{"pages":{"search":{"query":"Vec - Topic","originalQuery":"Vec - Topic","serpid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","parentReqid":"","serpItems":[{"id":"1212423965044238958-0-0","type":"videoSnippet","props":{"videoId":"1212423965044238958"},"curPage":0},{"id":"10360795520246758212-0-1","type":"videoSnippet","props":{"videoId":"10360795520246758212"},"curPage":0},{"id":"14079461190267711835-0-2","type":"videoSnippet","props":{"videoId":"14079461190267711835"},"curPage":0},{"id":"14846645969464657585-0-3","type":"videoSnippet","props":{"videoId":"14846645969464657585"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFZlYyAtIFRvcGljCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","ui":"desktop","yuid":"9812579591769517219"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"10336917424429912635-0-5","type":"videoSnippet","props":{"videoId":"10336917424429912635"},"curPage":0},{"id":"13893798496358728812-0-6","type":"videoSnippet","props":{"videoId":"13893798496358728812"},"curPage":0},{"id":"11085544133382762970-0-7","type":"videoSnippet","props":{"videoId":"11085544133382762970"},"curPage":0},{"id":"6701963276095887292-0-8","type":"videoSnippet","props":{"videoId":"6701963276095887292"},"curPage":0},{"id":"6215716362372313854-0-9","type":"videoSnippet","props":{"videoId":"6215716362372313854"},"curPage":0},{"id":"14026658351774052041-0-10","type":"videoSnippet","props":{"videoId":"14026658351774052041"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFZlYyAtIFRvcGljCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","ui":"desktop","yuid":"9812579591769517219"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"507035635670521109-0-12","type":"videoSnippet","props":{"videoId":"507035635670521109"},"curPage":0},{"id":"4720843507810336715-0-13","type":"videoSnippet","props":{"videoId":"4720843507810336715"},"curPage":0},{"id":"2882690350148002505-0-14","type":"videoSnippet","props":{"videoId":"2882690350148002505"},"curPage":0},{"id":"15249331584879027539-0-15","type":"videoSnippet","props":{"videoId":"15249331584879027539"},"curPage":0},{"id":"9606502443997638375-0-16","type":"videoSnippet","props":{"videoId":"9606502443997638375"},"curPage":0},{"id":"3883356216583853342-0-17","type":"videoSnippet","props":{"videoId":"3883356216583853342"},"curPage":0},{"id":"14324935084134805600-0-18","type":"videoSnippet","props":{"videoId":"14324935084134805600"},"curPage":0},{"id":"8911590476057153558-0-19","type":"videoSnippet","props":{"videoId":"8911590476057153558"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFZlYyAtIFRvcGljCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","ui":"desktop","yuid":"9812579591769517219"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DVec%2B-%2BTopic"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4143679480812579597157","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472346,0,58;1457616,0,1;82358,0,13;1473738,0,26;1460716,0,38;1460214,0,27;1152685,0,41;1472010,0,17;1459323,0,87;260557,0,13;1461712,0,89;1470249,0,39;1470223,0,55;1373787,0,6;1466296,0,62;188944,0,1;124062,0,45;89018,0,38;1475770,0,18;912221,0,83;1401741,0,24;1470414,0,98;996747,0,21;151171,0,16;126351,0,36;1269693,0,55;1281084,0,51;287509,0,61;1447467,0,91;1231503,0,28;1473596,0,40;1468028,0,95"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DVec%2B-%2BTopic","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Vec+-+Topic","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Vec+-+Topic","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Vec - Topic: Yandex'te 1 bin video bulundu","description":"Результаты поиска по запросу \"Vec - Topic\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Vec - Topic — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yb4d6913c487878f6c61b6d7a46f26857","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,1457616,82358,1473738,1460716,1460214,1152685,1472010,1459323,260557,1461712,1470249,1470223,1373787,1466296,188944,124062,89018,1475770,912221,1401741,1470414,996747,151171,126351,1269693,1281084,287509,1447467,1231503,1473596,1468028","queryText":"Vec - Topic","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9812579591769517219","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769517219","tz":"America/Louisville","to_iso":"2026-01-27T07:33:39-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472346,1457616,82358,1473738,1460716,1460214,1152685,1472010,1459323,260557,1461712,1470249,1470223,1373787,1466296,188944,124062,89018,1475770,912221,1401741,1470414,996747,151171,126351,1269693,1281084,287509,1447467,1231503,1473596,1468028","queryText":"Vec - Topic","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"9812579591769517219","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4143679480812579597157","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":164,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"9812579591769517219","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"1212423965044238958":{"videoId":"1212423965044238958","docid":"34-0-6-ZAF87BB6C033F9B02","description":"Provided to YouTube by ONErpm Creando Tiempo · Lucas Vec · Lucas Vec Olnylon ℗ Lucas Vec Released on: 2022-10-18 Auto-generated by YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1775867/35121ea5d883e861dab589382f3008ad/564x318_1"},"target":"_self","position":"0","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5pa5Qgz5Awc","linkTemplate":"/video/preview/1212423965044238958?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Creando Tiempo","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5pa5Qgz5Awc\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhUKEzEyMTI0MjM5NjUwNDQyMzg5NThaEzEyMTI0MjM5NjUwNDQyMzg5NThqrw0SATAYACJFGjEACipoaHRzb2VqcXFheGtmemNkaGhVQ2pkanBST1JfSFlpX0tOVkc4ZGFrbGcSAgASKhDCDw8aDz8TyQGCBCQBgAQrKosBEAEaeIEEB_j8_AQA-woA_P0DAAH-B_f-CP3-AP34AQL_Bf4A-fv_BQUAAADxAvj-AQAAAPYBA_z0_wEACwoMBgQAAAAG-v7_-gAAABMBCP3-AQAA_wABAvsCAAEHAgX4_wAAAOwI_gABAAAA7hMKAQAAAAAB8QcOAAAAACAALRLU3zs4E0AJSE5QAipzEAAaYBYOAPYPCN_a7jjz2hbu_wT5_ff13QoA1uoA9RLm6R0V9a4J5f_Q-v_IvgAAABDhFA3dAOxTL-XJMPgH2v0BBhwQf_QS5TAOzzzB2Qja9Qj2EwsMHADv-QcxMwMdIQD5OiAALaJeTTs4E0AJSG9QAiqvBhAMGqAGAACEwgAAoEAAAJRCAAAcQgAAuEEAABTCAABQQQAAoMEAAEDAAABwwgAAgEEAAERCAACwwgAAZMIAAChCAABQwQAAkMEAAMBBAACAwAAAPMIAAMpCAADYQQAAmEEAAKDAAACSQgAA4MEAAKLCAABAQQAA-EEAAPjBAAA0QgAAoMAAAIDBAAAAAAAAYMEAAGDBAADAQAAAoEAAAOhBAAAQwQAAQEAAABRCAADwwQAAYEIAAKjBAABwQQAA4EAAABDCAABsQgAA2MEAAAAAAACMwgAAHMIAAODBAAAQwQAAQEAAAILCAAAswgAAIMIAAEDAAABAwQAAGEIAADxCAACOwgAAgD8AAOBBAADowQAAmEEAADTCAACQwQAA8EEAALBBAAAMwgAAgEEAANhBAABgQQAAFEIAAGDBAACgwAAAAMAAAABAAAAIQgAAHEIAAEBBAAAkQgAADMIAALhBAADoQQAAgD8AANhBAACIwQAAykIAACzCAACMwgAACMIAAMzCAADAQAAAgEAAAKDAAACwQQAA4EEAAPhBAABEQgAAjMIAAIbCAAAYQgAA2MEAAEBBAAA0wgAAQEAAAABAAAAswgAAwMEAAKjBAACCQgAA2MEAAGRCAADwwQAAyEEAANDBAADawgAA4EAAAIzCAAA0wgAA6MEAAFBBAACgwQAAwMEAAGTCAACOwgAAQMEAACDCAAAQwQAAkkIAAHBBAADAQQAAZEIAAJbCAACIwQAAYEEAAAjCAAA0QgAAIEIAAABAAABoQgAAwEAAAPDBAADIQQAAgL8AAExCAAAAwgAAyMEAAADBAAAEwgAACMIAADBBAACowQAAAMIAAPhBAAAAQQAAfMIAAARCAADIwQAAOEIAAEjCAAAgwQAAuEEAALhBAACgQQAAfEIAALjBAACQQgAAzMIAAPDBAACOwgAAgEEAAEDAAAC8wgAAgEEAAIhCAADQQQAAhsIAABDBAACQwgAAUMEAACBBAAAowgAAAEEAAHxCAAAAQAAAAMIAACjCAABQwQAA2EEAAODAAACgQgAALMIAAMDBAABQQQAAqMEgADgTQAlIdVABKo8CEAAagAIAAPg9AAAEvgAA2j4AAMg9AACIvQAAgj4AAIq-AACSvgAAJL4AAFw-AADCPgAAXD4AADQ-AACgvAAAML0AADA9AADePgAA-L0AABw-AABcPgAAfz8AAFS-AABQvQAAPD4AAKg9AACovQAAQDwAAIC7AAC4PQAAoj4AAEA8AABMPgAA-L0AABw-AADovQAAFL4AAAy-AAAQPQAAA78AACS-AABEPgAAbL4AALg9AAAQPQAA-D0AACQ-AAB8PgAAFL4AAOg9AAB0vgAAoLwAALg9AADWPgAAHL4AALK-AAC4PQAA8j4AABQ-AADoPQAATD4AAMi9AACCvgAAuL0AAFC9IAA4E0AJSHxQASqPAhABGoACAABsPgAAZL4AALg9AAAJvwAAFD4AAJo-AABAPAAAcD0AACS-AAB0PgAAxr4AAKC8AADSPgAAEL0AAGS-AACIPQAAQLwAAFs_AAAkvgAAqj4AAI4-AADgPAAAnj4AAES-AACYvQAAuD0AANg9AABEPgAA-D0AAIY-AAAcPgAAuL0AAFA9AACevgAAJL4AANg9AAD4PQAAcL0AAOC8AAAUvgAAGT8AAJg9AACSPgAAHL4AAGy-AAAEPgAAf78AADy-AAA0vgAAqj4AAPi9AACuPgAAND4AAEQ-AAAUPgAAuD0AAAy-AACYvQAABL4AAAy-AACAuwAAVD4AAOA8AAC6viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=5pa5Qgz5Awc","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["1212423965044238958"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10360795520246758212":{"videoId":"10360795520246758212","docid":"34-0-12-Z2E6D377F96DFEFE2","description":"Provided to YouTube by KVZ Music Ltd. Idem Kuci A Vec Zora (Serbian Folklore Song) · Saban Saulic Od Srca ℗ Diskos Released on: 1996-01-01 Auto-generated by YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3183910/994e2d6704ad238711976dc3642b3a96/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/H2IPVAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHWmaq379L2s","linkTemplate":"/video/preview/10360795520246758212?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Idem Kuci A Vec Zora (Serbian Folklore Song)","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HWmaq379L2s\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDEwMzYwNzk1NTIwMjQ2NzU4MjEyWhQxMDM2MDc5NTUyMDI0Njc1ODIxMmqECRIBMBgAIkUaMQAKKmhocW13aWZieWtoa2phcmRoaFVDYzhMeGFqRGp2UE55czUzTlFZTGV5URICABIqEMIPDxoPPxPcAYIEJAGABCsqiwEQARp4gfP_Awv9AwD1_goMAgb9AeP_Cv_9AQEA_gIH8_0F_gDv_AD0-QAAAPgFAgIAAAAA-vID-gL-AAAKAQD_7AD_AAYGAf_-AAAABgH9_v8BAAD8-_33AgAAAAEOAPn_AAAABwP6BwAAAAAGDAb8AAAAAO_1-PUA_wAAIAAtQrHbOzgTQAlITlACKoQCEAAa8AF_G-gC4vUEADHz9QCqDfv-3AYMANXd9wD79f8A6gDxAeoG9wDl-fQAvOgKAV4M6AAl_g8AJvHYAAAECv8MBuQA-v8lABsL_QACFeUBCef9AMDxDP8a_QH_AO__ARkYEgAFAQr_BvzkARQM7QDY9vQC_xDyAxkKA_8B_vD_BAntAeoEIP4GBgwGHAj_AuQDGAELCf4E-QIV_NsEA_0a9QH_9Ob-_ybrEgDp6QoA-hD5_9gJE_gVARAICfX5ABcDCf7t6hUA-9UDAPMNEgb-_fj25wULAfzuBAYE-_T-7Pf9-P0U-fff4Pr3--8C9xH--A0gAC00Gk87OBNACUhhUAIqcxAAGmA5_QD_UDA4vNzp0gHn1gkD8Ory87IB_yfPAK_e9twv-BTEDSr_EDoGBZsAAAAWvrPg3gD9f9_yzgTXC_sdBxZqJFL8SADA_BELHrEK0tng5t_o5CMAv9OS2QHdHroU0gAgAC2pGRk7OBNACUhvUAIqjwIQABqAAgAAFL4AAIA7AAC-PgAAqL0AAAy-AADYPQAAzr4AAO6-AACgPAAAyD0AAJo-AAAwvQAAsj4AAOi9AADIPQAAVL4AAAQ-AADIvQAAHD4AAFQ-AAB_PwAAUD0AAOi9AAAEPgAAUD0AAFy-AAC4vQAAmL0AAKi9AAA0PgAAEL0AAIC7AADgPAAAJD4AAFA9AAD4vQAAUL0AAKA8AABUvgAAJL4AAOg9AAAQPQAAED0AAOC8AABwvQAAUD0AAHw-AABwPQAAXL4AAPa-AADYvQAAuD0AALI-AACgPAAAqr4AAHA9AAD2PgAAyD0AAIg9AABsPgAAQLwAADS-AADIvQAAgLsgADgTQAlIfFABKo8CEAEagAIAADy-AABAvAAAcD0AAE2_AABAPAAA3j4AAOA8AACYvQAAlr4AAIY-AAD-vgAABL4AAGw-AAAQvQAAur4AAKg9AAAwvQAAWT8AABC9AAB0PgAAJD4AAIi9AABsPgAAuL0AAGy-AADYPQAAmD0AAFw-AABQPQAAmD0AABQ-AADYvQAA2D0AAK6-AACWvgAAoLwAAFQ-AAAUvgAAUL0AAJq-AABEPgAAUD0AAJY-AAAcvgAAPL4AADQ-AAB_vwAAZL4AANi9AAAtPwAAij4AADQ-AACOPgAAsj4AAJi9AABAPAAA6L0AAJY-AABQPQAAPL4AAHw-AAB8PgAAuD0AAJq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HWmaq379L2s","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10360795520246758212"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1113895455"},"14079461190267711835":{"videoId":"14079461190267711835","docid":"34-1-1-Z47EB875B669F1255","description":"Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14. What is the angle between vec(a) and vec(b)? Doubtnut is a Q&A...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2838137/60d1f4c1662ccd068a5a4b0482fc6ec3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Nj2mQAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_N3iBuov4KU","linkTemplate":"/video/preview/14079461190267711835?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec...","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_N3iBuov4KU\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDE0MDc5NDYxMTkwMjY3NzExODM1WhQxNDA3OTQ2MTE5MDI2NzcxMTgzNWqIFxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxPCAoIEJAGABCsqiwEQARp4gf7-AQj7BQD1AQMFBwT9AeUABwILAQMA_AX6_QYE_gDzAAAG_gAAAPkEBPgHAAAA_PwE-_z-AAAK9gAB-gAAAAEFBvz4AAAACPD2-QABAAD59_f9A_8AAAQC_QQAAAAA9QD_-gMAAAD-DwUAAAAAAAYCAQAAAAAAIAAteaDiOzgTQAlITlACKoQCEAAa8AF_Gtb_3PbnAe0G1ACtGgEAoQv__x8p3wDC5y0AuAPgANMeBgDmFgIA3igqAcskFABD9cf_DuPrASbU7_4G6AUA2AL8ARTEAwBTFxEB9um4__j5LP8J2Pv_OAL9_xwc3AAI0B3-CfrXAf340f0YAyABByQvCiADGfvwwgj_we8C_grk6P8JCBIIFvME9rzYKAL488sFAAP698s13wQd0vMI0dgb_Agw0_1RFP_-8Ab8-cTl_gbv9Ob3BDgX_9wJ9fL76Br-8fL-_BQCAwMFyfYBFeDv-hz09A0T6_EB8QcR9d7s-fbWFv778fcHCAAa__ogAC0Y8Aw7OBNACUhhUAIqzwcQABrAB1pov748XhI90owFPaEQUb46m6m8n7Bfve1-1b076oO855RbvNSBDD5SvYC9AtLAuxToM77779w8WdOGvP29dD6SVEu9A7HsPIc0Kr6eaag9tnJlvEW89b1n6MQ8rLgnvLDnCz5Rtxq7BbECvd7LLT6wUgW82OTfOz0Mzb16EVI9mzwEPFBiAb0OUxc8vI5dvFrfNj3p2528U5HKPBhaHT5qB3G7tIUQPC9v6bwhqeg7YWaEvOrVu72ixzk8kExHvQ_8jj38jCs93yD1PJxYNr0tnjW9kOPiPOVeAL1NmLq82P9vvDITVr3QQgI9hjrNOrybIj3AA6i9wz-yO7HhSb4ukvY8TwidPLZBlz3KFom8jgHZPLLknjsMpNU8hU3TPMUiAT0zueK800a7u36h7Loe4j89CEaUPJniYDw16Ts9OZ8TPJAkELwQ36M9pmIDPYbiTj2Q_nK9RqBVvPQwmT3ywxI9tYGFPHyddL02wgw9on3XOV2nUT1Vl508TYOiPOzeyjxTng894ap8PPA2jz3snMu8wpvaPFd7OL0vh_29KqBmOh1twT05aRA9LgV_vEgYBj5uyWW97dUFvCh22bxXCKu9NIiLuyn0cD1IXDa8QpyguiGGZ706aAQ8XYyeu_xlQbyF7Nm7h0I6vIUntLwsRt08uZBkO9yohL2HNCq9X1aTu5sbqD3HybM7TqgWO94e5D1PxMc8iFcjOcysLz3FvbO9uqHGOjx8o7yC56m91n9fuBvDFryYchm9vOtHOzy98j1KyFG9V8GOOQr3Cj3PBio99q29ORvqob2yW5U9LNmZOGvjPjx0CJy8bbVsub7F4DusUxW-pozJOaqxSb0_xGu9HsaSuQePIL0Q2gE9E6U1OW0-Sb1i9Ey-6u6sOXwdwjz8u4g8DWaDufFFkD1SrU88nrK_OJ2bm7zebm48D70IuFe2ar1ewKY8jZKCOEMSxzxNELU8tbuDODcXnz0H8Fa9eTEzOX2AyTtrZm09mnjhOAdqJz0fQgY9nnEmuCqOQz3iAtA9uwH3OGCbBbyMRE29dp0vOBCBuT1hXIA9LST4uL2P4704Zc49OHOROBYggDwIVMG7JeR6th0JLz01LUw9_VgYODC7Jz3-DsU8PqRkt0Hutz08YdO7QRn8uLhdk73Pq5C92nVEuL-Iob2z7fS8S4JluMJGfrwPe-E9DLXBN42Rob2hYIu93O5PuCL_7D01KQU-835buHXJ9jtHGTY9wpKNuE1wAL27FmO8J-jMtzQo_7yFR7i6wWI-OCAAOBNACUhtUAEqcxAAGmBR_gAQFUbq9wQH6vHYHgsG_wbZE8T1_xfE_y8n1PPtU8a8Bhz_KNYg450AAAAxzfjtIgD8fwj19hbxG_v-mdAkQ2vpOVSwzScFJtlfMPjy10r0RT0A1TOh_g273wwo3gIgAC0AYxQ7OBNACUhvUAIqrwYQDBqgBgAAkEIAABDBAACIQgAAlMIAAHDBAABQQQAAVEIAAKBAAABEwgAA2EEAABBCAADYwQAAQMEAAABAAABQQQAA4EAAADhCAAB4wgAAEEIAAJjBAAA0wgAA4MEAAN7CAACOQgAAZMIAAJjBAAAQQQAAEMEAAKDAAAAEQgAA4MEAABhCAAA4wgAAgMAAAPTCAABQQQAAQEEAAJRCAAAkwgAA-EEAAHxCAABAwgAAIMEAAATCAAAUQgAAFMIAAPBBAACAQgAAYEIAAKhBAADAwAAAIMIAAEBBAAAAQgAAmEEAAFBBAACGwgAAEEEAABBCAAAAQQAAREIAAFDCAAAUwgAAoMIAAIC_AACowgAAGMIAABzCAACYwQAAfMIAACxCAACCQgAATMIAAEBAAAAEwgAAoMAAAJLCAACgwQAA2EEAAKBBAAAAQAAApkIAAIA_AADgwAAAgMEAADhCAAD4QQAAUMEAAOBBAADAQAAAsEEAAGxCAACIwgAAcEEAAMBAAADIwQAAIMEAAFDBAAAAQgAAVEIAAJDCAAAAQQAAIEIAAKDAAAAAwQAAqEEAAJjBAAAQQQAAoEAAAGRCAABIQgAACEIAANDBAACAwQAA4MEAAI5CAACoQQAAwMAAAADAAADgwQAASMIAAIrCAABwwQAAYMEAAEDBAADIwQAAoEAAAHDBAACgwQAAwEEAAOjBAABQwgAAQEEAANhBAADAwQAA4EEAAIA_AABQQgAAgEAAACTCAADgwAAAEEEAABhCAACawgAAAEIAAFBCAABwwQAA6EEAAJjBAADAwQAAQEAAAJhBAADIQQAAikIAAMBBAAC4wQAAQMIAAEjCAABgwgAA4MAAALjBAAD4QQAAUEEAAMBAAAAUQgAAEEEAAOjBAAC2QgAAoEIAAIDBAAAAAAAAgMAAAKDAAABgwgAAAMIAAMBBAAAAAAAABMIAACRCAACgQQAA7sIAAETCAAAAwAAAoMAAAGxCAAAwwgAAgsIAAJDBAACIwQAAqMEAADBCAAAgQQAA4EEAAFDBAAAgwQAAYEIAAJDBAACAQQAAhEIAAIBAIAA4E0AJSHVQASqPAhAAGoACAACSvgAA6L0AAL4-AAC4PQAAoDwAAIY-AACgvAAAK78AAEC8AAD4vQAAPD4AAJ6-AACAOwAAFD4AALi9AAAkPgAAVD4AALi9AAAwPQAAjj4AAH8_AADgvAAAXD4AAKA8AAAEvgAAUD0AAOC8AABAPAAAUD0AAMg9AABkPgAArj4AAI6-AAAkPgAAXL4AAIg9AADYPQAAHL4AAK6-AACOvgAAir4AAOi9AAAwPQAAUL0AAIa-AAAQPQAAgj4AAEy-AAA8vgAArr4AABA9AABsvgAAgj4AAMg9AAB0vgAAmL0AADU_AADIPQAA-L0AALY-AACYvQAAEL0AAIC7AACCPiAAOBNACUh8UAEqjwIQARqAAgAATL4AAKg9AABwvQAAL78AABS-AABwPQAApj4AAPg9AACIvQAAJD4AABy-AAB0vgAAQLwAAPi9AAA0vgAAgLsAAOi9AAAdPwAAoLwAAGw-AAA0PgAA2L0AAEA8AADovQAAEL0AAPg9AACIvQAAHD4AAFS-AAAwPQAA6D0AALg9AADIvQAAcD0AAEC8AAC6vgAA-j4AACw-AACOvgAAUL0AAL4-AACgvAAABD4AAEA8AACIPQAAyL0AAH-_AACgvAAAuL0AAII-AACCPgAATD4AAGQ-AADYPQAAXD4AAFA9AADIvQAAJD4AADA9AABAvAAAbD4AACw-AABEvgAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_N3iBuov4KU","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14079461190267711835"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1521390298"},"14846645969464657585":{"videoId":"14846645969464657585","docid":"34-2-13-ZBC4DF3D6E906B531","description":"For any three vectors `vec(A), vec(B)` and `vec(C)` prove that `vec(A) xx (vec(B) +vec(C)) +vec(B) xx (vec(C) +vec(A)) + vec(C) xx (vec(A) +vec(B)) = vec(O)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1775534/4c45c8308daa6ed64f351b792212b94d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Nv2ruwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DxMH0SY_JSfE","linkTemplate":"/video/preview/14846645969464657585?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"For any three vectors `vec(A), vec(B)` and `vec(C)` prove that `vec(A) xx (vec(B) +vec(C)","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xMH0SY_JSfE\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1WhQxNDg0NjY0NTk2OTQ2NDY1NzU4NWqIFxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxPIAYIEJAGABCsqiwEQARp4gfv_Af_7BgD1AQMFBwT9Af4GBQAJ_f4A_AX6_QYE_gDtCQIF-wAAAPkEBPgHAAAA_PwE-_z-AAAK9gAB-gAAAP8DBAX9AAAACvv4Af8BAAD59_f9A_8AAAX-AwQAAAAA9gD_-gMAAAAFCwb8AAAAAAX-AvkAAAAAIAAtxJ_jOzgTQAlITlACKoQCEAAa8AF_Gtb_5e76BPkL7gCaH-f_jBYN_x8p3wC9-yMA0gfeAcYe-QDbBOgA7RIQAO0oDf8U17ACFO4NATC3DQL9CekA6SAbADrnFQA7EBgC__HN_uoKKAD5Df8C_NH6ABsN-f_pAxn8EPjz_OMN5wUd-hIEByQvCi39QAPh2hX81gfQAP7bvf8C-_j3C94P9-HUKAP84uUBDSwH-cs13wQYywH-1-ou_Qgw0_1MCiINEQQUBr4J6wDv9Ob3HyUWCeP6B_jy9igC1eQA9xLv_f_g0QgHFeDv-j7y5QvmAO4O8QcR9fr99wH3GPkA3fATCuYNCewgAC0Y8Aw7OBNACUhhUAIqzwcQABrAB4fbqb69UKU8HCAdPeQshL6WO5g89GEHPP_rHL50j1a9hXZzvKdBLDzMDYG9wd5JvfaWYr4FeIE8eT8NvKZCPD5lYTm9PHxDPXV0_L0vE5o9CwIQvRUcTr6sTcg8NZcfO4xpRj4SNyK9H4EDvJNvBj5vsCE9nJAOvHWVqb01vqo9yscNPMWjrr1q1Oy78XufO1OXDD4Ohrq8T3ulPOWZ9z035WU8Th31PIJeE72TXUQ8Oy86PF0eRrwQBp48YZktveqv9z0xslE6yE0DPXBEEr0EG3y8nUgQPXwnBr6WffK8pKTsvCz1l70NVrc8ym_yu3_CtDxadz29RyXtu6jIIb4CfBw96OltPEYK5T2jliA8U83uO4HGlj3x3FY8A1XIPEArdrupY_q82XoEPGLglDzRQRK92LKAu5_1vrsSQQY9T8k5PAlkwDzPWXU9hWOxPEanuLxAbpq9MJAxvEaBmT2hoDQ9Ut9ouypZib0ldDi7prXMuiy4_z0CYQc9Fc2ePNkuBrzMofs82jPwOnZbuD3Crwc8bedWPJXcPL088cG9Q-nmu91Gvj0mJ8m8WHm8O2ByqD1HPg48oH8Ku6Y_kL184Lq7wJ4nOzX6hz0O_a6845mju_g4U70iLxA9C-B3PPxlgb2OoVI83-tavB_9Jb0DtOu7PVfCO1G91b2Pcza9XMf6OjEERT0vZx27euxtOus3Mz0xZ1E9xnH5OpYvHj2u2I-99j_hul9XHT0wgfu9dr44twoNiruJSCi8goXBufCXYD31dS47HEveOR1dQD05TkC7zDbIudhbD727mfE9CUSKuQLvKT3NGba8nSUVOOkPTTyoOD6-cp9dOaqxSb0_xGu9HsaSuejKVjxqXEk8oDeROcwgw73UDQS-CFOFOda17DyWAhg8m8OAObdulDzz9YY8OEFgOLzUQ71BWBW7uUjmt3AOor1-L489qYJQOW0IqTz4zEg8JsnjNJ5Jdj2b4zs7_cyOOMRWdbzEsCg9wxWTOLvPVj17JZo91swTOOg_NT1kHwQ-Z7EbOBrn5TxdD2u9uLCNNw9UNz3xgug96UGCN72P4704Zc49OHOROAvPS7xOjFk5hwiPt0gmkT0oS5g9iyUdN67H8zzNNKu8C16PNeNu8D0OTO69yWWXubhdk73Pq5C92nVEuJIT3LzbedE8gbVgNwcUoLrJILc9wteat80zQLx55Tq90QZat1UYpj1tC8U9g8fnOMSSNz1faAU8VYW7uKSwJr1UBum8IH4euHLyTL3hHlC9AdINuCAAOBNACUhtUAEqcxAAGmBZ_gAFCkvgIw4E5e_WI-3x6wLe9-XT_wi7ADsm7OrtDcy0Byz_Assi0p8AAAAH1_bx_QDefycA-wb4HusGi74uT2HhLVC55UIFItBNJOu6zBv9DkAA7iqdCBq49xIS6AQgAC3noRc7OBNACUhvUAIqrwYQDBqgBgAAkkIAAHBBAABoQgAAWMIAAATCAABAQQAAREIAAOjBAADwwQAAoMAAAKBCAABgwgAAGMIAACDBAABwwQAAYEEAACBCAACOwgAApkIAAPDBAABkwgAAEMEAAHjCAACKQgAAWMIAAETCAAAkwgAAoMEAAHBBAAAAwAAAuMEAAPBBAAAcwgAACMIAAKjCAABQwQAAUEEAAExCAACgwQAAGEIAAJBBAABwwQAAQEEAAJTCAACIQQAA2MEAABhCAAAoQgAAhEIAAARCAABwwQAA0MEAAMDAAAAcQgAANEIAAMhBAACKwgAAcEEAAMBAAAAwQgAAOEIAANjBAAAcwgAALMIAAEBAAACmwgAAAMIAAPjBAACQwQAARMIAAFxCAACSQgAAEMIAAHBBAAAEwgAAQEEAAFDCAACgwAAAJEIAADxCAADAQAAAlEIAAEBBAAAAAAAAAEEAAChCAABQQQAAMMEAAJhCAAAowgAAoEEAAJ5CAAB0wgAAYEEAAIC_AAB4wgAAZMIAAIhBAAAgQgAAkEEAAIrCAAAgwQAAqEEAAHDBAAAMwgAATEIAAKDBAABgQQAAYEEAAGBCAAD4QQAAqEEAAPjBAADAwAAAqMEAAHBCAACAQAAAqEEAAIjBAADwwQAAcMIAAJrCAACgwAAAUEEAAMDAAABQQQAAUEEAAATCAADAwQAAcEEAADDCAACkwgAAoMAAAIBBAAAswgAAcEIAAOjBAABYQgAAEEEAABzCAAAgwQAAkMEAAEBAAACWwgAAgkIAACxCAAAEwgAAREIAADDCAABwwQAAwMEAAERCAAAMQgAAYEIAANhBAACAwQAAXMIAAAzCAACQwQAAIMEAAPjBAAAEQgAAGEIAACDBAACoQQAAkEEAAGjCAACQQgAAPEIAAPDBAAAAQAAAgL8AAJjBAAB4wgAAFMIAAKJCAACAwAAAcMEAABRCAAAgwQAAtMIAABTCAABQQQAAcMEAAHBCAABEwgAAksIAAODBAADwwQAAMMEAAMBBAADgQQAAmEEAAKhBAACoQQAAAEIAAIC_AAAAwQAAYEIAAIA_IAA4E0AJSHVQASqPAhAAGoACAAAEvgAAuL0AALI-AAD4PQAAqL0AAEw-AABMvgAA4r4AADA9AACgvAAABD4AAFy-AABAPAAA-D0AAMi9AAA0PgAA6D0AAIi9AACAOwAAJD4AAH8_AAAwPQAAgDsAADw-AAAEvgAAQDwAANi9AAD4vQAAuD0AAEw-AABwPQAAfD4AAHy-AACoPQAABL4AAEA8AACIPQAADL4AAKq-AAB8vgAAhr4AABy-AAAwvQAAQLwAAIq-AACIvQAAZD4AAOi9AAC4vQAAhr4AAAQ-AACovQAAnj4AAKg9AACSvgAAiL0AABc_AAAMPgAA4DwAAJ4-AADIvQAAuL0AAKA8AAC4PSAAOBNACUh8UAEqjwIQARqAAgAARL4AAIA7AADgPAAALb8AADC9AADYPQAAVD4AABQ-AADYvQAAND4AAES-AABEvgAAQDwAADC9AADYvQAA4LwAAAS-AAAzPwAAyL0AACQ-AACYPQAAJL4AAHA9AACYvQAAoLwAANg9AABAPAAAyD0AAKi9AADoPQAAiD0AAIg9AADovQAAUD0AABC9AABsvgAAoj4AABQ-AABMvgAAuL0AAJ4-AADgvAAAND4AAEA8AABAvAAADL4AAH-_AABwPQAAQLwAAFw-AAAMPgAABD4AAJo-AADYPQAAHD4AAEA8AADgvAAAJD4AAEA8AADgvAAAbD4AANg9AAAkvgAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=xMH0SY_JSfE","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14846645969464657585"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1737262968"},"10336917424429912635":{"videoId":"10336917424429912635","docid":"34-5-9-ZBF97BDFE72F27146","description":"The vectors `vec(a), vec(b) and vec(c) ` are related by `vec(c) = vec(a) + vec(b)` . Which diagram below illustrates this relationship ?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3393528/9f53d178ca7451fc79ce1cf103582ae8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ke0oGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMEt5CeiAjgE","linkTemplate":"/video/preview/10336917424429912635?