{"pages":{"search":{"query":"Sin","originalQuery":"Sin","serpid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","parentReqid":"","serpItems":[{"id":"2763524202448755904-0-0","type":"videoSnippet","props":{"videoId":"2763524202448755904"},"curPage":0},{"id":"10742302042762857256-0-1","type":"videoSnippet","props":{"videoId":"10742302042762857256"},"curPage":0},{"id":"7281527085044920091-0-2","type":"videoSnippet","props":{"videoId":"7281527085044920091"},"curPage":0},{"id":"video-related-suggest-0-3","type":"relatedSuggest","props":{"title":"Bunlar aranıyor","columns":[[{"text":"Cosine formula","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Cosine+formula&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Unit circle","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Unit+circle&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Sin 90","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Sin+90&source=video-related-suggest&rq=1&src=int_discovery_recommender"}],[{"text":"Sine graph","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Sine+graph&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Inverse sine","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Inverse+sine&source=video-related-suggest&rq=1&src=int_discovery_recommender"},{"text":"Trigonometry formulas","src":"int_discovery_recommender","is_rec":1,"url":"https://gs.yandex.com.tr/search/?text=Trigonometry+formulas&source=video-related-suggest&rq=1&src=int_discovery_recommender"}]]},"curPage":0},{"id":"16077895358980625456-0-4","type":"videoSnippet","props":{"videoId":"16077895358980625456"},"curPage":0},{"id":"R-I-113683-5-0-5","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":5,"grab":"dFNpbgo=","statId":5,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","ui":"desktop","yuid":"9351588421769219437"}}},"isAdult":false,"position":5,"placement":"empty"},"curPage":0},{"id":"18140150045761845202-0-6","type":"videoSnippet","props":{"videoId":"18140150045761845202"},"curPage":0},{"id":"9084531608497530095-0-7","type":"videoSnippet","props":{"videoId":"9084531608497530095"},"curPage":0},{"id":"788606877771961357-0-8","type":"videoSnippet","props":{"videoId":"788606877771961357"},"curPage":0},{"id":"13119102848479071094-0-9","type":"videoSnippet","props":{"videoId":"13119102848479071094"},"curPage":0},{"id":"5996164232881940214-0-10","type":"videoSnippet","props":{"videoId":"5996164232881940214"},"curPage":0},{"id":"13331419191217578752-0-11","type":"videoSnippet","props":{"videoId":"13331419191217578752"},"curPage":0},{"id":"R-I-113683-5-0-12","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":12,"grab":"dFNpbgo=","statId":12,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","ui":"desktop","yuid":"9351588421769219437"}}},"isAdult":false,"position":12,"placement":"empty"},"curPage":0},{"id":"13973133148390888770-0-13","type":"videoSnippet","props":{"videoId":"13973133148390888770"},"curPage":0},{"id":"13678681481948372932-0-14","type":"videoSnippet","props":{"videoId":"13678681481948372932"},"curPage":0},{"id":"14687662431363470516-0-15","type":"videoSnippet","props":{"videoId":"14687662431363470516"},"curPage":0},{"id":"10698191944826446892-0-16","type":"videoSnippet","props":{"videoId":"10698191944826446892"},"curPage":0},{"id":"15954691034317194419-0-17","type":"videoSnippet","props":{"videoId":"15954691034317194419"},"curPage":0},{"id":"13373643506855282273-0-18","type":"videoSnippet","props":{"videoId":"13373643506855282273"},"curPage":0},{"id":"5695404303857586516-0-19","type":"videoSnippet","props":{"videoId":"5695404303857586516"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFNpbgo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","ui":"desktop","yuid":"9351588421769219437"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSin"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1400523803934783047130","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472323,0,42;1466867,0,24;1460339,0,35;1414492,0,19;1424968,0,16;1468855,0,83;1460956,0,89;1460710,0,52;1462157,0,88;1460214,0,93;1465968,0,47;1444116,0,29;1471623,0,72;1461641,0,64;1459946,0,4;1455767,0,29;1470250,0,53;1470226,0,67;1282205,0,76;1465947,0,96;1468618,0,29;1463530,0,82;1468011,0,83;1452015,0,43;1466619,0,12;1215711,0,88;1439206,0,58;1470513,0,84;90500,0,57;1404022,0,26;1469426,0,25;1470415,0,7;151171,0,38;126331,0,19;126344,0,83;1459211,0,5;1281084,0,16;287509,0,5;1447467,0,55;1254301,0,64;1468028,0,18;1467128,0,2;912280,0,1"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSin","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Sin","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Sin","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Sin: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"Sin\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Sin — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y6787d38a24ef2ea02b0177e852c35392","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1466867,1460339,1414492,1424968,1468855,1460956,1460710,1462157,1460214,1465968,1444116,1471623,1461641,1459946,1455767,1470250,1470226,1282205,1465947,1468618,1463530,1468011,1452015,1466619,1215711,1439206,1470513,90500,1404022,1469426,1470415,151171,126331,126344,1459211,1281084,287509,1447467,1254301,1468028,1467128,912280","queryText":"Sin","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9351588421769219437","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769219446","tz":"America/Louisville","to_iso":"2026-01-23T20:50:46-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1466867,1460339,1414492,1424968,1468855,1460956,1460710,1462157,1460214,1465968,1444116,1471623,1461641,1459946,1455767,1470250,1470226,1282205,1465947,1468618,1463530,1468011,1452015,1466619,1215711,1439206,1470513,90500,1404022,1469426,1470415,151171,126331,126344,1459211,1281084,287509,1447467,1254301,1468028,1467128,912280","queryText":"Sin","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9351588421769219437","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1400523803934783047130","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":154,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9351588421769219437","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"2763524202448755904":{"videoId":"2763524202448755904","docid":"34-4-16-ZC854EE30CCFA897B","description":"For those new to trig functions - or those looking for a quick review. Learn how to use sine, cosine, and tangent to solve for missing sides of a right triangle. This video shows how to solve...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4575391/ecb515016c3d273e69872cb91e59ac75/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RiUQ5gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgSGbYOzjynk","linkTemplate":"/video/preview/2763524202448755904?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Learn Sin, Cos, and Tan in 5 minutes","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gSGbYOzjynk\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhUKEzI3NjM1MjQyMDI0NDg3NTU5MDRaEzI3NjM1MjQyMDI0NDg3NTU5MDRqiBcSATAYACJFGjEACipoaHVrdnJ5aHBuYmlkc25iaGhVQ3hoa2pSYzJ6WjVhYlE5UzFVNzlfWGcSAgASKhDCDw8aDz8TvAKCBCQBgAQrKosBEAEaeIH09Pn-_QMAAwP9_vsD_wHt-vr--wD_AOv4_PMC_wEAAQX5_f8BAAD6D_3--wAAAP_y__j4_gEADwH4_AQAAAAS-QL_9wAAAAr_-_j_AQAA_fcB-fYCAAEJ_fELAAAAAAcM_wD5_wAB_Q70AgAAAAAT_AAFAAEAACAALeeY3Ds4E0AJSE5QAiqEAhAAGvABf_koAcz6zf_i6x3__AUIAdYaJgAfKN8AwhIlAdMG3wEQIe8B-iIF_iLRy_7XEOYALQ7-_-H87QD_yCwAJAX8AakVAQAaBBIAOhAYAjb6A__84jr96-scAv0ct_71-_L55-n6_BT4vgHsA8ACH-gXA_8Y7ASs9g7_9zDu_94R__vvFdP95fjeArQRD_voCCcBAhjyBgEWAvn0uQ0BO90EADzm-AAEGuMFIfLfBcL2HQITIuoI4cv-CvoiAAHM3vj7--gZ_tPkFPcT3SAEwgz39vD73vQCFfcSAuoTCwLY-PER7PIAwjoL-A317RALA-34IAAt51gPOzgTQAlIYVACKs8HEAAawAecTa--6sJZvEln_bv_VMG8s36zvZgQGLztA6q9X_yjPDjYi72Cykg-xJSIvFVKkbvYfhK9TXcovcKYnTsUlEI-RkUcvXPoALznp9i9nFPJPADiLjuOQKy9ofEpPZqpmLvc9RI9kQvOvKAHELvvSMs97ooNPIkMJj1vsQy9VlsbvVI4zLz4oRo8H4XrvbyRebxnPQI8ABIZvKYHBzxbEeu8r3VOvHpyybrnLlM8xJb-PbUgLbsWkmK9EV51uz7007xaN_c6zOtru9rdqDz9Wr29ggNWO9eefrzyA_w7QU0IvbOJgrwmQKg9kKgrPW_Rrrxp_OK93PP8vOjmkbwNUyu-XLKmO2K6Nbx0reI8KoztPe0Q_7wVORS-T5VvPKsZo7xhiDw9IcksvWHdnTs4aD8-h9YvPPinNzvTSrE9AiNZvR-O5LyUBk29P4zQPcZPozxsnAg9ZnFVPQvUorxrnkM98mK8vJezMTum-FO8q3BVva3aNTylQ0w8IBqXPYUc4ztpz5C9iF2VPeUmarwFI6U91gI7vknlmjrJjk29W7lyvJiACDySVrE9uTXpPbpMj7oiGyg-sWnKvNulyzqMTMA8IDJbvblIDDw1KWU9oYG4vWpQDzuYfH29HsZkPd1QArxSkpq9kjwXPgvMS7kOovU8iznDvfHsl7o36je9ebJ7PWA26Lo8B4C9tcYgvUpuAbyhkik9QKAUPONqiTupo6U7s8MJvexF3TuMv8i8d9kvOwq-hrvMjTM8imeavbW15rgCpkI8n6kcvdiyhLruuYe9D7vKPNOW0bhu4ZQ8lPoiPpWhpbiZLp87TH_AvYaUVjhUG_y9Yrv7vRPT8jm77Be-fCJTO8gp3Djf9f48-PYzPTE2aTnPjcS97e4mPFxlDLnqzei9TGrsO-4gkzedJpY7S-KPu0S5Krgf5kG97xSXPdeumTnZVwG8vdpWvXy3lbieAzC9D_IqPr3F37hrmMY88zz4vKJ8TrhJNHw9xvw8vYLkgzj7Ufm8i_rmu843TrjCm6o9IvBRvVIfEzitaJi8bqRsvT9TMDirrHI9uRvAO_-s0bj49369W8UsPRgpvjjOcoQ9hfSKPTkHZjj4pxQ-A_pOPR_07TYCYUy8bLXivHYiMjiKrhs-9WYEPqeYrrnsCdy84SlfvcSlY7h3SIa97PgvvUBqP7gzKyW8TtU9PEAeozfZxgk9MD-BPPAYO7iKllc9EFj5PY0XQDinjGS9QUQKPXgU5Lix4Wm9tiqNO4u8wrf0PG68JryePe-QhTggADgTQAlIbVABKnMQABpgNP8AM9YcIs3jEefj7c4f-PMP3_zgBP_0CgDO5gAE_A3L0fskAAD8Gdm2AAAAKvLhD_cAzF_kswX58xv8yskR-fh_Bd_-4t0YBrj29iIK8RQyBWYPAPMZ6ycotvQPHTwmIAAt-l04OzgTQAlIb1ACKq8GEAwaoAYAAEhCAACwwQAAiEIAAFzCAAAQwgAALEIAABhCAAAAAAAAwMEAAFjCAAAAQQAAgMAAAMDAAACAQQAAFMIAAMBBAAAIQgAAYMIAABxCAACowQAAgEEAACTCAACAwAAAOEIAACDCAAAwwQAAXEIAAAjCAADgwQAAgMEAAGjCAAAoQgAA1sIAAFDBAACgwQAATEIAANBBAAAoQgAADEIAAEDAAABQQQAAiEEAADBBAAAoQgAAAEEAAGDBAAAwQgAAMEEAAARCAACAvwAAEMIAAKjCAAAQQQAAAEIAADBBAABQwgAAoMAAALjBAADAQAAAQEIAAMjBAAB4wgAAYMIAAPjBAACYQQAAUMIAAATCAABYwgAA2MEAAKBBAAAYQgAAKMIAACTCAAA4QgAAoEAAADzCAAAcwgAA4MAAAEhCAABwwQAAyMEAAChCAADYwQAAGMIAAOBBAABAQQAAUEIAAILCAADoQQAAsMEAANhBAAAAQAAAEMIAAIDAAAAswgAAsMIAALhBAABAQAAACEIAAExCAACowgAAQEEAAABAAACwwQAAqMIAAERCAABMwgAAbEIAAHBCAABUQgAAYEIAAPDBAAAEwgAAwEAAAKDAAADgQQAASEIAABzCAABgwgAAWMIAAODAAACwwQAAiEEAABBCAABowgAAbMIAAJjBAABEwgAAXMIAAABAAAAQQQAAfMIAAPjBAACuQgAAIMIAAIDAAAAYQgAATEIAAKDAAACMwgAADEIAAKDBAADIQQAAOMIAAJBBAABsQgAAUMIAAKDBAAAgwQAAgMEAACjCAAAcwgAA0EEAADDBAADgQAAAGMIAAPLCAABgwQAAKMIAAFBBAADIQQAAFEIAACBBAAAQQQAAIMEAAIxCAACowQAAyEEAAKJCAAA4wgAAkMIAAIDBAAC4QQAAWMIAAFjCAACAwAAALMIAAPjBAABcwgAAgEAAACzCAADowQAAHMIAAAAAAACIQgAAEMEAAOjBAACowQAAMEEAAKDAAABEQgAAkEEAAJhBAAAQwQAACEIAAKhBAABgQQAAkEEAAEBCAACIwiAAOBNACUh1UAEqjwIQABqAAgAAnr4AAJa-AACuPgAAEL0AAHQ-AAC-PgAArj4AAAW_AAD4vQAAyL0AAAy-AAC4PQAAHD4AADQ-AAD4vQAAXL4AAEA8AABQPQAAhj4AAD0_AABrPwAAiL0AAEA8AADOPgAAsr4AAIg9AAC-PgAAiL0AAPg9AAD6PgAADD4AAN6-AAAEvgAAqD0AAJg9AAAQPQAAcL0AAK6-AADGvgAAfD4AAHA9AAA0vgAAFD4AALi9AAAwvQAAqD0AAGQ-AACovQAAXL4AAL6-AACWvgAAqL0AAAE_AAAsPgAAoDwAADA9AAB_PwAAMD0AAHS-AAA0vgAAir4AANg9AAA0vgAAhr4gADgTQAlIfFABKo8CEAEagAIAAAQ-AACovQAANL4AAFO_AACKvgAAmL0AAK4-AADovQAAUD0AAOC8AAAwvQAAuL0AAIC7AAAQvQAAML0AAEC8AABMvgAA2j4AAEy-AABsPgAAFD4AANi9AABcvgAAqL0AAAS-AAAkvgAAUL0AAJi9AACgvAAAlj4AACQ-AAAcPgAA4r4AABC9AAAwvQAAgDsAANI-AACIvQAA-r4AAES-AABwPQAAgj4AAKC8AADWPgAADD4AAFA9AAB_vwAAPD4AAJ4-AAAcvgAAMD0AAKg9AACgvAAABD4AAAw-AABcPgAAoDwAAEC8AAC4PQAAgDsAAFQ-AAAkPgAAEL0AAKq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=gSGbYOzjynk","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2763524202448755904"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2004627039"},"10742302042762857256":{"videoId":"10742302042762857256","docid":"34-7-10-ZAF9E5C585E586E70","description":"View more at http://www.MathAndScience.com. In this lesson, we will learn fundamentally what the sine function and cosine function represent. We will learn that the sine function, also written...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3468180/740a07473f27132444b76d17237736c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LangGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvuoNyvMvDtA","linkTemplate":"/video/preview/10742302042762857256?