{"pages":{"search":{"query":"Max Flows","originalQuery":"Max Flows","serpid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","parentReqid":"","serpItems":[{"id":"5733126578854304605-0-0","type":"videoSnippet","props":{"videoId":"5733126578854304605"},"curPage":0},{"id":"14447129795635085389-0-1","type":"videoSnippet","props":{"videoId":"14447129795635085389"},"curPage":0},{"id":"11632571124507619564-0-2","type":"videoSnippet","props":{"videoId":"11632571124507619564"},"curPage":0},{"id":"2878622492835859887-0-3","type":"videoSnippet","props":{"videoId":"2878622492835859887"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1heCBGbG93cwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","ui":"desktop","yuid":"1406198711769390334"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"6756463083663209836-0-5","type":"videoSnippet","props":{"videoId":"6756463083663209836"},"curPage":0},{"id":"8269005687348302080-0-6","type":"videoSnippet","props":{"videoId":"8269005687348302080"},"curPage":0},{"id":"12927866292061198443-0-7","type":"videoSnippet","props":{"videoId":"12927866292061198443"},"curPage":0},{"id":"17406356863092111684-0-8","type":"videoSnippet","props":{"videoId":"17406356863092111684"},"curPage":0},{"id":"4646224429896179686-0-9","type":"videoSnippet","props":{"videoId":"4646224429896179686"},"curPage":0},{"id":"2578904551323652349-0-10","type":"videoSnippet","props":{"videoId":"2578904551323652349"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1heCBGbG93cwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","ui":"desktop","yuid":"1406198711769390334"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"1345504759888503870-0-12","type":"videoSnippet","props":{"videoId":"1345504759888503870"},"curPage":0},{"id":"3013694588344335863-0-13","type":"videoSnippet","props":{"videoId":"3013694588344335863"},"curPage":0},{"id":"11902048191431549271-0-14","type":"videoSnippet","props":{"videoId":"11902048191431549271"},"curPage":0},{"id":"17547130655115079950-0-15","type":"videoSnippet","props":{"videoId":"17547130655115079950"},"curPage":0},{"id":"17259739763243096902-0-16","type":"videoSnippet","props":{"videoId":"17259739763243096902"},"curPage":0},{"id":"9525398453318547443-0-17","type":"videoSnippet","props":{"videoId":"9525398453318547443"},"curPage":0},{"id":"15910157659988541813-0-18","type":"videoSnippet","props":{"videoId":"15910157659988541813"},"curPage":0},{"id":"9959555782106560657-0-19","type":"videoSnippet","props":{"videoId":"9959555782106560657"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1heCBGbG93cwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","ui":"desktop","yuid":"1406198711769390334"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMax%2BFlows"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0998904096962323109745","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1460331,0,76;1457616,0,35;1450255,0,92;1460712,0,87;1462157,0,54;1459297,0,94;1152684,0,19;1472031,0,72;1471630,0,8;1461643,0,75;1201469,0,67;1461704,0,71;260554,0,3;1461715,0,6;1455765,0,52;1282205,0,24;1466296,0,93;1465919,0,19;1472532,0,84;1466077,0,20;1452015,0,12;1466619,0,23;1470515,0,64;260564,0,13;1471678,0,59;89014,0,66;1404017,0,83;40254,0,47;1469396,0,48;259954,0,81;151171,0,42;1281084,0,67;287509,0,59;1447467,0,53;1006024,0,86;1466397,0,13;1467128,0,67;681842,0,19"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMax%2BFlows","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Max+Flows","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Max+Flows","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Max Flows: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Max Flows\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Max Flows — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y2bb08a70470a81dbfed782d68762e0be","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1457616,1450255,1460712,1462157,1459297,1152684,1472031,1471630,1461643,1201469,1461704,260554,1461715,1455765,1282205,1466296,1465919,1472532,1466077,1452015,1466619,1470515,260564,1471678,89014,1404017,40254,1469396,259954,151171,1281084,287509,1447467,1006024,1466397,1467128,681842","queryText":"Max Flows","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1406198711769390334","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,310194,278842,331010,338398,378416,359879,415420,571985,644350,652605,645301,679708,689693,690449,696466,696473,698168,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769390385","tz":"America/Louisville","to_iso":"2026-01-25T20:19:45-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1457616,1450255,1460712,1462157,1459297,1152684,1472031,1471630,1461643,1201469,1461704,260554,1461715,1455765,1282205,1466296,1465919,1472532,1466077,1452015,1466619,1470515,260564,1471678,89014,1404017,40254,1469396,259954,151171,1281084,287509,1447467,1006024,1466397,1467128,681842","queryText":"Max Flows","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1406198711769390334","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0998904096962323109745","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":155,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1406198711769390334","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5733126578854304605":{"videoId":"5733126578854304605","docid":"34-10-1-ZCD934E66C4216E11","description":"The max-flow min-cut theorem states that in a flow network, the maximum flow from a source to a sink is equal to the minimum capacity of a cut that separates the source from the sink. A cut is a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/759922/5ab1437164d89b58518544a4338aca1c/564x318_1"},"target":"_self","position":"0","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOXt8OjxWzT8","linkTemplate":"/video/preview/5733126578854304605?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max-Flow/Min-Cut Theorem | Ford-Fulkerson Algorithm | Network Flows","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OXt8OjxWzT8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzU3MzMxMjY1Nzg4NTQzMDQ2MDVaEzU3MzMxMjY1Nzg4NTQzMDQ2MDVqrw0SATAYACJFGjEACipoaGFveXZtaWJvbW12YmRkaGhVQzdWekVfZjV6UmVqd3VuV3VydlZEWVESAgASKhDCDw8aDz8TqwuCBCQBgAQrKosBEAEaeIHq-Pz7Av4A9AP9AgAE_gEGA_L19v_-APUA9PMDAv8A9gX19PgAAADuAAANCAAAAAEIAv7x_gEAEQsNAPQAAAAK9gEH8gEAAAIE-P8I_wEA_f8CBwT_AAAAFwn6_wAAAPX0BgL8_wAA-hMKDQAAAAAYCgsBAAAAACAALY5Oyzs4E0AJSE5QAipzEAAaYAUIADLq-bfN_0Tt_7rtHgf7D_Dc8Nr_AxcA1k8H_Q4B3ekKJAAmvAr1swAAABX69wHRAOFY38_0GvBH9wLX4Q4Bf_X9sxNF8eQIzQ27HB7qJsQmAwDkCfX6QxAsCRQiKCAALSSkNDs4E0AJSG9QAiqvBhAMGqAGAAAwQQAAsEEAAAAAAACgwQAANEIAAPBBAAAIQgAAgMEAAABBAABAwAAAwMAAAIDCAACUwgAAEMEAAKxCAAAYwgAAwMAAAEDBAACgwQAAHMIAAEBBAAAwwQAAIEEAAIBBAAC4QQAAAMEAAIzCAAC8wgAAEEEAAEBCAADoQQAALEIAACjCAACAwQAAcMIAACDBAADwQQAA9EIAABTCAAA0QgAAmMEAABBCAABsQgAAkEEAAERCAABEwgAAmsIAAMBBAACwQQAACEIAALzCAADwQQAA0EEAAMBAAABAQgAAwEAAAADDAABQQQAA4MEAAJhBAACAvwAAdMIAAOjBAADKwgAAAMEAAMjBAAAIwgAAFMIAAIC_AAAgQQAAeEIAAIxCAABgwQAAoEAAACDCAACwwgAACMIAAOjBAACgQAAAoEEAAEjCAAAEQgAAmMEAAKRCAADgwQAAwEAAAARCAABsQgAAOEIAAFTCAAAsQgAAXEIAAKhBAACOwgAAoMAAAPjBAADgQAAA8MEAADRCAACgQAAAEMIAAFRCAAC0QgAA-MEAAADBAACIwQAAEMIAAOBAAAAYwgAAREIAAJBBAAAEwgAAYEEAALjBAADgQAAAwMAAAKDAAABowgAAAMEAAABAAACIQQAADMIAAODBAAAUwgAAQEAAALhBAABAwAAAUMEAAKDAAAAAwgAAwEAAACBBAACAwQAAIEIAABDCAAAYQgAAEEEAAADCAABkwgAAnsIAAIDBAACgQAAAwEEAACBBAADgQAAAMEEAAMLCAABgQQAAREIAAIDBAAAcwgAAfEIAACRCAACQQQAAcMEAAMBAAACowQAAqMIAACTCAABAQgAABMIAACBBAAAUwgAAoMAAAABBAADAQQAADEIAABhCAACAQQAAcEEAAADCAACAQQAAAEAAALhBAADAwQAAGMIAANBBAAAAAAAAskIAAJjBAABAwQAAJMIAAARCAABYQgAAzkIAAPjBAAAswgAAQMAAAIhBAAAAwQAA6MEAAILCAADQQQAAgL8AAPBBAABAQgAASMIAADDCAAAYwgAA0MEgADgTQAlIdVABKo8CEAAagAIAAAy-AADoPQAA9j4AAEQ-AACovQAAZD4AADC9AAA5vwAAwr4AAFQ-AADIPQAAFD4AAGy-AACiPgAAML0AADC9AACyPgAAmL0AAII-AADePgAAfz8AAOA8AABkPgAABD4AACS-AACIvQAAiL0AACS-AABcPgAATD4AABC9AACgPAAAJL4AALg9AACAuwAATL4AAJg9AACuvgAAgr4AAPi9AADovQAAoLwAAEA8AABwPQAAuL0AAHA9AABMPgAAML0AAIC7AADSvgAAFD4AAOi9AAAwvQAApj4AABS-AABAPAAAYT8AAIC7AAAkvgAAcL0AAEC8AABQvQAADD4AABS-IAA4E0AJSHxQASqPAhABGoACAABwPQAAcD0AAKg9AAAdvwAAqL0AAOi9AADgPAAA-D0AAEA8AADgPAAA4DwAAIa-AAAEPgAAhr4AAIA7AABQvQAAEL0AADk_AACAOwAARD4AAIA7AAD4vQAA-D0AABy-AABQPQAAcD0AAFA9AACoPQAAsj4AADC9AADgvAAAFD4AAMa-AACOvgAALL4AABC9AABMPgAAND4AAI6-AAAcvgAAoDwAAJg9AABQvQAAoLwAAMg9AACIPQAAf78AABC9AABwPQAAHD4AANi9AACgvAAADL4AAMg9AABEPgAAQDwAAKA8AADIPQAAZL4AAOg9AAAcPgAANL4AAFw-AAB0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OXt8OjxWzT8","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5733126578854304605"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14447129795635085389":{"videoId":"14447129795635085389","docid":"34-2-1-Z4468E43EE0E69720","description":"In this Video: 1. Max Flow Problem 2. Max Flow Problem with Solved Example 3. Learn in 6 Minutes 4. DAA Lectures #daalectures #easyexplanation For Video Lecture Notes, Download from link given...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3429339/dcf3f9c8b582716d66c8b13e23586538/564x318_1"},"target":"_self","position":"1","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DL9Ic93w7ErM","linkTemplate":"/video/preview/14447129795635085389?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Learn Max Flow Problem with Example in Just 6 Minutes|| Simple Method Explained|| DAA Lectures","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=L9Ic93w7ErM\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhYKFDE0NDQ3MTI5Nzk1NjM1MDg1Mzg5WhQxNDQ0NzEyOTc5NTYzNTA4NTM4OWqvDRIBMBgAIkUaMQAKKmhoaWdwZ2Jrand1aHRwdWNoaFVDSVJ2QjVrcGZuNVk0LS1OR1pES01BZxICABIqEMIPDxoPPxPqAoIEJAGABCsqiwEQARp4gfsD8wcAAADw_wT-_wIAARH5DfX3AAAA4foD9gf7AgAECQUA-AEAAP4GBAoEAAAA8fj2_PkAAAAMDfsCBQAAABMABQT8AAAAEQYADf4BAAD__An7AwAAABMEAf3_AAAA8f8IBfv_AAD5Cvn_AAAAABgH_wcAAAAAIAAtmkzUOzgTQAlITlACKnMQABpg9g0AMRIO4fEUOvDu3fEO9ekO4e_nDgAN_wDeIgzw_gfj1g8DABXdFgXFAAAAKxbj-woABEX63sgN-Nf9wekD-Rh_8AXr7UMA46cMAfURBAca6TAmAO_zAvQiAez99w4HIAAtiNxhOzgTQAlIb1ACKq8GEAwaoAYAAOhBAADQQQAAhkIAAODBAACAQQAAMEEAAHxCAAAQwgAAQMIAAFTCAABQwgAAaEIAAKLCAACYwQAAdEIAADBCAADQQQAAkMEAABBBAAAEwgAABEIAACzCAABQQQAAXEIAAJxCAABAwAAACMIAAABBAADIQQAAYEIAADBBAAC8QgAAZMIAAABAAACkwgAAAMIAADDBAAB8QgAA-EEAAEDCAACAQAAASEIAAIhBAAC4QQAA4EAAANDBAADAQQAA4MAAALhCAAAQwQAAsMEAABTCAAAIwgAAgL8AAJBBAABMQgAAxMIAANhBAACAvwAAOEIAAGhCAACYwgAAEMEAADTCAACAPwAA4EEAAFDBAADwwQAAQEEAABxCAABQwQAAuEEAAPjBAACkQgAAEMIAACDBAACAwAAAuMEAANjBAADAQQAAisIAADhCAABQwQAACEIAAGxCAABwQQAAJMIAADhCAACwQgAAoMAAAIhCAAA8QgAAIMEAACzCAADQwQAA5sIAAJBBAAAwwQAAWEIAAJjBAAAgwgAAQEIAADRCAAAYwgAAbMIAACxCAAAwwQAAYMEAACzCAAC4QQAAEMEAABBBAABgQQAAkEEAABDCAACgwAAAEEEAANDBAABQwQAAaMIAAILCAADAwAAAoEEAACTCAADAwQAAoEAAABhCAAAswgAAwMAAAHBBAACAwAAAyMEAAGBBAACEQgAAoEEAAEDAAAAAQAAAkEEAAEDAAABswgAAREIAAGRCAAAUQgAAkMEAAGxCAAB0QgAAXMIAAPjBAADgwQAAgMAAAMBAAACIQgAACMIAAILCAABoQgAAoMAAAIDBAACewgAACMIAAKBCAABQwgAA-EEAAIBAAAAgwQAAcMEAALjBAABQwQAAbEIAAGRCAABAQQAAgD8AAADCAADgwAAAgEAAAMjBAACwwQAAmkIAADBBAAD4wQAAHEIAAFjCAAB8wgAAeMIAAFBBAAA8QgAAUMEAAMDBAADAQQAAcMEAAADBAABQwQAAEMEAADBCAACQwQAADEIAAOBBAADwQQAAkEEAAIbCAAD4QSAAOBNACUh1UAEqjwIQABqAAgAAgDsAAEA8AADmPgAArj4AAOA8AADIPQAAMD0AAGG_AAAEvgAAqL0AAGw-AAAQvQAAkr4AAM4-AABEvgAAPL4AANI-AACAOwAA2D0AAMY-AAB_PwAA4LwAAIo-AACoPQAAkr4AAI6-AAAsPgAAJL4AAIA7AAAwPQAAZD4AACw-AAC4vQAAXD4AADy-AAD4PQAAlj4AAKa-AADmvgAAqL0AAAS-AABwPQAA6D0AADw-AACovQAAPD4AAJo-AACKvgAAED0AAIq-AAA0PgAAUD0AAFC9AACoPQAAhr4AAKi9AABXPwAAML0AAGy-AACoPQAAHL4AAEC8AAAMPgAAyD0gADgTQAlIfFABKo8CEAEagAIAAIC7AAAcvgAAFL4AAB-_AABkvgAA4LwAAOg9AACmPgAAqL0AADA9AAAkvgAAqL0AAMi9AAA8vgAAgDsAADC9AABQvQAABz8AABA9AAAFPwAA2L0AADC9AAB0vgAAEL0AAIA7AABUvgAALD4AAMi9AAA8PgAAED0AAFC9AAAQPQAAML0AAES-AABwvQAAmL0AAIg9AADIPQAAgr4AAMI-AADIvQAAyL0AAFA9AACAOwAAMD0AADC9AAB_vwAAUD0AAKi9AACIvQAA-L0AAFC9AAAwvQAA4LwAAFQ-AAAwPQAAoLwAAHA9AABwvQAATD4AABA9AAAQvQAAgLsAAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=L9Ic93w7ErM","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14447129795635085389"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11632571124507619564":{"videoId":"11632571124507619564","docid":"34-0-4-ZC043BBF96609F590","description":"In this video, we will discuss two fundamental problems in graph theory: the max-flow problem and the min-cut problem. The max-flow problem is the problem of finding the maximum amount of flow...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/787082/4e9b432c9dab9fc5f16f5eba38f2a4e8/564x318_1"},"target":"_self","position":"2","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5q-ZY7rN9-0","linkTemplate":"/video/preview/11632571124507619564?