9AACIvQAAyD0AAEQ-AAB8vgAA6D0AAAy-AACKvgAARL4AABw-AAC4vQAALL4AAH-_AABAvAAAML0AAEC8AABQPQAAcD0AALg9AADIPQAAgLsAAOg9AAAQvQAAgLsAAEQ-AACgvAAAyD0AAKC8AAC4PQAAQLwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VZuJ4bGj2D0","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["11433720328487257697"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2013054470"},"14668031113569799756":{"videoId":"14668031113569799756","docid":"34-10-16-Z3719ABDFC39D9C03","description":"Find the local maximum and minimum values of the function f(x)=x+2sinx in the interval 0≤x≤2π. Discuss the curve f(x)=x^4-4x^3 for points of inflection, and local maxima and minima. Show that...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3329709/34b143c43c96429f8c3d95edfff1a3c9/564x318_1"},"target":"_self","position":"12","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJBjRvJhY8sU","linkTemplate":"/video/preview/14668031113569799756?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local Maximum and Local Minimum/Differential Calculus/Matrices and Calculus","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JBjRvJhY8sU\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDE0NjY4MDMxMTEzNTY5Nzk5NzU2WhQxNDY2ODAzMTExMzU2OTc5OTc1NmquDRIBMBgAIkQaMAAKKWhodWlydWhqaW1pY2Nud2hoVUNwbHYwRGZMd3ZUM0szZTNDNTlzMlpBEgIAESoQwg8PGg8_E-4JggQkAYAEKyqLARABGniB9_kE-_wEAP_uAgn7CP0C_Qj4_fj-_QD2B_z__wL_AO_8APT5AAAABwgF_QIAAAAE-_wL__0BAAb--PUEAAAAFfn8AP8AAAAKBvcI_gEAAAgF_g4E_wD_CgkE-_8AAAD2BP8A__8AAPsB_AQAAAAA9vAMBwAAAAAgAC2W4N07OBNACUhOUAIqcxAAGmD3HwBPDwrOwxZK4AHrFCLlw-nKsMIc_xEkAPUG68H0NMj-9jn_E94X7KgAAAAKuPcn7wDObb3ntbAjI-S5nb4nJX_q_ujv2RbN5NcG4h0AHSH98eoAyAMbKi7l-zb3_icgAC3R4xs7OBNACUhvUAIqrwYQDBqgBgAAqEEAANhBAABAQgAAAEAAAL5CAAAEQgAArEIAAIBAAAAAwQAA4EAAAIjBAAAQwQAA4MAAAAzCAADwQQAAmEEAAABBAAAUwgAAYMEAABDBAABAQQAAHMIAANjCAADYQQAAIMIAAPjBAABAwgAAnsIAAKpCAAAQQQAAQMAAALBBAADIwgAAyEEAAHTCAABAQQAAAEAAAL5CAABQwQAAUEEAACxCAACowQAAQEEAABDBAADMQgAAtMIAADDCAAAwQQAAIEIAAGDBAACGwgAAIEEAAKBAAAAAQQAAUEEAAAxCAAAAwwAAIEEAAPhBAAA4QgAAEEIAAKLCAAC4wQAAdMIAAPhBAAC4wgAAwMAAAMDBAAD4wQAAWMIAAJJCAABwQgAAqMIAAFBCAAAcwgAA0MEAAATCAACAwAAA4MAAAEBAAAAAwQAAhkIAALDBAACoQQAAFMIAAODAAACAQAAAQEEAAHRCAAD4QQAAuEEAAJxCAACAwQAAAEAAALhBAAAAQQAAwMAAAJjBAAAYQgAAkMEAAPjBAACYQQAAoEIAAIBBAABQwQAAkMEAAJDBAACgwAAA2MEAAIA_AAA8QgAA0EEAABDBAAA4wgAAIMIAAFRCAAAAQgAAcMEAAEjCAADIwQAAZMIAAMDBAAAAwgAAEMEAAKhBAADgQAAAKEIAAKDAAAAAQQAAuEEAAAzCAAAEwgAAAMEAADxCAACQQQAA8EEAAERCAABAQAAAwEAAAMDBAACAwAAAQMAAAERCAABgwgAA-EEAAAxCAABswgAAAMAAAKhBAAAMwgAAJMIAAMhBAAAgQQAAAEAAABxCAACAwQAAGMIAAFBBAACEwgAAUMIAAGTCAACIQQAAuEEAAATCAAAYQgAAwMAAAATCAADIQQAAAEIAAHDBAACgwAAAJEIAADBBAAAgwgAARMIAANDBAAA0QgAA2MEAAPBBAACgwAAALMIAAKrCAACgwQAANMIAAHRCAACQwQAAQMEAAMjBAABQQQAAIEIAADBCAAA0wgAABEIAAEDBAAAgQQAATEIAAGDCAADgQAAAwMEAAADAIAA4E0AJSHVQASqPAhAAGoACAAD4vQAA6L0AAEQ-AACIvQAANL4AANY-AAB8PgAAFb8AAOi9AAAQPQAAuL0AAIK-AAB0PgAA4DwAAKi9AADIvQAAvj4AAHA9AAA0PgAAtj4AAH8_AAAcvgAAJD4AAAQ-AAAMvgAAQDwAALg9AACIvQAAfD4AAFw-AAD4PQAAtr4AAMi9AADIPQAA-D0AAOA8AAAMvgAAXL4AAJ6-AAC2vgAA4LwAAKC8AAA0PgAAiL0AAMi9AAAEvgAA2D0AABy-AAAkvgAADL4AAKC8AACoPQAAgj4AABQ-AADovQAAoDwAACc_AACgvAAAUD0AAHA9AABMvgAAqL0AAOg9AACOviAAOBNACUh8UAEqjwIQARqAAgAAFL4AAII-AACAuwAAJ78AAKK-AABwPQAA1j4AAKI-AABQPQAAcD0AADA9AAA0vgAABD4AADC9AABwPQAAML0AAKA8AADCPgAAJL4AAMI-AAAwPQAAoDwAAAS-AACYvQAA4DwAAHy-AAC4PQAAyD0AAPi9AADIvQAAoLwAAAw-AACKvgAAQDwAADS-AAA8vgAAmD0AAAw-AAAcvgAAPD4AACy-AACSvgAAcL0AAPg9AAA8PgAAcL0AAH-_AACGPgAAHL4AACQ-AAAwPQAAkj4AAKC8AAB8PgAALL4AAEQ-AAC4vQAAHD4AAGw-AABAvAAAiD0AAFS-AADYPQAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=JBjRvJhY8sU","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14668031113569799756"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6843836119813282091":{"videoId":"6843836119813282091","docid":"34-8-11-Z4509A6E7AA73012E","description":"For My Notes ( Fill this Google form ): https://forms.gle/rJYeG4cUhWbX7FeZ9 Connect with me over Instagram for any sort of queries! Instagram: / therealnarad Local Maximum, Local Minimum and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3130967/256dc456163b757172d5c922e144cf0f/564x318_1"},"target":"_self","position":"13","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dzsh7EI3JafU","linkTemplate":"/video/preview/6843836119813282091?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local Maximum, Local Minimum and Critical Points in Multivariable functions","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zsh7EI3JafU\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhUKEzY4NDM4MzYxMTk4MTMyODIwOTFaEzY4NDM4MzYxMTk4MTMyODIwOTFqrw0SATAYACJFGjEACipoaGFqd3lvYWJtbHplY2NkaGhVQ1NESi1veXlUZm1iLUZSdUh1TnFJY1ESAgASKhDCDw8aDz8TrwWCBCQBgAQrKosBEAEaeIH7BAEC_gMA8vEGBPsE_wEODPIE9QAAAOkB-Pv5_gEA9fAJ_P4AAAAP__wPBgAAAP7-_v_4_gAA__r5-wMAAAAS_gD4_wAAAAUB_Qf_AQAA_wABAvsCAAENCAEFAAAAAPgKB_v7_wAA_wX2AwAAAAAB8QcOAAAAACAALZ112zs4E0AJSE5QAipzEAAaYBQFACz_EvLmDzL66QAJGfq049Xn7h3_BgwA7y4K8PoZ0NIJHQAfzxLmuAAAAA3N8y_aAP9Z3P7S2REf9rjA3RkDf_4D8MT5Kd3c9-LJJS3iBRMj8QAL-gAQQdfjKiTYBCAALUsLQDs4E0AJSG9QAiqvBhAMGqAGAACIQQAAQMAAAKBCAABQwgAAcMEAADTCAABQQQAAUMIAAAjCAADAQAAAQEAAAFDBAAC6wgAAVMIAAExCAADoQQAAUEEAACDBAACIQQAAZMIAANjBAACYQQAAyMEAAGRCAAB8QgAAZMIAAJjBAACIwgAAiEEAAIxCAADIwQAAMEIAAATCAAAgQQAAbMIAAGDBAADwwQAASEIAAKDAAAAkQgAAKEIAAMBAAAC4QQAAUEEAADRCAABwwgAAmsIAAABAAAC4QgAAMMEAADBBAABswgAAoMEAAHBBAADIQQAA4EAAAJLCAAAAQgAAaMIAACRCAABcQgAAoEEAALjBAAD4wQAAiEEAAABBAABAQQAA6MEAAOjBAACAwQAA2EEAAGBBAAAIwgAAiEIAAKBAAADowQAAqEEAAEBAAAAYQgAAUMEAAETCAADAQAAAMEEAAKJCAABAQQAAbEIAAMjBAABMQgAA8EEAAIjCAAD4QQAAEEIAABBBAAAAwgAAYMIAAIbCAAAQwQAAYEEAAFhCAAAUwgAAQEAAAMRCAAAQQgAAAMMAAFDBAACwwQAAEEEAAIBBAABAwgAAgkIAALDBAAAAQgAACEIAAIBAAACSQgAA4MAAAABAAACIwQAAGMIAANDBAACQwQAAGMIAAJDBAAAwwQAAXEIAAHBCAAAwQQAAosIAAODAAACCwgAA6MEAAMjBAADgQQAAMEIAAKjBAADQwQAAQMAAAAxCAAAcwgAAGMIAAIBAAADYQQAANEIAANDBAABAQQAAoEEAACTCAACAvwAAAAAAADDBAACYQQAAkEEAANBBAACgQAAANEIAABBBAAAQQgAApsIAAHDBAAD-QgAAgMIAAIA_AAAwQQAA4EAAANDBAACIwQAAVEIAAChCAAA0QgAAQEEAAADAAACQQQAAoMAAADzCAABEQgAA6EEAAHBBAACAwAAAUEIAAKBBAACgwQAADEIAAKBAAAAYQgAA2EEAAPDBAADEwgAAaEIAAJDBAADAwAAAHMIAAGDBAADoQQAAAAAAAABCAAAQwgAA-MEAAEBBAABgwgAAlMIgADgTQAlIdVABKo8CEAAagAIAAMi9AABUvgAAyD0AACS-AACYvQAAhj4AAM4-AAAnvwAAfL4AAGQ-AABQPQAAuL0AAFQ-AACYPQAAUL0AAJg9AACSPgAAiD0AABw-AACaPgAAfz8AAMi9AAC-PgAAmD0AAL6-AACAOwAARD4AADC9AABAPAAA4DwAAEw-AAAwvQAAQLwAAOg9AAB0PgAAcD0AAIi9AABMvgAAjr4AAPi9AABQvQAADL4AAIY-AABAvAAATL4AAOC8AAAQvQAATL4AADA9AABEvgAAFD4AADQ-AACePgAAZD4AAKi9AADgvAAAOT8AAJi9AADIPQAALL4AAEy-AACYvQAA-D0AAFS-IAA4E0AJSHxQASqPAhABGoACAABQvQAADD4AAKi9AAAzvwAAUL0AAKA8AABEPgAARD4AANi9AABMPgAAJD4AANi9AABAvAAAFL4AAHA9AADIvQAAUL0AAL4-AAAkvgAArj4AAFA9AABcPgAAUL0AAPi9AAAwPQAAJL4AAIi9AABQPQAAmL0AAJg9AACIPQAAyD0AAGy-AABAvAAA2L0AAGy-AAA0PgAAFD4AAIq-AAAsPgAA6L0AAGS-AAAcvgAAXD4AAFA9AACAOwAAf78AAGQ-AACovQAALD4AAMi9AAAUPgAAFD4AANg9AACIvQAA2D0AADC9AACIvQAARD4AALi9AAAQvQAAmD0AACQ-AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=zsh7EI3JafU","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6843836119813282091"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6688311659655098689":{"videoId":"6688311659655098689","docid":"34-0-1-Z158FB15A40695DE0","description":"In this video we discuss writing intervals where a function's graph is either increasing or decreasing from left to right, and also how to find the local (relative) maximum and local (relative)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1251657/8bbf2723ce0b36114bd9b33f9afd8b0b/564x318_1"},"target":"_self","position":"14","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3De0wcvGMJ7xc","linkTemplate":"/video/preview/6688311659655098689?