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & Cos(x) ?","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vuoNyvMvDtA\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDEwNzQyMzAyMDQyNzYyODU3MjU2WhQxMDc0MjMwMjA0Mjc2Mjg1NzI1NmqHFxIBMBgAIkQaMAAKKWhobWtsbGdqeGlmZ2tkc2hoVUNZZ0w4MWxjN0RPTE5obmVsMV9KNlZnEgIAESoQwg8PGg8_E8UWggQkAYAEKyqLARABGniB7QT79wP8AAYFEAX5CfwC7_z_BPr__wD0APTzAwL_AOv7A_oD_wAABBMB_f8AAAD_-f7u__0BABIEAvQFAAAAGwL9APcAAAAZB_X5_gEAAAP2-PgD_wAAAQH0BAAAAAAJCwTtAAAAAP0Q8wIBAAAA_AH4-wAAAAAgAC2c1cY7OBNACUhOUAIqhAIQABrwAWz4Df-B7_35LfEBADf89wC0Cxn_VfcPAJjl9gPZDMIBLQH4AR3l-_8AHvT_wAcB__QY7f74ECYA3gIG_xEXCQD4De4AHfPkADIkFwD1ARsB4SEQ__UTCwDk9wMAK-7MAPT6Jf0OBu0BANngBADtFP8FFwkA3Q3oANsCCQYFDOgB8RLZ_jXo-QPk-An_2yPlASUf9wDq79X_7SH-BAnnBQP4BvUBGAMR_QMW4gYqEPH4GgfoAhAB4QH5QQEDHxf0Ad3jCfcJ-fb9Eyr2BhoIDwX59vr96eAFD_Av8gPpAvYJ3AIDCPHTAQr69P0N-tbzASAALTKKJDs4E0AJSGFQAirPBxAAGsAHjPb4vl4CJjzxDeq8VKoEPlrwAr1Bn0g8uaX1PTknhj0ayl-9z9vYPcjkib3WL2K9l8eqvhPH7Du-EZ28_b10PpJUS70Dsew8NXk6vg6rkTtKfkQ89aFrvoTTBz10NcO7Hq92PX27Gz0OeKq8qYQKvN1EiLzzENe8RpTGPVjxPL1PWS29D-AjPaATZ7255BM911YHvYPlY72pw2W8IAe6PYKRN72Ispy89SVAPIe_prygbIq8eraova7iw7spi-s74zVPPnna67yDXcM8IZTXPevidj0CmR88DCMdPTg9ubxvOY28NomLPW0Atj2ES0e8OKGQPMxYmTxEi-y7Mn2qvfeJiD1xfGW79fX8PZyiCD3rK1m8CI7LvUJNIbxmfhq8ZmUePAkCnrtWFoG7D6-QPB36djsFAri8-abEPc6IUj135L68MGwIvfShML0ZvnA5gIA1PNzxBj0lB6q7PGK5vVFsBT0IgJ65UAYCPWpbpLsTQLU7aVfMPaYTJD1tKws8wYvjPNLscDznGa-5thQLPZFUgL3la4W80Y-ru-Q0H72ykTW8EUtvvHauwzz9paA8ahDJO0yTrTxzyLw5m1xHPaI4gb1_fZ27wz6bPROPNb0lJBI8cvnvPdhsOz0tHkU6kQsOPSHTtTzOnAG8rokAvYsffj3skXk6yICHvJ3yqLw8mPs7ucMmPSDPTr1T1JW7yV2PvZM34buz4ic77H2kPVjLnT2-zri6ppbSPJPH9LvelkA77KkwPecuMjse5g46xFgLvTvmN70gt1s78E5ePXOyPj3BVkI5SX5JPazFRz1kCl647nPju9KhiL3DIzw5dloyvfsVHbwv37Q3HNYPPVpipTxwXeW5e4viOwyywL16uum3-cDpu_mkbrwOL5C41XCGPdbrLD1LpFS5EhGfu58Auj1LKhK5FE02PcS1NTzi_Z-5_cYSPRma4bzZlXq4HSmxPfxNrT0C2wO4QeN4vHxH7b1hE6s5leHLOucBhz0yMYs3GDxRPQse8DwLgwG3UzO1vA4gcj0kmCK5iCSju_WmHb1IdkQ4lF9Hug1nBjweMWU3PF89vRysJD2SE-Y4nNuZPXNuDj0nkL83oM5rPc0muLuuq7039qRCvTAlFz2Dw8g3T4jKPIvAGLy4tra4ZoKRvXqVC71U1IS3YzNWPXZRtL0_m504QUmRvZIls7wTvja3cvikO6j5j7zjp8S3iITPPWuySz2Jt4U4TrGPvKaAFL1fTLu46FWzvRYk7DzNuCE4oM6LPO2maj1_Bi84IAA4E0AJSG1QASpzEAAaYCL_ACrrLOzeCzQG9ejp998IDujy7gj_9AAA_ffX5AII3cQECP8S3QLpugAAACbn-RPYAAlW3fXvHvUKDc2s-PYEfyjnCebXAePZ1wMM__UvJPQkMADVO74nLvHfDSQTNiAALVRPSTs4E0AJSG9QAiqvBhAMGqAGAAAYQgAADMIAAOJCAABIwgAAsEEAAPBBAACWQgAAiEEAAOjBAAAgwgAAoEAAAGBCAABYwgAA4EAAAEDBAABAwQAAVEIAAHDBAAAAwQAA8MEAABRCAAD4wQAAYMEAAIZCAABAQQAAEEIAAEDCAACAwQAAjkIAAARCAAAowgAAvkIAAHTCAADQQQAAcMIAAHBBAADgQQAAiEIAAJhBAAA0wgAAIMEAABxCAAAAQQAAAEEAADRCAAAAwgAAkEEAAABBAAAcQgAAoEAAAADCAAC4wQAA4MEAAChCAADAwAAASMIAABDBAAAEQgAAcEIAAERCAABUQgAA-MEAAJTCAACEwgAAgMAAAGTCAACAwAAArMIAACDBAAAgwQAAAEIAABhCAACSwgAAJEIAAIC_AABYwgAAoMIAAEDCAACgwAAAUMEAACjCAABgQQAACMIAAEBBAABAQgAAMEIAAETCAAAwwQAABEIAABDCAACAwQAAjEIAABBBAAAAQgAAoEEAAHDCAAAEwgAAwMAAAKhCAAAcQgAAVMIAADRCAAD4QQAAoMEAAJLCAADIQQAAAMEAAHxCAACAQQAAjkIAAIRCAABAwAAAwMEAABBBAABgwQAAGEIAADhCAABgwQAAdMIAAJLCAABgQQAAuMEAAJhBAABYwgAAAMAAAFDBAABAQQAAKMIAAATCAACAvwAAAEEAAADCAAAAwQAAVEIAAARCAAAwQQAAuMEAAMDBAADowQAAnsIAANBBAAA8QgAAQEAAAIDAAABAQQAAoMAAAIDBAABUwgAAMMEAAODBAABQwQAAgEEAAARCAABMwgAAUEEAALDBAACwwgAAEMIAAJzCAAAIQgAAiMIAAFxCAAAQQgAAYMEAAFDBAADgQQAAoMAAAHRCAAA0QgAAkMEAAFjCAACgQAAAfEIAAABBAAA4wgAAYMEAAJBBAADgQQAAmEEAAPhBAAC6wgAAmMEAABjCAACAPwAAcEIAACDCAABgwQAAAEEAABDCAACYQQAAuEEAAKBAAABAQQAAgMEAAIBBAABAQQAAEEEAAMhBAAAwwgAAUMEgADgTQAlIdVABKo8CEAAagAIAAJi9AAAsvgAAij4AAOA8AADYvQAAbD4AAEw-AACWvgAA6L0AAHy-AAAsvgAAoDwAACw-AADIPQAARL4AAIA7AABQPQAAML0AAHw-AADmPgAAfz8AAPi9AAAwPQAAgj4AAL6-AAC4PQAAkj4AAIi9AABUPgAAsj4AABw-AAB8vgAAgr4AACy-AAAQvQAA-L0AAKA8AAC2vgAAgr4AABQ-AADgPAAA0r4AALI-AACgPAAAFD4AAGw-AACmPgAAwr4AAAy-AACGvgAALL4AALg9AABEPgAAPL4AAIY-AABwPQAART8AAEC8AAAQPQAAQLwAAKA8AACgvAAADL4AAMK-IAA4E0AJSHxQASqPAhABGoACAAAMvgAAyL0AAI6-AAAZvwAANL4AADA9AACqPgAA2L0AADC9AACgPAAAZL4AAJi9AACAuwAAEL0AABC9AACgvAAAUD0AAO4-AAAQvQAAtj4AAHQ-AAAQPQAAyL0AAPg9AACgvAAAgr4AABC9AAAwvQAAoDwAADA9AACIPQAARD4AAN6-AAAwPQAA4LwAAJi9AAAFPwAA6L0AANK-AACGvgAA2L0AAI4-AADgPAAAPD4AAPI-AADoPQAAf78AALg9AAD4PQAAyL0AAAQ-AAAsPgAAUL0AAJ4-AABEvgAAdD4AAKA8AABwPQAAVD4AABw-AABMPgAAqD0AAEC8AACyviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=vuoNyvMvDtA","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["10742302042762857256"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1732153009"},"7281527085044920091":{"videoId":"7281527085044920091","docid":"34-0-11-ZCA9DA07670293777","description":"Learn how to solve this complex impossible-looking trig equation sin(x)=i. Of course, we need to use Euler's formula and the complex definition of sine. sin(sin(z))=1 • Math for fun, sin(sin(z))=1...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1575538/af768ac12bdf5454489942fd3451e0ac/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sT7dUQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIsadvaKb97Q","linkTemplate":"/video/preview/7281527085044920091?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"how to solve sin(x)=i?","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IsadvaKb97Q\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhUKEzcyODE1MjcwODUwNDQ5MjAwOTFaEzcyODE1MjcwODUwNDQ5MjAwOTFqiBcSATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8TgQWCBCQBgAQrKosBEAEaeIH1BAD4_AUAA_4K-_0D_wEbAvv_AwIDAPD4_QX_AQAA9QH2BAEAAADxFP7_BAAAAAP7_fv9_gEADPcD8AMAAAASAAUE_QAAAA4D-P7-AQAADQv8_PQEAAEA_wAJAAAAAAgKA-8AAAAA_AcG9QEAAAD7-gcKAAAAACAALSvk3js4E0AJSE5QAiqEAhAAGvABfyMKA-kD3AGpH8n_A-UNAfoUL_8JM_EAyAznAOkV6gH-GfMAFfTJAiYN7gCxK_j_FNewAtAF8wAwtw0CC8r9APH52AEC8_oAIhQxAgX17wDqCigA7OngAPPZsAAgGsIA7vEe_UENvwIg_N8A7Q8zAg4ILgQOz_D79PTiAafsAAEK5Oj_ug8TAxrVGf_SNA8AFP7qCRAfGvkEMv4DCdIL_AjuGfUhBQsJAgXlAw_6Cf676Rb9zvX-BuLvCQfP2uMG1fEwBvfg9AMgBhL48f8E_xAX5QTbvfAH7s0I9PsB9_omFfr68QnvCusL6Qe95_37IAAttvcMOzgTQAlIYVACKs8HEAAawAduE9a-UWrvvILWDzyjUzy99MgbvOtNMbzzdw68YhwyPV8Ieb0_c0Y-Du4zvZb5fTv2lmK-BXiBPHk_Dbwm__M98QW3vaBlJzyG4wm-3yD1PKwBKr1usCa8GGkYPRl8s7p4_Zc74nnEPP7qhr2IZXM9pWqbvXACmTrkw8c8w_IguoOa67xPCHw7ctJFvd-KRLxO0dG9fiq4vM4N2bv50I89hUSKva6gxLwM8qk92QF8PF_qqbtAN0-9jEn_PTdZ_ruP_ew9tBVlPfxkYLoguOq9PJfzO8SBK71uU5e8WFN5Pbd547uMeA868OMDvduyMjwE-aO8pl_ivPgBxLnesO28m9UxPdn2LDxBXvQ8ABEsPWwt5TsdPd69vsAMPrsIC7oC89A9FCZnvIxQJjs3dVm9EDuYPftDzDuJF5o91QIevCEUpbqUBk29P4zQPcZPozxYcJS9aGJ1PaLgFLtflZA9mkS4PVBuWzw2PB48y6UMPeE8QbxfHcG9XzUgPXiZBbgWvIk7qa4yvO5YcLvfZsY9ObXzvYcfGDz6WKa9y1CQvR2nrrucogg8-oaIPXZlPLxbPpc9-KTDvajUOrtri0E9Tf5CvWQ8SjzLxGM9IcoHPrIV7rsILwu9qyArvLlB5TooclK9dDAxPT6p_rumffM9Q1QEPHjV3jsvv9O9cqPtvNe0Xrt7bCY8Edaxu7lpWLs8PpA8eme-vE1MULqBW_c9CEuWvfhf7jjONQo7v42OvbZB1Lo3FtQ87ECsvQNX0LiUQLQ94M1kveKHajlpRB-97bydPQIHoLmoc-W9oen2vICZb7l-UYc9jhM3uj93Z7n6_Qy9P0thvb9Xk7n-9hA9iZiSvRUf9bgkJi29tCMTO_ps3bgjxIA9PfxrPA7-Y7p5P-49ZLdqPa9X_7fSzG68kvLJvK3Y7bjiJVW77oI5ujj4CLhmtpW9GlZMPTdNhjmWUqE9mvYjPWXNaDfikgM-jsOlvYIxoTl0PqE8hX-cPYyWRLkAWhA71pdbPGu8KLhPK1s9OyesPTxMhLh5AsY8vg-cParW8Tew4lQ9sldMu-XRhThodTK-ZKQoPRfKTLffn1c90cdhve53qji9A5e7JJsbvmfyT7dXwgO8AAiOPIzimjj-z4Y826zFvXVOLji6lhy8SepOvVhMfbng_509NQYfPIaNyDbmOzi9qC1_PcoQyLLHoAM-YI14vRfIWjhCy189Yxq3PW6Qjjgkppo9O-EVPqRcbrgxB0G9Vh4NPNffrTZX2wO9IPDgPfdSLjggADgTQAlIbVABKnMQABpgGeoA-u8eze8QBP35xRsDyz3J3OavNv_u4f_vFRQHKxHJ2B_4_xMWCb6eAAAAKNT3_sgANHfu4gUYJQvXvNC8PtlvE_bs2cXzK9MKKesqEi5Jzgk6AIEk2Tscr88b_dlRIAAtN_QXOzgTQAlIb1ACKq8GEAwaoAYAACRCAACewgAAZEIAACzCAAA4wgAAiEEAACxCAACIwQAAAMEAAKDAAACQQQAAYMIAACDCAACMwgAAyMEAACDBAAAAwAAA6MEAALBBAABowgAAMEEAALBBAAAAwAAAwEAAAIDCAAAsQgAAUMIAAJjBAABsQgAAkEEAAKDBAABIQgAAgMAAABTCAABUwgAA2EEAAJhBAACMQgAAIMEAAMhBAACAwQAAiMEAAAxCAABAwAAAgL8AAAAAAACAQAAAREIAAGBCAAAQQQAAAMIAABDCAADgwAAAgEAAAEDAAADgwAAAfMIAADDBAAAkQgAAyEEAAFBBAAAYwgAAYEEAAJbCAABUwgAAqsIAAODBAABQwgAAuMEAAATCAACgQQAAokIAAKzCAAAkQgAAHEIAAADBAAAYwgAAuEEAAHBBAACAwAAAqMEAAIZCAACQQQAA4EAAAGBCAAAAQAAAikIAAIBBAADoQQAAisIAAKTCAAC8QgAAwMAAAIDBAACwQQAAsMEAAATCAAAgQgAAqEIAANhBAAAQwgAAqEEAANBBAAAUwgAA0MEAABBCAAAgQQAAmkIAAOhBAADUQgAAxkIAAKhBAAAkwgAAHEIAAIC_AAAAwAAAgMEAAEDBAADgQQAAgEAAANDBAADcwgAAsMEAAIDCAAAAwQAAgMIAAHDCAADAQQAAgEAAALDBAADQwQAAHEIAAAjCAADAQQAAmMEAACBCAADYQQAAwMEAAGRCAAAMwgAAAMIAAAAAAAAMQgAAyMEAAGxCAADYQQAALMIAAFRCAACwwQAAQMEAAJhBAADAQAAA8EEAAAzCAAB0QgAAwMEAANhBAADQwQAAAAAAAIDBAABIwgAA4EAAAABBAADCwgAAYMEAAFhCAAAQQQAAuEIAAAhCAADgwAAAEEIAAJBBAAD4QQAAIMEAACDBAABwQQAA4EEAAEjCAAAQQgAAxkIAAIDCAAC4wQAAAMEAAIDAAAAAQAAAosIAACDBAACgwAAAoMEAAKBAAABwQQAAcMIAAABBAABwQQAAYMIAAMhBAAAAwAAAAEAAAPBBAAD4wSAAOBNACUh1UAEqjwIQABqAAgAAUD0AAPi9AACuPgAA-D0AALi9AACCPgAAXD4AAMq-AAC4PQAAyL0AABC9AAAwvQAAiD0AAFC9AABMvgAADD4AABw-AADgPAAAiD0AAGQ-AAB_PwAADL4AABC9AACWPgAAor4AALg9AAD4PQAAgDsAALI-AAAMPgAA-D0AACy-AACIvQAAqD0AADw-AAAwPQAAQDwAALq-AACWvgAA2L0AAFQ-AAAEvgAAfD4AAEC8AABQvQAAHD4AACQ-AADIPQAAqL0AADC9AABwPQAAqD0AAEw-AABAPAAAyL0AAJg9AAA7PwAA6L0AAIC7AACOvgAA6L0AAEC8AAAQPQAAlr4gADgTQAlIfFABKo8CEAEagAIAAHS-AACovQAAqD0AADm_AAAEPgAAED0AALY-AACCvgAAdD4AAEA8AAA0vgAAVD4AAIo-AAAQPQAAcD0AADA9AABkvgAAIz8AAFy-AACSPgAAiL0AAGS-AAAwvQAAFD4AALi9AACOvgAAcD0AAHA9AACIPQAAXL4AABC9AAB8PgAARL4AALg9AABwPQAAgDsAAAs_AACYvQAAqr4AALK-AABEvgAAuD0AAHC9AACAuwAAjj4AAFS-AAB_vwAAfD4AAGw-AADovQAAgLsAALg9AADIPQAAoj4AAN6-AACKPgAAQDwAADy-AACiPgAALD4AACQ-AAC6vgAALL4AAIC7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=IsadvaKb97Q","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7281527085044920091"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2631997934"},"16077895358980625456":{"videoId":"16077895358980625456","docid":"34-1-14-Z99C6EA07FE055EAB","description":"We have two exponential equations with trigonometric functions (sin(x))^(sin(x))=2 and (sin(x))^(cos(x))=2. The tetration equation (sin(x))^sin(x)=2 requires us to use the Lambert W function...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3467492/06f2012f6b7a276f62dbbb79c72cd055/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/naZROAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"4","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTf0jetLbFX4","linkTemplate":"/video/preview/16077895358980625456?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solving sin(x)^sin(x)=2","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Tf0jetLbFX4\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDE2MDc3ODk1MzU4OTgwNjI1NDU2WhQxNjA3Nzg5NTM1ODk4MDYyNTQ1NmqIFxIBMBgAIkUaMQAKKmhocndwaXprY25xbmFneGJoaFVDX1N2WVAwazA1VUtpSl8ybmRCMDJJQRICABIqEMIPDxoPPxOFBYIEJAGABCsqiwEQARp4gfcE-v76BgAD_gr7_QP_AfYB-AD5_v4A9_v7_f4C_wD0_PUECwAAAPYJ_PoEAAAAA_v9-_3-AQAH_wL2BAAAABIABAT9AAAADgP4__4BAAAHCO_3Av8AAPsA_AIAAAAACAoD8AAAAAD8A_72AQAAAAAAAgYAAAAAIAAtWlTkOzgTQAlITlACKoQCEAAa8AF_DOwC0fzo__AF2wDcDxQBsigg_xoi5AC2ERIBxAPlAO8X-ADV4NH_FAoK__AiC_8499H_-tUCACXcDAAc1AIA_QUEATDQDgEaBRkB--Lt_s8QMQED4wsAEsnuABsn5_8h_R__9wnlAgntwQga6xQCFe8zAPnyFAT29ucB6_f2Au7h3v4NEv7-FdwV_90EHgIC4PYCDQUH9gcIDwYI6AQD_uMU_RkY5f768PYN-OIQA87p_gX85fcFG_ofBeQM8QLq8hX5zeoE_w_eCvU06PD-3B0BB_vqBAgn9gj7CeMK_Bbp9vQGFgb70_zuC8_68AIgAC2RNyk7OBNACUhhUAIqzwcQABrAB4iCub7FJQG8WkX_vBipoDt3_LI8w4keO_N3DrxiHDI9Xwh5vdqQHz6mBTM7562ZOpsdob5GoZu8yGeoPImZDT7MP1-9652fuXoXL74IPDA9KZ_UvEpNwb1m5jg7TxqPPJ29Iz54u7k8RcOYvL64eTtXLBS9Q9j6vG8muz3B4Jq8GQSWvNxqGTr1EVi9E3xYvQunFr1VV7Q8mAo7vLsmBD6th5-9QHf4vI1ejT3SsPM8A6ACvPEPe72-Ghs9dNi3uglUTz6mlnI9BYiCuy6Z2bx_-Hk8EcLguP4FZ73AQ2w9PJkHuzvlrL16foc8IolePIIkh7wgPpW8FNHvvN6w7byb1TE92fYsPNl8Vz3qEG67OCXmO6Fdj7zJdwk-B9IkO5H6kT2CJfI8kDaGO6HbBj0L6Ko955F9u3oApjxi4FS9xB9JOy0OH7xVVi49EEIbPcbEtr0-KEM9GbmdvCkKz7xqrY49B4gEOsHWNrxLHK49tD16vKQsjT2dHBW8eWyRO-_Kmb2Z5Vw9u0VXOkWA8z28Yba9ey8dO06kCj0Yn529L2mMPGLIwL3Stzs8tM7XO1dYFT2LVHi9khDdu9ntA75i2OW7dCyMuslJpz17tKI955p_uVQlPTrwVcY8KRPpuv4s1rxhXKC88747vL-AXj0KRxW91igaPMyqub04tHK9Q_-4OQwDFj19CCq8-tRSu1MGzr3YlVs940SJOlT6nj2a6Di9eFpPOEGmmz1qJKO9DEQJu8UTS734jcq9P-1HuTy98j1KyFG9V8GOOWt7QD2bcuU9Kt6JOU79Ur1XKZi8LLEBOIFDCD6nkRu9x1wJuQXT-rv4ToG9CfmRuYBw07sXzaS9RJKbOBStAT0EwJ08KvCjuAnJfb0IsMg9eAgIuh5Nij11tCI7Y9BeuWrV9DsFTpa9oDYzOBRNNj3EtTU84v2fuWTYl725P029hb57OcDMFz6Zck89nEAAOeKSAz6Ow6W9gjGhOcNPl73TgwI-035JuZZ2ajxPR1Y9Tcw-uMa6XTzwhSm9YkavN5UGQz1w6T09S-YoOKgXnTsiFes8B6t-tj2HaLzzrEU7ab2_ODnLkT3i0WG9uqxkOEuPuz1CPgi9PGN8OCRad70dbcG9DhYaORVOFz0BI9y7OUOZuIzbKD1Ff029X0ATNzhaRDwj7lY8PF6ON8ya2LzjtWE9kN-ht4LIAj45oMC9PAE_OM595js8H5Q9vRK_OP8KdD0YwJo9T3RxN30JMD2atTQ94HEkuKDOizztpmo9fwYvOCAAOBNACUhtUAEqcxAAGmAlAQAd-i7T9BkZ8QLbGwuyEtzd1c4a___PAAoF8t8gIrnTLPj_Munw_qYAAAA90fXuCwANbwz3CGEVw-vXrcM5-H8E_hzC5yMQ7hQy8_3qO0HFFB0AtBG7NjK4xiz_5jQgAC2A3x07OBNACUhvUAIqrwYQDBqgBgAAwEEAAEzCAACkQgAAlsIAAKDBAACwQQAALEIAAADBAACqwgAA-EEAAOBBAAAcQgAAQMIAAADAAABAQgAAgD8AAAAAAABswgAANEIAAAzCAADYQQAA4EEAADzCAACAQQAAwEAAANBBAAAkwgAA-MEAAFBCAAA0QgAAHEIAAABAAADgwAAAkEEAACjCAACAQgAAuEEAALZCAAAwQQAA4EAAAHDBAAAIQgAAEMEAAEDBAAD4QQAAwMEAABDBAAAwQQAArkIAANDBAAAYwgAAgMEAADBBAAC4QQAAqMEAAFzCAACIwgAAgMAAADhCAAD4QQAAoMEAAATCAAAgwgAAMMEAAAjCAAAwQQAAyEEAALDCAACAwQAABMIAAJJCAAAQQQAAKMIAAMxCAAC4QQAAiMIAAKjCAAAAQQAAcEEAAMBAAAAQwgAAyEEAAEBBAADwQQAAbEIAALJCAAAgwgAAXEIAAHBBAABMwgAAwMAAACxCAADoQQAAEMEAAODAAACIwQAAwMAAAEBBAACEQgAAmEEAADDCAACkQgAAxEIAALDBAAD4wQAAQEEAAIhCAABAQgAAAMIAADxCAAAQQQAAFEIAAAzCAADAwAAA-kIAAChCAAAAAAAAoMAAAEDAAACwwgAALMIAACjCAAAkwgAAhMIAAEhCAADgQQAAUMEAABjCAACIwQAAsMEAACTCAABgwQAAQEAAAJxCAADIQQAAgD8AAOhBAAAAAAAAwMAAAGjCAABwQQAACEIAADBBAADAwQAAoEEAAKBBAACgwQAAJEIAAJDCAACowQAA2MEAAMhBAABQQgAA6MEAAMDAAADQwQAAgMEAACDBAAAgwQAAMEEAABDCAACoQQAAoMEAAIBAAADAQQAAAMEAABhCAABQwQAA6EEAAPjBAABgwgAAwMAAAABCAABAwAAAAMEAADhCAADAQQAAZMIAAAhCAAC4QgAAJMIAAHjCAAB4wgAA4MAAAGhCAABUwgAAQMAAAGBBAAAAAAAAoMAAAEDAAAAIQgAA2MEAAFDBAACAPwAAiEEAADjCAABcQgAA0MEAAIrCIAA4E0AJSHVQASqPAhAAGoACAADoPQAAMD0AALo-AADgvAAAoDwAAM4-AABUPgAAI78AAAw-AACYvQAABD4AADC9AAAcPgAABD4AAKi9AAAEPgAATD4AAHA9AACePgAA_j4AAH8_AACWvgAAgLsAAIY-AADGvgAA-D0AAKA8AADgvAAAuj4AAHw-AAAkPgAAmr4AAIA7AAAwvQAAfD4AACQ-AAAMvgAAlr4AAJ6-AACYvQAAsj4AAJi9AACuPgAA6D0AAKA8AAAEPgAA6D0AADA9AABAvAAAFL4AAOi9AAC4PQAAdD4AABQ-AACYvQAAZD4AAFc_AADgPAAA-L0AANa-AADYvQAAgLsAADA9AACaviAAOBNACUh8UAEqjwIQARqAAgAA4LwAADA9AABwPQAAU78AADy-AAA0vgAA0j4AAFS-AACKPgAAuD0AAOg9AACYPQAA-D0AAIA7AABQvQAAQDwAALq-AAALPwAADL4AAHw-AABEPgAAir4AACy-AAAQvQAAiL0AADy-AAAEvgAAcD0AAKC8AACIPQAAgLsAAEw-AACKvgAA4LwAAKA8AAAwvQAArj4AAMi9AACqvgAADL4AAOA8AABQPQAA-L0AAAQ-AACWPgAANL4AAH-_AACaPgAAnj4AAJ6-AACAuwAAND4AABA9AADYPQAAJL4AAJI-AACIvQAARL4AAFw-AAAwvQAAHD4AAKK-AAAsvgAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Tf0jetLbFX4","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16077895358980625456"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"876889322"},"18140150045761845202":{"videoId":"18140150045761845202","docid":"34-4-10-ZE97107D8D3B34771","description":"Sin Cos Tan Example. A basic introduction to trig functions. Learn how to find the sin, cos, tan, csc, sec, and cot of any angle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1029292/7f26320e09058fd12909ac81f9fb48cc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xVyCEAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO74LFU4VmlE","linkTemplate":"/video/preview/18140150045761845202?