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The vectors `vec(a), vec(b) and vec(c) ` are related by `vec(c) = vec(a) + vec(b)` . Which","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MEt5CeiAjgE\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDEwMzM2OTE3NDI0NDI5OTEyNjM1WhQxMDMzNjkxNzQyNDQyOTkxMjYzNWq2DxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxOEAYIEJAGABCsqiwEQARp4gfoHAAb6BgD1AQMFBwT9AeUABwILAQMA_AX6_QYE_gD0_QoI_AAAAP8JAfcAAAAA_QIB9wL-AAAF-fsK8wAAAAEFBvz4AAAACPD2-QABAAD59_f9A_8AAAX-AwQAAAAA9gD_-gMAAAAFCwb8AAAAAAr_Bf4AAAAAIAAtK_XjOzgTQAlITlACKoQCEAAa8AF_-_QB1vv5_wLl7wCsNfn_giIK_iYo9QDLAzcBrhLN_9sW0wDv8OYADAcV_-MPDQBe7-X_KrT-AUvDCADz_PIB4gMOASvp7gA0DxYC8OPc_-IfKv0g7AUAEd34AAn8CQMNDhD-DOfeAN0L-wIy3BEC_xoVBREnLQD-0vr8wgb3AfET1_398O8E0_bz_9sEIAIm6AMCIRsQ_NYF5gIV5P_-FtEBAvYn7AJE7AUD9P0EAfQM_vca9-j4Jxv-AeIYIwEWGBz85fP79AgLCP_n5v78CO3z8zUo-Qf1DP__BOn3-ubPAAL2Ggj87ukLEOf2AfMgAC1jyx07OBNACUhhUAIqcxAAGmBP9gAMD0cUERD6y-TzACAU7-_TF-D3_zmc_zAy1PX4FNSxDyr_Eego8JoAAAAsxO_8BQDgfwcN5xv1Kyn8xskxJUT4AUiq5TgtMOVJIMzKzS8lL0QA6xS8HwCzyyssD_IgAC2F9Ro7OBNACUhvUAIqrwYQDBqgBgAAQEEAAADAAACIQgAAAMAAAIpCAABAQgAAukIAAIC_AAD4wQAAaMIAABBCAADYwQAA6MEAAEBBAABAwgAAYMEAAEBCAABkwgAAuEEAAODBAADAQQAADMIAACzCAAB0QgAAIMIAAPBBAACowQAAMEEAALBBAAC4QQAAkMEAAHBCAACcwgAAYMEAACDCAACgwQAA0EEAAGhCAADIwQAAuEEAAFTCAACoQQAAwEEAAGDBAABMwgAAsMEAAGxCAACgQAAAgkIAABRCAACwwQAAxsIAADBBAAAAQgAAREIAACBBAAD4wQAAiEEAAEBBAACGQgAAQMEAALDBAACOwgAAZMIAADhCAACYwQAAYMEAAIBAAAA0wgAA8MEAAMhBAACQQQAAcMEAAGDBAAD4QQAAqEEAAGjCAACIwQAAsMEAAIhBAACAQQAAwkIAAIDAAAD4QQAAiEEAAADAAACYQQAA0MEAAL5CAADgQAAAmEEAAKhBAADcwgAAAMAAACzCAADEwgAA0MEAAIDAAAA8QgAAMEIAAHTCAADoQQAAAEEAAEDBAABMwgAAgMEAAEDBAACkQgAAIMEAAKZCAABQQQAA2MEAAAAAAACEQgAAEMEAAHRCAACQQgAAyMEAAEjCAACwwQAAQMIAAJjBAAAQQQAAMMIAAEDBAADQwQAAgD8AAMDAAABwwQAAMEEAAODAAACawgAADMIAAKDBAABgwgAAwEEAAHhCAADAQQAAwMAAABDCAABwwQAAgMEAAADBAAAwwQAA-EEAAIhBAACgwgAAikIAAIDAAAAgQQAARMIAALhBAACOQgAAwMEAABxCAADIwQAA2MIAAFBBAAAgwQAAwMAAAIA_AABAQQAAEMEAAADAAAAgQgAAMMEAAHhCAAAUQgAAKEIAAIC_AABgwQAALMIAABjCAABwwQAArsIAAIhBAABAwAAAwEEAAIDBAACoQQAABMIAADDBAAAAAAAAEEIAAChCAADAQQAAKMIAAIDAAABAQAAAJMIAAABAAAAAwAAAYEIAABhCAAAAQgAAJEIAAFBBAACQwQAA8EEAAEBAIAA4E0AJSHVQASqPAhAAGoACAAAcvgAADL4AAI4-AAAwPQAAqL0AAIY-AAAEvgAA5r4AAEA8AACAOwAAJD4AAFS-AACgPAAAJD4AADy-AAAkPgAA6D0AANi9AAAQvQAADD4AAH8_AABQPQAA4DwAANg9AADIvQAAmD0AAIi9AADovQAADD4AADw-AADIPQAAbD4AAFS-AAD4PQAAUL0AAKC8AAD4PQAAFL4AAJK-AAA8vgAAZL4AACy-AABAvAAAoLwAAGy-AACovQAATD4AAMi9AAAsvgAAnr4AAAw-AADovQAApj4AADA9AAAkvgAAUL0AAA0_AADYPQAA4DwAAII-AAC4vQAAiL0AAOA8AABwPSAAOBNACUh8UAEqjwIQARqAAgAADL4AAEA8AABAPAAAQb8AAAS-AAAsPgAArj4AABQ-AAAEvgAAVD4AAEy-AAB0vgAAQLwAAOC8AAAEvgAAQLwAAAy-AAArPwAAqL0AAEQ-AAAQPQAARL4AAFA9AAC4vQAAcL0AAKg9AACYvQAAyD0AADS-AACoPQAAmD0AAFA9AACYvQAAoDwAAOC8AACSvgAAsj4AAAQ-AABMvgAAmL0AALI-AACgPAAAHD4AAIA7AACYvQAAqL0AAH-_AACgPAAAoDwAAGQ-AABkPgAAHD4AAJ4-AAAEPgAAHD4AAOA8AABQvQAAFD4AAIg9AACIvQAAjj4AADQ-AABsvgAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MEt5CeiAjgE","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10336917424429912635"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2037107107"},"13893798496358728812":{"videoId":"13893798496358728812","docid":"34-8-12-ZEA9F4ACAECFC9BA1","description":"hat(k)and vec(c)=7hat(j)+3hat(k)` (iii) `vec(a)=2hat(i)-hat(j)+2hat(k), vec(b)=hat(i)+2hat(j)-3hat(k) and vec(c)=3hat(i)-4hat(j)+7hat(k)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4211397/95e26fdbc1a42162cb9c1e3385e6d9cc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZrGQEwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlCtaxLCxR4w","linkTemplate":"/video/preview/13893798496358728812?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Show that the vectors `vec(a), vec(b), vec(c)` are coplanar, when (i) `vec(a)=hat(i)","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lCtaxLCxR4w\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDEzODkzNzk4NDk2MzU4NzI4ODEyWhQxMzg5Mzc5ODQ5NjM1ODcyODgxMmq2DxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxOyAoIEJAGABCsqiwEQARp4gfoHAAb6BgD1AQMFBwT9AfABAQQXAAIAAwYC-QUE_gDtCQIF-wAAAPkEBPgHAAAA_QIB9wL-AAAK9gAB-gAAAAEFBvz4AAAABPn6-f8BAAD2_wD9-QEAAAP7_QMAAAAA7fz__QIAAAD-Ew8BAAAAAAf4AP4AAAAAIAAtK_XjOzgTQAlITlACKoQCEAAa8AF_D-j-5O76BNcT2wCePfj_iBcO__ci7gCz8AwB0QfdAc8IDADQGwMA0hw_ANpHEf840sz-ANf1ACW79f763voA1RIXAUkA9gFFFwT_y-fX_t4BQf748PoAE9j2AC0NAPz-4iwADCnTAQcL9wNJBxsB-xwp_yIDGvvaqf0B2vv7A-ra1f3xCBYM8O8I9s7qIAID2NAAARcC-fE23_z96AwG3cEcAhdE5_8t1BECCRnuBtcR-AMf9eT3AC8GAdsJ9PLp7AoA0foK9hP7EvwA4B3_5NPsBDfxAA7e7fgD7wwGBNvx6gEWDAn899j8Et0J8-sgAC0ITwg7OBNACUhhUAIqcxAAGmBv9gASEkz5GxcP6QC79-rj5vTlF-r2_ym7ABEp1wkCP9Ws_wb_E-0h2ZwAAAD-2QgB3wDTfyIGAiL3FQT5oOAiJl33MkbG2CP3Ot1JUwfsEDn3D1gA0BKYKeK86kwp3hYgAC0qCxc7OBNACUhvUAIqrwYQDBqgBgAAgMAAAIBAAADQQQAADMIAAIBBAACYQQAAlkIAAEBAAABgwgAA6MEAADhCAADIwQAAYMIAAIBAAAAAwQAAyMEAAMBBAACEwgAAaEIAADjCAAAgwgAAuMEAAMbCAAA8QgAAHMIAAHDBAAD4wQAAUEEAAAAAAABAQQAAwEEAAHBBAAAYwgAAIEEAAJLCAAAAwgAAmEEAAIZCAAAowgAAEEIAABjCAAAgwQAAoMAAAJjCAADAQAAAAAAAAIhCAABoQgAAUEIAANDBAAAAQgAA6MEAAODAAABcQgAAqEEAAMDAAAA8wgAAwMEAADxCAAA4QgAAoEAAAEDAAABYwgAAosIAABBCAADEwgAAAMIAAHDBAACGwgAA2MEAACDBAAAYQgAAGMIAAPDBAABQQQAA2MEAAPDBAADYwQAAsEEAABhCAABQQQAA-kIAABRCAADQwQAAoEAAAPhBAACAQQAAoEAAAJZCAAAwQgAAgD8AAGBCAACWwgAA2EEAABBBAACCwgAARMIAANhBAAAcQgAAkEIAAEDBAABwwQAAYMEAAKDAAACAwgAABEIAANjBAACOQgAAUMEAAJJCAADAwAAAAAAAALjBAADYwQAAkEEAAFhCAADoQQAA4MEAAMDAAADAwAAAvsIAACDBAABgQQAAOMIAAEjCAAAYwgAAAEEAAABBAADAwAAAAMAAACjCAAB4wgAAyEEAACDBAAA4wgAA-EEAAABCAAAkQgAAoMAAALjBAADwQQAAQMAAAChCAAAUwgAAIEEAAFxCAABQwQAAoEIAAAjCAACQQQAA8MEAAPBBAAA0QgAAqEEAABxCAABAQQAAvMIAAODAAADgwQAAgsIAAMDBAADoQQAAUEEAADBBAAB4QgAAoEAAAOBAAACcQgAAaEIAAKDAAACAQQAA2MEAAIjBAAAIwgAAwMEAAABBAADIwQAAAEAAABRCAAAUQgAAksIAADBBAADIQQAAIMEAAKBBAABgwQAARMIAAJBBAACIwQAA0MEAAIhBAAAAwQAAAEIAADBBAACAPwAAbEIAAMBAAACgQAAAmkIAAFhCIAA4E0AJSHVQASqPAhAAGoACAADYvQAA6L0AAJ4-AAAEPgAAZL4AAGw-AAA8vgAAF78AAOA8AACAuwAAZD4AAAy-AAAsPgAAND4AAJa-AADoPQAAuD0AADC9AACAuwAAfD4AAH8_AADgvAAAiD0AAKA8AABwvQAAyD0AABC9AAAEvgAAoLwAADw-AAD4PQAARD4AAJ6-AAB8PgAAJL4AAFA9AAA0PgAATL4AAJq-AACOvgAAZL4AAES-AADgvAAAgDsAAGy-AACgvAAARD4AAMi9AABkvgAAyr4AAPg9AAAUvgAAmj4AAFA9AABUvgAAiL0AADM_AACYPQAA4DwAAJY-AABwvQAAXL4AAOC8AABQPSAAOBNACUh8UAEqjwIQARqAAgAA2L0AACw-AACgvAAAL78AAIi9AABwPQAAtj4AAPg9AAC4vQAALD4AABS-AACuvgAAgDsAAFS-AABUvgAAEL0AAFC9AAALPwAAEL0AABw-AACYPQAAML0AABA9AADIvQAAgLsAAPg9AACYvQAA-D0AADS-AABAPAAA6D0AAKg9AAA8vgAADD4AAFS-AADGvgAA4j4AABQ-AACOvgAA6L0AAJ4-AABwPQAAFD4AADA9AACgvAAA4LwAAH-_AAAwPQAAiL0AAMI-AABMPgAAbD4AAJY-AAC4PQAA6D0AAEA8AAC4vQAADD4AAOC8AACYvQAAFD4AAAQ-AABEvgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=lCtaxLCxR4w","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13893798496358728812"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3092433405"},"11085544133382762970":{"videoId":"11085544133382762970","docid":"34-5-16-Z79DE3EC29BFE44B0","description":"To ask Unlimited Maths doubts download Doubtnut from - https://goo.gl/9WZjCW Let `vec a` and `vec b` be unit vectors that are perpendicular to each other then `[vec a+(vec a×vecb),vec b+(vec a×vec...