{"pages":{"search":{"query":"Nspire Explainer","originalQuery":"Nspire Explainer","serpid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","parentReqid":"","serpItems":[{"id":"221519300091298991-0-0","type":"videoSnippet","props":{"videoId":"221519300091298991"},"curPage":0},{"id":"16466975205339213535-0-1","type":"videoSnippet","props":{"videoId":"16466975205339213535"},"curPage":0},{"id":"8858689779326825589-0-2","type":"videoSnippet","props":{"videoId":"8858689779326825589"},"curPage":0},{"id":"11381841044353075298-0-3","type":"videoSnippet","props":{"videoId":"11381841044353075298"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE5zcGlyZSBFeHBsYWluZXIK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","ui":"desktop","yuid":"1204645051769179539"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"18127401973406722407-0-5","type":"videoSnippet","props":{"videoId":"18127401973406722407"},"curPage":0},{"id":"6309903583688344478-0-6","type":"videoSnippet","props":{"videoId":"6309903583688344478"},"curPage":0},{"id":"4268104457892999550-0-7","type":"videoSnippet","props":{"videoId":"4268104457892999550"},"curPage":0},{"id":"17489420167328528714-0-8","type":"videoSnippet","props":{"videoId":"17489420167328528714"},"curPage":0},{"id":"13486473414036032539-0-9","type":"videoSnippet","props":{"videoId":"13486473414036032539"},"curPage":0},{"id":"17164890751875029943-0-10","type":"videoSnippet","props":{"videoId":"17164890751875029943"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE5zcGlyZSBFeHBsYWluZXIK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","ui":"desktop","yuid":"1204645051769179539"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"15892061194173925008-0-12","type":"videoSnippet","props":{"videoId":"15892061194173925008"},"curPage":0},{"id":"12930207362759369961-0-13","type":"videoSnippet","props":{"videoId":"12930207362759369961"},"curPage":0},{"id":"1904129208479033423-0-14","type":"videoSnippet","props":{"videoId":"1904129208479033423"},"curPage":0},{"id":"3092177676718744828-0-15","type":"videoSnippet","props":{"videoId":"3092177676718744828"},"curPage":0},{"id":"11350566212558110653-0-16","type":"videoSnippet","props":{"videoId":"11350566212558110653"},"curPage":0},{"id":"14236942967418634815-0-17","type":"videoSnippet","props":{"videoId":"14236942967418634815"},"curPage":0},{"id":"3616330071902994640-0-18","type":"videoSnippet","props":{"videoId":"3616330071902994640"},"curPage":0},{"id":"14804294809882718144-0-19","type":"videoSnippet","props":{"videoId":"14804294809882718144"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE5zcGlyZSBFeHBsYWluZXIK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","ui":"desktop","yuid":"1204645051769179539"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DNspire%2BExplainer"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1693363284573238617115","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["554938,0,83;1466867,0,8;1405820,0,53;1414493,0,58;1424968,0,48;1450255,0,60;1460712,0,55;1462157,0,53;1459297,0,31;1312967,0,42;1152685,0,99;1452511,0,93;1471623,0,75;1461640,0,2;1383553,0,67;50738,0,13;123850,0,47;1455763,0,57;1470250,0,26;1463533,0,99;1373787,0,6;1466295,0,18;1465958,0,83;1463531,0,58;1349071,0,81;1466618,0,91;1064473,0,78;1470513,0,81;124071,0,96;89019,0,71;1471184,0,38;1469428,0,80;1357003,0,28;1145219,0,37;1470415,0,66;45971,0,43;151171,0,70;126344,0,93;1459211,0,1;1269694,0,77;1281084,0,18;287509,0,86;1447467,0,97;1466397,0,53;912280,0,87"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DNspire%2BExplainer","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Nspire+Explainer","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Nspire+Explainer","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Nspire Explainer: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Nspire Explainer\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Nspire Explainer — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y7482a9fc1ea468f06adc2440e96c65f0","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"554938,1466867,1405820,1414493,1424968,1450255,1460712,1462157,1459297,1312967,1152685,1452511,1471623,1461640,1383553,50738,123850,1455763,1470250,1463533,1373787,1466295,1465958,1463531,1349071,1466618,1064473,1470513,124071,89019,1471184,1469428,1357003,1145219,1470415,45971,151171,126344,1459211,1269694,1281084,287509,1447467,1466397,912280","queryText":"Nspire Explainer","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1204645051769179539","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769179543","tz":"America/Louisville","to_iso":"2026-01-23T09:45:43-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"554938,1466867,1405820,1414493,1424968,1450255,1460712,1462157,1459297,1312967,1152685,1452511,1471623,1461640,1383553,50738,123850,1455763,1470250,1463533,1373787,1466295,1465958,1463531,1349071,1466618,1064473,1470513,124071,89019,1471184,1469428,1357003,1145219,1470415,45971,151171,126344,1459211,1269694,1281084,287509,1447467,1466397,912280","queryText":"Nspire Explainer","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1204645051769179539","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1693363284573238617115","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":160,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1204645051769179539","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"221519300091298991":{"videoId":"221519300091298991","docid":"34-3-17-ZAA518915D842EDAF","description":"In this 7-minute NSpire mock inspection walkthrough, I take you inside a real unit and break down the most common HUD inspection deficiencies that property managers, maintenance teams, and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1591369/ed79f077d0a9023e4b8f18e898509847/564x318_1"},"target":"_self","position":"0","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DnLJ9-0UXdsk","linkTemplate":"/video/preview/221519300091298991?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"NSpire 2025 Mock HUD Inspection. Real Unit Walkthrough & Deficiency Breakdown","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=nLJ9-0UXdsk\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFAoSMjIxNTE5MzAwMDkxMjk4OTkxWhIyMjE1MTkzMDAwOTEyOTg5OTFqrg0SATAYACJEGjAACiloaGpuc3NvY3BzcWxqdGhoaFVDUFV1em9kc0lGaXJseDh2UGZPTXBlURICABEqEMIPDxoPPxO-A4IEJAGABCsqiwEQARp4gfwUEQIW4__u9RDx_QEBAekP9fn2_fwA0fISC_z5AwD27_T59AAAACIACw8CAAAA_uv_9PT8AQADDAIYBQAAAA3yFA7-AAAAIg7xDP0BAADz_A4B7wMAASD9CQT_AAAAB_8JDvj_AAEF-ugIAAAAABDs6PkBAAAAIAAtDA2QOzgTQAlITlACKnMQABpgMP8ALCAQ5tUDSfcU2NcH_QHa1NTi9f8jAP8KE9rv-SYHqhnz_wXBJvurAAAAIgnuGtQA5mkNBMIwDCUD7cfcAQl-Dvq84gYa9r7x8_Aq7wEP3gYyAA8B9SMPu9AjK389IAAtOCMrOzgTQAlIb1ACKq8GEAwaoAYAAEBBAAAgQQAAJEIAAFDCAAAEwgAAcEEAACxCAADWwgAAoMAAADDBAAAwQgAA4MAAAATCAACYwQAAwEEAAKBBAAC4wQAAFEIAAKDBAACwwQAAoEAAAKDBAAAQwgAASEIAABhCAAAsQgAAIMEAAPDBAABQQgAAAEEAADTCAABgQgAAAMAAAIA_AAC4QQAAAEAAAIjCAADkQgAAAAAAAAxCAABwQQAAIMEAAPhBAAAwQQAAoMAAAMBBAAAwwgAAGMIAAOBAAABUwgAAUMEAADBCAAAQwQAAoMEAAKxCAADAwQAAZMIAAAjCAAAwQgAADEIAAMBBAAAkQgAAMMEAAPhBAADgQQAAEMIAAEBBAABwQQAAcMIAAKBAAACIQQAAXEIAABBBAACYQQAAGMIAAILCAADAwQAAsEEAALhBAABEQgAATMIAAMhBAACAQAAAUEEAANDBAADAQQAAdEIAACjCAABIQgAAoMEAAEDBAAA4QgAAEEEAAEDCAAA8QgAAWMIAACBCAAA8QgAAoMAAAEBAAABUQgAACEIAALhBAADqwgAAYMIAAAhCAACwwQAAOEIAAODAAACgQQAA8EEAAHDBAAAowgAAWMIAAARCAACSQgAAmMEAALzCAAAkQgAAAAAAAABBAACmwgAAXMIAALbCAAAQQgAA8MEAAIA_AAAkQgAAQEAAAOjBAABkQgAAIEEAAIDCAABIQgAAIMEAAIBBAAAMQgAAuEEAACDCAACswgAAEEEAACBBAADAQQAAkMEAAGxCAADYwQAAoMEAALhCAACYQgAA4EAAAIDAAAAswgAAAAAAAOjBAABAwgAAREIAALDBAABcwgAAiEEAAIBBAABwwQAAhEIAAKDBAADIwQAAKEIAAHDBAABMQgAAgL8AAKBBAAAswgAAeMIAAGRCAABEwgAAFMIAAGBBAACYQQAAisIAAEDCAACAQQAAdEIAAIC_AADAwAAAoMAAAIbCAABAQQAAKEIAABzCAADoQQAA6MEAAADAAABgwgAAqsIAAEDAAAA4QgAAwMEAACBCAABYwgAAmMEAADBBAAC4QSAAOBNACUh1UAEqjwIQABqAAgAAgDsAAEw-AAA0PgAAED0AABS-AABsPgAA-D0AAO6-AAA0vgAAiD0AACQ-AACCvgAAgj4AAI4-AADYvQAAyL0AABw-AACAOwAAsj4AALo-AAB_PwAA2D0AAEQ-AADIPQAAJL4AAHA9AACYPQAAoDwAAOA8AAAMPgAAiD0AALg9AAAQPQAAhj4AAEQ-AAAMvgAAbD4AAGS-AACavgAAqL0AAFy-AADgPAAAgDsAACQ-AABQPQAAij4AAJg9AAB8vgAAgDsAAFC9AACyPgAAiD0AAAw-AAB0PgAAqL0AADA9AADqPgAA2D0AADA9AACWPgAA-L0AANg9AACIPQAAur4gADgTQAlIfFABKo8CEAEagAIAAKC8AACYPQAA6D0AAAe_AAD4PQAAdD4AAGQ-AADoPQAALL4AAGw-AADYvQAAiL0AAOA8AABcvgAAqD0AAOA8AACoPQAAQz8AADA9AAC6PgAAUL0AALi9AABQPQAA2L0AAEA8AABAPAAA6L0AADC9AACYvQAAcD0AAIi9AAC4PQAAqL0AAAy-AADgPAAAQLwAADA9AADIvQAAJL4AAEA8AABAPAAAQDwAAJg9AAAQvQAAQDwAANg9AAB_vwAAXL4AAIi9AADgPAAAqD0AAHA9AACoPQAA4DwAAIA7AABAPAAAoLwAAHy-AAAwvQAAHD4AADA9AABwvQAAUL0AADC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=nLJ9-0UXdsk","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["221519300091298991"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16466975205339213535":{"videoId":"16466975205339213535","docid":"34-5-13-ZF93C053169E2C1B5","description":"Short tutorial for texas instruments nspire cx. Create a function to perform linear interpolation in any document or sketch pad.time codes:0:00-Intro0:40-Li...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/985951/d852f3b7fa1befb1886651999fb6e14c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/L1wYQQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqxFbBc8VLMY","linkTemplate":"/video/preview/16466975205339213535?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TI nspire user defined function for linear interpolation","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qxFbBc8VLMY\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTY0NjY5NzUyMDUzMzkyMTM1MzVaFDE2NDY2OTc1MjA1MzM5MjEzNTM1apMXEgEwGAAiRRoxAAoqaGhqamJ1emxuenJwaHJvY2hoVUNIY0dqYmw0SnBTRnRHZTlrN3B1ZEt3EgIAEioQwg8PGg8_E-YBggQkAYAEKyqLARABGniBBv76CPwEAPb-AwX-Bf4BDAX_AvcAAADtDv39-_8AAPf5APcBAAAA9AP7BgEAAAD8_AT7_P4AAAQG-wf5AAAAEfUDBwIAAAD7D_r__gEAAPX7_vwDAAAAC_b8__8AAAD0AQMJAQAAAP0MAPoAAAAA_PgG9gAAAAAgAC11HeA7OBNACUhOUAIqhAIQABrwAVUYIPzp2fgBukQAAfYi2QKBCi3_N-X7AKAA4ADr_tgAt-wMAAT1AwDMSf8BkC3_Ae_u3AAlAuoALNUO_-oC_gAuLgUAM_AqAB7ZFAAA7QMA2RAd_wEMDv0A8Q8AHv_Y_zACDv_8HhkAuOH-_-PWAgLuDOoCJAUPCf7N-fvTCvYC3hMjAN74CQUDWtwE_OEa_QEv_wUjCAX_yQYE_BbG5P4K5v4G8jn4AfkyCwTg5vn18-vyAiUQHAEh1_0CJwkPDfw0DwTmzw0DAQkF8wL15Q0Z8_v62ArpBOHzC__y-h8ELv8J_vAd9PIlxQz74u4VAiAALVAjDTs4E0AJSGFQAirPBxAAGsAHCU-gvoftPT34iL089QoPPBo25ztVPU-97QOqvV_8ozw42Iu9aTorPmErEr0sP_o8WcBUvgSMjDkqz9c8mN0jPoFJkL1D9PW8hsrfvV-T2roFpei8jkCsvaHxKT2aqZi7327JPDdGPD2Zkja9HQDxPfXVFb35njG9pyjCvUn967yZg0A9ZgqHPYNByDz6B7I6Wt82PenbnbxTkco85gNCPvY9T71HAQG7xMF0PfwcvLoOsYu7dGBZvvcMh72-7wQ7Vd_UO4zWdrx_fT6848xFvfastTzeZAY7HYSKPZbRKD0cTs88gYmJPYQSQbyVrFS8jloBvh5Nej1spaG8CrXLvGY37bsFvZw8o5gXvR2WIT0QaWm7Z-4BvQEAWzzLM8y7uypQPfqNQLy_7746hKGZvdSSmD21He481EjrPfoZzTxoka08IqfPPQl3vT155FU7QqGUvEX4srxCqeY7CbvROxy2zT3vekS8JU54PZEGnDxoZEa8IniSvf8jUz3bqn-8kYuQPYrR77pVK9k6L058PB8kNb0FyMw7-limvctQkL0dp6676L7MPQAwYz2u5gw79gWpPcG80bxvfPG7SeNmvYoS_jxmtvG62ULQPZQU2L0iEQm4gPhUPcYplD3wIdm747VBvQrWGL2oVt-70VKeu_hopr2pyQS708xpPQ7d7L2Piji6IzeOveiId70m1VS5ZFcKPtgMUL29kc-5AaXhPZurhj3EXTO5lQwAvVdfWL0zU3M472WsvFhtI70sTxw7oZ3TPVGBmL2XnVE5pQWaO1k1YzzROuI5o9IjPZ5Pk71WCkM5hfkhPcnQDL1qNvy1jr--vWtwr7jazB256z9mPSHYJ7wwpvm4NplsvRLzUT3PR245SgsXvgrcmr2pquG29F4KPE82yrxCyYK4QOPdPLWem70Wr7i2c9h9vMJHub0Wm_u4pwSUPc1iqD1LVkm5cJyPvTOMNr1aXqI1HGW4PZ_6Eb0pQnQ5-RIqvIuA1LxaJVg4avgmPnXvPDxyQbc4hIAcvvF-wT0ZwAm50VdVPZJmoDvZKYi4cHATPRFcQDzq3YA5DTwSPf0UJz7SZyK5tg8pPmDMNj2Kf4k540LUPD-SrTzcL8G2CvFNvbMmFj6uNru3CLCnuzwBs73By_84hd5MvVSojr3qysO41TuBPO89h73Nk783Q_s7O4kjz73IM-U2XKihPX3ElL24oZY3o7m0Pch9iz2A8YM4E2l2Pd6fXD1vv3O4F4SNPTsdCD0hce-34h_WvZysvD20see0IAA4E0AJSG1QASpzEAAaYCH5AFYIJN4W8DUJDNL-_8_I9OEiwzr_Ecf_FAD_FgwH1r3c7gAn4jPPnAAAAAAz3SPKAOx_6NwYHftlCsyZBAYjdgXyB8QYJC-vClEACbT2-SIJSgD60KwdTRSbG1LcJSAALdFVETs4E0AJSG9QAiqvBhAMGqAGAADwwQAAcEEAAEhCAABAQQAAEMIAAEBBAAAAwQAAoEAAAHjCAACWwgAAMEEAABjCAAB0wgAAoEEAAJDBAAD4wQAAUMEAAJjBAACgwAAAwMEAAJBBAABQwQAAhEIAAIxCAAAkQgAAoMAAANDBAADgwQAASEIAAIjBAABEwgAAwEAAALTCAACAwAAAAMAAABDCAAAMQgAA2MEAAIBAAAAwQQAAyEEAANhBAAAwwQAAQEEAAILCAABUwgAAwEAAAMBAAAAEQgAAoMAAANDCAAAQwQAAosIAAFRCAADIQQAAQEEAAOjBAAAAwgAAiEEAAIhBAAAAwQAAAMIAADBBAABAwgAAOEIAAKDCAADgQAAAkEIAAFDBAADAQAAAcEIAABjCAACoQQAABEIAAFBBAACAQQAAssIAAABBAACAvwAAfMIAAKBBAACCQgAAmEEAANjBAACwwQAAMEEAANpCAADAwQAAgEAAAHBBAACAQAAAAEIAAAjCAADIwQAAMEIAAMDCAACgQAAAYMEAALDBAAC4QQAA8MEAADBCAADCQgAAmEEAAPjBAACAwAAAAEAAALBBAAA4QgAABEIAAGhCAAAAQgAAEEEAAADAAACoQQAAmEEAAFhCAAAwwQAAgL8AAIDAAACEQgAAEMEAACBBAABAwgAAaMIAALhBAAAAwQAAQMAAAODBAABQwQAAUMEAAEBBAADgwAAAREIAAFBBAADQQQAAEMEAABhCAAAAAAAAhsIAAOBBAAAAQgAAAMEAAADCAADsQgAAQEAAAMzCAAAgQQAAgEAAAJxCAADIQQAAYEEAAJBBAABAwQAAKMIAADTCAACEwgAAsMEAACTCAAA4QgAAQMAAAFBBAADowQAAuEEAACDBAAAAAAAAQEAAALBBAAAAQgAAmEEAAEjCAADuQgAAgMAAAOrCAAAAwAAAEEEAAIBBAAAAwgAASEIAAKBBAADgwQAAgEAAAL7CAAA4wgAAjEIAAChCAABUwgAAgD8AAFBCAACIQQAAEMEAAIZCAAAEwgAAgL8AAKhBAACIwQAAUEEAAJjBAACgwAAAKMIgADgTQAlIdVABKo8CEAAagAIAAKA8AABQvQAAbD4AAIg9AAAQvQAAEL0AAEQ-AAABvwAA-L0AAFC9AAAwPQAAQDwAAGw-AAAMPgAAJL4AACS-AABMPgAA2D0AAIo-AACmPgAAfz8AAJi9AABAvAAAPD4AAIK-AACAuwAAlj4AAAS-AAAkvgAAlj4AAFw-AACIPQAAcL0AAEC8AACOPgAAuD0AAIA7AADIvQAAfL4AAJi9AADYvQAAyL0AAAQ-AABwvQAAcD0AADw-AACmPgAArr4AADy-AADgvAAApj4AAJg9AACGPgAAZL4AAPg9AACIvQAAKT8AAOg9AABAPAAA4DwAAFQ-AADYvQAAuL0AABy-IAA4E0AJSHxQASqPAhABGoACAABsvgAAhj4AAI6-AAATvwAAJL4AAOg9AAAMPgAAqD0AAKC8AAC2PgAAcL0AAMi9AADYvQAAFL4AAAQ-AACovQAAoDwAADc_AADIPQAADT8AABC9AAA8vgAAhj4AADC9AABwvQAA6D0AALi9AAA8PgAADD4AAFS-AADIvQAAoLwAAEA8AADIvQAAUD0AAAy-AAAkPgAAgLsAAEA8AAAEPgAAFD4AAOC8AADovQAAiL0AAEC8AACSPgAAf78AAIK-AABUvgAAnj4AAIi9AABAvAAAFL4AALI-AAC4PQAAiD0AAIi9AAAQvQAAMD0AAOA8AACoPQAA2D0AABQ-AAAQvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=qxFbBc8VLMY","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16466975205339213535"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2425267709"},"8858689779326825589":{"videoId":"8858689779326825589","docid":"34-11-15-ZDF3E03D32634D309","description":"How to use your TI-nspire to find the line of best fit (regression line) and correlation coefficient.