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin Cos Tan","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O74LFU4VmlE\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyWhQxODE0MDE1MDA0NTc2MTg0NTIwMmqTFxIBMBgAIkUaMQAKKmhocGlxdWRydXpvb2Nld2NoaFVDNW1xNFl3ZDBsUFBRSm5LXzVncS15QRICABIqEMIPDxoPPxOqAoIEJAGABCsqiwEQARp4gfb7-_v7BQD7CgD8_QMAAe4D9gD6__8A9gD19QIC_wD0_vz8CAAAAPoP_f77AAAAAPUAAwD-AQAPAfj8BAAAABgC_QD4AAAADAb_-v4BAAD8-_PzAQAAAPn7_AgAAAAADQ78-AAAAAAFDPoCAAAAAAf7_gkAAAAAIAAtWZHiOzgTQAlITlACKoQCEAAa8AF_CAgB3PewAeUL7ADdMP0AnzQD__w00gDA-yEAphPn_wAO3wDSFOX_H-juAdkf-wAl69j_EMT2_zTuAP8v6fgA2gL8ARrp9QFtFwgBFvf3Ab0a___-ABoB5_DvAfYT4P76_BMA-QHI_wrquAkl-y4BDggXBBMEBgfp9Rj-3B8WAPf4xv4CEOwK3wT099cbIAIO7_r6Dx4Z-fAL6wQEEBcEB_H8-Rzj4wY3CfL78PIEBdndBAEL4-gC8-4cAc0U6_0T9SDzAOYL-AAgFAEb3v4B3vUL9_YFAAge-gH-BOf3-e_z-v29LfkF3A31_Q716AEgAC2NuxM7OBNACUhhUAIqzwcQABrAB-li076K8AU9kHjDPLHfw708qF-9cL4HvRTamL0nT3k9CxGJu9qQHz6mBTM7562ZOtBHGb5vi-i8l6NPuxSUQj5GRRy9c-gAvO_lTr4QqEM9GKzAu7eyJL4pFcM8RNBivCs_Xz1-X3G7n80qvCfAcD30zhm8T7HqvJFWRjy0jqq8lIAdvdxqGTr1EVi9E3xYva1_4Tyzxb-8xE8tvC9R_T2xBWC6n6utvIDeCj3Umf-7hNRtO6xw673w04I8MgWpu8kibT1FhNo7JTMoPO1mhjwYM5M9-_cqvA9CxLpqfuM6XIpQvN_8xj3sG_M8h1k-vY6Sl7xCfnG9AKWGvHf1Cr6gny49XPlRvORm-D1mTOE9GCPUO5608L33itU7_9javJyrgTzoORi9eVr-POenCD6xLF09RvJwu0IDVj3E3c88eWirOsOjaL3-Tgk9a5T_PFN52z3W8Q49DUY2vDTZPzxOu1O9qMFZvKo4j70hI1s9szuoOzRH1j30Nja8oWc9ur6zajudSfs9MhSBvAUjpT3WAju-SeWaOmMqfbyjRcy9hypGvCKwmD0WxnE8I7t3vFs-lz34pMO9qNQ6u5wcWb2O1fu7-dNrPDUpZT2hgbi9alAPO1pquL2bNPI8FasGvBpVAb2LgR89dSwlvKQXmLti6le76neCu1alSL3EGhm8YKDWOzEERT0vZx27euxtOjsGXz14txI9Qcazuhfeiz0imcA7tyiSu-xAp7whSqi7z7cJO_mn7zwzd-O8829Zu5NikT2mgT-9g5OsucCQmzo8FIU9N-a0OHIRhLxiENg9hNQOt_J8Bj3Pm6-9fRngOFxUC72cFfG93J51OV_cvL3V4ri8tCVct6nTKrvAXmE83VtrNiL4hL1Td6W8Reh4Ogiu0r1Yaic9El4hudoeXT0KtGW9O1DGN1vaX7zSJh09SN7RuPmnLzxiIJm8vZDtuHh9Zjw7VPM9UxwoOLfJcjxtLR29y6PCuEY_Oj30zoc9bP63uHJLML0SQ7y8nNNetwWbBDsbe5u955Zutp0ORzt3nwO-Q96Mt7DiVD2yV0y75dGFOLjkKL7Rf4W8nfgauQKKBzyfOaC9sxGdt0Fxdj3eNEI9X5yitnFP4Ty5gMC6pMytt8HjKz7cpWi8B4l0uVTF1L3_e0u9GFFXtg2fujvPXFG9oUWutuLTF72ZPgW9dMbWtr2vBT2lSQm-rZ6FuCL_7D01KQU-835buLoTrLxy3Lk9dDAYuekLIb4rfAc97rZZOH2RFDzYQUo9FGMIOCAAOBNACUhtUAEqcxAAGmAnAQAX5C_v4-8R30Xu3-6jzw_OHsYH_9wy_wHl0tfw8Mi0xCr_DiEf0qAAAAAj7fYf6gAjf9jDGt7RFgzbuwcjOVbxClLNxQgryM_0HPHtVvE2Ij0A7A6sEUbZ-CUtQQYgAC3-0Rk7OBNACUhvUAIqrwYQDBqgBgAAAEEAAMDAAAAgQgAAqMIAAGxCAACAwAAAkkIAAIjBAACgQQAAqMEAADDBAAAgwQAA2MEAAHDBAADowQAAiEEAACDBAACAwgAA6EEAALjBAAAMQgAAcMEAAMjBAACgQQAAqEEAAMBAAACWQgAAqsIAAIDBAACgQQAAaMIAAHBBAACUwgAAcMEAAFzCAACAwAAAgEEAADxCAACAQAAAAMEAAEBBAACwQQAAIEIAAIpCAACWQgAAKMIAAOBAAABgwQAAEEIAAIBBAABAwgAACMIAAJDBAADAQQAA4EEAAFBBAAAowgAAAAAAABBBAACKQgAAQEEAAIjCAAC4wQAAbMIAAJBBAACiwgAAuMEAAITCAABwwQAALMIAAChCAADgQAAArMIAABxCAAAMwgAAoMAAAEDBAACAvwAAkMEAAEDAAAAwwgAAPEIAALjBAADAwAAAmkIAADzCAAAMQgAAgD8AAPBBAABAwgAA8EEAAJRCAABcwgAAwEEAADDBAAAcwgAA4EAAAETCAACsQgAAkEEAAKTCAACYQQAALEIAAATCAAAwQQAAIEEAAPjBAADYQQAAiEEAAFRCAAAoQgAAAMAAAFDBAADIQQAAVMIAAKBBAABAQAAAAAAAANzCAADgwQAAUMEAAIDBAABgwQAAoEAAAEDBAACQwQAAMEIAAIA_AAAQwQAA6EEAAMDBAAAQwgAAYEEAAEBCAADAQAAACEIAAGBBAACAQQAAjMIAANDBAAAgQgAA4MEAACBCAAAgwgAAgMEAAPBBAABQwgAABMIAAGDBAAAkwgAAJMIAAGDBAAAkQgAAQMEAANhBAAA8wgAAOMIAAFjCAABcwgAAAEEAABTCAAAEQgAAbMIAADDCAAA4wgAAEEEAANDBAACEQgAAKEIAAJhBAACAwAAAuMEAAEBBAAB0wgAAmMIAACBBAADQQQAABMIAAPDBAAAQwgAAsMEAAJjBAADQwQAAUMEAAOpCAACgwAAAYMIAAHTCAABgQQAAyEEAAIA_AADAwAAAikIAAABBAACsQgAAlEIAADBBAADQQQAA8MEAAATCIAA4E0AJSHVQASqPAhAAGoACAAC4vQAApr4AAKY-AADgvAAABD4AAJo-AABUPgAADb8AAOA8AADYPQAATL4AAOC8AADIvQAAdD4AAKg9AACYvQAAED0AAIC7AAAsPgAABT8AAHc_AADYvQAAEL0AALI-AACSvgAAgLsAADw-AADIvQAAJD4AAAk_AAC4PQAAxr4AAKi9AAAwPQAALL4AACS-AADovQAApr4AAL6-AADmPgAAmL0AAMi9AABAvAAAUL0AABC9AADgvAAAhj4AADy-AACSvgAAZL4AAFS-AAAQPQAA9j4AAAS-AAAQPQAAuD0AAH8_AABwPQAAqL0AABA9AADgvAAAVD4AALi9AAB8viAAOBNACUh8UAEqjwIQARqAAgAAJD4AADQ-AABcvgAAR78AAKK-AABEvgAApj4AABS-AACqPgAAUD0AAKA8AACAuwAAED0AADA9AADYvQAAQLwAAKq-AADaPgAAjr4AAFQ-AAA8PgAAZL4AAMi9AAAEvgAAJL4AAOg9AABQPQAAyD0AAFC9AACWPgAABD4AAFQ-AAAFvwAAiD0AAJ6-AACIPQAACz8AAHC9AAC-vgAApr4AAEw-AAC4PQAA6L0AAPI-AABsPgAAcD0AAH-_AAD4PQAARD4AALg9AACYvQAAPD4AABy-AAAcPgAA-D0AAIo-AAAQvQAAcL0AAAQ-AAAwPQAAmj4AADC9AAD4vQAAor4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=O74LFU4VmlE","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["18140150045761845202"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"250788291"},"9084531608497530095":{"videoId":"9084531608497530095","docid":"34-9-5-Z74BB4FEAD1067DA9","description":"If you find this video useful, Join our channel to support : / @engineeringfacts Subscribe to Buying Facts channel : / @buyingfacts Follow me on : Facebook : Engineeringfactsfb...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4314090/e7b96dc495d4cfd908fb775564f5d460/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/M49MMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Di8PxyTmm3Gs","linkTemplate":"/video/preview/9084531608497530095?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple explanation of sin, cos and tan functions in trigonometry...","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i8PxyTmm3Gs\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhUKEzkwODQ1MzE2MDg0OTc1MzAwOTVaEzkwODQ1MzE2MDg0OTc1MzAwOTVqhxcSATAYACJEGjAACiloaGh5eHVseWtwc2Z5aWpoaFVDWHpVTENXdXZibmptN1EwRjZSQktzdxICABEqEMIPDxoPPxPkBIIEJAGABCsqiwEQARp4ge_6AQD8BQDz-QIA-gMAAf0B9Ab4_f0A7Pj88wL_AQD9BAD9BQAAAPoK-wMCAAAA8u8B-fr_AAAI_Pb9-AAAAB0ACf_6AAAAEAD88f8BAADu_vT5AgAAAAX39QH_AAAADQ_89wAAAAAHEPD8AQAAAAYGAwn_AAAAIAAtfGXeOzgTQAlITlACKoQCEAAa8AF_707_yuTd_78D4wG0Hdb_h0EE_zM18gCn6M0Av__nAeAQVv-gAxT-Ns_s_8ITMQAjAbQA8O4aADmpDwIB4c7_s-8bAEW8FAEt-QkB8-TzANYw3wEU5f__NdnOAiT_0P8N7xf4MwfO_iQcvQJUCB8B-iAv__Em9QO0HQAAzCziAM_F3P3YKhj-ChcB9uMJLwL19v_5KgkG_-4-2vwV9AP5FCLr_RsO3AXz79oFv98VBc_1_ggKvOcAFdz6CPAC3vbI6gb71NsmBBb7Ffv42gLzzvkFCA428vcO5g751QQGEv82BQkJ7RIABt_i___X-fggAC3Gnuw6OBNACUhhUAIqzwcQABrABwcH2755A4w8ymcxOqn3FLxEJcO7dy7MvEvTtr2Wyys9rO4Hvf4N2j1fLVI8nPTjvL2OkL5851y92KYpOxSUQj5GRRy9c-gAvA4xDr5NBpE8R-hCvOf-Kr5dy_88SHQqPME6Pj6JrhA95StBvcLJjD0vUkO9fBm7PLKCX730CKS8eXyWvA9YQ70_GWO8bInmvNuZUz2SC5m9vOvsu3X1hD0Ugis98sH8vJKzED11iqo9S-Xtu6xw673w04I8MgWpuwl5kz0N1sk8_I5hPInPDb4ifI69mG-YPBNRI7zBhhC8ULThvNOZJb0XOXo8W6hGvEh3tj0CeFU8vwrVPCcWmL2LA4O8LKrVu0dS97zvhMg9e0bHPErhizxYGtg9IDh4vGZlHjwJAp67VhaBuwuWKj1wlSe8qsw5PDMtNj0gKk09pSseO0FcPbtr1MM9xBsCPEQenL1JxL89k3NivPcGOjwAQno9riQgPKfcjjqCKE69H95OvLa1ar16r1U9v9YlPJ0cxD0EuI-7pcMgvI_gFj5beA6-A-cOvAMMlj2VULC8W-RDvBmocT3nCoU9JclzPMTWhTuYKkK9yOD2uyh22bxXCKu9NIiLu3VQkbq_Wpo8IobjOpj5Dr7o3Yg9GrxxO1Su7LvkWXg9lhUWvOPgUjxvvmw88xP3O_LkH724Nre7Uchnu2LfqTzTrng8tXdbu7HVijyNoTW7RplLu-ZbADxEkJ68JSFTuz4Dars34d692XzOuVsekD04LgI889Qzusx6cT0GVVk8gePuuexApzw51iW9PO5xuYs8tL19NVE9OB8YOHmrUzyTcWy9qoYDOUHUvb3aHAe9hamBuTu4Rb1ElZA9HOi-OBFqS72Yw0k8sWWZOReFuL1arLK8fyLuueIMub3pIio8ZJo9uNoeXT0KtGW9O1DGN5q2nz0ER7i8zRsHOA8NCz21lU285OGouJymzz0juic-9QqwubL-Zb0qYzI8_IwUudElpz3O2Wc9_o8kObDpnLx2NgQ-1_Ndty9rpLt7qnm9eVA6t7vUyD0DQDW92L57N8g-7bylJ7a9VwjJOEpRqL1jbu08-wU-ON-fVz3Rx2G97neqOPinFD4D-k49H_TtNoQbX7zaFT89JFQOOOuEYT0rGNW8PJPxuPlK4L0Mj929YzNEuD48cLzn4zk7eGakNvsvoT26EBC9wceKN2lSyjwXS0y9kgBbuELLXz1jGrc9bpCOOOIYrjxvpaI9TCdSuDV6Fb0rYTc8LrIPN5hnSr1BFCc88kRMNyAAOBNACUhtUAEqcxAAGmBQ-QAO6hXU4goZ3RvW2u_MzPgAF8cQ_-DuAO04BRwkIuXA8wkAEvkc-rIAAAAFGRAX7gDmavzdJyMKGAfAxMIlEH8HEQwG7A3_oO0GOQfqHg_yIhMA2P67EVHx9l89SEggAC2xoSg7OBNACUhvUAIqrwYQDBqgBgAAMEEAANjBAACoQQAAIMEAAKhBAAAIQgAAAEAAAMjBAADWwgAAGMIAAODAAAAwwQAAzsIAAFBBAAAgQgAANMIAAABAAADAwQAAAMEAAKrCAABQQQAAIMEAAKBAAACAQQAAoEEAALDBAACWwgAAQMIAAKDAAAAgQQAAOMIAANhBAAAwwgAAoEEAAODBAABgwQAAUEEAAFxCAADoQQAARMIAAGhCAABQQgAA-EEAAIhBAADgwQAAxsIAAABBAAAQwQAACEIAAEjCAAAgwgAASMIAADDCAACAQAAAUEEAAGBBAACSwgAAAEEAAADAAAAMQgAAiEIAAKBAAACoQQAAusIAAKBBAACgwAAAYEEAAOjBAAC4wQAAUMEAAJpCAAD4QQAAeMIAAGhCAAA4QgAAYMEAACzCAACgwAAAHMIAAMDBAACAwgAAgMAAAJ5CAAAsQgAAmEEAAFhCAADAQAAAEEIAAKBBAAAAwAAAsMEAAMhBAAAIwgAABMIAAChCAAA0wgAAwEAAAExCAAAsQgAAoMAAAEDCAABAQgAAnkIAADTCAABUwgAAUEIAALjBAABMQgAA0MEAAMjBAAA4QgAAqMEAANjBAADYwQAAkkIAANBBAABAQAAAoMAAACDBAACEwgAAYEEAAILCAACAPwAAjMIAAFBBAABsQgAAiMEAAJjBAAA0wgAAYMEAAETCAAAIQgAAMEEAAJZCAABcQgAA4EEAAMDAAAAwQQAAWMIAAJDBAACYQgAAMMIAALDBAACgQAAAKEIAADDCAADAQQAAAEEAAIBBAACQQQAA8EEAAABBAABAQAAAHMIAAOBBAADowQAA4EEAAITCAAAUwgAApkIAAGzCAACGQgAA8EEAAKDAAAAQwQAAAMIAAJhBAACMQgAAaEIAALBBAABYwgAAiEIAAIC_AACgwQAA4MEAABhCAAA4wgAAKMIAANBBAACEQgAAwMAAAHjCAABswgAAOMIAACRCAACowQAAEMIAABBBAADAQQAAqEEAABTCAAAsQgAA6EEAALjBAABMQgAAYMEAAGDBAABQQgAALMIAABzCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAxr4AANg9AABMvgAAZD4AAAk_AAB0PgAAKb8AAOC8AACgPAAAqL0AAIA7AACgPAAA2j4AAMi9AAB0vgAA6L0AAKC8AAA8PgAAHz8AAH8_AABUvgAAiD0AACw-AADivgAATD4AAHw-AAAMvgAAFD4AAA8_AACCPgAA3r4AANi9AACovQAAiD0AAEC8AABQvQAAPL4AAAW_AACePgAA6L0AAOA8AACKPgAA-L0AAOA8AAAkPgAA1j4AAGy-AAC4vQAAyr4AAJ6-AABsvgAAFz8AAIA7AACAuwAAyD0AAFM_AAD4vQAA-L0AAGQ-AACgPAAA-D0AAEA8AACKviAAOBNACUh8UAEqjwIQARqAAgAA6D0AAPi9AACovQAARb8AAHS-AAAkvgAARD4AAHA9AABwvQAA-D0AAJg9AACgvAAAuD0AAAS-AADgvAAA4LwAAMi9AAADPwAAMD0AAIY-AABkPgAAoDwAABA9AAAUvgAABL4AAFC9AACovQAAQDwAAJi9AACCPgAAyD0AADw-AADqvgAAFL4AADC9AABAvAAABT8AAAQ-AAAJvwAAHL4AAKC8AACoPQAADL4AAKo-AADGPgAAVD4AAH-_AADIPQAAuD0AADS-AACIPQAAyD0AAOA8AAAEPgAAcD0AADQ-AAAQPQAAHL4AAGw-AADgvAAAgj4AAPg9AACovQAAnr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=i8PxyTmm3Gs","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["9084531608497530095"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2112576765"},"788606877771961357":{"videoId":"788606877771961357","docid":"34-0-13-Z78076F46C5165DC1","description":"Trigonometry is an easy way to work out the unknown sides and angles of a right angled triangle. The trick - know the side names - the opposite, hypotenuse, and adjacent, and know how and when to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3926584/bebbcc54e12f91fd34d26186890beb53/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-Sz8lwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DE9_d_ET9yjI","linkTemplate":"/video/preview/788606877771961357?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin Cos Tan - Basic Trigonometry - Working out unknown sides","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E9_d_ET9yjI\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhQKEjc4ODYwNjg3Nzc3MTk2MTM1N1oSNzg4NjA2ODc3NzcxOTYxMzU3aocXEgEwGAAiRBowAAopaGh0YXlzeG9ubnl0Y256aGhVQ2I3dzVhVG50N1llWEJjVkNZMG1nRncSAgARKhDCDw8aDz8T2waCBCQBgAQrKosBEAEaeIHqBgsCBPwA-AcMB_gH_QIB-_X89_39AOIC7_YD_AIA8v38_AkAAAD0C_z5BQAAAAfuBvr9_QEACfL28gIAAAAg_fL6_AAAABIA--__AQAA_Pr99gL_AAD76wIF_wAAAA4Q_PYAAAAABQvtCgAAAAAC-vUHAAAAACAALUzFxjs4E0AJSE5QAiqEAhAAGvABf_koAd326AHs-_0A7SwWAaccCgD8NdEA1hcUAKMT5v8VGwIB9RD8_yzY8P_EH9YALQ7-__z8Av81yCL_M_PfAMDyFwAdB-0BOikaADcA4v_dJhP_-OQSAPPZsQD9FvsA8sQA_gfJzf__5MgATfosAPsbJ__I5QYC9PcD-_Af9_vi9db9GQDtA-j5-voDDDT-GLsKAyX7-_7t6QL7Ne0TAyPw_wgOFM8AGxLZ-d7-EwQIDOwGEsUHCiMSE_Lf8ekB5eAf_7X0DfzX6xj_7S378Of07vb-KvsNG_MPBPnxDwX0-ur_1iEP-_4A5wj15vDnIAAt51gPOzgTQAlIYVACKs8HEAAawAecTa--6sJZvEln_bulnY-9ROTPvIVLvbxRh_W915eGPYWnYb1QyD4-kG6-u6a5Nb1QSHy9cdGkvAE82LwUlEI-RkUcvXPoALxi2Sy-cgKqO8NkCr0sQ4G9_qHTu0kCQ71ssPA8CmuhOw7Zo7qQOHo9WJ1mvF_pQT2RVkY8tI6qvJSAHb34oRo8H4XrvbyRebwhhpc9eMkJPUQCAb2UlAU95zjduRm7EDzGxIE8GHKxPc2piTwWkmK9EV51uz7007wSHbg8b8KzvNAc4zw9PJW9L5_RPHLsMLvlXgC9TZi6vNj_b7zMehE-FocTPXyTi7xbg1K9s1M9O9vPmLtlF1y-eKeMPCgEvLsprqo8lkquPfg_2bvIRSW-adGBPZ0Ix7w_KI49rB8bvTO8nzsongM-rK1YvPHlzzv-WqM98FJqvaWqv7ptXgs9iU16PRBiITvHjnw9MC_AOybb5bz-r489zCrsvGCoibtQQTS9YGG3vCnlmjykLI09nRwVvHlskTvEHZS8G7kePtIMmLoFI6U91gI7vknlmjrRj6u75DQfvbKRNbxLdmw9De3CPTnmozu0IAQ-GAgCvdggN7p5lZC88DU_vShgYDwDwS097LxyvZe4QbiPrBe9R3FuPapQFbxPuRi9MGbrPVNmwrkgvby8gmh3vX_LlDu8nG08nChzPbhw4jvTQai8EpxAO4A5xLuGKNc7TbG0PEvibjqH6dK79HiQPCj9FLvZEBK9Sc3ovFpCpTvZm7M8LKt_vUZjmbniW5g9uiSYvB2fezm3Kf06f7pGPTX6Tjk0_Yg9MsozPo5XLjqJyNU8fT-FvUdahTlUG_y9Yrv7vRPT8jnUG5S93drbu8GBcDg0B9K8C7gCPedeSjpt3VK9Y1yzO3kHgrlDcYe9y7wXvAMhn7gbi3w9NckZPW07grZjfNi9TjnwPIGeh7nZ-Yo7QaihveU3vDkP0aq7b54KPqCiGblv80a8U8GyvBurkbjtREk9W-z2PON8ZzhuGAW9eWyVvJ3hUbdq0vc8a2y6veX4fTgGnCW8jGrRvfpT9zfYmDw9tCXGPM4fgLgi-wC-xl8kPReYZTikwpg9tz_dO4ED_zj4pxQ-A_pOPR_07TYVg1E8b1bOvCUmEDijsRY-plWePUcjJLmlXKs8sk-LvUUYR7jqATi9wy6lvK4Rybelgoo9hWnOvPLOQLi39hk9DlVHvWypWLjK9HA9IuErPvHLiji1z7m9skGLPALBP7inJQa-zxmLu_SONDY6Cgy78N7RPEjXhDggADgTQAlIbVABKnMQABpgQPgAPOsH5dwQPd_z2-IR1sIU1QSt4P_bAf8NFdosEx--tugf_ybWDLybAAAAJd3WQRoA-3_mqCsACEE8n7zMWCVmF_AK6gtEHPXaFCcR9Bn2EU4ZACob1SU8yw1BHF8jIAAti3kSOzgTQAlIb1ACKq8GEAwaoAYAAKBBAACAQAAAPEIAAJzCAADIQQAA0EEAAEBCAACQwQAAKMIAAADCAACAPwAAQEAAAJBBAACAwAAAiEEAAPBBAAAcQgAA4MEAABxCAAAwwQAAEMEAAILCAAAgwgAAnkIAAADAAAAQQQAAOEIAACDCAADIwQAAoEAAAAzCAADIQQAAZMIAABBBAABYwgAAgL8AAMhBAAB4QgAADMIAAIBBAAA0QgAAgL8AAABAAAAgQgAAXEIAAPjBAADgQQAAEEIAAMBBAADAQQAAWMIAAK7CAAAUwgAAOEIAAIC_AACAwAAAwEAAAHBBAAAgQQAABEIAAAxCAACOwgAAiMEAABTCAABAwQAAisIAABDCAAA4wgAAEMIAACDBAAAwQQAAFEIAAIbCAAAgQQAAAEAAAADCAACGwgAAGMIAAIBAAABAQQAA0MEAAJJCAABwQQAAQMEAAPhBAADgwQAACEIAABzCAAAQQgAAiMEAAHRCAACgQgAAisIAAPjBAACqwgAAhsIAADBBAACQwQAA0EIAAIxCAACiwgAAFEIAAHBBAABswgAAcMEAADBBAADwwQAAcEEAAGDBAACWQgAAAEEAALBBAABAwAAA6EEAAPDBAAAgQQAAwEAAAADCAAAEwgAA4MEAAEzCAACAwgAAoMEAAABAAAAowgAAAMEAAKjBAACwwQAA2MEAAExCAACAvwAAaMIAAIA_AABYQgAA8MEAADxCAABAwAAA4EEAAODBAADQwQAAUEEAAKDAAACoQQAAusIAABRCAACMQgAAMMIAAIDBAACgQAAAGMIAAGDBAAAAQgAAJEIAADDBAADoQQAAHMIAALbCAABQwgAAoMIAAFBCAACgQAAAVEIAADDBAACAwQAAAMEAAKhBAAAcQgAAokIAAIDAAACIQQAACMIAAMjBAACAPwAAkMIAACDCAACAwQAAoEAAAKBAAAA4wgAAgEAAAJjCAACAwgAABMIAAMBBAAC-QgAAgMEAAHjCAAA4wgAAmMEAAOjBAAAQQgAA2MEAADxCAAAgwQAAIEIAAAxCAAAwQQAAgMEAAOBAAADwwSAAOBNACUh1UAEqjwIQABqAAgAAcL0AAFy-AADOPgAAHL4AANg9AAA0PgAA2D0AAO6-AABEvgAAUD0AAKq-AADIPQAAcL0AABQ-AAAQvQAADL4AABQ-AADIvQAAFD4AABE_AAB_PwAAyL0AAOC8AABEPgAAPL4AAIA7AAAcPgAA6L0AAOg9AADOPgAAEL0AAIK-AAAwvQAAXD4AABC9AABcvgAAQLwAADC9AAC-vgAAND4AAHy-AABMPgAARD4AABA9AAAwvQAAqD0AAII-AAAwvQAADD4AAEA8AAAsvgAAEL0AALY-AAA8PgAAqr4AAOA8AAA5PwAAQDwAAHS-AAAUPgAAuL0AADw-AAC4PQAAgr4gADgTQAlIfFABKo8CEAEagAIAAPi9AABMPgAAML0AAEG_AAAsvgAABL4AABw-AABcvgAA-D0AAFQ-AABwvQAALL4AAEC8AABAvAAAQDwAAAS-AACavgAALT8AABS-AACiPgAAyD0AALK-AABQPQAAFL4AAIC7AAAEvgAA-L0AAKg9AAAkPgAA2D0AADA9AAAcPgAAir4AAAS-AACoPQAAcL0AALI-AADoPQAAXL4AAIi9AAA0PgAAiD0AABy-AACoPQAAoDwAABA9AAB_vwAA6D0AAMg9AACAOwAAMD0AAOi9AACYvQAAXD4AAAQ-AAAkPgAAQLwAAKA8AADIvQAAUD0AACw-AACgPAAA6D0AADy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=E9_d_ET9yjI","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1264,"cheight":720,"cratio":1.75555,"dups":["788606877771961357"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2105247368"},"13119102848479071094":{"videoId":"13119102848479071094","docid":"34-11-16-Z20D4FE40E56D66D6","description":"What exactly is Sin? Where did sin come from, and what’s the problem with it? In this video, we answer the question: “What is the definition of sin?”