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3480205/52dc96f6211467b3ab3e5b456b7aba18/564x318_1"},"target":"_self","position":"7","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDbWCG79clGI","linkTemplate":"/video/preview/11085544133382762970?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Let `vec a` and `vec b` be unit vectors that are perpendicular to each other then `[vec a+(ve...","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DbWCG79clGI\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDExMDg1NTQ0MTMzMzgyNzYyOTcwWhQxMTA4NTU0NDEzMzM4Mjc2Mjk3MGqvDRIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxPRA4IEJAGABCsqiwEQARp4gQQC__n8BQD1AQMFBwT9AecBBAb8AAAA-v4B-QQD_wDzAAAG_gAAAAIJDfwEAAAAAQT8A_3-AQAR__AHAgAAAAEABvf9AAAABPn6-f8BAADy8wEB9gIAAQz-_QEAAAAA8QP7-v7_AAAFCwb8AAAAAAr_Bf4AAAAAIAAtrYbgOzgTQAlITlACKnMQABpgKQEAFw0Z-PgG_tkNAQ_55PVF9xnU7wAO2gAvGNjd-hzotBwg_x7UFvqyAAAA8-cBHikAxl8u6soFCATmLbD5EDN__AIfKP4m-_vLPwxB1fQL6SggALYa-OcG3-Qo8uwZIAAtwa46OzgTQAlIb1ACKq8GEAwaoAYAADhCAABwQQAA0EEAAETCAAAwwQAAUEEAANhBAADIQQAAaMIAAJDBAACAQgAA6MEAAJDBAADAQQAAMEEAAMBAAAAEQgAAwMIAAMBCAACYwQAAGMIAAJhBAAC4wgAAPEIAACDCAACgQAAA6MEAAOhBAADowQAAwMAAAIbCAAAIQgAA0MEAAIA_AABwwgAAQEEAAABBAAAIQgAAdMIAAJZCAAAkwgAAqMEAAMhBAADAwgAAAAAAACDBAABcQgAAHEIAADRCAACAPwAAcMEAADDCAADQQQAANEIAAKhBAABQwQAAQMIAAHDBAABAQQAAXEIAACxCAACIQQAAaMIAAEjCAADgQQAAdMIAADTCAABgwQAAZMIAAGDBAABgQQAAgEIAAIC_AACwwQAA4MAAAEDAAAAowgAAbMIAALhBAACgQQAAQEAAAHxCAAAAQAAA4EAAAHDBAACWQgAAoMAAACDBAAAkQgAAEMEAAKDAAAAAQgAAfMIAAPBBAADgQAAAsMIAAEDCAACQQQAAFEIAAGhCAAAswgAAMMEAAEBAAACQwQAAksIAAFBBAAC4wQAABEIAAIA_AACkQgAADEIAACRCAACwwQAA4EAAAKBAAACaQgAA2EEAALjBAADwQQAAAMEAAJbCAAAQwgAAQEEAAEzCAACYwQAABMIAAEjCAACIQQAAlsIAAAhCAAAwwgAAUMEAAPhBAACgwAAAbMIAAAhCAACgQAAAqEEAAOBBAABMwgAAgEEAAGDBAAAYwgAAEMIAANhBAAAUQgAAIMEAAIJCAADwwQAAYEIAAODAAACQQQAAfEIAAAhCAAA8QgAACMIAAKjCAADAwAAAsMEAAMBAAAAUwgAAyEEAAGBBAADAwQAAikIAAOBBAABwwQAAgEIAAIxCAAAAwgAAAEEAAODBAADAQAAAfMIAAFDBAACAQAAA0MEAAABAAAAAQgAATEIAALTCAABswgAA0EEAAKBBAAAMQgAA-MEAAHjCAABAQQAA4EAAAJjBAAAgwQAAuEEAACxCAADgQAAAQMAAAHRCAAAQwgAAcEEAAFxCAAAwQSAAOBNACUh1UAEqjwIQABqAAgAAXL4AAEC8AACWPgAAMD0AADC9AAAcPgAAUL0AACG_AAA8vgAANL4AAJg9AACevgAAiL0AAEQ-AAB0vgAAoDwAACw-AABwvQAAEL0AAJI-AAB_PwAAQDwAABw-AABQvQAAuL0AAHC9AACovQAA4LwAAPg9AAAEPgAATD4AAII-AAAcvgAA6D0AAAy-AAAwPQAAfD4AACy-AACyvgAAqr4AAIa-AAAEvgAAuD0AAOA8AAA0vgAAyL0AAEw-AACyvgAA2L0AAGy-AAA0PgAALL4AAGQ-AAAMPgAAZL4AALi9AAATPwAAXD4AAKi9AAAkPgAAbL4AADC9AACoPQAAoDwgADgTQAlIfFABKo8CEAEagAIAAIa-AACoPQAAEL0AAFO_AADovQAAqD0AAKY-AABQPQAA-L0AAOA8AAD4vQAAfL4AAJi9AAAEvgAAQLwAAKA8AAAUvgAAHz8AAIA7AAAUPgAAMD0AAKi9AABAvAAA6L0AAKi9AAAkPgAADL4AADA9AAA0vgAAEL0AAJg9AABwPQAAqL0AANi9AADgvAAAdL4AAKo-AAAUPgAAmr4AAFS-AAAUPgAAmD0AACQ-AACoPQAAMD0AAMi9AAB_vwAAqL0AAKg9AAA8PgAAoj4AAJg9AAB0PgAAqD0AACw-AADgPAAAML0AALg9AACoPQAAiL0AALI-AAAMPgAADL4AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=DbWCG79clGI","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11085544133382762970"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6701963276095887292":{"videoId":"6701963276095887292","docid":"34-10-16-ZC0FE1D1C48993947","description":"Three vectors `vec(A),vec(B)` and `vec(C)` are such that `vec(A) = vec(B)+vec(C)` and their magnitude are 5,4 and 3 respectively. Find the angle between `vec(A)` and `vec(C)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2699569/f680444c9b016814e413ce736810ba40/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XhbFtAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCVXhXyBUjv4","linkTemplate":"/video/preview/6701963276095887292?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Three vectors `vec(A), vec(B)` and `vec(C)` are such that `vec(A) = vec(B)+vec(C)","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CVXhXyBUjv4\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhUKEzY3MDE5NjMyNzYwOTU4ODcyOTJaEzY3MDE5NjMyNzYwOTU4ODcyOTJqiBcSATAYACJFGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKhDCDw8aDz8T_QGCBCQBgAQrKosBEAEaeIH-_gEI-wUA9QEDBQcE_QHwAQEEFwACAPwF-v0GBP4A7AMGAAL_AAD5BAT4BwAAAP0CAfcC_gAACvYAAfoAAAABBQb8-AAAAAjw9vkAAQAA-ff3_QP_AAAEAv0EAAAAAPUA__oDAAAAAQkN_wAAAAAGAgEAAAAAACAALXmg4js4E0AJSE5QAiqEAhAAGvABdgL6_8385v_vBtgAzD_rAYEiCv4cJOIAyBEiAasR6P_UDuUA7QPvAP0OEQDRIBIAMNjT__rSAgArvgsCBPP2AdENKwA42_0AOgD9AB3y5AHiICr9EAcQ_xPE7QAHC-_--_wSAAj73AH29N0GF-cqAiMQNgARKC0A3s0MAc4d-f_3-cn-8vb-_gPX__rD6hAAFu3x_A0F8_rOHuz_IOEJAv7hFv0CHvgBFvgHCOoMCwjx-P4F_Qfo8icCEgHDFQL48_ckAtwN6PwR_BD8_fr5APvp5QAn_PMCEAkI_vsB-PoE7v_18QIXAPrz_Q7pDAjuIAAt_yEdOzgTQAlIYVACKs8HEAAawAfkTba-QgUsPGvnpDs1bsC90VLevEUzibtRh_W915eGPYWnYb2nzfg97CSsvLWGF734wYG-f-j4vERpTz3LgDM-5tGIvZhiMzxA3CW-xCskPPP2b7sR_D--f2B4PRBEEryMaUY-EjcivR-BA7xUUwI-3Es6vXbMELy8ywW-XI8hvPw9Azrzf129gYYNvR2RjLpTlww-Doa6vE97pTxpGRk-vV87vWUX7zvnLlM8xJb-PbUgLbu31aw758wxPdk-BL2Uwhw-5JPfu3qjGz0iBP-8HX84PYX0jDsTUSO8wYYQvFC04bxoCKa65zCEPEAmo7zZ1iq8RAdyOyFw6rrKqT2-2xa1PbRM-7i5Zrc9cxOwPb8bgTxQ_q68vRBcPZqCkLyQaQ09sxrcPFl9_zx-rMs97G55vFRVibs8PSU8Iz17vOqjvrpjYD09Dy7IPX357jzHizs94JXuPLSAv7xTnUS8hnggO1GAjTxf3We87GQVPXL3Xjxe2xs-mv6yO8KvBTxnulc8JLXAPQtmyLvfZsY9ObXzvYcfGDzHg229VxCOvZ23VrzdwX49vLskPYh7kbx2oX49ognUPNISIDoK28-8KnAVvE980rvDPps9E481vSUkEjzehXe9ICfMPSgIFzc6eWw8fPN2PC7WJrxxc427LmA4PUGvBzxtxoo6R5qRugVCHTyfvYS8vuQavQfvCjvPfkk83VxcPYJXxjl65Ko9I1-uvG9IgrmLl109EAXTvSE6iLqhPGI91EO0vFrNpbt5bSA9YY-0vVvQlzmx4i-8-DK0ulGnejt5Ads8Q8j5PQrqLrj13Ug921ZoOXiYBLmrPZG9GlIVvjBRCjpm5S29SXRAvaVfszmtm1c9NCZJPS3ohbhTHpK9ShvIveFzmzeqTuK8E4pjPfOFrzieZ4W7U2JyvUeHrbdy9z69_ybvPN5GjLjEsGi9X-DiOizAkDmJRQy9CAT6PW9xOrg7ViQ9CZGIO2h5hLYScCM9Ap40PKThZTiEDb89KxbfPfMNorcIYFm9LucNPevSwLjz2va8CPnKvVqHe7Yu55I9FuA2PScnFrn1orG9qGz9vGewmrgDhyY9HuwDvZ6K0jdzE_U9LKaYPXVHIjep0RU9s_9LvOXfUbcvphk-eDvMPPzmG7lQVBa-domqvFCK-bXHyKi99tLUPJBnv7f01so8fJ7_PMjWFbchQhe9zVz7vL3AAbhhrMo8eNOdPZMLhTgYJzm9lEOlPWWUx7hI1JW8Ip72vLT4ALgdkyQ791BHvMFIxDcgADgTQAlIbVABKnMQABpgTv0ADPU3BRHs_9726RQYBeHt1PzG3P8nmf85Gsjz8w_Utfkb_xvYJOOcAAAAMbrx__EA7X8k9w4T7hv4_onEGDVM-Q1Mpcg-LfnuUEHe998lDixAAPAVpSUWwdsyIuL_IAAtyccXOzgTQAlIb1ACKq8GEAwaoAYAABBCAADgQAAAiEIAAGDCAABgQQAA4EAAAJpCAADAQQAAHMIAAGjCAABQQgAA4EEAANDBAACAQAAAYMEAAOBBAABgQQAAoMIAABxCAACgwQAA4EAAAFTCAABwwgAAYEIAABDBAAB4QgAAQEAAAHDBAADQwQAAyEEAAODAAADgQQAAgsIAAADCAACOwgAAgD8AAKhBAAAIQgAAAEEAADDBAADoQQAAEEEAAGBBAADQwQAAHEIAAADCAAA8QgAAAEAAADRCAAAIQgAAiMIAADjCAABAwAAAKEIAAChCAACowQAAOMIAADDBAAAcQgAAtkIAAAxCAADIwQAAoMIAAMjBAADgQQAAPMIAANjBAACwQQAARMIAADDCAABQQgAAJEIAAGjCAAAYQgAATEIAAIBBAABgwgAAGMIAAMhBAACaQgAAwMEAAAhCAACAQAAAAAAAAKDAAACoQQAAAEIAAADCAADWQgAAAEEAANDBAAAMQgAAksIAABBBAABwwQAAWMIAADTCAADwQQAAeEIAACxCAACEwgAAqEEAAGDBAAAowgAAkMEAAOBAAAA0wgAA8EEAAAAAAABsQgAAQEIAAKDBAABwQQAAgkIAAKDBAACgQQAASEIAAADAAACowQAAqMEAALjBAAAAwgAAfEIAANjBAAAIwgAA-MEAALhBAADowQAAiMEAAGDBAAAAwAAA0MIAAIC_AAAAwAAAXMIAAFhCAAAgQgAAiEEAAMjBAAAQwQAAAEEAACzCAADAQAAAQMIAAIBBAAAwQgAA0MEAALhBAACgwQAAcMEAAI7CAAA8QgAASEIAAHhCAACCQgAABMIAAIzCAABQwgAAVMIAAJhBAACgwAAAgkIAAIZCAABQQQAAUEEAAADAAACgQAAA1EIAANhBAABAwQAAoMAAALjBAADgQAAAQMIAAFTCAACQwQAAcEEAAHBBAADgQAAA4EEAAKDCAAAAQAAAYEEAALjBAAAwQgAAiMEAALDBAAD4wQAAoEEAAIC_AABwQQAA2MEAACxCAAAwQQAALEIAAGxCAABgQQAAQEAAACBCAAAEQiAAOBNACUh1UAEqjwIQABqAAgAAtr4AAMi9AACqPgAA-D0AAHC9AACCPgAA6L0AABe_AADgvAAA4LwAABQ-AACSvgAAMD0AAEQ-AABQvQAAVD4AANg9AACovQAAUL0AAII-AAB_PwAAoLwAADQ-AACgvAAAuL0AAAw-AACYvQAAEL0AABQ-AAAsPgAAND4AALI-AACWvgAA6D0AAFS-AACAOwAAyD0AADS-AACOvgAAir4AAHS-AABsvgAAML0AAKi9AAB0vgAAcL0AADw-AABsvgAAdL4AALa-AACoPQAAZL4AAIo-AABwPQAA2L0AADC9AAA1PwAAJD4AAOA8AADOPgAA2L0AABy-AACAOwAAXD4gADgTQAlIfFABKo8CEAEagAIAABS-AADYPQAA6L0AADW_AABUvgAAyD0AALo-AAAsPgAA2L0AAEw-AAA8vgAAkr4AAKC8AAD4vQAAVL4AAEA8AADIvQAAEz8AAIA7AABEPgAALD4AAHC9AABAPAAAmL0AAJi9AAAUPgAAiL0AACQ-AACSvgAAQDwAAOg9AACIPQAAiL0AANg9AAAUvgAAzr4AAPo-AAA8PgAAgr4AAPi9AADWPgAAUD0AAAw-AACAOwAAyD0AABC9AAB_vwAAEL0AAOC8AACCPgAAjj4AAHQ-AACGPgAA6D0AAEQ-AACYPQAAyL0AAEQ-AAC4PQAAUL0AAHw-AABEPgAApr4AAAy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=CVXhXyBUjv4","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6701963276095887292"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"452045272"},"6215716362372313854":{"videoId":"6215716362372313854","docid":"34-1-12-ZA0F5D2B316E8BB35","description":"Please