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max-Flow Min-Cut Theorem","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5q-ZY7rN9-0\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhYKFDExNjMyNTcxMTI0NTA3NjE5NTY0WhQxMTYzMjU3MTEyNDUwNzYxOTU2NGqvDRIBMBgAIkUaMQAKKmhoY2ZjamZpbHhwbGJwaGNoaFVDQ1pQbmxIUldaMmdHMnA4SHVnZ2JhdxICABIqEMIPDxoPPxPiAoIEJAGABCsqiwEQARp4gfT__gX7BgDx-AIHAwT-Aen6_vn8AAAA_vv99fwF_gD7APj__AAAAPQGCQoBAAAA8wP4-vwAAAAFBgb5-AAAAAz6-fz-AAAABgH9_v8BAAAIBgP6AwAAAAoJBPv_AAAA9QoD-gIAAAD_BwMLAAAAABUJCgEAAAAAIAAtTxjkOzgTQAlITlACKnMQABpg9wUAEeoW3sj_JfTz8fxM1gL32-3p9wATFgDdRAzwGOnS3iENAA3DAeyyAAAAMebgDPIA0FsA2Pwe9wf4CcryHAJ_5AnFAErs5dnC774lGP1C0TkGAOkL8wNKAFD3Dy47IAAtn8YzOzgTQAlIb1ACKq8GEAwaoAYAAOjBAAC4QgAAFEIAAIjBAADAQAAATEIAAKjBAAAgwgAA6MEAABTCAADQQQAAgD8AALDBAABEQgAAyEEAALhBAACAQQAAZMIAAMjBAACgQQAAAEAAAATCAAC4QQAA-EEAAHhCAABQQgAAQMEAACxCAACAPwAAwMAAAFxCAABsQgAAEMIAACzCAAAowgAAgD8AAIBBAACKQgAAkMEAAI7CAAA8wgAAoMEAALhBAADQwQAAmEEAABBCAADAQQAASMIAABxCAAAAwQAAoEEAAAAAAAA4wgAAmEEAAHBCAACCQgAADMIAAMjBAADwQQAAJEIAAIA_AABMwgAAPMIAAEBAAABEQgAAgMAAABBBAACwwQAAsEEAAAxCAABEwgAAcEEAAJDCAABIwgAATMIAAIBAAADQwQAAmMEAAADAAADowQAA2MEAALJCAADqwgAAeMIAAIJCAAAYQgAAYMEAAEDBAACSQgAAAEEAAHBCAADAQAAAmEEAAMLCAAAwwQAAcMEAAMDAAAAAwQAAAMAAAFDBAAAEQgAAyEEAAMhBAADAwAAAUMIAAGBBAADSwgAAIEEAAIBAAACIwQAAYEEAAEBBAABgwgAAMEEAAPDBAAAMwgAADMIAAMjBAACwwQAAAEEAAKBBAABYwgAAoEAAAI7CAABEwgAA-MEAAHjCAABAwgAAgL8AAIDBAAB4QgAABMIAABDBAAC-QgAAiEEAACBCAAC4QQAAEEEAAHBBAAAgQQAAwMAAAMDBAACAvwAAZMIAAATCAABAwAAAAMEAAADBAAAAQAAAAEEAACDCAACQQQAAAEAAAKhBAABQQgAAAEAAAADCAACQwgAAuMEAAABAAABMQgAAYEEAADzCAADQwQAAEMEAAATCAADAQAAAaEIAAIhBAABgQgAA4EEAANjBAABQQQAAXMIAAIC_AAD-QgAADMIAAIhCAAC4QQAAlEIAAADCAADAwQAAAMAAAPjBAABwQgAAaEIAAFBCAACowQAAsMEAAADCAAA0wgAAuEEAAEDBAABUwgAA2EEAAJhBAACAPwAA6MEAALrCAABAQCAAOBNACUh1UAEqjwIQABqAAgAARL4AAMg9AADePgAAbD4AAMi9AABUPgAAUD0AADG_AABsvgAAVD4AAJY-AABwPQAA-L0AAIo-AACIPQAAmL0AAKY-AACovQAAVD4AAOo-AAA7PwAAcD0AAJo-AACoPQAAVL4AAMi9AACgPAAAEL0AAOg9AADIPQAAyD0AABA9AAAUvgAAXD4AAKg9AAB8vgAAoDwAALa-AACCvgAAoLwAAMi9AADIvQAAJD4AAIi9AAAQvQAA6D0AAHA9AACIvQAAED0AAMq-AAAwPQAARL4AAHC9AACyPgAAUL0AAKA8AAB_PwAA-L0AACS-AAAkvgAAEL0AAFC9AADIPQAA2L0gADgTQAlIfFABKo8CEAEagAIAAJi9AADgvAAAML0AAC-_AADgvAAAQLwAABA9AABQPQAAUL0AABC9AADgPAAATL4AALg9AABMvgAAUD0AAHC9AADYvQAAHz8AAIi9AACCPgAAoDwAADA9AADoPQAALL4AAIC7AABwvQAAUL0AAJg9AACOPgAAmL0AAHA9AAAkPgAAkr4AAIa-AACYvQAAqL0AAK4-AAA8PgAAnr4AAJi9AABQvQAA-L0AABS-AACYPQAAcD0AALg9AAB_vwAAQLwAAKg9AACGPgAAoLwAAPi9AAAMvgAALD4AABw-AAAwPQAAQLwAAKA8AACgPAAAHD4AADQ-AADIvQAAZD4AAAS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5q-ZY7rN9-0","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["11632571124507619564"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2878622492835859887":{"videoId":"2878622492835859887","docid":"34-2-3-ZC40BFB9C207AD3F7","description":"Explanation of how to find the maximum flow with the Ford-Fulkerson method Next video: • Max Flow Ford Fulkerson | Source Code Algorithms repository: https://github.com/williamfiset/algor...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3309968/3600fab26f7d263d756eb7d9e2600d0b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4SZ3EQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLdOnanfc5TM","linkTemplate":"/video/preview/2878622492835859887?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow Ford Fulkerson | Network Flow | Graph Theory","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LdOnanfc5TM\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzI4Nzg2MjI0OTI4MzU4NTk4ODdaEzI4Nzg2MjI0OTI4MzU4NTk4ODdqkxcSATAYACJFGjEACipoaGNtcGdjbWR5bXh1dXNiaGhVQ0Q4eWVUY3phZHFkQVJ6UVVwMjlQSncSAgASKhDCDw8aDz8TpAaCBCQBgAQrKosBEAEaeIHzDfr9_AUA8AgC_PsBAAEVAvzz9gICAPYA9fQDAv8A-fX4-_gAAAD6_wEFCAAAAAEHAf7y_gEAEQcBDPYAAAAJ9wAG8wEAAPsP-v_-AQAA_PgC_wL_AAACCAH8_wAAAPX-BAEBAAAA-hEKDAAAAAASCgD7AAAAACAALVNm3Ts4E0AJSE5QAiqEAhAAGvABf_oEA8T48v7wLdgA1g_EAIMhCv47HeMA4f0U_733ywDmERIA0doAAAL2CgC-BwH_Bg7i_hn7_wA2_QQALPsGAO8QDQARywMAGwsA_xXr7__hIhH_H-wFAAv4CAP7Cf39I_0h_yYF2_4U7eIAChQiAB4rEAX_AxsE6yIPBNoVLgH0--__CN8BARAbAQPL_h0BDuvkAQD84frvXBb5_AIBA-zdDgAS9t8ANCD8AuLyD_oe9Af7KP3iA_cREQcXI_sE6AMUAO7k8vn4EwsAMNPwBvPiAwH76QUI9tD6Djjc_AQT_AUGpiP3BBYJBQEgARL1IAAtrqAfOzgTQAlIYVACKs8HEAAawAeM9vi-XgImPPEN6rxV2fc8ElXTPPgwIL3Z38O9fjq7O4C-iDyjARy9blQCPXnDxzyXx6q-E8fsO74RnbydRoI-fxZLvL4SyLxYx9G9DLyJPGwDfL0R_D--f2B4PRBEErz05SC9RbJsPJG92jvWoi89VD30vNqkKrtb2XQ9-twBPAXHwLwYHCq9vk6KvQYOC7wFw_k9MYtavQuIHz350I89hUSKva6gxLz_Qqo8XzlMPb-pfry_tYO9eYqBPFppDLtzCLE9QL3ZvIXDnDxbM2g8fO4kvahkqTsiSsU8GeOzPQlG7zvSxaY8eDsnPbZqNrt7Mlo9IhZWvFzbJbz_Z4M87P2xPVvYrrzsWxg8y5e8PWrftzwmDHS9XUa7PUwsujz285G9K_6KvDriGDqlaCU-2PinvE5IljnUhfM8utJXPDOJQbp2rpM9HVXNPTjTyjvdazc9jJyqPQR-g7xd_yk9DLXBPD90nLwpFNi8oW8BPR2JQLpSflI80suTvS49mrr4dTs9nA4JPZZcJLsbTak9mbQOvXD6abwWpk89UEMqvX8sBjsZqHE95wqFPSXJczyjpoK8sO7OPCl2kzvJWSi-OjW8u_J9DjxtpJE8Xsh5vR-sNTsjK4S9B_SdPXLAA7pUruy75Fl4PZYVFrymffM9Q1QEPHjV3jtmhFe9NpIEvSwQ-zsxBEU9L2cdu3rsbTq78EM9KsXOvYN87zgLJOg9qwEvvezJ0znONQo7v42OvbZB1Lq2MZG9jEPiPElbi7cyVyY9uOSYvaBq8rfwTl49c7I-PcFWQjmthBM9DF86vMUJhjqE4Kc9AWg5vAfUbLnodiW9sQvQvBKrCLnA7SQ9W--uOR6PxblLsX683XrNPMWpd7kl1ji9GMxEvR8fzDm9YZG8x6tivMCRxbjIg-M8dQzjPL4c2beU0dC6vS2CvdDoADjpwGg9QVCZvQk0hrjIKKq85aIQPQynkDjm_I69MgyOvNleArkSzfI8W3gjva3sKzldrjg7gfOdPbMYYrbonlo9wxEkvBUgfLYQrK8928PevcifPLiHnwQ9aj2SPTQipLive-u9c3-lvVDAEbg71Zu9Cd2lvKeawLeWUmE8ehAMvJYMxjiHIai9BuCavcp0LjiiXzs9RR89PYfzcrifde29c5w7PdKUlLg8cdS8yZ0IvfEbgLcKNZ48GbcnvWlznTdpgKw98fRKvXDrS7UhMrY8OznjPQQbBjlgmpg8W5r7PYSt_bhiglq9WyBmPWQ1uzdmHFm8tnuOvVYiw7cgADgTQAlIbVABKnMQABpgFQQAQrQNqgcOV-35gu8o8_4W69Ln7f_m9P_KCv4EDvjmwyvZ_yO5JPmbAAAAEP_q8vIA4X8IkQ4h7zvu-5PuKjhYCxn3wQUC2ejw_sz1DdwK6RlAAKrWuiVSBxcl_jwZIAAtl-MWOzgTQAlIb1ACKq8GEAwaoAYAAGBBAAAwQgAAQEIAAKjBAABAwAAAAMEAAL5CAABAwQAANMIAAFDBAACowQAA-EEAADjCAAAIwgAAPEIAAIBBAADgQQAAOMIAALBBAABwQQAAuEEAACzCAAAAwQAAXEIAAKBBAAA4QgAA4MAAAODAAACAwAAATEIAACxCAAAoQgAAgsIAAPjBAACwwQAALMIAAIDAAACyQgAABEIAADRCAAAAwgAAAEIAAIhCAACAvwAAAEEAAKDAAACwQQAAQEEAAORCAAAIQgAAgMEAAKDAAACAPwAA0EEAANBBAAAcQgAAysIAAAzCAAAEQgAAkkIAAAxCAACawgAAYEEAAPDBAAAQQQAAIMEAADzCAADwwQAAIEIAAKBBAAAwwgAAIEIAADTCAAAwQQAAyMEAAADAAAAIwgAAqEEAAOjBAAAsQgAAnMIAADRCAAAEwgAAcEEAAO5CAAAcwgAAVMIAAKBCAADMQgAAQMAAAExCAACyQgAAQMEAANjBAABAwAAAisIAALDBAAAQwQAAgEEAAGjCAACgQQAAAEAAAEDBAACgQAAAAMIAAIBAAACowQAAIMIAAJjBAADowQAAyEEAAABCAAAswgAA4EEAACDCAABgwgAAsMEAAIC_AAAcQgAAcMEAAI7CAAAowgAAgD8AAIrCAAB4wgAAoMAAAMhBAAAQQQAATMIAAABCAAAgwQAAkMEAAOjBAACgQAAAQEAAACxCAACgQAAAuEEAAMBAAACOwgAAiEEAAChCAADQQQAALMIAAHRCAABwQgAAAEEAAMDBAACgwQAAoEAAAJjCAABQQgAACMIAAFjCAABUQgAAjsIAAFzCAACiwgAAPMIAAABCAAAMQgAA0EEAANBBAABIwgAAAMEAABDCAABQwQAAREIAANBBAABAQQAAqEEAAJDBAAAEQgAAAEEAAKBAAADAwAAAiEEAAJhBAAD4wQAAIEIAACTCAAAMwgAAGMIAACDBAACYQgAAyEEAADhCAAAQQgAAQEEAABBBAABwQQAAIMIAACBCAABwwgAA6EEAAJBBAAAIQgAAmMEAAI7CAACAQSAAOBNACUh1UAEqjwIQABqAAgAA-L0AAAS-AABsPgAADD4AAJi9AADWPgAAoDwAAE-_AAADvwAADD4AAHQ-AABUPgAANL4AAII-AACavgAADL4AAPI-AADgvAAAgj4AAKo-AAB_PwAA4DwAAEw-AABQPQAAJL4AADS-AABAvAAAgr4AANg9AACYPQAARD4AAMi9AACevgAAgLsAAIC7AABcvgAAND4AAOK-AADSvgAAML0AALi9AABAvAAABD4AAJY-AAC4vQAALD4AAAw-AABQvQAA6D0AAJK-AACAOwAATL4AAHC9AABsPgAADD4AABA9AABtPwAABD4AAAS-AABEvgAAyD0AAHC9AAAwPQAAXL4gADgTQAlIfFABKo8CEAEagAIAAHA9AAA0PgAAED0AACG_AABwvQAABL4AAEw-AAAcvgAAcD0AAHA9AACgvAAAir4AADA9AACOvgAAoLwAADC9AAAcvgAANz8AALg9AACmPgAARD4AAHy-AACIPQAA2L0AAKC8AAD4vQAAED0AALg9AAAEPgAAQDwAAIg9AADIPQAAir4AALi9AAAkvgAA-L0AANg9AAAQvQAAur4AAKC8AAAQPQAAbD4AACQ-AAAQvQAAcD0AAEQ-AAB_vwAAuL0AACw-AAAQvQAA-L0AAFA9AAAEvgAAcD0AAFQ-AACIPQAAoLwAAAQ-AAAkvgAAND4AAEA8AADYvQAA2D0AACS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=LdOnanfc5TM","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2878622492835859887"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3350873042"},"6756463083663209836":{"videoId":"6756463083663209836","docid":"34-5-10-Z36008F922B3D6A5E","description":"An intro to the problem of max flows and one solution (Ford-Fulkerson). Shoutout to Prof Ghrist Math for teaching me lots of stuff that went into this video...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2185593/81fee34694a2ffefcd8c5c11a8f14b05/564x318_1"},"target":"_self","position":"5","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDYbEVp2rZpA","linkTemplate":"/video/preview/6756463083663209836?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flows and Ford-Fulkerson","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DYbEVp2rZpA\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzY3NTY0NjMwODM2NjMyMDk4MzZaEzY3NTY0NjMwODM2NjMyMDk4MzZqrw0SATAYACJFGjEACipoaHp0dnlhYXhjenpscG1jaGhVQ21TYTg5eWhGa0M0bWxmYUVCb0pYWWcSAgASKhDCDw8aDz8TygOCBCQBgAQrKosBEAEaeIH1BAD4_AUA8AgC_PsBAAEJCP_49wAAAOz4_PQC_wEA9wT2-gQAAADoAPj_BwAAAPQFAwj8AAAAEQYEBAQAAAD7-gMD_gAAAAwB-QII_wEB_f8CBgP_AAD5DgT8_wAAAPb1BQL8_wAA_ggDCwAAAAAWCQoBAAAAACAALSvk3js4E0AJSE5QAipzEAAaYOYcAB_u_NXvBx_l59b6JQP-EQTkBfMADw0AzBz58BMGBukZ_gATx_wGzwAAABUO9Bz5ANc-DdDtC-Aw-QfvDfnvfwsP3RYG6_YYDgfs8iX3AOMGDgDaAQcUHQgQKe4XFSAALUERfDs4E0AJSG9QAiqvBhAMGqAGAABQwQAAIMEAABzCAAAAwQAAJMIAAEDCAABgQQAAkEEAAP7CAACIQQAAoEAAABBBAAA8wgAAFMIAAJbCAAAQQQAAQEIAAIBAAACAvwAAdMIAABBCAAAAQAAAiEEAAIBBAAAcQgAAwEEAAGDCAACQwQAAMMEAADRCAACwwQAAUEEAAEDCAACAwAAACMIAAADCAADQQQAAIEIAAAhCAAD4QQAAgD8AAHDBAAAQwQAAQEEAACxCAACAwAAAVEIAAJBBAACAQgAAXMIAAKDBAADgwQAAYMIAAODBAAAowgAAAEIAAGTCAADwQQAAgEAAADBCAAC8QgAAQMIAABhCAACIQQAAsEEAAOhBAABAwgAAJMIAAGBBAAAQwgAAIMEAAERCAACgQAAATEIAABDBAADYwQAAXMIAANRCAABAQAAA6EEAAGzCAADmQgAAEMIAAETCAAAcQgAAbMIAACzCAABQwQAAeEIAAK5CAAAQwgAAqEEAAIhBAACgwgAAcEEAAMDAAADYwQAAgMAAABjCAADoQQAARMIAAEhCAADAwQAAYMEAAITCAACyQgAAeMIAAAAAAABQwQAAGEIAAIRCAADQwQAAEMIAAJhBAAAkQgAAsMEAADDBAACAwQAAuEEAABTCAACAvwAAiMIAAODAAAD4wQAAgMEAAIBBAABAwAAAmMEAAEDCAACKQgAA2EEAAJ5CAAC4QQAAdEIAAIhCAABcQgAAAEAAAEDAAACoQQAA4MEAAADCAABgwgAA-MEAAGBBAAC0QgAA8MEAAIDCAAA0wgAAYEIAAI5CAABAQgAAAAAAAEDCAAA8wgAAGEIAABDCAACIwQAAqEEAAJjBAABAwAAAAAAAAEDBAADgwQAAEEIAAEBCAACIwQAAwMAAABhCAAA8QgAAMEEAAEBAAAC8QgAADEIAAEDCAADAwAAAIEIAAIC_AACYwQAANMIAAIBCAAB8wgAAAEIAACTCAACwQQAAQMAAAGBCAAAAwQAAFEIAAABCAAAwQQAAMEEAAADBAABgQQAAsMEAABDBAACwQQAA2EEAADjCAABgwQAAQMAgADgTQAlIdVABKo8CEAAagAIAAOg9AAAQPQAAhj4AACQ-AAAkvgAArj4AADC9AAA7vwAAVL4AAHw-AAAUPgAA-L0AAES-AACePgAANL4AAKi9AABkPgAAQLwAAGQ-AABUPgAAfz8AAFC9AADoPQAA-D0AACy-AABMvgAAoLwAAKq-AACKPgAAuD0AABA9AACoPQAAXL4AAJi9AADIvQAAir4AAAw-AACKvgAAxr4AACy-AACGvgAABL4AAKA8AACIPQAA4LwAABA9AAAUPgAAcD0AABw-AAAkvgAAJD4AAAy-AACgvAAAFD4AAAy-AAAwPQAAZT8AABC9AABAPAAAEL0AAKA8AACovQAAJD4AACy-IAA4E0AJSHxQASqPAhABGoACAADIvQAAQLwAAEQ-AAAnvwAA-D0AAAS-AAD4PQAANL4AAOC8AAAUPgAAQLwAACS-AACCPgAA6L0AAHC9AABwvQAAQDwAADE_AAAkPgAApj4AAPg9AACYPQAAuD0AADC9AAAQPQAAkr4AAEw-AADoPQAAgj4AAEC8AAAQPQAAHD4AABy-AACIvQAALL4AACS-AAAQPQAAcD0AAGy-AACAuwAAmD0AAAw-AACgPAAA-L0AAIC7AABQPQAAf78AACw-AAB0PgAAyD0AAKi9AAAwPQAA6L0AAHQ-AABAvAAABD4AAEA8AAD4PQAADL4AAIC7AAC4vQAAor4AAKg9AAD4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DYbEVp2rZpA","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6756463083663209836"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8269005687348302080":{"videoId":"8269005687348302080","docid":"34-8-16-Z5AE59F4D15337C74","description":"NOTE None of my videos contain working code on implementing their topics. They are just designed to teach you about the topics and help prepare you for an exam on the topic by explaining the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/930783/b0f258bb3cfc417c49b110135025cb79/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y_RNfgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D36PUk1hd-is","linkTemplate":"/video/preview/8269005687348302080?