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local Maximum and Minimum Values","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=e0wcvGMJ7xc\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhUKEzY2ODgzMTE2NTk2NTUwOTg2ODlaEzY2ODgzMTE2NTk2NTUwOTg2ODlqrw0SATAYACJFGjEACipoaGF3emVwbGtqcWJ1ZmFkaGhVQ21tcjRibWd5M2dSdlZXM1R5ZmwxU2cSAgASKhDCDw8aDz8TzQiCBCQBgAQrKosBEAEaeIH7_wH_-wYABPUQBPwI_QL2BfD5-f39AO8E_PkFAAAA6QH9APv_AAD9C_0FCwAAAAT7_Ar__QEA9wQG9fgAAAAJ_ggEAwAAAAsEAggKAAEABP4FCQP_AAD8__37_wAAAPcLEPv_AAAA9QX3BAAAAAD7-gcKAAAAACAALcSf4zs4E0AJSE5QAipzEAAaYBkoAEsK7tKkHTfLCgM3FwHczNK1oBL_ATb__AgPyPs-990tJP8d8BTnpAAAADC-8Sn8AOd49uGTCQ0Q7o6_tTMSfzYC5hn36LzBBNPRHAwLGNn1GADr8f85ONYRNfnrHyAALQIJFTs4E0AJSG9QAiqvBhAMGqAGAADAwQAAMEEAAIhCAAAMQgAArEIAABTCAABQQgAA2MEAAMDAAACAPwAAXEIAADDCAACAQQAAmEEAACxCAAAAwQAAgD8AAEDAAAAQwQAAKMIAAMBAAADAQQAAGMIAADDCAABoQgAAzMIAAIrCAACIwgAAsEIAAKBBAADQwQAAAMEAAATCAADAwAAAkMIAALhBAABwwgAAFEIAAHDBAAAgwQAAcMEAAFDBAACYwQAAEMIAAFxCAAAAwgAABMIAAKDCAADAQgAA2EEAAHBBAADwQQAAAEEAAIhBAAAgQQAAwEAAADzCAAA8wgAAAAAAAFxCAADQwQAAIEEAAKBAAADAwQAAgMAAAEBBAADIwQAAUEEAABjCAAAgQQAAMEIAACBCAAAAQQAA-MEAAIC_AAD2wgAAkEEAACjCAAAsQgAAgEAAABTCAABMQgAA4MEAAIDBAADAwQAAQMEAAEBCAAAAwAAAKEIAAIrCAAAEQgAAwEAAABjCAAAcwgAAIEEAADjCAADgQQAAbEIAANjBAABQwgAAYEEAAOBBAACAQQAAsMEAAGjCAAAAwgAAwMEAACDBAACAQQAAiMEAABBBAAAAwgAARMIAAJTCAABgQQAABMIAAKDAAAA0wgAAYMEAAGxCAAAAwgAA6EEAABDBAAC4wQAAnEIAAJhBAACgQAAA6EEAAFDCAACewgAAFEIAAARCAACawgAAXEIAAADCAAD4QQAAEEEAAAjCAAAwwQAAAMIAABDBAAAAQQAA2EEAACDCAADgwAAAwEEAAEhCAABgQQAA0MEAAMBAAACAPwAAqMEAAABCAACAwAAAEMEAAPhBAABgQQAAFMIAAJDBAABEQgAAEEEAAODAAABEwgAAVEIAAEDCAABAQQAAHEIAAHxCAAA8QgAAqEEAALjBAACWQgAAPMIAACDCAAAcQgAAkEEAAETCAAC4wQAA6EEAADRCAADQQQAAPMIAADDBAABQwQAAxEIAABBBAABQwgAA0EIAACzCAABAQAAAeMIAAIjBAAAAwQAAyMEAAIC_AACaQgAAkEEAAIbCAADuwgAAYMEgADgTQAlIdVABKo8CEAAagAIAAMi9AAD4vQAARD4AAPi9AABQvQAAij4AAN4-AABDvwAAXL4AADw-AACYPQAAJL4AAHA9AAAwvQAAQLwAAAS-AABkPgAAqD0AAEQ-AACqPgAAfz8AABC9AACiPgAADD4AAFy-AACAuwAAiD0AAHC9AAAUPgAAoj4AAFw-AACGvgAA2L0AAGw-AABAPAAAFD4AAKA8AACWvgAAsr4AABy-AADovQAAmL0AADQ-AABQPQAAgr4AAJi9AAAwPQAAXL4AABS-AAAsvgAAqD0AALg9AACWPgAAND4AABA9AABAPAAAMT8AAKi9AACIvQAA4DwAAEC8AABQvQAATD4AAAy-IAA4E0AJSHxQASqPAhABGoACAACovQAAuD0AAPi9AAA1vwAAPL4AAOi9AACGPgAAgj4AAKA8AAAwvQAAQDwAACy-AAAkPgAA6L0AAFA9AADYvQAA4LwAALY-AACIvQAAnj4AAIg9AAD4PQAAqL0AAHC9AADgPAAAhr4AAAQ-AADgPAAAQDwAAEA8AACAOwAA2D0AAPi9AACoPQAAdL4AAIK-AAD4PQAA2D0AAAy-AACuPgAAQDwAAL6-AACYvQAAfD4AAFA9AABAvAAAf78AACQ-AACOvgAAbD4AAOC8AAA8PgAA6D0AADA9AAAkvgAAJD4AAKi9AAAsPgAAZD4AAPi9AAAQPQAAmL0AAES-AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=e0wcvGMJ7xc","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6688311659655098689"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1375268707782296414":{"videoId":"1375268707782296414","docid":"34-3-8-ZBE35C99A95550207","description":"at C or 𝒇 has a local minimum at C The local minimum and local maximum of a function are called local extreme values or local extrema of a function. The necessary condition for local extrema...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/224362/48d97088f27b9914efc3ffd272750544/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GIVJ3AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dj_iCt87VJBI","linkTemplate":"/video/preview/1375268707782296414?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find Local Maximum and Minimum Value when function is polynomial l Local Extrema l Calculus","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=j_iCt87VJBI\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhUKEzEzNzUyNjg3MDc3ODIyOTY0MTRaEzEzNzUyNjg3MDc3ODIyOTY0MTRqiBcSATAYACJFGjEACipoaG54YnNuanNzeXRtc2tiaGhVQzdqVUt4UjhiXzVNUTdHQXBhSGMzbkESAgASKhDCDw8aDz8T5wKCBCQBgAQrKosBEAEaeIH0__4F-wYA9_UPB_sG_gELAPv79wAAAPYH_P__Av8A9_kA9wEAAAD7_QgEAAAAAAT7_Ar__QEA-fb59AMAAAAR_gD5_wAAAAYJAQn-AQAA_gD4BgP_AAAH__n-_wAAAPL_CAX7_wAA8wT7_QAAAAD68gIFAAAAACAALU8Y5Ds4E0AJSE5QAiqEAhAAGvABf-whAbfs1P_t_P0AxRfg_64MG__9MtQAu9gCAc3_7QHO-fsACgT5APYhOAC3KPj_K9_xAO_S6gAj1_H_BfL2Ac4FFgAu2CcCQgIW__Di2__sRCb-89Ym_xfY1AMECQr_FwAT_vkByf_dC9YBD_48Af8bFgX_-A_96fUX_vEHCADUEtT9BBb9BQfNDAHZGh8CE_7sCQMx-wHf8_D9EecTAw3sCf0VPer_IhUE_toY8ATq-_b7EQHeAQQ0Ff_4C_v67QEH-vrXBQIC4_kMDegI_QH9Af8w2AIHGwHz8-nYAgnOFPD36RwBAPbu7Ar15_HpIAAtVOkYOzgTQAlIYVACKs8HEAAawAeHFuG-uD7sPDlCJr0KB8y9Vw8UvDSFDr1L07a9lssrPazuB712Ggk-WwA_PaQN0bw4aYq-0Qw9PO2ufTyY3SM-gUmQvUP09bx6Fy--CDwwPSmf1Lzgu22-XoqWPRa5TLwi5Jc9qqB9vYQAyzsdAPE99dUVvfmeMb0BnMW7ff7Bu6CSbr1WP8C8F_hFvTt5ibta3zY96dudvFORyjwEa8E9EJhBu2EeLb2Hr-U894Q2vN2grLxdHka8EAaePGGZLb2Dka09sPGPPQxwJj12TW28vQfDvI2RtrvrayK9_oOjPBb7SztBCwk9vuxIPRFKqbzYwgc9RMeZvfI7srxAt7G9PSkTPZrcHDwnFxM-T9VzPRWpsDzSV5u93UhUPRr0Lbs-m3I7sB43vfuRhbq5ido9CesVPa4LhTsgooc8-aRuPaBIgbyQJBC8EN-jPaZiAz3081A908APvbuSrrycBKU8XQB1PKMngLysFCe98qsePdjvLrxS7aM9xeDGvCZ8hDtqxAc9ghB6Pf-BC7tFXKU8c7j2veQENzx1-FW9wf4rvRcqf7zdwX49vLskPYh7kbzAhes8pQSjvb3SRztp5ua7WF2ivCNTmTs9kXE9-GEuvfnmirv8MbK9y0GqPQMfQLm_a6e7OsO5PNY1f7xCn748XDGNPUd7kzspxKs7J-uhvWwGejsanI095McOPZ6R77vzENc8YUPmPHufqjsLJOg9qwEvvezJ0znFQLI8D5vIvLJWh7k860c77t9WOgxiWrsfotE9WPgfvXnRiji3Hio8jVuxvPSZC7oIfxW9W0SvPZiB-DhDCII7FPDGvJxEUji-xeA7rFMVvqaMyTnK5iK6t5TuuaOzVjr2nG89vbXCPKauajhjdGq94BlovVlv_bc_VFq9skY9PZDcg7mur_886kKsOnPC3ber-xG91oqbPC_jOLi1SwC9blFGvbtKUjgl1wO9BLS4PaonqrgRoFA9ukmcvaiweTnEVjU9eWHGPbbmLriSzKo8IlUEPgUNHzcIm_A8uf3SPUdpZTitaJi8bqRsvT9TMDig3Hs9AZm3PVgANrjK4QO-ENcePJf9Tje8lLq87r2-vUmLmzeFero9OiamPMfoaDhgDYY85RkoO5chHTjB4ys-3KVovAeJdLkKXAi94sORvTylWLgC_t88n5SkvG49TDiBJmK9TagbPXYHdTgm3JC8FjAxvkGgWrnK9HA9IuErPvHLijjiGK48b6WiPUwnUrjhLYu9m3_LOuYACjia3Um8LkB2PUAi_TcgADgTQAlIbVABKnMQABpgK_4AKvgb2esEWOEL5islzNPlusvEBv8dBv_v-_fp5DTXuOU2ABPDKdWgAAAAN9biHhQA5n_HA9zuARkup5y7Ju9kBA1Bh-ccwsLPGR7s5AAgFycaAA0CmjNH48AuDQM1IAAtDxgROzgTQAlIb1ACKq8GEAwaoAYAAFjCAADAwAAAOEIAAFjCAADIQQAAkEEAAM5CAAA0wgAA6MEAAJBBAAAUQgAAuMEAAJLCAACAvwAAAEAAAEDBAABAwAAA8MEAAFRCAABAQQAAyMEAAJDBAAAUwgAAEMEAAIBAAACYQQAAiMIAAHjCAADYQQAAYEEAADBBAACmQgAAbMIAAKhBAACWwgAAAEEAAKhBAABwQgAAwMAAAABBAADAQAAAOEIAAMBBAACAwgAA0EEAAFzCAABswgAAuEEAAEBBAAAAwAAAKMIAAGBBAACAvwAAAEAAAEBCAAAkQgAA6MIAAJBBAABkQgAAcEEAAMhBAAB0wgAA8MEAAKbCAAD4QQAASMIAAODBAADcwgAAwEAAADjCAADwQQAAAEEAAFDCAAAAQQAAdMIAAATCAADgwQAAQMEAAGjCAADgQAAAvMIAALRCAADowQAACEIAAExCAABAwAAAcMEAAIhBAADgQQAAgsIAAODAAAB0QgAAgD8AAFRCAACAPwAAhsIAAKhBAABgwgAAwkIAAERCAACowQAABEIAAKpCAABwwQAAhsIAAKhBAACAPwAAYEEAAABBAAAwQgAAJEIAAFRCAAD4wQAAAAAAACDBAABkQgAAhkIAAJhBAACiwgAAqMEAAJhBAAAAQQAAyMEAAEBBAAAAwQAAfEIAAJBCAADgQAAAwEAAADxCAABQwQAAiMIAAIDBAACoQQAAEEIAAADBAACgwAAAQMEAAFzCAAAgwQAAsMEAAADBAABwQQAAiMEAAADAAABAQQAAQEAAAFDBAACAvwAAgEEAAKDBAACSQgAAcEEAAJBBAABMQgAAoEAAAJjBAACIwQAAQMIAALBBAAAowgAAKEIAABBBAABcwgAAZMIAAODAAACIwQAAmEIAAEBBAADQwQAAMMIAAJBBAAAMQgAA2EEAAIDCAACQwQAAJEIAABBBAACAwQAAoEAAADjCAACIQQAA6MEAAABBAABIQgAA2MEAAEjCAAAgwQAAMEEAAIDBAABgwQAAoMAAAEDAAACAPwAABEIAAFRCAACwQQAAMEIAABTCAAAkwiAAOBNACUh1UAEqjwIQABqAAgAAuD0AAES-AABMPgAAcL0AACS-AAC2PgAAmD0AADm_AAB0vgAABD4AAEC8AABsvgAAtj4AABA9AABMvgAAQDwAAJo-AABQPQAAgj4AAMY-AAB_PwAALL4AAJo-AADYPQAAXL4AAJg9AABUPgAAiL0AADw-AAA0PgAAdD4AAL6-AADovQAALD4AAAQ-AABAPAAAZL4AAAS-AAB8vgAAjr4AAIi9AABAPAAAHD4AAFS-AAB8vgAA4LwAAHQ-AACavgAAgDsAAJa-AABAPAAAcD0AAFQ-AADgPAAAyD0AAFC9AAAxPwAAED0AAOA8AAAwPQAAFL4AAKi9AAC4PQAATL4gADgTQAlIfFABKo8CEAEagAIAAPi9AAC6PgAAyD0AADe_AACSvgAAoLwAAMo-AACOPgAADD4AADA9AACAOwAAgr4AALg9AADIvQAAgDsAAKC8AACgPAAArj4AAKi9AACSPgAA2D0AAIg9AAD4vQAAML0AAFC9AABwvQAAEL0AAOg9AACKvgAAgLsAAEA8AAAcPgAAXL4AAPg9AACKvgAAVL4AAGw-AAAwPQAATL4AAAw-AABEvgAALL4AABC9AABUPgAAPD4AAKi9AAB_vwAAij4AAGS-AABcPgAA4DwAAMI-AAA8PgAAgj4AADy-AABEPgAA2L0AABA9AABkPgAA2L0AAMg9AAAMvgAAQDwAAOA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=j_iCt87VJBI","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1375268707782296414"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1627438330"},"11954521115619858956":{"videoId":"11954521115619858956","docid":"34-5-2-ZEA01CE67E1490809","description":"Definition