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3798130/9cdb9d1a50e6fe3ae373808b0d2a3349/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2ZLctQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYncLnRpdMOM","linkTemplate":"/video/preview/8858689779326825589?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Using TI-nspire to find correlation coefficient","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YncLnRpdMOM\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFQoTODg1ODY4OTc3OTMyNjgyNTU4OVoTODg1ODY4OTc3OTMyNjgyNTU4OWqTFxIBMBgAIkUaMQAKKmhoeHZzeHJ3aHJjcnZsbGNoaFVDY21mTzI5Y2I0azZvVm01WUllMTlSdxICABIqEMIPDxoPPxP2AoIEJAGABCsqiwEQARp4gQX4AQP_AQD39wEJ-Ab-Ag0G_wL2AAAA4wX9AQD8AgDxAg76BwAAAPT69gv9AAAA9wMI_Pv_AAAK9gAB-gAAABn29Qj9AAAAC_j__QABAAD__Pv_A_8AAA0BCgUAAAAA8vQGEAAAAAAFBgH2AQAAAPABBQH__wAAIAAtkCvXOzgTQAlITlACKoQCEAAa8AFK8i_7-9_oA8wx6P_k-eUAgSIK_ir16gDSHeb_1PD-AMEEBAAC_NkAxCfu_70pGwEF9-8AKRYX__7S_wD7CAcAHw0SAGAEJAIbCwD_C_3__h0pKv4SCPQAAN0IAPv03v0rAg3_AREu_9reAwII3fUB9-ghBSj89_8n8QIGzh35__4YMv706e394CPjAATeCP8UIgT9LfIg_vD3AQPpzPj_IPH_By_6__4XBwQE2eQT97nw-P7_-voAM_PrCC8M_Q35D_wH6-kNC_fZD_Tew_L_-P0NBv0R-P30Gur2DRUTBQ7xFgj2EgPo9tP3_9sEDgEgAC3_IR07OBNACUhhUAIqzwcQABrAB6lnib5YcD88w_buO7Hfw708qF-9cL4HveOgub0cbYs8XgUjvILKSD7ElIi8VUqRu5sdob5GoZu8yGeoPGbRtT0Y1NK8gP83vShh5r2-Tkk7V093PLeyJL4pFcM8RNBivPzvgj3xb8Y8haDZPEG2HD7BMKo8jUl7Ow_xL77EOvo6x1zjPH4oBTze-Wo8ETDjO8Rb5z3qnQC9XylLuxwLej5zXJe8hMxfvK8iiL22j4s8KbopPWluBb4j1BE9B8hhvD0Vlj1DZyO9hT4YvQw5m7wOqog9wF6hPBS9gj0hUbI9696vPKOUkLx9omG9yeRUu7z4rL2uPug8z5qgOG2s5L2mES49lE7BO7rDwbymdcA83LUpPC1haL1NPgc7LkoavWGIPD0hySy9Yd2dO14bIL2tL_e8BoCqPKvq5T2bQt86NtchPKweID75L9A9UbGcOvfwW70aur68t5ICPQm70Tscts0973pEvO0zXT2SvOk8X02zO-B9Or1GIW49EqkCvNUjzT2CvGi8tlibPAQ0tjyKz_i8UFbnu_nj7rtbYfq9hQK-Ow_wlD3gMFG88sPSO6gyMT3_d8Q87kTFu0uR_L2Ky7E9fO2UOcM-mz0TjzW9JSQSPID4VD3GKZQ98CHZu0vYrbyrFbe9xZoCvK0o7zvpYQi-lqSducVlBj36DAi-VSEDuk29zr2s4Fy9VWVxucITuj1qm-q6mQCyumx7ez1N4LE8q4qZOlZhqL1fcBe946CtudScPD2zzJc9jLDOuO6vDj6fEpG9ftCUOWnmZL2du_o5GFZTuUjlwTxFpoe9Qoi_OAULr7spbfu8GxXfOLZCkr2XE_68WcIvOes_Zj0h2Ce8MKb5uMxMP70KaKK8-ZF1uWlZcr3TBja9LuDputVwhj3W6yw9S6RUuXFQBrwVGf29wLcwNy1hCL0tnYq96KQwubl5WT1sabQ9Glg_ubGulb3AMys9SIC-N9akkD3BN1G7ayymOAdt5juzySa9eEUMuJYi-T1jd-Y8so-gOL_x1b0yWVw9hX4FuZjMp7w_Riq9wp0AOG9tF71CwkG9up26OMJfXTzEd-I9KxylOKuppj0zgrI8iBE7OCeCXbuAIMo8Xz4tuFUhVLw8Eyo-l9xFuK1M-Dw8mjQ8fsLruFTF1L3_e0u9GFFXti46OT0QdDm9rewrNyO1mjwsM4u9LqMzODLurD1cJr697GpDN0US2Dwgsog902HPONThNz3RJuK6IzEOuDkXc7t6X9m5-G2Lt1QfaL0IEzA9PRyMOCAAOBNACUhtUAEqcxAAGmAjAQAyIDvRE9Eq9gvB-PPf3PKmNvY2__fU_xr58uQV-s6tEBgAMBAnuJYAAAAKONcdogALf8S59_4FMlPW3wz_5HcH0Onj6gAzx8xJEOab9Dc9NDMA8qvAKiLdqh0d1SUgAC3mbQ47OBNACUhvUAIqrwYQDBqgBgAA0MEAAKDBAACwQQAAoEAAAFzCAAA4QgAAgEEAAFBBAABEwgAAWMIAAMDBAAAkwgAAlMIAACxCAABwwQAAQMEAAMDAAADgwQAAgD8AAABAAACGQgAA4EAAAAAAAAA4QgAAUEEAAABBAACAPwAAkEEAAGBCAABQwQAAsMEAAGBBAADGwgAAAAAAAIBBAAAAwAAAyEEAAKBAAAAwQgAABEIAAIC_AABUQgAAYEEAAAxCAAAwwgAAPMIAALhBAAAUwgAAPEIAAADAAADAwAAAyMEAADDCAADIQQAAJEIAAAxCAACiwgAAdMIAAFBBAACoQQAALEIAAGDCAAAEwgAAoMEAAPhBAAC-wgAAFEIAAFDBAAAMwgAAVMIAAMBBAADowQAAFMIAAGhCAAAAAAAASEIAAFjCAACYQQAAVEIAADDBAAAAwAAAGEIAALBBAAA0wgAAWEIAAEBAAADGQgAAqEEAAGBCAADAwAAABEIAAMBBAABkwgAAwMEAAGhCAADKwgAAiEEAALDBAADAQQAAGEIAACTCAAAAQAAAOEIAABhCAACgwQAAgEEAAMBAAACoQQAAiEEAALJCAACoQQAAZEIAABTCAABAQgAASEIAADRCAACQQQAABEIAAGDBAACIwgAAKEIAAKDBAADwQQAAQMIAAAzCAACAwAAAoEEAAHDCAABQwgAACEIAAATCAAAgwgAAgMEAALhBAACoQQAAEEEAABxCAADwQQAAcMEAAAjCAACKQgAAUMIAAFDBAABAwQAAIEIAAKhBAABUwgAAkEEAADDBAABYQgAAOMIAAHRCAADIQQAAZMIAADBBAABgwgAA0MEAAHDCAACkwgAAFEIAANDBAAAkQgAAIEEAADDBAABowgAAoMEAAODBAAB8QgAAiEEAAIC_AADwwQAAskIAAIjBAABUwgAAGMIAAIA_AAAAwAAA-MEAADDBAAAEQgAAgL8AANDBAACgwgAAMMEAAJxCAABEQgAApMIAAATCAADAQQAAAEEAAKBAAACIQgAAoMEAAMDAAABAQQAAAMEAALBBAADQQQAAmMEAADDBIAA4E0AJSHVQASqPAhAAGoACAAAMPgAAuL0AAK4-AACovQAA2L0AABA9AACYvQAAnr4AAEA8AAAMPgAAEL0AADS-AAA0PgAAoDwAADS-AAAQPQAALD4AAHA9AACIPQAALD4AAH8_AAAMPgAAJL4AAHw-AAB0vgAAoLwAAKA8AABAPAAA4DwAADQ-AACgvAAAgr4AAIA7AABAvAAAuL0AALi9AABwvQAA-L0AAEy-AAAMvgAA-L0AAIC7AAAsPgAAmL0AAIq-AACAOwAAoLwAAIC7AACYPQAAMD0AAHw-AAAsPgAAnj4AABA9AAB8vgAAmL0AAB0_AAAsPgAAML0AAMg9AADIvQAANL4AAMg9AAAUviAAOBNACUh8UAEqjwIQARqAAgAAlr4AAEA8AAAUPgAAL78AADQ-AACIPQAAFD4AAOi9AACovQAAqj4AALg9AABQPQAAUD0AAJi9AACgPAAA4LwAAKA8AAA_PwAAoLwAAJI-AAAcvgAADL4AAAQ-AADIvQAAcD0AAEA8AABAvAAA4DwAABw-AADgPAAAcL0AAAQ-AAD4vQAA6L0AAAQ-AACAuwAAHD4AABQ-AADovQAAqL0AANg9AAAMvgAAuL0AADC9AADgvAAAoLwAAH-_AACgPAAAQDwAAGQ-AAA0PgAAuL0AAEQ-AADYPQAADL4AAIC7AACgPAAAFL4AAKC8AACgvAAADD4AABy-AADgPAAAqD0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=YncLnRpdMOM","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8858689779326825589"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3195924845"},"11381841044353075298":{"videoId":"11381841044353075298","docid":"34-10-14-ZCA4C4063290FBA77","description":"Learn how to find a Least Squares regression equation using TI-Nspire CX series calculators. From entering data to finding the correlation coefficient (r-squared), its all covered here in the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3070516/1fb88b762fdcec1b11927e14d16f6c4a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2zuSEQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXse7Aqb0fLI","linkTemplate":"/video/preview/11381841044353075298?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to Perform Linear Regression with TI nspire","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Xse7Aqb0fLI\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTEzODE4NDEwNDQzNTMwNzUyOThaFDExMzgxODQxMDQ0MzUzMDc1Mjk4arUPEgEwGAAiRBowAAopaGhjaW5jem51b2R4aHNvaGhVQ0RUUGk3akFMcmFzTGc0OU8xbzdvWlESAgARKhDCDw8aDz8T3QGCBCQBgAQrKosBEAEaeIH-_gEI-wUA_QIFAvoF_gEL_vsI9___APn9_gMFAv8A7vwD-gP_AAD6CvsDAgAAAPz8BPv8_gAAFgED__oAAAAV-fwA_wAAAAYB_f7_AQAA_-719wH_AAAF_gMEAAAAAPwBAwX-_wAA9QcB-AEAAAD_7wP5AAAAACAALXmg4js4E0AJSE5QAiqEAhAAGvABSBE8_-nx2ADTK-z_0xz5AIEV8P8TCOoAvf8AAM4s4QDpDxAA4_QDAQYSBADgJycADeTXADsG8gAT1RL_6hf_ARAHBgElBSACHgsKAO72_P8BHCT_DRvtAe_mEAAJ-MwAJOwC_u0W_gD63wEBCfYb_-UOFP8w--8CCub6Ad4d7AD6Bgz8FOP1_OkP6wL44QH_Cw7h_xUaBQP78P0CHfn5CQ_h8gIg8gL-GSgBA9n7BvvNB_AAEfcQ-hn46QT7CAwG_PgNAe8PAQLxAgz6Iuz5AArxBQf-IfwL8A33AgwIDfz8DxUB3yD9AwTmEQgB5Qr2IAAtUfQ1OzgTQAlIYVACKnMQABpgD_kAMh8b0vcpJ_jJ6uPs0-cH3A7PP_8ar_8K2-sUE-m_xvQIACwXPNWiAAAAMP7tANMACX_AvgoiDkoao6j0Fe5tAgQOuuw2MK_TJgMe2AABNEJDAPjsvT9m9fYRHQYdIAAt5cAXOzgTQAlIb1ACKq8GEAwaoAYAALDBAACwQQAAJEIAAEBBAADIQQAAwMEAAGBBAADAQAAAUMIAAADBAABUQgAAqMIAAPDCAACAvwAAmkIAADDBAADAQQAAJMIAACjCAAAAQQAAEEEAAIhBAAD4QQAACEIAAODBAAAswgAAlMIAAHBBAAAMQgAA-MEAAKBBAABAQgAA6MIAAAzCAACIwQAAoEEAAETCAACwQgAAgMAAAIhCAACIwQAAXEIAAFDBAAA4QgAAAEIAAPjBAABQwQAAIEEAAIBCAACgwQAAsMEAAPhBAABQwgAAkEEAABRCAAAwQQAAiMIAAMhBAAAQwgAAgEAAACBBAAA4wgAAgMAAACDCAAAgQgAAmMEAAMBBAAAQQQAAoEAAAPjBAAAYQgAAUEIAAMDAAAAAQQAAhEIAAEDCAACmwgAAoMAAAARCAAA0wgAAmMEAAHRCAACEQgAAEMEAACBCAABcQgAAZEIAAHBBAACAQQAAGMIAALjBAAAAQgAAwMEAAGjCAADEQgAAgsIAAIBAAACAQAAAuEEAAIjBAABQwgAANEIAADhCAAAwQQAA4MEAAHRCAABwwQAAyEEAAABBAAAgQQAAsEEAABBCAABQQQAAcMEAACDBAAA4QgAAQMAAAIC_AAAAwAAAhsIAANhBAAAAwgAAQMIAAJDBAAAQwQAA8EEAAODBAAAQwQAAAMIAAAzCAACYwgAAmMEAAPjBAABAwQAA6EEAADhCAACSQgAA2MEAAPBBAAAUwgAAuMEAAKjBAADQwQAAQEAAAGRCAACAwQAAZMIAAAAAAAAAQAAAsEEAAAjCAABwwQAAcEEAAIbCAABQQgAAiMIAACjCAACKwgAArsIAAODBAACAwgAAiMEAAJjBAAAMQgAARMIAAEDCAABAQQAAoEAAACBCAACwQQAAwMEAADBCAAA8wgAAwEAAAEDCAAAowgAAoMAAAGDCAAAgQgAAUMIAAIC_AABcwgAAeMIAAIDAAACKQgAAOMIAAHjCAABAQAAAkEEAAJBBAACmwgAA6MEAACDCAAAkQgAAEEEAAOBAAACAwAAAiMEAAMjBAACgwSAAOBNACUh1UAEqjwIQABqAAgAADL4AACy-AACOPgAARD4AAOA8AACIPQAAgDsAABW_AACgvAAAML0AAIA7AABwvQAAND4AAIC7AACavgAAQDwAANI-AAC4PQAADD4AALI-AAB_PwAAED0AADy-AAC2PgAAiL0AAMg9AABEPgAAFL4AABS-AAAUPgAAFD4AAAS-AAAEvgAAEL0AAOg9AACgPAAAHL4AADy-AAA8vgAAZL4AAJi9AADYPQAAHD4AAKi9AAB0vgAAHD4AAFw-AAAUvgAAbL4AAFA9AABUPgAAcL0AAJ4-AABwvQAAPL4AABS-AABFPwAAFD4AACS-AACIPQAA-D0AALg9AADovQAALL4gADgTQAlIfFABKo8CEAEagAIAAK6-AACIPQAAoLwAAD-_AACIPQAAHD4AAGw-AABsvgAAEL0AAGw-AADgPAAAoLwAAEA8AABwPQAA4LwAAIC7AAAUPgAAQz8AAOg9AADaPgAAUD0AAFS-AABMPgAAEL0AAHC9AADgPAAAML0AALg9AACmPgAAiD0AAEA8AACAuwAAEL0AADS-AAAkPgAAQDwAAKg9AABcvgAAgLsAAMi9AABUPgAAQDwAALg9AABwvQAAJL4AAJ4-AAB_vwAA4LwAAEA8AACiPgAAND4AAKC8AAAsvgAAvj4AALi9AAD4PQAAML0AAFC9AAAUPgAAoLwAAAw-AAB0vgAAED0AAIg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Xse7Aqb0fLI","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11381841044353075298"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4159807554"},"18127401973406722407":{"videoId":"18127401973406722407","docid":"34-6-3-Z448D8E969E52646E","description":"Join me for another video in my Calculus BC TI-nspire Tutorial series! In this tutorial, I'll show you how to find the intersections of functions using the TI-nspire. This technique is useful...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2359903/ccbda99957be7b59d41ccfaed734c24c/564x318_1"},"target":"_self","position":"5","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D36y7YGKjI7o","linkTemplate":"/video/preview/18127401973406722407?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculus BC TI-nspire Tutorial: Finding Intersections","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=36y7YGKjI7o\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTgxMjc0MDE5NzM0MDY3MjI0MDdaFDE4MTI3NDAxOTczNDA2NzIyNDA3aq4NEgEwGAAiRBoxAAoqaGhraWhmY3NjdHBuam5xZGhoVUNESVdvc1lPSGZIWm1RYTBKYS1LOVF3EgIAEioPwg8PGg8_E1WCBCQBgAQrKosBEAEaeIED9f4EA_0A-_z_EAEJ-wIG9QD5-P79AOAP9QQD-wIACQwH9AABAAAGDf8GBAAAAAYI-Pv4_QEAGPf7-fMAAAAg_fL6_AAAAAEG7gz_AQAA9_fq_QP_AAAS-AwNAAAAAP4OBgoBAAAA9P399gAAAADz-wf8_wAAACAALULTyzs4E0AJSE5QAipzEAAaYCkNAD4TBeLf6yrrEeHtDvTpDPH56A7_AscA-g7IEfYo0bkGGf8o6g3zuwAAABcF_CLkAAFV4P7cGCoyFt2v5QELfwwP4f0GJOTCyv8IGBkVIgUG_ADe_PQLF8rWJBlCLyAALbZXRTs4E0AJSG9QAiqvBhAMGqAGAABIwgAAqEEAAABCAAAAQAAAYMEAADhCAAAIQgAAwMAAABzCAAD4wQAAgD8AAIbCAACQwgAAsEEAAIDBAAA8wgAAgMAAAJLCAABAQAAAgEEAAPhBAAAAwQAAOEIAAABAAAAAQgAAkMEAAFDCAAAgwQAAhEIAAKDAAACGwgAAwEAAAKLCAAAAQgAAqMEAABjCAAA4QgAAUMEAAEDBAAAAQgAAYEEAAHRCAACQwQAAYEEAAIzCAABswgAAkMEAAIBAAABkQgAAAAAAACDCAAAwQQAAXMIAAABAAAA4QgAAKEIAAMLCAAAIwgAAFMIAAGDBAABAQQAAlMIAAIjBAAB4wgAAEEIAANTCAADAwQAAwEAAAMDCAABUwgAALEIAAHBBAAAMQgAAsEEAAKDAAABwwQAAgMIAAKhBAAAQQgAAgEAAABDCAABIQgAAgEEAAABAAACQQQAADEIAAKBCAAAwwQAAQEIAAPDBAABEQgAAgkIAAIbCAACGwgAAcEEAAMDCAAAgQgAAgMAAADBBAADwQQAA6MEAAAhCAABUQgAAUEEAACjCAADQQQAASEIAAAhCAAAAwAAAYEIAAEBAAACYQgAA2MEAAExCAAAkQgAABEIAAERCAAAgQQAAkMEAAIC_AAA8QgAAiEEAAMBAAADIwQAAVMIAAGhCAACQQQAAkMEAAMDBAACgQAAAqMEAALBBAABwwQAAwEEAAHDBAABgQQAAUEEAAJBBAADgQAAAMMIAABhCAAA8wgAAQMAAAODAAABUQgAAwEAAAHDCAABMQgAAIEEAAKBCAABAwAAAMEIAANhBAACQwQAAAEAAAODBAAAAwgAAgD8AAGjCAAA8QgAAAAAAACxCAACgwQAAAMAAABjCAACgwAAAQEEAAJpCAAA4QgAAUMEAAEBAAADgQgAAuMEAAMDBAACgwAAAYMIAAKDAAABUwgAA4MAAAGxCAACowQAAAMIAALzCAADgQQAAjkIAABBCAACewgAAgMAAADBCAADQQQAAMMEAAJBBAADgwQAAgEAAAKjBAAAsQgAAuEEAAKBAAACIQQAABMIgADgTQAlIdVABKo8CEAAagAIAAEC8AACIvQAAXD4AABA9AAAkPgAA2D0AACQ-AAABvwAAHL4AAIC7AACYvQAAFL4AAFQ-AADIPQAArr4AABC9AAC6PgAAuD0AAOC8AAADPwAAfz8AAHC9AAAUvgAAJD4AAIi9AADYPQAAfD4AAPi9AABAvAAAkj4AACw-AAAMvgAAyL0AAOC8AAC4PQAAFL4AAPi9AADovQAAVL4AAEy-AAA8vgAADD4AAI4-AAA0vgAAjr4AAEw-AAAsPgAAXL4AAAy-AAAEPgAA2D0AAAQ-AACePgAAUD0AAFS-AAAUvgAAQT8AABQ-AADYPQAAmD0AANi9AABQPQAAoLwAABy-IAA4E0AJSHxQASqPAhABGoACAAAMvgAAML0AADC9AAA3vwAAuD0AAEw-AABkPgAAiL0AAIq-AAC2PgAA2D0AAIA7AABQvQAANL4AAOg9AACYvQAAiD0AACU_AACgvAAArj4AAJi9AABMPgAAcD0AAFA9AABAvAAADL4AABS-AABQPQAA-D0AAHC9AAAQPQAAMD0AAIi9AAC6vgAADD4AAEC8AABEPgAAiD0AAGS-AADgPAAAML0AAEA8AABsvgAAiD0AAOg9AACgvAAAf78AAIg9AABMPgAAVD4AADQ-AADIvQAAoDwAABw-AACIPQAAUD0AAEA8AAC4vQAAQDwAAFC9AAD4PQAAlj4AAKo-AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=36y7YGKjI7o","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18127401973406722407"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6309903583688344478":{"videoId":"6309903583688344478","docid":"34-11-8-Z27D41C9E1007BCCE","description":"In this video I do linear regression on two sets of data, get the regression equations, and graph them both on the same graph page. From there you can find the intersection of the lines...or do...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4310680/4405a7f6938bd05abc5334e0badfadd9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/76B427D59B7A6C6B3BCD0476B44F5B4D59A4EC93DF559BFB2025B3546502F4BB04FBAC24890E822D0DBA17E5F0487FEF97A22134AAB6B11744F00A73621F16C1.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIDM98L62J4w","linkTemplate":"/video/preview/6309903583688344478?