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow Algorithm Tutorial","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=36PUk1hd-is\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzgyNjkwMDU2ODczNDgzMDIwODBaEzgyNjkwMDU2ODczNDgzMDIwODBqtg8SATAYACJFGjEACipoaGF5eWpoaWt1Ynh6YWFkaGhVQ0haYzZBMnJRVGVQYzI5Q0tadllaVXcSAgASKhDCDw8aDz8ThQSCBCQBgAQrKosBEAEaeIH3Bff8_gIA_QIFAvoG_gIHAADw9___APUA9fQDAv8A_vjwBfkBAADzBgoKAQAAAPQGAPj8AAAACwoMBgUAAAAQ-vUB9QAAAAcADvb_AQAACQX-DwT_AP__CAzw_wAAAPD8Cfz-_wAA_wcF_QAAAAAV_wP9AAEAACAALVog2Ds4E0AJSE5QAiqEAhAAGvABSQz0_8Ts_f4QEfQAAQfRAIEFC_8vF-kA5_0QAPP08AEIIfsA5BERAAUSHf_c8-UA_wQEAP368AAtBB___PsIAP4EAwAgzPgBNPQWANz19v-2Fgb-6BUC_xLh3gLjLPP9IMv__tsEzv__7NgA_wMhABMO8wD8DgT-BSISAPEbJv_fDt7-9_QQ-vcAG__jAxkBFPXaARAOBvsaHff9_AANBRn0_wYP-OYAGv8GAO8FF_n9EAL-B_D8BwTxBfsfCgL7_OD_BPvTAwAlBwv5G_0D_vvaCQT96fYH_hEC_gHj-vbyFQXw-gnz-iAN-AESAv0AIAAtbidIOzgTQAlIYVACKnMQABpg9QEA_O8drMT_PAD56-RBqNQK9d3bC__c3f_8PBH3-Azr8uUC_xbSC_ChAAAARNbbIPEABHv7qBj93Pg8obsROr5_8yrlwh8E2ru5BfnU8jYU6zsvAMvUxBFR3yUeKAcoIAAtt0QYOzgTQAlIb1ACKq8GEAwaoAYAAABCAADCQgAA4EEAACDCAAAUQgAAEEEAAHRCAAAEwgAAhsIAAIDCAACgwAAAbEIAADjCAAAAQAAAhsIAAODBAACAvwAAXMIAAAAAAACgwAAAXEIAAIbCAADgQQAAIEEAAHhCAABwQQAAOMIAABBBAAA8QgAAQMAAADTCAABcQgAA0sIAAABCAACWwgAAYMIAANBBAABAQQAAAMAAACBBAAAcQgAAFEIAAGBBAABcQgAANMIAACzCAADAQQAAAMAAAGBCAAAEQgAA-MEAAODBAACAvwAAqEEAAPhBAAAAwgAA8MEAAPDBAACEQgAAuEEAAABBAAAgwgAAqMEAACBBAABAQgAALMIAANBBAAA0QgAAIMEAAEBAAACyQgAAoMEAACDBAAAwQgAA0EEAAIDBAAC4wQAAQEAAAFRCAADgwAAAgD8AAHhCAABcwgAA-EEAABBBAABAQQAAOEIAAOjBAAAUQgAACMIAABBCAACqQgAAFMIAAIzCAAAcwgAA3sIAAGjCAAAMwgAAJEIAANBBAAD4wQAAqEEAAKBAAACowQAA0MEAAJBBAABQwQAAoEAAAADBAAAkQgAAHEIAACxCAAAAwgAAoEIAABBBAACgwQAANEIAAChCAAA8wgAAHEIAACTCAAAAAAAAgEEAANDCAAAswgAAHMIAAMBAAABAQAAAaMIAAGDBAADIQQAAiMEAAFBBAADQQQAAwEAAACRCAAA4QgAAuEEAAJBBAADgwAAATEIAAFhCAADgwAAAhMIAAARCAAC4QQAAeMIAALjBAAAAQQAA8EEAADDCAABEQgAAaEIAAGBBAAAgwQAADMIAABjCAAC4wQAAmEEAABRCAAAAAAAAlkIAAJhBAACQQQAAoEAAAJTCAABAwAAAQEIAAGhCAACIQQAAoMAAACBBAAAsQgAAAAAAAMDBAABwQgAA8EEAAEDCAABEwgAAREIAAFDBAAAwwgAA4MEAAIrCAAAwQgAAgkIAAJjBAACowQAAgEAAABBCAACAQQAALMIAAEBAAABAwQAAAEEAAOBAAACYQQAAHMIAAIbCAACoQSAAOBNACUh1UAEqjwIQABqAAgAATL4AANg9AADaPgAALD4AAFw-AABQPQAAEL0AAFu_AAAVvwAAtj4AAKo-AAA8PgAAkr4AANg9AACYvQAAcD0AAJo-AADgvAAAuD0AAM4-AAB_PwAAXL4AABQ-AACAOwAANL4AAKa-AABQPQAAfL4AAHC9AABUPgAAbD4AAJg9AADoPQAALD4AAEw-AAAcvgAA2D0AACW_AACivgAAFD4AAKA8AAAwvQAAoDwAAHS-AAD4vQAAqD0AAFQ-AACIvQAAcD0AAOa-AABAPAAAZL4AAOi9AACiPgAA4LwAAKA8AABTPwAAhr4AAOA8AAAcPgAAqL0AAAw-AAAcPgAA6D0gADgTQAlIfFABKo8CEAEagAIAAIi9AADYPQAAbL4AACG_AACAuwAAyD0AAFC9AACaPgAAQDwAAFC9AAA0vgAALL4AAJi9AABUvgAAiD0AAIi9AAAQPQAAAz8AANi9AAC2PgAAEL0AAGQ-AADIPQAAmL0AAKC8AABAPAAAoDwAAHA9AACYPQAAmL0AAFA9AADYPQAAmL0AADC9AAAcvgAAXL4AAFQ-AAAwPQAATL4AAAw-AABAvAAAmL0AABy-AAAkPgAAEL0AAFC9AAB_vwAAyD0AADC9AADSPgAA2L0AAFC9AAB0vgAAnj4AAKo-AACoPQAAgLsAAIC7AABQvQAAmD0AAIC7AAAQPQAAXD4AABy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=36PUk1hd-is","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1630,"cheight":1080,"cratio":1.50925,"dups":["8269005687348302080"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1917558537"},"12927866292061198443":{"videoId":"12927866292061198443","docid":"34-5-9-Z9835FD1D9A10ADB6","description":"Discord Community: / discord GitHub Repository: https://github.com/geekific-official/ The subject of this video is an algorithm that I personally find extremely fascinating because of its numerous...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3358264/432652c1b7b10c3ec1aac78dc6180597/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xZlrCAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsT9dpVRKrQY","linkTemplate":"/video/preview/12927866292061198443?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow | Ford-Fulkerson Algorithm Explained and Implemented in Java | Graph Theory | Geekific","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sT9dpVRKrQY\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhYKFDEyOTI3ODY2MjkyMDYxMTk4NDQzWhQxMjkyNzg2NjI5MjA2MTE5ODQ0M2qIFxIBMBgAIkUaMQAKKmhoY3d3cGZtd2huc3BoeWNoaFVDWFJaeXYwY053YmE2ZjB4Q1JFQURfURICABIqEMIPDxoPPxP2A4IEJAGABCsqiwEQARp4gfATAAABAADsCAED-AIAAQb1APn4_v0A7PwH-gcAAAD2BfX0-AAAAAL9-AIJAAAAAQgC_vH-AQASCAEM9QAAABT4Av73AAAAERUH-f4BAAAE-gMBA_8AAAEPAPj_AAAA9vQGAvz_AAD-EAUBAAAAABgKCwEAAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AF__QT90fPgAs0F9AHCFqcAjBEm_2MO0wGuGDEBogTV_-8oDADJwhr_0AoP_8lDQgD69bj--vTiAVX0Gv9B4PQA0QkyAUy1FgElHeYBHAQO_uRKFf0y5ST9XiTrAfL57vc450j-Q_7l_v7btgDnPE0COz73BTAHFAz8WjAFyCBEAQclu__7CgMF_CT9ANjHNQQm7LkDAPrT9w5cFwEA9hX7tg_4ABvx0P9d9fD_7PMS8-cCDAFV5s378gYU-vcY6AX9KgoL9NbxAxwSBe5HvukJ99rx_AYC7RIFEu0EWesY-vofEgqtTg71BRL9CzDDGvEgAC3MyNY6OBNACUhhUAIqzwcQABrAB5G33L6-SI0979ALvReppLr1g4o9atM9vTlk472y0gs7iQMtvSurhD1piG89Dwlfuzhpir7RDD087a59PINQtj4a8rS8r1VMPFjH0b0MvIk8bAN8vbeyJL4pFcM8RNBivMaNFj3C8LY75BvlPFRTAj7cSzq9dswQvOiZgzwkVPo8mykjvVGWa7yBdKa9m3PTO5V_DT6ipFa9sVVdPCAHuj2CkTe9iLKcvGd3EDxXfnQ9MgfeO3R76b2lFsq8u1qTvPBZzTyscoA7RtJuPBkdsbuVwnI8op46O8kaSjoKMac90zuNO2NebDw7Dg09LU7rvDwwAD6MWQW9o4WVOz4Zbb1vM1A9sGOSPPYM_rvxhZQ9f8w9vLDi1L11Nsk9PI5VPK8JSb0VUTg8VmDtuyxFEj6g3Du9z4mYPCuz8zsX0PC88VQWPQG9lbxUiGw9MQtWOVEzv7zFVlA90Ui6vPzgHD2540g9arvsux4lJb2_2UG82mvqu9gocD3F7qG9Ncn2O2SV0j2tCwk9Rl1rPEWA8z28Yba9ey8dO_b5Xj2yOmi9AD0LvM1Bqz3m9pw9pvhTPNwKhr17kf-8NZ9OvN7IDL4Lskq9wnlEO1ZrPLxSr7C9YscYOyMrhL0H9J09csADurlKgbzScCo97N8zu8uupT0ESAM9_leEu1Ryrr2vXiW9fsVYu7RgWD3P-ek8xC-rOlQsyLxV-NO9WhlMuGx7ez1N4LE8q4qZOs41Cju_jY69tkHUuo480L3VZWc8_wJFOaGd0z1RgZi9l51ROf63kjwGXAE92x0sOO9-K71KHGk6jrVzOFOzJz3SkEy9MxqUOIkPt723Qri9MUK6OE3HkjzEWIu895Cpubh4-LyDisc7TAkdOmkufbr6zL68UaXBuY9Efj2Ivhu9EOWZuev4FD1plTQ9oRWyOCIiaz2dpJS9qBckt4dMfj1ItFO9ET1pOOJbE71ENqs8-rgzN0O5Q71yTUG9cxB8N5Yvjj3XGiW8zMaPOOcfOD0P77k9tGi5OE62IT1k6UO9znuct8PT6zxnJvi9IiQkuIefBD1qPZI9NCKkuEXLi713YRK86NQ7tv4bqrx9ezK9qD7PN30geT2wIgI8z7etN5ctA70vave8WincN2s7Nzxwn8A9hdB9uJernzxjZc-8icrWN43lhjqtDiU88Cy_N_svoT26EBC9wceKN1yooT19xJS9uKGWN4qWVz0QWPk9jRdAOB44gr0z8549nOfyuOhVs70WJOw8zbghOFyOV72iCdS938IhtyAAOBNACUhtUAEqcxAAGmASCQA9AyDU8PQ76_DNBxTm_wbw7fXpAO_lAN4qCt0F6fKzK_0A_LkdDLMAAAA7AhMI9ADvZA3K3yzaIgPTtN8uGX_2CBfAIRrGngUNGwQd3wjzGD8A4vnG-jb_8SHvLxkgAC3_rDI7OBNACUhvUAIqrwYQDBqgBgAAoEAAABRCAABwQQAA4MAAAKBAAADwwQAALEIAAADBAABAwgAAAEIAAIC_AACiwgAAsMEAAJ7CAADoQQAAqMEAAMBBAADYwQAAgMAAAHBBAAAwQQAAOMIAAEDAAADgQQAAWEIAAADAAAAIwgAAUMEAANhBAACAQQAA2MEAACDBAAAwwgAAoEEAACTCAAAQQQAASEIAAMRCAACgwQAAFEIAAERCAAAkwgAAREIAAMhBAADgQAAAuMEAAJrCAAAAAAAAaEIAAJBBAADAwQAAgMEAAJjBAAAAwQAABEIAAKhBAADqwgAAgL8AAHjCAAA0QgAAcEEAAIA_AACAQAAAosIAAJDBAABswgAAEMEAAIjBAADgQAAAEEEAAJpCAACgQgAA0MEAALBCAACAvwAAlMIAAABAAACIQQAAyEEAADBCAABkwgAAcEEAAKDAAACMQgAAqMEAANjBAACYQQAAqkIAAOhBAACMwgAAyMEAACRCAAAQQQAAysIAABDBAAA4wgAAAMEAAEBBAABEQgAAQMIAALjBAACoQQAAFEIAAL7CAADgwQAAgL8AAIDBAAA4QgAAwEAAAKBAAAC4QQAAgD8AABBBAACgwQAAeEIAANBBAADQwQAAaMIAALhBAADgwAAAnsIAACjCAACQwQAAXMIAAHBBAAA4QgAAZMIAAGDCAAAMwgAAkMIAAIhBAACQQQAAKMIAAEBAAAAsQgAAcEEAAAAAAAC4wQAAPMIAAITCAAD4wQAABMIAAKhBAAAAQAAA2EEAAKjBAACWwgAAAEIAAIDAAAAcwgAAQEAAAIBBAABAQQAAKMIAAJBBAAAAQgAA0EEAAPDCAAAAwQAAMEIAAJDBAACgQQAAUMIAAAzCAAA4wgAAqEEAAAhCAAAQQgAADEIAABhCAAAswgAAmEEAAEDCAAAAwAAAlsIAABhCAAAQwgAAAMIAAFhCAACYQgAAAMAAAKDAAAAAQQAAQEEAAKBCAABgwQAAksIAADRCAACgwQAAEEEAAOBAAACawgAAHEIAAABCAAAAQAAAoEEAADTCAAAIwgAA4MEAABDCIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAyL0AAPg9AAAEPgAAJD4AAKY-AAAwPQAAcb8AABe_AAA8PgAAUD0AAOA8AAA8vgAAdD4AAK6-AADgvAAADD4AAKA8AAAEPgAACT8AAH8_AADIvQAAZD4AAES-AABQvQAAMD0AADw-AAAMvgAATD4AAIC7AACiPgAAiL0AADy-AADIvQAAUD0AABC9AACoPQAAlr4AANK-AABUvgAAvr4AAIA7AADIPQAAiL0AACy-AABEPgAAyj4AAFC9AACCPgAAPL4AAIi9AACSvgAAJL4AAI4-AADovQAA4LwAAFs_AACIPQAAMD0AAOC8AADgPAAA4DwAAEQ-AACovSAAOBNACUh8UAEqjwIQARqAAgAAXL4AADA9AAAQPQAAG78AADA9AABAvAAAbD4AAHC9AACIvQAAED0AAFC9AAAsvgAAcL0AAPi9AADoPQAAQLwAAIg9AAAbPwAAoDwAAMY-AAC4PQAAMD0AADC9AAD4vQAAMD0AAES-AADYPQAAcD0AAKC8AACYPQAAiD0AAEw-AACevgAA2L0AAEA8AADovQAAFD4AAOg9AACyvgAAEL0AAOC8AABAPAAAoDwAAJg9AAC4PQAA4DwAAH-_AACYvQAAUD0AAKg9AABQPQAAqD0AABy-AACYPQAALD4AAKg9AADgPAAAFD4AAFA9AAAMPgAAqD0AAOC8AAAsPgAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=sT9dpVRKrQY","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12927866292061198443"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2158066583"},"17406356863092111684":{"videoId":"17406356863092111684","docid":"34-10-0-Z282C62680F924184","description":"NOTE*** Up until 6:11 the same frame is used because we realized that we forgot to start recording until that time. So use your annotated notes to follow along the lecture up until 6:11.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2187216/803a6fda89825ba0b79f76b716ecc1ac/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0o42fQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0CpMXqgL8Ew","linkTemplate":"/video/preview/17406356863092111684?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Algorithms - Lecture 24: Max Flow Applications","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0CpMXqgL8Ew\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhYKFDE3NDA2MzU2ODYzMDkyMTExNjg0WhQxNzQwNjM1Njg2MzA5MjExMTY4NGq2DxIBMBgAIkUaMQAKKmhoenN5cGVnZ2tydHVpYmJoaFVDeFhZazUzY1Nab2YyYlJfQXgwdUpZURICABIqEMIPDxoPPxPHGIIEJAGABCsqiwEQARp4gfT89v4B_wD59P8CBAX-ARAJDPT1AQEAC_zy-PgBAAD7APf__AAAAP0FCAr5AAAA9QED-_P_AQARFAUFBQAAABH69QH0AAAABwoCCv4BAAD-BAERBP8AAAz_DfL_AAAA6gj-AAEAAAD0DQYGAAAAABQC-QAAAAAAIAAthUHROzgTQAlITlACKoQCEAAa8AFEGUTw0herAv9HOQD9Nu4CtwwY_-dF7wGZ6hABHP0QATn6tQDmxyz_7xnmAbz__P8uAhH_orkMAlkXIv_KsgAC4xD4ARvB5wN_-vkBBq_6_Y5E3QD3PyUA2gu7_bAunv1e9eb9IkvbAvz1v_sxvQn_Md_-Av8FKwfMCycFJBUYAgcnuP_zMggHt9wq_wJILwEbyeX7-lHh_fwBCfgitgL9M-TL-xkK8Ak0E_QHyzcE-RrCFAv3zv_wE1UB_i_u4wPX5wfnAocH9BvyKwkGOgTp2MUQCgEeBAsD4RsPQTgY5ughD_70IvYAVNva_hbH4PggAC3wD8w6OBNACUhhUAIqcxAAGmAJ7gAT2g7I4xQlBwTw5ifK4s238uz0_9ry_9QkGtv69_L38fsA5tYn47AAAAAJBwEv9QDsXObLFPTnCj259R009X_XIOnbMhcBue7y9A43MhH3PSUAxeL4_DP3BBT6JzggAC2Omjg7OBNACUhvUAIqrwYQDBqgBgAAgEEAALhCAAAYQgAAgMIAAJjBAAAkQgAAlkIAAJBBAABIwgAAdMIAAEDBAABcQgAAhMIAAPhBAADIwQAAQMEAAHRCAABowgAAFEIAAHDBAACAvwAARMIAAIhBAACAwQAA6EEAAIhBAAAowgAAEMEAAIDBAAAAAAAAMEEAAKBCAACuwgAAAMEAANDCAACIwQAAqEEAADhCAACgwQAAsMEAAFBBAACgQQAA6EEAACBBAAAgwQAAyMEAABRCAAAAQAAAfEIAABxCAABkwgAAMMEAABBBAACAPwAAcEEAAAAAAADQwQAAcMEAAJhCAABAQQAAcEEAAEzCAAAQwgAAsEEAABBCAAAMwgAAgMEAAAAAAABwwQAAIEEAAJZCAAD4QQAAIMIAAIhBAADIwQAAUMEAACjCAABAwAAAfEIAAJBBAAAkwgAAzEIAALjBAABwwQAAGEIAAJhBAAAAQAAAbMIAAM5CAAAMwgAAqEEAALBBAAB4wgAAPMIAABDCAADawgAAIMIAAPDBAAAoQgAAOEIAADjCAABwQQAAcEEAAFDBAABwwgAAIEIAAADCAAAAwQAAQEAAAHBCAADAwAAAUMEAAKjBAAB4QgAAUMEAAOhBAAAwQQAAsMEAAOjBAAAAwQAAosIAAFjCAADoQQAANMIAALLCAADowQAAREIAAMDBAAAAwQAAbEIAAKBBAABcwgAAQEAAAGxCAADYQQAACEIAAKBBAABQQQAAkEEAAGDBAADwwQAA2EEAACzCAACewgAAUEEAAIZCAAAswgAAMEEAAKjBAADgQAAACMIAAEBCAABsQgAAkMEAAEhCAADgwQAAbMIAAKjBAACgwQAASEIAAIDAAAAgQgAAUMEAAIDBAADAwAAAuEEAAOjBAABIQgAAMEIAAADAAABAwQAAAMAAAABCAAAkwgAAaMIAADBBAADAQQAAmMEAAJrCAAAcQgAALMIAACjCAABQQQAAQMAAAJ5CAACIQQAAFMIAANDBAAAAQAAA4EAAAFhCAACgQQAAuEEAAIC_AAAQQQAAnkIAAIhCAAAAAAAAAMIAADBBIAA4E0AJSHVQASqPAhAAGoACAAAEvgAAoDwAAJ4-AABkPgAAUD0AAKA8AACovQAAM78AANq-AABwPQAAVD4AAEw-AADYvQAAXD4AADy-AADYvQAAxj4AAEA8AACGPgAAuj4AAH8_AAAEvgAABD4AAHA9AAAkvgAAmr4AAKg9AABMvgAABL4AAAw-AAAMPgAAmD0AAHS-AADgvAAAiD0AABC9AABEPgAApr4AAMK-AACgvAAAdL4AAIg9AACIvQAAEL0AAKC8AABwPQAApj4AAAS-AACYPQAAsr4AAJg9AABMvgAAuL0AAI4-AADIvQAAML0AAC0_AAB8vgAAyL0AAI4-AADIPQAAcL0AAHA9AADYvSAAOBNACUh8UAEqjwIQARqAAgAABD4AADw-AADIvQAAIb8AAHA9AAAQPQAAoLwAAEQ-AACYvQAATD4AAIA7AAAsvgAAQLwAAKq-AABQvQAAUL0AAHC9AAAVPwAAmL0AAJI-AADgvAAA4DwAAAQ-AAA8vgAAUD0AAFA9AAAEvgAAMD0AAIg9AADovQAAEL0AALg9AACYvQAAyL0AAJq-AABsvgAAUD0AAHA9AABUvgAAiL0AAEA8AAAwvQAAML0AANi9AADgvAAABD4AAH-_AADIPQAA6D0AAFw-AADYvQAAuL0AABS-AAAsPgAAUD0AAIA7AACAuwAAHL4AALi9AAAkPgAABL4AAJK-AADIPQAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=0CpMXqgL8Ew","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["17406356863092111684"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"274128459"},"4646224429896179686":{"videoId":"4646224429896179686","docid":"34-5-4-ZB387B792D7128A93","description":"An Introduction to the Max Flow Problem. You can find more information in section 26.1 of your Textbook. You might also find the Geeks for Geeks explanation helpful...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2920179/5d31ec6117a65e8ec76c439069dc5e39/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KMINFQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dc4kQpCv5JEA","linkTemplate":"/video/preview/4646224429896179686?