of local maxima and minima of a function. Finding local maximum and local minimum of a function using the graph. First derivative test:- If a function has a local maximum or minimum...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3323479/8d14dbf3a32878e21c87ff38a5497efc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BKS_BgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMk4M3c25Abg","linkTemplate":"/video/preview/11954521115619858956?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Lecture 43 | Local maximum & Local minimum and First derivatives with proof | Analysis | Tamil","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Mk4M3c25Abg\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDExOTU0NTIxMTE1NjE5ODU4OTU2WhQxMTk1NDUyMTExNTYxOTg1ODk1NmqIFxIBMBgAIkUaMQAKKmhoeWZ2cWVzdW5hbnVid2JoaFVDZ1dfbUJQd0I5d3kzMHpzVkRRYmNBdxICABIqEMIPDxoPPxPfB4IEJAGABCsqiwEQARp4gfD9CgD-AgAG8wgCBAj9AgsKBwD3AQEA7Qr_BggAAADu_AD0-QAAAA7-AQMJAAAAE_D1Cfz_AgH5Bu8AAgAAABkHCPoBAP8A_gb-Cv8BAAD3-QUOBP8AABAD-PL_AAAA-wQE_QAAAAD_BfYDAAAAAADw-g0AAAAAIAAt6A3XOzgTQAlITlACKoQCEAAa8AF49_L-y_rM_7rjwv_SKeEBgQot_wkz8QDWFxQApBTH_hEi7gHHAdv_KP4TALUIAf8eAcEA2b8OABTVBgAm7wgA0ikYARvo9QE_FC__8PLq_rksCv3y0yn__cTdACAawgAO3xH-5w_TARD_0gMa5C8D7AsaBgD99Pa7zAP_5RYRAvb4w_4M__UK38b2-7wjGgM3yf4ACAwm_AbxDPvq8vQKEQP6_TUT4wEJ-e4A4gwL-QgN7Aca9f0FEgoT9PIC5PgU9SHy9fUO7gTZAPwA4Rz_7fUCCwrt9AgC6RQL_-gI8vHu9g3l7u_6I__zCAzr9vUgAC1QIw07OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawOwoHzL1XDxS8NIUOvUvTtr2Wyys9rO4HvRiYBT6AM-s7f7O9u7Pwdb7H0Ja8RWRAOcuAMz7m0Yi9mGIzPHV0_L0vE5o9CwIQvU94kb5nFUw9qeaLuvCG9D2ns9M8d5scve8RGz3BxL-9CJABvTM4pbyAJds7WwBkvEPn9b1_th-9WiIBvfSV9jx7IAi9eI99PJ2FeD28PpC7igU-vM72DT1zi9S839GxuxFtxzzpdZW8eooevITY2T3U9Z88d503OhfLvrx6srC7Y8IgvJdXzr2gqTK8EPy5vPcm4TxdhpQ98LXxvGL0jD2eftC9vnZduzxrB741hD48aA35vOSG_z05dvU8jG-ePNzvhb3dCfY9yJ3ruitlvrxJWOW8FkWXOwGZtz3Woiq8VyGKPHKnFD7nYXI9SdV2vHbhB70qMp89GbRrPGycCD1mcVU9C9SivKjsqjyhXhU9_R3AuwPfvr0s3wk95_ITO6hOjD1WEQ49tGx3PNkuBrzMofs82jPwOsU1Qz34UQ2-CW8su3vJlb0YHO-822R5vHsNlj1kvm09y6vGum786T1M5K29K3Opu6ERjbu5sCS84ML0uj2RcT34YS69-eaKu_wxsr3LQao9Ax9AuVSu7LvkWXg9lhUWvOnsyTxMGM09X-iauf5ha73nxN68Tdaou3Wirj3GzZ88Ny7nuyAC2Dxo_Tc9l7mOO4Fb9z0IS5a9-F_uOGSrsLyW54a9iOTYuvmNZTwkzFm8XPLsut65pj07aBu92hnHOSYDWz1pcUa88oRzOxvqob2yW5U9LNmZOOVCZbykb9K8hj8OuCUyHb2VEIy90iOpOF_cvL3V4ri8tCVct0rxvD0ESSk9ke7nuVNZ9L2v4bO8jIyPuR7OUr1z7IW8_BoVuXlhRj3MA_08KQbgOES47jyZBHk9kK06udz1sTrM-oM8q3kxOKd_RD280r09Jyr7NlnTxjxQHGC9INIXOO2DLDzeZKo9Xum9uK_hU73aAdc9y00_Nz7kkjw3ST28ThpSODZEMD3ChR28x7sduPTovDxDoyU9jBfbt99so738LQm8zX2qtkE9aDsc6-K8AbH1t0uPuz1CPgi9PGN8OBCWsbtHsAw9utJ6OJJdGT7ZT1C9rMI_uawbT71wAGK9cfqiuNezsTzSwPK6vCq3tZdRkb2Hch09UziLtsOcIL1KKN297SBJuMr0cD0i4Ss-8cuKOHpTkbzZ1f88LwUFuTV6Fb0rYTc8LrIPNzMOf71p7a660zyfNyAAOBNACUhtUAEqcxAAGmA-9QAi4Bjq6AIn6gcG8inj2dPs56sF__v9APUV1Ov5GPHU_f4AEc0pALMAAAAczvsl-gD2Zt4B7N79Lwm6q9EvC38GBiij8RzI1drvABwaDxvrIS0A4QS-EzvYqjEX_hggAC2rLC47OBNACUhvUAIqrwYQDBqgBgAAcEEAAOjBAACOQgAA0MEAAABAAACgwQAAokIAAAjCAAAAwgAAgMAAAJBBAAC4QQAAFMIAANjBAACgQQAAAMAAAEBAAABQwgAAQEAAAJTCAAAkwgAA4MEAAIjCAAC4QgAA0EEAAMjBAACCwgAApMIAADxCAACgQgAACMIAAAAAAABwwQAAAEIAAMrCAABwQQAAAEEAADBCAABAQAAAuEEAAKDAAAAwwQAAoMEAAKjBAABQQgAA0MEAABDCAACgwAAAjkIAANDBAADowQAA-MEAAKjBAAAgQgAADEIAABDBAADAwgAAREIAAMBAAABAQQAAcEEAAPjBAACwwgAAsMEAAABAAABMwgAA2EEAAGzCAABYwgAAQMAAAGhCAAAgQgAAmsIAAKRCAABAQQAAXMIAAEBAAABQwgAAgMAAAIBBAAD4wQAAGEIAAIBAAAAwQQAAUEEAADhCAACUwgAADMIAAJZCAADQwQAAHEIAAGBCAABAwAAAQMAAALDBAAAQwgAAgL8AADDBAAAkQgAAAMEAAITCAADWQgAA-EEAAFjCAAAgwQAAwMAAAIjBAAAgQQAAgMIAAIBCAAAYQgAAJEIAALBBAABQwQAAgL8AAFBCAACgwQAAoMAAAETCAAB0wgAAoMAAAJDBAACYQQAA2MEAABhCAAB0QgAA8MEAAKjBAACAwQAA2MEAAKjBAACmwgAA4MAAAJ5CAABAQAAARMIAAEBBAAAQQQAAoMEAACzCAABUQgAAgEAAALBBAAB4wgAAqEEAAIA_AAAcwgAAAMIAAABAAACIwQAAIEIAACBBAAAoQgAAoEEAAJBBAAB8wgAAyMEAACTCAABMwgAAEEIAAITCAAA4QgAAZEIAAKjBAAAwQQAAgMAAALDBAAB0QgAAHEIAAI7CAABswgAAgEAAAAxCAACAQQAAqEEAAIhBAAA4QgAAQEEAAARCAAAgQgAAOMIAALDCAADwQQAA6MEAACRCAAAswgAAhsIAALBBAADAwAAAwEEAAOBAAACIwQAA2EEAAABBAABQQQAAIEEAAGDBAADAQAAAiMEAAATCIAA4E0AJSHVQASqPAhAAGoACAABAvAAABL4AAKg9AACAuwAAcL0AAAw-AADoPQAAC78AAGS-AACoPQAAqD0AAAy-AAA8PgAAMD0AABy-AABEvgAARD4AAJg9AABMPgAAbD4AAH8_AAAQPQAATD4AAKg9AAA0vgAAgLsAAJg9AACgvAAAiD0AALg9AAA8PgAAyL0AANi9AAAwPQAAiD0AACw-AABQPQAA2L0AAKK-AACOvgAAiL0AAEA8AACIPQAAqL0AAPi9AABAPAAARD4AAJi9AACIvQAAir4AAEA8AADoPQAAZD4AABQ-AAAQvQAAEL0AAAE_AACIvQAA4DwAADQ-AABwvQAAiL0AAMg9AADovSAAOBNACUh8UAEqjwIQARqAAgAAVL4AAEQ-AAC4PQAAO78AAOA8AAAwvQAAVD4AANg9AADgvAAAkj4AAAw-AACovQAA4DwAAFS-AAAQPQAAEL0AAEC8AAAHPwAAmD0AAJ4-AAAQPQAAJD4AAOC8AAC4vQAAUD0AADC9AADYPQAAHD4AACS-AACgvAAAQLwAAIg9AADgvAAAEL0AAPi9AACGvgAAmD0AAKg9AACOvgAALD4AANi9AABUvgAAQLwAAHA9AABQPQAA2L0AAH-_AAAcPgAABL4AADQ-AABwvQAA2D0AAHA9AADgPAAAgLsAAJg9AADgvAAAgDsAABw-AADYvQAA4LwAACy-AACgPAAAFD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Mk4M3c25Abg","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11954521115619858956"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4073426846"},"6171931366382445205":{"videoId":"6171931366382445205","docid":"34-8-13-Z16E2CB101ECEC716","description":"In this video we learn about one of the very important topics in calculus called the local/relative maxima and minima. Topics line up - 00:00 Intro 01:32 Local...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4107413/ae452c20f3fa0bcea469da09bddac203/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LkNO-AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Db400teonZNs","linkTemplate":"/video/preview/6171931366382445205?