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TI-Nspire - Linear Regression and Two Data Sets","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IDM98L62J4w\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFQoTNjMwOTkwMzU4MzY4ODM0NDQ3OFoTNjMwOTkwMzU4MzY4ODM0NDQ3OGqIFxIBMBgAIkUaMQAKKmhoc3ljcXhuZHh0ZXNlbWJoaFVDdHNwUjZjVDRXc2xSYlAycXAwZmVsdxICABIqEMIPDxoPPxOtAoIEJAGABCsqiwEQARp4gQb--gj8BAD2_gMF_gX-AQEI_gj4_v4A7gT8-AUAAADzAAj8_AAAAAQG9wECAAAAAPQAAwD-AQAI_Pb9-AAAAA38_Ab7AAAABAT-9P8BAADz8_j2AgAAAAz-_QEAAAAA_AP4Av8AAAD9DAD6AAAAAPz4BvYAAAAAIAAtdR3gOzgTQAlITlACKoQCEAAa8AE-E0H68NDfAeIh8QDk-eUAgSIK_gr9-AC-DdEB1wbhAeL7BP_oEtb_-R7f_70pGwHx8OAAJhoEAP3eD__z8_4BLR4cAT7zIgE1DxYC3v_2_wM1FwEmEuQB8OsDAfve0f4rAg3_7isYAencAwEF8AEC7dgeAh0k-gIz4AoC7xEBBSg6C_ny9v7-0Bff_O34-AUpEwT8Qhkp_fjwC_0F0uoFCg3yBCz6EPwQFvz_3QMl_7nw-P763__1L7wG9iMIDgz_Ee_66-kNC_fBCv3j1gcHDQ8RCBUN_BHfEe79DRUTBf_qCgn4C-_558P2ENsEDgEgAC3_IR07OBNACUhhUAIqzwcQABrAB8psmL4N9aA8rTmbPKWdj71E5M-8hUu9vEvTtr2Wyys9rO4HvT9zRj4O7jO9lvl9O5sdob5GoZu8yGeoPLPflD2V1bS87BgyvLqeCL7WYNA6yYQpPEePD75tpJE8aDjKPGRMUD1Gz608-6qeuqnB1D3qqDQ87UqmvCtNCr5r_-45ZRkiPbzB4TzJMLi7Li0XPObLiz18lgy9bjzOPBwLej5zXJe8hMxfvOtDDbz0KCa8tiJ7PH3PqL322gc89EAYvFd4pz0rRge9KSMuvCIE_7wdfzg9hfSMOx2Eij2W0Sg9HE7PPA0RwbxFp629v7iWO2wpi72pQBc9Z8Zsu635Ab5UpZI8IdHfO6OYF70dliE9EGlpu7E-9brCOkS8HqnZvBvccT3B-kS9zGJivLy2L7txGzI8astvPGM9ij0gIIQ8-UiKPMCT9j3_6pE9GJvvuxB-rb1680W9N21GPCgFgrzF3qA9pj_gvNqIjD1SlHA8z_amO8txvb2PAbQ9kl5UvP3Fpz1zLZq8FF5-u9bHIjxmbAM8B6VcO_nj7rtbYfq9hQK-O_j80D0lWU46i819PI-O6zwUlvg8EkJRvHDNDb74VXk9lOdWOYKrXD0vTZG8AcNyPEG5bT3bA0M9xTLku66Sub3MCM-9z4uPug6i9TyLOcO98eyXuj9BnDtXJBa-IpoKugLX1b033Ay9E0e7OyZWhj1a-QC9PJL4uD1Izz31Bkk9Lb-husBezL1gGFW9KaUQu3_wuz3LzFY9tDQZOjy98j1KyFG9V8GOOfC8eb0bt_28IXDJuqi_Iz038V-9aDShuMhKgrzZg4O7uCLEOalmq73K6Da8E6AFuStVfT3tXJw7qBL5t7h4-LyDisc7TAkdOlMekr1KG8i94XObN_ubpj0wgBA9JB1wuBcHfD1Cdh6-o2CMNzduUb2mJau9GFW_uFSWV7xsCgQ-MF29uMfKOb15E8082aEVuMYw5z294zG7yUdPOQD_ND0IIpu9-SNytyS2yz0_4yK9xnD2OJEp3710Gag9T-gkuZHEIb2LDKy9yCZ8OM_W5rxEeTW9E7hrOIrNpz3khh8-xT1Lub2mBz7Q2kg8qq5ZObE0sDxeO0c9uXhAOFUhVLw8Eyo-l9xFuNvVVT3vQYk5viYduGdE6b19WxC9mhI7uGMzVj12UbS9P5udOD5VqrsrqyS9jODmN_pB3T2_RSe9Z-kWtwoQJT3u1YI9T_-7OHzzqz0flQu8wEpsuFYL7DyfJxk9zIiBtxC_LL3nWi89LaZkOCAAOBNACUhtUAEqcxAAGmAQCAA2Mhq6AhEGCNfevOrdBOTJGsIX_wTD_wXrAeNIveS---4AJwNA5KAAAAASAfcF8AAWbdG_8jj-OjLrp-4J6X8H8PvIGjkT4Lg9_QC7Gf7yGS4AHtLKQj_70SE2GhQgAC0-eR47OBNACUhvUAIqrwYQDBqgBgAAFMIAALhBAAAcQgAAAEEAAMDAAACQQQAADEIAAMBAAAAkwgAAAMIAAMDAAACOwgAAXMIAAIRCAAAQwQAA6MEAAMDAAAB0wgAAIEEAAKhBAAAEQgAAAEAAAEBBAABgQgAAiEEAAEDAAAAgwgAAoEEAAJpCAAAcwgAAyMEAALBBAACkwgAAREIAAMhBAACAwAAAmEEAAMBBAADYQQAAmkIAABBBAABEQgAAYMEAADhCAACQwgAAWMIAAJJCAAC4QQAAREIAAKjBAAAAwQAAUMEAAMjBAACKQgAALEIAAEhCAADCwgAATMIAAAAAAADQQQAAIEEAACjCAABgQQAAMMIAABhCAAB4wgAAREIAACBCAACGwgAAUMIAAGBBAACQwQAAgMEAADRCAAAAwAAAAMAAAKrCAACAvwAAYEEAAKjBAABUwgAAQEIAAPBBAABMwgAAJEIAAOhBAACaQgAAAMAAACBCAAAwQQAAQEEAABxCAAAcwgAA2MEAAHhCAACAwQAAAMAAAEjCAACYwQAA-MEAAAjCAACQQQAAnEIAADBCAACAQQAAIEIAAMjBAACgQQAAwEAAAFhCAABwQQAAVEIAAKBAAAAsQgAAyEEAAMhBAAAAwQAAuMEAAADAAAAMwgAAIEIAABDCAACAQAAAqMIAAHDBAABgQQAARMIAABTCAABAQAAAOMIAAGzCAACgwQAAMEEAABBBAACowQAAFEIAAJhBAAAkQgAAOEIAAFjCAACIQgAAsMEAAABBAABgwQAAREIAAEBAAACOwgAAYEEAAOjBAACYQgAACMIAANBBAABAQQAATMIAACBBAAA4wgAAMMEAADTCAACywgAA2EEAAJhBAAAkQgAACMIAAMBAAABgwgAAgEAAACBBAAAMQgAA4EAAAEBBAADAQQAA0kIAAODAAADowQAAAAAAAEDAAAAwQQAA8MEAAIZCAAB4QgAAEEEAAMjBAACUwgAAsMEAAERCAADIQQAAwMIAAMDAAAC0QgAABEIAACBBAABIQgAAAMIAABBCAADAQQAAAMAAAIDBAACAQQAAgEAAAIBAIAA4E0AJSHVQASqPAhAAGoACAADIvQAAiL0AABQ-AACoPQAAPL4AAIg9AACAOwAABb8AAOA8AACAuwAAbL4AAFy-AABcPgAA-D0AAHy-AAAMPgAAwj4AAHA9AACmPgAA_j4AAH8_AACgPAAA4LwAADQ-AAAkvgAAZD4AABw-AADgvAAALL4AACw-AADoPQAABL4AACy-AAAMvgAA4LwAAKC8AADYvQAA4DwAAAy-AACivgAAoDwAAEA8AABMPgAAgLsAAKC8AADoPQAAND4AAK6-AABsvgAAQLwAAII-AACYvQAAvj4AAKi9AACgPAAAcL0AAEk_AAA0PgAANL4AADA9AABAPAAAyD0AAAS-AACaviAAOBNACUh8UAEqjwIQARqAAgAAHL4AAEC8AABQPQAAYb8AAHC9AAB0PgAA1j4AADS-AADgvAAAZD4AAJi9AACIvQAARL4AAOC8AADgvAAAMD0AAFA9AABPPwAAgDsAAPI-AACYvQAAsr4AAIg9AADgvAAABL4AAEC8AAA8vgAAgDsAAEQ-AACIPQAAcL0AADA9AAAQvQAA0r4AABw-AAAMPgAAQDwAALa-AABwvQAAoDwAAOg9AAC4PQAAQLwAABC9AABcvgAAoj4AAH-_AAB8vgAAiD0AAOg9AADoPQAAmD0AAKi9AACOPgAAEL0AANg9AADgvAAAUL0AAKg9AADgvAAAdD4AAIi9AACYPQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=IDM98L62J4w","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6309903583688344478"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3214909648"},"4268104457892999550":{"videoId":"4268104457892999550","docid":"34-7-16-Z6611FB5D9C1A26A7","description":"Using Nspire CX Find Range of Values for Function using Problem 24 from the June 2015 Regents...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3382066/1591672c51b6ba04932bf358f33db061/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6zOSUAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiTAR27NtTK0","linkTemplate":"/video/preview/4268104457892999550?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Using Nspire CX Find Range of Values for Function","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iTAR27NtTK0\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFQoTNDI2ODEwNDQ1Nzg5Mjk5OTU1MFoTNDI2ODEwNDQ1Nzg5Mjk5OTU1MGqTFxIBMBgAIkUaMQAKKmhoaG5ucXlmb3pvdmtxbWRoaFVDQllfTTZvOXhRbnQ0cnNQYVVoc0xNZxICABIqEMIPDxoPPxPRAoIEJAGABCsqiwEQARp4gfsB-Qj8BQD7_g0E-wb9AhkAAQn1AgIA9gD19QIC_wDuBv7-A_8AAAD_AgT-AAAA8gAGAAAAAAAMBvUDAwAAAA4D_v_9AAAAAf38Bwn_AQH2BvD5AgAAAAYACAAAAAAA_gsIBPr_AAD8A_72AQAAAO_5__0A_wAAIAAtotThOzgTQAlITlACKoQCEAAa8AFSBAgAx_0A_v8DAgHXGfoAgQUL___18gDN_O8A2QP8Adj6EADa4gAA4Rz7AOIkJAAA6fL_I-n4AAC-EAHo9vYAL_YQACnYDAEvEAIA1e8H_-gZIf4MAuwA7-QAAPkO6f8O8gUB7hT_APTt7v8J9xn_7gsmARfy9QDz4gAA6BgAAg4T_f3w8PwE6w7tAfD0EgMZAgv-JB4G_f38_AXg8vUC_OoD_BMTBwUWJAEC2u0NA-fx8wT0-O75MdkCBxgG9gL_-gD-78sMA_H0DvUM8vn6-v4KBQwcB_7bCfUAEP8MBhD5BvoF_PL37-v4CvPuA_kgAC1uJ0g7OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawO706BTvWBAy9lXDXvKoFWz0daxA9HIbFvNvdIz2UpfG8Vin9vLIv4b6OiHM8gsDSupjdIz6BSZC9Q_T1vEsjBr5M9rQ8ufT5PPWha76E0wc9dDXDu50YnT0IfJm8f8YevL8-rz0X65-7tRUAvTjAHL5wP-C8lU3SO8PHsb3qqmW8xwgtPQXD-T0xi1q9C4gfPSDrCT7Fbdm8qpk1vOYEr7vchxc9jJ3VPBaSYr0RXnW7PvTTvFd4pz0rRge9KSMuvFBiJTvH3zE9clomvFTDXj3_cec8nu4cPfSLAr49MJQ5yzqUO7G_gb2mcI48g97du4VjcbwsRXc9nqGLON_F-7x0R5o8p0GRvB6N3jzlTVQ97GwIvCNsdLsQ37I6UDqRvEsXBz3_iRs9NM9bPDdMiT2N_TY9yyrPuvMpdj1-XKY9ZmeRvI-uLTyCO5C8wB-jPMapET2Z9eI9O5_sOwqGnj0-7lc74ugqvL6qjjwJbG49bMRdvIQcCDzDtio9ggocPNmIlrtLnmG9kgUOvPnj7rtbYfq9hQK-O3htRT0JBBA9cc6jPBWQVj2_Xpa93UPCu-mNCb0sYlg98aNYu9lC0D2UFNi9IhEJuE0SCz0mEbs9XPXru-O1Qb0K1hi9qFbfu8eoQb15C_-8B-tzuHJT_zu_gtS9OouDOuhwqL3TFD-75M8BPG-AmT0G0xW8RFWGuw6qkz0J6_W8Ki-_OnmnpzuAilm9pglWtie9D70dIJg8BEyJO8dnEj6uoOm9kAm0uUyzDLxAo_Q8xBXluUbvL7x7tKM6NnsvOQZ2Jj3q24i9As1mOA8KyrwSDTe9DHufOOzeKr14Rqu9eBXduC5AtrzMAtK8WOONOWsewb3ErqK9WfgiOFShS7zEVhU97CZKt1fZrbyjA3K9TIfXuP6wSjzEIBW96bEHN4LyiDzjVXE9z2fTuOMWmLzXrn8911M4OJIDtjwvfI67Z12KuPJgUjpXKw-8VXGEt8hFBT4XqsE9_6Q6tUcGlLxxch8-_cNmOIdFVj3TZaa9vyj0NrOKiD0gjyq8WyOFNyDnAzx2uXI9ZB6BOMAEzj38eL877WueOLNP9jzyAWY99mBHt_1xET2iRdY9GQbTOAuQgj0Fws48IPgCuU7BkL0_vk69U05lN9W5fTyMEx-9cXMwtbxXTT0FHJ28BjL0trhzAT3MK4K9L2Z0uOobQbumqcQ97EGXOBt31DzTJ2M9pTSguEjUlbwinva8tPgAuITs4Tz6DQM-t2hxuCAAOBNACUhtUAEqcxAAGmBQBgAbOjTSNNYUAu-_2e-p_-PRFdZF_xSp_wjqH9v_COy1ExEAMQMZ95gAAAAEE-IW3QDnfwSn9i4hRAHa2gL55WgZJAip6yUOu9FDUfOMCgUuJxYA86OUDz7Y7S0FGwcgAC0dCxA7OBNACUhvUAIqrwYQDBqgBgAAVMIAACBBAACOQgAAQEAAALDBAADAQQAAmkIAAIhBAACawgAAdMIAAEDAAADwwQAAuMIAABxCAAAwQQAAHMIAAJjBAACkwgAAiEEAAGBBAABAQQAAuMEAACDBAAAEQgAAiMEAADBBAAAQwQAAEMEAAFBCAACAQAAAjMIAALBBAAAAwwAAIEEAACTCAABAQAAAAMEAAIDAAAAsQgAAPEIAAIBBAAB8QgAAsMEAAJBBAABQwgAAisIAAOBBAADgwAAA4EEAAIBBAABcwgAA-EEAADzCAAAUQgAAKEIAAJBBAACWwgAAgD8AAKjBAAC4QQAAUEEAAHzCAACYwQAATMIAADRCAADCwgAAMEEAAGBBAACcwgAABMIAAIRCAADAwAAAEEEAAKRCAACAQAAAmEEAAFTCAACgQQAA8EEAAABBAADwwQAAMEIAAKhBAADAwAAAAEIAAAhCAADCQgAAsMEAALhBAAAAwAAAwEAAAGBCAAAAwgAAYMIAADRCAACUwgAA4EAAABDBAAAgQgAA2EEAABzCAACIQQAAJEIAABDBAAAIwgAAwEAAAAAAAACYQQAAgEEAAGxCAADoQQAAeEIAAOBAAAAoQgAAIEEAAIhBAADYQQAAoEAAAADBAABMwgAAoEEAAEDAAADQQQAAYMIAAETCAAAAQgAAwEEAAETCAAAkwgAA6MEAAATCAAAMwgAAgEAAAOBAAABAQQAAZEIAADhCAAAsQgAAIMEAAGDBAABoQgAAkMEAAABAAABQwQAAPEIAACDBAABcwgAAAAAAAADAAABoQgAARMIAACBBAACgQQAAjMIAAEDAAAC4wgAAQMIAABjCAACowgAAkEEAAOjBAAAYQgAAgL8AAIA_AADYwQAAsMEAAEDBAABUQgAAEEIAAMDAAACwwQAAmkIAAPDBAAAowgAA2MEAAEDCAACgwAAAnMIAAFBBAADIQQAAEMIAABDBAACGwgAAgMAAABBCAACgwAAArMIAADTCAABMQgAAAEEAAIDAAAA8QgAA-MEAAIBBAADwQQAAQEIAAIC_AADgQAAAQEAAABzCIAA4E0AJSHVQASqPAhAAGoACAAAUPgAAuL0AAMo-AAC4vQAAuD0AAHQ-AACIvQAABb8AABy-AAAQPQAAiL0AAKq-AACKPgAAUD0AAFS-AACgvAAAij4AAOA8AAAUPgAAtj4AAH8_AABMPgAAcL0AAAQ-AAAwvQAA4DwAAEw-AAAsvgAAQLwAAEQ-AABAPAAAHL4AAOC8AAAMPgAAmD0AAAy-AABwPQAAbL4AABS-AADYvQAAqr4AAKC8AAB0PgAAFD4AAKi9AACgvAAAoLwAADS-AAAMvgAAED0AACw-AAAcPgAAJD4AAFQ-AADIvQAA2L0AABU_AABwPQAAgDsAADA9AAAQvQAA4DwAABA9AABkviAAOBNACUh8UAEqjwIQARqAAgAAZL4AAIg9AAAwPQAATb8AAKi9AABQPQAA3j4AAOA8AACIvQAAPD4AAAS-AABEvgAA-L0AAPi9AADIPQAA4LwAAFC9AAArPwAAEL0AAHQ-AADYvQAAVL4AAKC8AADoPQAAgDsAAHC9AAAUvgAAED0AABA9AAC4vQAA-L0AAPg9AAAUvgAAZL4AADC9AABwvQAAvj4AAIi9AAAUvgAAUL0AAKC8AAAwvQAAHL4AAHA9AAA8PgAA4LwAAH-_AAAMvgAAQLwAALg9AAA8PgAAoDwAANg9AAAQPQAAHL4AAMg9AACgvAAAmD0AADQ-AACYPQAAzj4AAFA9AAAUvgAAqL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=iTAR27NtTK0","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":776,"cratio":2.47422,"dups":["4268104457892999550"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4230727204"},"17489420167328528714":{"videoId":"17489420167328528714","docid":"34-5-8-ZF3642AB6751B3BBA","description":"An intro to the graphing tool on the TI-Nspire Handheld. Includes the basics of graphing functions and using basic settings.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1576305/e10f643b795b243a9b7e35abfc095649/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/eO1hegAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFvbxlBRbWwc","linkTemplate":"/video/preview/17489420167328528714?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Getting Started with Nspire Graphing - Part 1","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FvbxlBRbWwc\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTc0ODk0MjAxNjczMjg1Mjg3MTRaFDE3NDg5NDIwMTY3MzI4NTI4NzE0aogXEgEwGAAiRRoxAAoqaGhpemt4a29wa3ViYW1vZGhoVUNwVy1xZGxKTFhYZjNNSm9yMjRTTUh3EgIAEioQwg8PGg8_E9QGggQkAYAEKyqLARABGniBAgUC_v8CAAQABQcBCPwCFAX4BvUBAQDjBf0BAPwCAPcABfoHAAAA-AUCAgAAAAAABAr_-_4BABL_7wcCAAAAEv4A-P8AAAAB-fX__wEAAOz3Av8DAAAADv4BCAAAAAD9B-8IAAAAAAAS_f8BAAAABvUA9QAAAAAgAC0zINc7OBNACUhOUAIqhAIQABrwAUD1Rfzw0N8B0xX3AMcW4P-BIgr-HwX_AL3u2gDs6dwB2Oz2AOn-AAD2Q_oAvSkbAfTR7gAV9fMBKNkNAP8Q-gAADQ0AR_0IABsLAP_S6tz-7TMP_hII9AD6Ae_97gPh_xvhBP79GxYAxNkSARDZFv_m9v8DLuD-_A_tAgDWFAIB-RcJ-tsQ-f_0JNP818AVBCAS8v9YIuv98wf9BOz09QkEAvkJA-cK_hcdBwX45P8D898C-gnoFPQrHusKJx4EBtAKBATqvA8D3REM9eX58_b65BUCKhvsBPUE7v74DhQFEQsNBiUCAvgB3Pz-B_sT-yAALf8hHTs4E0AJSGFQAirPBxAAGsAHsg7HvudZJDzfCpe8qfcUvEQlw7t3Lsy8wsqXPHF2RjwrDSa9JEMePpNrrzpzlC29DeO2vgYub71rM-c7FvvLPXThkb3hTKe8NXk6vg6rkTtKfkQ8V7E4vkelfTyl1Ao9dtpgO_bRKT1yKI28vz6vPRfrn7u1FQC9TFTPvRHuxLzDxFU8UZZrvIF0pr2bc9M75suLPXyWDL1uPM48ELEhPnxZpDwpzPu8e3qGPSpHtzwEJqY84R-7vQFAhLw5tO28yrScPeJAg73j17i7SUcevK5-sLhZuPY8f-7VPIDgAD3KoWo8kBzEvDzN-LzfDMg7TApivMNYsDyjB5m86tCUvWnvwjxv3Qg9R1L3vO-EyD17Rsc8LWFovU0-BzsuShq9PptyO7AeN737kYW6SxcHPf-JGz00z1s8tku7PTt8uD1YWVs8DkkdPov1gj2DK0U8kJSAu9HjHDuB9MM8-ajavAtG5T0vKrE7QLTgPKWqpDxIbk28hNOHvcZO2D16lW87-Ij4PZVvCTxzwMs7thQLPZFUgL3la4W8YnsyPRdnvL3nRgG7cvOiPaaaGT1dSJE8dImZPOhsjL01DlC8CuFMvba-SD2281w7NSllPaGBuL1qUA87ajNKu332Mj3d37U5OBR-vdwNgr3S4Da8iwLYPHRGFL2D9Dk8clP_O7-C1L06i4M6krOgvcVWkDwZU_Y7sTDEPfVF57zA9lO648UCPtmdCT2w5cW5CqNZvY5p2LvLKvC61Jw8PbPMlz2MsM64yjT6PRN7zbxZhmE4BCkHvaOK7LzdBqq4OhcQu1cbiDxqqfY6v39zvRSNOr1MWLg4M3l5vYP2Kr3DzzK5mB_uPNu4arwRHMW4RMuwPIGPJr3zGMy6fjM2vaRQlr0ug6O38UKhO3VgdD2luGw5tSuuvc1y2b2qm064Hszgu9bxTr0_5iW5NkSwPAtyoTxJIQy4NpTavTf5wj1KL1W3q8wKOsurKb0JVcK32th2PTiaJ7tLWQ64gJyQPUjArT18vuI4-lgLvfH1lT1pxvO4UkjPuz48q71PsuQ4mLyiOyLrgLtZcMA4k4PhOzQ2rz3bvto4s7bpPcJtDT0vPeM4VGqfO55Qrj0zzRE4u3OiPbOX7T2TqCc4O9qdPVlRQ71xldO4XEkBvcre0r0XIgS5dQI6PUn3Dj0C5Sg3uKwCPWKPv7wvnT24aYCsPfH0Sr1w60u1acRCOvps0zx_Tc42o-3Su6Z-Xjy_hge5w5XYvL86WDx5m224Ll0cvRNxtD3J89U3IAA4E0AJSG1QASpzEAAaYA_qAGsaLOUcGzv78sTi99Hp99Y42zn_EssAE_rj_xno0sAc8gA74PrwnAAAAAVFyyPuABF_66g7Iu9lDdS9FiffXu_sDboWKBu-xy4s89oNEzFHWgDJ57gIGMjmMTAAFCAALWYqFTs4E0AJSG9QAiqvBhAMGqAGAAAkwgAAAMEAAAxCAAAwQQAAAMIAAIRCAAAgQgAAoEAAABDCAAAowgAAuMEAAMjBAACSwgAANEIAAADBAAAEwgAACMIAACjCAACgwAAAAEEAALBBAACAQQAAAEEAALjBAACIQQAAwEAAAJDBAABAQQAAZEIAAABAAABEwgAA-EEAANbCAADIQQAA-MEAANDBAAAYQgAAUEEAANhBAAAsQgAAgMAAAKhBAADAQAAAcMEAAKDAAACmwgAAgD8AAEDAAACAQAAAUMEAAFDBAABQwQAAJMIAAKBAAACQQQAAFEIAAFjCAABMwgAAMEEAAGBBAABwQQAAwsIAAETCAAAUwgAAqEEAAADDAACgQAAAUMEAADzCAABUwgAA-EEAAAjCAAAQwgAAJEIAAEDBAADIQQAASMIAALBBAAAwQgAA4MAAACjCAAA4QgAAgEAAAKDBAADwQQAA8EEAAJJCAADQwQAA4EEAADDBAAAAAAAAgkIAAGjCAACowQAApkIAAJ7CAACQQQAANMIAACRCAAAIQgAAFMIAAEBAAAAUQgAAEEIAAMDBAAAUQgAA0EEAAFBBAADAQAAAdEIAANhBAAA0QgAAAMIAALxCAABQQgAA4EEAAKBAAACgQQAARMIAACzCAAAsQgAA2MEAAOhBAAAswgAAeMIAAEBBAAA4QgAAwMEAACjCAAAwQgAA-MEAAMjBAADAQQAAPEIAAHBBAABwQQAAFEIAAJhBAAAYwgAA6MEAABhCAAAowgAAwMAAABDBAAD4QQAAoEAAABTCAAAAQgAAkMEAAGxCAABAwgAAfEIAACxCAAAwwQAAsEEAANDBAACowQAA-MEAAIbCAAAIQgAAgsIAAJBCAAAwQQAA8MEAAJjBAABQwQAAAAAAAERCAAA8QgAAIMEAAAjCAADKQgAAcEEAAJDBAAAowgAAEEEAAARCAADQwQAA8MEAAHBCAADowQAAgEAAAJTCAADAQAAAUEIAAGBCAADSwgAABMIAAExCAAAQQQAAiEEAAJJCAAAwwQAAIEEAANjBAADgQAAA0EEAAMDBAABQwQAAaMIgADgTQAlIdVABKo8CEAAagAIAACy-AACYvQAAXD4AAOA8AAAwvQAA2D0AABw-AAC2vgAANL4AANg9AABAPAAAJL4AABw-AADYvQAAyL0AAKA8AAC6PgAA-L0AAHC9AACqPgAAfz8AAHw-AAC4vQAABD4AAIi9AABUPgAA4DwAABw-AAB0vgAAqD0AAAQ-AACOPgAAuL0AAAw-AACgPAAAZL4AAEw-AABEvgAAFL4AAKi9AABEvgAA2D0AALY-AADgPAAAqD0AAKI-AACAuwAAmL0AAES-AACgvAAAkj4AAFS-AADGPgAATD4AABC9AABwvQAAOz8AAHA9AABQvQAA4LwAAFC9AADoPQAAgLsAALi9IAA4E0AJSHxQASqPAhABGoACAAAsvgAAyD0AAAS-AAAJvwAAED0AADQ-AAC4PQAAqL0AAIC7AABQPQAANL4AABS-AADgPAAAPL4AAOg9AABwvQAAFD4AACM_AAAcvgAAqj4AAOC8AAAQvQAALD4AAHC9AACYPQAA4LwAAHC9AACIPQAA-D0AAFC9AADYPQAAoDwAAOC8AAAQvQAARD4AABC9AAAEPgAAZD4AABy-AAAQvQAAoj4AAKg9AADYPQAA4LwAAAS-AABwvQAAf78AAJg9AABQvQAAwj4AACw-AABQvQAAQDwAAGQ-AAAcPgAAMD0AABC9AACIPQAAZL4AAEA8AAAQPQAAbD4AAHQ-AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FvbxlBRbWwc","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":696,"cratio":1.83908,"dups":["17489420167328528714"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"782246057"},"13486473414036032539":{"videoId":"13486473414036032539","docid":"34-11-13-Z10306C44B489F2A8","description":"Finding a linear regression, scatter plot, and correlation coefficient on the TI-Nspire is easy with this tutorial. We’ll go through the linear regression process step-by-step starting with...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1841219/a9e2f4aa06aadbf04bf6c86feae1859a/564x318_1"},"target":"_self","position":"9","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_7WkgoMxVpU","linkTemplate":"/video/preview/13486473414036032539?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Master Linear Regression on TI NSpire CX II in less than 5 Minutes!","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_7WkgoMxVpU\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTM0ODY0NzM0MTQwMzYwMzI1MzlaFDEzNDg2NDczNDE0MDM2MDMyNTM5aq8NEgEwGAAiRRoxAAoqaGhrb3ZkenZ3ZWFqenlkYmhoVUNyZVhUR2VlWHpaYXdPdVZRYUxBLXNBEgIAEioQwg8PGg8_E54CggQkAYAEKyqLARABGniB_Qf-Df4CAPgBAAr3Bv4CDf35AQn-_wDt_QEECQAAAPT-_PwIAAAA_QL7BQEAAAD-_Qr-9P4BABoC-_UDAAAADvT4BAMAAAD4_fj8CwEBAPb8_u4BAAAABAL9BAAAAAALBAEF_P8AAPYD_-0AAAAABf0C-QAAAAAgAC2Nj9o7OBNACUhOUAIqcxAAGmATBQAfHQj86gwY-tPa1hEB_SXj6_T6AArbAOn9C_oB4t_GBgQAC90g3sIAAAAd_fML7ADlTvjO9AgYCffP1Qfk-X_0E-sfMCn9wgX_8g3kBvgkNCcAFfgCFk_jBygJGSMgAC3pu1o7OBNACUhvUAIqrwYQDBqgBgAAoMEAADBBAADwQQAAMMEAAEBBAACwwQAAQEEAAIA_AAB0wgAAOMIAADxCAAAswgAAnsIAACBBAADSQgAAjsIAAAAAAAAAwQAAgMEAALhBAAAIwgAAQEAAAIA_AADwQQAA0EEAAOBBAAAEwgAADMIAAK5CAAAwQgAAQMAAAEhCAADMwgAA4MAAAFDBAABwwQAALMIAAJxCAABQwQAAQEIAAIJCAAB0QgAA4EAAAHhCAAAQQQAA0MEAABTCAADAwAAAUEIAAMhBAAAwwQAAmEEAAEzCAABAQAAAWEIAADBBAACQwgAAgMAAAIDAAACCQgAAPEIAABjCAACAPwAAmMEAAFxCAADwwQAAyEEAAHDCAAAUwgAA-MEAAPBBAACSQgAABMIAADBCAADgQAAAusIAAMDBAABAQQAADEIAALbCAAAwwgAAoEEAAIhBAABAQQAAEMEAAMhBAABgwQAAKEIAAPBBAAAgwgAAwMEAAKBBAACAvwAAUEEAACRCAADAwgAAoEEAAHRCAACIQQAAgMAAACTCAAB4QgAAqEEAAODAAADAwAAApkIAAADAAADgQAAAwEEAAAhCAADYQQAAAMEAAIBAAAAkwgAAAEIAAIBCAABcwgAAGMIAAGDBAAAcwgAAqEEAAKDBAAC4wQAALMIAAJBCAABUQgAAwMAAANDBAABAwQAAqMEAALDBAACowQAA8MEAALjBAAAwQQAAIEEAABRCAABwQQAAKMIAAJLCAABMQgAAGMIAAMDAAABAQAAAZEIAAFBCAACAvwAALMIAAOhBAABAQQAAyMEAAAzCAABwQQAAoMIAAADCAABowgAAFMIAAKjCAADIwQAArkIAACzCAADAQQAAgEEAACjCAACYwgAAHEIAAEBAAACgwAAAHEIAAAAAAAAIwgAAWEIAAFBBAADgwAAAYMEAAIA_AACYwQAAdMIAAOZCAABAQQAA4EEAAKBBAABgwQAAgMEAAJBCAABQQQAAqMEAAKDAAAAEwgAA0EEAAIDBAAAgwQAAcMEAAHBBAACQQQAAWMIAACjCAAAwQgAAcMIAAETCIAA4E0AJSHVQASqPAhAAGoACAAC6vgAAkr4AAKC8AAAEPgAAgDsAAPg9AAC6PgAAKb8AABA9AACovQAAqr4AAJi9AACqPgAABL4AAKK-AACYPQAACT8AAOA8AACWPgAALz8AAGk_AAAEPgAA6D0AAKo-AADYvQAAZD4AANI-AADIvQAAtr4AAIi9AACGPgAA2L0AAKi9AAA0vgAAQDwAAIi9AAC4vQAAmD0AAGS-AABsvgAA6L0AABQ-AADYPQAAMD0AAP6-AAB8PgAAwj4AAPa-AADCvgAA6L0AAEC8AAAsvgAAtj4AAMg9AAAwPQAA-L0AAH8_AACSPgAAjr4AAHC9AACgvAAAUD0AAJK-AACuviAAOBNACUh8UAEqjwIQARqAAgAApr4AADw-AACgvAAAc78AALi9AAAkPgAA3j4AAHy-AADgvAAAkj4AAKA8AAAUvgAAkr4AAOA8AADIvQAAiD0AAOA8AAA7PwAAiD0AAMo-AABEPgAAtr4AABA9AABAPAAAHL4AALg9AABcvgAAFD4AAIg9AACIPQAA4DwAAEC8AAAQPQAAbL4AAJg9AAAQvQAA-D0AANK-AADIvQAA-L0AAAw-AADIPQAA6D0AAJi9AADIvQAAwj4AAH-_AACovQAABD4AAAw-AAA0PgAAqD0AAPi9AACePgAABL4AADQ-AABwvQAAmD0AAK4-AACAuwAARD4AAHy-AAAwvQAAXD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_7WkgoMxVpU","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13486473414036032539"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17164890751875029943":{"videoId":"17164890751875029943","docid":"34-8-15-Z7502E32B4953DACF","description":"Learn how to perform a linear regression analysis using the TI-Nspire. Check out Mr. Dorey's Algebra Handbook - A comprehensive guide and handbook for Algebra students. Available at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3355771/2a6a4de9e2bb5209d404cc3cb14ee871/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_BGgJAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D05XpxB67GLk","linkTemplate":"/video/preview/17164890751875029943?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear Regression with the TI-nspire","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=05XpxB67GLk\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTcxNjQ4OTA3NTE4NzUwMjk5NDNaFDE3MTY0ODkwNzUxODc1MDI5OTQzapMXEgEwGAAiRRoxAAoqaGh1anlycGNib2RweHlhZGhoVUNoLUNWdF9vMGswR2pXMk5VNjlObThBEgIAEioQwg8PGg8_E9IBggQkAYAEKyqLARABGniB_Qf-Df4CAPgBAAr3Bv4C_gj2_Qn9_gDtAvwEAAAAAO38A_oD_wAA-gr7AwIAAAAC-gr__v0BABf3-_n0AAAADvT4BAMAAAABAfn6_wEAAPz78_MBAAAAC_YBBgAAAAD8AQMG_v8AAPUHAfgBAAAA_PgG9gAAAAAgAC2Nj9o7OBNACUhOUAIqhAIQABrwAX_5KAGwC-79ADMpAOP2DgCeEM0AJ_QMANLsDP-kDwn_7AfpAAvi9AC4_PIB2_wfAODy8v9D_gP_BQD0_xPuFAAyFvYALgQ-ABLsBwASEtgBIC0u_gnY-__o2AAAD__iAE3kKf_VCBr_Afn1_-708AHtCxoG3yoJ_xndEgTOBOMA_ho3_uX43gIdKN0BHyUBBBrzCP8a6xcE0QsSAyEDGAQBzA3-PQv3_f8PCgW80_f9s-_3_g8IG_0kBuwBEwsdAjwI6fzk_AX_yNoc_duvDPwI2w0I0BsFDMj69PUBNwYFIN8PDM8BAfz58vwP0vcD7CAALedYDzs4E0AJSGFQAirPBxAAGsAHZ0a3viwSbjzwgQI9o1M8vfTIG7zrTTG8SV4nveNVVj2mv828290jPZSl8bxWKf28G2SivvgaIr2VV1i9s9-UPZXVtLzsGDK89JLavBl8UDxGaeU881kOvjhvNz12-yy7lSynPdLKmDwSQlG8R86dPdi_hjx0Iyy8xO7bvQeDJTtmFRU8mDhNvKJ8oLuqZ9w825lTPZILmb286-y75gNCPvY9T71HAQG7g0l2vZOluTvZ8I88ryITvhEUZD2y3do7MeVou4xhczzeiBO9mnecPILnObzk8iQ9D0LEump-4zpcilC8RSnhvFMT87wouu48Rfy5vTWxRT24nay8izzFO-e-QTx38SM8LqvyO9DsnzyvxF44IJKWPSZ8cbp3f2G8Vu-COmtuOzwOgvE6nPOovV4EGbzNqB67GdulPalRI70gSaQ85s0RPiP7Oz1Wd3a8zOWAvf1wq7zuBQk8OECbuyVGmj22g8-6PiaiPRpylz3gqRW8-uQOuvNc5Dg25rW8IY0vPKpHmjy8z3E87o27vXm0TD12gkc8ldw8vTzxwb1D6ea7D_CUPeAwUbzyw9I7E-OrPJ1Rjj38o3O7cM0NvvhVeT2U51Y5wUIcvCrESLt_pyS8yy-DPKlFiT0quwm7lunXvQuVRL2jNUc5xlBOPFrzo70h06w5UFXhPRLb3b0aTRG5_ZiQvd8Kl7yZQzo6Br4CPijQzLzMJkC5NODHPVG4gzxrG_M5EQEHvsN6SL1PiHW57KkwPecuMjse5g46oZ3TPVGBmL2XnVE5FMpHvZZFjL3zjw45x2PmPfHWCb4Tm1Y5J7WxPYv4E73VgEe2le3HujfpUrhnIUy63hjnvCIpE71L8om5VwfgvW8jirzc0co5kubPvXYIUrz4zQg5zSO_PUnVpj0LzNo2QOPdPLWem70Wr7i2ysOCvGnTB73gB6U4_rfSPQLzAD6l1iC6GrLAvQDVyby9oIS4O1YkPQmRiDtoeYS2ZJuKvEpQgr0yTOQ3T3kkPrxgi70Zu685hIAcvvF-wT0ZwAm5ZgrGOyH8MLwp4J44_R6rPLSkTb29P384x_aaPFyvCT5vJvi3AffcPdkAkTwgHjw5LLwmvWUdnj2Y65a4u3OiPbOX7T2TqCc4QvT_PDvLh7xmEc-4gUEOvPz5G73jJR24ZqkQPblr7jyq0qY2neUovUCk_72k23q3MhCqPRDsOD3Q3aC4cIJKPCrqtz3nCgk58nTTPF4oxbxD0wG5fy_FvOTWKT1MM4i4vkM7vSPGobzeZyU4IAA4E0AJSG1QASpzEAAaYAgEAC4XNNb75jHywuLM3eL18_cFxhj_B98AAfAA8R3e170BDwBA9kDyrQAAAAXhEwjqANhm0cINGS84B9TA_hMhf_8E-Nn-GRDK2wPO3tnlCz8eSgAIzukyLcHtMyUfEiAALdCJLTs4E0AJSG9QAiqvBhAMGqAGAABAwQAA8EEAABhCAAAAwAAAOMIAADTCAACAvwAAgL8AAJTCAADAwAAAQEAAAKjCAACMwgAATEIAABBBAADAQQAAoEEAAIDAAAAoQgAAuEEAADRCAACAQQAA0EEAAKBCAABwwQAA6MEAAJjBAAAsQgAAgkIAAKjBAAAgQgAAGEIAALbCAADAQAAAVEIAAMDBAAAgwQAAkEEAAFBBAADQQgAA6EEAANhBAACwQQAAQEEAALjBAAAAAAAAYEIAAAjCAABwQgAAMMEAABTCAABgQQAAZMIAAGBCAADQQQAAAEIAAGjCAADAQQAAQMEAADRCAAAUwgAAfMIAADBBAAAwwQAAcMEAACjCAADwQQAAbEIAAEDCAACAvwAAQMEAABDBAABAwAAA-EEAAAxCAABAwQAAaMIAAMBAAAAMQgAA8MEAAFDBAAAMQgAAUEIAABzCAACcQgAAhkIAAIZCAACQwQAAoMEAAFBCAAAMwgAA4MEAABzCAACQwgAAwkIAACjCAADIQQAAhsIAAMDBAAAsQgAADMIAAEDAAADYQQAAFEIAACBBAABYQgAA8MEAANhBAADAQQAAwEAAAKBAAACAQgAAIEEAAEDAAACoQQAAgkIAAMDBAADIwQAAQEIAAMjBAABYQgAACMIAAADBAAAcwgAA2MEAAAAAAABQwgAA0MEAABzCAAAgQQAAeMIAAADAAAAQQQAAcEEAALhBAAAEQgAAqEEAAADAAACCQgAABMIAAPBBAACAPwAAiEEAAMBBAABUQgAAqEEAAIjCAACIQQAAAMEAAPBBAADgwQAA2EEAAMDBAADAwgAABEIAACTCAAB4wgAAgMIAAKrCAAAcwgAARMIAADzCAAA4wgAAUEEAADDCAACAwgAAwEAAAKDAAACQwQAAcEIAAOjBAAB0QgAAcMEAAI7CAACowQAAgMAAACDCAABQwgAAWEIAAADBAABwQQAAQMEAAKTCAAAQwQAAQEEAAMjBAACcwgAAAMAAADBCAAC4QQAAAAAAAMBBAAAEwgAAPEIAADBBAAAAwQAAgD8AAFDCAAAgwQAAQMEgADgTQAlIdVABKo8CEAAagAIAADS-AAAkvgAAdD4AAEQ-AACovQAAQLwAAPg9AADWvgAA4LwAAMi9AADYvQAAoLwAAHQ-AACAOwAAir4AAOC8AAC-PgAAiD0AACQ-AACqPgAAfz8AAHA9AADovQAAfD4AABy-AAAsPgAAHD4AABC9AACivgAAuD0AABw-AADYvQAABL4AAIA7AACYPQAA2L0AAFC9AAAUvgAAVL4AAFy-AAC4PQAAuD0AAEw-AAAQvQAALL4AAEw-AAAUPgAAHL4AAFy-AAD4PQAAND4AAEC8AACCPgAA-L0AAFC9AACovQAATT8AAFQ-AAAUvgAAiD0AAEA8AACgvAAAJL4AAIq-IAA4E0AJSHxQASqPAhABGoACAABkvgAAiD0AAFA9AABTvwAA6D0AABQ-AABsPgAAgr4AALi9AABMPgAAcD0AAOi9AADYvQAAqL0AAOA8AADgPAAAqD0AAEc_AACYPQAArj4AADC9AAAUvgAAFD4AAHC9AACIvQAAMD0AABS-AAC4PQAABD4AAEC8AADgPAAAUD0AAIC7AAA8vgAAyD0AAOC8AACgPAAARL4AAMi9AAAMvgAADD4AADA9AABQvQAAcL0AAFS-AABMPgAAf78AAPi9AAAsPgAAVD4AAAw-AAAQvQAADL4AAII-AACIvQAAqD0AAEC8AACAOwAABD4AAEC8AAAEPgAAPL4AABA9AACYPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=05XpxB67GLk","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1440,"cheight":1080,"cratio":1.33333,"dups":["17164890751875029943"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"318191309"},"15892061194173925008":{"videoId":"15892061194173925008","docid":"34-0-0-ZCEF58BEA3B1E7AED","description":"Hi guys! This is the second tutorial of the TI-nspire. The next tutorial will be up soon! If you have any questions, feel free to email me jp.nspire.u@gmail.com. Also check out my FB page...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/214617/70b1ecb019386dfcc3a44034990e2116/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/l_oFJwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dno6mCxgKyQU","linkTemplate":"/video/preview/15892061194173925008?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TI-Nspire: Tutorial #2-Solve, Solve system of equations, Complex solve","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=no6mCxgKyQU\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTU4OTIwNjExOTQxNzM5MjUwMDhaFDE1ODkyMDYxMTk0MTczOTI1MDA4aogXEgEwGAAiRRoxAAoqaGhnZnJ4enBpZGpjbHNjYmhoVUN4aXFmRXphOENDdWhGMElUb2VPendBEgIAEioQwg8PGg8_E-sCggQkAYAEKyqLARABGniB_An1AfsFAPT5AgD6AwABDP77CPf__wDqAfj7-f4BAP8CBfn_AQAA_Qv8BQsAAAAB8_b4AP0BABb4-_n0AAAAEgAEBP0AAAAMAQEB_wEAAAH58wMD_wAABff1Af8AAAAFCgX_AAAAAAULBvwAAAAABf4KDAAAAAAgAC1gPeE7OBNACUhOUAIqhAIQABrwAUXlO_vp5eMC0S7PAM_TxgGBGu4AJQQTAPAI5wDKBPsBwRkPAQ3qFgHVC_MA3EQQ_xnV8f9TFwEA_dsQ_woHAQBWLw4ARw4SAQ73-P7w8ur-OR4j_xwYHQAN5A4B7QPe_xrt-P7pDgkAz8kABPv1BwXY4C4JJyAL_yjlGAHNBOMA_hs3_tLw9AfnHPL8BNsI_x0UCAIx8CT-6NH4_APn5QcMDvEEHAQU_REY-_8RyAj9vwnsAPbuBAInDAb_KyYa-gIBB_fP0wUE1QEe-tuuDPwC_QL_8grwEc8h9QkWLxH8EhUL-vgM7fgK0-8P7iAIASAALWjiDjs4E0AJSGFQAirPBxAAGsAHxjSzvqw5AD27Uw88pZ2PvUTkz7yFS728JcrevTItW70AMa67_yPTPcFSXTyaC5w8_Iy7vlpTD7zG6sW7iZkNPsw_X73rnZ-5cTwfvvcaZbvTbaQ8t7IkvikVwzxE0GK8cIqoPWjunToqQA-9O6wAPgKyfDwCfDy9MTWTvehxs7zrD548GEMavC-gvDwsS888d4TDPRP7Orwyb5s7YOcmPg3TDb3xHvG8-Q-OPFnPf7w2dd48rHDrvfDTgjwyBam7V3inPStGB70pIy68gPWTvPTaMT37SwE9r7AgPag3gz2fI8080ex1vfv1-byD_bK8lXvmvLHoLD10oD28DHcOvk3aFjuWYRc9RGiNOeT8iD0UwUk8V0mavAk4n7yuklm8VyenPTkJyrz1Bms7HPPVPDNX4bznLq48nIyqPCdpfryHpqw8DkkdPov1gj2DK0U8jI0PvaUeGL0F0s8864nwOzfjFD7Mf8S6ZiQMPc84w7xsuwG8y3G9vY8BtD2SXlS8zMmlPdd-lzyF_rI7tntePQfJJzzLVqw7Yyp9vKNFzL2HKka8-PzQPSVZTjqLzX0894MQPcepTjtOHXW8cM0NvvhVeT2U51Y5AsiKPTiMjb0Ux2S7mSnNPa0ImD3jQJW3R8cFvtqrL70NLjM6-ah5O46S173eo1a6uNIGPQhW1b0-uhK6GlkovdLzOL0HfnG7gKxRPYtWCb36Zva6tvCxPfbxKz1CqBw7WiiOvUd1ir2A9xi6a3ueu3SbwD04_TC5PL3yPUrIUb1XwY45zhhmvb_PXTwj7bu5p3WbPL86WL2FBUW28V7avI9_MDwRqXK5M3l5vYP2Kr3DzzK5APEIPJAjpTpuJL-6cdGEvX1pwLymClk5BiRGvcNXtb0IyF03fvnJPXNjOj3m7ak4e9FIvYJUur3PPl25SMV_vDOMi71U34c5NkSwPAtyoTxJIQy4u2Ztva7jTj2zLiO3uVhsPer-VjxrbZy3B5UdPTX4Mb17wfi3oiaqPeHfMTz8QnM4Xr5VvUSJxj0Bs4a3o4MEvZkcrbzcNCA3eNs7vGSaBL1aiJI4DTwSPf0UJz7SZyK5s7bpPcJtDT0vPeM4kETUvNNmPD28ue63VSFUvDwTKj6X3EW4GXYzPVvaX7yBQlC4ORzIuZ89171uKD-3Ljo5PRB0Ob2t7Cs3hx0BPb6lHL3p7c43Mu6sPVwmvr3sakM3QstfPWMatz1ukI44xUd6PfrNib1FlNC4ShW5u_ZwM73kYAq4rHovvVqc8Tyoo-w3IAA4E0AJSG1QASpzEAAaYPoBAGsqCK0Z9Tn17QYGBsckrdvpsTX_E7__FSAw4DQvvLPqEQBB-gvwlgAAAB_f3Ty0ADR_6-8aOxpjGr3e5DLVT-fZ58AS9krG-1YT3dDrDNkXCQC72cgOOAKzPwi0ISAALWWKDDs4E0AJSG9QAiqvBhAMGqAGAADAwQAA2EEAAKRCAABwQQAA4MEAABRCAADoQQAAQEAAAEjCAADIwQAAAMEAAITCAACewgAAXEIAAIA_AABowgAA-MEAAEjCAACQQQAAcEEAAOhBAAAwwQAAsEEAADRCAAAkQgAAQMAAAPDBAAAAQQAAhEIAAMDBAACUwgAAyEEAAMLCAAD4QQAAgEEAAFDBAABAQAAAgEAAABhCAABUQgAAgMEAAGxCAAD4wQAA0EEAALLCAAAkwgAAPEIAAADAAAAkQgAA6MEAAJrCAAAwQQAAYMEAAFBCAACoQgAAJEIAALbCAABgwQAAAMEAAFBCAACAQAAAYMIAAOBAAAAowgAAhkIAAEzCAABQQgAAiEIAALrCAAAgwgAADEIAAHDBAADwQQAAbEIAAFDBAACIQQAAZMIAAMBBAAAsQgAAYMEAAAzCAABEQgAAYEEAAKDAAABwwQAAgEEAAI5CAACgwQAAIEEAAIA_AABAwQAAqEEAABjCAAB0wgAAYEIAAFDCAADgwAAAOMIAAKDBAAAQwQAAEMIAANBBAAB8QgAAoEAAANDBAADQQQAAEMIAAOhBAABwQQAAJEIAANBBAAAoQgAAFMIAAAhCAAAsQgAAAMEAAKBBAAC4wQAAgEAAALDBAAAoQgAAQMEAAJhBAABgwgAAJMIAAMhBAADgwQAA6MEAANDBAAAQwgAAPMIAAFBBAABAwQAAwMAAANDBAABAQgAAmEEAAIJCAACYQQAALMIAAFBCAACwQQAAQMAAAEBAAABcQgAAQMAAAJ7CAACgwAAAEMEAAIhCAAAMwgAAsEEAAFDBAACIwgAAgMAAADjCAAAcwgAAsMEAAILCAACYQQAAwEEAAHBCAABUwgAAoEEAAFjCAAAQwgAA4MEAANhBAAAEQgAAAEEAACDCAACEQgAA4MEAAGTCAACQwQAAMMEAAIDBAACKwgAAGEIAAHhCAAAEwgAAKMIAADTCAAC4wQAAiEEAACBBAADGwgAAyMEAAJZCAAAAQgAAEEEAADhCAADIwQAAEEEAAGBBAADAQQAAJMIAABDBAACgwQAAQMEgADgTQAlIdVABKo8CEAAagAIAAPi9AAD4PQAARD4AAKC8AACIPQAAHD4AAIA7AAARvwAA4LwAAEw-AADgPAAAHL4AAKg9AACIvQAAgr4AAAS-AACGPgAAUD0AADQ-AADSPgAAfz8AAOA8AADIvQAAFD4AAES-AADgvAAAFD4AAOC8AACIvQAAPD4AAJg9AABAvAAAgDsAAKg9AACYPQAAyD0AADA9AACgPAAARL4AAJ6-AAAEvgAAqD0AAAQ-AADgPAAANL4AAPg9AAAkPgAAuD0AALi9AADoPQAALD4AAFC9AAC6PgAAjj4AAJ6-AACIvQAAGz8AABQ-AAAUvgAAJL4AAHS-AACgPAAAiD0AAKA8IAA4E0AJSHxQASqPAhABGoACAAAsvgAAmD0AAKY-AAA9vwAAfD4AACw-AABkPgAAuL0AAEC8AACOPgAAgDsAAKA8AACYPQAARL4AAHQ-AADgvAAAoDwAAGk_AAAQvQAArj4AAFy-AABcvgAAgDsAAKg9AACAOwAADL4AAKA8AAAwPQAAQLwAAIA7AAC4vQAAyD0AAIg9AADYvQAAXD4AAIA7AAAQPQAAiD0AAIa-AACgvAAABL4AAOC8AACgvAAAmL0AAKC8AADYvQAAf78AADA9AABwPQAAUL0AAKg9AACgvAAARD4AAOC8AADIvQAAED0AAJg9AAC4vQAADD4AAFA9AAAsPgAAgDsAABA9AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=no6mCxgKyQU","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["15892061194173925008"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1822476797"},"12930207362759369961":{"videoId":"12930207362759369961","docid":"34-0-9-Z573E1A415FD5802B","description":"Hi! This video or tutorial will talk about the basic fundamental actions on the TI-nspire! I'll be uploading more videos in the future! Subscribe!!! Feel free to email me and ask questions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1839893/370595bb3d61f3fe28bcc824579382f3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ir634gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0brxTzEi0cU","linkTemplate":"/video/preview/12930207362759369961?