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow Problem - March 26 Live Session","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=c4kQpCv5JEA\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzQ2NDYyMjQ0Mjk4OTYxNzk2ODZaEzQ2NDYyMjQ0Mjk4OTYxNzk2ODZqhAkSATAYACJFGjEACipoaGhscHhncml4eWx3dmdkaGhVQ0ptVEN1anY3VUwyemdFZkhJRDBJcHcSAgASKhDCDw8aDz8T1w2CBCQBgAQrKosBEAEaeIEDAvMD_QMA_PUHAPsF_gEAAw71-f7-APYA9fQDAv8A9gH8AfUAAADzBgoKAQAAAOYCCQb7AwAABgX9-_sAAAAY9vUI_QAAAAD_BQv-AQAAAwIHAQP_AAAHAgX4_wAAAP7__fsCAAAABAT8BgAAAAASCgD7AAAAACAALXVL3js4E0AJSE5QAiqEAhAAGvABf_zj-pLb-v32JtUA9PONA4U-Mf9a7tH_i_gmAZ3zsgEHMw4A9w9DAdkZMgGyAej_xuDqAOEH_gFp00YA6BcFAOIpIwEvmyj_Vx0E_y4PHADJUdf-JR8mAPwln_7iJdr-Du0Z9yBH3QG64P8C_gY9AAo97gH_9RX8rSAAABIIDQIyFNQGy-AP-g7YGA7p0BQEEPzHAFH45gA-eA3-4dwUDf3TIPsXOwUMFAnsCcggBQUP1xH4LBnqCR4tMP4iLNMC5Njt9L6Y__oBCwbvF-f09Ci-DgYTSfoM1-8O_zL1CQDeCggByRz9-SXWAf7-3AkFIAAtNnrYOjgTQAlIYVACKnMQABpg8AAAMhockwQXQer6xew20PPoperz7f8H4v_lLvq7G_Ug1wQBABK-GAafAAAAN_Hh5wgA4XsFvAvx2EwQpJ8eHfZ_ufwKrR0c-ugNHcwc2kAe1yM2ANvfxTpCQeTkDuYwIAAtCr8UOzgTQAlIb1ACKo8CEAAagAIAABA9AACCvgAAMz8AANI-AAB0vgAAlj4AAOq-AABTvwAA1r4AAK4-AAC6PgAAUD0AAPg9AACuPgAARL4AAIA7AADCPgAA4LwAAAM_AAAHPwAAaT8AAKY-AACYPQAAUD0AAFy-AAC-vgAA6D0AAN6-AACivgAAHD4AAOg9AACWPgAAiL0AADy-AADYPQAArr4AADA9AABsvgAArr4AAAQ-AAAsPgAAPD4AAKI-AACgPAAANL4AAAw-AADYPQAAPL4AAFA9AAAPvwAATD4AAES-AADovQAAnj4AAOg9AABAvAAAfz8AAIY-AAB8vgAAbL4AABQ-AABUvgAAoLwAADy-IAA4E0AJSHxQASqPAhABGoACAABQPQAAcL0AAIi9AABLvwAAED0AAKC8AACGvgAAuD0AADC9AAC2PgAAQLwAANg9AADYPQAAhr4AAOg9AABwvQAAFL4AAFM_AABUPgAAwj4AADC9AAAQPQAAlj4AAEA8AAAUvgAATD4AAGQ-AABMPgAAND4AAFC9AAAwvQAAuL0AADw-AAC2vgAAZL4AAJg9AAB8vgAA4LwAAKi9AAA8PgAAoDwAAJg9AACIvQAAUL0AAEC8AACYvQAAf78AAOi9AADoPQAAXD4AAPK-AAD4vQAAHL4AAIY-AAB0PgAAMD0AAEC8AAAQPQAAfL4AADy-AACAOwAA2D0AAIo-AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=c4kQpCv5JEA","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4646224429896179686"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2578904551323652349":{"videoId":"2578904551323652349","docid":"34-9-11-Z1C345C69EE915F53","description":"This is a quick explanation of the Edmonds-Karp algorithm to solve the max flow problem. This project was written and presented by Stephen Thomson and Greg Cawthorne for The University of Bristol.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3842618/d43d9c8e0a42467bc2a2541911216bf3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xBJingAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dw3Nl2XA0pxA","linkTemplate":"/video/preview/2578904551323652349?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Edmonds Karp Max Flow Algorithm Tutorial","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=w3Nl2XA0pxA\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzI1Nzg5MDQ1NTEzMjM2NTIzNDlaEzI1Nzg5MDQ1NTEzMjM2NTIzNDlqkxcSATAYACJFGjEACipoaHFjd3hqbHlyd25hcHBiaGhVQ05ULWc5VWZQSXNrOHcwVTV5ZWJ5aUESAgASKhDCDw8aDz8TnwSCBCQBgAQrKosBEAEaeIH5D_T-Av4AAPj_A_oH_gIR-Q319gAAAPUA9PMDAv8ABPrw-PsBAAD_DgAJ-gAAAPoS__r3_gEADQIJEAQAAAAbAv0A9wAAAAb1DPH_AQAABwj_AAT_AAD-ARH6_wAAAOsCBwMDAP8A_vz-_AAAAAAN9QAGAAAAACAALY76yzs4E0AJSE5QAiqEAhAAGvABf-gOAJHf6vv5G-EA9_auAq_08gAJH-b_xdEmAMDq4AH0_A8ADOsVAQbxHAC57uwBtRvn_hsT8QBw9B0BEu8TAM0FFgAU3AQCNe8IABcT7f_0DfP_Bx8V_xUG_gLYANX-8_oo_Bsi9Pzw5uj_7ycZATkiCwTDHyYD2iMfBvEYIAEP_PAE6xz2_esH9QIX-BkEC_3XAAcM4wAKQhEACPIrA-Dh9_oI49wAEgjhBfMVFvIc_yH-IPgJAsgnAQMxHtwA7QEH-vji9QLwFQnwJQPz-fnl9v3--AERw_D6CwLa-PIU-wUHyhXy9AHb_P73_wT4IAAt0UIXOzgTQAlIYVACKs8HEAAawAdcH8a-AEF0PacSlDw12rU9TU8zPCvIJb0awAu-m-fIvPlfGL1vLh4-LeCvvGEVlLyvCN69htRlu4nEzrtnYpo-TjqbvBrvWDwrYJy9ux7WvE5eRL1FvPW9Z-jEPKy4J7xGjts7EHd1Pe4dezvzOw0-dhTMvIZLWDxLTwI9Q4fIO392E7wRQpY969qDvZo737xhqlk-gBfPOxCrJD045su9PFW0vPJKzLtlscM8qP-sPGnk87wjAcm9cJeNvaRdOzxVO3m84P0nu7-THjyB-ws9PZiJvZms27y2Xl09yS08PbtbvrwPe4Y97LmRPTmhK72fEdc7-bV6vfZOnrto1p29sKA8O1QFfjxHUve874TIPXtGxzzLBqO9htVuPabc2DxiTiu99H3Au8M0AjwsRRI-oNw7vc-JmDzKxL09s51KvDsp_jvkO8Y7jPcDPr8syDyRxP27NNDhPN3hgLyGmLY9CmSLPfyt17uVVZI9L6jvvJPb3TqBkby8LQSOvR9qmbpV_QU9jJqEvZ77IbzIzxY-aWNWvZdqWzpnowk96p5Lvb5rUDz8ndi7Q9CHPB7QhDsSIi895P4-vTp5kbu6TK29VdpiPPjSJTwAtrK8aAfYO1oREjzPGay8W6mhPSxVdbuDHoW95rGWPYnBXTouVgQ-WMqNvIY2SznPo-K9Q10_PcfUmrms2v88EtjBvB1iNDuyg4g75gTNvXk76LgGv4g9NPwCPPVRvjuS2KS8s1bZPEchyTo3TbS9NATRPMIK_DiNiZM9R3xdPOKJjjgfu-s9Jh6rPF20OznBdxe8lQ9hvX_siTg5WCk9COkpvNv1aTmOv769a3CvuNrMHbkYP709qYAAvYkyObkmVkY8w7BQuj69Xboi-IS9U3elvEXoeDppGvS9Z7rXvdITgjltVZI8tgLYOwZ4ODd6PwQ9vXRuvPyFSLjBQtw8kxjJvUU21DZLAem8LEErvTBN8zaxOWK9IXIfvEIjArmOSRU98YuBvZP_TjkAIwM9DtvWPT5PjDeAR4Q9ADCDPM-pp7g5tJg9po-Kvcwd2jc1dq485qzPPfUM2DZlU869wuioPP4y6Dc8Kfi8cY_lvYkdvLhSMYk933JQvXNSWDdBR-u9bF5VvNQRrLerX-m5CCvEPAZEP7hXJCa9iyTwPD6Qp7boJ0G81-iLPbrbUDh-Sj89ijMrvZNWoDevn8k9r6xZvLzPkbZwgko8Kuq3PecKCTnb2628a_AePpA5IbnnI5-9N8BxPO1kl7cwB-o7twkHvqealbcgADgTQAlIbVABKnMQABpgAQYAOuMWrgr8PQnp2PhrxvPZydb6-f8G4P_tFBMAAeLmu93-ANXIGPSYAAAAOtLgKgwA43YNgSoAyiInrqUHCuZXzwjP5Tsn--fl8-vrCwn7LzMNAAq50xcrDxUZAvsOIAAtt0cfOzgTQAlIb1ACKq8GEAwaoAYAADRCAAB8QgAAwEEAAMDBAADAwAAA6EEAAI5CAADQwQAAXMIAACjCAACwwQAASEIAAEDAAABQwQAAgEEAALhBAACCQgAAoMAAAAAAAACgQAAAmMEAAKjBAAAQQQAAHEIAAADAAABAQgAAAAAAABDBAACgwAAAsEEAAARCAACmQgAACMIAAIjBAAAowgAAHMIAANjBAAD8QgAAQEAAAMBAAABAQQAAsEEAAIRCAACAwQAAUMEAAEDCAAC2QgAABEIAAJ5CAABAQAAAQMIAAIBAAAAwQQAAgEAAAKBAAACgQQAAaMIAAKjBAAAYQgAA4EAAADBCAACUwgAAIMEAAIBBAACAQAAAgMAAAOjBAACwQQAAAEIAALBBAAC4wQAAfEIAAETCAAAgQQAATMIAACBBAAB8wgAAQEEAAAzCAABAQgAA1MIAAFxCAACgwQAAIEEAALJCAABAQQAAAEEAAPhBAAD6QgAA6EEAALDBAACAQgAAYEEAAMjBAAAwwgAAlMIAAKDAAABAQgAA2EEAAGDCAAAQwQAAMEEAABjCAABAQQAAoMEAAMBAAADIQQAAIMIAAADBAADAQQAA-EEAAABCAADgwQAANEIAAMjBAACWwgAAAEEAABzCAACKQgAADMIAABzCAACGwgAAPMIAABzCAACSwgAA0MEAAFBBAAAAAAAA-MEAADRCAACgwAAAAAAAAFzCAAAYQgAAUMEAAARCAAAkQgAAIEIAAHBBAAAEwgAAkEEAAJBCAACAwAAA8MEAAIBCAACKQgAAmMEAAKBAAAAswgAAEEEAACTCAAAQQgAAaMIAAAjCAAAwQgAAmMIAADzCAADwwQAA4MEAAEhCAABQQgAAkMEAABxCAABgwgAAoMEAAADBAAC4QQAAHEIAAABCAABgQQAAyEEAAHjCAABUQgAAkMEAAFDBAACgwAAAAEEAAIDAAABYwgAAMEIAAILCAABMwgAA-MEAAKDAAABAQAAAEMEAAOhBAABUQgAAkMEAAMBAAADYwQAAgL8AAHRCAABYwgAAQMEAAAxCAAAwQgAACMIAAFTCAAAsQiAAOBNACUh1UAEqjwIQABqAAgAAPL4AAPg9AAD-PgAABD4AABQ-AACgPAAAEL0AADm_AAALvwAAnj4AAFQ-AAAMPgAA2L0AADQ-AACAuwAAJL4AAOg9AACgvAAAPD4AAPI-AAB_PwAABL4AABC9AADYPQAAuL0AACy-AABMPgAABL4AAIg9AAA8PgAAgDsAAJg9AAD4vQAAkj4AAK4-AAD4vQAA6D0AAPK-AABsvgAABL4AAOC8AAD4PQAAMD0AACS-AAAQvQAAQDwAADQ-AADYPQAA-D0AAKq-AADgvAAAQLwAAIA7AAC2PgAAZL4AAIA7AAA9PwAAXL4AAMg9AACIPQAA2L0AADQ-AAAMPgAAQLwgADgTQAlIfFABKo8CEAEagAIAAFC9AACaPgAAoLwAAA2_AAAsvgAAUD0AAOC8AABsPgAAUL0AACQ-AAAMvgAAdL4AAEA8AABUvgAAcD0AAMi9AACgPAAAIz8AANg9AADGPgAAmL0AAEA8AABwPQAAHL4AAIA7AAAMvgAAcD0AAMg9AAD4PQAAuL0AADC9AABwPQAAgDsAADC9AAAwvQAAfL4AAHw-AAA8PgAALL4AAAQ-AAAwvQAAML0AAAy-AACAuwAAML0AAJg9AAB_vwAAgLsAAMi9AADSPgAAiD0AAIi9AAAEvgAAZD4AAGQ-AACgPAAAoLwAAFA9AADYvQAALD4AAOg9AACYPQAATD4AAMi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=w3Nl2XA0pxA","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["2578904551323652349"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4277791880"},"1345504759888503870":{"videoId":"1345504759888503870","docid":"34-11-0-Z7524954F1EBBEE5C","description":"Example of Max flow problem, and an explanation of it's time complexity. Mistake: YouTube's decision to do away with annotations. The '1000' at the end should obviously be '2000'.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4012106/ea083a4e457aef4fbb50d79b7b3dcdb8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YnKTcgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DM4fyCfFTYV8","linkTemplate":"/video/preview/1345504759888503870?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow Problem","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=M4fyCfFTYV8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzEzNDU1MDQ3NTk4ODg1MDM4NzBaEzEzNDU1MDQ3NTk4ODg1MDM4NzBqkxcSATAYACJFGjEACipoaGRtamF2eGJyZmdhemxiaGhVQzY2TUVmVW9nWEV1bFo1Y1loVE83U2cSAgASKhDCDw8aDz8T_gWCBCQBgAQrKosBEAEaeIEEB_j8_AQA8foK__sCAAEQ-Qz29wAAAPYA9fUDAv8A7gf2AfsAAADzBgoKAQAAAPIL_gD8AAAABgX9-_sAAAAM8f3_-gAAAAn6AwP_AQAAAwIHAQP_AAAHAgX4_wAAAPAEBPz-_wAA_QgIBQAAAAAL_v4BAAAAACAALRLU3zs4E0AJSE5QAiqEAhAAGvABZRYI_4oS3foQK-AAUAHs_4EiCv4-9OD_r_saAckBJP8ABO8A5vw8_hUbBADGBNr_9AT8_uXxGgDV7Rb_8RnmAPT87AE0zA8BZhYIASn4E__HDgsB5xwU__r-Fv8IC9P-_ugV_xYa5_62JvICFBD-AxDyAv_3Au0BzS33BdgJ9wINBOL98AIMAd_z8wC2GwYBAgj4BwYL5AD19-8C7gAH-v375QJL9_T_EgfiBevr9wUN-A_2-PwFDAjm6_0XKfD68QTo9SD1CgMIB_YAAOQZ_xsSGf_X6BENAgTu7xfh-vr5HfYE3f8A6f4A6gcQxfkLIAAt_yEdOzgTQAlIYVACKs8HEAAawAeS6O2-lGdBuc1JXr2oUgM-_UrrO-TWyTvo20I-jzo1Pez7S7xvLh4-LeCvvGEVlLycTZe-6j1cuWSPFrwtC1Y-sIpcvUEtJr0ZgaK9QLW7PeGkX73zWQ6-OG83PXb7LLsemZi8ePiBPfNDW7xo4w09rKD1Ol5S0Lz6fY897gjnvMx557u2M8c9ECQfvrSxr7tsy-C9vsqQvfwx0ryj0M87uVUOvInC3bwjfIQ9OVnEPaOV-7y6EZa9GTwIPL59Bz3r4AA-AsKivId0k7ztZoY8GDOTPfv3KrxLLI89W4p1vHMXm7umxY89wJwUPdCRBTyOkpe8Qn5xvQClhrz29t28vBlaPf-9yrwRFGS9Pu1rPcQ45rt8mtO9saImPX1esbyzvje8tx0FvPq3iTvuvb49ucpOvX-sljyoNQ0-UZyoPX0BIjzLHte8dmG1PA38KDtVZIk99pfdPZjyRrxgfZK9C_uMPeDTgbx6wYw8A0gIPPwEzLtQCBM9VWMuPMYWgjuEHAg8w7YqPYIKHDzdV7o9QzGTvS4d0rvmul-9eeBnO3NbbDwDgg-9pIvNPXu63zsNRAM87gnSvTVTrbtqMYi99h9evWl0A7nZQtA9lBTYvSIRCbjseII8nYu1PYtDbDv5DL29JL-pPZiivzurg3K8ddAAvNad-jvM7rm90va5vK2vhTuGXU-94n0KOssAarrJXY-9kzfhu7PiJzvaozw96OVGPfOtATppzD-90GM0vciPnbpoz-W8djCHPH6fGruBziS8qs0DOzOkijo2as-7ez6UPKLPcTmRuni9KJwdPccBCbjISoK82YODu7gixDmycp68eSWkvFmLS7kXZfY9k5MEvY7f4jda3YU9fooDvcxSd7mJMqq92e4-PYNPv7g1lSq92-K1vLpCD7lPHGW9EmigPb0knrhCBtG7tlDNvItFJrmHTH49SLRTvRE9aTjuwIq8pSG0PIn7qTdDuUO9ck1BvXMQfDfR0xe8_uZuO06N_TijC0W8dk-TPfYtRzjfIkY97VyNvbsOfDeB7Ys9CMpNveesoDiPTkK9oZTKPbJRAjlkUV29_K8OPWUPLTkMDA-9cVrwPKGHnjhBcXY93jRCPV-cora4OsW9PkKNvML_MjiAR3G7Zsp9vTfcaDhEeKq8QX2LvD91QjfVXZm8EZeCvQdxA7i7iKU8zsg7PUUchbe_n3W84Au4vMRogLhVGKY9bQvFPYPH5ziAFra949gfPae7wbi0FsC9VDS7PTxfsjib17e9q538vB10C7cgADgTQAlIbVABKnMQABpg_gQAIqkrnOsBVQL2_exH6enWstDeEv_k-f_TMvv1EvLY8RruABHL9MeaAAAAKgnVFyAAEH8Bkfrz0_oAodMuK_BS4hz6pybiF-71B9nszRQTtDU8ALkHyFhlJND7I_IRIAAt-7cTOzgTQAlIb1ACKq8GEAwaoAYAAKBAAACAQQAAVEIAAPhBAABwwQAAAEAAADBCAAAYwgAAYMIAAIA_AAAEwgAAjEIAAMDBAABgwQAAgEEAAMhBAACYQQAAgEAAADDBAACMwgAAkEEAABjCAABAwQAAmEEAAABCAAA0QgAAFMIAAMhBAACAQgAAIEIAAAhCAAAAQgAAgEAAADxCAADawgAAQEAAAEhCAACgQgAAMEEAAMjBAABMwgAACEIAAKDAAAAAAAAAMMEAAPBBAAAAwAAAwEAAAOBBAACCwgAAKMIAAMDAAAAQwQAAqEEAAAjCAADQwQAAiMEAAODBAAAYQgAAJEIAAMjBAABwwgAAJMIAAFDCAACIQQAAsEEAADDBAACQwgAACMIAAADAAAAQQgAAYEIAALjBAACoQgAAgMAAAKrCAACmwgAAAMAAAGRCAAB8wgAA-MEAAEBAAAAMwgAAhsIAAMBBAACQQQAA6MEAABzCAACYQgAAQMAAAAAAAAAgQgAAhkIAABBBAADAwAAAksIAAHBCAACCwgAAAEIAAJhCAADowQAAYMEAAPBBAACYwgAARMIAAHxCAABwwQAAkEEAAFTCAAB4QgAAJEIAAFBBAABYwgAAEEEAABhCAAA4QgAABEIAAEDCAACAwQAASMIAABBCAABwQQAA4EAAAI7CAAA4wgAAIMIAAAAAAADgwQAAJMIAAK7CAACAvwAA6MEAAARCAACoQgAAdEIAAODBAACQQQAAMMEAAADAAAC2wgAAkEIAABBCAAAgQQAAwMAAADBBAACIQQAA0MEAAEBAAACgwAAAOMIAANBBAAAgQQAAAEIAADTCAACgwAAAkMIAAEDCAACYwQAASEIAAIhBAAAwwQAAgkIAAGDBAACQQQAAwEEAAEDBAAAAwAAAgEAAAEBAAABowgAAMMIAAMjBAADwwQAAgEEAABBBAAAYQgAAiEEAAIC_AACAwQAAtkIAACTCAABQwgAAMEEAAPjBAABIQgAAgEAAAHDCAACeQgAAcEEAAADAAAAcwgAAMEIAAIA_AACAQQAAGEIAABhCAADAQQAAgEAAACTCAADgwCAAOBNACUh1UAEqjwIQABqAAgAAyD0AAIA7AAC-PgAApj4AAFS-AACoPQAAJL4AACm_AAAsvgAAZD4AAK4-AACIPQAAgDsAAK4-AADovQAAML0AAJ4-AABQPQAALD4AAIo-AAB_PwAAED0AAJg9AAAEPgAAPL4AAHS-AACAuwAAfL4AAAQ-AADoPQAAMD0AABQ-AAA0vgAAXD4AAOC8AAA0vgAAPD4AAJq-AACmvgAABL4AANi9AACovQAAiD0AAPg9AACYvQAAyL0AAMg9AAC4vQAAUD0AACS-AACaPgAAMD0AAFC9AAA8PgAAcL0AAOA8AABVPwAAgLsAAKA8AADgPAAAqD0AAMi9AAAkPgAAdL4gADgTQAlIfFABKo8CEAEagAIAAAQ-AADgvAAAyL0AAC2_AABQPQAAQDwAAAy-AAAcPgAAiL0AAJI-AABQvQAAML0AAAw-AABMvgAA4DwAAAy-AAAsvgAALz8AAKA8AACuPgAA6L0AAEA8AABkPgAAoLwAAFC9AAC4vQAAuD0AAFA9AACePgAAuL0AAKC8AACAOwAAgDsAAJi9AAB0vgAA-L0AABA9AADoPQAABL4AAAQ-AABAvAAAMD0AALi9AACovQAAEL0AAFA9AAB_vwAAND4AACw-AAAkPgAApr4AAAy-AABQPQAAVD4AADA9AAAwPQAAED0AAJi9AADovQAAoLwAAKi9AABwvQAAmD0AALi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=M4fyCfFTYV8","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1345504759888503870"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1255077650"},"3013694588344335863":{"videoId":"3013694588344335863","docid":"34-9-5-Z1B9F06B05E4B84BD","description":"Full Article: https://tutorialhorizon.com/algorithm... Given a directed graph which represents a flow network involving source(S) vertex and Sink (T) vertex. Each edge in the graph has an...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3307138/899f1998dba38fbdb69aae6b54a832eb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Uobk3gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmLcYkoY4yvc","linkTemplate":"/video/preview/3013694588344335863?