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Local Maximum and Local Minimum | Precalculus | Calculus I","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=b400teonZNs\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhUKEzYxNzE5MzEzNjYzODI0NDUyMDVaEzYxNzE5MzEzNjYzODI0NDUyMDVqiBcSATAYACJFGjEACipoaHBvamR2bGtrcnRjeW5jaGhVQ043Z0IzeVE2aE5zVkhkUG5TTmw0TncSAgASKhDCDw8aDz8TshGCBCQBgAQrKosBEAEaeIH3-QT7_AQA_-4CCfsI_QIA_Pb9-P79APYH_P__Av8A-PX27_8AAAAJB_3_CgAAAPf49wQB_wAAAvgA9wQAAAAV-fwA_wAAAAUB_Qb_AQAACAX-DgT_AP8NCAEFAAAAAPoL-AL-AAAA9vz8CAAAAAD28AwHAAAAACAALZbg3Ts4E0AJSE5QAiqEAhAAGvABdPokAdsN3wDM99cAzCD4AIEiCv4ILvIAzvf_AMYy3ADh4RkA0vwAAAQEBwC9KRsBJfn9AAPZJgAo2Q0AFPPyANYlFgEM_fQCKgAsAezU8gDPHxr-7OH9__3K4AAdKuX_Hg0V_90E7f8uCtoCIvwsAe7-CQUu9AkC8NoAAf7-8wjP3s77-CEFBPXKAwEDCy_-_fr2BfooCPvWBeYCDwgMB_7hFv0oK_ABKP30BwEWAPL17fMBAQUHAicb_gHw4-cB0c8E_wn-__Xq6fz9FuQc-tkMAQ48GPkCB_wH8gzaBQ7xyfjv4fn9-c0V6gDv9vj_IAAt_yEdOzgTQAlIYVACKs8HEAAawAeSB_K-pkALPeCDl7z3C9G8etlAPHhs-rw8izm9chsIPceBHjrS_9I9aSp1PVSUBbyz8HW-x9CWvEVkQDkUlEI-RkUcvXPoALxxPVq-5xa_PYVMqLxEGF--1GRnO6WdPzxqXRM8RnwnvSBzDrtyHmk9O2pxvby0PL0gqOi6HXURPDPcAL0riMG8wxccvUlb5rxuMLk82QVIvWqhxzudhXg9vD6Qu4oFPrxCwVY914QZvdVR4bsQq2S8Q_mnvDXN4LqCQsg92hPuPCLY3TwXy768erKwu2PCILw1JuS9KJ0ovZSqxLvf_MY97BvzPIdZPr3yCO49exTOvceArLw5Qra9pGaUPU-wvzz7BTs-2jfXPUR1yjsY0gG-SYOrPZYmJbwr3sg8fJf3vKTDQzyvZ349wUIcPEJ5HTw3TIk9jf02Pcsqz7pyE_e7LLmKPHMyzDwqhB89aY_2O3HIhrxF1Ok8qNHavJxgrLuqOI-9ISNbPbM7qDttjjM9Vfo9OqSLzbs7s9W77diIPWIQu7vFNUM9-FENvglvLLt7B8u7G7qbu8SRrLyfsLQ96Y9LubhGfLsVkFY9v16Wvd1Dwrv50A-9196nun5a3jtktmC7qASPvZo0GbvehXe9ICfMPSgIFzdkJ7Q7J1MiO76BbryvZni8LTeSPZ5VDzt7LS29R2OzvfC-iDkbdMg9QDdPPVcGVbtjhZU7f5aIPTC_kTk04Mc9UbiDPGsb8znXBl28Z0pGvMACObt_ToG8KXumPFdKpbiUQLQ94M1kveKHajkomcE8cfKRvKHyA7hyEYS8YhDYPYTUDrf-jjK9TFERvDFBQTn8s1W9dz2yvYUbMLjDEeQ8yOjlvGJGFLqvn7Q9ppfYPEPKmznYW5S9xD4mvJKR1LpUoUu8xFYVPewmSrdcDLQ9VW2SPFU0GjgliCQ9Fl2NPNg15Tih5a-8VE0VvbUYMbi_IDO8rBvPPUkMNDWd4qc7I0lVvUuegLgUBA89EF0APo3DcbiY8ka9AxpWPeTphTjo2AE9EhNUPaqcgrb1_0M7x3lkva9jtbcVRy896vtaPZ429Lhr8em9edYkvO4vYDYUD168M54SvRyWN7enJOs96XUYuuJaRbgXiYQ9R31IPMw1AbiSXRk-2U9QvazCP7lcSQG9yt7SvRciBLkrtD286ZoJvZ59TbdQi2G9q4o6PBSYa7cNEkc8dHz0vVZYWbhVGKY9bQvFPYPH5zi4H7C8r4grPSLTlbhuA429J2muPb_3FjdRODM6dyY5vf8F47cgADgTQAlIbVABKnMQABpgFvYAPeX51twYSNkY2h8hyLbe6MvA_f8kDf_fIv4P30HD1hEvAAzuCdqkAAAAGsbZSO8A-X-v6-TZDBgGpqOiRQxyziYJo98Q09y5LvD-6Co5-gwPAPQTniok4dlKIQQlIAAtWiMROzgTQAlIb1ACKq8GEAwaoAYAAEBAAAAgwQAAAMAAADjCAADAwAAA8EEAANZCAABQQQAAMMEAABBBAAAAwQAAUEEAAKLCAAA8wgAAAMAAABhCAACgwAAAIEEAAExCAADowQAAqEEAAEjCAAAAwgAA0MEAAHDBAAAYQgAASMIAAFBBAABgwQAAmEEAAMDBAADIQQAAjsIAAEhCAAC2wgAAMMIAAABCAAAMQgAAuEEAABRCAACAQgAAgD8AAMBBAACgQAAATEIAAHDCAADowQAAwEEAABRCAAAQQQAA4MAAAODBAACIwgAAEMIAALhBAAAkQgAA0sIAAMjBAACgQAAAmEEAAI5CAAC0wgAAPMIAAEBBAAAAwgAAusIAAMDBAAAswgAAIEIAAGTCAACgQgAA0EEAAKTCAACmQgAAoEAAAAjCAACwwQAAsEEAAGxCAAB0QgAAxsIAAGBCAAAUwgAAuEEAAMBAAADYwQAAUEEAAIBAAAAcQgAAoMEAAGjCAACGQgAA8MEAACDBAAAgQgAAjsIAAHDBAACgwgAAGEIAAGBCAAAQwQAAAMAAAIDBAAAQQQAAdMIAAFhCAABsQgAAUEEAAKhBAAAcQgAAYEEAAIhBAADYwQAAaEIAACBBAABAQAAAREIAAIDBAABowgAAkMEAAMDBAABcwgAAYEEAAOBAAAAkwgAAQEEAACxCAACYwQAA8MEAACBBAAAQQQAAGMIAAHDBAABUQgAAgEAAADhCAADgQAAA-MEAAADCAACawgAAmMEAAAzCAADAQAAAAEEAALDBAACgwAAAYMEAAKDAAADIQQAAMEIAADDBAACYQQAAGEIAADzCAAAoQgAAIEIAAPDBAAA8wgAAjMIAALhBAACswgAA0EEAAHBBAAC4wQAAVMIAAADBAADAwAAANEIAAIpCAABAQAAAiMEAAKhBAADgwQAAQEAAAKrCAADIwQAAmEEAAMDBAADAwQAAiEIAAETCAADgwAAAIMIAAFBBAADgQAAA4MEAAEjCAACAwQAAgD8AAEBBAACYwQAAwEAAAMBAAAC4QQAAoEEAAGBCAAAoQgAAQEAAADTCAAAgwiAAOBNACUh1UAEqjwIQABqAAgAAmr4AAHC9AAC4PQAAuL0AAKC8AACiPgAApj4AACO_AAD4vQAAFD4AAMg9AABwPQAAlj4AAFA9AABUvgAABL4AANY-AAD4PQAAmD0AAAM_AAB_PwAAlr4AAEw-AAB8PgAAyL0AAEA8AABcPgAAiL0AAFQ-AAAsPgAAPD4AAJq-AAAUPgAAiD0AAFC9AADIPQAABL4AALa-AACyvgAA-L0AAKi9AADYvQAAuj4AAOi9AAC4vQAAmL0AACQ-AACevgAA-L0AABC9AAAQPQAABD4AAO4-AABsPgAABL4AAEC8AAA1PwAAgLsAAKg9AABwvQAAgr4AAIC7AADYPQAAZL4gADgTQAlIfFABKo8CEAEagAIAAMi9AABEPgAAmL0AADu_AAAsvgAAND4AAFQ-AACKPgAAEL0AAKA8AABAvAAAdL4AAEC8AAAEvgAAmD0AAIi9AADgvAAAbD4AAPi9AAC-PgAAED0AAJI-AADIvQAAcL0AAOC8AAAkvgAAEL0AAFA9AAD4vQAAyL0AAFA9AAAkPgAAVL4AAIg9AAB8vgAAgr4AAKo-AADYPQAAjr4AAPg9AACqvgAA6L0AACS-AAB8PgAAUD0AAEC8AAB_vwAApj4AAOA8AAC6PgAA2L0AAFA9AADgvAAAuj4AAFC9AAA8PgAAML0AAFC9AABkPgAAoDwAAIC7AACIvQAAdD4AAKg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=b400teonZNs","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6171931366382445205"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1298544038"},"15984695455036694831":{"videoId":"15984695455036694831","docid":"34-6-11-ZFCA3D0208636EEF2","description":"In this video, we use the First Derivative Test to find the local maximum and minimum values of a polynomial function. How to find the local extreme values? We first need to find critical...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4240522/5067d944c86d6bde679ecaeb038b4e91/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xnF4DgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHuaez7lXFcM","linkTemplate":"/video/preview/15984695455036694831?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Find Local Maximum and Minimum Values of a Polynomial Function | Glass of Numbers","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Huaez7lXFcM\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDE1OTg0Njk1NDU1MDM2Njk0ODMxWhQxNTk4NDY5NTQ1NTAzNjY5NDgzMWqIFxIBMBgAIkUaMQAKKmhoZ21udGhkcW5tdGh5dGNoaFVDcEFJRm16TW9TTXdkeVBnOGNDdTVfdxICABIqEMIPDxoPPxOnB4IEJAGABCsqiwEQARp4ge_6AQD8BQD39Q8H-wb-AQD89v34_v0A9gf8__8C_wD3-QD3AQAAAP4GBAoEAAAA_-71CP3-AAD1B_TyAwAAAA79CfP9AAAAEhAGCf4BAAD2__wMBP8AAAsE-QUAAAAA-wEJAPv_AAD7AfwEAAAAAPz4CQEAAAAAIAAtfGXeOzgTQAlITlACKoQCEAAa8AF_9w__3PbnAcYGAADGJPcApR0KAPw30AC5BfwAyf_rAdwe6wDg_dUA6PwaAuwYAv9D9cf_79oS_0Hm5_8n0e0B4xPqABTDAwA_FDD_3wr7_ukKKQADAe4C9ODjAvwE5P__Cx38CfrXAewDvgLtLjsCDgkuBFjcIf3tyR0D8_cF_evb1_0FGP0G88MDAt_0Mggl1dAHMPESBNhI7wAD5uUH_t0Y_Agx0v064AMAD_oJ_r8NBAn08PIHFwgUBugZ9PPx2xULvs349tEF_gw_2AD39_0PBiPX5wIb8w8EDvQLAPjx9u_nHwEAy_IFDPgM9vEgAC1O_As7OBNACUhhUAIqzwcQABrAB9hF-b4orD-7gpzmPJqCm72ptRe8AwVevU04mr3QpGK7SMETvR5P6z3an4W9czO3vGzsUr53ZFE9AyoXvcVVhT5UMG-9m38qvHE9Wr7nFr89hUyovLMj1b2Dlwo99R3yvPQ2Nryd-pu8cSSrvGmEyD2tchw9JJO4vG-LCL1DRwe6I9gYvaSYk7pqNLm6kXfzvD52Vz041gc8nsETvGxIVz2x7Pi8VIaWvAPFF7xUQmY9XMBTu2V7k737lqQ9_3WuvPBZzTyscoA7RtJuPBMJi70KN1S9sraOvP4FZ73AQ2w9PJkHuy3hmrzLXKo8-gZLvC0dWD2Zcck8R3_cO_mgB770Gps9L4GAO_fWtj2q8NQ5aFcEOyKUrbx0S6E9zsGzPBLJxjwqT4W8QkN_vADyhD2JKwI9-CsuPC4Klrx1bZS8V5mEvKoeRrqAgYA9VNNkPE0dWj1jzW28JIp_vKYTRD3VTl69-Y2nu1XJhr0CicG8vEYmvJZLOT3WJHM9EzXqO4AzpzzoWNQ8ksE8O6A9Uj3MHxi9SNoyPJXcPL088cG9Q-nmu4nT6T1on609XwyAOPYFqT3BvNG8b3zxu45PUr1JII-9s3XTO9pk3jz86j46RMQoPJfiKr3L3Q66QNTku_4s1rxhXKC88747vLMa3DwDYDw8Fos6vLIS872WMXS9-lmrORt0yD1AN089VwZVuy2Lkz2erx49oKIPOsJM2z07Hei9ds_YOTx8o7yC56m91n9fuNbuC7wVG-k5NnosOv4MPz7JIq29TbCPuCinjD3DjH89d26BOQeW4737m-s8NJV6NzlYKT0I6Sm82_VpOcui8LxbQh6-NwXjOZ32NL10rYO66oh_udgydL0K2Rk9kpIsODznnTzWTwO8KApEuS09Hjw5SU68IehzuFkcmT11hWg94U6OOMayC7xvXVa8dDCQtw8WBL1ceBo8zK5duB80Fj3xr-88mgOJODvWVjwpYHa9yVBQuAdcjD2rgSE9-8enODM0fj1Plno9tXWrN9yUHD1OopQ9usCHN8PT6zxnJvi9IiQkuE-lwD2bx0E9ssjcuKKTqr1Xp8Q9vTagOC_IUT3PVem8-VIzOHzhhDw3_LC6bMzUNj1brLyRIQy9eqxAOJJdGT7ZT1C9rMI_uTkcyLmfPde9big_t9VdmbwRl4K9B3EDuMya2LzjtWE9kN-ht9WU5Dy-Nqa986NNuMr0cD0i4Ss-8cuKOOIYrjxvpaI9TCdSuEyeHL0Wyrq6JN7It-sWBr1JMoa8u4WfOCAAOBNACUhtUAEqcxAAGmAr_gBA8BjD7AM35hDjGgvLv_bN6ccT_xH-_-gZ_ugEPcfBIDIAG9pM3aMAAAAz1vAS7ADqf7_tzin9IvqMqtQaBWbzBCSo2hfapdMKDBcE5DAXFSUADuaWC2MRzkP3AgIgAC2MKRU7OBNACUhvUAIqrwYQDBqgBgAASEIAAJDBAABAQQAAQMIAAIA_AAAwQgAAykIAAABBAADAwQAAAMEAAAhCAAB4wgAAUMIAAMDBAACYQQAAsMEAAOBBAACowQAAoMAAAKjBAAC4wQAARMIAAIjCAADwQQAAwMEAAJBBAACCwgAAQMEAABBBAADYQQAAAMIAAPhBAACgwgAA4EAAACDCAABQwQAA4EEAAMJCAACAwAAAYEIAAOBAAADwQQAApkIAAAAAAAAYQgAAnsIAALhBAADIQQAAokIAABhCAAC4wQAA0MEAAKBBAABAwAAAAEEAAOBAAACuwgAAQMAAAODAAAAYQgAA8EEAAJ7CAAAswgAAdMIAAEBAAABgwgAA2MEAAIjCAABwQQAAwMIAADhCAACSQgAAiMIAADBCAACgwAAAnMIAAJrCAAAkQgAAwEEAAGBBAACEwgAAFEIAAKBAAABAQgAAoMEAAIhBAAAwQQAAOEIAAERCAABYwgAAQMAAAJRCAAAQwgAAisIAABDBAAC4wQAAqMEAAEDAAABcQgAAcEEAALLCAABEQgAAoEEAABBBAACowgAA4EAAABBBAADAQQAAiMEAAEBCAAA0QgAAEEIAACzCAAAAQQAA2MEAAADAAAAgQQAABMIAACBBAADQwQAACMIAAEDCAABowgAAAMAAAMBAAACQQQAAgMAAALhBAAB4wgAAqEEAAADBAACYwQAAgEAAAJxCAADYwQAAcMEAAODAAACAPwAARMIAALLCAADIwQAAEEIAACBBAAAQQQAAQEEAAMDAAABowgAAuEEAACBBAACIwQAAqMEAAABBAABAQQAACMIAACBBAAAQwQAAmMEAAFDCAADSwgAAGEIAACDCAACAvwAAAEAAAEDAAAAEwgAAwEAAAGBBAABwQgAAcEEAAKDAAADAwAAAmEEAACTCAACAvwAADMIAAEDBAABQwQAAOMIAALhBAABQQgAAnsIAAMDAAACYwQAAgEEAAHxCAAAQwgAAPMIAAOhBAAAUwgAAiMEAAPjBAABgwgAAKEIAAFBBAACwQQAAIEIAAIjBAABkQgAAWMIAACzCIAA4E0AJSHVQASqPAhAAGoACAABAPAAAsr4AAKI-AABMvgAAUL0AAJY-AABcPgAAT78AAAS-AACIPQAAED0AALq-AABEPgAAQLwAACS-AACAOwAAcD0AANg9AABcPgAAij4AAH8_AACYvQAAtj4AAFQ-AAC2vgAAqL0AAFw-AABAPAAAsj4AAII-AACOPgAAlr4AAGy-AACSPgAAND4AALg9AAAwvQAAhr4AALq-AACKvgAAgDsAAHC9AABUPgAAZL4AAM6-AAAwvQAADD4AAI6-AABAPAAAhr4AAEw-AACgPAAAtj4AAOA8AADIPQAAyL0AAEE_AADgPAAAJL4AAKA8AADgvAAAFL4AAMg9AABAPCAAOBNACUh8UAEqjwIQARqAAgAApr4AAKC8AABAPAAAXb8AADy-AAB8vgAAqD0AAHQ-AADIPQAAJL4AAAy-AADgvAAAoLwAALi9AACgPAAAiL0AAIC7AAC-PgAAmD0AANI-AAAwvQAAgDsAABy-AACAuwAAiL0AAFy-AAAUPgAAgDsAAIg9AABAPAAA4LwAADw-AABAPAAAmD0AALi9AAD4vQAAqj4AABA9AAAkvgAAzj4AAEy-AACyvgAAfL4AAIo-AABQPQAA-L0AAH-_AAAcPgAAvr4AAGQ-AADgPAAAmD0AANg9AABkPgAAgr4AACQ-AAAQvQAA2D0AAIo-AAAEvgAAqD0AABS-AAAsvgAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Huaez7lXFcM","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15984695455036694831"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1853046479"},"11721295327752496376":{"videoId":"11721295327752496376","docid":"34-0-8-Z46B33DE87B644BAC","description":"This is a graphing calculator tutorial on how to find the local minimums, local maximums, and zeros on a TI-83 or TI-84 graphing calculator. - - If you find my channel...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3918172/6aaae2ccb030bc7be30edc10d657b4c2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/M8keKAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeO4RjsvPUT8","linkTemplate":"/video/preview/11721295327752496376?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"local minimum, local maximum, and zeros on TI-84 graphing calculator","related_orig_text":"Local Minimum","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Local Minimum\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eO4RjsvPUT8\",\"src\":\"serp\",\"rvb\":\"ErADChQxMTM1MzIxMDMwODY4ODkzMzc2NwoUMTgyMzA2ODAwMjU0ODM4NzkyMzYKFDEzNzkyNTczNTE0ODkxMjgwNjc0ChQxNjk4MTMyOTM0Mzc5MzkyOTQ5NgoTOTI1Mjc2NTg5MTE2ODk3NTc1MQoTMzY1NjI2MTY0MzEzNzgwNTA5OAoTNTcyNjgyMTM0MTk4NDY3Nzg5MQoUMTQ5MDA0NDM5NjM5NDMzMzQ0MDUKFDEzMjg1NDMyNjI3NDEzMTIxNjQ2ChQxMTQzMzcyMDMyODQ4NzI1NzY5NwoUMTQ2NjgwMzExMTM1Njk3OTk3NTYKEzY4NDM4MzYxMTk4MTMyODIwOTEKEzY2ODgzMTE2NTk2NTUwOTg2ODkKEzEzNzUyNjg3MDc3ODIyOTY0MTQKFDExOTU0NTIxMTE1NjE5ODU4OTU2ChM2MTcxOTMxMzY2MzgyNDQ1MjA1ChQxNTk4NDY5NTQ1NTAzNjY5NDgzMQoUMTE3MjEyOTUzMjc3NTI0OTYzNzYKFDEzOTYzMjE1NjU2OTIxNDA4MzMxChM2MzAwMjQ0OTc5MDY0NTI3OTQyGhYKFDExNzIxMjk1MzI3NzUyNDk2Mzc2WhQxMTcyMTI5NTMyNzc1MjQ5NjM3NmqHFxIBMBgAIkQaMQAKKmhoeXJra3RxYWd2ZnZxY2JoaFVDejVLS29xM3dfNTBIUnMwbzhwUmRTQRICABIqD8IPDxoPPxNiggQkAYAEKyqLARABGniB7_oBAPwFAAjyAP_7Bf4BAPz2_fj-_QD2B_z__wL_AO_8APT5AAAABQP8CQkAAAD9AfMHAv4AAP8H_PYEAAAAFfn8AP8AAAAGC_r9_gEAAAIB-gn5AQAABQP69_8AAAD4Cf8I_AAAAP8F9gIAAAAAAvwFAAAAAAAgAC18Zd47OBNACUhOUAIqhAIQABrwAXQbYf7i7hIC1y7rAKwmJACPJA0AHw3dAKgH_AHD6v4AxAoOAAgi8wHxFukBsljwAAzH_v9_HR3_7-nb_8kbAAD8CAYBOgVPANchHwLA4c7-UEQp__Ei2wCZ7ggCxOLQ-insGfrpGjgB7arZASsT5gLc-SABUR77_h0YJAPoGAIGCucX_iT6DwwjFdb_F-f5BPbwvgZRHhMA5hQI9wgvHg0CvhH-Cdz6Aiwp9fzv7Cz_mscR__MuJf0MIesDBLUnBwMF5wby8hHq28_s_h4D2gcJ_Rb9K83hAtMY5_xMLP364AP0AQLkARP29RkR18Ty9yAALQjh4To4E0AJSGFQAirPBxAAGsAH6e6avtU9MrxwiAc9jm9Uve3zFLzPWts8UYf1vdeXhj2Fp2G9vD-OPd2TKDuJ4Cm99pZivgV4gTx5Pw28dNGQPA6dg7xrPx88cTwfvvcaZbvTbaQ88C7MvStphbwczny8fZfyPRQLdz2c3To9k28GPm-wIT2ckA68QuwMvtS-NL1Aq-e8K4jBvMMXHL1JW-a8xB21OyQlXb01P6O85gNCPvY9T71HAQG7gl4TvZNdRDw7Lzo88ijAva-txDyFcxE7-oxVvBBbej17Cd-8Cn-rPbnvYrzwrX48nPrAPBoAhbxDtmI8p9myPJSGer1CobO7bCmLvalAFz1nxmy7VTEVPYYzJD0fS588_PYavcQADj2Na_I8IJKWPSZ8cbp3f2G8GQ_Cu5dNhb3Azk08e2olvtoRWL1hqGQ7NfsyPc1OsL2okXE8wJP2Pf_qkT0Ym--7lWbTvS2jRzwMk6k8zz6QPVz6_DwqH8K8NkPDuwPvPz3wG_y6G-1dPW8UtDxVTEE6ggT_O6zR4TztLUC8nUOuvbtuYD3w50q8V3s4vS-H_b0qoGY6fEftPSA3DT1TXR-7tBEZPYl6Ib0mC048cM0NvvhVeT2U51Y5ZLZgu6gEj72aNBm7m8iMPBRxnzyrhlk61CxQPCgOAL7O3AW6585nPT3WvL3Xbma5LxG0PUqaD76KV-K5VRMEvpW347xkV5I5sTDEPfVF57zA9lO6li8ePa7Yj732P-G69oSrvXqgej3Z2ak68prXvZOcHT3CNMA4TQpYPehJvryk7lo6qCn4vLtRmr3Bdqc4gYWSPbJBy73lgzU4UW6mPUpsbb3mggY5sxO0vdZFkL20ZzA5BLjNOoEhC758Spu55IKzPA7XKj1Q42i6l6AQvYlBAD2YzRC5LaWYPWQqGL00lhK4_vKZPczVaruv1cQ4Y3zYvU458DyBnoe5rpW1PKnZIz4nXJA4GrLAvQDVyby9oIS4oG8LPKT8pDz9YCC4li-OPdcaJbzMxo84x_XvPcELUb1lSfo43JQcPU6ilD26wIc3uYI3vDY9ZrvpH4s4OwKTvO3dWr26ZQc5is2nPeSGHz7FPUu54V45PesazT2ySBw5Hcc0PRcLyD3xcnU3rYoQPpJe7zzHv2c4M0ccvKYfPj3xdAa4B_TdvOgUhD2m-Su2Sf_BPWVihDyEoAe4sIfdugJlE77rpHg4kEoRPXcLi7sOHxu4ChAlPe7Vgj1P_7s4ru-TvTrjwD0eAum4DHfOPf6yoLy4u6A3htlVvX4JCz2TYHA4IAA4E0AJSG1QASpzEAAaYN__AFIiIcHyL17f-fcaJM3r9MrP1yb_Ivv_Gg0Z0vUwor_6GQBmKBfzmwAAAAfp5g60APV_xqz86wUoMe6J1lHPUBQXAqIT9gfj0jL5NLwVMeEI7ADw-L0KM77iHSsR7CAALbvdETs4E0AJSG9QAiqvBhAMGqAGAACEwgAAHEIAAMDAAACAPwAAlsIAAKDBAACgQAAA0EEAADTCAADgwAAANEIAACzCAACmwgAAIEIAAJhCAAAYQgAAnkIAADhCAABQQQAA4EEAAMBBAAAwQgAAuEEAAP5CAAAgQQAAkMEAAIjBAABAQQAAiEIAACzCAAAsQgAAJEIAAJrCAABAwQAAdEIAAMhBAABQwQAAREIAAFBBAAC6QgAAHEIAAEBBAACgwAAAgL8AACDBAAC4QQAAoEEAAADCAAA4QgAAGMIAADDCAAAoQgAA4MEAACRCAAAcQgAAwMAAAFjCAAAgQQAAgD8AAODAAAD4wQAAAMIAAJBBAACAQQAAAEEAANDBAABAQQAAgL8AAEBBAAAAAAAA4MEAAEBAAABwwQAAgEEAAKhBAADgQAAAcMIAADRCAACgQQAANMIAAABCAABUQgAAcEEAAHDBAABMQgAAcEIAADBCAADAwAAAmMEAABBCAADAwAAAAAAAABBBAAAEQgAArEIAAIjCAACAQAAATMIAAI7CAACWQgAAiEEAAMBAAABoQgAAFEIAAIDAAABIQgAAhMIAABRCAACgQAAAKEIAALBBAADoQQAAjEIAANjBAAD4wQAAZEIAAMDBAAAAwgAAdEIAAADAAAAkQgAAJMIAAIDAAABgwQAA-MEAAGRCAACcwgAA4MEAAFjCAADAQAAAaMIAADBBAADgQAAA4MAAAFRCAABAQgAAXEIAAJjBAABUQgAAUMEAAMBBAAAAwAAAyMEAAARCAACMQgAA8EEAAJDBAAAowgAAAEIAAMhBAAAowgAAGEIAANBBAADMwgAAgMAAABjCAABIwgAAksIAAIbCAAAAwAAAOMIAACDCAAAQwgAAwEAAAKTCAABQwgAAiMEAAMDAAADgwAAA4EEAACDCAACgQQAA4EAAAHDCAABQwQAAoEAAAMjBAAAYwgAApkIAAIjBAACQwQAAuMEAAHDCAADAwAAAHEIAAMDBAACGwgAA-EEAAKBBAAAgwQAAIMEAANDBAABQwQAAwEAAAJhBAAAwwQAANEIAAFTCAAD4wQAAgMEgADgTQAlIdVABKo8CEAAagAIAAIq-AAAkvgAA-D0AAFA9AABQvQAAFD4AAOo-AAAjvwAArr4AAIA7AADovQAA2L0AAEw-AADoPQAA2L0AADy-AADmPgAAJD4AABw-AAAFPwAAfz8AAFC9AACYPQAAfD4AAES-AAAMvgAAwj4AAPi9AACYvQAADD4AAFw-AAABvwAA6D0AADw-AAD4PQAAXD4AAAS-AACevgAA9r4AAJa-AAAsvgAA2D0AALg9AACIvQAAir4AAIA7AAC-PgAAhr4AAMi9AACyvgAA4DwAANg9AACyPgAAHD4AACy-AAD4vQAAVz8AALY-AACAOwAAiD0AADy-AACAuwAAoDwAAOi9IAA4E0AJSHxQASqPAhABGoACAACGvgAA1j4AAEC8AAAjvwAAPL4AAIi9AACKPgAABD4AAAw-AABcPgAADD4AAPi9AACYPQAAmL0AAFA9AACYvQAAFL4AAPY-AADIvQAAuj4AAOA8AAC4vQAAgLsAADS-AACAOwAALL4AAJg9AAAsPgAAgLsAAIi9AABAvAAA6D0AAJq-AAAwvQAAUL0AAIa-AABEPgAAZD4AAFy-AAAcPgAABL4AAIK-AABwvQAAqD0AAPg9AABAvAAAf78AAFw-AADIvQAAij4AAIA7AADoPQAAcL0AAEw-AADIPQAA-D0AALi9AABAPAAA2D0AABA9AAAwPQAAJL4AAHQ-AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eO4RjsvPUT8","parent-reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1080,"cheight":1920,"cratio":0.5625,"dups":["11721295327752496376"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3343438776"}},"dups":{"11353210308688933767":{"videoId":"11353210308688933767","title":"Finding \u0007[Local\u0007] Maximum and \u0007[Minimum\u0007] Values of a Function - Relative Extrema","cleanTitle":"Finding Local Maximum and Minimum Values of a Function - Relative Extrema","host":{"title":"YouTube","href":"http://www.youtube.com/live/WCq3sRzsJfs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/WCq3sRzsJfs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":857,"text":"14:17","a11yText":"Süre 14 dakika 17 saniye","shortText":"14 dk."