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TI-Nspire: Tutorial #1-Fundamentals","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0brxTzEi0cU\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTI5MzAyMDczNjI3NTkzNjk5NjFaFDEyOTMwMjA3MzYyNzU5MzY5OTYxapMXEgEwGAAiRRoxAAoqaGhnZnJ4enBpZGpjbHNjYmhoVUN4aXFmRXphOENDdWhGMElUb2VPendBEgIAEioQwg8PGg8_E8gBggQkAYAEKyqLARABGniB9Aj7B_0DAPj8-gYBBf0BBAAAAvj__gDuCfEABAAAAAkLB_UAAQAA_Rj8BQMAAAD-BQYH_v4BABEHAQz2AAAADvT5AwMAAAADAAQD_gEAAP_t9fYB_wAABgAIAAAAAAD5_QoFAQAAAAYMBvwAAAAACewJBgABAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAUb0TPz38-UB1h8RAMvZ5QKBGu4AOgAG_-Dg6gHjDQYBuOwLAADTAwDLB-b_1zIyABnU4P9MEBIABu4N_w8Y-QA2PCQBOv8TARUKDwDh-OT_FREy_xr3EADz7RIAD__iAC7mA_7aAQD81tsDAvPgBwHK8yYFJyAL_yjlGAHT7NQA6wQY_8__4__wEOf3IeL-BRYlBf0c9yUD4d7g_hXs9goYzAEDHRAC-u0h7fgRyAj9uCHw-vDsEgMW9e_4KyYa-g0nC_Pm5_4CxfsOAtuuDPz49Pn9AxX3Es8h9QkWLxH87xcK_wQi9v71zvb_5kkY9yAALWjiDjs4E0AJSGFQAirPBxAAGsAHLiCkviK42zxn81A5opjcvSGDSzt9kMi7_-scvnSPVr2FdnO8pg7yPZX0MLxkyWe6HcnFvmYIkbx9pY09QdXoPYSVFL0bNt-7up4IvtZg0DrJhCk8F34AvupgOD35rrc88Ib0Paez0zx3mxy9qcHUPeqoNDztSqa8Y-eCveB5Urv8RVo99bEMvRq_cLyQKFk85PuNPWfc77zjXeQ67DRSPtm7-bu-f5g75gSvu9yHFz2MndU88Q97vb4aGz102Le64pIDPoejkDw4D0w8gPWTvPTaMT37SwE9f-7VPIDgAD3KoWo8jAUvvcs2S71wuuG6DvUavM0Iaj1r-bu7qMghvgJ8HD3o6W08u0sdPbhtBD0TccQ8JuYUvRFjI72mCVu832zTPUD7kTwjLKo7TIYovR6fdb3uQN08b8qmvFlirzxirKU8ajA9Pg3iIz2Zmim79_BbvRq6vry3kgI964nwOzfjFD7Mf8S6F_NzPckPi70v0CS8swkgvi-FDD1DS4W7ZJXSPa0LCT1GXWs8phKWu9HmODygn9I7zvIGvZA4ir2cy0O83Ua-PSYnybxYebw7qDIxPf93xDzuRMW7nvFYvZ9Vpj3oIpG7A70mPTS_9byUULg7mSnNPa0ImD3jQJW3mKLcvXknurwb7_G6-ah5O46S173eo1a6uNIGPQhW1b0-uhK6efSFvZ-wBL2BAWc7mqdEPZwYUr0-_hi7NODHPVG4gzxrG_M5nGOavfX1XL1u4Sk6a3ueu3SbwD04_TC5jzfZPZ1pbbrhBgm5v6sPve0GuLs-ito5NrgjPUvUIb1i5FK4ufSUvJDBijycodQ5M3l5vYP2Kr3DzzK5yuYiureU7rmjs1Y6GqGUvXdMXTypiq04DInFPP36nL2Swz25P_qbPdVBnjxb9ZG4YABhvJSllr0iMk25ysuVvdlwwr2l5UY5oEPqPD44xDyP9H-5Ue6YvQU3bT1q9k043RWgPdnAJ70N0H85c9ozPVRGDb3iqcG39jPLPejKlry8bgU4u_drvf3lmT2BRjG5o4MEvZkcrbzcNCA3-BUQPFHj1LxfXqo4GkF5Pcpv8T3OGLe4s7bpPcJtDT0vPeM4rzoVPPl_ejxyRjw4VSFUvDwTKj6X3EW41fK5PIp9Pb34qAM4cKc-vCfTbb10QV-4OOeWvEbAN71q4gO4xM6UPELeXL2HuDQ2Mu6sPVwmvr3sakM3QstfPWMatz1ukI44XcEWPaLA8bxtI7q4UtufuzT_Xr1QZNY3Mw5_vWntrrrTPJ83IAA4E0AJSG1QASpzEAAaYCQBAE0fQLvo3AAPBMbr-qvfDtwt7xL_EMX_9yAaCgoDoqntLgBA6y_hmAAAAA0c6CvRABh_5-0WKflhMtm3Bf-6YCvt7r0Z0z2_r0gP8N3Y__HzIAAFurogDtWwTUEmPCAALazuDjs4E0AJSG9QAiqvBhAMGqAGAACAwQAAiEEAAAxCAACQQQAATMIAAHBBAAAEQgAAAEEAAILCAAAswgAAAMEAAJTCAAC8wgAAOEIAAFBBAABcwgAAGMIAAIrCAABQQQAAcEEAAPBBAADowQAAuEEAAIBCAACQQQAAqMEAALDBAADgwAAAhkIAAGDBAAA0wgAA-EEAAMbCAAAgQQAAAEEAAGDBAAAwwQAAgD8AADRCAAB4QgAAAAAAABhCAAAAwgAA0EEAAHzCAACIwQAAFEIAAKDAAAD4QQAAiMEAAJjCAACQQQAAJMIAABRCAAAsQgAANEIAAITCAACQQQAAyMEAAKBBAADQQQAARMIAAFBBAAAQwgAAMEIAAGzCAAD4QQAAjEIAAJDCAADYwQAAXEIAAIDBAAAMQgAAZEIAAHBBAACYQQAAhsIAAGBBAAAUQgAAUMEAACDCAAA0QgAA8EEAAJjBAACAPwAAwEEAAJ5CAACAwQAAiEEAABBBAACgwQAA6EEAACzCAABowgAAaEIAADjCAAAwQQAA8MEAAJDBAAC4wQAA-MEAAPhBAABwQgAAyEEAABDBAACgQQAADMIAAChCAAAgwQAABEIAACRCAAA4QgAAUMEAANBBAAAAQgAAwEAAAOBBAABAwAAAIEEAAFDBAAAYQgAAQMEAALhBAAB4wgAAwMEAAIBBAACAPwAA-MEAAMjBAADgwQAATMIAAIC_AABgwQAAUMEAAHDBAACcQgAA8EEAAMhBAAAAQAAATMIAAMBBAABQQQAAgMEAANBBAABgQgAAiEEAAIDCAABgwQAAoMAAAGRCAACQwQAAMEEAAABBAACWwgAAIMEAANjBAAAswgAAXMIAAJLCAACIQQAAEEIAAHRCAAAgwgAAcEEAAIbCAAAAwgAAYMEAAOBBAAAAQAAAAAAAAAzCAACOQgAAEMIAAKDBAABAwQAABMIAAOBAAAB8wgAAYEIAABBCAAA8wgAAdMIAADDCAAC4wQAAHEIAANjBAADIwgAA0MEAAJ5CAABcQgAAEMEAAMBBAAAUwgAAAEEAAPhBAADYQQAAJMIAAADBAACAwAAAQMEgADgTQAlIdVABKo8CEAAagAIAANi9AABQvQAAgj4AAAQ-AACIvQAABD4AAEQ-AADevgAAuL0AAIg9AACoPQAAHL4AAMg9AABQvQAAJL4AAOi9AABUPgAAMD0AAIY-AACaPgAAfz8AAMg9AAD4vQAAPD4AABC9AABwvQAADD4AAJi9AACavgAAZD4AAKg9AABAPAAAEL0AALg9AAAUPgAAgLsAAIA7AACGvgAAgr4AAFC9AABcvgAA6L0AAKI-AAAQvQAAoLwAABC9AACgPAAAUD0AAJK-AACgvAAAqD0AAMg9AABEPgAAuD0AAPi9AACYvQAAHT8AAKg9AACgPAAAED0AAGQ-AADYPQAAQDwAAOi9IAA4E0AJSHxQASqPAhABGoACAABUvgAA-D0AAEA8AAAJvwAADD4AAI4-AABUPgAAQDwAANi9AABUPgAAEL0AANi9AABMPgAABL4AAKg9AAAwvQAA6D0AAF8_AACAuwAAqj4AAJi9AACovQAAVD4AAIi9AAAQPQAAPL4AACw-AAD4PQAAHD4AADC9AAAwPQAAQDwAABS-AADIvQAALD4AAEy-AADYPQAA2D0AAGy-AACgPAAADD4AABS-AAC4PQAAQLwAABC9AADIPQAAf78AAJi9AABwvQAAyj4AAHw-AACAuwAAmL0AAFA9AAB8PgAA4DwAAIA7AAAsPgAAcD0AAMg9AABMPgAA6D0AAOg9AAA8viAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0brxTzEi0cU","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["12930207362759369961"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1123151478"},"1904129208479033423":{"videoId":"1904129208479033423","docid":"34-3-17-Z9D2E9061668D1CC9","description":"Investigating a somewhat complicated recursive relationship on the TI-Nspire. I used both spreadsheets and the sequence graphing mode.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/468995/2f774cd6583cc741b0729dc6debae3dd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TOLUFwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1DvpA0vxcVQ","linkTemplate":"/video/preview/1904129208479033423?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Recursive Sequence TI-Nspire","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1DvpA0vxcVQ\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFQoTMTkwNDEyOTIwODQ3OTAzMzQyM1oTMTkwNDEyOTIwODQ3OTAzMzQyM2qTFxIBMBgAIkUaMQAKKmhoc3ljcXhuZHh0ZXNlbWJoaFVDdHNwUjZjVDRXc2xSYlAycXAwZmVsdxICABIqEMIPDxoPPxOZA4IEJAGABCsqiwEQARp4gf7_-P_7BgD3CP0E-QT_Afz3_Qb6_v0A9QX2_fYC_wD4AAX6BwAAAPUNAQkCAAAAAP8SBv3-AAAMAP0D-wAAAA70-QMCAAAACvv4Af8BAAD_BPz_A_8AABAF9_0AAAAA9A8LBv4AAAD9DAD6AAAAAP_wBgEAAAAAIAAt2W3kOzgTQAlITlACKoQCEAAa8AFb_ir-27n0ANkE9wDV__UBgQot_xQK_QCgAOAA6ebYAcj3FwAcD93_vivs_7UIAf_z9u3-Fdsa__3N_wDXBAkBGTQMACSyHwAT_wkAuvT__wIkLv7nNuD_3hkXAObw1_8IAg7-8BEc_-7j-QAO9vkB1-AvCSjsAAHg6usBD-8G-0ItDP_0DPH-8yjN_O7oAwkRAQP7OQb9__jiFwvC7-UK79n8_uADE_4fSQQAu9L3_fLcAvrw7BIDPuL8_1gw-wQV-eD9AqkF9___F_rrEPcGQgwV_QQ0A_nYA-ED9d4PEg73_PU2_O310urxBsoE__4gAC1QIw07OBNACUhhUAIqzwcQABrAB8Y0s76sOQA9u1MPPCNeqLy0rLu8pB6_u-8tdjwZR4s95upHvNqQHz6mBTM7562ZOpxNl77qPVy5ZI8WvGbRtT0Y1NK8gP83vWLKxr1awF88A-cxvEW89b1n6MQ8rLgnvCs_Xz1-X3G7n80qvB0A8T311RW9-Z4xvQ_xL77EOvo6x1zjPO-yujwA1Qm9GnuAPCcdWz0giOI75xURPHglOT6iEQk8dnIAvFhuzjx_Gxw72NVkPHq2qL2u4sO7KYvrO9FXkD29IH28BQSpvHgANb1Xp_M6xYLvu_M82D2AH4899g1MPFLbIbz9qre8JFKqu1N1773AwrM9XwHiuVR8Mr3QQ-08woyEPMk-qL0eNDs9YzjovGlIBr3FsnS7IrGTvDmusD1M_1K9_syFPE8U8jzELbg7XZqqOymY8T2N-wU9ciJRuxKrdT0QAWw9a4QzuaqqIzwN34I857ikPAm70Tscts0973pEvFOjkT3xewA9Ei6JPLJgh72R0pw9-U4KO9thfT1_1kE93ri5O9Rtv7zEB_a8634hvNh3Kr0czTG-1zSMunxH7T0gNw09U10fu_YFqT3BvNG8b3zxu0uR_L2Ky7E9fO2UOcM-mz0TjzW9JSQSPF3alT1DHaY9HfovOqFxF724j4y9gpscu60o7zvpYQi-lqSduT9BnDtXJBa-IpoKuk29zr2s4Fy9VWVxuYeAbT2RlJm8PNYZOuPFAj7ZnQk9sOXFueIAP73J3Yy8w6nmOo6rdj2VjFI9EUWjuDSXtT26qdy85lh4uM4YZr2_z108I-27uVdZITt2f4a9Myjgtz8_BLxxKBG8qgoyujoiD75ZUeK7xuesuB5QBj5g-y49Vvd9OS666TvMeWs9HLxNOcwgw73UDQS-CFOFOZI-rTxxG828sb9mOK8roT2lwrO9k9MXObidTL1O0TG9wNQSOVSWV7xsCgQ-MF29uO8mbr1TARy7_1pluJyboD1nvMg87oL7OCr0Kz3ynXM7LV3ut5NV8T36WGY9JeiUOP8iGL6pPmY9mx4BuWCbBbyMRE29dp0vOFjZCD3cGDa9eahiOcf2mjxcrwk-byb4t9L75j2fM249g_QTOfzwPb3y5CQ9KafLuENrqjzpYQg-TCsQOP_OtjyvCP68QjqRuKaX2L36wEQ8cytkuH0M8TwRc4S9Tb6VN30DEz0YR5C9f7cJNt7oXj145YS9QVK0uKO5tD3IfYs9gPGDOMGAjz2j-rg9p22IuOdkczyoqtA9Ejhht-If1r2crLw9tLHntCAAOBNACUhtUAEqcxAAGmA1FQAbHSTt7xk0DeIk5gGeA_mlNMMp_xDD_14CJhb_EOCxE-8AEd4Q9ZoAAADtCuE32gDqf7yZMCUlbQzG8isFy1Xa6fu1ChsmvNw-3wjBQBzg9QgAxtWxHA3b-RQzGQkgAC1yjBM7OBNACUhvUAIqrwYQDBqgBgAASMIAADDBAABAwAAAYMEAAODBAACQQQAAEEIAAEDAAACgwQAAQMIAAAxCAACYwgAAtsIAAExCAABAQAAAKMIAAFDBAAAwwgAAgEAAADxCAACoQQAAIEEAAIA_AAB0QgAAgL8AALDBAACAQAAAwMAAAJBCAADwwQAAQMAAAKhBAADUwgAAQMAAAARCAADgQQAA6MEAALhBAACoQQAAqkIAAIBBAACMQgAAUMEAANhBAABgwgAASMIAADBCAACAwAAAGEIAAIBAAADQwQAAoEAAAFjCAAAsQgAAQEIAAAxCAACOwgAAAEAAALBBAAAAwAAAIEIAAJjBAAAoQgAAuMEAAABCAACmwgAAEEIAAIBAAACgwQAAmMEAAKhBAAAMwgAAuMEAAChCAACAvwAAMEIAAJzCAAAAAAAAYMEAALDBAABkwgAA-EEAAChCAAC4wQAAWEIAAABCAAC2QgAAwMAAAHBBAACgQQAAgMAAAABCAABIwgAAIEEAANBCAABswgAAgEEAAPDBAABAQQAAiMEAAADBAACgQAAAhEIAAGxCAABwQQAALEIAAPDBAAAAQgAAYEEAAChCAACgQQAAwEEAAHBBAADgQQAAmEEAAPBBAABgwQAAoEEAANBBAACwwQAAgEEAACzCAAA0QgAAwMIAAIA_AADAQQAAmMEAAOjBAAAwwQAAyMEAADDCAAB0wgAA4MAAAJBBAAAcwgAAeEIAADxCAABEQgAAwEAAANDBAABIQgAANMIAAHDBAAAAQAAA0EEAAERCAABowgAAqEEAAMDAAABoQgAALMIAAAAAAAAAAAAAxMIAALhBAACYwgAAgMEAAITCAACUwgAAEEIAAOBBAABMQgAAAAAAAAAAAABkwgAAoEAAAKBBAAC4QQAAgL8AAIBBAAAQQQAAokIAADDCAAA4wgAAYMEAAEDBAADgQQAAOMIAAJZCAAAgQQAAEEEAAEDAAAAEwgAAqMEAAChCAACwwQAA2MIAAKDBAACgQgAAAEEAAIBAAAAIQgAA0MEAAPBBAABAQgAAOMIAALDBAADoQQAAQMAAAIDAIAA4E0AJSHVQASqPAhAAGoACAABQvQAALD4AAHQ-AAAUPgAANL4AAJY-AAAQPQAAwr4AAEC8AADgPAAAgLsAAJ6-AAAsPgAAqL0AACS-AACgvAAAXD4AAKA8AADOPgAAkj4AAH8_AAD4vQAAuL0AAKY-AABMvgAA4LwAAIC7AAAcPgAAML0AAJo-AADoPQAAjr4AAFA9AAAwPQAAuD0AAAQ-AACYvQAAVL4AAI6-AABEvgAAEL0AAOC8AABkPgAA4LwAAHC9AABMPgAA6D0AACS-AACOvgAAgDsAAPg9AABAvAAAij4AAOi9AABMvgAA4DwAABc_AACaPgAAmL0AAIC7AACovQAAqD0AAEC8AAAMviAAOBNACUh8UAEqjwIQARqAAgAAfL4AAFA9AACYPQAAF78AAMo-AACCPgAAkj4AAFS-AACIvQAARD4AAFC9AACgPAAAEL0AAHC9AABQvQAAoDwAAPg9AABbPwAARL4AAKY-AAAUvgAALL4AAEQ-AABAvAAAoLwAAOi9AAAQPQAAqD0AAHw-AAAwPQAA-D0AAJg9AACSvgAAQLwAAOg9AABAPAAAiD0AAKC8AAA0vgAARL4AAJI-AAAwPQAAyD0AANi9AABkvgAAPD4AAH-_AACYvQAA-D0AAII-AAAMPgAA6D0AAFA9AAAUPgAAUD0AAFA9AACAuwAAQDwAABC9AACYPQAAgLsAAOi9AAC4PQAAmL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=1DvpA0vxcVQ","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1904129208479033423"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3834828877"},"3092177676718744828":{"videoId":"3092177676718744828","docid":"34-2-16-Z9AA27D7B16882D25","description":"This is the tutorial video on Residual Plots. Feel free to ask questions at jp.nspire.u@gmail.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/405071/736a3f2701349c8543ec08bcd765b868/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RrHbUgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlHHmrSotr4U","linkTemplate":"/video/preview/3092177676718744828?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TI-Nspire: Tutorial #10 - Residual Plots","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lHHmrSotr4U\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFQoTMzA5MjE3NzY3NjcxODc0NDgyOFoTMzA5MjE3NzY3NjcxODc0NDgyOGqIFxIBMBgAIkUaMQAKKmhoZ2ZyeHpwaWRqY2xzY2JoaFVDeGlxZkV6YThDQ3VoRjBJVG9lT3p3QRICABIqEMIPDxoPPxOAAYIEJAGABCsqiwEQARp4gf72BP8AAAD79AgA-gX-AgsA7wH2__8A5ALw9wP8AgD7APf__AAAAPQOAQoCAAAA9QAI9gL_AAARBwEM9QAAAA_z-AQDAAAAAAIB_P4BAAD99gH59gIAAQ3-_QEAAAAA_AMBEAAAAAAQDgoCAQAAAPz4BvYAAAAAIAAtHrbSOzgTQAlITlACKoQCEAAa8AFEFEf69-z3Ap5C6v_P08YBgRruADIH6wDQ-uYB2PHsAbsEBQD5AgkAxRTP_tcyMgAL6Pv-ZQzlAP_8FQD_EvoAMSAeATsfBgEmDg0A8BPk_jEGOP4ZDgUBANoJABDx2f9B5_z-7hQsAbi58QIAzAQB69QhAzUXCAEd9_oCtu3q_eAFLv3y5-v98BDn9wze-wIAQA8EHPclAwPn7gQY4f_-KAHhBRj57fsEBQr44Nb5_rgh8Pr_9hsEJAbsAScVJgL4BhEB6ecODN70DPDwxe3-CfL7__sD6PvgGvkSBz_-9AYCAPsEIvb-As0EDOESFvogAC1o4g47OBNACUhhUAIqzwcQABrAB9Xrjr5LbCg9XQEAPWZOB77-Kp-7gvilvBrAC76b58i8-V8YvTOpQT7ZxDA6WLOpPJmAp75l-9A8n_oRPcu4rj1hIem8cElpPCPXHb49UvM84BcSPRUcTr6sTcg8NZcfO0wZCD6mjO48M65RuzusAD4Csnw8Anw8vStNCr5r_-45ZRkiPYuqOjx9MB89dNkgPEKguT3bfRi9uAT9OxwLej5zXJe8hMxfvDJP-Lywdm-8uZWUPKYQg70fACc9Mxv_vAPBwj03Sii8wviruyIE_7wdfzg9hfSMOxS9gj0hUbI9696vPLevqDxGnRS9eQiAu2VcjL0tA3M8rO7HvKjIIb4CfBw96OltPLSjwjwagII9M7SLPLfCar13IlK9xSj-vAO6yjxUYFe9GXdePKFZA72kRFy8NKSnO6cqiD2_wpe72-Z8PMCT9j3_6pE9GJvvu8OJnr27f6y8pC3TPPmo2rwLRuU9LyqxO5IdwLz3mKO8FelZPCJ4kr3_I1M926p_vMv19j0anJK8POMxvKtgDz1AYsW84vA4PGMqfbyjRcy9hypGvN1Gvj0mJ8m8WHm8O8HuCj0e3II8oBptO3DNDb74VXk9lOdWObqYUD0fG1e9YmqmPF3alT1DHaY9HfovOhRLgLyDaO29UuVruq0o7zvpYQi-lqSducVlBj36DAi-VSEDuiM3jr3oiHe9JtVUubqenT3Te9M7eTWKOj1Izz31Bkk9Lb-hupxjmr319Vy9buEpOthDAD2GQMk9ZR81uco0-j0Te828WYZhODqQtbwFKs67-uVjNxjt8TxvAKy8St0JumpXh70bV-28fBwguEdUuL1de3W9jlFRurhD4DuKjDO8TSQ8uRW1arwSiSK9ARbduNYjqLwHsG29Q2ycuevagz2Vk7U8CaV9OG4wOb010vK9-74DuKJpAbwipBO9Ca1iuYkl5Txd_2k9WxCVN6uzmrxN-0E8WKtDt6w5kD2EZay82KwQOQD_ND0IIpu9-SNyt_SAoz1u2Ua8MaRROK0z_r3gNg49mDqTuDwYDL0JGjO8PSgzOP0mnry8HDu9YsQ6Ocf2mjxcrwk-byb4t6TCmD23P907gQP_OFWEXTuTyQk9ITItOFUhVLw8Eyo-l9xFuPGw2jwu0Mk8Zqk5uKqex716nY69kk3VN4a9Gj1Qpha9dapat1qv5zn8za-9GIkotzLurD1cJr697GpDN3lc1Dye6zs9TpSbOC0U3zxnfF-8x7ffuAdOrLyuJhO8O8JoN6GdWL307lk9U99YOCAAOBNACUhtUAEqcxAAGmAA_gBsJBuy8_QRDAfh4_jY4fjQDeJS_0XS__MIFDEVBajJDA0ANP0x2ZYAAAAgKdon9wAQf7vhFfEEbT-x1yAH81QP4Oe0Gghk8NpJ5_akzw33PQsA-MHHEETDzB8S_A0gAC0AGBI7OBNACUhvUAIqrwYQDBqgBgAABMIAAAxCAABQQgAAAEAAAFTCAABUQgAAIEIAAADBAACowgAAeMIAANDBAAA0wgAAqsIAAOhBAABQQQAAisIAADDBAACGwgAAyEEAAJhBAABoQgAA8MEAAFBBAACCQgAAcEEAAIA_AADIwQAAqEEAACRCAACAwQAAeMIAALhBAACkwgAAMEIAAMDAAADgwAAAAMEAAADAAAAoQgAAEEIAAEDBAACGQgAA0MEAAOBBAADGwgAAoMAAAFhCAABAwAAAHEIAAIC_AACAwgAAgEAAABzCAABkQgAADEIAAEBBAABwwgAAIMEAAKjBAAAgQQAAEEEAADDCAAAAQQAAksIAAEBCAAC6wgAAEEIAAEBCAABMwgAANMIAABhCAACgwAAAkEEAAJBCAAAAQgAAcEEAAGTCAADQQQAASEIAAKBBAABwwQAANEIAAADAAACgQAAAoEAAALBBAAC8QgAAgD8AAIBAAACgQAAAgL8AACBCAAAcwgAAmMIAACxCAACowgAAkEEAAAAAAAAAQQAAgL8AAOjBAABAwAAALEIAAGDBAADIwQAAAMAAAJDBAAAsQgAA8EEAADxCAABUQgAAcEIAAEDAAAAYQgAAwEEAAIjBAAAMQgAAUMEAAKhBAAAIwgAAPEIAAIC_AABAQQAAlMIAAETCAAD4QQAAAMAAADTCAADQwQAASMIAACDCAADwwQAA6MEAAODAAABAwQAAVEIAAFBBAACIQgAAoEEAACzCAABoQgAA4EAAABDBAACQQQAAIEIAAKBAAACWwgAAcMEAAGDBAACYQgAAyMEAANhBAAAgQQAAoMIAAODAAABQwgAANMIAAILCAABkwgAACEIAADRCAABcQgAAFMIAAOBAAAA4wgAAUMIAAIDAAAAwQgAAIEEAAODAAAC4wQAAhEIAANDBAABkwgAAUMEAAKjBAAD4wQAAYMIAAPBBAABIQgAAiMEAAODAAABcwgAAgMEAAADAAAAcwgAApsIAACzCAABwQgAAMEEAAKBAAAAkQgAAJMIAAEBAAADgQQAAsEEAANDBAACwQQAAKMIAAODAIAA4E0AJSHVQASqPAhAAGoACAAB8vgAA6D0AAJ4-AADIPQAAgLsAACQ-AAC-PgAA0r4AAIg9AACgPAAAQLwAAIC7AADIPQAAyL0AADC9AABwvQAAij4AAIg9AABAPAAA4j4AAH8_AAAEPgAAwr4AADw-AAD4vQAAHL4AAMg9AAAkvgAAor4AAKo-AACgPAAAyL0AAEC8AADgvAAAoLwAABA9AACYPQAABL4AADy-AABAPAAAHL4AAMg9AACePgAAND4AAFA9AAC4PQAAiL0AAKA8AAC4vQAAmD0AAIg9AACOPgAAhj4AAMg9AAB8vgAA4LwAACU_AACgPAAAiD0AAJg9AACIvQAA6D0AAIg9AACAuyAAOBNACUh8UAEqjwIQARqAAgAAwr4AADw-AADYPQAAIb8AAFQ-AADoPQAAFD4AABy-AABAvAAAyD0AADy-AABQvQAAgLsAALi9AAC4PQAAgLsAAKg9AABdPwAAuD0AAK4-AACAOwAANL4AAJg9AAAwvQAA4LwAAOA8AABAvAAAgDsAAHA9AAA0PgAA4LwAAMg9AADgvAAAyL0AABQ-AABQvQAAcD0AANi9AAA0vgAAcL0AAIg9AACgvAAADD4AADA9AAAwvQAAqD0AAH-_AAA0vgAA4LwAAGQ-AACiPgAAUL0AADC9AADYPQAALD4AADA9AADgPAAAuL0AAEA8AAAUPgAAXD4AAFC9AAAQPQAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=lHHmrSotr4U","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["3092177676718744828"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2485241661"},"11350566212558110653":{"videoId":"11350566212558110653","docid":"34-9-3-ZC5AAF69E3B6C14A5","description":"Takes you through the table of values on the Ti-nspire and its many functions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/224362/39d4f30e0e9880036da2b34b992e8f82/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4JPatgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZczXRMrnljU","linkTemplate":"/video/preview/11350566212558110653?