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow Problem – Max Flow Problem","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mLcYkoY4yvc\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzMwMTM2OTQ1ODgzNDQzMzU4NjNaEzMwMTM2OTQ1ODgzNDQzMzU4NjNqhxcSATAYACJEGjEACipoaHFvdmRmeW9qcm1kemdkaGhVQ1h0R2JtN1hJR1ZpRHNvbmp1MDBhcWcSAgASKg_CDw8aDz8TLIIEJAGABCsqiwEQARp4gQQH-Pz8BADz-QIA-gMAAQcBB_r4__8A9gD19QMC_wD2AfwB9QAAAPMGCgoBAAAA7QMABP8BAAAGBf37-wAAAAzx_f_6AAAADAEBAf8BAAADAgcBA_8AAAcCBfj_AAAA8AQE_P7_AAD_CAMLAAAAAA4FAgMAAAAAIAAtEtTfOzgTQAlITlACKoQCEAAa8AF0BgwAvPfx_uv7_QDREbwAgQot_ysW4gDwCvwA39_tAQUSCAD5AgkA0ecU_88OCgDr9v0A6t_7AFkUCADi8AIB3wMPARXZBQIa9RUB_gL3_gM7GgHzFgwA9_POAO4AFPs8JAn__TvwA8X86QAa5C8D8EH-AgESKf3tAPsH1d8l_gvv1QAFGP0GDhIr_9UcIgIG8Oz_DCLn_yI56gLt6B79CwAJBiPg8vcE7AwF1eEV9h0ADv8J6foK-yIT-Ps3-P9O7gz_MNcL-AkNCf42zu4HDOfzBgUC8Q3fs_gMDe8A7MoW7vbGF_H0MLn4_xIaCA0gAC1QIw07OBNACUhhUAIqzwcQABrAB8xdw75k0vi6S_D-O1rIrTwz3EA9nmKVvOOgub0cbYs8XgUjvMzSTj3o6Cc8k-V_vJxNl77qPVy5ZI8WvMVVhT5UMG-9m38qvAcJ8b1woWG8js2OuxQHUL6Tdn48ipoeveBDLr0BJpo9zStPO-9Iyz3uig08iQwmPaEEBz3QU-48CbDhOvihGjwfheu9vJF5vAXD-T0xi1q9C4gfPWUIVj2D-eu90jerOgwehj3fqik75O0QPJxs471t2MC8zWUZPbWMJD4_vum8ZGuHPJrvuz2rbj882DttvFssQD1HaaG67bQYu2YW4T1BtQY9E9aGvOenGD2Ad7y8lX-tvIZ3hL1HVC0935m7u7SjwjwagII9M7SLPFDD173Eknc9a4zOOhDgvr31c_k8Ys59PI4gVT57SN28L6fCOzdMiT2N_TY9yyrPumI1cTyYzp09ClNOu2LcaD3hspo9ytw-O2eCPD16Dbs93WxivCpZib0ldDi7prXMugV_pruEsjW9uYOeOtthfT1_1kE93ri5O6ovZj3WTOO83uoWvCTjAj3YLzO9SRsevB1twT05aRA9LgV_vJ-JVbwXTSI93bwnvAxaCL6u4dg8w2RLOw4-Az3nOsi9LzNsPMsvgzypRYk9KrsJu_PMhr3wet88OJ6RuxUtij1_S0W9lF08O3K0ub2UUzY9Dfkfuoa93LvMZJO8TVGqO6V8gr1YNx6-fFzAuWnk0z3J0r28UrAGuK8y5DtGW9W8ccE-uijgfzo0doM9f-Oluk0KWD3oSb68pO5aOnD3KD1UCrA8I04jOYQTrD1tfjI9U8nxuawsGz0rAQw9X2RmOSOuELzzXPg7CGUyOHXCcLym5dG83UtBNnuLAr0PxRO94nJdODUZX70F-w-9ep6JumCS6r2M9hm8EocXOQ-u5TySd-49y8HjuOKVYjsYLba9_INZuaD78jznKme9Ga1nOMgoqrzlohA9DKeQOHd-kzrP80y8KXtHuQD_ND0IIpu9-SNyt5fKuz242im6pX2muIHAhD3_moe8MCUluN5Z-zzY8Z-9GA2XOFT-1jvO4uU9T1VaOG3F_r2i1D69Gi_0uDZcBL1Xrti7-HavuFIxiT3fclC9c1JYNy3R2b28oIS968mUN3F8ozzF8t08i3_jtyNAh73fQSI9cY7FtjbNNr3P0c88IJMAOCfqNj2v2WC9lZVnN2mArD3x9Eq9cOtLtbnBdTwt7Ak-hifnOAcLp7y9_O49g7QeuSumnb1Y8sK88Kiltwr117s2PN29dSd1uCAAOBNACUhtUAEqcxAAGmDYBwAt9hSs_Q046wPd4D7o_OvN0QcM_w7yAOUlA-kPA_30EeoADuEC_rwAAAAlAfPvEADtTQjO4-_jGPrb-Qob93_2F_7OTwf-4vMMzfn4JhTWPBUA0dcFD0Qa_wcA5iUgAC03y0s7OBNACUhvUAIqrwYQDBqgBgAAFEIAAIJCAADwQQAAjMIAAIhBAABUQgAAtkIAAPjBAABQwQAA6MEAAFDCAACQQgAAIMIAAADAAAAIQgAAoMAAAARCAAAswgAAEEIAAPDBAADgQQAAbMIAAABCAABMQgAAHEIAAOhBAADAQAAAYMEAAKhBAAAQQQAAUEIAAMRCAAC0wgAA6EEAAFDCAAAYwgAAkEEAAK5CAACAwAAAyEEAAJhBAABgQQAAaEIAAIBAAAAQQQAAAMEAAERCAADIQQAAyEIAAIC_AACAwQAA4MEAAIA_AABEQgAA0EEAAJhBAAB8wgAAHMIAAPhBAACGQgAA6EEAACjCAACIwQAAiMEAAGhCAAAQQQAAcMEAAOjBAAAAwAAAAMIAAAAAAAAkQgAAlsIAAIDAAABUwgAALMIAADDCAAD4wQAAcMEAAMBBAAB4wgAAfEIAAHDBAABUQgAApEIAACTCAACQQQAAgEIAAMJCAACgwAAAqEEAALJCAADgwQAAMMIAAIjCAACQwgAAMEEAANDBAACAQgAAqMEAAIBBAACYwQAAAMEAAABAAADQwQAAKEIAAIrCAABwwQAAWMIAAADAAAAEQgAAQEAAAPjBAAA0QgAACMIAACjCAABQQQAAAMAAAIBBAAC4wQAAqMEAAETCAACAQAAANMIAAJrCAADYwQAAbEIAAKBAAAAEwgAAkMEAAMhBAACowQAAIMEAAJBBAACgwQAAQMAAADhCAADQQQAAEMEAAKjBAAAIQgAA4EEAAKhBAAA4wgAABEIAADhCAAD4wQAAqMEAAEDCAAAwQQAAcMIAAI5CAABwQQAAyMEAAEBCAACAwQAAisIAANjBAACSwgAACEIAABBBAAAQQgAAAEEAAATCAACgQAAAJMIAAEBAAABoQgAAAAAAACBBAAAAQgAALMIAAChCAACAQAAAUMEAACTCAADIQQAA6MEAAATCAACWQgAAhMIAAPDBAACAwQAAMEEAABBCAACwQQAA4EEAAAAAAACAQAAAUEEAAGBBAAAEwgAAjkIAAHDCAACgQAAAAEIAALBBAACgwQAAeMIAAABCIAA4E0AJSHVQASqPAhAAGoACAABQPQAA4LwAAOo-AACePgAARL4AABw-AAA0vgAAU78AAHy-AAAUPgAATD4AALg9AAAUvgAAnj4AACS-AAAQvQAAqj4AAEA8AAB0PgAAxj4AAH8_AACIPQAAdD4AAKC8AABsvgAApr4AAJg9AABUvgAAQDwAAIg9AAAEPgAAHD4AAAy-AAAsPgAAUL0AACy-AAB0PgAAzr4AANK-AAD4vQAAcL0AAKg9AADIPQAA-D0AAHC9AADgvAAA6D0AALi9AAC4PQAAPL4AAFw-AABQvQAAdL4AAJI-AAAQPQAA4DwAAHc_AABwvQAABL4AABC9AADYPQAAmL0AABQ-AAB8viAAOBNACUh8UAEqjwIQARqAAgAAuD0AAHA9AACYvQAAF78AAOA8AACAOwAAML0AAII-AABAvAAATD4AAKC8AAAQvQAAQDwAAGy-AACgPAAAqL0AACy-AAAjPwAAcD0AAL4-AADgPAAAgLsAABQ-AAAQvQAAiL0AANi9AADYPQAAmD0AAGw-AADYvQAAQLwAAEA8AADovQAAQLwAAFS-AAAMvgAAoDwAAIg9AABsvgAAJD4AAHC9AAAwPQAAMD0AAMi9AACoPQAAuD0AAH-_AAA0PgAAVD4AABA9AADevgAAQLwAADC9AAA8PgAAPD4AAJg9AACgPAAA-L0AAIi9AAC4PQAALL4AAES-AADoPQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=mLcYkoY4yvc","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3013694588344335863"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"591778996"},"11902048191431549271":{"videoId":"11902048191431549271","docid":"34-7-9-Z572848F90941E859","description":"Davidson CSC 321: Analysis of Algorithms, F21, F22. Week 9 - Monday. 0:00 - Motivation 1:22 - Problem Definition 5:16 - Proposed Greedy Algorithm 7:19 - Why Greedy Fails 9:50 - Adding Residual...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1791191/7436346a8cdd1fe197c9d56ff8eff139/564x318_1"},"target":"_self","position":"14","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgC6xHzgm28k","linkTemplate":"/video/preview/11902048191431549271?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow (Algorithms 17)","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gC6xHzgm28k\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhYKFDExOTAyMDQ4MTkxNDMxNTQ5MjcxWhQxMTkwMjA0ODE5MTQzMTU0OTI3MWqvDRIBMBgAIkUaMQAKKmhoenpya2pzeXdta2l2cWRoaFVDWW85dHo3a3Y2NERaZXphclZsSzlHZxICABIqEMIPDxoPPxOxD4IEJAGABCsqiwEQARp4gfcF9_z-AgD4_v0B-QT_AQcAAPD3__8A9QD19AMC_wD--PAF-QEAAPj_AQ39AAAA9AYA-PwAAAALCgwGBQAAABD69QH1AAAA_v8I-P4BAAAFD_4JA_8AAAwNDvcAAAAA7gQN9QAAAAD-CAMLAAAAAA4GAgMAAAAAIAAtWiDYOzgTQAlITlACKnMQABpg9SEADwwRu8sFGeLyKAQz3vjv8dDf4QD4AwDsKSG0E-8B6BbaABfnA_i5AAAASgDZG-cA7lkM4Pci-_gjus39GNR_7fu-9wYQzPEWyswK9DTxADX6AMvr8vxOCigX6yD-IAAt6vU7OzgTQAlIb1ACKq8GEAwaoAYAABDBAABAwAAAwEIAAIjBAABwwQAAuMEAAMhCAAAgwgAAyMEAAJBBAACAvwAANEIAAEDBAAAAQQAAUEEAAODAAADwQQAAosIAADBBAAA8wgAA6MEAAIjCAAAwwgAA4EEAAODAAAAMQgAAPMIAAABBAACMQgAAeEIAAIC_AABwwQAA-MEAAGBBAADSwgAAQMAAAOBAAAA0QgAAoMEAACBCAAAYwgAAgMAAABDBAADowQAAAAAAAKBAAACwQQAAgMAAAEhCAABgwQAATMIAAFBCAADAwAAAWEIAAJBBAAA4wgAAhsIAAHBBAABAQgAAEEEAALjBAADgwQAAwsIAABjCAAAAwgAA4MEAAADAAACKwgAAEEEAACDBAABkQgAAIEIAADzCAADQQQAA6EEAAKjCAACEwgAA6MEAACDCAABAwQAAosIAAExCAADgwQAAKMIAADxCAABQQgAAeMIAAIDAAADGQgAAEEEAAMDAAADQQQAAYEEAAJjBAABQQQAAUMIAABxCAAAowgAAKEIAAGhCAABowgAAaEIAACxCAADQwQAAJMIAAExCAADAwAAACEIAABzCAAB8QgAAeEIAAARCAABwwQAAgD8AAEDAAACAQgAAiEEAAEzCAADQwQAArsIAAABAAAAAwQAAmEEAALTCAADgwAAAgD8AAEBBAAA8wgAAmMEAAGDBAACAQAAAisIAAIjBAACGQgAAVEIAAOjBAADwQQAAcMEAAHDBAABcwgAALEIAADDBAAAwQQAA2MEAAFBBAACAPwAAwMEAAKDAAABQwQAAcMEAAMhBAACgQQAAAEIAACjCAAAAQAAALMIAAHzCAAAQwgAAmMEAAGBBAAA4wgAA-EEAAAhCAACoQQAArkIAAIhBAAAgQQAA6EEAAMhBAABkwgAAyMEAAODBAAAAQgAAsEEAAAAAAAAwQgAAjEIAAKDAAABgQQAApEIAALDCAAA0wgAAIEEAADTCAADYQQAAgD8AAEzCAAAEQgAAIEEAAODAAAAQwQAAyEEAADDBAADYQQAAiEEAADBBAADIwQAAiEEAAMDBAAAwwiAAOBNACUh1UAEqjwIQABqAAgAADL4AACw-AADiPgAA-D0AAMI-AADIPQAAbL4AADm_AACmvgAACT8AAPo-AABMPgAAUD0AAAs_AACOPgAAoLwAAI4-AACgPAAAmL0AANI-AAB_PwAAED0AAIA7AACIPQAA5r4AAGS-AAABPwAAVL4AALq-AABQPQAA-D0AAN4-AACAuwAAHD4AAGQ-AADWvgAAuD0AAKq-AADGvgAAcD0AADy-AACCvgAAuD0AADA9AABAPAAAED0AAEC8AAAEPgAA5j4AAHA9AAB8PgAAtr4AAGy-AAAVPwAAML0AAOg9AABnPwAAPL4AAOA8AADOPgAAbL4AAJg9AACyPgAAXD4gADgTQAlIfFABKo8CEAEagAIAALi9AABAvAAAHL4AADu_AAAMPgAAiD0AAKi9AABQPQAAML0AAKg9AADovQAAFL4AANi9AAA0vgAAgLsAAKi9AAAQvQAACT8AANi9AACaPgAAML0AABw-AAA8PgAAUL0AAKA8AACAOwAAHL4AAHA9AABkPgAAuL0AABA9AAA0PgAAmL0AAFS-AABEvgAAHL4AAKY-AACYPQAAFL4AAOC8AAAwPQAAEL0AAIK-AACAuwAAQLwAAEA8AAB_vwAAqD0AACw-AADSPgAAmL0AAFS-AAAsvgAAoj4AAMg9AACIPQAAQDwAAJi9AABwvQAAyD0AABA9AAC4vQAARD4AABC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=gC6xHzgm28k","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11902048191431549271"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17547130655115079950":{"videoId":"17547130655115079950","docid":"34-11-0-Z662FF4B4EDC69601","description":"How to Combine 2 Downspouts - Spoiler We Added a Yard Drain When managing roof runoff effectively, combining multiple downspouts is often necessary to handle large volumes of water efficiently.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3411257/56d66f24f979ba7d3ce1f3ab34fa43d5/564x318_1"},"target":"_self","position":"15","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsbT_epStdU0","linkTemplate":"/video/preview/17547130655115079950?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MAX FLOW: How to Combine Two Downspouts — Spoiler: We Added a Yard Drain","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sbT_epStdU0\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhYKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwWhQxNzU0NzEzMDY1NTExNTA3OTk1MGqvDRIBMBgAIkUaMQAKKmhoenRmZ2pzcHlwYWtxb2JoaFVDczA5WG04MWZucWZ1aWxVS0p2S3lQdxICABIqEMIPDxoPPxOpAoIEJAGABCsqiwEQARp4gfQI-wf9AwD89QgA-wX-AgkJ__j3AAAA7fjw_AUAAAD2AfwB9QAAAAD7AQ0FAAAA8wP-AfoAAAAK9gAB-gAAAPz8Af_xAQAABQH9Bv8BAAD89Az8AgAAAAUBAP3_AAAA9An6_wIAAAAAAQEDAQAAAAr9C_YAAAAAIAAtIz_cOzgTQAlITlACKnMQABpgNAwAUiwT3e3OE-4o8s4nAvbbB6nXG_8H5ADoLN38DCDh1P_s_1nAH-2jAAAALQbjDBAAC3E_0rIk5gIBrtTo6xB_JSf9IE4z9fb4BNgABAEIvxE8AOHYIBgoyQ8zEVUQIAAtU1wgOzgTQAlIb1ACKq8GEAwaoAYAAGBBAAAwQQAAcEIAAGRCAAAcwgAAqEEAAJhBAABAQQAAQEAAABBCAAA0wgAAEMEAABzCAADowQAAjEIAAGDCAABAQAAA8MEAANjBAABsQgAAcEEAAIDAAABcwgAAuMEAAPBBAACAQAAAoEEAABjCAACAwAAAMMIAAODBAABwQQAAuMIAABhCAABAwAAAoEEAADjCAABMQgAAAMEAAKDAAABQQgAADMIAACBBAADgQQAAAEAAAIC_AABIwgAAkMEAABRCAACAvwAAjMIAAATCAABAQQAA4MAAAIBBAAAAQAAAcEEAAMBBAACiQgAAiMEAAOBAAACAwAAAAMMAABDBAADAQAAAqMEAAJBBAADgwAAAZEIAAOhBAACgwAAAgMAAAIDBAABUQgAAdEIAAGzCAABQwgAAoMAAADBCAADQQQAAOMIAAKBBAAAUwgAACEIAAEzCAACAPwAAQMAAADhCAABgQgAAwEEAAFzCAADoQQAAmEEAAOjBAABAQAAAAMIAAJjBAAAgQgAAAEEAAIRCAACgQQAAUMEAALhBAABAwAAAbMIAAPBBAAA0QgAANMIAAChCAACKwgAAjsIAAKrCAAAQwQAAXMIAALBBAACqwgAAXMIAACjCAADAQQAAwMAAAADCAAAgQQAAJEIAABBBAAAkQgAAysIAAERCAACIwQAA8EEAAIjCAABEwgAAHMIAANjBAAAQQgAAiEEAAHhCAAAQwQAAoEEAAJDBAAC6wgAA6EEAAFzCAAAMwgAAOMIAAEhCAACoQQAAsEEAAIDBAAAAAAAATEIAAAAAAACwQQAAyMEAAIBBAACSQgAAEEEAAABBAADowgAAAEEAABTCAAAwwgAAsMEAABBBAACAwQAA2EEAAPBBAAAoQgAAIMEAALhCAACyQgAAcMIAALDBAABgQQAA4EEAAETCAACAQQAAHMIAAODBAADwQQAAhEIAAGRCAACIwQAAbMIAABTCAADgQAAAUEEAABTCAACwwQAAZMIAAChCAABowgAAJEIAAIBAAAAMQgAA-MEAADRCAAAAwQAAkEEAAMDAAACoQSAAOBNACUh1UAEqjwIQABqAAgAA4LwAABC9AAAEPgAAEL0AANg9AABAvAAAuD0AACG_AACavgAAgj4AAFw-AADoPQAA4LwAANY-AAA8vgAAED0AAHw-AACoPQAAuj4AAI4-AAB_PwAA2D0AAPg9AAAcPgAATL4AAHA9AAAUPgAAjr4AAJg9AACaPgAAmD0AABC9AACAOwAAML0AAFQ-AAAMPgAAZD4AAJq-AACevgAA-L0AAIC7AABUPgAAUL0AAJg9AAAQvQAARD4AAFQ-AAC4vQAARD4AAI6-AADSPgAAUL0AAK4-AAAEPgAAoLwAAEC8AAAbPwAAXL4AALg9AACovQAAbL4AALg9AAAwPQAAor4gADgTQAlIfFABKo8CEAEagAIAAFA9AACgPAAAVL4AAEm_AAAcvgAAQDwAAFA9AACYvQAAuL0AAK4-AACoPQAAjr4AAES-AAB0vgAAUD0AAMi9AAAkPgAADz8AAIi9AACyPgAAVL4AAIC7AABAPAAAUD0AAKA8AAB8PgAAmL0AABA9AAB0PgAAmL0AADA9AAC4PQAAPL4AAFC9AADYvQAA2D0AAJY-AABUPgAAXL4AAGy-AACoPQAAjj4AAHS-AACgPAAAFL4AAFw-AAB_vwAABD4AAEA8AACYPQAAHL4AAJq-AAAQvQAAgj4AAPi9AACoPQAAuD0AANg9AAAkvgAAQLwAAKA8AADYvQAABD4AAPg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=sbT_epStdU0","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17547130655115079950"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17259739763243096902":{"videoId":"17259739763243096902","docid":"34-1-4-Z5E0BC53B508FA0BF","description":"All aboard on a marvellous adventure into the world of wonder and mystique as we explore the wonderful world of finding the maximum flow in a graph. We'll explore the problem, then delve into the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3822587/20653a09d9f3e1fe66685d2b76a7d632/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OKa2LwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtTP94yZTdD0","linkTemplate":"/video/preview/17259739763243096902?