},"views":{"text":"1,6milyon","a11yText":"1,6 milyon izleme"},"date":"3 mar 2018","modifyTime":1520035200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/WCq3sRzsJfs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=WCq3sRzsJfs","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":857},"parentClipId":"11353210308688933767","href":"/preview/11353210308688933767?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/11353210308688933767?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18230680025483879236":{"videoId":"18230680025483879236","title":"\u0007[Local\u0007] and Absolute Maximum and \u0007[Minimum\u0007] from a Graph","cleanTitle":"Local and Absolute Maximum and Minimum from a Graph","host":{"title":"YouTube","href":"http://www.youtube.com/v/votVWz-wKeI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/votVWz-wKeI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick JMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+JMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"Patrick JMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":206,"text":"3:26","a11yText":"Süre 3 dakika 26 saniye","shortText":"3 dk."},"views":{"text":"885,8bin","a11yText":"885,8 bin izleme"},"date":"11 eki 2011","modifyTime":1318291200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/votVWz-wKeI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=votVWz-wKeI","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":206},"parentClipId":"18230680025483879236","href":"/preview/18230680025483879236?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/18230680025483879236?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13792573514891280674":{"videoId":"13792573514891280674","title":"\u0007[Local\u0007] Maximum and \u0007[Minimum\u0007] Values/ Function of Two Variables","cleanTitle":"Local Maximum and Minimum Values/ Function of Two Variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Hm5QnuDjNmY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Hm5QnuDjNmY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick JMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+JMT","origUrl":"http://gdata.youtube.com/feeds/api/users/patrickJMT","a11yText":"Patrick JMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":643,"text":"10:43","a11yText":"Süre 10 dakika 43 saniye","shortText":"10 dk."},"views":{"text":"696,8bin","a11yText":"696,8 bin izleme"},"date":"22 mayıs 2008","modifyTime":1211414400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Hm5QnuDjNmY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Hm5QnuDjNmY","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":643},"parentClipId":"13792573514891280674","href":"/preview/13792573514891280674?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/13792573514891280674?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16981329343793929496":{"videoId":"16981329343793929496","title":"Finding \u0007[local\u0007] \u0007[minimum\u0007] maximum values of a function","cleanTitle":"Finding local minimum maximum values of a function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UTmmq8xoZIM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UTmmq8xoZIM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWE43eDBpVWdEUDNxNGxkNDJHTUFXUQ==","name":"vinteachesmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=vinteachesmath","origUrl":"http://www.youtube.com/@vinteachesmath","a11yText":"vinteachesmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":489,"text":"8:09","a11yText":"Süre 8 dakika 9 saniye","shortText":"8 dk."},"views":{"text":"25,7bin","a11yText":"25,7 bin izleme"},"date":"17 ara 2016","modifyTime":1481932800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UTmmq8xoZIM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UTmmq8xoZIM","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":489},"parentClipId":"16981329343793929496","href":"/preview/16981329343793929496?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/16981329343793929496?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9252765891168975751":{"videoId":"9252765891168975751","title":"\u0007[Local\u0007] and General Maximum and \u0007[Minimum\u0007] of a Function | Extrema Points","cleanTitle":"Local and General Maximum and Minimum of a Function | Extrema Points","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pxGWnc7NYPw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pxGWnc7NYPw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDc2hXazFUbUIwS05LZG05QlAwamdNUQ==","name":"GeeklyHub","isVerified":false,"subscribersCount":0,"url":"/video/search?text=GeeklyHub","origUrl":"http://www.youtube.com/@GeeklyHub","a11yText":"GeeklyHub. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":343,"text":"5:43","a11yText":"Süre 5 dakika 43 saniye","shortText":"5 dk."},"date":"30 mar 2021","modifyTime":1617062400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pxGWnc7NYPw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pxGWnc7NYPw","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":343},"parentClipId":"9252765891168975751","href":"/preview/9252765891168975751?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/9252765891168975751?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3656261643137805098":{"videoId":"3656261643137805098","title":"\u0007[Local\u0007] maximum and \u0007[local\u0007] \u0007[minimum\u0007]","cleanTitle":"Local maximum and local minimum","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=g7PAW8270TI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/g7PAW8270TI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRzR5Mjlubl9jVWd5ZVlGSzVQc3FWZw==","name":"Brunei Math Club","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Brunei+Math+Club","origUrl":"http://www.youtube.com/@BruneiMathClub","a11yText":"Brunei Math Club. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1413,"text":"23:33","a11yText":"Süre 23 dakika 33 saniye","shortText":"23 dk."},"date":"20 eyl 2023","modifyTime":1695168000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/g7PAW8270TI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=g7PAW8270TI","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":1413},"parentClipId":"3656261643137805098","href":"/preview/3656261643137805098?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/3656261643137805098?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5726821341984677891":{"videoId":"5726821341984677891","title":"\u0007[Local\u0007] Maximum and \u0007[Local\u0007] \u0007[Minimum\u0007] of a function- Relative Extrema","cleanTitle":"Local Maximum and Local Minimum of a function- Relative Extrema","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=o68okf6-Nyk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/o68okf6-Nyk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcy1zX3hNWU8teTQ4NEVDdnVySFY4Zw==","name":"MathMeUp","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathMeUp","origUrl":"http://www.youtube.com/@mathmeup561","a11yText":"MathMeUp. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1380,"text":"23:00","a11yText":"Süre 23 dakika","shortText":"23 dk."},"date":"16 nis 2020","modifyTime":1586990616000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/o68okf6-Nyk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=o68okf6-Nyk","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":1380},"parentClipId":"5726821341984677891","href":"/preview/5726821341984677891?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/5726821341984677891?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14900443963943334405":{"videoId":"14900443963943334405","title":"Finding \u0007[Local\u0007] Maximums and \u0007[Local\u0007] Minimums using the Second Derivative Test","cleanTitle":"Finding Local Maximums and Local Minimums using the Second Derivative Test","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LKOwTnHGu_g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LKOwTnHGu_g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRmU2amVuTTFCYzU0cXRCc0lKR1JaUQ==","name":"Patrick JMT","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Patrick+JMT","origUrl":"http://www.youtube.com/@patrickjmt","a11yText":"Patrick JMT. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":686,"text":"11:26","a11yText":"Süre 11 dakika 26 saniye","shortText":"11 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"13 mayıs 2011","modifyTime":1305244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LKOwTnHGu_g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LKOwTnHGu_g","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":686},"parentClipId":"14900443963943334405","href":"/preview/14900443963943334405?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/14900443963943334405?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13285432627413121646":{"videoId":"13285432627413121646","title":"How to Find \u0007[Local\u0007] Maximum and \u0007[Minimum\u0007] Values of a Rational Function | Calculus | Glass of Nu...","cleanTitle":"How to Find Local Maximum and Minimum Values of a Rational Function | Calculus | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dw_ujbbN8ys","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dw_ujbbN8ys?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":827,"text":"13:47","a11yText":"Süre 13 dakika 47 saniye","shortText":"13 dk."},"views":{"text":"27,8bin","a11yText":"27,8 bin izleme"},"date":"19 mar 2020","modifyTime":1584576000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dw_ujbbN8ys?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dw_ujbbN8ys","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":827},"parentClipId":"13285432627413121646","href":"/preview/13285432627413121646?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/13285432627413121646?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11433720328487257697":{"videoId":"11433720328487257697","title":"Absolute & \u0007[Local\u0007] \u0007[Minimum\u0007] and Maximum Values - Relative Extrema, Critical Numbers / Points Ca...","cleanTitle":"Absolute & Local Minimum and Maximum Values - Relative Extrema, Critical Numbers / Points Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/live/VZuJ4bGj2D0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VZuJ4bGj2D0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4204,"text":"1:10:04","a11yText":"Süre 1 saat 10 dakika 4 saniye","shortText":"1 sa. 10 dk."},"views":{"text":"526,1bin","a11yText":"526,1 bin izleme"},"date":"28 eyl 2016","modifyTime":1475020800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VZuJ4bGj2D0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VZuJ4bGj2D0","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":4204},"parentClipId":"11433720328487257697","href":"/preview/11433720328487257697?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/11433720328487257697?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14668031113569799756":{"videoId":"14668031113569799756","title":"\u0007[Local\u0007] Maximum and \u0007[Local\u0007] \u0007[Minimum\u0007]/Differential Calculus/Matrices and Calculus","cleanTitle":"Local Maximum and Local Minimum/Differential Calculus/Matrices and Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/live/JBjRvJhY8sU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JBjRvJhY8sU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcGx2MERmTHd2VDNLM2UzQzU5czJaQQ==","name":"Maths Learners","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Maths+Learners","origUrl":"http://www.youtube.com/@matsclearners6322","a11yText":"Maths Learners. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1262,"text":"21:02","a11yText":"Süre 21 dakika 2 saniye","shortText":"21 dk."},"date":"19 şub 2025","modifyTime":1739923200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JBjRvJhY8sU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JBjRvJhY8sU","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":1262},"parentClipId":"14668031113569799756","href":"/preview/14668031113569799756?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/14668031113569799756?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6843836119813282091":{"videoId":"6843836119813282091","title":"\u0007[Local\u0007] Maximum, \u0007[Local\u0007] \u0007[Minimum\u0007] and Critical Points in Multivariable functions","cleanTitle":"Local Maximum, Local Minimum and Critical Points in Multivariable functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zsh7EI3JafU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zsh7EI3JafU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU0RKLW95eVRmbWItRlJ1SHVOcUljUQ==","name":"MyCampus","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MyCampus","origUrl":"http://www.youtube.com/@Myowncampus","a11yText":"MyCampus. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":687,"text":"11:27","a11yText":"Süre 11 dakika 27 saniye","shortText":"11 dk."},"views":{"text":"3,4bin","a11yText":"3,4 bin izleme"},"date":"24 ağu 2023","modifyTime":1692835200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zsh7EI3JafU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zsh7EI3JafU","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":687},"parentClipId":"6843836119813282091","href":"/preview/6843836119813282091?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/6843836119813282091?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6688311659655098689":{"videoId":"6688311659655098689","title":"\u0007[Local\u0007] Maximum and \u0007[Minimum\u0007] Values","cleanTitle":"Local Maximum and Minimum Values","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=e0wcvGMJ7xc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/e0wcvGMJ7xc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbW1yNGJtZ3kzZ1J2VlczVHlmbDFTZw==","name":"Michael Pemberton","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Michael+Pemberton","origUrl":"http://www.youtube.com/@mikeype","a11yText":"Michael Pemberton. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1101,"text":"18:21","a11yText":"Süre 18 dakika 21 saniye","shortText":"18 dk."