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to view and utilize a table of values on the Ti-nspire","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZczXRMrnljU\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTEzNTA1NjYyMTI1NTgxMTA2NTNaFDExMzUwNTY2MjEyNTU4MTEwNjUzatYQEgEwGAAiRRoxAAoqaGhxd3VhYmN0d2pqa3ZoY2hoVUNCTTZzNnJyTE5jYmh0czZTbmhlT0FBEgIAEioQwg8PGg8_E58BggQkAYAEKyqLARABGniB9_78AP4DAPYBAfn7AQABDP77CPf__wDx-_MD-QH_APcI_AEAAAAA8RX-_wQAAAD4BgsP__8AAB4KAP7zAAAAEfUDBwIAAAAB_fwHCv8BAfT99gP2AgAAA_QF9_8AAAD-DQUJAQAAAAUH_v4AAAAACe8C_gABAAAgAC0AU9s7OBNACUhOUAIqhAIQABrwAVv-Kv7S0OUBxP4PANcwvgGBCi3_JODsALf76ADSBt4B4AjyAAsE-QDMSf8BmC0iARfy4_4u6AQAFNUGAOAN9wAKJSABOucVACkbHf_l2QT_AzsaAfwnBwHK8_sBEPDZ_w3z7_3Z9SQAvtUUAR_nGAPbCvgELfz2_-rh9QH3CfP99ywQ_gD0GAPzKM380uoBCAIP_PpTLRQC7vYBA-oI-AUpAeEFDvMJCCAzAQPK5BIEFtLT-gvlFvMh9eIFIBIBDdgf9ffntBAE5fUz7vTh9QAA6AX6G0bpDtsO_QEB7gUH8gUT-QYV8-wS7A4K7uYE9iAALVAjDTs4E0AJSGFQAirPBxAAGsAHHw-9vqJhMb1qeQ-9CgfMvVcPFLw0hQ69ak1zvakIwTy2cgW9_g3aPV8tUjyc9OO8HcnFvmYIkbx9pY09A2D8PXIIK70neR-9DjEOvk0GkTxH6EK89aFrvoTTBz10NcO7sRngPYyRWzwwwWO7O6wAPgKyfDwCfDy9Axa6vWaNVTxjMgs98Mk7O6rQZb3SI3w85pTgPebct7y20J88dOs1PnAcQryxVPI85gSvu9yHFz2MndU86vYovd9a3LzT4628rdwrPsmgRL2LqAm7eAA1vVen8zrFgu-7PeQ5O9yvLL063xU8gYmJPYQSQbyVrFS82dYqvEQHcjshcOq6OUK2vaRmlD1PsL88ZjBmPQvKmT3zgZO8t8JqvXciUr3FKP68vj8UvWD9ZL2Pqbs8QcJmPPB0wjyLdaI7HTB5PZP2yz1QwLg73ZDLPd6waD1G45o8HoKyOghiDz1Ojzc8KAWCvMXeoD2mP-C8VXCTPfWq47vn0_Q7eb4QvU0xxz1_pXO8GQIAPqDFkjzeHC68Pc3NO_g7j72omDk8zvIGvZA4ir2cy0O8S3hCPSDmNzzfWOk79xuzO8xunLxmcTW8a7fdvUrPFD2NWzM7NSllPaGBuL1qUA87zxmsvFupoT0sVXW7s_4iPHN1Ub1XB4C8ZIfCvHhExbz7NR88KcSrOyfrob1sBno7Z9TcvUpGqTzitNi6h4BtPZGUmbw81hk6CVAjPlfYgj1DzOO5RUMLPfzJs7yHs3C7FOppvJSVUD38QXK70UjKPQvqgLyO7eC42xVZu5V-wryTG9O3X_I6PVgBHj2O-ie5PxmjvLL2V71D9Qu4iQ-3vbdCuL0xQro4uFb7PNlxy7rLzwy64WsfPL4n4DyFwCG6BiRGvcNXtb0IyF03VYQ7vVStBT1IFpy4YlXSuzR2E70Ukh-4TLwIvbpQkbkyGUG5xaflPEEKIz2OhUC5ke8SvkQDhz2emS44q8wKOsurKb0JVcK33fNXPcdXUT0Heh83jpTNPX2Smz2zoFQ38CeUvWlTFT3BQOe4r9gZPPPalr1JWh-3kJkwvK3mDz3HJhY4k4PhOzQ2rz3bvto4wATOPfx4vzvta544SCaRPShLmD2LJR03u3OiPbOX7T2TqCc4WL6YPc3mkb2SWx25GZtsvYmE5by0Ss43eR48PYX-U7ynKJq2u_i2PGX5_DoLyww4hhAhPVx3073e85u34GAUPXj9OD31iMc4bFCFPFIDVbuZzKe4qA0dvYncAj2iPPa2Mw5_vWntrrrTPJ83IAA4E0AJSG1QASpzEAAaYCABAFweKrgd_kf2E7zf8qzy680onDr_FAL_39UTCfgE9tT0FwAqDVPHlAAAABAq7zXqAAR_HZsz7_4mH9O45xzqVknuGbgBLkXHyE9AENEf_OItVQDqydAIQrr0CxQrGiAALXGYDjs4E0AJSG9QAiqPAhAAGoACAAC4PQAA2L0AAIo-AADIvQAAqD0AAI4-AACgvAAA-r4AAFC9AAD4PQAAFL4AAPi9AAAkPgAAQDwAAJK-AADgvAAAqD0AADA9AABwPQAAVD4AAH8_AAAkPgAA4DwAAKo-AACIvQAAPD4AAJg9AAAEvgAAQLwAAFw-AADgPAAAVL4AAIg9AAD4PQAAEL0AAKA8AABAPAAAor4AAIa-AABMvgAABL4AAIA7AAAQPQAA6L0AAJa-AAAEvgAAiD0AAKC8AABEvgAAiL0AAIo-AADgPAAAdD4AAKA8AAAQvQAADL4AAAk_AAD4PQAAyL0AAHQ-AADYvQAAUL0AAKg9AABQPSAAOBNACUh8UAEqjwIQARqAAgAA-L0AAFy-AADoPQAAR78AAHC9AABAvAAA4DwAAKg9AABUvgAAED0AAKi9AABUvgAAQLwAALi9AAA8PgAAML0AAII-AABFPwAA6D0AAJY-AAAsvgAAUD0AAIC7AACIvQAAoDwAABA9AAAMPgAAEL0AAAQ-AAA8PgAAgLsAAJg9AADgvAAANL4AAAQ-AACoPQAAgDsAAEQ-AABMvgAAML0AAAw-AAAwPQAAmL0AALg9AACCvgAAoDwAAH-_AADovQAAHL4AABA9AABwPQAAEL0AAFA9AACoPQAAcD0AAEA8AACoPQAAjj4AAEC8AADovQAAhj4AAKg9AADgvAAAFL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ZczXRMrnljU","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":838,"cheight":480,"cratio":1.74583,"dups":["11350566212558110653"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3133793403"},"14236942967418634815":{"videoId":"14236942967418634815","docid":"34-6-3-ZE9448A38CDA8BDAC","description":"It turns out you can use Euler's Method on the calculator page of a TI-Nspire...which I just recently discovered. In this video I show you what you need to input to make that happen. The output...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1780987/d6946d0ea9b0fa122701a84f555fed6b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/98yAHgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKqt1BHdgMqM","linkTemplate":"/video/preview/14236942967418634815?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Euler's Method on a Calculator Page with the TI-Nspire","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Kqt1BHdgMqM\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTQyMzY5NDI5Njc0MTg2MzQ4MTVaFDE0MjM2OTQyOTY3NDE4NjM0ODE1arYPEgEwGAAiRRoxAAoqaGhzeWNxeG5keHRlc2VtYmhoVUN0c3BSNmNUNFdzbFJiUDJxcDBmZWx3EgIAEioQwg8PGg8_E9YCggQkAYAEKyqLARABGniB9PT5_v0DAAP1-wkGCfwCDP77CPf__wDlBgcC9_wCAPoMA-0AAAAA9Q4BCgIAAADxAPkJAQAAAA0A_QP7AAAAHPwCAwIA_wACC_gG_gEAAP33Afn2AgABDP0EAP8AAAD-DQUJAQAAAAkB-_kAAAAABvYA9QAAAAAgAC3nmNw7OBNACUhOUAIqhAIQABrwAXQbYf7j3tsCuEXf_98RCQGBRAT_R-kXAMT53wHc7hUAqAUG__Xolf-tNuf_rSdW_h_J1_9fCuoABqkK_xnpGgBlGi4AVCM2ASDyGwLs7uT-L1sc__v9AgAXwy0A7t3cADwCEv77Jh8AwroBBRvb_wHlyCkDJQP6Aka0JgHBNQ7-Fh8oAukDEQLvM8H7DesjCf4MEgMx5AgE5f4O-AfM-gwWFRz6Kvr5DBMI7QnKvQ8Anur1_RIy-_0f7wH8KgvuAxr32PzK8hAI3cYiAcj06QbiJQwD6iX1Ec_r4_ESHRsHGA8TCAga8Of9pvX6xfUE5yAALT7Y4To4E0AJSGFQAipzEAAaYA0OAH9HJtn26EPyNKcn-tMQEdgPxBD_I_7_GhMFDBQRu68YBQAIBjfDlgAAAA0jxAetABl9BKXeLxlLCMvB3SjdViH83tcbBjwDxSPsu9XrRRESDgDI0dkpPqydIxsQHiAALbrQDjs4E0AJSG9QAiqvBhAMGqAGAADAwQAAQMAAAGBBAACYwQAAYMIAAPhBAAA8QgAAoMEAAPDBAADgwQAAcEEAAJDCAACqwgAAaEIAALDBAAAQwgAAyEEAAFzCAAAAQgAAgEAAADDBAACAQQAAQMEAALhCAAAgwQAAKMIAAJjBAACgQAAAgkIAADDBAABQwQAAqEEAAKjCAACAQQAAgL8AAAAAAABAQAAAsEEAAJhBAACkQgAAUEEAACxCAACgwAAAgMEAANjBAABgwgAAaEIAAJBBAAAsQgAAIEEAACDBAADgwAAAwMEAAJJCAADwQQAAGEIAAKLCAABUwgAAwEAAAABCAAAkQgAAVMIAAADAAACAQAAAmEEAAKzCAADAQAAAgMAAAIjCAADwwQAAGEIAAKBAAAD4wQAAqEEAAGDBAACgwAAAksIAAJDBAACYQQAAuEEAAFDBAABgQgAAUEEAADDCAABYQgAAnkIAAARCAAAwQQAAeEIAABDBAABAwQAAcEIAAJrCAACQwQAAkkIAADDCAACQQQAAIMEAAABAAABwQQAAXMIAALDBAAAgQgAAYEEAAJDBAAAMQgAAuMEAACxCAABgQQAAkkIAAPBBAABYQgAAuMEAANBBAAAAQAAAmkIAAJhBAADgQAAAUEEAAILCAABQQQAAGMIAAOBBAABMwgAAiMEAACBBAACAwQAAYMIAAKDBAAAAQAAAnMIAAIbCAAAAwAAAwMAAAATCAACGQgAAIEEAAKpCAABcQgAAEMIAAGBCAABIwgAAgMAAABDBAACKQgAA8EEAAEzCAACgQQAA4MEAAIBAAABkwgAAKEIAAIBAAABkwgAAFEIAAHDCAAAIwgAAWMIAAKrCAABQwQAAgMEAAPBBAAAAQAAAgMAAAJjBAACIwQAAEMIAAAhCAABgwQAAcMEAAIDAAAB8QgAAYMEAAAjCAABcwgAAAAAAANjBAABIwgAAfEIAAGBBAADAwQAAOMIAAEjCAABgQQAAKEIAAATCAAC8wgAABMIAAHBBAAAwQQAAMEIAACBCAACgwQAAiEEAAMBBAACAQAAAcEEAAFBBAACQQQAAcMEgADgTQAlIdVABKo8CEAAagAIAAHS-AACYvQAAFD4AAAS-AABQvQAAuD0AABQ-AAD-vgAAoDwAAHS-AABEvgAAor4AAMg9AAAwPQAAuL0AAKC8AADGPgAAiD0AAOg9AACuPgAAfz8AAOA8AABAvAAA0j4AAFS-AADgPAAAbD4AAKA8AACmvgAAbD4AAEQ-AACmvgAA6D0AAFA9AABMPgAAZD4AAKi9AAB8vgAAgr4AAKa-AAAsvgAAoDwAAHQ-AAAQvQAAsr4AAEC8AAAUPgAA6L0AAIq-AAAwPQAA2D0AAHA9AABsPgAA4LwAADy-AAD4vQAASz8AAOI-AACgPAAAXD4AAES-AAAkPgAAoLwAANg9IAA4E0AJSHxQASqPAhABGoACAACCvgAA6D0AAEA8AAA7vwAA4LwAADA9AACgPAAAED0AAHC9AABUPgAAQLwAAOi9AACgPAAA6L0AAMg9AACIvQAAUL0AAEE_AADgvAAAsj4AAJi9AADovQAAQDwAADy-AAAUPgAA4LwAAIA7AABAPAAAUL0AAJg9AAAwvQAAUD0AAKi9AADIvQAAVD4AAHS-AAAQvQAAmD0AAJ6-AABAvAAA6L0AAFC9AABAPAAAgDsAANi9AAA0vgAAf78AABw-AADgvAAAMD0AADA9AACYvQAADL4AAFw-AAAUPgAAgDsAAOA8AADYPQAAoDwAAFA9AAAkPgAAmL0AAIY-AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Kqt1BHdgMqM","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14236942967418634815"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4116893168"},"3616330071902994640":{"videoId":"3616330071902994640","docid":"34-11-10-Z98C7BDAAE46B0EF9","description":"For more instructions and videos, check out my iBook: TI-Nspire Step by Step Guide for the IB Teacher and Student: https://books.apple.com/us/book/ti-ns...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3171364/4eb7d7fd5cce3e2253436ffe80370027/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pCkn3QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dmo4c32JPelQ","linkTemplate":"/video/preview/3616330071902994640?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TI-Nspire CX: Rectangular and Polar Forms of Complex Numbers","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=mo4c32JPelQ\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFQoTMzYxNjMzMDA3MTkwMjk5NDY0MFoTMzYxNjMzMDA3MTkwMjk5NDY0MGqSFxIBMBgAIkQaMAAKKWhodHdpc2JmbXZnbWVueGhoVUNBNmdxam9BUmxoUVJrWWIxV1I3bm93EgIAESoQwg8PGg8_E8UDggQkAYAEKyqLARABGniB-gILAAT8AOr8A_z6AAEACP8A7vf__wD1CPv-_wL_APwDAPn2AQAACgj9_wwAAADv7_n7AgAAAAMN8wLvAP8AE_QDCAIAAADs_gYF_wEAANv98_8DAAEAJwH8BP8AAAABDwH5_f8AAAUI_v4AAAAA8_sH-_8AAAAgAC1s-MY7OBNACUhOUAIqhAIQABrwAUAkMPjD4er_6f4SANYk5AGBIgr--B3wAM8PA__mDAUB-AwVAOoS6wDzOOb_vSkbAfz5z_79_AL__8woAPsMFQEjEDgBNhwFATwUA__x5BH-AzUXAQkS6gDW9hL_CAvT_gz5A_v3MwQB0-vpAPATEgS-3x0BOPrsAgvhCQbeHRQAAyQB_Ovs-gX0Bt8B1t7vBQ3w-vssKB3-KAPwBQnmBQMAAAD8MuQYAR0uAQO8-Aj85-r9_Obt_AEJvwACN_n4APEE6PXqvA8D8PoFCwTUA_sbEhn_EkAD_PoC-AQE-RX58_kK_xcO7vni-wgaAOH7-iAALf8hHTs4E0AJSGFQAirPBxAAGsAHvOfAvhWj0zvu19M8I16ovLSsu7ykHr-7SV4nveNVVj2mv828290jPZSl8bxWKf28_Iy7vlpTD7zG6sW7A2D8PXIIK70neR-9GXSivQyiHz2KQbu7bTvtvX24P7wa8hU89DY2vJ36m7xxJKu8vz6vPRfrn7u1FQC9vMsFvlyPIbz8PQM6ps0dvaBVAT1SKqE8dvclPRgoJL2slLm88BZIPkMwWLwwihS9c-F2PAVK7zyCuYw8_WZCvtNPk7wjmgW9NyVPPQ5CSr06dHq8LpnZvH_4eTwRwuC4I_O4PfPJKj33XCE93jUDumrhjb1Lwo-8jloBvh5Nej1spaG8P28qvVFOdD0RSDK7d3s1vfhluj3_kWm8aUgGvcWydLsisZO8lBWzPdmBrr3vsjo8SxcHPf-JGz00z1s8_oePPY_LEz2uieA85s0RPiP7Oz1Wd3a8w4mevbt_rLykLdM8p60QOrmMuz1aYoo8JU54PZEGnDxoZEa8smCHvZHSnD35Tgo7P7z4PHlFizwOs2E8tgOiu5JY0rwnTcW7Yyp9vKNFzL2HKka8GahxPecKhT0lyXM8cXlHPb8_rbsLTMC6a7fdvUrPFD2NWzM7wz6bPROPNb0lJBI8DSiFPeeQszoX1Dc8OBR-vdwNgr3S4Da89DwzPb2Ll706yJC6kRatvSjuGL6csqq6zKCFvfSaaDz1pdA6QGvePQpDibzybeW57H2kPVjLnT2-zri60dWRvfU2rLwiJ-E6NLURPYXHiLxyH7G67q8OPp8Skb1-0JQ5xuBhvAlO4DqaIy-7_H31vBz4Z70YTPQ41xDBPEB99Dv5OTK4C-uLvX10YLr287C56YtzPBsNJb2hxRu6HNtBvfS_3Dy6HG46Ux6SvUobyL3hc5s3BucdPWBe27pD2ao4lI5tPaWF670K5qq4dCEcPJSpjb3zwCc3Lbu7PHufrz0oQNq4-_ENvLhIcL03inE4nJugPWe8yDzugvs4Fi-LPcj8Tb1pTVW5QUgWPqjhiz3czy03hIAcvvF-wT0ZwAm58VkoPXeWir3VNes4_SaevLwcO71ixDo5DTwSPf0UJz7SZyK5L4K7PR6o0zxMk_44UzgHvR9oJT0fPy24xk5YPT1f8z315EA4DZ6jPU7I2Lx2H7-4zcd6vdMV7L3mm_i4wxGDOVBVIb2EoSu3w9OrPPucwb1DOrE4aYCsPfH0Sr1w60u10n41PHxKqTzt77c4J8t_PMLWkTzt8O644xm0PID5jz1npEy4bWsQvcV5kz3VICg4IAA4E0AJSG1QASpzEAAaYBX6ACoWPtoh-xEF5N7pFKTDx9YuxxL__c3_KfAr_-0QvcbGAgAh5Q7DnAAAAAT65wDhAPh_3JYpDx0cCrHKAhgAP7skz8_4QBXb2gwoBN62DyARBQCtwq4sLgnVLzMaEyAALaf9Gjs4E0AJSG9QAiqvBhAMGqAGAAAkwgAAmEEAADxCAACAwAAANMIAAHBBAACAQAAAAMAAAJDCAABQwgAAqEEAAEjCAABYwgAAHEIAAJBBAAAAAAAAQEAAAPDBAACAwQAAmEEAADhCAACAQQAA0EEAAJRCAACgQQAAoMEAABjCAACAvwAAmEIAAJjBAACQwQAAFEIAANTCAAAAQAAAYEEAACBBAABAwQAAcEEAAFBBAAC4QQAAJEIAACxCAABQwQAAwEEAAEjCAADQwQAAREIAAMBBAAAoQgAA4EAAAEjCAACowQAAYMIAAEBCAACMQgAANEIAAMjBAACowQAAJEIAAKDAAACAQQAAHMIAAPhBAAAcwgAA6EEAALzCAADAQAAAuEEAAFzCAACQQQAAEEIAAJBBAABQQQAAYEEAABDBAADAwAAA0MIAAEBBAACAQQAAcMEAALjBAABwQgAAkEEAADzCAAAYQgAAnEIAAOJCAAAAwQAAUMEAAEDBAABwQQAAwEAAAHjCAABUwgAATEIAAHTCAABQQQAARMIAAEjCAADgwAAATMIAAEDAAACUQgAA6EEAABBBAAAIQgAAQMEAAIBBAAAAQgAAZEIAAEBBAACgQgAA4EEAAFBBAACYQQAAGEIAAHBBAACgwQAA0EEAAGjCAAAkQgAAcMEAAHBBAAB8wgAAYMIAAABBAABYwgAAAMEAAEDAAAAAwQAA8MEAAOjBAADAwQAA8EEAAGBBAABsQgAACEIAAHhCAACYQgAAVMIAAK5CAABQQQAAAEEAAKBBAACOQgAACEIAAIDCAADAQQAACMIAANhBAAAAwgAAgEEAAFDBAACKwgAAQMAAAKzCAAAowgAAFMIAADzCAADYQQAAkMEAAABCAABIwgAAREIAAEDCAAAgwQAAsEEAAAxCAACowQAAIEEAABjCAACCQgAAcMEAAKDCAACAvwAAIEEAANDBAAAMwgAAnEIAAMBAAACgwAAAJMIAAJrCAABQQQAANEIAAEBAAACcwgAAUMEAAARCAACAPwAA4MAAAExCAABQwQAAsEEAAKDAAAAAwAAAQEIAAJjBAADAQQAAQEAgADgTQAlIdVABKo8CEAAagAIAAAS-AACIvQAAmj4AAFw-AACAuwAAND4AACw-AAAbvwAA4LwAAEA8AABwvQAAqr4AAOA8AACaPgAAXL4AAJi9AACWPgAABD4AAGw-AADSPgAAfz8AABQ-AABEvgAAmj4AABA9AACoPQAAqj4AAPi9AABEPgAAXD4AAKA8AAAcvgAAuD0AAAQ-AADgPAAAMD0AAOg9AACOvgAAdL4AAGS-AABUvgAAFL4AAEw-AADgPAAAoLwAADA9AAB0PgAAqL0AAAy-AAAQPQAA_j4AABw-AADIPQAAuD0AAKK-AADIvQAATz8AAGw-AADgPAAA6D0AAKA8AAAQvQAA6D0AAIq-IAA4E0AJSHxQASqPAhABGoACAAAkvgAAoLwAAEQ-AABTvwAAmD0AAJi9AAD4PQAAVL4AAJi9AACAOwAAcL0AAFS-AAAQvQAAZL4AABC9AABAPAAAcD0AAEk_AAA0PgAAbD4AAKi9AACGvgAA4LwAAKA8AABAvAAAXL4AAIC7AACYvQAAqj4AAPg9AACgvAAA-D0AAEy-AADovQAA4DwAAEA8AACIPQAATL4AAJK-AAAQvQAAyL0AAOg9AADgvAAAiD0AACS-AACCPgAAf78AAKi9AADIPQAAQDwAABQ-AAA0vgAAQLwAAIA7AAAUvgAAUD0AADA9AAAcPgAAQDwAABA9AAD4PQAAdL4AAPi9AADovSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=mo4c32JPelQ","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3616330071902994640"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"533933799"},"14804294809882718144":{"videoId":"14804294809882718144","docid":"34-7-2-Z5A8531B95E196FF4","description":"Sowiso, e-learning, mathematics, Bolster Academy, Education, IB, Calculator, TI Nspire, GDC, TI, Nspire, Instructions, Function, Value of a Function, Evaluating a Function, Applications and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3359525/c9757caab349796503acdad1ec44b629/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qrCu6AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DF094hUpRKv0","linkTemplate":"/video/preview/14804294809882718144?