. Source Article...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3413061/2806a7ecdee99d113c6d639d9d4154dc/564x318_1"},"target":"_self","position":"9","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dvc4jJGUBOZg","linkTemplate":"/video/preview/13119102848479071094?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the definition of sin? | GotQuestions.org","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vc4jJGUBOZg\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDEzMTE5MTAyODQ4NDc5MDcxMDk0WhQxMzExOTEwMjg0ODQ3OTA3MTA5NGqvDRIBMBgAIkUaMQAKKmhoemVmYXBhYmV0YmZkb2RoaFVDckhBRFU4SDBQMlFfNzlzQWhZamxHQRICABIqEMIPDxoPPxP6AYIEJAGABCsqiwEQARp4gQIA9P0C_gD79Q7-BwX9AdwBCgf9AgIA5QME_Qn9AgDyAAj8-wAAAP8GAf8FAAAA7fj_8_UAAAD8BwnzBQAAABbv9vb9AAAAGv32BP4BAAAE-gMBA_8AAAj7Bwz_AAAAA_cG8AD_AAD-CvgLAAAAAAkJARQAAAAAIAAtzrPOOzgTQAlITlACKnMQABpgJwYALAwW4ez7F_cM8Nzy9AcC_Nvg8f_h5gDNBdrk9CDg0tr-AC6uCwO7AAAANuH2GrIABVnk_782BgMQ7O3W7_h_AeLOA9I24-EW7f4j7goNBg45APP-7Rrw-fwh8ChTIAAtrh5DOzgTQAlIb1ACKq8GEAwaoAYAAMhBAABwwQAAgMAAAOjBAADIwQAAQMAAANhBAACIQQAAEMEAAKjBAAAgQgAAZMIAAGTCAABIwgAAcEEAANjBAACwwQAAfMIAAODAAAAwQQAAeEIAAJTCAABAQQAAmMEAAFBCAAAgwQAA2MEAALTCAAA0QgAAqEEAAGjCAADoQQAAmMIAAFBBAADAwQAAMMEAAIA_AABoQgAAgD8AAGDBAACCQgAAMMEAAGRCAACAQgAApEIAABDCAAB8wgAAKMIAAEhCAAAkwgAATMIAAEDAAAAgQQAAMMEAAERCAAAcQgAA1sIAAFDBAAB4QgAA2EEAACxCAAC4QQAAgEEAAFzCAAA4wgAAwMEAAFBBAAAQwQAAuMEAAOBBAACAQgAAikIAAIjBAACoQQAA4MEAACzCAACAvwAA4EEAADDBAACKwgAAwMIAAEDAAAAMQgAAZEIAAAjCAABgwQAAKEIAANjBAABAQAAADMIAANBBAAAkQgAAFEIAAFjCAAAwwQAAmsIAAIBAAADIQQAAgMAAACTCAABAQQAAEMEAAGxCAABAwgAAQMIAAIC_AACgQQAAHEIAAI5CAAAYQgAAoEEAAHTCAAAAwgAAeMIAAJRCAAAwwQAA8MEAAGDCAACgwQAAXEIAAOBAAABQwQAA2MEAAEjCAAC6QgAAAAAAAHDBAADgQQAA8MEAADjCAAAIQgAADEIAAIBAAACwQQAAJEIAAHhCAAAwwgAAgEEAAJDBAACawgAAoMAAABDBAAAgwQAAsEEAAOhBAAAcQgAAREIAAIDAAADQQQAA2EEAACBCAAC4wQAAUEEAAOjBAABQwQAA-MEAAAjCAADQwgAA8EEAAAhCAADwwQAAlkIAAAjCAAA4wgAAEMEAAFDBAAD4QQAATEIAAOhBAACYwQAAXMIAAPhBAAAowgAAmMIAALhBAADoQQAAsEEAAPDBAACAQQAAhEIAANDBAAAAAAAAyMEAAFDBAAAkQgAAqMEAAITCAABgQgAANMIAAABAAACEwgAACMIAACDBAAAoQgAAAMAAAMDAAAAUwgAAEMEAAETCAAA4wiAAOBNACUh1UAEqjwIQABqAAgAATL4AAJ6-AAAEPgAAnj4AAKK-AADSPgAATD4AAMK-AACivgAAqL0AAGy-AABwPQAAQLwAAFA9AADgvAAAPL4AAKC8AABQvQAAuj4AAD0_AAB_PwAAML0AACw-AABkPgAArr4AALi9AAAUPgAA4LwAALo-AAD2PgAAPD4AAFy-AACOvgAAoLwAADw-AAAwPQAARD4AAGy-AADGvgAAfD4AAEw-AADOvgAAqj4AABC9AAC4PQAAuj4AAIo-AAC-vgAAEL0AACG_AACyvgAAqD0AAJ4-AABEPgAAbD4AAPg9AABhPwAAEL0AAKC8AACAuwAAUL0AABC9AAAwvQAAwr4gADgTQAlIfFABKo8CEAEagAIAAES-AABMvgAAPL4AAE2_AABUvgAAPL4AABQ-AAAEvgAAUD0AAAQ-AABcvgAA4LwAALY-AAAwvQAAEL0AAIC7AAC4PQAA6j4AAIo-AADePgAAHD4AAJo-AABwPQAAEL0AAKi9AABQvQAA4DwAAKA8AAAMvgAAmL0AABC9AACCPgAAMD0AAPi9AADYvQAAXL4AABM_AAAQPQAAjr4AAFy-AAAUvgAATD4AAGS-AADYPQAAvj4AAIC7AAB_vwAAgLsAAOi9AADYPQAAgj4AAPg9AABwPQAA8j4AAK6-AABMPgAAgLsAABy-AAC2PgAAHL4AAHQ-AABAPAAARL4AAIa-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=vc4jJGUBOZg","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13119102848479071094"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3489967801"},"5996164232881940214":{"videoId":"5996164232881940214","docid":"34-1-12-Z50E9A648F63042E1","description":"write sin(3x) in terms of sin(x), angle sum formula for sine, double angle formula for sine, double angle formula for cosine, simplifying trig identities, trigonometric identities examples, Verify...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3319679/2c842aad7bd5ebb254ea8c6e5f4a656b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4O6_nQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaSq9vwGHLTg","linkTemplate":"/video/preview/5996164232881940214?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin(3x) in terms of sin(x)","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aSq9vwGHLTg\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhUKEzU5OTYxNjQyMzI4ODE5NDAyMTRaEzU5OTYxNjQyMzI4ODE5NDAyMTRqkxcSATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8TyAKCBCQBgAQrKosBEAEaeIHuAfn9_AUAA_4K-_0D_wHxA_wI-v7-APP7_fwHAQAA6fkDBgj_AAD1Cvz6BAAAAAP7_fv9_gEADPcD8AMAAAAS-QL_9wAAAA4D-P7-AQAABwr4-wMAAAAIBAIKAAAAAPwC_-4AAAAA_AcG9QEAAAAC-_cGAAAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABf_v0AeD36gHvBtkAyQv6_44JKP80EskAxPsfANzy7gHvPOsAzQHf_yPtBf_RIBIAGwHHAPTyFAAX5uz_HejvAOjp5AE_8uIAQeEH_-Tz1gDQ8C8A-fL7ABbZ1QMCFukDJP0i_xkh9f0c_OMAC_Qf_x7tIwIo_Pf_Agr8_r_8FgHl9tr93t78AyH3CwPDHxcDEQ3sAfwH7__dKvUCFMzn_wG-Hf8QFfMAHvPiBf_9CAnH-wMB8fXp-AQHKf_0Auf56PEX-cn_AfYKChb1DegI_RUN_gfq2QACI_DyABkAGP7eCPD8AQ4A-ecg_Qbv-PwNIAAtY8sdOzgTQAlIYVACKs8HEAAawAfBquK-yyi7vLawuDz1Cg88GjbnO1U9T72Z9YI9SPKmPBpohDuYMNo9BSCkvB7WZTyXx6q-E8fsO74RnbyY3SM-gUmQvUP09bx1ySi-2lSdPZOQozzn_iq-Xcv_PEh0KjzwhvQ9p7PTPHebHL1vwAI9ONFTvQoJorxiUSy9ZFKoPKiWY7xdqbK9wZwqvT0eRLz2Oo692b0LvbnDpryGHnE9T5snvdWCLb0gV1Q9OK4VPcYEyrq0RIK8gCnjPVmp-7ssKDw-OoGfPP0CsLwEdnC9XqxePKjrpLx_7tU8gOAAPcqhajzRG5O9TzRZvG5kgzxjkgK54F4-vCQVvLwC61079n-OO4h6przshu09jPeDPXJbkTvc74W93Qn2Pcid67oqcJI9ZXF_vBv2VrzT-tu8bJnKOmq3wjwzLTY9ICpNPaUrHjtutiO9-VhwPQkSwDx21Z29eRHcPH_sfbv84Bw9ueNIPWq77LvAgmo9uxNaOssYm7unHWO9f1mQum6-9LuCBP87rNHhPO0tQLy2FAs9kVSAveVrhbyV3Dy9PPHBvUPp5rsZqHE95wqFPSXJczw61Mq7OeCpvXYfujvEe849hTWvvYcVjztgQys9whiBPfn3Gbx2cVm6uO8svGet0zrPTMC9VfHrPEl18Lp580o9XC0FPLOaLjxmhFe9NpIEvSwQ-ztjTDU9UF8mu3TCOrxRbUs9YdULu7aGbztU-p49mug4vXhaTzh19Xm9tbe1vaz_lLqs4cc8fIeRvNvsPDvRSMo9C-qAvI7t4Lii90G9NCC8PR1Ee7mdXp69QwFbvMEGGrk9mso9xNiIveibUrj8s1W9dz2yvYUbMLjfuzI9u6_vPCsU47c7mAM9zgr7u70x67qXJaU9E-PGPPrHXbn77bY9Fjx7PUaYC7n6xEs8LRx0utv_SLcMB4K8tIvMuw-z_zkHyCG8RasJPfWg8jcXAxU9v3x3PT0HBzkYCBI-kiICvhRrEDqzRpi9qiufPan6OriY8ka9AxpWPeTphThywmQ93_8CPWwNDDi9yEQ9LtGPPASmpTZVNdy8aw_7PKcXoDdlU869wuioPP4y6DdvBIM9gGCjveME6jjC89q7Yk3lvBwFxLd5eoC8SQj_O7geZziAoFc9WNmIvU7JhbhHxxe88bnTPFBPdLd43JY9mXZbveG_xzgF-uS97QZ2PSp7zzi9rwU9pUkJvq2ehbgi_-w9NSkFPvN-W7hgmpg8W5r7PYSt_bg9gEU9d6lHPKJ2yLdYJIG9FgpiPYySOLggADgTQAlIbVABKnMQABpgIAgAJegly-QOE_Xywdrk6OEG0-7HEf8g0f8H-ekCARzGuEj6_yfrFuKhAAAAK8Xp6gUA1n3I698y7-re1ITkCRp_EyX44ekn4-PTESoMEQRz8iNAAOv_pjRKqOkUKfUlIAAt_SIZOzgTQAlIb1ACKq8GEAwaoAYAAAhCAACOwgAAhEIAAEDAAABgQQAAgD8AADBCAABgwQAAPMIAAIC_AACAPwAAMMIAABBBAABYwgAAuMEAAABAAAAAAAAAhsIAAJRCAACQwQAAQEAAAFBBAACAwQAA4EEAAILCAACoQQAAEMIAAKBBAABUQgAAwMEAALjBAAAAAAAAqMEAAIDBAAAUwgAATEIAAExCAACAQgAAeMIAAOBAAACAvwAAQEAAANhBAAAwQQAAAAAAAKDAAADQQQAAwEAAACBCAABwwQAAoMAAALjBAABAwAAAQMEAAJBBAAAIQgAANMIAAHDBAABEQgAAIEIAAABCAADIwgAAoMAAAEDCAAAAAAAAuMEAAFBBAACMwgAAUMIAAEDBAAAAQgAAuEIAADTCAADgQQAAUEEAAGTCAAAgwQAA2EEAAJDBAABQQQAA0MEAADBCAACwwQAA4EEAAIA_AAAkQgAA-EEAAERCAAAgwQAAtsIAAIjCAAA0QgAAAMEAAKjBAAAUwgAAmMEAAABAAABQQgAAcEEAAIhCAADIwQAAmEEAAJBBAABwwgAACMIAAOjBAACgwAAAmEIAAKhBAACCQgAAkkIAABRCAACAwAAAVEIAADRCAACoQQAAgD8AAHTCAAAkQgAAHMIAAKjBAAC4wgAACMIAAIzCAAAQQQAAwMEAAGTCAAAAQAAAjMIAACDBAACAPwAAAEAAAKBAAAAUQgAAqMEAAAxCAABgQgAAgEAAAKhBAADSwgAAoMEAAPBBAACowQAAQMEAACRCAAAUQgAAYMIAAFhCAAAAAAAAqMEAAJBBAAAQwgAAikIAAIjBAABAwAAACEIAAIC_AACMwgAA6MEAABRCAAAYwgAAkMEAAOjBAAAUwgAAwMEAAFBBAAAgwQAANEIAAOhBAADYQQAAoEAAAKjBAABAQAAAAMEAAPDBAAAgQgAAGMIAAFTCAACAQgAA6EIAACzCAADgwQAAAAAAAODAAABkQgAAmsIAAADBAACAwQAAAEAAAEBBAAAwQQAA6MEAAGxCAADAwQAAMMEAAIpCAAB4wgAAMMEAAODAAAA4wiAAOBNACUh1UAEqjwIQABqAAgAAcL0AAHC9AACiPgAAEL0AAOA8AACiPgAAiD0AANa-AAC4PQAAQLwAABy-AADoPQAA6D0AAKi9AACIvQAAyD0AABQ-AACIvQAAFD4AAK4-AAB_PwAADL4AAKg9AAB8PgAAvr4AACQ-AABAPAAA6L0AAHw-AAAkPgAAiD0AANK-AADIPQAAoDwAABA9AAAwvQAA-L0AAKK-AAAkvgAAEL0AAAw-AAAUvgAAND4AAKC8AACoPQAAED0AAIY-AACovQAAVL4AAHS-AAAsvgAAQDwAAPg9AADovQAAuL0AALg9AAA1PwAAuL0AADC9AAAUvgAAJL4AAKA8AADgvAAAZL4gADgTQAlIfFABKo8CEAEagAIAAJ6-AACYvQAAML0AAEW_AACIvQAAur4AABw-AACGvgAATD4AAIA7AACAOwAA-D0AAHA9AAAwPQAAiL0AAKA8AAC2vgAAAz8AAEC8AAD4PQAAuj4AAIC7AAAkvgAAmD0AAAy-AAAEvgAAQLwAAMg9AACAuwAAuD0AAMg9AABsPgAALL4AAAw-AACAuwAAEL0AAAM_AAAwvQAAur4AAEy-AACoPQAA6D0AAPi9AAA0PgAAzj4AAIK-AAB_vwAApj4AAMo-AACSvgAAgDsAAIg9AACIPQAAXD4AALi9AACePgAA4LwAAJi9AABEPgAAUL0AAIg9AACGvgAAhr4AANi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=aSq9vwGHLTg","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5996164232881940214"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3167837765"},"13331419191217578752":{"videoId":"13331419191217578752","docid":"34-8-8-Z9D1F36ACF5EC0B44","description":"This trigonometry tutorial video explains the unit circle and the basics of how to memorize it. It provides the angles in radians and degrees and shows you how to evaluate sin cos and tan.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3273229/82d20a5760cdcb0cefde4f7a81212af3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tY97nwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"11","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DV5ArB_GFGYQ","linkTemplate":"/video/preview/13331419191217578752?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Unit Circle Trigonometry - Sin Cos Tan - Radians & Degrees","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=V5ArB_GFGYQ\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDEzMzMxNDE5MTkxMjE3NTc4NzUyWhQxMzMzMTQxOTE5MTIxNzU3ODc1MmqTFxIBMBgAIkUaMQAKKmhod2RhaGl5ZHBtZHFvZGJoaFVDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQRICABIqEMIPDxoPPxPtG4IEJAGABCsqiwEQARp4gfD9CgD-AgD2_gMF_gX-AfAE_An5_v4A6_j78wL_AQD3ARMBAQAAAPoQBP4GAAAA9_X9_f3_AAAU-vT0AwAAABgICgv7AAAAEQD88P8BAADy8_j1AgAAAAX39QH_AAAAAw35_f__AAAHEfD8AQAAAAD__v8AAAAAIAAt6A3XOzgTQAlITlACKoQCEAAa8AF_3CYA0M7kAdcE9gD29aQC5D_qADhB3f_GDeb_ze7-AOQOS__bHPMAIubsAaYFKgEfAb4A6d36AFi4Cv8Z7d0C5tLyAR3n9AEyIAYA_gbm_yAwA__yyez_GfC__wIa5QMj3iH_GfPfABkm5QH-BTEA-Bb9AuAc__7n7f0DzxgCAhXHCPzXNgoFBPv28-DSKgMC1gkJRhny__gi__roDAoGARkUB-MMBgPO6eAB-gwD_eTyFf7wnfoDHeEMB9kp4v7p6wsA2tUAANHb_wco_AX93wD2Bi0aAgsx9Av67ekACgJB8AUY8QPo8ez9Ax4A7ewgAC18swY7OBNACUhhUAIqzwcQABrAB7vu1b7bGSa8gvFCO_UKDzwaNuc7VT1PvUvTtr2Wyys9rO4HvRR2ET7fDt68Jr6DO4q5ur0QLB29LVTIPKZCPD5lYTm9PHxDPXoXL74IPDA9KZ_UvP0Hsr2_rcc7ew4TvML5tL2KdnQ7OIcrvTzprj3o1Lq7E2BmOnOvXTzzLII9JcHlvCgTMj2wXyu9sac9vRAXCr2-_6q8mQLjOuJ1O7s5_KQ8ZJOZu9Fjyj3Ofi49mpfDuwEVXr4LvIs6MHUhvC_i1jzO3Kg9MMehPJ0u672vT2-8X5rDuzTDwb3aVz49wRPAO3zxRT37BD05xYdhu7ybIj3AA6i9wz-yOycWmL2LA4O8LKrVu8DRaTqSJBg-yjS7Oq7XBL4Nnz497EWZvM1hMj1lUVg8-05dvJHWeD2fwja8EEnjPLi3NjxkkeY8TWoIvcOjaL3-Tgk9a5T_PFcYDL1XGwg9W-RDvN3zdDvvDt88NfHROUJN3zthx5q8B6AsPJP-3rwpR8w9_Z_kO4hXKD2ljZk8fGfNugUjpT3WAju-SeWaOpoRGT0w8vK87aIrup-wtD3pj0u5uEZ8u1dYFT2LVHi9khDdu8d5Sbx1Z5o6zRsru7NFUr1iRCe9NhZevDbTyL18lDY8LnMbvDYapb1byp486yoPvMccOj2sUhq9-D1iu08CW70-SwY9Ox2GO3gfjD0isXM9gHIIu80K4DwBlqa7IZ7bu3deFD19ofY8WBHBuj1KArx8LH28KtQHPMyNMzyKZ5q9tbXmuE8jHT6VuA69DXvSOPUpLL01mIa8Yyo7OZSJ270J3Zo9773oOLnSYT0u3pS9c0_dOFQb_L1iu_u9E9PyOdhvnDxVJ4G99-7HuBW1arwSiSK9ARbduM-NxL3t7iY8XGUMueiDpbwlEju9HnJ2uRZAQjxe2hA93HmHt7mMvLuiauw7Q026OualCztTuzW9fdzCOP1kwT1AMo09Gy4aOHsS2LzPBmq98aehOAIpET6s1CI9KxIAOYmsWjv2fy4-vDsVuQPM4Tzx3oy9JEoUOZgarD3X8Km9AuheuAu1JjyVfy08YJkqOFo0o718Wko9ciBsOFKpJ7vXHWY8Hs8XOBxe8D19BP489OeQuIAmp7xdg8M9ojLMNJlybz3nozG9gAAeuDnFxL1ntya-1kdyODbNNr3P0c88IJMAOAkGRj19QpG9vNiUNz1zkD3Ir2S9JLIENyEytjw7OeM9BBsGOYfVST1AL_w9t6oHuZ2mKr3N3Xi8fui7t3oMgL0pgD08xFm3tyAAOBNACUhtUAEqcxAAGmAs9wAOIwSq_y8f3Ni8w-nMyfPDDJH6_9zX_ywN1gwH8NGy8yL_DvoU6J0AAAAbIwgZEAAqf93EJyEeEwjCtbxTC1ogIP4FsxU0uNgGOwj0Jv4RJi4A1ArCAiq1KE86Rh8gAC2DIRQ7OBNACUhvUAIqrwYQDBqgBgAAIEEAAFDBAAAkQgAAbMIAALhBAADYQQAAyEIAAJjBAACAwQAAgEAAALBBAADwQQAAaMIAABxCAADIQQAA2EEAAEBBAABgwgAAHEIAAABBAAAAQAAA8MEAAIDAAABQQQAAoEEAAIC_AACeQgAAiEEAAJDBAACQQQAAXMIAAJBBAADEwgAAUEEAAJLCAAAEwgAABEIAACBCAACgQAAABEIAAGxCAAAUQgAAJEIAAEDAAADoQQAAlsIAAFRCAAAoQgAA6EEAAARCAAA8wgAAgD8AABDBAAAAQAAA4MAAAABCAABkwgAA6EEAAHBBAAB4QgAAQEAAAILCAADAwQAAoMAAAHDBAACKwgAABMIAACTCAACYQQAADMIAACRCAABEQgAAjMIAAJBCAADgwAAATMIAALDBAACgQQAAwEEAAGRCAABowgAAkEIAABBBAACIwQAA-EEAAJhBAABAQAAAAEAAAChCAACAQAAAoMEAAExCAAAIwgAAEMEAAGBBAAAwwgAAQMAAAEBBAACQQgAAmEIAANDCAACgwAAAIMIAALDBAADwwQAAHEIAADBBAADAwAAAoEEAADxCAAAgQgAAiEEAACjCAABwQgAAHMIAAAhCAACoQQAAuMEAAEDCAAAowgAAgsIAAKTCAAAQQQAACMIAADjCAABwwQAAcMEAABDBAABgwgAAcEIAAAjCAACYwQAAoMAAAHhCAACQwQAABEIAAODAAACUQgAAiMIAAMjBAABwQQAAYEEAAFhCAAAIwgAAcEIAAEBCAACgwAAAQEAAAKDAAAAEwgAAWMIAADBBAAAUQgAAgL8AAKhBAADgQAAArMIAAIzCAACQwgAA4MAAADjCAAAwQgAAgEAAAGDBAABYQgAAUEIAAMDBAADQQQAAyEEAAKBBAAAQQQAAQMAAADBBAACiwgAAgMIAAIDAAADAwQAAJMIAAFDCAAAQQgAALMIAAIBAAAD4wQAAAEIAAKBCAADAQAAAqMIAAFDCAACAwQAAgEAAANBBAADwQQAADEIAAAjCAAD4QQAAgEAAAADBAABwQQAA2MEAAATCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAABL4AAMY-AACCvgAAVD4AAJY-AABUPgAAB78AABy-AADYPQAA3r4AAJo-AACIvQAAoj4AAIg9AAD4vQAAgDsAADC9AAAwPQAAcT8AAGs_AABcvgAAoDwAADQ-AADCvgAAEL0AAFw-AABEvgAARD4AABM_AABAvAAAAb8AAIA7AAAcPgAAiD0AAMK-AAA8vgAANL4AAL6-AAD4PQAAQDwAAPi9AACGPgAAHL4AAAS-AAAQPQAAxj4AAHS-AABwvQAAjr4AAJ6-AAAQPQAALD4AAAw-AABsvgAAuD0AAH8_AADoPQAAHL4AAKY-AAAwPQAAND4AABA9AAB0viAAOBNACUh8UAEqjwIQARqAAgAAND4AAFA9AAC4vQAAOb8AAOi9AABQPQAALD4AACy-AAAEvgAAuD0AAHC9AAAMvgAABD4AACy-AACgPAAAcL0AAEy-AAAtPwAAgDsAAMI-AAAUPgAAXL4AADC9AAAMvgAA6L0AADS-AACAuwAAcL0AAKC8AACKPgAAmD0AAMg9AADCvgAAML0AACS-AAAwvQAAyD0AAIA7AADGvgAAJL4AAJi9AABUPgAA6D0AAFw-AAAQPQAArj4AAH-_AAA0vgAAuD0AADy-AABAPAAAgDsAALg9AAAQPQAAoLwAAPg9AAAQPQAAgLsAAIg9AADgPAAALD4AACQ-AACgvAAA0r4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=V5ArB_GFGYQ","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["13331419191217578752"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"535316761"},"13973133148390888770":{"videoId":"13973133148390888770","docid":"34-11-12-Z9EFCC1EC371412DD","description":"This video introduces and explains calculators with sin, cos and tan for GCSE Physics. You must make sure that your calculator is set up to 'degrees' mode when you're dealing with angles.