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow - The Edmonds-Karp Algorithm","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tTP94yZTdD0\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhYKFDE3MjU5NzM5NzYzMjQzMDk2OTAyWhQxNzI1OTczOTc2MzI0MzA5NjkwMmq2DxIBMBgAIkUaMQAKKmhoendubmJ2aGVlc2pyaWRoaFVDTjlZWUpXNkFlU0pYQTl2eUF4bUxLdxICABIqEMIPDxoPPxOSBIIEJAGABCsqiwEQARp4gfkP9P4C_gD39gEK-Af-Avr6BPL5_PwA___z-vwF_gD59Pj7-AAAAP8OAAn6AAAA-hL_-vf-AQANAgkQBAAAABsC_QD3AAAABvUM8f8BAAAKEQL-A_8AAAAHDwUAAAAA7wgDBv4AAAD-_P78AAAAAAj3AP4AAAAAIAAtjvrLOzgTQAlITlACKoQCEAAa8AFi_A8B4PDr__sV6QDfDNAAgQUL_ykO1QC98ycBzgLpAPkJ_ADm9gMB8egEAPABBgAVANMA_-sFACAX7v8aA_0BEfYKABvjCAAS__wB6gXtAPMXFgAUERQAAhz1AO4JBv4eFAf-CezlAAAF6AP09DQCLA0TAyzoBgT4EwL96AIIAev44v4cFO8A__oDBOMDGQEI_uEAAP3o-_kg9gPl9RMF4-8HAA_45gAmG-79AfEO-wHyAPgU9_r1_RsUCAAfBwXvDwr58ur1-gEU_f00zwP98dj-_P0N-v4A_QAPHuv79-sKDfnKFQj7Cf4FBQ4ACQogAC1uJ0g7OBNACUhhUAIqcxAAGmAAHwAIAC-mD_ZTBensFEfoBeblwvHs_xjX_98r-O0S29eu89YA39QrAp0AAAA9y8gQ4gDhdfuoMUTm6w-Bq_AH_HzbIfTKEjn-xOvE-ewcAPsbOSkA7Pq0AFX6QvgO7OQgAC2lBhY7OBNACUhvUAIqrwYQDBqgBgAAYEEAAOBBAAAgQQAAUMEAAPBBAADYQQAAykIAAKBAAACAwgAAAMAAAAxCAACUwgAAWMIAAIDAAABMQgAAAAAAAFDBAAAAwgAAsMEAABDCAABwQQAAEMEAAJBBAACAwAAACMIAAHDBAAAgwgAA2MIAAIxCAAAQwQAAEMEAAJBCAAC-wgAAwMAAALjBAADgQQAAIEEAAKZCAAAAwQAAKEIAAIC_AABgQgAACEIAAIC_AAA8QgAAisIAAEjCAAD4QQAAXEIAAGBBAAB0wgAAsEEAAIC_AAAwQgAAikIAAOBAAAAAwwAAAEAAADDBAAAIQgAAREIAALDBAAAAwAAArsIAAExCAACgwQAAZMIAAFjCAACoQQAABMIAAFhCAAC4QgAAwMEAAABBAACwwQAAHMIAAMDAAAAEQgAADEIAAAAAAACEwgAAJEIAABjCAAAsQgAAMMEAANjBAACAQQAAyEEAABRCAACowQAAsEEAAHRCAACwQQAAiMEAALDBAACAwgAAQEEAAKjBAACKQgAAkMEAAFDBAABEQgAACEIAAABCAADAwAAAoMEAACTCAADIQQAAwMAAAHhCAAAAQAAAIMEAAKBAAACowQAAQMEAAADAAACgwAAA4MEAABzCAACAQQAAAAAAAGDCAABcwgAACMIAACxCAAC4QQAAAEEAAIDBAAAQwQAAjMIAAPDBAAAQwgAA4MAAAABBAADowQAAsEEAAExCAACAvwAAyMEAAHDCAAAwQgAAgD8AAJBCAAAAQQAAJEIAACDBAAB0wgAA6EEAAKJCAAAAQAAAcMIAAKBAAACYQQAALEIAALBBAABwwgAAwMEAAAzCAAAwQQAAfEIAAGBBAABAQgAAEEIAADDCAAB8wgAAYMEAAGBBAACUQgAAEMIAAGDBAAAEwgAAYEIAAAzCAAAkwgAAQEAAAODBAAB4QgAAoEAAAIJCAABwQQAADMIAAPhBAAA4wgAAAEEAACxCAADQwQAA-MEAAKDBAAAYQgAA6MEAAIDBAAAkwgAAAEIAADDBAAAMQgAAQEEAAHTCAABQwQAA4MEAAMBAIAA4E0AJSHVQASqPAhAAGoACAAAkvgAABD4AAMY-AACIPQAABD4AADA9AABQPQAAP78AAAm_AACSPgAAuD0AABA9AACIvQAAZD4AALg9AABAvAAAgLsAAEC8AABUPgAAzj4AAH8_AADIvQAADD4AAEA8AADIvQAAuL0AAMg9AAAwPQAAyD0AAOg9AACIPQAAML0AABy-AAAkPgAAlj4AAPi9AACoPQAAwr4AAI6-AACYvQAAqL0AANg9AABQPQAALL4AABC9AABQPQAAXD4AANg9AAB8PgAAor4AADA9AADIvQAAcL0AAK4-AAAkvgAAUD0AADc_AABUvgAAcD0AALg9AACYvQAA-D0AAEw-AACYvSAAOBNACUh8UAEqjwIQARqAAgAAcL0AAHw-AACAOwAAFb8AAFS-AACAuwAAUD0AAEQ-AAAQvQAAoDwAAOi9AADCvgAAoDwAAJ6-AABwvQAAcL0AANg9AAAZPwAAHD4AAL4-AAAQPQAA6D0AADA9AABEvgAAQDwAAI6-AABQPQAAFD4AAGQ-AAB8vgAAgDsAABw-AAC4vQAAiL0AAHC9AACOvgAA4j4AADQ-AACOvgAAiD0AABC9AACIvQAAdL4AABC9AADgvAAAdD4AAH-_AACAuwAAmL0AAP4-AAC4PQAAoLwAAHS-AACGPgAAND4AADA9AAAQvQAAND4AAIA7AAA8PgAAUD0AAMi9AABEPgAA4LwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tTP94yZTdD0","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17259739763243096902"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"325003781"},"9525398453318547443":{"videoId":"9525398453318547443","docid":"34-8-11-Z134138C5BD054162","description":"Discussion of Network Flow Algorithms (Floyd Fulkerson and Edmonds Karp, mention of Dinic's), Max Flow Applications (including Min Cut and Augmenting Paths), and Max Flow problem setup/modeling...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4801512/9d935a40b5e2be5030fc5e0ded0d6469/564x318_1"},"target":"_self","position":"17","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdhlVum6-Wxg","linkTemplate":"/video/preview/9525398453318547443?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dhlVum6-Wxg\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzk1MjUzOTg0NTMzMTg1NDc0NDNaEzk1MjUzOTg0NTMzMTg1NDc0NDNqrw0SATAYACJFGjEACipoaHB4YXp2aXBkZ3ptaXFiaGhVQ09yank4MVZyZmh1NkV1REtZbnVGa3cSAgASKhDCDw8aDz8Thx2CBCQBgAQrKosBEAEaeIH3BPr--gYA9PwIB_gF_gH6-gTz-v38APYA9fUCAv8A8vj4BvsAAAD1DQEJAgAAAPgKBAH6_wAADQ39_vgAAAAN_fwG-wAAAAMABAP_AQAA_gcDAAL_AAAKCQT7_wAAAOQOAP0A_v4B_wcDCwAAAAAL_v4BAAAAACAALVpU5Ds4E0AJSE5QAipzEAAaYM0KACfw_bvwJyT2APz1ROoN8NzX6_0AAgwA4zDx3h79B-z74wAU6A35ugAAADYT4gfqAOZREtMK_fgZDcXdBwDuf9AOtgFI__TzAPTD_wQ0F90XCgC36PwfMP8m8_ILGCAALRBPSDs4E0AJSG9QAiqvBhAMGqAGAABAQAAAwkIAAKhBAAB0wgAAEMEAAMBBAABoQgAAgD8AABzCAACawgAAEMEAABxCAAA0wgAAcEEAABzCAACowQAAqEIAABTCAAB0QgAAgEAAANhBAAB0wgAAAEIAAChCAABUQgAA0EEAANDBAAD4QQAAgEAAAIA_AABAwAAAnEIAACDCAAAAQQAAkMIAAIDBAADwQQAAoEIAADDCAAAAwAAAYMEAAIDAAAAkQgAAIMEAADDBAAAQwQAANEIAAIBAAACYQgAAoEEAAKDAAACAwQAA6EEAAOhBAACAwAAAMEEAAIrCAABQwQAAJEIAAGBBAABQQgAAVMIAAADCAACAQQAAtkIAACTCAAAQwgAA4MAAAMBBAACQwQAAgEAAAMBBAABowgAAuMEAACjCAADwwQAAXMIAAEDCAADgQQAAiEEAAJzCAADAQgAAdMIAAGBBAACmQgAAwEEAACDBAACoQQAApkIAAIDBAADYwQAArEIAAIjBAADQwQAACMIAAADDAADYwQAAQMEAAHxCAACAQAAAAMEAAAAAAADwwQAA0MEAAFjCAABEQgAAjsIAAKBBAABQwQAA6EEAAHRCAADAQQAACMIAAKhBAACwwQAAOMIAAIxCAACQQQAAiEEAADRCAAA8wgAAQMAAADhCAACWwgAAisIAAGjCAACAwQAAJEIAAJDBAAD4wQAAUEIAAJTCAAB0wgAAqMEAAPjBAABMQgAA4EEAAFDBAADYQQAAEEEAAADAAAAoQgAAAEAAALDBAACYQQAANEIAALBBAACAPwAAQEEAABBCAADYwQAAUEIAAGBBAACgwAAAAEIAABDBAAAkwgAAJMIAACDBAABAwQAAiEEAAIhBAAAAAAAAJMIAABDCAAAUwgAA0MEAAGhCAABAwQAAAEIAAABAAAAAwQAAUEEAAABAAADAQAAAEMEAADBBAAAAQgAAUMEAAJRCAAB0wgAA6MEAAADAAADgwAAAUEEAAIhBAAA4QgAAEMEAANDBAACAwQAAgEEAAIDAAADAQQAAoMIAAABCAAB0QgAAYEIAADBBAABkwgAA2EEgADgTQAlIdVABKo8CEAAagAIAABA9AAC4PQAA9j4AADw-AAAEvgAA-D0AAKi9AABBvwAAfL4AAJo-AACuPgAAoLwAAKC8AAAkPgAA4LwAAEA8AACiPgAAQLwAAJ4-AACOPgAAfz8AABA9AABQPQAAmD0AABS-AACOvgAAqL0AAES-AACoPQAAND4AAKA8AAAUPgAAbL4AABw-AADgvAAAlr4AAMg9AACuvgAAkr4AAIi9AABQvQAAQDwAAOA8AADIPQAAQLwAAKA8AAAwPQAAQDwAAIg9AACCvgAAdD4AABC9AACgvAAAZD4AAFC9AACoPQAAXz8AABy-AACgvAAAgLsAAMg9AABQvQAAyD0AAFS-IAA4E0AJSHxQASqPAhABGoACAAD4PQAAQLwAAMi9AAAfvwAAUD0AAIC7AAD4vQAAuD0AADC9AAAkPgAABL4AAOi9AABEPgAAFL4AABC9AAAEvgAABL4AAC0_AACovQAAnj4AAHC9AACgPAAAZD4AAIi9AACgvAAAqL0AAEA8AACIPQAAyj4AAKi9AACAOwAAiD0AADC9AAAcvgAAjr4AAMi9AAAEPgAAiD0AAFC9AADgPAAAyD0AAEC8AAA0vgAAuL0AAIi9AACIPQAAf78AAPg9AAAMPgAAij4AACy-AAD4vQAAqL0AAIY-AAAwPQAAiD0AAIA7AAAQvQAAFL4AAIg9AAAQvQAABL4AAPg9AAA8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=dhlVum6-Wxg","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["9525398453318547443"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15910157659988541813":{"videoId":"15910157659988541813","docid":"34-7-15-ZA332DBB5646FFF58","description":"*NOTE* None of my videos contain working code on implementing their topics. They are just designed to teach you about the topics and help prepare you for an exam on the topic by explaining the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2922945/cd6b9e11545227db33cb677d855e3435/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/oqF-IgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5qirMonJGF8","linkTemplate":"/video/preview/15910157659988541813?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow - Harder Example","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5qirMonJGF8\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhYKFDE1OTEwMTU3NjU5OTg4NTQxODEzWhQxNTkxMDE1NzY1OTk4ODU0MTgxM2qIFxIBMBgAIkUaMQAKKmhoYXl5amhpa3VieHphYWRoaFVDSFpjNkEyclFUZVBjMjlDS1p2WVpVdxICABIqEMIPDxoPPxPUAYIEJAGABCsqiwEQARp4gf7_-P_7BgDyAQ8D-gT_ARD6DPb3AAAA7Pj89AL_AQD2AfwB9gAAAP4GBAoEAAAA_QIB9wL-AAAJ_AgI-QAAABEI-P33AAAACAMHB_8BAAD9_AkEA_8AAAUMCAAAAAAA-AoG-_v_AAAEAgcIAAAAABIB-QAAAAAAIAAt2W3kOzgTQAlITlACKoQCEAAa8AFzISv6wr_cAcwF8wEBDacBgUEz_yEO2gCm-S8A-NLXAcMpCAD2AgwA5OX7AYkAuQHk8_sA6-WrACsHQ__o2ccA4SslATXB7gE_DvMB3QAg_6A8DvwBEBP9Ieut_u5D2_9d9QL-CHfTAb_Frgj-B0AABFr9AzEHFAwPCyYC3B4XA_3Ppv7MzPoE7donAP0XKwQTGcr-MygZ-w5fGAEGFiEGJQvpAAoD0_cjCwUG2CQiAEHoCwch2PYD8gYV-jUMFBLX6AfnAooH9CId_gQp-vHovKngAQsNyxDw4A4ZTCXj8f4XD_DA7wwMOuP__S8z9O0gAC3B29A6OBNACUhhUAIqzwcQABrAB5Lo7b6UZ0G5zUlevZxq7T1-b3S7SQkGvccihz19ESO8FQMkvGeaMD4gkVu8Q-StORtkor74GiK9lVdYvS0LVj6wily9QS0mvd4y8by2wzo8_ViYuv0Hsr2_rcc7ew4TvDBBkr1PaIi8hU8pPaDi2D1hPJ68xU-IvCQIurusQc48CP7cPPDJOzuq0GW90iN8POdazzzL9Au9kfUvPTjmy708VbS88krMu74U3j2kpIw9nQ9PPBlYF74VTRG9Lh1zPDnWsD2UKWu9oPK5PMUlsj2-V0M9lfX6ux61gz3-2P88iR6-u6zCaz2df2A910V2vMlPdDy7ZaK8TweyvILUO7tuePA8jjEgPF2KCjwkgBs9Ls2IvMsGo72G1W49ptzYPKkT0L05ZEU4uzxCvI4gVT57SN28L6fCOzQFvD2Gg048G7IJPO3uAzwXLxQ8eKOFPAFvnrsmrI09Trj5OQm70Tscts0973pEvDVakz2coiM9f1wsvLkxIj1JPRW9mS6ju9UjzT2CvGi8tlibPBtNqT2ZtA69cPppvKjZKDxYSE-9E7EtPEXl9DuoZqA8WcOFPJiazrwfKrI8eNtgvIvMwr2Ho3A9svN0Oxriszwryrq7yPOaud1giD0_q-w9jOM4uoMehb3msZY9icFdOseU2TsKDWm9Y6iWu2aEV702kgS9LBD7O6SDGj0cWzS9HPwOPB4YozuJkoW9IKMAOasIVz2L9cI9P1rWud7gD7uLfE094WGduRTqabyUlVA9_EFyu0fQ87wI6B07fk9IuTt1I7zAgWQ9YuItuV_yOj1YAR49jvonuQH7hTvC6wQ9307buRx37zz4ZmW8MWoCOk89Aj6xs_Q7bZNqufdjibz6Do69PI_CN2sewb3ErqK9WfgiOHkOm705RnK9hl39uLinFDwP5wo87lyfuPo_LD0V65-9jNs-NxyvZbzQC9e9kAUoOUsB6bwsQSu9ME3zNptejb2itRK-RiajOeIEJj18JbW8h5kduDormDwS-Z49bJ6HuLPTSj2tnY87REz2tqAVPbxhyIW83Ts_ONCAFT2ASrU9ljSQuBmtQ70n4LI8Js6HOFRd2TtnMco7LkoCOF6-ULw4veo7SlaxuOGaC75cBVG9Z3OZts6YuLw0MuO8q9o_N2ydk7zbtYy7_qIMuAsJnDvWBIw95Mk7OEtKED3pMPo8LHrFNTLurD1cJr697GpDN6N_-rsxJBc-jP1Qt3F8Y736JQI-qYEsuVIJpL0f-FM9CUMwOL7tMz0AxP29qM7_tyAAOBNACUhtUAEqcxAAGmAM9gAx3h7MBRYRAeqw7CDo5ecB3OVF_-mz_9wu-BgO3_zlCt4ACroYBaEAAAAHD8oeMAAtf-a4RgDv_Ta5sRwd13XxLf7RHQIfsOoz1t30RRb7QDoAzLHGKjK69SDf_BEgAC2Jbho7OBNACUhvUAIqrwYQDBqgBgAAwEEAAMJCAAD4QQAAUMIAAKBBAAC4QQAAhEIAAADCAACEwgAAisIAAEDBAACcQgAACMIAAKhBAAA4wgAAWMIAADBCAABswgAAeEIAAIC_AAAAQgAAhsIAAIBBAADAQAAApEIAAJDBAAAswgAAoMAAAEhCAABAQAAAqMEAAKpCAACqwgAAkEEAAI7CAAAAwgAAEEIAAJBBAACIwQAAqEEAANhBAACgQQAAgEEAANBBAACYwgAAOMIAABRCAADAQAAAkEIAAARCAAAgwQAAwMAAAODAAAAgQgAATEIAAIBAAABwwgAAAMIAAJhCAAAYQgAAUEEAAKjBAADgwAAA4MAAAIJCAABEwgAA8MEAAHRCAAAMwgAAAMAAAHhCAACowQAAMMEAAEBAAAAAQQAAwMEAACTCAACgwAAACEIAAIA_AADYwQAAbEIAAEzCAAAIQgAAHEIAACxCAACQQQAAwMEAAJRCAAAQwQAA0EEAAL5CAABgwQAAgsIAAHDBAADIwgAAAMIAAIDAAADAQQAAMEEAAIDAAACgwAAAMMEAAKjBAABgwgAAEEEAAIC_AAAgwQAAyMEAAMBBAAAcQgAAYEIAAATCAACMQgAAEEEAANjBAABgQgAAkEEAAEBBAADAQAAAoMEAAAAAAACwQQAA1MIAANTCAAD4wQAA-EEAACBBAADwwQAAgMEAAHBBAAAowgAASMIAAFDBAADowQAA-EEAACBBAADYQQAAMEIAAEDBAACoQQAAdEIAAATCAADgwQAA-EEAABxCAABQwgAAmEEAAMDAAAB8QgAAOMIAAFxCAADQQQAAyEEAABBBAAAswgAA2MEAAMDAAACAQQAAQEEAAFDBAACKQgAAgMAAAKDAAADYQQAAFMIAAKDAAAAcQgAAyEEAAABAAAAgwQAAsEEAAHRCAAAgQQAAyMEAAIBBAAAgQQAAAMEAABDCAACSQgAAUMIAAAjCAABgwQAA8MEAADhCAABAQgAAEMEAAOjBAAAAAAAAKEIAALhBAAAAwQAAqEEAAOjBAADgwQAAIEIAAHRCAADwwQAAgsIAACxCIAA4E0AJSHVQASqPAhAAGoACAADIPQAAcD0AAFw-AACSPgAA4LwAAEw-AADYvQAAUb8AAGy-AACqPgAAhj4AALg9AADYvQAAyj4AAFS-AACAuwAAxj4AAIC7AAAUPgAA3j4AAHc_AABAvAAAZD4AAIA7AABcvgAAor4AAEC8AACavgAA4DwAAPg9AAAsPgAA4DwAAKC8AABUPgAAMD0AABS-AACiPgAAxr4AAAG_AAAEvgAA-L0AAHA9AADYPQAAML0AABQ-AABQPQAADD4AABS-AAAcPgAADb8AAEw-AACGvgAAgDsAANY-AACgPAAAQDwAAH8_AAAcvgAAqL0AAIA7AACYvQAA-L0AAOg9AABMviAAOBNACUh8UAEqjwIQARqAAgAAUD0AAPg9AAAMvgAAK78AAEy-AAAQvQAAyD0AADw-AACAOwAAMD0AAKC8AACSvgAAgLsAAAy-AABAvAAABL4AAIA7AAABPwAAEL0AANY-AACAuwAAED0AAFA9AAAEvgAAoLwAAEy-AACAOwAAMD0AAK4-AACovQAAgLsAALg9AABMvgAAiL0AACy-AAAMvgAABD4AAAQ-AAAMvgAAPD4AAHA9AAAQvQAABL4AAKA8AADovQAAXD4AAH-_AABkPgAAgDsAAFQ-AAA0vgAA4LwAABS-AACOPgAAyD0AAOg9AACAuwAAED0AAIi9AACAuwAAqL0AAGS-AAAsPgAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=5qirMonJGF8","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":2160,"cheight":1432,"cratio":1.50837,"dups":["15910157659988541813"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"140811263"},"9959555782106560657":{"videoId":"9959555782106560657","docid":"34-8-1-ZB3B23C18F4A21505","description":"http://en.wikipedia.org/wiki/Edmonds%... This video is about an algorithm which computes the maximum flow in a flow network. The idea behind the algorithm is as follows: As long as there is a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4283583/44f9546ebe3f28f22884117d7371f543/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/dmGlAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeYUTJPMjNKk","linkTemplate":"/video/preview/9959555782106560657?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Max Flow Using Edmonds-Karp","related_orig_text":"Max Flows","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Max Flows\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eYUTJPMjNKk\",\"src\":\"serp\",\"rvb\":\"Eq0DChM1NzMzMTI2NTc4ODU0MzA0NjA1ChQxNDQ0NzEyOTc5NTYzNTA4NTM4OQoUMTE2MzI1NzExMjQ1MDc2MTk1NjQKEzI4Nzg2MjI0OTI4MzU4NTk4ODcKEzY3NTY0NjMwODM2NjMyMDk4MzYKEzgyNjkwMDU2ODczNDgzMDIwODAKFDEyOTI3ODY2MjkyMDYxMTk4NDQzChQxNzQwNjM1Njg2MzA5MjExMTY4NAoTNDY0NjIyNDQyOTg5NjE3OTY4NgoTMjU3ODkwNDU1MTMyMzY1MjM0OQoTMTM0NTUwNDc1OTg4ODUwMzg3MAoTMzAxMzY5NDU4ODM0NDMzNTg2MwoUMTE5MDIwNDgxOTE0MzE1NDkyNzEKFDE3NTQ3MTMwNjU1MTE1MDc5OTUwChQxNzI1OTczOTc2MzI0MzA5NjkwMgoTOTUyNTM5ODQ1MzMxODU0NzQ0MwoUMTU5MTAxNTc2NTk5ODg1NDE4MTMKEzk5NTk1NTU3ODIxMDY1NjA2NTcKFDE1MzIzMzUwNDE1NDQ3ODczNzEzChMxNDQ3NjE0NDkzNjczNzUxNzE0GhUKEzk5NTk1NTU3ODIxMDY1NjA2NTdaEzk5NTk1NTU3ODIxMDY1NjA2NTdqiBcSATAYACJFGjEACipoaGlwcG5ldnhkamFqbXljaGhVQ0o0TGVPZ1RXQlJIUjl3MlkxRkRmaEESAgASKhDCDw8aDz8TzASCBCQBgAQrKosBEAEaeIEBCPr5AAAA8fAGBPoE_wER-Q319wAAAPUA9PQDAv8A9gT29PgAAAD9C_wFDAAAAPoS__r3_gEAFfoCDAMAAAASBQb5-AAAAPnxD_r_AQAAAAUI-AP_AAAABg8FAAAAAPUICAP__wAA___7DQAAAAAI8vkCAAAAACAALQix0js4E0AJSE5QAiqEAhAAGvABfwQJAbfz7P4hHusA6_XQAIkgCv8zFvMA0g8D_7z19gAKKPoA7QAeAPP3I__THhEA_PnS_gr5AABMAfD_Ct4KAN_aIQEh2fUBIQfbAPL07f7x_fX-OBwjAAUA9gP3-_T6EwAn_dkI3AD39eAFFugnAhcf_QXmF___ASEs_dwULAEh9PUBBwcPBwwL_Qe0_xkG_ez5_wvt4gAJOw8A8QIyAvgG9QEP0-AAMh79AuTzD_oO8gX9FfDtB-wODfsLLvcA__kA_Qre_woCGPz8KdYPAfDvDPz4BgP18vf6DRr2BfAFBhT63RL-_BDO-AEdDggAIAAtzR0nOzgTQAlIYVACKs8HEAAawAeSB_K-pkALPeCDl7zu0qG8B6gaPSARLjw8izm9chsIPceBHjqf1qM9IfD2PEX2nLycTZe-6j1cuWSPFrzFVYU-VDBvvZt_KryG4wm-3yD1PKwBKr0UB1C-k3Z-PIqaHr3Pvx093sknPUh2Oz086a496NS6uxNgZjpb2XQ9-twBPAXHwLwYHCq9vk6KvQYOC7zX6sE9N_CUvQnpHzztr4g9g-4cvS7aa7sgV1Q9OK4VPcYEyroZWBe-FU0RvS4dczxXBN89Pn4KvTOTHj0N0Iw9y6CaPSQ3ubwPQsS6an7jOlyKULzb2809obqpPaaIwrx_wrQ8Wnc9vUcl7buo0G-9_jQaOmCZr7snkn49fPmIPeB8jzwX7xe-992OPWpQtDzUnjK9sGVDPHrXCzyEfhY-jXecvau1TbuZ4mA8Nek7PTmfEzwBvZW8VIhsPTELVjkRTx083o8LPm7XCDooBYK8xd6gPaY_4Lxl_x28WqirPKxjxzqbEGQ9PKp1veK4QrwfVWM9KsmKPQ80lTwbTak9mbQOvXD6abyVq6k8Ch4VvSmwwjuhZpg9Lu0vPH5G2DufiVW8F00iPd28J7wpdiS-fpu0PKv1lzo9kXE9-GEuvfnmirtovQ69dM50PQyqMjw0kYi99KZiPX5m2rs_PZE9V72SvVAjBjyVjXi9666HvAwiTjthggQ9-qX0PCD7rLvFmVW9O2_jvbRtLrrIMpM9CrQgPTA1nTlSi_e8EmP8u6LhXjvQ8VE878u0Pa4ZgzgkA6e7FyejvFvX5Do3JQ8967iAPR3Vuzl9sdc9LqCCO7_aELkB-4U7wusEPd9O27nOg6C9VhI0PNprYbpNx5I8xFiLvPeQqbn3TIA8om5Rve9ycLjn_qq8H8qGvPR0gDk-aqK9GiSzvDGMObhKTXG8SYWxPIlNd7hSZl48_q6pvXXoXTjy8o-87taNvf4cNzgTiDI87UqmPCghqDgKKWS860NtvaRZ8zb5Eiq8i4DUvFolWDiOiik9bR-yPOZkWTdZMBE9GX6mvb7i2TfHN2o9IF-CvXb5yjZT-AK96c6oPW_n8Dhr8em9edYkvO4vYDZ4-re8e7zQPHKqmjcc2bA9QBeNvNQr4TeBFYG9UEIfvYeJHThC9P88O8uHvGYRz7iEXC69fJJgPAPCvbeBFh47PCPbPCbfkDijmp09295uveB1DTiCyAI-OaDAvTwBPzghMrY8OznjPQQbBjnb2628a_AePpA5IblSCaS9H_hTPQlDMDiqbXm8GySuvX0NVLggADgTQAlIbVABKnMQABpgDAwAFeApxA4KSQgA7-1iwQrm6vXlDP8S6ADdFPQZFf4DwfbdAP_K_fOnAAAAJM7G9AEAEXEfgRkP7xcMr9z1CglU2T_W4iFD-dva8ebsBTsKOCwoABbcshAy0A8RDwDwIAAtr8kpOzgTQAlIb1ACKq8GEAwaoAYAAExCAACYQgAALEIAAEjCAACwQQAAaEIAAFxCAACowQAAIEEAAEDBAAAQwgAAtkIAAJBBAACgQQAAIMEAAIDAAADAQQAAwEAAAIhBAADoQQAAeEIAAODBAACQQQAAcEEAACBCAAA8QgAAEEEAAKjBAABQQgAAkEEAADxCAADaQgAAnsIAAEDAAACYwQAAyMEAAIhBAACGQgAAgEAAAEBAAACgQQAAgEEAAGBCAADgQAAAkMEAAEDCAACwQQAAMMEAAOBCAABAwQAANMIAAMjBAABQwQAAyEEAAJBBAAA8QgAAOMIAAEzCAABQQgAAVEIAAFhCAAAgwQAAKMIAAMhBAAAQQgAAAAAAAMDBAACwwQAAAEEAAABAAABwwQAAgD8AAHDCAAAIwgAAVMIAADDBAAAIwgAANMIAAMDAAAAwwQAAtsIAADRCAACmwgAAXEIAAJBCAAAAwgAAEEIAABRCAACWQgAAgMAAAIA_AADMQgAAQEAAAODBAAAwwQAAgMIAAABBAAAowgAAREIAANjBAABMQgAAWMIAAODAAABAQQAAwEAAAMBBAACMwgAAYMEAALDBAAAAAAAATEIAAKBBAACIwQAAZEIAACDCAABwwQAAgEEAALBBAACwQQAA2MEAAKDBAAAAwgAATEIAAJbCAABswgAAiMIAAAhCAADAQAAAlMIAAIhBAAC4QQAAcMEAAIDAAACYwQAACMIAAOBAAADYQQAAmEEAAADAAACAvwAAkEEAACxCAABQwQAARMIAADRCAACCQgAAwMAAACDCAAA8wgAAYMEAACjCAABkQgAAAEEAANDBAABAQgAA2MEAAIjCAABQwQAACMIAALhBAAAwwQAAJEIAAEBAAABIwgAAoEEAAADCAABAwAAABEIAAJhBAACQQQAA4EAAACzCAACcQgAAwEAAAOBAAACQwQAAsEEAADDBAAAowgAADEIAADTCAAAUwgAA-MEAAMjBAABwQgAAikIAAIJCAADAwAAAAEEAAERCAAAQQgAAAEEAAKZCAAAgwgAAHMIAAGxCAADwQQAAJMIAAIrCAAC4QSAAOBNACUh1UAEqjwIQABqAAgAA-L0AAEQ-AADSPgAAXD4AAMg9AAAMPgAAuD0AAEW_AADivgAArj4AAIY-AABwPQAAyL0AAKI-AAAwPQAAFL4AADw-AADgPAAATD4AAL4-AAB_PwAAoDwAAIC7AAAMPgAAqL0AAKi9AAD4PQAA2L0AABw-AAA0PgAAgLsAABC9AABkvgAAZD4AAJY-AAAUvgAA6D0AAOK-AABUvgAADL4AADC9AACIPQAAmD0AAIC7AABwPQAA4LwAABC9AACIPQAA6D0AAKK-AAA0PgAAoDwAAEA8AACOPgAAPL4AAKA8AABHPwAAhr4AADA9AACYvQAAcL0AAKg9AABMPgAA6L0gADgTQAlIfFABKo8CEAEagAIAAFC9AAA8PgAAcL0AABu_AAAkvgAADL4AAKC8AAC4PQAAqL0AALg9AAC4vQAAgr4AAHA9AABMvgAAcD0AAAS-AAAQvQAADT8AABw-AAC2PgAA4DwAAOA8AADIPQAARL4AAEC8AAB8vgAAQLwAAOA8AACGPgAA6L0AAIC7AADYPQAAML0AAJi9AACIvQAAHL4AAJ4-AACSPgAALL4AAMg9AABwPQAAQLwAABy-AABAvAAA4DwAACw-AAB_vwAAmD0AAOA8AACePgAAuD0AACy-AACovQAAdD4AAKg9AABwPQAAgLsAAKC8AAD4vQAA2D0AABA9AABwvQAAyD0AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=eYUTJPMjNKk","parent-reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9959555782106560657"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"922561211"}},"dups":{"5733126578854304605":{"videoId":"5733126578854304605","title":"\u0007[Max\u0007]-\u0007[Flow\u0007]/Min-Cut Theorem | Ford-Fulkerson Algorithm | Network \u0007[Flows\u0007]","cleanTitle":"Max-Flow/Min-Cut Theorem | Ford-Fulkerson Algorithm | Network Flows","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OXt8OjxWzT8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OXt8OjxWzT8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDN1Z6RV9mNXpSZWp3dW5XdXJ2VkRZUQ==","name":"CSE Logix","isVerified":false,"subscribersCount":0,"url":"/video/search?text=CSE+Logix","origUrl":"http://www.youtube.com/@muditmittalcse","a11yText":"CSE Logix. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1451,"text":"24:11","a11yText":"Süre 24 dakika 11 saniye","shortText":"24 dk."},"date":"26 kas 2025","modifyTime":1764115200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OXt8OjxWzT8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OXt8OjxWzT8","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":1451},"parentClipId":"5733126578854304605","href":"/preview/5733126578854304605?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/5733126578854304605?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14447129795635085389":{"videoId":"14447129795635085389","title":"Learn \u0007[Max\u0007] \u0007[Flow\u0007] Problem with Example in Just 6 Minutes|| Simple Method Explained|| DAA Lectur...","cleanTitle":"Learn Max Flow Problem with Example in Just 6 Minutes|| Simple Method Explained|| DAA Lectures","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=L9Ic93w7ErM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/L9Ic93w7ErM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSVJ2QjVrcGZuNVk0LS1OR1pES01BZw==","name":"Chirag Lecture Tutorials","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Chirag+Lecture+Tutorials","origUrl":"http://www.youtube.com/@ChiragLectureTutorials","a11yText":"Chirag Lecture Tutorials. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":362,"text":"6:02","a11yText":"Süre 6 dakika 2 saniye","shortText":"6 dk."},"date":"27 mayıs 2023","modifyTime":1685154609000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/L9Ic93w7ErM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=L9Ic93w7ErM","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":362},"parentClipId":"14447129795635085389","href":"/preview/14447129795635085389?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/14447129795635085389?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11632571124507619564":{"videoId":"11632571124507619564","title":"\u0007[Max\u0007]-\u0007[Flow\u0007] Min-Cut Theorem","cleanTitle":"Max-Flow Min-Cut Theorem","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5q-ZY7rN9-0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5q-ZY7rN9-0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQ1pQbmxIUldaMmdHMnA4SHVnZ2Jhdw==","name":"Basics Strong","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Basics+Strong","origUrl":"http://www.youtube.com/@basicsstrong","a11yText":"Basics Strong. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":354,"text":"5:54","a11yText":"Süre 5 dakika 54 saniye","shortText":"5 dk."},"views":{"text":"1,7bin","a11yText":"1,7 bin izleme"},"date":"21 eki 2023","modifyTime":1697846400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5q-ZY7rN9-0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5q-ZY7rN9-0","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":354},"parentClipId":"11632571124507619564","href":"/preview/11632571124507619564?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/11632571124507619564?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2878622492835859887":{"videoId":"2878622492835859887","title":"\u0007[Max\u0007] \u0007[Flow\u0007] Ford Fulkerson | Network \u0007[Flow\u0007] | Graph Theory","cleanTitle":"Max Flow Ford Fulkerson | Network Flow | Graph Theory","host":{"title":"YouTube","href":"http://www.youtube.com/live/LdOnanfc5TM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LdOnanfc5TM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRDh5ZVRjemFkcWRBUnpRVXAyOVBKdw==","name":"WilliamFiset","isVerified":false,"subscribersCount":0,"url":"/video/search?text=WilliamFiset","origUrl":"http://www.youtube.com/@WilliamFiset-videos","a11yText":"WilliamFiset. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":804,"text":"13:24","a11yText":"Süre 13 dakika 24 saniye","shortText":"13 dk."},"views":{"text":"610,4bin","a11yText":"610,4 bin izleme"},"date":"29 ağu 2018","modifyTime":1535500800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LdOnanfc5TM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LdOnanfc5TM","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":804},"parentClipId":"2878622492835859887","href":"/preview/2878622492835859887?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/2878622492835859887?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6756463083663209836":{"videoId":"6756463083663209836","title":"\u0007[Max\u0007] \u0007[Flows\u0007] and Ford-Fulkerson","cleanTitle":"Max Flows and Ford-Fulkerson","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DYbEVp2rZpA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DYbEVp2rZpA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbVNhODl5aEZrQzRtbGZhRUJvSlhZZw==","name":"Saurabh Shah","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Saurabh+Shah","origUrl":"https://www.youtube.com/channel/UCmSa89yhFkC4mlfaEBoJXYg","a11yText":"Saurabh Shah. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":458,"text":"7:38","a11yText":"Süre 7 dakika 38 saniye","shortText":"7 dk."},"date":"15 ara 2021","modifyTime":1639526400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DYbEVp2rZpA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DYbEVp2rZpA","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":458},"parentClipId":"6756463083663209836","href":"/preview/6756463083663209836?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/6756463083663209836?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8269005687348302080":{"videoId":"8269005687348302080","title":"\u0007[Max\u0007] \u0007[Flow\u0007] Algorithm Tutorial","cleanTitle":"Max Flow Algorithm Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=36PUk1hd-is","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/36PUk1hd-is?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSFpjNkEyclFUZVBjMjlDS1p2WVpVdw==","name":"Mike Mroczka","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mike+Mroczka","origUrl":"http://www.youtube.com/@mikemroczka","a11yText":"Mike Mroczka. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":517,"text":"8:37","a11yText":"Süre 8 dakika 37 saniye","shortText":"8 dk."},"views":{"text":"1,1bin","a11yText":"1,1 bin izleme"},"date":"1 nis 2015","modifyTime":1427846400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/36PUk1hd-is?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=36PUk1hd-is","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":517},"parentClipId":"8269005687348302080","href":"/preview/8269005687348302080?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/8269005687348302080?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12927866292061198443":{"videoId":"12927866292061198443","title":"\u0007[Max\u0007] \u0007[Flow\u0007] | Ford-Fulkerson Algorithm Explained and Implemented in Java | Graph Theory | Geeki...","cleanTitle":"Max Flow | Ford-Fulkerson Algorithm Explained and Implemented in Java | Graph Theory | Geekific","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sT9dpVRKrQY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sT9dpVRKrQY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWFJaeXYwY053YmE2ZjB4Q1JFQURfUQ==","name":"Geekific","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Geekific","origUrl":"http://www.youtube.com/@geekific","a11yText":"Geekific. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":502,"text":"8:22","a11yText":"Süre 8 dakika 22 saniye","shortText":"8 dk."},"views":{"text":"7,1bin","a11yText":"7,1 bin izleme"},"date":"18 haz 2022","modifyTime":1655566540000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sT9dpVRKrQY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sT9dpVRKrQY","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":502},"parentClipId":"12927866292061198443","href":"/preview/12927866292061198443?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/12927866292061198443?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17406356863092111684":{"videoId":"17406356863092111684","title":"Algorithms - Lecture 24: \u0007[Max\u0007] \u0007[Flow\u0007] Applications","cleanTitle":"Algorithms - Lecture 24: Max Flow Applications","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0CpMXqgL8Ew","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0CpMXqgL8Ew?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeFhZazUzY1Nab2YyYlJfQXgwdUpZUQ==","name":"Algos Lecture","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Algos+Lecture","origUrl":"https://www.youtube.com/channel/UCxXYk53cSZof2bR_Ax0uJYQ","a11yText":"Algos Lecture. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3143,"text":"52:23","a11yText":"Süre 52 dakika 23 saniye","shortText":"52 dk."},"views":{"text":"6,1bin","a11yText":"6,1 bin izleme"},"date":"20 kas 2013","modifyTime":1384905600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0CpMXqgL8Ew?