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TI Nspire - Evaluating Functions","related_orig_text":"Nspire Explainer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Nspire Explainer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=F094hUpRKv0\",\"src\":\"serp\",\"rvb\":\"Eq8DChIyMjE1MTkzMDAwOTEyOTg5OTEKFDE2NDY2OTc1MjA1MzM5MjEzNTM1ChM4ODU4Njg5Nzc5MzI2ODI1NTg5ChQxMTM4MTg0MTA0NDM1MzA3NTI5OAoUMTgxMjc0MDE5NzM0MDY3MjI0MDcKEzYzMDk5MDM1ODM2ODgzNDQ0NzgKEzQyNjgxMDQ0NTc4OTI5OTk1NTAKFDE3NDg5NDIwMTY3MzI4NTI4NzE0ChQxMzQ4NjQ3MzQxNDAzNjAzMjUzOQoUMTcxNjQ4OTA3NTE4NzUwMjk5NDMKFDE1ODkyMDYxMTk0MTczOTI1MDA4ChQxMjkzMDIwNzM2Mjc1OTM2OTk2MQoTMTkwNDEyOTIwODQ3OTAzMzQyMwoTMzA5MjE3NzY3NjcxODc0NDgyOAoUMTEzNTA1NjYyMTI1NTgxMTA2NTMKFDE0MjM2OTQyOTY3NDE4NjM0ODE1ChMzNjE2MzMwMDcxOTAyOTk0NjQwChQxNDgwNDI5NDgwOTg4MjcxODE0NAoUMTMzNzgzMzI5Mzk5MjY5MTg3MjAKEzczNzA1MzczOTc3MzczNzI5MDMaFgoUMTQ4MDQyOTQ4MDk4ODI3MTgxNDRaFDE0ODA0Mjk0ODA5ODgyNzE4MTQ0aogXEgEwGAAiRRoxAAoqaGhodW5pZG9vdWFqYmxrYmhoVUNvWDNMNXl2b1JtdmNQQ0Y0MmI5YXNnEgIAEioQwg8PGg8_E7kCggQkAYAEKyqLARABGniB_fz9Dv4CAPT5C_b-AQABDP77CPf__wD1BfX99gL_AO0ECPIAAAAA7Qr3BwYAAAD2AQIHBP8AABUE9AD1AAAAGfb1CP0AAAD-AQQGCAEAAPEE-_0DAAAADP79AQAAAAAECgsR_wAAAA0IAvwBAAAAA_YI-wAAAAAgAC3TpNo7OBNACUhOUAIqhAIQABrwAVcLIQDh9QQB6Rr0AOr76wCBBQv_HhDrAM387wDZ__EBwwAKAeDs6gHlJQb_4iQkAPT05wBA_BIA_9gfAP0A_AAjAQcAVuQOASkMEQL_BO7_6Bkh_hv9Af8AzRH_Ff_k_yzzDf76EAT9AOLz_wDwEP8B8B79Cwn9AAvxAgDoGAAC6A4ZAOMN-__fGPX98PQSA_sQE_wTGAQC9gX9AwTj_QfwDPoCHwn8AgsF9QXp4vv_3ert_fQF_gIX4_4CCSf4AAEX_Pzh-AkE__8Q_APZ-QEKDA0G9CkCBPsB-QPfFA79-fERBeoPB_cCzAEL9fgO8SAALW4nSDs4E0AJSGFQAirPBxAAGsAH7Z-vvkldXD0hJVE9U2AcvSRC47xvkQW99pJrvXg-KLzBi7O9p834PewkrLy1hhe9_Iy7vlpTD7zG6sW7FJRCPkZFHL1z6AC8SyMGvkz2tDy59Pk881kOvjhvNz12-yy7sOcLPlG3GrsFsQK9oOLYPWE8nrzFT4i8TFTPvRHuxLzDxFU8zg_pOwtYvLyCRIk8yYrGPUHd2zx2PyS6L1H9PbEFYLqfq628g0l2vZOluTvZ8I88dwi9vfgSbz294xS9yrScPeJAg73j17i7hmczvWpJjD0dnYg66ZoZPsoqpj1YBcU8NjPEvVXCkzsamfS7GHuPvYh2rz0PdP486tCUvWnvwjxv3Qg9toBQvLhb0j2b7gy868qCvPd7_TwYWGy8PyiOPawfG70zvJ87r2d-PcFCHDxCeR08pyqIPb_Cl7vb5nw8m3-qPAXE5D1kqBC8zOWAvf1wq7zuBQk864nwOzfjFD7Mf8S62oiMPVKUcDzP9qY7fVvwvEmUhz1EUqa8HFzaPbXu8LxEbI86yVNbPQCAjb2oMFs8U4IVPOimqL3bXAq8GO2BPRkx2Dt0ep48jwyoPATHpbxfMgK8-dAPvdfep7p-Wt47Y3XAPX1RDL1aZyI63WCIPT-r7D2M4zi6YNw3vbsEzL0qusO6EPJwvV5qH7zrgf873uBQvWAh873aCH66fWS5vU3MBD1yEca6UW1LPWHVC7u2hm87u85rPd8OHLyGeGI7ydpQvSDfdL1I2SG5Ez0aveomDDsmW_857q8OPp8Skb1-0JQ5APLUvIaBHT3tJ524pjfxuwHDrb3vo5Q5EyOQPY-zn70Kfrg3RG_MvOxnlr2bzOo4lKc2OulrjL3DsWq6lLgTvaHoy7yJdzu3AvSLvUU1kL07hjE47aUkPWvGGD1C1uO2w92Tu9oEs73fYQy5IsudPFpSpLwctQA5xFp8PPWBRD3B8Te5pxk8vbHRw7x5hrU3CB3UPWH_sD2Kkjs5Es3yPFt4I72t7Cs525u5PV4O4DxmVBw4kSnfvXQZqD1P6CS5b_YHvQIQd714-IE3ZQkBPYr5Y70IwzU4x_aaPFyvCT5vJvi3L8hRPc9V6bz5UjM4R4_fPMf1zz3439g4ON9jPLCO4z1hQBk4YfkYPbBahD1T8v64k4ycvCaxqr33Adu4O_tqPdH5nbsyPG84aW5FvX8jUL0dVlK4QyLIPKVN1b1QB3e4Iv_sPTUpBT7zflu41OE3PdEm4rojMQ64kDjavBXlsj3Eoi03OgoMu_De0TxI14Q4IAA4E0AJSG1QASpzEAAaYDcMAE4NJ9T23hj5FfX9-dzV7ecv2CD_B-YAHA8Q6Bwd8MX1_wA52RfWswAAAA4k9SHsAOdmCffkFvRzHbS7DvMQf_0BJs8FHxzdwf8h_-P9_PsKLAD6xrgLKgXMNiX_JSAALcHqLzs4E0AJSG9QAiqvBhAMGqAGAABAwAAAAMEAAMBBAACYwQAAuMEAAPhBAACAQQAAUMEAAFDCAADAQAAACEIAAIjCAACswgAAAEIAAFBBAAAAAAAAAEAAAFTCAADgQAAAsEEAAGRCAABwQQAAZEIAAHRCAAAwwQAA2MEAACzCAAAQwQAAjkIAAEBAAACoQQAAgEIAALDCAAC4wQAAIMEAAPjBAACAwQAA8EEAAKBBAABwQgAA4EEAABBBAABAwAAA4EEAAIDBAABkwgAA8EEAAMBBAAC8QgAAkMEAAHDCAAAAQAAApMIAANBBAAAYQgAAOEIAAIDCAACwwQAAiEEAAAAAAACAvwAAisIAAKDBAABAwQAAAEAAAIbCAABwQQAAEMEAAJDCAAAowgAAVEIAAJBBAADQwQAAJEIAABBBAAD4QQAAqMIAAIBBAACOQgAAoMEAAABBAAC4QQAAKEIAANDBAACAvwAAMEIAAJRCAAAAwQAAUEEAAChCAAAAwAAAQEIAANTCAAC0wgAAoEIAAJLCAACAQAAAEMEAALDBAAAEwgAAgMIAAMBBAABAQgAA6EEAAOBAAABsQgAAGEIAAGBCAAD4QQAAVEIAAHBBAAAYQgAAPMIAANhBAACAvwAAoEEAAMBAAACoQQAAIMEAAIrCAACsQgAAwMEAAMjBAACAwAAAqMEAAAxCAACIwQAA6MEAALDBAACAQQAA6MEAABDBAACAwAAAUEEAACBBAAB4QgAAAEIAAFBBAAAAQgAACMIAAABCAAAAQQAATMIAAHBBAADwQQAAsEEAACDCAADIQQAAwEAAAMhBAAAAwgAA4EEAAIC_AACwwgAA4EEAAJzCAACMwgAAGMIAAITCAABQwQAAYEEAAIhBAADgwAAAQEAAAEzCAADgwAAAqEEAAOBBAACAwQAAmEEAAJDCAABQQgAAHMIAAGDCAACgwQAAQEAAADDBAACMwgAALEIAALjBAAAgwQAAcMEAAIbCAAAgQQAAREIAAJ7CAABMwgAAwMEAABhCAABcQgAAEMEAABBBAACIwQAA0EEAAGBBAADAwQAAgMAAADTCAAAgQQAAMMIgADgTQAlIdVABKo8CEAAagAIAADA9AACIPQAAkj4AAIg9AADoPQAAgj4AAHC9AADCvgAAiL0AAPg9AACAOwAAor4AABw-AADgvAAADL4AAJg9AABsPgAAQLwAAPg9AAAkPgAAfz8AAOg9AAAcvgAAPD4AANi9AACoPQAA2D0AADC9AADIvQAAbD4AAHA9AABwvQAAEL0AAJg9AACAuwAAyL0AAIC7AABkvgAAXL4AADy-AABUvgAAmL0AAGQ-AACoPQAAiL0AANg9AACoPQAAcL0AAFy-AACAOwAAij4AAOA8AAAMPgAA4LwAADC9AACIvQAA9j4AAMg9AACYPQAAfD4AANg9AABAvAAA4DwAADC9IAA4E0AJSHxQASqPAhABGoACAACgvAAAyL0AACQ-AAAnvwAATD4AAGQ-AABMPgAAyL0AABS-AAC6PgAAuD0AAFC9AAA0PgAAiL0AABA9AACYvQAAiD0AAGU_AAC4vQAATD4AADC9AADIvQAApj4AAIi9AAAwPQAA2L0AAFC9AAAcPgAAlj4AAJg9AADgPAAAyD0AAKK-AAAUvgAAVD4AAKA8AACmPgAAmD0AAGS-AAAkvgAAoj4AABC9AAAMvgAAMD0AAIi9AABUPgAAf78AAIg9AAAEPgAAjj4AAOA8AABAvAAA4DwAACw-AADgPAAAiD0AABA9AAC4vQAAoDwAAIi9AABEPgAAUD0AALg9AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=F094hUpRKv0","parent-reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["14804294809882718144"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2407343089"}},"dups":{"221519300091298991":{"videoId":"221519300091298991","title":"\u0007[NSpire\u0007] 2025 Mock HUD Inspection. Real Unit Walkthrough & Deficiency Breakdown","cleanTitle":"NSpire 2025 Mock HUD Inspection. Real Unit Walkthrough & Deficiency Breakdown","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=nLJ9-0UXdsk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/nLJ9-0UXdsk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUFV1em9kc0lGaXJseDh2UGZPTXBlUQ==","name":"Prep & Prosper Property Solutions","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Prep+%26+Prosper+Property+Solutions","origUrl":"http://www.youtube.com/@PrepProsperPropertySolutions","a11yText":"Prep & Prosper Property Solutions. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":446,"text":"7:26","a11yText":"Süre 7 dakika 26 saniye","shortText":"7 dk."},"date":"4 ara 2025","modifyTime":1764823641000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/nLJ9-0UXdsk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=nLJ9-0UXdsk","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":446},"parentClipId":"221519300091298991","href":"/preview/221519300091298991?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/221519300091298991?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16466975205339213535":{"videoId":"16466975205339213535","title":"TI \u0007[nspire\u0007] user defined function for linear interpolation","cleanTitle":"TI nspire user defined function for linear interpolation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qxFbBc8VLMY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qxFbBc8VLMY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDSGNHamJsNEpwU0Z0R2U5azdwdWRLdw==","name":"Joe Ragan","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Joe+Ragan","origUrl":"https://www.youtube.com/channel/UCHcGjbl4JpSFtGe9k7pudKw","a11yText":"Joe Ragan. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":230,"text":"3:50","a11yText":"Süre 3 dakika 50 saniye","shortText":"3 dk."},"views":{"text":"41,2bin","a11yText":"41,2 bin izleme"},"date":"10 kas 2014","modifyTime":1415577600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qxFbBc8VLMY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qxFbBc8VLMY","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":230},"parentClipId":"16466975205339213535","href":"/preview/16466975205339213535?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/16466975205339213535?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8858689779326825589":{"videoId":"8858689779326825589","title":"Using TI-\u0007[nspire\u0007] to find correlation coefficient","cleanTitle":"Using TI-nspire to find correlation coefficient","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YncLnRpdMOM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YncLnRpdMOM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY21mTzI5Y2I0azZvVm01WUllMTlSdw==","name":"Nate Murphy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Nate+Murphy","origUrl":"http://www.youtube.com/@EHSmathwithmurphy","a11yText":"Nate Murphy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":374,"text":"6:14","a11yText":"Süre 6 dakika 14 saniye","shortText":"6 dk."},"views":{"text":"156,5bin","a11yText":"156,5 bin izleme"},"date":"16 eyl 2014","modifyTime":1410825600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YncLnRpdMOM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YncLnRpdMOM","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":374},"parentClipId":"8858689779326825589","href":"/preview/8858689779326825589?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/8858689779326825589?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11381841044353075298":{"videoId":"11381841044353075298","title":"How to Perform Linear Regression with TI \u0007[nspire\u0007]","cleanTitle":"How to Perform Linear Regression with TI nspire","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Xse7Aqb0fLI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Xse7Aqb0fLI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRFRQaTdqQUxyYXNMZzQ5TzFvN29aUQ==","name":"TI Australia","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TI+Australia","origUrl":"http://www.youtube.com/user/TIAustralia","a11yText":"TI Australia. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":221,"text":"3:41","a11yText":"Süre 3 dakika 41 saniye","shortText":"3 dk."},"views":{"text":"42,2bin","a11yText":"42,2 bin izleme"},"date":"5 mar 2020","modifyTime":1583366400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Xse7Aqb0fLI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Xse7Aqb0fLI","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":221},"parentClipId":"11381841044353075298","href":"/preview/11381841044353075298?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/11381841044353075298?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18127401973406722407":{"videoId":"18127401973406722407","title":"Calculus BC TI-\u0007[nspire\u0007] Tutorial: Finding Intersections","cleanTitle":"Calculus BC TI-nspire Tutorial: Finding Intersections","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=36y7YGKjI7o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/36y7YGKjI7o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRElXb3NZT0hmSFptUWEwSmEtSzlRdw==","name":"George Liu","isVerified":false,"subscribersCount":0,"url":"/video/search?text=George+Liu","origUrl":"http://www.youtube.com/@georgeliu3028","a11yText":"George Liu. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":85,"text":"1:25","a11yText":"Süre 1 dakika 25 saniye","shortText":"1 dk."},"date":"18 haz 2024","modifyTime":1718677036000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/36y7YGKjI7o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=36y7YGKjI7o","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":85},"parentClipId":"18127401973406722407","href":"/preview/18127401973406722407?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/18127401973406722407?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6309903583688344478":{"videoId":"6309903583688344478","title":"TI-\u0007[Nspire\u0007] - Linear Regression and Two Data Sets","cleanTitle":"TI-Nspire - Linear Regression and Two Data Sets","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IDM98L62J4w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IDM98L62J4w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdHNwUjZjVDRXc2xSYlAycXAwZmVsdw==","name":"turksvids","isVerified":false,"subscribersCount":0,"url":"/video/search?text=turksvids","origUrl":"http://www.youtube.com/@turksvids","a11yText":"turksvids. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":301,"text":"5:01","a11yText":"Süre 5 dakika 1 saniye","shortText":"5 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"28 eki 2013","modifyTime":1382918400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IDM98L62J4w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IDM98L62J4w","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":301},"parentClipId":"6309903583688344478","href":"/preview/6309903583688344478?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/6309903583688344478?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4268104457892999550":{"videoId":"4268104457892999550","title":"Using \u0007[Nspire\u0007] CX Find Range of Values for Function","cleanTitle":"Using Nspire CX Find Range of Values for Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iTAR27NtTK0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iTAR27NtTK0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQllfTTZvOXhRbnQ0cnNQYVVoc0xNZw==","name":"Stephen O'Connor","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stephen+O%27Connor","origUrl":"http://www.youtube.com/user/st3v30c","a11yText":"Stephen O'Connor. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":337,"text":"5:37","a11yText":"Süre 5 dakika 37 saniye","shortText":"5 dk."},"views":{"text":"6,5bin","a11yText":"6,5 bin izleme"},"date":"4 ağu 2015","modifyTime":1438646400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iTAR27NtTK0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iTAR27NtTK0","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":337},"parentClipId":"4268104457892999550","href":"/preview/4268104457892999550?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/4268104457892999550?