},"date":"19 ağu 2023","modifyTime":1692403200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/e0wcvGMJ7xc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=e0wcvGMJ7xc","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":1101},"parentClipId":"6688311659655098689","href":"/preview/6688311659655098689?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/6688311659655098689?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1375268707782296414":{"videoId":"1375268707782296414","title":"Find \u0007[Local\u0007] Maximum and \u0007[Minimum\u0007] Value when function is polynomial l \u0007[Local\u0007] Extrema l Calcu...","cleanTitle":"Find Local Maximum and Minimum Value when function is polynomial l Local Extrema l Calculus","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=j_iCt87VJBI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/j_iCt87VJBI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN2pVS3hSOGJfNU1RN0dBcGFIYzNuQQ==","name":"Scientific_Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Scientific_Math","origUrl":"http://www.youtube.com/@Scientific_Math","a11yText":"Scientific_Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":359,"text":"5:59","a11yText":"Süre 5 dakika 59 saniye","shortText":"5 dk."},"date":"30 kas 2021","modifyTime":1638230400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/j_iCt87VJBI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=j_iCt87VJBI","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":359},"parentClipId":"1375268707782296414","href":"/preview/1375268707782296414?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/1375268707782296414?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11954521115619858956":{"videoId":"11954521115619858956","title":"Lecture 43 | \u0007[Local\u0007] maximum & \u0007[Local\u0007] \u0007[minimum\u0007] and First derivatives with proof | Analysis |...","cleanTitle":"Lecture 43 | Local maximum & Local minimum and First derivatives with proof | Analysis | Tamil","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Mk4M3c25Abg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Mk4M3c25Abg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZ1dfbUJQd0I5d3kzMHpzVkRRYmNBdw==","name":"Jeshua Rajan","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Jeshua+Rajan","origUrl":"http://www.youtube.com/@jeshuarajan","a11yText":"Jeshua Rajan. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":991,"text":"16:31","a11yText":"Süre 16 dakika 31 saniye","shortText":"16 dk."},"views":{"text":"4,3bin","a11yText":"4,3 bin izleme"},"date":"16 kas 2020","modifyTime":1605484800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Mk4M3c25Abg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Mk4M3c25Abg","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":991},"parentClipId":"11954521115619858956","href":"/preview/11954521115619858956?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/11954521115619858956?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6171931366382445205":{"videoId":"6171931366382445205","title":"\u0007[Local\u0007] Maximum and \u0007[Local\u0007] \u0007[Minimum\u0007] | Precalculus | Calculus I","cleanTitle":"Local Maximum and Local Minimum | Precalculus | Calculus I","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=b400teonZNs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/b400teonZNs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjdnQjN5UTZoTnNWSGRQblNObDROdw==","name":"The Math Tutor","isVerified":false,"subscribersCount":0,"url":"/video/search?text=The+Math+Tutor","origUrl":"http://www.youtube.com/@MathTutor1","a11yText":"The Math Tutor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2226,"text":"37:06","a11yText":"Süre 37 dakika 6 saniye","shortText":"37 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"6 şub 2022","modifyTime":1644105600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/b400teonZNs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=b400teonZNs","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":2226},"parentClipId":"6171931366382445205","href":"/preview/6171931366382445205?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/6171931366382445205?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15984695455036694831":{"videoId":"15984695455036694831","title":"How to Find \u0007[Local\u0007] Maximum and \u0007[Minimum\u0007] Values of a Polynomial Function | Glass of Numbers","cleanTitle":"How to Find Local Maximum and Minimum Values of a Polynomial Function | Glass of Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Huaez7lXFcM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Huaez7lXFcM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcEFJRm16TW9TTXdkeVBnOGNDdTVfdw==","name":"Glass of Numbers","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Glass+of+Numbers","origUrl":"http://www.youtube.com/@GlassofNumbers","a11yText":"Glass of Numbers. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":935,"text":"15:35","a11yText":"Süre 15 dakika 35 saniye","shortText":"15 dk."},"views":{"text":"73,2bin","a11yText":"73,2 bin izleme"},"date":"15 mar 2020","modifyTime":1584230400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Huaez7lXFcM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Huaez7lXFcM","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":935},"parentClipId":"15984695455036694831","href":"/preview/15984695455036694831?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/15984695455036694831?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11721295327752496376":{"videoId":"11721295327752496376","title":"\u0007[local\u0007] \u0007[minimum\u0007], \u0007[local\u0007] maximum, and zeros on TI-84 graphing calculator","cleanTitle":"local minimum, local maximum, and zeros on TI-84 graphing calculator","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eO4RjsvPUT8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eO4RjsvPUT8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDejVLS29xM3dfNTBIUnMwbzhwUmRTQQ==","name":"bprp math basics","isVerified":true,"subscribersCount":0,"url":"/video/search?text=bprp+math+basics","origUrl":"http://www.youtube.com/@bprpmathbasics","a11yText":"bprp math basics. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":98,"text":"1:38","a11yText":"Süre 1 dakika 38 saniye","shortText":"1 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"13 mar 2023","modifyTime":1678665600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eO4RjsvPUT8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eO4RjsvPUT8","reqid":"1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL","duration":98},"parentClipId":"11721295327752496376","href":"/preview/11721295327752496376?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","rawHref":"/video/preview/11721295327752496376?parent-reqid=1769605011629581-2022866969298640975-balancer-l7leveler-kubr-yp-klg-319-BAL&text=Local+Minimum","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0228669692986409757319","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Local Minimum","queryUriEscaped":"Local%20Minimum","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}