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0CpMXqgL8Ew","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":3143},"parentClipId":"17406356863092111684","href":"/preview/17406356863092111684?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/17406356863092111684?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4646224429896179686":{"videoId":"4646224429896179686","title":"\u0007[Max\u0007] \u0007[Flow\u0007] Problem - March 26 Live Session","cleanTitle":"Max Flow Problem - March 26 Live Session","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=c4kQpCv5JEA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/c4kQpCv5JEA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSm1UQ3VqdjdVTDJ6Z0VmSElEMElwdw==","name":"NCF Algorithms","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NCF+Algorithms","origUrl":"https://www.youtube.com/channel/UCJmTCujv7UL2zgEfHID0Ipw","a11yText":"NCF Algorithms. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1751,"text":"29:11","a11yText":"Süre 29 dakika 11 saniye","shortText":"29 dk."},"date":"30 mar 2020","modifyTime":1585526400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/c4kQpCv5JEA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=c4kQpCv5JEA","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":1751},"parentClipId":"4646224429896179686","href":"/preview/4646224429896179686?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/4646224429896179686?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2578904551323652349":{"videoId":"2578904551323652349","title":"Edmonds Karp \u0007[Max\u0007] \u0007[Flow\u0007] Algorithm Tutorial","cleanTitle":"Edmonds Karp Max Flow Algorithm Tutorial","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=w3Nl2XA0pxA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/w3Nl2XA0pxA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTlQtZzlVZlBJc2s4dzBVNXllYnlpQQ==","name":"Greg Cawthorne","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Greg+Cawthorne","origUrl":"http://www.youtube.com/@gregorycawthorne","a11yText":"Greg Cawthorne. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":543,"text":"9:03","a11yText":"Süre 9 dakika 3 saniye","shortText":"9 dk."},"views":{"text":"43,5bin","a11yText":"43,5 bin izleme"},"date":"5 ara 2014","modifyTime":1417737600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/w3Nl2XA0pxA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=w3Nl2XA0pxA","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":543},"parentClipId":"2578904551323652349","href":"/preview/2578904551323652349?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/2578904551323652349?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1345504759888503870":{"videoId":"1345504759888503870","title":"\u0007[Max\u0007] \u0007[Flow\u0007] Problem","cleanTitle":"Max Flow Problem","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=M4fyCfFTYV8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/M4fyCfFTYV8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNjZNRWZVb2dYRXVsWjVjWWhUTzdTZw==","name":"William Brinkman","isVerified":false,"subscribersCount":0,"url":"/video/search?text=William+Brinkman","origUrl":"http://www.youtube.com/@cutealiens","a11yText":"William Brinkman. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":766,"text":"12:46","a11yText":"Süre 12 dakika 46 saniye","shortText":"12 dk."},"views":{"text":"35,8bin","a11yText":"35,8 bin izleme"},"date":"3 mayıs 2017","modifyTime":1493769600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/M4fyCfFTYV8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=M4fyCfFTYV8","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":766},"parentClipId":"1345504759888503870","href":"/preview/1345504759888503870?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/1345504759888503870?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3013694588344335863":{"videoId":"3013694588344335863","title":"\u0007[Max\u0007] \u0007[Flow\u0007] Problem – \u0007[Max\u0007] \u0007[Flow\u0007] Problem","cleanTitle":"Max Flow Problem – Max Flow Problem","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mLcYkoY4yvc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mLcYkoY4yvc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWHRHYm03WElHVmlEc29uanUwMGFxZw==","name":"Tutorial Horizon","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Tutorial+Horizon","origUrl":"http://www.youtube.com/@tutorialhorizon9085","a11yText":"Tutorial Horizon. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":44,"text":"00:44","a11yText":"Süre 44 saniye","shortText":""},"views":{"text":"3,4bin","a11yText":"3,4 bin izleme"},"date":"23 tem 2019","modifyTime":1563840000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mLcYkoY4yvc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mLcYkoY4yvc","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":44},"parentClipId":"3013694588344335863","href":"/preview/3013694588344335863?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/3013694588344335863?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11902048191431549271":{"videoId":"11902048191431549271","title":"\u0007[Max\u0007] \u0007[Flow\u0007] (Algorithms 17)","cleanTitle":"Max Flow (Algorithms 17)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gC6xHzgm28k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gC6xHzgm28k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWW85dHo3a3Y2NERaZXphclZsSzlHZw==","name":"Professor Bryce","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Professor+Bryce","origUrl":"http://www.youtube.com/@csprof","a11yText":"Professor Bryce. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1969,"text":"32:49","a11yText":"Süre 32 dakika 49 saniye","shortText":"32 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"22 eki 2021","modifyTime":1634860800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gC6xHzgm28k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gC6xHzgm28k","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":1969},"parentClipId":"11902048191431549271","href":"/preview/11902048191431549271?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/11902048191431549271?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17547130655115079950":{"videoId":"17547130655115079950","title":"\u0007[MAX\u0007] \u0007[FLOW\u0007]: How to Combine Two Downspouts — Spoiler: We Added a Yard Drain","cleanTitle":"MAX FLOW: How to Combine Two Downspouts — Spoiler: We Added a Yard Drain","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sbT_epStdU0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sbT_epStdU0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDczA5WG04MWZucWZ1aWxVS0p2S3lQdw==","name":"FRENCH DRAIN MAN","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FRENCH+DRAIN+MAN","origUrl":"http://www.youtube.com/@FRENCHDRAINMAN","a11yText":"FRENCH DRAIN MAN. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":297,"text":"4:57","a11yText":"Süre 4 dakika 57 saniye","shortText":"4 dk."},"views":{"text":"5,2bin","a11yText":"5,2 bin izleme"},"date":"24 kas 2024","modifyTime":1732406400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sbT_epStdU0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sbT_epStdU0","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":297},"parentClipId":"17547130655115079950","href":"/preview/17547130655115079950?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/17547130655115079950?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17259739763243096902":{"videoId":"17259739763243096902","title":"\u0007[Max\u0007] \u0007[Flow\u0007] - The Edmonds-Karp Algorithm","cleanTitle":"Max Flow - The Edmonds-Karp Algorithm","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tTP94yZTdD0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tTP94yZTdD0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjlZWUpXNkFlU0pYQTl2eUF4bUxLdw==","name":"meiamsome","isVerified":false,"subscribersCount":0,"url":"/video/search?text=meiamsome","origUrl":"https://www.youtube.com/channel/UCN9YYJW6AeSJXA9vyAxmLKw","a11yText":"meiamsome. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":530,"text":"8:50","a11yText":"Süre 8 dakika 50 saniye","shortText":"8 dk."},"views":{"text":"13,8bin","a11yText":"13,8 bin izleme"},"date":"3 ara 2014","modifyTime":1417564800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tTP94yZTdD0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tTP94yZTdD0","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":530},"parentClipId":"17259739763243096902","href":"/preview/17259739763243096902?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/17259739763243096902?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9525398453318547443":{"videoId":"9525398453318547443","title":"\u0007[Max\u0007] \u0007[Flow\u0007]","cleanTitle":"Max Flow","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=dhlVum6-Wxg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dhlVum6-Wxg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDT3JqeTgxVnJmaHU2RXVES1ludUZrdw==","name":"JohnKeyser","isVerified":false,"subscribersCount":0,"url":"/video/search?text=JohnKeyser","origUrl":"http://www.youtube.com/@johnkeyser799","a11yText":"JohnKeyser. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3719,"text":"1:01:59","a11yText":"Süre 1 saat 1 dakika 59 saniye","shortText":"1 sa. 1 dk."},"date":"2 nis 2021","modifyTime":1617321600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dhlVum6-Wxg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dhlVum6-Wxg","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":3719},"parentClipId":"9525398453318547443","href":"/preview/9525398453318547443?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/9525398453318547443?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15910157659988541813":{"videoId":"15910157659988541813","title":"\u0007[Max\u0007] \u0007[Flow\u0007] - Harder Example","cleanTitle":"Max Flow - Harder Example","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5qirMonJGF8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5qirMonJGF8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSFpjNkEyclFUZVBjMjlDS1p2WVpVdw==","name":"Mike Mroczka","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mike+Mroczka","origUrl":"http://www.youtube.com/@mikemroczka","a11yText":"Mike Mroczka. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":212,"text":"3:32","a11yText":"Süre 3 dakika 32 saniye","shortText":"3 dk."},"date":"1 nis 2015","modifyTime":1427846400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5qirMonJGF8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5qirMonJGF8","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":212},"parentClipId":"15910157659988541813","href":"/preview/15910157659988541813?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/15910157659988541813?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9959555782106560657":{"videoId":"9959555782106560657","title":"\u0007[Max\u0007] \u0007[Flow\u0007] Using Edmonds-Karp","cleanTitle":"Max Flow Using Edmonds-Karp","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eYUTJPMjNKk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eYUTJPMjNKk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSjRMZU9nVFdCUkhSOXcyWTFGRGZoQQ==","name":"Connor Williams","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Connor+Williams","origUrl":"https://www.youtube.com/channel/UCJ4LeOgTWBRHR9w2Y1FDfhA","a11yText":"Connor Williams. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":588,"text":"9:48","a11yText":"Süre 9 dakika 48 saniye","shortText":"9 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"5 ara 2014","modifyTime":1417737600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eYUTJPMjNKk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eYUTJPMjNKk","reqid":"1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL","duration":588},"parentClipId":"9959555782106560657","href":"/preview/9959555782106560657?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","rawHref":"/video/preview/9959555782106560657?parent-reqid=1769390385488910-998904096962323109-balancer-l7leveler-kubr-yp-klg-45-BAL&text=Max+Flows","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0998904096962323109745","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Max Flows","queryUriEscaped":"Max%20Flows","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}