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17489420167328528714":{"videoId":"17489420167328528714","title":"Getting Started with \u0007[Nspire\u0007] Graphing - Part 1","cleanTitle":"Getting Started with Nspire Graphing - Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FvbxlBRbWwc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FvbxlBRbWwc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcFctcWRsSkxYWGYzTUpvcjI0U01Idw==","name":"WT MathEd","isVerified":false,"subscribersCount":0,"url":"/video/search?text=WT+MathEd","origUrl":"http://www.youtube.com/@wtmathed4819","a11yText":"WT MathEd. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":852,"text":"14:12","a11yText":"Süre 14 dakika 12 saniye","shortText":"14 dk."},"views":{"text":"4,3bin","a11yText":"4,3 bin izleme"},"date":"4 ara 2015","modifyTime":1449187200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FvbxlBRbWwc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FvbxlBRbWwc","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":852},"parentClipId":"17489420167328528714","href":"/preview/17489420167328528714?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/17489420167328528714?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13486473414036032539":{"videoId":"13486473414036032539","title":"Master Linear Regression on TI \u0007[NSpire\u0007] CX II in less than 5 Minutes!","cleanTitle":"Master Linear Regression on TI NSpire CX II in less than 5 Minutes!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_7WkgoMxVpU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_7WkgoMxVpU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcmVYVEdlZVh6WmF3T3VWUWFMQS1zQQ==","name":"Angie Teaches Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Angie+Teaches+Math","origUrl":"http://www.youtube.com/@AngieTeachesMath","a11yText":"Angie Teaches Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":286,"text":"4:46","a11yText":"Süre 4 dakika 46 saniye","shortText":"4 dk."},"views":{"text":"2,6bin","a11yText":"2,6 bin izleme"},"date":"6 kas 2024","modifyTime":1730851200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_7WkgoMxVpU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_7WkgoMxVpU","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":286},"parentClipId":"13486473414036032539","href":"/preview/13486473414036032539?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/13486473414036032539?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17164890751875029943":{"videoId":"17164890751875029943","title":"Linear Regression with the TI-\u0007[nspire\u0007]","cleanTitle":"Linear Regression with the TI-nspire","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=05XpxB67GLk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/05XpxB67GLk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaC1DVnRfbzBrMEdqVzJOVTY5Tm04QQ==","name":"Kevin Dorey","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Kevin+Dorey","origUrl":"http://www.youtube.com/@SutherlandMath","a11yText":"Kevin Dorey. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":210,"text":"3:30","a11yText":"Süre 3 dakika 30 saniye","shortText":"3 dk."},"views":{"text":"60,4bin","a11yText":"60,4 bin izleme"},"date":"12 ara 2012","modifyTime":1355270400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/05XpxB67GLk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=05XpxB67GLk","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":210},"parentClipId":"17164890751875029943","href":"/preview/17164890751875029943?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/17164890751875029943?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15892061194173925008":{"videoId":"15892061194173925008","title":"TI-\u0007[Nspire\u0007]: Tutorial #2-Solve, Solve system of equations, Complex solve","cleanTitle":"TI-Nspire: Tutorial #2-Solve, Solve system of equations, Complex solve","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=no6mCxgKyQU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/no6mCxgKyQU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeGlxZkV6YThDQ3VoRjBJVG9lT3p3QQ==","name":"Junpyo Lee","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Junpyo+Lee","origUrl":"https://www.youtube.com/channel/UCxiqfEza8CCuhF0IToeOzwA","a11yText":"Junpyo Lee. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":363,"text":"6:03","a11yText":"Süre 6 dakika 3 saniye","shortText":"6 dk."},"views":{"text":"200,5bin","a11yText":"200,5 bin izleme"},"date":"10 eki 2011","modifyTime":1318204800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/no6mCxgKyQU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=no6mCxgKyQU","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":363},"parentClipId":"15892061194173925008","href":"/preview/15892061194173925008?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/15892061194173925008?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12930207362759369961":{"videoId":"12930207362759369961","title":"TI-\u0007[Nspire\u0007]: Tutorial #1-Fundamentals","cleanTitle":"TI-Nspire: Tutorial #1-Fundamentals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=0brxTzEi0cU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0brxTzEi0cU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeGlxZkV6YThDQ3VoRjBJVG9lT3p3QQ==","name":"Junpyo Lee","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Junpyo+Lee","origUrl":"http://www.youtube.com/@jpnspireu","a11yText":"Junpyo Lee. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":200,"text":"3:20","a11yText":"Süre 3 dakika 20 saniye","shortText":"3 dk."},"views":{"text":"63,5bin","a11yText":"63,5 bin izleme"},"date":"9 eki 2011","modifyTime":1318118400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0brxTzEi0cU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0brxTzEi0cU","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":200},"parentClipId":"12930207362759369961","href":"/preview/12930207362759369961?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/12930207362759369961?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1904129208479033423":{"videoId":"1904129208479033423","title":"Recursive Sequence TI-\u0007[Nspire\u0007]","cleanTitle":"Recursive Sequence TI-Nspire","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1DvpA0vxcVQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1DvpA0vxcVQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdHNwUjZjVDRXc2xSYlAycXAwZmVsdw==","name":"turksvids","isVerified":false,"subscribersCount":0,"url":"/video/search?text=turksvids","origUrl":"http://www.youtube.com/@turksvids","a11yText":"turksvids. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":409,"text":"6:49","a11yText":"Süre 6 dakika 49 saniye","shortText":"6 dk."},"views":{"text":"24,4bin","a11yText":"24,4 bin izleme"},"date":"8 mar 2015","modifyTime":1425772800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1DvpA0vxcVQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1DvpA0vxcVQ","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":409},"parentClipId":"1904129208479033423","href":"/preview/1904129208479033423?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/1904129208479033423?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3092177676718744828":{"videoId":"3092177676718744828","title":"TI-\u0007[Nspire\u0007]: Tutorial #10 - Residual Plots","cleanTitle":"TI-Nspire: Tutorial #10 - Residual Plots","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lHHmrSotr4U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lHHmrSotr4U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeGlxZkV6YThDQ3VoRjBJVG9lT3p3QQ==","name":"Junpyo Lee","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Junpyo+Lee","origUrl":"https://www.youtube.com/channel/UCxiqfEza8CCuhF0IToeOzwA","a11yText":"Junpyo Lee. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":128,"text":"2:08","a11yText":"Süre 2 dakika 8 saniye","shortText":"2 dk."},"views":{"text":"44,9bin","a11yText":"44,9 bin izleme"},"date":"14 haz 2012","modifyTime":1339632000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lHHmrSotr4U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lHHmrSotr4U","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":128},"parentClipId":"3092177676718744828","href":"/preview/3092177676718744828?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/3092177676718744828?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11350566212558110653":{"videoId":"11350566212558110653","title":"How to view and utilize a table of values on the Ti-\u0007[nspire\u0007]","cleanTitle":"How to view and utilize a table of values on the Ti-nspire","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ZczXRMrnljU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZczXRMrnljU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQk02czZyckxOY2JodHM2U25oZU9BQQ==","name":"Amanda Terwelp","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Amanda+Terwelp","origUrl":"http://www.youtube.com/@amandaterwelp7693","a11yText":"Amanda Terwelp. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":159,"text":"2:39","a11yText":"Süre 2 dakika 39 saniye","shortText":"2 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"11 eki 2016","modifyTime":1476144000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZczXRMrnljU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZczXRMrnljU","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":159},"parentClipId":"11350566212558110653","href":"/preview/11350566212558110653?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/11350566212558110653?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14236942967418634815":{"videoId":"14236942967418634815","title":"Euler's Method on a Calculator Page with the TI-\u0007[Nspire\u0007]","cleanTitle":"Euler's Method on a Calculator Page with the TI-Nspire","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Kqt1BHdgMqM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Kqt1BHdgMqM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdHNwUjZjVDRXc2xSYlAycXAwZmVsdw==","name":"turksvids","isVerified":false,"subscribersCount":0,"url":"/video/search?text=turksvids","origUrl":"http://www.youtube.com/@turksvids","a11yText":"turksvids. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":342,"text":"5:42","a11yText":"Süre 5 dakika 42 saniye","shortText":"5 dk."},"views":{"text":"38,1bin","a11yText":"38,1 bin izleme"},"date":"21 kas 2017","modifyTime":1511222400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Kqt1BHdgMqM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Kqt1BHdgMqM","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":342},"parentClipId":"14236942967418634815","href":"/preview/14236942967418634815?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/14236942967418634815?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3616330071902994640":{"videoId":"3616330071902994640","title":"TI-\u0007[Nspire\u0007] CX: Rectangular and Polar Forms of Complex Numbers","cleanTitle":"TI-Nspire CX: Rectangular and Polar Forms of Complex Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=mo4c32JPelQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/mo4c32JPelQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDQTZncWpvQVJsaFFSa1liMVdSN25vdw==","name":"Miss K's Mathematics Lessons","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Miss+K%27s+Mathematics+Lessons","origUrl":"http://www.youtube.com/@missksmathematicslessons6382","a11yText":"Miss K's Mathematics Lessons. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":453,"text":"7:33","a11yText":"Süre 7 dakika 33 saniye","shortText":"7 dk."},"views":{"text":"19,9bin","a11yText":"19,9 bin izleme"},"date":"3 kas 2019","modifyTime":1572739200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/mo4c32JPelQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=mo4c32JPelQ","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":453},"parentClipId":"3616330071902994640","href":"/preview/3616330071902994640?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/3616330071902994640?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14804294809882718144":{"videoId":"14804294809882718144","title":"TI \u0007[Nspire\u0007] - Evaluating Functions","cleanTitle":"TI Nspire - Evaluating Functions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=F094hUpRKv0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/F094hUpRKv0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb1gzTDV5dm9SbXZjUENGNDJiOWFzZw==","name":"Sowiso","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sowiso","origUrl":"http://www.youtube.com/@Sowiso","a11yText":"Sowiso. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":313,"text":"5:13","a11yText":"Süre 5 dakika 13 saniye","shortText":"5 dk."},"views":{"text":"1,3bin","a11yText":"1,3 bin izleme"},"date":"25 eki 2021","modifyTime":1635120000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/F094hUpRKv0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=F094hUpRKv0","reqid":"1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL","duration":313},"parentClipId":"14804294809882718144","href":"/preview/14804294809882718144?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","rawHref":"/video/preview/14804294809882718144?parent-reqid=1769179543337657-16169336328457323861-balancer-l7leveler-kubr-yp-sas-115-BAL&text=Nspire+Explainer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1693363284573238617115","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Nspire Explainer","queryUriEscaped":"Nspire%20Explainer","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}