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3820482/63586c4432cce2bd1954ffc8f13732f1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cJQCPgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dz925v3v9Va4","linkTemplate":"/video/preview/13973133148390888770?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculators with Sin, Cos and Tan - GCSE Physics","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=z925v3v9Va4\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDEzOTczMTMzMTQ4MzkwODg4NzcwWhQxMzk3MzEzMzE0ODM5MDg4ODc3MGqTFxIBMBgAIkUaMQAKKmhocHh6cGlzdGplb3hkaWJoaFVDWnphdHl4LXhDLURsX1ZWVVZIWURZdxICABIqEMIPDxoPPxOXAYIEJAGABCsqiwEQARp4gff-_AD-AwAA-f8D-wb-AgAD__j4_v4A9A739QMBAAD9_P39BwAAAAEM-_0FAAAA_fj4Avv-AAAT-vT1AwAAAA76_PX2AAAAFgb2-f4BAAAFAfj4A_8AAA7-AQgAAAAAAw35_f__AAAFDfkDAAAAABAHDAv_AAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AFgNkf19A3cA60b1v-B9Sn-mC31AGlF_gC7K9n-A-8aAZ_lEAD4EuUCwiDfAOD0TAAoAasAXUYY_wC51_4GIdsBJTTzAT4GVQDB9_T_6xID_Sw-P_3X8NsA8-zxAe_p7gNU5xj87OU3_x7N9wAT8vYC2uAjAAg3LAU6vwIDvkS9Ba3FCwSr6NIBRzDVAOa48QQTGcv-Ff8e-w1C3P8mAQcH7O8n9uoE8A0QFgn_m_UM-qgM5QAvCzb6TxLOADQdMwPiK_4PuAsjAsLTC-r7EP39Aib581Lt3A_CGw0OHkAX-xkQFAkdNQnxxLAKBt0RDOUgAC3D39I6OBNACUhhUAIqzwcQABrAB6YNV74S38O6BzLxPM7-AL4ZYUA8Tp3iPBQgkr6I4y88FaglvVG7rz2ezjq8CKI4vCRDPr6Iclg9SeiZug7ItD17azu9VZGAvEx_sL3GHF88-P3bPMSkTj37Ruq8OPUiO47IJz7zRGY9sGgjvJNvBj5vsCE9nJAOvExUz70R7sS8w8RVPA1BxDwecBi93_5cvMRb5z3qnQC9XylLu-GXCj5xqJS9uqtsu1XXxr0CazA8pYQAPXR76b2lFsq8u1qTvFo39zrM62u72t2oPB7fXj0t8ds80XJFPDTDwb3aVz49wRPAOw1PVLzrW6G9IhwOPZ6C-Luvh4U9PMUFvb-eLzzC1SY9yOr7PCeSfj18-Yg94HyPPAXktj2Msd08A7NCvO2ZijwjaEw8Y-YHPQ3cRr29XF-98qnvOpXZezyrsNm9fwCtPP1b0zygH-E8kxbTvFNWqL0JM62857R6u7LLgTxqBIE9yQyKvA32Cz1ypgk95jwlOyCLA7078Bs9tEwQvCI-Kz3l56A92Lr1urFIiL1w_zo79wIWPOxDuL2PUAO-f0AQu0t4Qj0g5jc831jpO23jsjosY2M9nI1wO4vMwr2Ho3A9svN0O99N-brjTDi9ZRnBuklwWb10LsG7K5DROzODfb13LTG-ZtVdOVH16z1pNWS9X2XIOS8RtD1Kmg--ilfiuVrftjwlbh89p1qsO2sVWLxySiW9fiAzu8ysLz3FvbO9uqHGOim3KL2loWY9sFHHubwiyL0yqsG9nAFSuO50nD2s4s29Kv-9OVaSxjyJBIi9-VL5ONOJPz3eRwE8GHBvOnX5gD3rZ_u8UTmNuFxUC72cFfG93J51ORwBhr1oly--AvCMuS5AtrzMAtK8WOONOZegEL2JQQA9mM0QudetVD3grxO8nJisufPdt7z4RMi9_wXQuBZwqr0-gIu9yEeUNgvFZz2QnuI9EXeSuZxpAr7Yp5K9AErRN0iI8j0kUsk8Uo5tOVkzUj2iM1-97-hQuJjAHT5frf-8u0r9OIElB745RAw-GEbTt2F8hz2S8xM8KwJhuE-ZNj2NsqO8rAJoN4BX1bxqoAk-dU5ZOL2mBz7Q2kg8qq5ZOS8bmD3KFf49jxkKNdqOCT4td4Y9ugsAOaJfOz1FHz09h_NyuIgCLD0jPgE9UxTmN_inBD5VnA-92oOXNj077DsMtDa9zYQouJ7InT3wJa49tjzwuC9poT1dBOE8R_gQOQcLp7y9_O49g7QeuUuxjj1_q447Bpxnt4-5PD1QwcY8bXSVNyAAOBNACUhtUAEqcxAAGmAhAgBMIi3K9AQ6_BvH99--CR_NLrP__wnt_y7O9vbgGa_N2jEAHA8-6J8AAAAI9uMC_gDqf-y7Dhg4LCnCiuA0D1n5FgzqEu0XvPI7EeLARAzwQzgAwPfACxm-4F0rPgggAC3e-BQ7OBNACUhvUAIqrwYQDBqgBgAAjMIAABBCAADAwQAAYMEAAPjBAACgQAAAUMEAAMDBAACKQgAAkMEAAKBBAABIwgAAwMEAAEBBAAAIQgAAgEEAAGBCAACQQQAAFMIAAHRCAAC4QQAAuEEAAOBBAADwQQAAEMEAAHDBAAAIwgAACEIAAEBCAAAkwgAAhEIAAIjBAACQwgAA4MAAAKBAAAAQQgAAOMIAAI5CAACowQAAPEIAAPBBAABAwQAAPEIAAFDBAAAAQAAAcMEAAKpCAAAgQQAAAAAAAABAAABQwQAALEIAAJrCAAAkQgAAbEIAAFBBAACkwgAA0MEAANhBAAAMQgAAcMIAALjBAADoQQAAMEEAACRCAACowQAAgkIAAPjBAACIwgAAwMAAAIDBAACAPwAAeMIAAABAAAAkQgAAisIAACTCAAAMQgAAWEIAAHDCAAAQwgAAoEEAABRCAACYwQAAMEIAAJZCAAAkQgAAgD8AAGDBAABEwgAAAMAAABBBAADoQQAAAEIAALBBAACIwgAA6MEAAMDAAACAwQAA8EEAANjBAACoQQAAwEAAAIxCAABIQgAAvEIAALDBAAD4QQAAHEIAAABBAADAQAAA4MEAALJCAABEQgAAQMAAAABBAAAAQAAAsMEAAFhCAACAwgAAIMEAAJjBAAAgwQAAwEAAAPDBAAAAQAAASMIAAKDAAACAwgAA0MEAAFTCAABgwQAAYMEAACDCAAB0QgAAEEIAAO5CAACQwQAAwMEAAIhBAABAQgAAgL8AAIDCAAAgQQAA4EAAANBBAAAAwAAAiMEAABxCAAAYQgAA6MEAABBBAAAgQQAAbMIAAKBAAACawgAAoMAAAFDCAAAIwgAAiMEAAITCAABEwgAAoMEAADDBAAB8wgAAAEAAALDBAAAQwQAAcEIAAMjBAABQwQAAmEEAAADAAACswgAAbMIAAHRCAADQwQAA3MIAADBCAACgwQAAMMEAABzCAAAAQQAANEIAAEBCAACgwQAApsIAADRCAAAkwgAAgMAAAAjCAABwQQAAAMEAAI7CAADIQQAAuEEAAABCAACwwQAA2EEAAOBAIAA4E0AJSHVQASqPAhAAGoACAACKvgAAfL4AAAw-AACYvQAAND4AAAc_AADOPgAAMb8AAIA7AADgPAAADL4AAHC9AABEPgAAdD4AACS-AABUvgAAED0AAKg9AACyPgAART8AAG0_AADavgAAED0AALo-AAC2vgAAED0AACE_AAAUvgAA4DwAAOo-AABUPgAAU78AAMi9AAAUPgAAND4AACw-AABEvgAAxr4AAOK-AADgPAAAJL4AAFS-AABEPgAABL4AAHC9AABQvQAA5j4AABS-AAC-vgAA_r4AAPa-AABwvQAA4j4AAIi9AADovQAAED0AAH8_AAC4PQAA4LwAAFC9AADovQAAJD4AAAy-AAA8viAAOBNACUh8UAEqjwIQARqAAgAA4LwAANg9AAAsvgAAMb8AALi9AAAQvQAAXD4AAAS-AACgvAAAmD0AALg9AADIvQAAMD0AACS-AACAuwAAUL0AAIi9AADWPgAAyL0AAGw-AAAcPgAAcD0AAIC7AABkvgAAgDsAAIA7AABAPAAAQLwAANi9AAA8PgAAHD4AAAw-AADavgAAQLwAABS-AADYvQAAJD4AABQ-AADOvgAAJL4AAKg9AADYPQAA2D0AAJo-AADIPQAAmD0AAH-_AADYPQAADD4AAPg9AADYPQAA4DwAAEC8AADIPQAAFD4AAMg9AACgPAAA4LwAAIi9AACYvQAAUD0AADA9AAC4PQAAXL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=z925v3v9Va4","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13973133148390888770"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1010441518"},"13678681481948372932":{"videoId":"13678681481948372932","docid":"34-1-10-Z603ABDBAAFDF79D9","description":"This video is a quick introduction to sine, cosine, and tangent. It teaches you how to find the values of sine, cosine, and tangent if you are told the lengths of the sides of a right triangle.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3810141/4d649ff73fcb1f7c8b83cd4d7292114f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/f-ARpgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dn9SgF-iWIaM","linkTemplate":"/video/preview/13678681481948372932?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sin, Cos, Tan Explained (Sine, Cosine, and Tangent)","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=n9SgF-iWIaM\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyWhQxMzY3ODY4MTQ4MTk0ODM3MjkzMmq2DxIBMBgAIkUaMQAKKmhoa2l5cXRsa3pnb3NsdWNoaFVDUF9URnZnRUxqTm12YmYtYTE3REp3QRICABIqEMIPDxoPPxPWAYIEJAGABCsqiwEQARp4gfcE-v76BgD9AgUC-gX-Ae_-9vf6_v4A9gD19QIC_wD0AP7-_wAAAP8JAfcAAAAA__P_-Pj-AQAYBfH-AwAAABgC_QD4AAAADxD6-f4BAAD_AfT9Av8AAAEB9gMAAAAADA78-AAAAAD5Cfr_AAAAAAH8AhEAAAAAIAAtWlTkOzgTQAlITlACKoQCEAAa8AF_9DX-yNHAAN3nIv8RJucC8kYm__w_yAC0LhEB5eHSAQ7F_wEuKtr_5wWyAKfX0P4lTPIAA-IcAD--Kf8RCewBzu31AQcM8QFEExwDHgXw_-YMLwDR_xf__ALBAOUz_f_5-xcAPNTm_ekEtAJCKiAEAPDjA7MQG_0CDfv98DIcBc0a4P_wGvkIw_0f_wQOPv4B8gMJ8Qj-_hrY8_NPJRr6G_MJAiMh2v3-DMv7r9AXAB8gHQLysf8BPBoRA82-DPb65B79zfIPB-HzO-zG_v760u_sAgMZ9RYaAh8E-9XwGgck6OLHR_H-4CEF9VwU-AogAC1Ne_E6OBNACUhhUAIqcxAAGmAtAwAm2CAODPYEzifF5vjRxu3PE_EP_84tAALg3gEQ7ObevBcAGwYjz7AAAAAU6gw20wAIYfHJLuQOCifVydhN-3_70toP1wEUtOkH6OG-NRsBOjEABxjxNybL3gQhI0MgAC1LuCo7OBNACUhvUAIqrwYQDBqgBgAA-EEAAIC_AAD4QQAArMIAANBBAACgQAAA-EEAAIDAAACgQQAAPMIAADBBAAAIQgAALEIAABDBAAAEwgAABEIAAABCAADIwQAACEIAAIC_AACUQgAAgEEAABzCAAAAQAAAIEEAAEBCAADkQgAAkMIAAABBAAAIQgAAJMIAAABAAAAAwgAAkEEAAAzCAAAwQQAAiEEAAIJCAAAgwQAAAEAAAMBAAABwwQAAwEEAAMpCAAAAQQAAsMEAAEBAAABwwQAA8MEAAMBBAABkwgAATMIAANjBAACAQAAAEEEAAAxCAACwwQAARMIAACBCAADOQgAAcMEAAGDBAACQwQAAeMIAAJjBAACKwgAAQEAAAMjBAADQwQAAgEAAACBBAAAUwgAASMIAAEhCAACYwgAAgEAAAMjBAAAswgAA4MAAACDBAAAcwgAAkkIAAPDBAACAQAAABEIAAHzCAABQQgAA2MEAAADAAACwwQAAKEIAAAhCAABwwgAAVEIAAOjBAAA0wgAAEMIAAGDCAAA8QgAAEEIAACTCAACAPwAAOEIAAEjCAADIwQAADEIAACBBAAAEQgAAgkIAAOhBAACAQAAABMIAABBBAAAsQgAAPMIAADRCAABgQQAAgMAAAJLCAAAQwgAAQMEAADDBAABQQQAAgL8AAMDBAACMwgAA2EEAAKDBAADAwAAA8EEAANDBAAAowgAAREIAAJRCAAAwQQAAWEIAAKDAAACowQAAhMIAALBBAABAQQAAyMEAAGDBAAAwwgAAgD8AAI5CAADowQAAKMIAAIBAAACowQAAAMAAAIA_AAAAwQAA-MEAAKBBAACAwAAArsIAAGDCAAAUwgAA0EEAAMBAAABsQgAAkMIAANjBAAD4wQAAUEIAAKDAAAAMQgAAbEIAACBCAAAwwgAA2MEAAIBBAABEwgAAlsIAAADBAAAAQAAALMIAAJTCAAAwwQAAZMIAAMDAAAAswgAA2MEAAJRCAADIQQAAXMIAAFDCAAAgQQAAgMAAADRCAACAvwAA6EEAADhCAAA0QgAA3kIAAMBBAADwQQAAAMIAAMjBIAA4E0AJSHVQASqPAhAAGoACAACYvQAAHL4AAI4-AACgPAAAoDwAACQ-AADIPQAA6r4AAMg9AABQvQAAiL0AAOA8AAAwPQAAij4AAKi9AAA8vgAA4DwAAEA8AAC4PQAAwj4AAH8_AAB0vgAAQLwAAHw-AACevgAAVD4AANg9AABwvQAATD4AALo-AADIPQAAor4AABy-AACIPQAAXL4AAOC8AAAEvgAAlr4AAMa-AAAcPgAAcL0AAIC7AAAMPgAAEL0AABC9AACIvQAAzj4AAOi9AACYvQAAML0AACS-AAC4PQAA8j4AAIi9AABAPAAAiD0AADM_AACIPQAAmL0AAKg9AACovQAAcL0AAKA8AAA8viAAOBNACUh8UAEqjwIQARqAAgAAqL0AAKA8AADovQAAG78AAAS-AADgvAAAHD4AADC9AACAuwAAED0AANi9AAAkvgAAuD0AADC9AABwPQAAEL0AAHA9AAARPwAAEL0AAIo-AACIPQAAUL0AABC9AAAwvQAAgDsAADC9AADIPQAAQLwAAFC9AABEPgAAqD0AADw-AADKvgAAPD4AAHC9AABwvQAAqj4AAOg9AAC2vgAAfL4AABA9AAD4PQAAgDsAAII-AAAkPgAAMD0AAH-_AACIPQAA4LwAAIC7AAC4PQAAcD0AAFC9AABEPgAAcL0AACw-AAAwPQAAFD4AAJg9AADYPQAATD4AABC9AACovQAAkr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=n9SgF-iWIaM","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["13678681481948372932"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"205743913"},"14687662431363470516":{"videoId":"14687662431363470516","docid":"34-5-2-Z481060ED6B75C215","description":"We will compute sin(i). The procedure will feature Euler's formula, complex exponential, and also the hyperbolic sine function. Check out how we can prove Euler's formula by using the Taylor...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2352503/4c7c3f0eafdbb2062f9bea664dfadf76/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qJyXDQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dcm0GsGP1K1Q","linkTemplate":"/video/preview/14687662431363470516?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"can we have sin(i)?","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cm0GsGP1K1Q\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDE0Njg3NjYyNDMxMzYzNDcwNTE2WhQxNDY4NzY2MjQzMTM2MzQ3MDUxNmqTFxIBMBgAIkUaMQAKKmhocndwaXprY25xbmFneGJoaFVDX1N2WVAwazA1VUtpSl8ybmRCMDJJQRICABIqEMIPDxoPPxOGAoIEJAGABCsqiwEQARp4gQIK-gb8BQD9AgUC-gX-AfT6-gIJ_wAA7_EE_QYAAAD1AfYEAQAAAPYJ_PoEAAAA8fH6-wIAAAAQAwL1BAAAAA38_Ab7AAAADgD8Bv4BAAD__Pv_A_8AAAf8-woAAAAA_v_9-wIAAAD3CPj2AAAAAAPxAAUAAQAAIAAtwVrgOzgTQAlITlACKoQCEAAa8AF_Bvv-4OzIAcoZ9gHd3ukAoA4f_yIs3ACi_gAA3gDoAeoe9QDYBOYAJv4C_90fIP8W06oD1roPADrDJv8s9fP_-NL4ACbtBQE_LhwA__He_sEVPwH_29UBG9HMAx4e2QDwvwD-Rw66AgY10gP66TQBKhRBAA7Z__364Oz92e7jBunY1P3O7vMHCPIH-szpIgIe-fYBNTAj_vYPCwTs5gH8E9wq_Ak0z_0J-e0ACfUdC6AC_ATk9gcDLwIVAvzo2vzS8DQGs-0fBPb3A_IL_gPy_SbuCwC2CBMD6BUMuQX0D_8I9e0HFvLqxvvpDtYO8P8gAC0sqgI7OBNACUhhUAIqzwcQABrAB9eF575EvDq9CqGkO8l3hLrVNeQ8-_HNvDyLOb1yGwg9x4EeOoLKSD7ElIi8VUqRu_aWYr4FeIE8eT8NvCb_8z3xBbe9oGUnPHoXL74IPDA9KZ_UvJVnObyjm3g9Xs2LPJavUD3Ct1W8yKZmveDZfj1ScU29zTdHvPw2hLyJeRi76B3AO--yujwA1Qm9GnuAPOlDp71D6Jy7pIM_vI9E-Txfppy9orgAvOAR1T1CWog7mLKCvGV7k737lqQ9_3WuvI_97D20FWU9_GRguittEb4lBdi7AazEvMkaSjoKMac90zuNOw1PVLzrW6G9IhwOPfnihr1ACf28rFwDvUz6G72z6a07Yc2Wu69duj2N64Q8lXf6PE88B70Neco9h2DmOztlrz2rOBs8WGB-vHnBgb1pZIA7LjqXO6cqiD2_wpe72-Z8PJn7j72bRY49Z23JPO0Lnb3enJ07zIAQvKjsqjyhXhU9_R3AuyW5EbuShuS8GmRcvCCLA7078Bs9tEwQvBzjs7rfPTa9t5APvISenT1D8oS9mbdqPJXcPL088cG9Q-nmu93Bfj28uyQ9iHuRvHFBkTuoV2W9jRHkO8R7zj2FNa-9hxWPO5r2Az2R7ic98SprvAgvC72rICu8uUHlOmodUL3nY2g9C2oNPFeWyD0ecxm9VIcBOyjMlb2A-SC8y0OuO_A_aDueuWI7Z058Ovubaz32C1Y9DisnugmNwD2n26i936zauTx8o7yC56m91n9fuH1rgT02-0i9PXOzuKGd0z1RgZi9l51ROWlEH73tvJ09AgeguS3RCb6WIS49nrhguG7ckj07sii9I04juQHgM7yGXOO7FuxQOumLczwbDSW9ocUbukylnzqmjp-8cnBxN4wqaLyTB9g8Z5skOnk_7j1kt2o9r1f_t4DM2Dx_6mm9LFR4ON595TtXnmy5NBGruFcJ9r1TDyy84Q4NOoK_hD0-iE49DmtHOKfpMz4NbFq9hIMXOuNvcjnJv6A9uf0nOBNjWb3Ouxs9P388OBZxVzs0pKU97TcCuACZTD3WoYQ97cUlOOW2vTzsJVe7SJ1uOMrhA74Q1x48l_1ON8XhcT14JvS9_U0VOW00RT1tmq29VvWtODjshLoR7sS8KwdeNyt5hjtrRga-F66lN07BkL0_vk69U05lN8XFUT0JKcm8-M-ftpS0rLxsrTQ9BBjztcegAz5gjXi9F8haOKlrjT2LC5E9EyciOCSmmj074RU-pFxuuKSwJr1UBum8IH4euLSRa73XSbI9UhvVNyAAOBNACUhtUAEqcxAAGmAxCgAR6jIMCQv899LmC_DuLQ7r-LYY_xLOAMExBwX-GNnXQCH_J-kL3q0AAAA24uL23AD3bun2-xbo4NrAub8NIH8Z_kmz4g4A3uQnE_HqMCIIPjIAyDTGGgGxDFfpCSMgAC3t4iU7OBNACUhvUAIqrwYQDBqgBgAAMEIAAEzCAABQQQAAgEAAACDCAAAkQgAA4EEAAHjCAADIwQAAAAAAAEhCAADCwgAAWMIAAITCAAAAQQAAGMIAAIC_AACAwAAAgEAAACjCAACMQgAAiEEAANhBAAAAQAAAQMIAANBBAADswgAAcMEAAMJCAABAwQAAUEEAAEBBAACUwgAAgMAAAEjCAACYQQAA-EEAAI5CAADgQAAA8EEAANhBAAAAQAAAkEEAADDBAACgQQAAdEIAAIDBAADwQQAACEIAAMDBAACAwQAAkMIAALjBAADgwQAAOMIAAGDBAADYwQAAFMIAABDCAADAwQAAyMEAACDBAAAAwQAALMIAAM7CAAAYwgAACMIAAJjBAADgwQAAQMAAAABAAAC6QgAApsIAAIjBAACoQQAAdMIAAFTCAABAQAAAoEEAAIA_AAB8wgAAdEIAAJDBAAAIQgAA0EEAANhBAAAMQgAAIMEAAEDAAACYwgAAgMAAAAxCAABQQQAASMIAABDBAADowQAADMIAABhCAABAQAAAQMAAAGTCAAA8QgAAaEIAAMDAAABIwgAAgMAAAEBBAACuQgAAaEIAAMhCAACEQgAAskIAAAAAAAAgwQAAeEIAAKjBAAAwQQAAMMEAABRCAAAgwQAAyMEAAGDCAAAcwgAAFMIAAIDBAAAMwgAAQMIAAFxCAAAAwgAAgMEAAMDAAACYQQAA4MAAAIBCAAA4wgAAmEEAAGBBAABwwQAAiEEAAIDCAACgwgAAgMEAANjBAAAcQgAA0MEAADBBAACoQQAAWEIAAABAAADgwQAAAEIAAIA_AAAgQgAAgMEAAMBBAAAAQgAA8EEAAHDBAABQQQAAgD8AAIDAAAAQwQAA2MEAAAjCAABAwQAAhEIAABhCAABIQgAAMEIAALDBAADoQQAAgEAAAKDBAAAAQgAAUEEAAEBBAABAwAAAIMIAADBBAAD-QgAAYMIAAABAAAAAQQAAwEAAAABAAAB0wgAAHMIAAJJCAADAwAAAuEEAAFBBAAB4wgAAIEEAAIBAAACIwgAAWEIAAIBAAABAwAAAAMAAAHDBIAA4E0AJSHVQASqPAhAAGoACAABQvQAA2D0AACw-AACgPAAAoDwAAHw-AAAUPgAApr4AABQ-AACAuwAA4DwAABQ-AACgPAAAML0AAFA9AADoPQAALD4AABA9AAAcPgAAXD4AAH8_AACYvQAABD4AAFw-AABsvgAAPD4AAOA8AACoPQAAVD4AAJ4-AAAMPgAAdL4AAHA9AACYPQAAiD0AAKC8AACIvQAAJL4AAMa-AAAUvgAATD4AAJa-AABUPgAAQDwAAIA7AAB0PgAAND4AANg9AADgPAAAmD0AANg9AACIPQAABD4AAOC8AADgPAAAJD4AACU_AACovQAAuD0AANg9AADIPQAAML0AANg9AACOviAAOBNACUh8UAEqjwIQARqAAgAAiL0AABA9AADIPQAAP78AAHA9AACIvQAAXD4AAI6-AABcPgAARD4AAFC9AACAOwAADD4AAIA7AACYvQAAED0AADy-AAA9PwAAHL4AAEw-AADgPAAAgr4AAKC8AABwPQAAiL0AAIC7AAAwvQAAcD0AABA9AAC4PQAAQDwAABw-AAA0vgAAyD0AAJi9AACAOwAAsj4AAHy-AACWvgAAmr4AABC9AAAcPgAAEL0AADA9AACoPQAAcL0AAH-_AAAsPgAAdD4AAOi9AADYvQAAyD0AABA9AABcPgAAbL4AAEQ-AACAuwAA2L0AADw-AAAMPgAADD4AAMK-AAA0vgAAML0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=cm0GsGP1K1Q","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14687662431363470516"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2275028784"},"10698191944826446892":{"videoId":"10698191944826446892","docid":"34-5-2-ZB7661A1E4C224742","description":"sin(pi/12), using difference of angles formula, sin(15 degrees), using difference of angles identity, simplifying trig identities, trigonometric identities examples, Verify trigonometric...