add description.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3472629/a29ffa3616e6e8234fbc42792758e898/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hjcOGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJioqxl5dywk","linkTemplate":"/video/preview/6215716362372313854?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find the value of `lambda` for which the vectors `vec(a), vec(b), vec(c)` are coplanar, where","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Jioqxl5dywk\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhUKEzYyMTU3MTYzNjIzNzIzMTM4NTRaEzYyMTU3MTYzNjIzNzIzMTM4NTRqtg8SATAYACJFGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKhDCDw8aDz8TmAOCBCQBgAQrKosBEAEaeIH7AfkI_AUA7wMGBgAD_wH-BgUACf3-AAQD-gQHBP4A5BMGBP7_AAD6BQkCCAAAAP7-_v_4_gAAB_z2_fgAAAACBQb8-AAAAAb88fgAAQAA9f32A_YCAAAH_PsJAAAAAPr6BvwBAAAAAA4M9gAAAAD7_gz-_wAAACAALaLU4Ts4E0AJSE5QAiqEAhAAGvABagX8_s385v_nCu0AqzX5_4EiCv4JHuf_xPsfANcG4QHi-wT_3_MEAeURIgHIQPUAMNjT__DT6wArvgsCBPP2Ae8MJAAguhsAShUPAR3y5AHdDhr_Ger2_xHq_AAWCwz_Eu4GAf8M7QEK_-wAKu4M_Q8uJQIp_TkD788ZA-4E-gLVEtX-5gjwAfPxB_jD3CQCFu3x_A0FAwK4O-4AJOL5-eLJGAIYLPz9NOQCAAcW8AbX_e7_FgL0ARskCfvrF_b1DwEN_-UH_Pj98hH44_YG-ezs7Aoj6PcHC-0K--_4CP_w9Pv96hwBAOvl9Q3y9hLtIAAt_yEdOzgTQAlIYVACKnMQABpgYfMABgw3-zEAIucPwAX85u3rzxnP7_8wp_8J-9ToBBrjygn2_xDpIdSdAAAA_LwABeEAzn8TDQMQ6STn8L7QFDRSBRRnrtAyGxfaQGTq3-YNNw5hANoBpRwa29oXDBwgIAAtPgEbOzgTQAlIb1ACKq8GEAwaoAYAABRCAAAAwQAAmkIAAFDCAADgQAAAuEEAAKZCAAAAQQAAIMIAAIDBAAAkQgAA2MEAACjCAABwwQAAQEEAAOBAAACIQQAAoMIAAIJCAADIwQAAHMIAAGDCAADgwgAAjkIAANDBAACAvwAAQMEAAIC_AACgwQAA6EEAADBBAAC4QQAAJMIAAEBAAADMwgAAgD8AAMDAAAA4QgAAqMEAAERCAABAQAAAgMEAAKDAAABUwgAAQEEAAEDAAAAMQgAAAEIAADRCAADoQQAA4MAAAMjBAABQwQAAQEIAAIBBAADIwQAAaMIAAIjBAAAwQQAAbEIAABxCAAAAwQAAgsIAADDCAAAcQgAAvMIAADTCAAAowgAAFMIAADTCAAA8QgAAWEIAAAzCAADgwAAA-EEAAKBBAAAMwgAAIMEAAAxCAACOQgAAmMEAALBCAACoQQAAmMEAAODBAAAwQgAA4EAAAMDBAACaQgAAyEEAABzCAAA4QgAAeMIAALhBAACgQAAAbMIAAIzCAACIQQAAhkIAAIpCAAAQwgAAgMAAAMBAAAAEwgAABMIAAMBBAAAAwgAALEIAAIA_AACYQgAAEEIAAAAAAACwwQAA0EEAAHDBAADoQQAADEIAAHDBAADgwQAAsMEAACzCAACIwQAAXEIAAHDBAAAUwgAAEMEAAHBBAABAQQAAmMEAAHBBAABAwQAArsIAAIDAAAAAQQAAJMIAADBCAACAQQAALEIAAODBAAAwwQAAwMAAACzCAAAIQgAAOMIAAMBAAACCQgAAoEAAABRCAACgwQAAkEEAAILCAAAUQgAAMEIAAAhCAADoQQAAQMAAAKDCAAAAwQAAXMIAABDCAADowQAABEIAAFhCAAAAAAAAIEEAAHDBAACAwQAA5EIAAGhCAACIwQAAoEAAALDBAAAAwgAARMIAALjBAADIwQAAgMAAAEBBAAAoQgAABEIAAM7CAAAAAAAAgEEAAEDAAACQQQAA8MEAADDCAAAwwQAAgEAAAODBAACAQQAAuMEAADxCAABgwQAA6EEAAGBCAAAAQQAADEIAAHxCAAAQQiAAOBNACUh1UAEqjwIQABqAAgAAMD0AACy-AADKPgAAoLwAAOi9AACKPgAA6L0AAPq-AACAuwAA4DwAAFA9AABUvgAAqD0AALg9AABEvgAARD4AAPg9AABQvQAA4LwAAAQ-AAB_PwAA2D0AAIg9AABMPgAAyL0AAOC8AABAvAAA-L0AACQ-AAAsPgAAuD0AAKA8AAA8vgAAUD0AAAS-AABAvAAAiD0AAAS-AACmvgAAkr4AAHS-AAAUvgAAgLsAABy-AACWvgAALL4AAEQ-AAAkvgAAEL0AALq-AAAkPgAAML0AAFw-AADgPAAAPL4AAOi9AAAbPwAAUD0AAOC8AAC-PgAAoDwAAES-AADYPQAAyD0gADgTQAlIfFABKo8CEAEagAIAAHS-AABQPQAA2D0AADm_AADovQAAmD0AAFw-AACCPgAAUL0AABA9AAB0vgAAnr4AAIC7AAAEvgAAmL0AAKC8AACovQAAFz8AABy-AACoPQAAgLsAALi9AABAvAAAmL0AAIC7AAAEPgAAmL0AAOg9AAAkvgAAED0AAFA9AAD4PQAAFL4AAOg9AABAPAAAgr4AAAU_AABMPgAAgr4AADC9AABMPgAA-L0AAKA8AAD4PQAAyL0AAFy-AAB_vwAA-D0AAGS-AACaPgAAFD4AAAQ-AAC6PgAA-D0AANg9AABAPAAAML0AADQ-AABQPQAAyL0AAHQ-AAD4PQAAFL4AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Jioqxl5dywk","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6215716362372313854"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1056577112"},"14026658351774052041":{"videoId":"14026658351774052041","docid":"34-8-17-Z90C966E55D0350BD","description":"If the vector `vec(a), vec(b), vec(c)` form the sides BC, CA and AB respectively of a triangle ABC, then...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4364223/53fe6b38a296b10337d7704b6f4e0214/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jepcFAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAxowa_V9YnE","linkTemplate":"/video/preview/14026658351774052041?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"If the vector `vec(a), vec(b), vec(c)` form the sides BC, CA and AB respectively","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Axowa_V9YnE\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDE0MDI2NjU4MzUxNzc0MDUyMDQxWhQxNDAyNjY1ODM1MTc3NDA1MjA0MWqIFxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxO6AYIEJAGABCsqiwEQARp4gfcMB_z-AwDs-gf6BAAAAPgABAn6_f0A9gf7_v8C_wDjAQkA-v8AAAICDPIDAAAA8voF-_sAAAAK9gAB-gAAAAYGAf_-AAAACQfz9v8BAADy8_j1AgAAAAMCCAcAAAAA9QD_-gQAAAABCg3_AAAAABMB-QAAAAAAIAAtxELYOzgTQAlITlACKoQCEAAa8AF_-gQD3gX1AeH47v_IFuH_gyEK_hsk4gDF-x4ArxLO_-4G6wDsAB8AGwghAdsk4QA79s7_IeYQ_yfaDQAUAgwA7BwYAB_xBAEeEisCDgHl_-IfKv0QBw__7M_zARYh-gIc9QP--gHM_-P35gUw8B0C7hsPAxX1HwLq9hb-6hHyBc4A3v35APMEAtj_-uoHIwEZ-vgAHC0WANH04P4g4ggCJt4I-A0j8AQcEOoE0_sH-t8E3AMW5voCGyMJ-_EHEvToFyD-yukE_vvjFgDk1wcH_BXq-yPp-AcWEAkNBOn3-tX4Bf7mMgMP7ukLEPDpA_cgAC2uoB87OBNACUhhUAIqzwcQABrAB8psmL4N9aA8rTmbPHdlJ74VRJO8QcnuvGagYr5OPDE8TIMnvUkTzz0iJhc7sK91vZZdUL6Q7Nu8iSimPAovYT4XcbC8QdPGOYbjCb7fIPU8rAEqvfNZDr44bzc9dvssu0fIUD5Kpz-8X1JGPEG2HD7BMKo8jUl7O63-k72Ovx49nhukPOvmfb2JrpC9_h4jPI4EGj4ExTQ8Fdm5OxIWBT7fCpe8_6NAPZawpr1gWZk9ZX7kPF0eRrwQBp48YZktvZTCHD7kk9-7eqMbPUlHHryufrC4Wbj2PEpJar3FfG-90Zc5vM9rZ70YfDU9Og5yvJ8R1zv5tXq99k6eu7HhSb4ukvY8TwidPCcXEz5P1XM9FamwPGfuAb0BAFs8yzPMu1QjbDukvpE8kv6DPAl8bz0mYwa9SVlQvH3rgzwsq4s32jbSO9Vfij1rMIg9b-KaPHLLIr2GYwy9SCKqvJc9JD1BK_I7T8KWu9JP_ju4E8k5-JnpPDvFCj5Wgyu9X_DlO3PGhj3A-IM9OK7zuz1f8z10d0K8HVrDO97yx7x_q-u8bJpNOunJZj2BsDM9nHU-O-u5xj36Js093Om1OptXdb3QhjI8geUyuUdU6DzMKDa9KoUIvCy9Mb36jDU97QivOhpVAb2LgR89dSwlvKuDcrx10AC81p36O-kLAb2B_JY9rDH_uWli8LxFOi29-BZWO40jezxV7zq8sJFBO3AWZT3h4x09ErLBujm0SDzX3Ry-LNtGuvTRlLuOUWg8jxIduAaYXj1-6zm9HiXNObvO7TtThRU9gm-_t9KJhD3p8gY-skiFOWTriT34gXU89RleuB4RqL3O_Eq-AcsOOYmKsr2AUC297WEcOUV9N7yd9lQ94jJ_OgYkRr3DV7W9CMhdNzdTobyzrxU5_TI1OcS-8DrZLd08hecbuUswRr1vuE893AfGN9VTkLxCLTy9NNFrNyXXA70EtLg9qiequHAKK71xOZ68yz6FuC1Bxj3OTBU9FvKGOOcfOD0P77k9tGi5OPFYfTx0Fxc9xTDht7BCkL1MAJm9IWVjuNvQnj1245g9UAX1uD4SRb2mcTk8tTMJOd6IuDzCbjO97Zyvt_inFD4D-k49H_TtNkuXWT0v5kK8t5XAt0Hutz08YdO7QRn8uOwjYb2_J5i7XcPlt4CTN72Yy4w9WWqPONw0UT15sbA8UJ6qN-meUDzQt8W8HZn8toqWVz0QWPk9jRdAOEarP73fFqw8ZrP8tmQHkTuXs-28MR91N6nl_bwyxqe9CyF5uCAAOBNACUhtUAEqcxAAGmBB-QD8CS_3GQUh3uYC8hfo5vrW_Nb0_y--AAYky_rtBe-4DQMACeIm2a4AAAAe2-cK6ADmbPMA9wH5PgzpwfgpEmQQDS6B-yMxDuYpKd4H2gsDMDQA_BK9ExK5tSYLHRAgAC0RhTE7OBNACUhvUAIqrwYQDBqgBgAAGEIAADhCAAC8QgAAZMIAAABCAABMQgAArEIAAEDBAADowQAAYMIAAExCAABgQQAAKMIAAADAAABkwgAAoEAAAEBBAAAswgAAiEEAAKjBAABAQAAAwMEAAIjBAACAQgAAwMAAABBBAAAAwAAAoMAAAKBAAACAvwAABMIAAKpCAACYwgAA4MAAAHDCAAAAQAAAkkIAADBCAAAgwQAAUMEAAFxCAABgwQAA4EAAAOjBAACAQAAAoMAAAEBBAAAwQQAAnEIAAAxCAABIwgAAqMIAAEBAAADQQQAASEIAAKhBAAAkwgAAgEEAAHBCAAAoQgAAeEIAAETCAADgwQAA0MEAADhCAADIwQAADMIAANjBAACYQQAAcMIAADxCAABkQgAAgsIAACBBAACgwAAAwEAAACjCAAAQQQAAuEEAAOhBAABgwQAAnkIAAKDAAACgQQAA4EAAADBCAAAcQgAAoMEAANxCAAAwwgAAAEAAANBBAAC6wgAAiMEAAAjCAAB4wgAAAMEAACDBAAAAQgAA0EEAALzCAADoQQAAEEIAAJhBAACQwQAAMEIAACDBAABwQQAAEEEAAJBCAADYQQAAEMEAAABBAABIQgAAKMIAAHBCAABAQgAAmEEAANjBAABAwQAAdMIAACjCAAC4QQAAiMEAAKjBAACIQQAAPEIAABDBAAAAAAAAQEIAANBBAACawgAAEMIAABBCAADAwAAALEIAAFhCAAAgQgAAgL8AABDBAACQwQAAAMAAACBBAABgwgAA8EEAADxCAACCwgAAdEIAAFDBAAC-wgAA6MEAABxCAACQQQAAYEIAAFRCAAAIwgAAsMIAAPjBAACowQAAgD8AAMBAAACQQQAAwEAAAEDBAAAAAAAAoMAAAIDAAADgQQAAFEIAAEBAAACowQAAsMEAAHBBAADQwQAAisIAAPhBAAA8QgAAsMEAAPjBAAAQwQAAqsIAAJjBAAAgQQAAUEEAAKpCAADwwQAAJMIAAIA_AAAwwQAAoMAAAKBBAACoQQAAJEIAAEBBAADQQQAAMEIAAGBCAABwwQAA8EEAAABBIAA4E0AJSHVQASqPAhAAGoACAADYvQAAEL0AAKo-AACoPQAAqL0AACQ-AAD4vQAAur4AAKC8AADgPAAAuD0AAES-AABwPQAA-D0AAMi9AADIPQAAXD4AAIi9AACAOwAALD4AAH8_AADgPAAAUD0AAAQ-AACIvQAA4DwAAOi9AACIvQAAiD0AAFw-AAAQPQAAgj4AADy-AAAwPQAAUL0AAIA7AAAEPgAAFL4AAJ6-AAB8vgAAZL4AAPi9AAAwPQAAQDwAAEy-AACIvQAADD4AAIi9AAAUvgAAHL4AAAQ-AACovQAAjj4AADw-AAB8vgAAEL0AAAE_AACAuwAAED0AAIY-AADIvQAA2L0AAKg9AAAQPSAAOBNACUh8UAEqjwIQARqAAgAAZL4AAAS-AABwPQAAR78AAPg9AAA0PgAAcD0AAMg9AABUvgAAyD0AACS-AABMvgAAmL0AAAy-AADIvQAAgLsAALi9AABTPwAAiL0AAKA8AAAQPQAANL4AAFQ-AABQvQAAmL0AAFQ-AABQvQAAMD0AAIg9AAAUPgAA6D0AAEA8AABUvgAAML0AAIA7AADIvQAATD4AAIg9AACGvgAAPL4AAJo-AABwPQAAgj4AAKA8AAAMvgAAoDwAAH-_AABwvQAAED0AACw-AACIPQAAQDwAAM4-AABQPQAAPD4AAHC9AADgPAAATD4AAJi9AAAcvgAAXD4AAPg9AAAcvgAAPL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Axowa_V9YnE","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14026658351774052041"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1587632387"},"507035635670521109":{"videoId":"507035635670521109","docid":"34-5-11-ZF528DAA0596B1295","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/875077/6466051ff85a639707d54b10165f2299/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BnVdHAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DamxXuO0ywNk","linkTemplate":"/video/preview/507035635670521109?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Which of the following is the unit vector perpendicular to `vec(A)` and `vec(B)`?","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=amxXuO0ywNk\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhQKEjUwNzAzNTYzNTY3MDUyMTEwOVoSNTA3MDM1NjM1NjcwNTIxMTA5arYPEgEwGAAiRRoxAAoqaGh4Y2xwaGtieXhscnltZGhoVUNjdjdwc3BHSG1NN0FPeXd1TE0xdWZBEgIAEioQwg8PGg8_E4cBggQkAYAEKyqLARABGniBAgr6BvwFAPL7__8IAv8AEAMG-gf__wD49QHzAwP_APT9Cgj8AAAADQYSBAMAAADzA_j6_AAAAAn9-AUDAAAAAggE-wMAAAAS-fT5_wEAAPLzAQH2AgABDwb5Dv8AAAD7_QL9_f8AAAULBvwAAAAACP4EBgAAAAAgAC3BWuA7OBNACUhOUAIqhAIQABrwAX8U-__T8AYB2AT2ALsvCgCJFw7_ICreAMgSBP-56N0B4hMV_9oE6ADhEycB20cR_xXWrgIR1QYAQMPj_-kC_gD9CiABQNX9AUIB_ADg-OP_2BAe_gHz6v0A2QoAJBr0_Qv5IgEaHuP99gL2CCDmGAMqIyQFIhwdARC89gXoG80C9vjC_t4OCwQA5fn-utcpAgbv6__1HfT4xiPp_zLG_ADq_CwB9SzpAykNCA_w8vf23OrtBgb07fsr8QUL1vcW_gENM_rXD-X8Jev_AfTg9QAVB-n7P_HkC-zz8f_j8vv0-PH17-Mw9f_w9wcI9v8E9yAALVJtCTs4E0AJSGFQAipzEAAaYEEAAATuHPkwAuvuFcj_HeTOJQMS4vP_NYr_MgPSDfUP28QGH_8b4hPzoQAAACTb3-YVAOh_IOvp9_Pr7gSGwx0NTQwlTtjxUOjv4z8k4efeAAERagDLCKobIuXNKh4e-yAALRz-Hzs4E0AJSG9QAiqvBhAMGqAGAACQQgAAAAAAAMZCAAC4wgAAEEIAAABBAABIQgAAiMEAAMDBAADAQQAATEIAABBBAAAAwAAAQEEAAADBAAAAQAAAQMAAANDBAACYwQAAiEIAAPBBAACAwAAAtMIAAHxCAAAQwgAADMIAABBBAADYwQAAcMEAADBCAADIwQAAuEEAACTCAABAQAAAvsIAADBCAACIQQAAsEIAAEBAAACwQQAAIEIAAJBBAADwwQAADMIAADhCAACgwQAAAMAAADhCAAAoQgAAFEIAAFjCAAAAwgAAQMAAAABCAABgwQAAUEEAAHTCAADAQAAAUEIAAKBBAADgQQAAJMIAAJTCAADowQAAiEEAAEzCAABAwQAAAEEAAKBBAADYwQAAVEIAADBCAACuwgAAREIAAIBAAAA8QgAAlsIAAIC_AAAQQQAAREIAAMDAAAAMQgAAJMIAAMBBAABEwgAACEIAABxCAABYwgAAFEIAABBBAACAwAAA4EAAALDBAABYQgAASEIAAADAAACowQAAQMEAABBCAABwQgAAWMIAABDBAABcQgAA-EEAALDBAADgwAAAwEAAACRCAAAIQgAAfEIAABBCAAAAAAAAoMEAAJJCAADowQAAHEIAACxCAADoQQAABMIAAEjCAACAPwAAKMIAADBBAADQwQAATMIAAMBAAAAQQgAAYMIAAARCAAAgwQAADEIAACjCAACgQAAAPEIAAMjBAACKQgAAyEEAADBCAACGwgAAiMEAAADBAACgwAAAVEIAAGjCAAAAwQAAdEIAAABBAACIQQAAAAAAANjBAADQwgAA0EEAANBBAACQQgAAsEEAAODBAAB0wgAAMEEAAEDCAADwwQAAKMIAAEBAAABwQgAAYEEAAPhBAAAEwgAAyMEAAIpCAAA8QgAAoEAAAKDAAADYQQAAQMEAAITCAAC4wQAAkEEAAIDBAAAcwgAAoEEAAEDAAACYwgAAEMEAAKjBAAA0wgAAqEIAAHDCAADAwAAAAMIAAKBBAABAwAAAZEIAACDBAAAgQgAAIMEAAOhBAABIQgAAkEEAABDBAABUQgAAuEEgADgTQAlIdVABKo8CEAAagAIAABy-AADYvQAAbD4AAKA8AAAwPQAAPD4AAJi9AADyvgAAiL0AAOg9AAC4PQAAEL0AAHC9AABwPQAArr4AABQ-AADoPQAA4LwAAFC9AACCPgAAfz8AAKg9AABAvAAAUD0AAEC8AABAPAAAoDwAAJi9AACYPQAAgj4AALg9AABcPgAATL4AAOg9AADYvQAAgDsAAMg9AADovQAAnr4AAHy-AACavgAAbL4AAOA8AACIvQAAZL4AACy-AADIPQAAiL0AAIA7AAAQvQAAjj4AALi9AACCPgAAqD0AAJa-AAAMvgAAFT8AAHA9AACgvAAABD4AADS-AAAwvQAA2D0AAIC7IAA4E0AJSHxQASqPAhABGoACAAAUvgAAmL0AAIA7AABLvwAAHL4AAEA8AAAsPgAAMD0AAAS-AABQPQAAjr4AAMq-AAAUPgAAHL4AAKC8AADIvQAAcL0AACc_AADgvAAAFD4AABQ-AAAUvgAAND4AAOi9AACAuwAAuD0AACy-AADgPAAAyD0AAKA8AACAuwAAqD0AAEC8AACGvgAAcL0AAOi9AADSPgAA-D0AANi9AACgvAAAhj4AAEC8AADIPQAAiD0AABC9AADIPQAAf78AAHC9AABMvgAApj4AAGQ-AACovQAAsj4AACw-AAAQvQAAgDsAAKC8AADoPQAA4LwAABS-AACSPgAAVD4AANi9AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=amxXuO0ywNk","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["507035635670521109"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4047698566"},"4720843507810336715":{"videoId":"4720843507810336715","docid":"34-8-11-Z5FC4A9F22522A849","description":"Let vec(a),vec(b),vec (c ) be the positions vectors of the vertices of a triangle , prove that the area of the triangle is 1/2| vec(a) xx vec(b) + vec(b) xx vec(c)+ vec(c)xx vec(a)| Class: 12...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4004005/703b6ba33ed973f7d9985e867a5ee62a/564x318_1"},"target":"_self","position":"13","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSuPzGQZ9xKs","linkTemplate":"/video/preview/4720843507810336715?