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3839317/0fc9df6eac78efe109ca22dc40cd9ad8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/7A4D8FD060A06362CBE8EF9E8C582FF233C5C447DBFF4744BB2038F56DB06B2BF8A4281A6BB4B6D92C03810BAE180E855FC95B2DF770B2D8137C24ED8B8310B1.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D13enJ0GMj6Y","linkTemplate":"/video/preview/10698191944826446892?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"sin(pi/12), using difference of angles formula","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=13enJ0GMj6Y\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDEwNjk4MTkxOTQ0ODI2NDQ2ODkyWhQxMDY5ODE5MTk0NDgyNjQ0Njg5Mmq2DxIBMBgAIkUaMQAKKmhocndwaXprY25xbmFneGJoaFVDX1N2WVAwazA1VUtpSl8ybmRCMDJJQRICABIqEMIPDxoPPxOxAoIEJAGABCsqiwEQARp4gQMAAAsD_QDq_AP9-gABAAsA7wH2__8A5wH3-_j-AQD3_AoLCQAAAPoL-wMCAAAAA_v8-_39AQAYGP37BAAAAAkCAADzAQAACgb2Cf4BAAAC9P7sAQAAABb-BgMAAAAA_Qb3-QIAAAD_BwX8AAAAAAv0BQ0AAAAAIAAtZ_nNOzgTQAlITlACKoQCEAAa8AF_5er_9-O8A9sp7gD87-YBuyMXAEAXvACv-uUA0u3QAOtK5gDXCfoAFQX5ALpP8gAhAboA-un3ACe29P4pBfsBzvLRAUnp-gFbGRMBBvTtANXYEP784QIAKggC_xwq-QIJyyD-ZijW_hvv7QP5HSECOQAvAfXvAP3uBuH-r_sbAejX0v209PUCKgYM_LTULAIQFNT-ARkD-ecq_gUZv-H-AcYP_u8h5vdP9_L_EBYABJfY6vsO-e0M-_gcDfEC4ff0BRrvrQjo-TEOFAsd-RjyEif4DOzq-Qzy3_UH3j4VCfck8wUK_wH_8if1GBDz5AIgAC1WaP46OBNACUhhUAIqcxAAGmAy_gAoDxLo_hMB-_G-6vXp2CXt8t8f__jzACjx1vw0HtfSF-T_Kub38rYAAAAoB_v3JQD9Yfbf_RXiDOnRrt8vCH_sAiHx0xXhvcz5EyIRAxUkFVoA3xHCHC_L3iIdHgEgAC1Idjo7OBNACUhvUAIqrwYQDBqgBgAAkEEAAEDCAACmQgAAVMIAALhBAACAQAAAgEIAACDBAAC4wQAAIMEAAEDAAAA0wgAAAEEAAATCAACgQAAAYMEAAFDBAAC4wQAAikIAAODAAABQwQAA4EAAAFDCAABMQgAARMIAAIBBAABwwQAAAEEAADhCAAAAwQAAgMEAAODAAADQwQAAoEEAAILCAAAkQgAAYEEAAMBCAABkwgAAAEEAAIhBAACAQQAAKEIAAEBAAAAsQgAAhsIAAIBAAACwQQAAREIAAGDBAABAwQAAAMIAAIA_AABAQQAAAEEAAABBAACIwgAAIMEAAFBCAAAgQgAAaEIAAMTCAACIwQAANMIAAIDAAAC4wQAAQMEAAITCAAAYwgAARMIAABRCAACCQgAAnMIAAIpCAAAAwQAAWMIAAKBAAADAwAAA8MEAAHBBAADQwQAAOEIAAEDAAAAoQgAAAMEAAHxCAABQQQAAVEIAACDBAACOwgAAnsIAABRCAACwwQAAYEEAAHDBAACowQAAoEAAANhBAAAkQgAAVEIAAKDAAACIQQAADEIAAIDCAACIwgAAKMIAANBBAACAQgAAAMEAAKBCAACKQgAA6EEAABTCAACwQQAAIEIAACRCAABAQAAAisIAAKBBAADgwQAAiMEAAL7CAAAUwgAANMIAAFBBAADIwQAATMIAAODBAAAswgAAAAAAAMDAAACAwAAAwMAAAFBCAAAcwgAAUEIAADhCAACgQAAAUMEAAJrCAACgwAAAuEEAAMDAAAAcwgAAVEIAAKBBAACYwQAAuEEAAOBAAADIwQAAIMEAAABBAABgQgAAUMEAAEBAAABQwQAAuMEAAKDCAABAwgAAMEIAAAjCAADgwAAAAAAAAGDCAADAwAAAyEEAAIBBAACMQgAA4EEAAJBBAACAvwAADEIAAMDAAAAAwAAAWMIAAIhBAACIwgAAFMIAAFRCAACcQgAAGMIAABDCAACgwAAAYMEAACRCAACYwgAAwMAAADjCAACoQQAA6EEAAABCAADQwQAALEIAABDBAADAQQAAbEIAAFTCAACgwAAAsMEAABTCIAA4E0AJSHVQASqPAhAAGoACAACYvQAAcD0AAKo-AAC4vQAARD4AAKg9AABMPgAAE78AADA9AACgvAAAqL0AAOi9AAB0vgAAyj4AAPg9AAAEvgAAZD4AAFA9AACoPQAArj4AAH8_AABAvAAADD4AADw-AAB8vgAA4DwAAOg9AAD4PQAAxj4AAIo-AAC4PQAA2r4AAMg9AAAQPQAAEL0AABC9AADgPAAAqr4AAIK-AACAuwAAcD0AAJa-AACIPQAAiL0AALg9AABUPgAALD4AAKC8AADovQAA-L0AAAQ-AADoPQAAcD0AADC9AAAMvgAAmD0AAGc_AACovQAA6L0AADw-AABAvAAAMD0AAPg9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAkr4AAHA9AADovQAAQ78AADC9AACyvgAA-D0AAMa-AACAOwAAML0AACy-AAAEvgAANL4AAMi9AADYPQAAgDsAAKi9AAAdPwAAMD0AAJ4-AABkPgAANL4AADC9AACIvQAA-L0AAFC9AADovQAA4DwAADC9AABsPgAAyD0AAEw-AABEvgAAQLwAAFA9AADIPQAAlj4AACS-AAB8vgAA6L0AANg9AAAEPgAAFL4AAGw-AABAPAAAND4AAH-_AADCvgAA6L0AABS-AACYPQAAQDwAADC9AAA8PgAA-L0AAEw-AACgvAAADD4AAKg9AADgPAAA-D0AAIg9AADIvQAAgr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=13enJ0GMj6Y","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10698191944826446892"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3738565146"},"15954691034317194419":{"videoId":"15954691034317194419","docid":"34-3-5-ZD3E534EA581A1E9F","description":"Get the full course at: http://www.MathTutorDVD.com Here you will learn how to find the sin, cos, tan and other trig functions using the TI-84 calculator..","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1732299/779cd2818d9b450d34959c66af44169c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/83CCnwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D69rwfMGUYjM","linkTemplate":"/video/preview/15954691034317194419?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TI-84 Calculator - 05 - Finding the Sin, Cos, and Tan of an Angle","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=69rwfMGUYjM\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDE1OTU0NjkxMDM0MzE3MTk0NDE5WhQxNTk1NDY5MTAzNDMxNzE5NDQxOWqSFxIBMBgAIkQaMAAKKWhobWtsbGdqeGlmZ2tkc2hoVUNZZ0w4MWxjN0RPTE5obmVsMV9KNlZnEgIAESoQwg8PGg8_E7UCggQkAYAEKyqLARABGniB8u4E_P8BAP8B-Qf4B_0C-vwE_fn9_QDsD_39-_8AAPUGBgEBAAAA_RP68wQAAAAT8PUJ_P8CARIL9fYEAAAAGgL9APcAAAAKB_P1_wEAAAf47fkC_wAAA-j1AP8AAAAGFAYC_gAAAAUN-QMAAAAAEP0JBAAAAAAgAC3J1tQ7OBNACUhOUAIqhAIQABrwAX8kMv3H0_r_wR30AdzzEgCT8O0AJCYIALcCEwCr7AYAuvUdABUf4QDKDvAAtgHp_x_J1_9pZAj--9P1ALRY-AAQHwcAPAk0AvQx-gDpLvX-RyUs__v9AgCmK_wC7sHc_zL8L_6UESUCv8Ti_-ntAf7EDS8HDDjzAPT0Kv-7YfwB1fkm-xMGBgDvCNMCDe3KBwTQxgAv-vr-3yrhA_kBFgreytj6_v4CAwEQ-f7VnA0AquQb_DY--v8uCOcBNNIjAxcl9ggNFBYCtf388AXDBPnV4ggE8wYAC6Yf4AI2_hrr3NgHFvji9AAF8AcAvDn2-SAALSNB4jo4E0AJSGFQAirPBxAAGsAH-tTRvoEukLwUdlE9tfMFvIZaTr1d9_s6jY8AvYDMuD0WkiO7zNJOPejoJzyT5X-82NR5vgUESb3zhgW9M1OqPYcKHz1TGpY8KGHmvb5OSTtXT3c8Rbz1vWfoxDysuCe8Hq92PX27Gz0OeKq8nIwaPq0icj1aAhq9D_EvvsQ6-jrHXOM8y_szvUAQ5jsMg6Y7PnZXPTjWBzyewRO8nFJePvoZ6Dx25rk8zvYNPXOL1Lzf0bG7mSntvdUpCzzyobo8TaeQPW3OHD1-Rx69Ht9ePS3x2zzRckU8D6mzPI94CTzYUvY7o5SQvH2iYb3J5FS7vPisva4-6DzPmqA4F2EPPfeJDb25zrU8qecTvdK45Dt8wJc8p2mBPbtEtTzWSUe8CTgfvCZexL13tQG5FkENvTa92Tsv7J87GdulPalRI70gSaQ8wJP2Pf_qkT0Ym--7w4mevbt_rLykLdM8QVliPe0bDj0XlVy7BVEXPbaIKboe_ES8SpnUPXtbuj1Ea6i7pTJFvIvIizyjpRu8D3WkvUfalz1ztiU8V3s4vS-H_b0qoGY6fEftPSA3DT1TXR-7MaR5PALOt7zCBwQ8S5H8vYrLsT187ZQ5nEfPPBLVgL3OgnW8cvnvPdhsOz0tHkU6OBR-vdwNgr3S4Da8JoICveOm5r3GLwe5LxG0PUqaD76KV-K5GdcpvRqMDL0_weo7TBGaPUh9Yz06hV65WrNaPT12kb3qhti6gNO7vWVQrbwO6o27mKkkvMsLdT2KxdI67u8nPZEok7s2Hv-57rmHvQ-7yjzTltG4o9IjPZ5Pk71WCkM5eF7PvFlf7rzdghg5qMfWvVkNU73JJz-49iOFvNpIKL0nuY453sUgvaisYT04Ea24UNBcvRLk1rzezyo669qDPZWTtTwJpX04Fwd8PUJ2Hr6jYIw3FnCqvT6Ai73IR5Q2rpW1PKnZIz4nXJA4_hvFvBMql7tKzIa4OvSMvPSAQ7zl3Ym5BaEhvA6I0L0_3EY49ICjPW7ZRrwxpFE4rQ-gvaEUzT2uyIy4TNVHvdHggDwUZfu3vHDvOx56gb1N0MI4is2nPeSGHz7FPUu5nNuZPXNuDj0nkL83VGqfO55Qrj0zzRE4U1z1PVg3wz2YfGA4q1_puQgrxDwGRD-4uZ-tvcMzvLyGhhC3O_5LPYiBrjyCE8o2CLzAO_4ra72RK5i3kEoRPXcLi7sOHxu4KW8NvEDFDD2124s37ZZGOnXopD0KbuO4J1OAPeOgqbyPKfI3rwzFvSPuGz0HDd22IAA4E0AJSG1QASpzEAAaYBUKAF0PP736zB8A79r12tcM5Nj92wL_ItD_F9zw1t0JsZ3LG_8bCi_2mQAAAPTN8S8LAMh_4asFGgZJRwanCCfNVRTw7OkC3TO04FQX-8kz60NS4QAI7sXqIrXJPBw5zSAALUujETs4E0AJSG9QAiqvBhAMGqAGAABcwgAAREIAAAhCAACIwQAAhMIAAPBBAABgwQAAcMEAAGDBAAAAwQAAoEAAABTCAADmwgAA4EAAAEBCAACgwQAAHEIAAODAAAAswgAA6EEAAOBBAAAoQgAAcEEAAPZCAABAQQAAgMAAABjCAADoQQAAYEIAABTCAAAMQgAAFEIAAEzCAAAgQQAAFEIAAJJCAACAQAAALEIAAAAAAACCQgAA4EEAAGBCAAAcQgAAmEEAAIDBAACAwQAAFEIAAMDAAACAQAAADMIAACzCAACYQQAAnMIAAIRCAABAQgAAIEIAAHDCAABcwgAAUMEAALhBAABgQQAAOMIAAIBCAACIQQAAkEEAAKzCAABgQgAAAAAAAKDBAACAPwAAXEIAAPhBAADAwQAAmEEAAGRCAADAwAAAaMIAABhCAACwQQAAbMIAAIjBAAAAAAAAgEEAAIBAAADgQQAAPEIAAKpCAADQQQAAyMEAAABAAAAwQQAAQMEAAKDAAACAPwAAjEIAAKLCAACwwQAAQMEAAJLCAADQQQAAJMIAACBBAAD4QQAAAEEAABzCAABoQgAAKMIAABxCAAAQQQAAwMAAAODAAACAwQAAAEIAALhBAAAwQQAASEIAAEBBAADYwQAArkIAAKDAAAAQQgAAmMEAADDBAACowgAAmMEAAARCAACQwgAAwMAAAFDBAABAwgAA2MEAAFDBAAAAwgAAUEIAACBBAAAoQgAAmEEAAGBBAACgwAAAlsIAAAhCAACIwQAABMIAAIhBAACaQgAAJEIAAHBBAAAAwAAALEIAADhCAACAwQAAEMEAALhBAACiwgAAMMEAAGDCAAAswgAAQMIAAIbCAACAQAAAFEIAAFBBAADAQAAAgL8AALDCAAB4wgAAZMIAAMjBAAAAwAAAEEEAAKjBAABAQgAA2MEAAIDCAABgwQAAgEIAANjBAACUwgAAjkIAAOBAAAAgwgAAQEEAABzCAAAwwQAADEIAAEjCAAA4wgAAoMAAAKDAAACgQQAAKEIAAEDBAADgQQAAAMIAAGxCAADQwQAAEEEAAEDAAACAwQAAAEEgADgTQAlIdVABKo8CEAAagAIAAOC8AACmvgAAwj4AAAS-AAAcPgAA2D0AAGQ-AAATvwAAZL4AAMi9AADOvgAAQDwAAHA9AACIPQAABL4AANi9AAAEvgAA6D0AABA9AAAFPwAAfz8AAIg9AABAvAAA6j4AALK-AAAcPgAA3j4AAAS-AABwvQAAvj4AAEQ-AADyvgAAyD0AAKA8AACYPQAAFD4AADC9AACavgAAC78AAHC9AAAcvgAAML0AALg9AACWvgAAkr4AAJo-AAAFPwAAML0AAFC9AACWvgAAMD0AALi9AAAkPgAAqD0AADy-AADYvQAAbT8AAMI-AABcvgAAAT8AABw-AABQvQAA4DwAAKC8IAA4E0AJSHxQASqPAhABGoACAACyvgAAED0AAHC9AAB7vwAAkr4AALa-AACqPgAAHL4AAJI-AADYPQAAuD0AAPg9AABsvgAAQDwAABC9AACYPQAA-L0AAAc_AAAsPgAAzj4AAIi9AABwvQAAkr4AAKi9AAB8vgAAgDsAAN4-AACoPQAAEL0AAHQ-AACYPQAAgj4AAPK-AAAcvgAAuL0AAAw-AACmPgAAPD4AAAW_AAC4vQAAmL0AAAQ-AAAcvgAA1j4AAIY-AADgPAAAf78AAEC8AABcPgAAmL0AABA9AABAvAAAJL4AAIg9AAC6PgAAZD4AAIg9AAC4PQAADD4AACy-AACmPgAAHL4AANi9AAAkviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=69rwfMGUYjM","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["15954691034317194419"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"979728350"},"13373643506855282273":{"videoId":"13373643506855282273","docid":"34-7-11-Z4E2FAF6773C60CC8","description":"Integral of sin(sin(x)). Yes, it is possible, if you express your answer as a series of special functions called Bessel functions. I also give a quick overview of Bessel functions at the end.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4109310/a54cf6668d334c98ee05ca84779ee8c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/O0jyqAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DC641y-z3aI0","linkTemplate":"/video/preview/13373643506855282273?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral sin sin x","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=C641y-z3aI0\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhYKFDEzMzczNjQzNTA2ODU1MjgyMjczWhQxMzM3MzY0MzUwNjg1NTI4MjI3M2qTFxIBMBgAIkUaMQAKKmhoZ3J0Z2Z0cXhibXNla2RoaFVDb09qVHh6LXU1elUwVzM4ek1rUUlGdxICABIqEMIPDxoPPxO2DIIEJAGABCsqiwEQARp4gfcE-v76BgAOCgT__QUAAOQD-wT8AQEA-f3-AwUC_wD47v8GBwAAAPYJ_PoEAAAAA_v9-_3-AQAQAwL2BAAAABL5Av_4AAAADgP4__4BAAAABPrwAgAAAAADAgH_AAAA_AL_7wAAAAAD-wX3AAAAAAL4BQYAAAAAIAAtWlTkOzgTQAlITlACKoQCEAAa8AF_IQwC2Pv6__fe2wDqDAYBkwkn_xsj4wDA2wIB3fLIAfD16QDV6w0ABAMGAKAmAAHh2eIAEfALASwP9gAtDxoA7BsXAEjkDAEyDhUC_Pv__-EhEP8P-Rz_FtvXAgcK1f4R6yT99wrkAu0h2gMO_jgBIx0eBCgCC_8B_uv_8wUiAwQY0wDzFA8DF-sGAsUeFgMc8uoD-xTs_wAZDAQf4ggC5fDeACQC6AIuIer8BRUK_vQM_vcHCfT66wshA_Yj7v_m8QXwCfn2_QfsBwsE0fcB9gn1D_Dv-wkF-fD9_-wH9Of5AQjW8wX2-vT9De7P-AcgAC12SCQ7OBNACUhhUAIqzwcQABrAB6ThEL_C4PU7Mg7kvDXatT1NTzM8K8glvdxJJD7VadM8RHzxvD7Q6j2ZzvM8nYdRu6FId75zVro8pDYxvf29dD6SVEu9A7HsPHV0_L0vE5o9CwIQvYkLEL42aq66zo_5O6OKLLx9X7e7OUHAO3IeaT07anG9vLQ8veTDxzzD8iC6g5rrvFY_wLwX-EW9O3mJu7d_hb3n09m80I_QOhpBGT0UQZw8yPVGuwzyqT3ZAXw8X-qpuxML3L2l_P88IeQ8PR3owT2G_H656kmPPDFCGL3C-v88Ma-IvEpF37sN9_a8zyqbuQ97hj3suZE9OaErve0HoTxS6CG9j55MvW2s5L2mES49lE7BOyrRiD2KDQw9LKbIPK70Kr5txd49itQLu46bUL2cd1K8jszhu6oGZj2h6Is9G9Wru9CAlT1DkIM8wX2Ru8CxZ7yaxoA8e6-QvGycCD1mcVU9C9SivEFZYj3tGw49F5VcuyUvobyjuYQ855RbvKi4njtCGVQ9YZ9nuvO9UD0iaxE81m59O0TztT3Y1Nm9OnEgvLnar72KtAc8Cvw8vHfc8DxG-y499g2nvFmHwz0Kz1W99IJTO5tcRz2iOIG9f32duwPBLT3svHK9l7hBuJk-hbxioOu8oN6Qu9i_xrzE3lU8f_ExvH8OGL2gZ5g8pqxPO-cH5Lxol4-9mbUYu7RgWD3P-ek8xC-rOkGH1Lyfxwg91iW6O_c_qz1DId27Kvm7u5vc1LzzTSS9_lwXO2rCdjzDqzY9hUy9ufV-iD0z3wG9QHxsOdsVWbuVfsK8kxvTt5RGwb0Gz468TTCluJvzQjwkgQI84SSnOBuPCL1mQ4i8XBxcOSUlmD32JZs82_SDOePHUz2oZTW9y69puQGCHLsswgg9kFRXO-tLgL1AB6c8W8RGuZ5Qnj3Y6Sw9mfx1uONMODw_FzI84v4ButnkdT0nYMW8YvY5uFEmnDtOtic6Pyo6N-ukYzyijKK9v1JkOc3yK7zjJpk92s4fuBqOBDshQvc85as9uOPj0zzGhQM9zeEyuMzICr2zTza9to_VOGUZoj3mu0q8RB5zODirtLxL1tU7yig1OWVzsLzLPAO8TYpiuE_UaD13fja9EwkjN_AXU71na1i81_gTNzvanT1ZUUO9cZXTuIQPpTtr7UK9Bo6TuJ6moDykqd68nfchNwetnL3GhCo6j1O2N-TVnrx6ifG9ZVUwuCL_7D01KQU-835buGZcAr10Fkw9gHiYuFrtxr0PFDM9aNv7N9jgc73M_HS9zBaNuCAAOBNACUhtUAEqcxAAGmAvBAAK2x-97jAi_OfAHgXbFerxyMEY__DUAAP0AcfcCMfJKB0A9gH__qsAAAAf9934yAAYbtPQ9BfRCvgegest7HItB1HOyPno5OEh5_3VJTEUBSYA8BaqMR255R4MHiQgAC155iM7OBNACUhvUAIqrwYQDBqgBgAAcEEAADjCAADgQQAAqMEAAJhBAACYQQAArEIAAADAAABgwQAAIEEAAJBBAACuwgAAHMIAAIzCAAAAQQAAgEAAAJhBAACIwQAADEIAADjCAACAQQAAcEEAAEBAAAAQwQAAaMIAAKDBAACowgAA4MAAALpCAADAQAAAgMEAAFBBAAAowgAA-MEAANTCAADAQQAAIEIAANhBAABAwAAAYEEAAIC_AACoQQAAIEEAAADCAAB0QgAAZMIAAMjBAAD4QQAAnEIAAJhBAAAAwAAAyMEAABBBAABQQQAAUMEAAEBAAACmwgAAmMEAAIhBAADQQQAAQEAAAJbCAACgwQAAyMIAALjBAACIwgAAgD8AADzCAADQwQAAGMIAAFRCAADAQQAAqsIAANBBAACYQQAAhsIAAMDBAACQwQAAwEAAADDBAACAvwAAbEIAAADBAABAQQAAyEEAAIDAAAAQQgAAoEIAAGBBAADUwgAA4EAAALRCAACuwgAAAEEAAJhBAABAwgAAQMEAAIDAAABkQgAAHEIAAGjCAADAQQAATEIAAIA_AACKwgAAkMEAAIDAAAA4QgAAcEEAAMZCAAAYQgAA0EEAAPjBAACAvwAAUMEAAJDBAAAQQQAAiMEAACjCAACYwQAASMIAAKDCAAAAwgAAEMIAALBBAABAQAAAsMEAAADBAAAUwgAAIEEAAEDBAABgQQAAuMEAAIRCAABAwQAAgkIAAAxCAAAowgAA4MAAAFDCAADwwQAAwMAAAMBBAABAwQAAEEEAAKBAAAC4wQAAQEAAAADBAACwwQAAgMEAAOhBAABcQgAAqMEAAJJCAACAQAAAAAAAAGzCAAAUwgAAQEEAAHzCAACQwQAAHMIAAPDBAAAgwQAAgkIAAHBBAADEQgAAXEIAAIBBAABAQgAAwEEAAIA_AABQQQAAEMIAAKBAAAC4wQAAYMIAABBCAAAsQgAA-MEAAEDCAAD4wQAAkMEAAExCAACSwgAAXMIAAGBBAACAwQAAoEEAALhBAABIwgAAUEEAADBBAACAwAAAeEIAAODAAAD4wQAA-MEAAFTCIAA4E0AJSHVQASqPAhAAGoACAABAPAAANL4AAJ4-AADYPQAAEL0AALo-AABQPQAAur4AAKg9AAAUPgAAyL0AAMg9AABEPgAAQDwAAIA7AAAkPgAAPD4AABC9AAAsPgAA2j4AAH8_AACYvQAAiD0AAGQ-AACqvgAAlj4AAIC7AADIvQAALD4AAKY-AAAwPQAA6L0AAOi9AADIPQAADD4AAPi9AAAsvgAATL4AAIa-AAAwvQAATD4AACS-AACGPgAA4DwAAIg9AAD4PQAAMD0AADS-AACmvgAAlr4AANi9AAA8PgAAij4AAOA8AABwvQAAyD0AADs_AACYPQAAUD0AAIg9AADYPQAAyL0AALi9AADSviAAOBNACUh8UAEqjwIQARqAAgAAUL0AAIA7AABQvQAAeb8AABy-AABMvgAA6j4AAM6-AABcPgAA6D0AADC9AACIPQAAJD4AAOA8AAAUvgAA4DwAANK-AAABPwAAUL0AAGw-AABsPgAAXL4AAJi9AABwPQAA2L0AADS-AABsvgAAUD0AAAS-AAAwPQAAED0AAFw-AAAsvgAAcL0AADS-AADYvQAABT8AAJa-AACOvgAAbL4AAIC7AADoPQAAbL4AAEw-AAC-PgAALL4AAH-_AAA0PgAAwj4AALi9AAAkPgAAJD4AAIA7AACKPgAAyr4AAKY-AAAEvgAAPL4AAKo-AAAwvQAAkj4AABS-AACOvgAANL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=C641y-z3aI0","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13373643506855282273"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2463740198"},"5695404303857586516":{"videoId":"5695404303857586516","docid":"34-10-0-Z2E181CFDFF8A1771","description":"This calculus video tutorial explains how to find the derivative of the trigonometric functions Sin^2(x), Sin(2x), Sin^2(2x), Tan3x, and Cos4x. Calculus 1 Final Exam Review: • Calculus 1 Final...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2122117/7b9c3ec1e903d734529a2db9e6451eba/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kCmAKwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZyWHTWJ2XpM","linkTemplate":"/video/preview/5695404303857586516?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How To Find The Derivative of Sin^2(x), Sin(2x), Sin^2(2x), Tan3x, & Cos4x","related_orig_text":"Sin","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Sin\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZyWHTWJ2XpM\",\"src\":\"serp\",\"rvb\":\"ErADChMyNzYzNTI0MjAyNDQ4NzU1OTA0ChQxMDc0MjMwMjA0Mjc2Mjg1NzI1NgoTNzI4MTUyNzA4NTA0NDkyMDA5MQoUMTYwNzc4OTUzNTg5ODA2MjU0NTYKFDE4MTQwMTUwMDQ1NzYxODQ1MjAyChM5MDg0NTMxNjA4NDk3NTMwMDk1ChI3ODg2MDY4Nzc3NzE5NjEzNTcKFDEzMTE5MTAyODQ4NDc5MDcxMDk0ChM1OTk2MTY0MjMyODgxOTQwMjE0ChQxMzMzMTQxOTE5MTIxNzU3ODc1MgoUMTM5NzMxMzMxNDgzOTA4ODg3NzAKFDEzNjc4NjgxNDgxOTQ4MzcyOTMyChQxNDY4NzY2MjQzMTM2MzQ3MDUxNgoUMTA2OTgxOTE5NDQ4MjY0NDY4OTIKFDE1OTU0NjkxMDM0MzE3MTk0NDE5ChQxMzM3MzY0MzUwNjg1NTI4MjI3MwoTNTY5NTQwNDMwMzg1NzU4NjUxNgoTOTUwMDU4ODM3OTg5NDIzMjg4NQoUMTA3MDQxNTc5NDA1OTE2ODUxODEKFDE4Mjk2OTUzNTY4MDM3NzM1MzU4GhUKEzU2OTU0MDQzMDM4NTc1ODY1MTZaEzU2OTU0MDQzMDM4NTc1ODY1MTZqkxcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TwgKCBCQBgAQrKosBEAEaeIHuAfn9_AUABQQOBfoI_AIBCP4I-P7-APTx-f8FAv8A7v38AwT_AAD-CwcCAAAAABPx9Qj8_wIBE_r09QMAAAAZAv0A-AAAABj99wT-AQAACQcD-gMAAAABAfYDAAAAAAgKA-8AAAAABQYB9gAAAAAB_AISAAAAACAALXGG3js4E0AJSE5QAiqEAhAAGvABfxfwAM_70P_5G-EA9xgPAaIzA_8dJeEAygIOALb09gAADuEA0frJ_x7p7gG8GAgAGwHFAAv5AQA76On_NMkLAPwR-wES1u8COhIs__4C-P_NIBv-9BQLAOLf0P71BM8B-_wTAA8H7AIK67sJD_48ARftOQAjzQwB5t8JCvgX7wQK8NgA9Qvy_uL4Cv_ZGh8CGun-AQ8dGPoEEAIAGgf9-uwAB_cNEtIAH_PhBRPtEfrn4BH48N79BAQHK__gDvAC4cokBtMT-vIGIAjwJRYFBMgY8wfkDfoPJxcNAQ_L-fL1-uv_7QEB994yAALiJfgGIAAt77kYOzgTQAlIYVACKs8HEAAawAecTa--6sJZvEln_bsjXqi8tKy7vKQev7s8izm9chsIPceBHjqfWzg-5xN-vdgKP7yBCAG-Nz5JPa5tgLyg4ig-UdvGvEQONjzZQ0u-Q5J2Oyl_gr1FvPW9Z-jEPKy4J7yjiiy8fV-3uzlBwDuVels9Kp8XOv7BtjzKLn29SeeuO-CXH73cahk69RFYvRN8WL02-2i9VoJFPDTKqbxsz8w9QjofvHeBVDs2lis97O6LPBIpUr1yta-9Ylk6vedt0bwP_I49_IwrPd8g9TxEIL29tGA9vVvVRzn6fT-9GpQfPcYFZDomQKg9kKgrPW_Rrrx5KoY9RQcpvQqQF71VFM-9zkP9O-j4qDx6hyA9OeyDPUJFmLkY0gG-SYOrPZYmJbxz2P08SfaEOeXHKbws_qU850DFPalorDx964M8LKuLN9o20jsxLUW9JGC2O_SwhjxblZQ96g6ovTAwhrzPPpA9XPr8PCofwrw4PIO9k7g9veXbsbyJMxW9kKuXPYXy-DtTsIY8sSU1vfZFoTsFI6U91gI7vknlmjqV3Dy9PPHBvUPp5rvXXKS8lecLPU3IPbxDqR0-H2rbvcSaqTk_nfU5u3tAvcmw6Tswq1O57s6avG2ThrsILwu9qyArvLlB5TrzzIa98HrfPDiekbszjea8MKCnPeCgHLy40gY9CFbVvT66ErptWFM91e1HPDLn17o1bLo9LmGjPHtSyThas1o9PXaRveqG2LoqWSm8m1RUvW8d0jvauuW8wDWxvVJZDrreuaY9O2gbvdoZxzlcLSG9vAcoPSdcszkqYoe98OuRPA7EvTi50mE9Lt6UvXNP3TjYAow8g2jNvS4kwrjovtw9rpGuPA8bHDnf9f48-PYzPTE2aTkS9UK9IhjnvXga6jfkI7M8BxOFvQlRE7mrbVQ8tyhzvY6q1bdy9z69_ybvPN5GjLjG4KE9wTgYvVLpQrk-D0Q9_g9wPbt2w7cjrIw99GwGvs9wpTl4rCO8rp9-PX0E0zhbPUy7uzS0PMu1mbhgITO9vsV-PTfD57hnZ2w9BU3rvV8mNTiMcwq9FuofPU_5ijgi-wC-xl8kPReYZTiBe948sMSoPDkUJLfHICG9Nu7ovPA9grhopK88txtuPRdFDziSXRk-2U9QvazCP7k0UxA9glTqveUcjrhmErU8XqHPvYC6sjebS1u9kjynPW1wgTgdlww9SQ9DvlQxTbki_-w9NSkFPvN-W7gpnmm8eM2QPaHmmrjoVbO9FiTsPM24ITjEQNe8mAY0vKuAvjYgADgTQAlIbVABKnMQABpgQvoAOfgVywIEFNz6y9T-yc_h7c6-Fv_y3AACEtP5GADVtQsA_wft_-2qAAAAMOv4Bv0A6HXHxL8Z8xP94YG9Jh9_BwYru-UK1dHRHQf_BiAp3CIfAN0CviAirc0jATUPIAAteIMgOzgTQAlIb1ACKq8GEAwaoAYAADRCAAB8wgAALEIAAEDCAAAAQgAACEIAAHRCAADAQQAA6MEAAMBBAABwQQAANMIAAEzCAAAAwAAAiEEAAEDAAACgQAAAdMIAAGBCAABYwgAAkMEAABDBAACQwQAAFEIAANDBAAAYQgAAyMEAACzCAACAQQAAQEAAABDCAACAQQAAFMIAAGDCAADGwgAAyEEAAIC_AACaQgAAGMIAABRCAACAPwAAkEEAAFxCAACQwQAAcEEAAKzCAAAAAAAABEIAAIBCAAAEQgAA0MEAAEBBAADAQAAAAMEAAKDAAAAwQQAAksIAANBBAADgQQAAWEIAAARCAABEwgAAKMIAAIbCAAAAQQAAjMIAAHTCAACCwgAAoEEAAIrCAAA8QgAAhEIAAOjBAABgQQAANMIAACzCAABowgAAQMEAAKBAAACIwQAAwMEAAFxCAAAAQAAAUEEAAKBBAACQQQAA6EEAAABCAAA4QgAAlMIAAGDCAAC8QgAAAMIAAIjBAABQQQAAIMIAAIjBAACAvwAAnEIAAExCAACkwgAAQEIAAIBBAABQwQAAXMIAAFBBAAAAAAAABEIAAHDBAACaQgAAOEIAAIhBAADIwQAAFEIAAETCAABgQQAA-EEAAHDBAAAowgAA8MEAAFzCAADowgAAKMIAAKjBAADQQQAAHMIAAJDBAAAQQgAAMMEAABDBAAAEwgAA4EEAAMBAAACYQQAA-MEAAJpCAAAAQAAAgL8AAKBBAAAIwgAAMMEAANjBAADQQQAA4MAAANhBAADQQQAAJMIAAKhBAACoQQAA4MEAAJDBAABwQQAALEIAAIA_AABAQgAARMIAAEDBAACAwgAAZMIAAHBBAABAwgAAiEEAAKjBAACGwgAAMEEAAIBCAACQQQAAcEIAABBCAADAwAAA6EEAAIC_AAAgwQAARMIAADDBAADgwAAAoEAAAFDCAABwQgAAAEIAALDCAACwwQAAsMEAAARCAACWQgAAqMEAAEzCAACGwgAAwMAAABDBAAAUwgAATMIAAARCAADAQAAAgEAAAARCAADAwQAAoEAAAIhBAAA4wiAAOBNACUh1UAEqjwIQABqAAgAAoLwAALi9AADaPgAA-L0AAHC9AABMPgAAqD0AAA-_AACYvQAAiD0AAIC7AADYvQAAmD0AAIg9AAC4vQAADD4AAOA8AACgvAAAuj4AAI4-AAB_PwAAdL4AAOC8AACCPgAA5r4AAFA9AADgvAAAyL0AAJo-AAAsPgAAyD0AAJK-AACIvQAANL4AAKg9AACCvgAAZL4AABy-AACavgAAgLsAAJY-AAAQvQAALD4AACy-AACSvgAAMD0AAO4-AAA0vgAAoDwAAIq-AACgvAAAED0AAKo-AACAOwAAgLsAALg9AAApPwAAJD4AAMi9AABQPQAAND4AAAS-AADgvAAAJL4gADgTQAlIfFABKo8CEAEagAIAADy-AAAkvgAAUD0AAHW_AACgvAAAiL0AAPg9AAC4vQAA6D0AAIi9AAC4vQAAPD4AAKg9AAD4PQAANL4AAHA9AAAUvgAA6j4AAFC9AAA8PgAAUD0AANi9AACgvAAAPL4AACS-AAD4PQAAHD4AAEA8AABQvQAAgj4AAMg9AAB8PgAA_r4AAPg9AAB8vgAAyD0AALI-AABAPAAApr4AAPK-AAAQvQAAQDwAADC9AADWPgAAVD4AALi9AAB_vwAALD4AADQ-AABUPgAAiD0AAGw-AADYPQAAtj4AAK6-AABUPgAAMD0AAKi9AACuPgAAfL4AAHw-AACSvgAAfL4AAIK-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ZyWHTWJ2XpM","parent-reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5695404303857586516"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1638716246"}},"dups":{"2763524202448755904":{"videoId":"2763524202448755904","title":"Learn \u0007[Sin\u0007], Cos, and Tan in 5 minutes","cleanTitle":"Learn Sin, Cos, and Tan in 5 minutes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=gSGbYOzjynk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gSGbYOzjynk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeGhralJjMnpaNWFiUTlTMVU3OV9YZw==","name":"Fast Forward Physics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Fast+Forward+Physics","origUrl":"http://www.youtube.com/@FastFowardPhysics","a11yText":"Fast Forward Physics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":316,"text":"5:16","a11yText":"Süre 5 dakika 16 saniye","shortText":"5 dk."},"views":{"text":"116,5bin","a11yText":"116,5 bin izleme"},"date":"26 eki 2019","modifyTime":1572048000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gSGbYOzjynk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gSGbYOzjynk","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":316},"parentClipId":"2763524202448755904","href":"/preview/2763524202448755904?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/2763524202448755904?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10742302042762857256":{"videoId":"10742302042762857256","title":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is \u0007[Sin\u0007](x) & Cos(x) ?","cleanTitle":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & Cos(x) ?","host":{"title":"YouTube","href":"http://www.youtube.com/live/vuoNyvMvDtA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vuoNyvMvDtA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWdMODFsYzdET0xOaG5lbDFfSjZWZw==","name":"Math and Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+and+Science","origUrl":"http://www.youtube.com/@MathAndScience","a11yText":"Math and Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2885,"text":"48:05","a11yText":"Süre 48 dakika 5 saniye","shortText":"48 dk."},"views":{"text":"1,9milyon","a11yText":"1,9 milyon izleme"},"date":"23 haz 2020","modifyTime":1592916349000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vuoNyvMvDtA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vuoNyvMvDtA","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":2885},"parentClipId":"10742302042762857256","href":"/preview/10742302042762857256?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/10742302042762857256?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7281527085044920091":{"videoId":"7281527085044920091","title":"how to solve \u0007[sin\u0007](x)=i?","cleanTitle":"how to solve sin(x)=i?","host":{"title":"YouTube","href":"http://www.youtube.com/live/IsadvaKb97Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IsadvaKb97Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":641,"text":"10:41","a11yText":"Süre 10 dakika 41 saniye","shortText":"10 dk."},"views":{"text":"214,9bin","a11yText":"214,9 bin izleme"},"date":"3 ara 2018","modifyTime":1543795200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IsadvaKb97Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IsadvaKb97Q","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":641},"parentClipId":"7281527085044920091","href":"/preview/7281527085044920091?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/7281527085044920091?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16077895358980625456":{"videoId":"16077895358980625456","title":"Solving \u0007[sin\u0007](x)^\u0007[sin\u0007](x)=2","cleanTitle":"Solving sin(x)^sin(x)=2","host":{"title":"YouTube","href":"http://www.youtube.com/live/Tf0jetLbFX4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Tf0jetLbFX4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":645,"text":"10:45","a11yText":"Süre 10 dakika 45 saniye","shortText":"10 dk."},"views":{"text":"455,3bin","a11yText":"455,3 bin izleme"},"date":"6 ara 2021","modifyTime":1638788421000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Tf0jetLbFX4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Tf0jetLbFX4","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":645},"parentClipId":"16077895358980625456","href":"/preview/16077895358980625456?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/16077895358980625456?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18140150045761845202":{"videoId":"18140150045761845202","title":"\u0007[Sin\u0007] Cos Tan","cleanTitle":"Sin Cos Tan","host":{"title":"YouTube","href":"http://www.youtube.com/watch/O74LFU4VmlE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O74LFU4VmlE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNW1xNFl3ZDBsUFBRSm5LXzVncS15QQ==","name":"Math Meeting","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Meeting","origUrl":"http://www.youtube.com/@MathMeeting","a11yText":"Math Meeting. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":298,"text":"4:58","a11yText":"Süre 4 dakika 58 saniye","shortText":"4 dk."},"views":{"text":"1,3milyon","a11yText":"1,3 milyon izleme"},"date":"2 tem 2012","modifyTime":1341187200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O74LFU4VmlE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O74LFU4VmlE","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":298},"parentClipId":"18140150045761845202","href":"/preview/18140150045761845202?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/18140150045761845202?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9084531608497530095":{"videoId":"9084531608497530095","title":"Simple explanation of \u0007[sin\u0007], cos and tan functions in trigonometry...","cleanTitle":"Simple explanation of sin, cos and tan functions in trigonometry...","host":{"title":"YouTube","href":"http://www.youtube.com/live/i8PxyTmm3Gs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i8PxyTmm3Gs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWHpVTENXdXZibmptN1EwRjZSQktzdw==","name":"Engineering Facts","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Engineering+Facts","origUrl":"http://www.youtube.com/@engineeringfacts","a11yText":"Engineering Facts. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":612,"text":"10:12","a11yText":"Süre 10 dakika 12 saniye","shortText":"10 dk."},"views":{"text":"2,3milyon","a11yText":"2,3 milyon izleme"},"date":"30 ara 2022","modifyTime":1672403418000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i8PxyTmm3Gs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i8PxyTmm3Gs","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":612},"parentClipId":"9084531608497530095","href":"/preview/9084531608497530095?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/9084531608497530095?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"788606877771961357":{"videoId":"788606877771961357","title":"\u0007[Sin\u0007] Cos Tan - Basic Trigonometry - Working out unknown sides","cleanTitle":"Sin Cos Tan - Basic Trigonometry - Working out unknown sides","host":{"title":"YouTube","href":"http://www.youtube.com/v/E9_d_ET9yjI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E9_d_ET9yjI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYjd3NWFUbnQ3WWVYQmNWQ1kwbWdGdw==","name":"tecmath","isVerified":false,"subscribersCount":0,"url":"/video/search?text=tecmath","origUrl":"http://www.youtube.com/@tecmath","a11yText":"tecmath. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":859,"text":"14:19","a11yText":"Süre 14 dakika 19 saniye","shortText":"14 dk."},"views":{"text":"469,6bin","a11yText":"469,6 bin izleme"},"date":"28 mayıs 2013","modifyTime":1369699200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E9_d_ET9yjI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E9_d_ET9yjI","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":859},"parentClipId":"788606877771961357","href":"/preview/788606877771961357?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/788606877771961357?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13119102848479071094":{"videoId":"13119102848479071094","title":"What is the definition of \u0007[sin\u0007]? | GotQuestions.org","cleanTitle":"What is the definition of sin? | GotQuestions.org","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vc4jJGUBOZg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vc4jJGUBOZg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDckhBRFU4SDBQMlFfNzlzQWhZamxHQQ==","name":"Got Questions Ministries","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Got+Questions+Ministries","origUrl":"http://www.youtube.com/@gotquestions","a11yText":"Got Questions Ministries. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":250,"text":"4:10","a11yText":"Süre 4 dakika 10 saniye","shortText":"4 dk."},"views":{"text":"19,8bin","a11yText":"19,8 bin izleme"},"date":"11 kas 2022","modifyTime":1668171814000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vc4jJGUBOZg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vc4jJGUBOZg","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":250},"parentClipId":"13119102848479071094","href":"/preview/13119102848479071094?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/13119102848479071094?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5996164232881940214":{"videoId":"5996164232881940214","title":"\u0007[sin\u0007](3x) in terms of \u0007[sin\u0007](x)","cleanTitle":"sin(3x) in terms of sin(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aSq9vwGHLTg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aSq9vwGHLTg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":328,"text":"5:28","a11yText":"Süre 5 dakika 28 saniye","shortText":"5 dk."},"views":{"text":"162,6bin","a11yText":"162,6 bin izleme"},"date":"20 nis 2017","modifyTime":1492671869000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aSq9vwGHLTg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aSq9vwGHLTg","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":328},"parentClipId":"5996164232881940214","href":"/preview/5996164232881940214?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/5996164232881940214?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13331419191217578752":{"videoId":"13331419191217578752","title":"Unit Circle Trigonometry - \u0007[Sin\u0007] Cos Tan - Radians & Degrees","cleanTitle":"Unit Circle Trigonometry - Sin Cos Tan - Radians & Degrees","host":{"title":"YouTube","href":"http://www.youtube.com/v/V5ArB_GFGYQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/V5ArB_GFGYQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3565,"text":"59:25","a11yText":"Süre 59 dakika 25 saniye","shortText":"59 dk."},"views":{"text":"2,3milyon","a11yText":"2,3 milyon izleme"},"date":"29 tem 2016","modifyTime":1469750400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/V5ArB_GFGYQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=V5ArB_GFGYQ","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":3565},"parentClipId":"13331419191217578752","href":"/preview/13331419191217578752?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/13331419191217578752?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13973133148390888770":{"videoId":"13973133148390888770","title":"Calculators with \u0007[Sin\u0007], Cos and Tan - GCSE Physics","cleanTitle":"Calculators with Sin, Cos and Tan - GCSE Physics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=z925v3v9Va4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/z925v3v9Va4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWnphdHl4LXhDLURsX1ZWVVZIWURZdw==","name":"Physics Online","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Physics+Online","origUrl":"http://www.youtube.com/@PhysicsOnline","a11yText":"Physics Online. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":151,"text":"2:31","a11yText":"Süre 2 dakika 31 saniye","shortText":"2 dk."},"views":{"text":"220,1bin","a11yText":"220,1 bin izleme"},"date":"10 şub 2019","modifyTime":1549756800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/z925v3v9Va4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=z925v3v9Va4","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":151},"parentClipId":"13973133148390888770","href":"/preview/13973133148390888770?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/13973133148390888770?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13678681481948372932":{"videoId":"13678681481948372932","title":"\u0007[Sin\u0007], Cos, Tan Explained (Sine, Cosine, and Tangent)","cleanTitle":"Sin, Cos, Tan Explained (Sine, Cosine, and Tangent)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=n9SgF-iWIaM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/n9SgF-iWIaM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUF9URnZnRUxqTm12YmYtYTE3REp3QQ==","name":"Mike Corsetti","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mike+Corsetti","origUrl":"http://www.youtube.com/@mikecorsetti6923","a11yText":"Mike Corsetti. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":214,"text":"3:34","a11yText":"Süre 3 dakika 34 saniye","shortText":"3 dk."},"views":{"text":"49bin","a11yText":"49 bin izleme"},"date":"28 ara 2020","modifyTime":1609113600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/n9SgF-iWIaM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=n9SgF-iWIaM","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":214},"parentClipId":"13678681481948372932","href":"/preview/13678681481948372932?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/13678681481948372932?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14687662431363470516":{"videoId":"14687662431363470516","title":"can we have \u0007[sin\u0007](i)?","cleanTitle":"can we have sin(i)?","host":{"title":"YouTube","href":"http://www.youtube.com/live/cm0GsGP1K1Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cm0GsGP1K1Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":262,"text":"4:22","a11yText":"Süre 4 dakika 22 saniye","shortText":"4 dk."},"views":{"text":"79,2bin","a11yText":"79,2 bin izleme"},"date":"18 kas 2018","modifyTime":1542572443000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cm0GsGP1K1Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cm0GsGP1K1Q","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":262},"parentClipId":"14687662431363470516","href":"/preview/14687662431363470516?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/14687662431363470516?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10698191944826446892":{"videoId":"10698191944826446892","title":"\u0007[sin\u0007](pi/12), using difference of angles formula","cleanTitle":"sin(pi/12), using difference of angles formula","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=13enJ0GMj6Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/13enJ0GMj6Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":305,"text":"5:05","a11yText":"Süre 5 dakika 5 saniye","shortText":"5 dk."},"views":{"text":"29,2bin","a11yText":"29,2 bin izleme"},"date":"21 nis 2017","modifyTime":1492732800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/13enJ0GMj6Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=13enJ0GMj6Y","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":305},"parentClipId":"10698191944826446892","href":"/preview/10698191944826446892?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/10698191944826446892?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15954691034317194419":{"videoId":"15954691034317194419","title":"TI-84 Calculator - 05 - Finding the \u0007[Sin\u0007], Cos, and Tan of an Angle","cleanTitle":"TI-84 Calculator - 05 - Finding the Sin, Cos, and Tan of an Angle","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=69rwfMGUYjM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/69rwfMGUYjM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWdMODFsYzdET0xOaG5lbDFfSjZWZw==","name":"Math and Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+and+Science","origUrl":"http://www.youtube.com/@MathAndScience","a11yText":"Math and Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":309,"text":"5:09","a11yText":"Süre 5 dakika 9 saniye","shortText":"5 dk."},"views":{"text":"440bin","a11yText":"440 bin izleme"},"date":"14 kas 2012","modifyTime":1352851200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/69rwfMGUYjM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=69rwfMGUYjM","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":309},"parentClipId":"15954691034317194419","href":"/preview/15954691034317194419?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/15954691034317194419?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13373643506855282273":{"videoId":"13373643506855282273","title":"Integral \u0007[sin\u0007] \u0007[sin\u0007] x","cleanTitle":"Integral sin sin x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=C641y-z3aI0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/C641y-z3aI0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb09qVHh6LXU1elUwVzM4ek1rUUlGdw==","name":"Dr Peyam","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr+Peyam","origUrl":"http://www.youtube.com/@drpeyam","a11yText":"Dr Peyam. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1590,"text":"26:30","a11yText":"Süre 26 dakika 30 saniye","shortText":"26 dk."},"views":{"text":"25,6bin","a11yText":"25,6 bin izleme"},"date":"14 haz 2019","modifyTime":1560470400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/C641y-z3aI0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=C641y-z3aI0","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":1590},"parentClipId":"13373643506855282273","href":"/preview/13373643506855282273?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/13373643506855282273?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5695404303857586516":{"videoId":"5695404303857586516","title":"How To Find The Derivative of \u0007[Sin\u0007]^2(x), \u0007[Sin\u0007](2x), \u0007[Sin\u0007]^2(2x), Tan3x, & Cos4x","cleanTitle":"How To Find The Derivative of Sin^2(x), Sin(2x), Sin^2(2x), Tan3x, & Cos4x","host":{"title":"YouTube","href":"http://www.youtube.com/live/ZyWHTWJ2XpM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZyWHTWJ2XpM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":322,"text":"5:22","a11yText":"Süre 5 dakika 22 saniye","shortText":"5 dk."},"views":{"text":"359,5bin","a11yText":"359,5 bin izleme"},"date":"21 tem 2020","modifyTime":1595289600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZyWHTWJ2XpM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZyWHTWJ2XpM","reqid":"1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL","duration":322},"parentClipId":"5695404303857586516","href":"/preview/5695404303857586516?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","rawHref":"/video/preview/5695404303857586516?parent-reqid=1769219446176821-17140052380393478304-balancer-l7leveler-kubr-yp-vla-130-BAL&text=Sin","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1400523803934783047130","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Sin","queryUriEscaped":"Sin","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}