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Let vec(a), vec(b), vec (c ) be the positions vectors of the vertices of a triangle , prove that t...","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SuPzGQZ9xKs\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhUKEzQ3MjA4NDM1MDc4MTAzMzY3MTVaEzQ3MjA4NDM1MDc4MTAzMzY3MTVqrw0SATAYACJFGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKhDCDw8aDz8T7QGCBCQBgAQrKosBEAEaeIH6BwAG-gYA9QEDBQcE_QHyAAgB-_7-APwF-v0GBP4A7QkNA_4AAAACCQ38BAAAAAEE_AP9_gEABfn7CvMAAAALAQsE9gAAAAb88fgAAQAA8vMBAfYCAAEG8AUM_wAAAPYA__oDAAAABQsG_AAAAAAK_wX-AAAAACAALSv14zs4E0AJSE5QAipzEAAaYDwWABkVKuzPJy_f_O_cDhTrPAD41gj_AeUA_iTq5v4vv64CD_9CrwjapAAAABLx-x8vAM10K-fcAwQl-xCc0AItf84bFQkODvEd2T8rPfLQPQlFFADDC-kT_5QPHBoHICAALWTrIDs4E0AJSG9QAiqvBhAMGqAGAAAkQgAAsEEAAGBCAAB0wgAACEIAACBCAABwQgAAMEEAAGjCAAC4wQAAkEIAANBBAAAEwgAAkEEAAAzCAABwQQAAkEEAANrCAABEQgAAkEEAAEDAAAAcwgAAdMIAAERCAACIwQAAIMEAAEBBAAAowgAAhsIAAKBAAAAAwgAAMEIAAKLCAAAkwgAA0MEAAEBAAAD4QQAAoEEAAADCAABAwQAAqEEAACBBAACAQQAAQMIAAAxCAACgwQAAaEIAADBBAAB0QgAAAEAAABjCAACYwgAACEIAAEhCAAAwQgAAwEAAAFDBAADAQAAA6EEAAGxCAADIwQAA4MEAADTCAAC4wQAAOEIAAAzCAAAcwgAAMEEAABTCAABAwgAA4EAAABRCAABQwgAAEMEAACBCAACoQQAASMIAALDBAACAvwAA6EEAACDBAAAkQgAAmEEAAEDAAADAwAAAQEIAACBCAADIwQAA8kIAAFDBAAAAAAAAoEAAAJ7CAABAQQAAgMEAAIDCAABAwQAACEIAACBBAACSQgAAhsIAAMBBAACgwAAAEEEAAATCAACQQQAAPMIAAPhBAABQQQAAdEIAAPBBAADAwQAA4EAAADxCAABIwgAAREIAAPBBAACowQAATMIAAMDBAABkwgAAMMEAAEBBAADAwAAAFMIAAMjBAAC4QQAAUMEAAKjBAAAAQgAAcMEAAKbCAACgQAAA6EEAAFzCAAAoQgAA4EEAAFhCAABgwQAA4MEAAGDBAAAEwgAAoEEAADjCAACIwQAAqEIAAFDBAABIQgAAYMEAABDCAABowgAAmEEAANhBAACcQgAAjkIAALjBAADCwgAA-MEAADjCAAAwwQAAQEAAAPBBAABkQgAA4EEAAARCAACAPwAAiEEAAAxCAAAUQgAAgMAAAGTCAACAwgAAoEAAAIrCAABUwgAAgEAAAIBAAACQwQAA4EAAABTCAACywgAA6EEAALhBAADIwQAAmEIAAHDBAADQwQAAgD8AAIBAAACgQAAAIEEAAABBAAAoQgAAcEEAAFRCAACUQgAAcEEAAOBAAAB8QgAAiEEgADgTQAlIdVABKo8CEAAagAIAACy-AACIvQAAsj4AAKC8AACgPAAADD4AAOA8AAADvwAAuL0AANi9AABwPQAAhr4AAKC8AABkPgAABL4AAOA8AAC4PQAAuL0AAHA9AACWPgAAfz8AAKg9AABEPgAAgDsAAHS-AABQPQAAoDwAAOi9AABEPgAAbD4AAPg9AACGPgAAXL4AANg9AAAEvgAAUD0AAFQ-AAAEvgAAhr4AAJq-AADKvgAAUL0AAGQ-AABAvAAAir4AAIC7AAAsPgAAVL4AAPi9AABsvgAA4DwAALi9AABUPgAAHD4AACy-AAC4vQAAHT8AABC9AADgvAAAfD4AAAy-AACgvAAA6D0AAJg9IAA4E0AJSHxQASqPAhABGoACAACGvgAAQDwAAIg9AAA5vwAAML0AAKi9AAA0PgAAgDsAAMi9AABkPgAA-L0AAEy-AADgvAAAfL4AADy-AACAOwAAQLwAADk_AAAEPgAAXD4AAFA9AABAPAAAgDsAAJi9AACYvQAA-D0AAFA9AAAsPgAABL4AAJg9AAD4PQAAFD4AAMi9AACovQAAgLsAAHy-AAABPwAAhj4AAL6-AAAwvQAAij4AAIC7AABQvQAA4DwAAKg9AACIvQAAf78AABy-AAD4vQAAfD4AAJ4-AAAwPQAAbD4AAIC7AACKPgAAgLsAAOC8AABkPgAAUL0AAHC9AACGPgAAZD4AABy-AAAMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=SuPzGQZ9xKs","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4720843507810336715"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2882690350148002505":{"videoId":"2882690350148002505","docid":"34-2-5-Z58D39B38D82617E5","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2218504/a5f06f4d75a5832572ce43e61b18fb9c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6kx1ugEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DujDbB7rfTvY","linkTemplate":"/video/preview/2882690350148002505?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the property of two vectors ` vec A and vec B`, if ` | vec A+ vecB| = | vec A- vec B|","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ujDbB7rfTvY\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhUKEzI4ODI2OTAzNTAxNDgwMDI1MDVaEzI4ODI2OTAzNTAxNDgwMDI1MDVqhxcSATAYACJEGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKg_CDw8aDz8Tb4IEJAGABCsqiwEQARp4gQED_QL7BQD8BPwGAQb9AvT6-gIJ_wAAAwL48wMD_gDtCQIF-wAAAPkEBPgHAAAA-gQBAP__AAAK9gAB-gAAAPv-Bv39AAAACPD2-QABAAD2_wD9-QEAAAP7_QMAAAAA-P75_P__AAABCQ3_AAAAAAL8BQAAAAAAIAAtd1vjOzgTQAlITlACKoQCEAAa8AFUHu4A5fkSAQYE8QC9Kfv_gQUL_y8X6QDCDg8B4ArNANEC5wHm9gMBEBUDANsLHQAv-Nj_Ou_8ABnR-f8Q_v0ADBEcACzj_gAbCgkAAwXdAA8MI_8pD_sCAOUHABkS-P4J9_T-4evaAOz8-QUW7hECDxcGASH9GwAA3wcE7g71BN8O3v4SAPIC-gL2_evhHAIU_PkACR8F--AS4wAU9vf85eAE-xAI6wMg9AQF__YC_eD-8gAR_wD8EvcB_uEJGPj6BAwB_xT8_QYJBv_36vgACO73BDMC-P4HEP4E9QXx-vv_BPbvHQf08uwWA-EUBwMgAC1uJ0g7OBNACUhhUAIqzwcQABrAB24ZkL6si1s8xYRCPaWjPL7LR5I8bdfVvBrAC76b58i8-V8Yvbw_jj3dkyg7ieApvfjBgb5_6Pi8RGlPPUC9OT7iG6o5DKXYudz0F75-1DU9qmINPBUcTr6sTcg8NZcfO5waoD793da8PNo4vH9LQD6nSso7gbiGvPJ6IL6zlw09dW9qPBZqDb6eTlU6kTlgPJV_DT6ipFa9sVVdPOw0Uj7Zu_m7vn-YO95AfL2cv6o7l3u3vMwbVLv2JRu89RkGvZTCHD7kk9-7eqMbPXc78Tyo34U854PvPOyE2buSNGm9XcDLvNOZJb0XOXo8W6hGvF1OLj0xA_q8rXesO_mgB770Gps9L4GAO-SG_z05dvU8jG-ePPT7rj1oYhO8iINGO-aCp7u7DhU9LwkhPSkIGrty0C-9O8jrvMf3kL2VH2I9VR-fOxAWfz2NGdc8TncDPSsVVLw33bK8ooalvNxhOLyzVVM98_sCPMg9BDyGE2I9aZ5tPI9tKT4CWmS9c6SOO_EplT3BxQo9RdA9vBdTnz0tOKi7Z9DxO5iBr7yPwrq9q74pPBk0GT0UACi98uOWu7jGjD0GzK09DezGO4gkH71DVcw85eFzvBb46j3vX488M9rsOtyCRjtHnJQ92wAFPA42ED0AqIK9IjM8vCXaH71hBc87cM2-O7nNr7y70EG9ogC8uyuhO7y6xZc8aiYpPEHjuLxdKkA9RKkwuvueZz3E04o7xgW5O19XHT0wgfu9dr44t4Kvsz3fFSY9cFjgutgu7Tzn6j29U3UmueFi4Lw4zYy8BmWluCFLcD3tg6c9y1BduTlYKT0I6Sm82_VpOVxUC72cFfG93J51ObjkOLx1c9G9D4I5up37xjx14Q08ZBKYuRN9_ryIDxy-kyWXN40_9jzxgX09Qh7TuMPdk7vaBLO932EMuV5c9Lz1swI9PbuBuWx2pL1mD5m83C2tObwvnbyLgZ890q5sN2cSED0EhjY9Qn61OMEaZzzy_LM80teEOYCckD1IwK09fL7iOD9Qk719K009DrfjuHZTar1Xz8m9XDpquNCAFT2ASrU9ljSQuMov6LyPD4S8Eqb0NyemJj1p8p68ZDxVOBxe8D19BP489OeQuI9bgj3M8q-6QHIBuO0dPz2Jgx887YjGuGCQdL31XZs8lKQYuJIT3LzbedE8gbVgN465obzJCa49ZG4Ut42Rob2hYIu93O5PuGGsyjx40509kwuFOESB4zx5crI8yMS2uOmLczzOAxS8KDIit720ErpZn5e98mYzuCAAOBNACUhtUAEqcxAAGmBO9gA8H08sDAP27bb25w_2It3qONzb_0mq_-0q2PgFLeLR-QH_LRIuApsAAAA2BPj8GwDkdA4C4DnjPkDuweT99X8-GyHN-T40UehVDb3FyQntPjAA5P7WAgba0kM6BfwgAC1G1hY7OBNACUhvUAIqrwYQDBqgBgAA-EEAABBBAACiQgAA4MAAAOBBAAB4QgAAikIAADxCAACSwgAAoMAAABBCAAC4wQAAYMEAAFDBAABgwQAAQMAAABBCAAB4wgAAgEEAABDBAAAAQQAAEMEAALbCAABIQgAAJMIAAABBAACAwgAAiMEAAPhBAAAAAAAAMEEAAAxCAAAowgAAmMEAAJrCAADgQQAA4EAAAEhCAADYwQAAEEEAAABAAACYwQAAMEEAAGjCAAAQQQAAoMAAAIhBAACAQQAAVEIAALhBAABIwgAA6MEAAOBAAADAQQAA-EEAAIBAAACgwgAAUMEAAFRCAABwQgAAoEAAAAzCAACcwgAA6MEAACxCAACcwgAAQMIAAKDBAACAwgAA2MEAACBCAABkQgAAUMIAAIC_AAAwQQAAgEAAADDCAAAQwgAAcEEAADRCAADAQAAAnEIAAMjBAADQQQAAkMIAADxCAACgwAAAmMEAAJZCAAAAwAAAQMAAAABCAACEwgAAiEEAAEBBAAAwwgAAMMEAABBBAAAQQgAA2EEAADDCAAAcQgAAiEEAAEBAAAAQwQAACMIAAIjBAABIQgAAgL8AAJRCAADgQQAAUMIAABBBAAAMQgAAsMEAALhCAACAQgAANMIAAKBBAAAEwgAAsMEAAMDBAAAMQgAAaMIAAEDBAABEwgAAoEEAAIA_AACIwQAAQEAAAKBAAACiwgAAqEEAAAAAAABYwgAAEEIAAKRCAACgwAAAwEEAACDCAADgwAAAiEEAAIDAAABgwQAAwEEAACBCAAAAAAAAKEIAADhCAAAgwQAAOMIAAFBBAACwQgAAEEIAAFRCAAAIwgAAqsIAAKjBAAAQwQAAEMEAAIC_AADQQQAAAEIAACBBAACgQQAAwMEAADhCAAC2QgAAOEIAAETCAADoQQAAuEEAAMDAAAAQwQAAoMEAAJjBAADIQQAA4MEAAARCAAAwQgAAusIAAMDAAAAAQgAAEMEAADBCAADwwQAAuMEAAFBBAADIQQAAqMEAAABCAABEwgAAVEIAABxCAADQQQAApkIAACDBAABAQAAAhEIAAIBBIAA4E0AJSHVQASqPAhAAGoACAAAsvgAABL4AAII-AACgPAAAiL0AAHw-AACYvQAABb8AAOC8AAAQvQAADD4AADS-AAAwPQAA4DwAAFy-AAAMPgAAFD4AAHC9AACAOwAAPD4AAH8_AABQPQAAmD0AAOg9AACIvQAAoDwAAKi9AABQvQAA2D0AAPg9AAAEPgAAhj4AAK6-AADgPAAAJL4AAEC8AAD4PQAAqL0AAJK-AABsvgAAXL4AAGS-AAAQPQAAUD0AAFS-AACovQAABD4AANi9AABAvAAADL4AACw-AAAcvgAAij4AALg9AAA0vgAAcL0AABc_AACIPQAAmL0AADw-AADovQAAqL0AAFA9AACIPSAAOBNACUh8UAEqjwIQARqAAgAAyL0AADy-AACgvAAAQ78AAMi9AADIPQAAij4AAOC8AAAcvgAA2D0AADS-AACSvgAA2D0AAAy-AADIvQAAEL0AAIi9AAAlPwAABL4AABw-AADoPQAAmL0AAJg9AACovQAAoDwAALg9AAC4vQAAiD0AAHC9AAAwPQAA6D0AAOg9AACovQAA-L0AAEC8AAAkvgAAwj4AAHw-AAB0vgAAFL4AANo-AACIPQAADD4AAOC8AABQvQAAuL0AAH-_AABAPAAAQLwAADQ-AABkPgAAED0AALI-AADIPQAAmD0AAEA8AADgvAAAXD4AAJi9AADovQAAhj4AAFw-AAAEvgAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ujDbB7rfTvY","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2882690350148002505"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2830442338"},"15249331584879027539":{"videoId":"15249331584879027539","docid":"34-3-5-Z3B8A8DA926A2DE4F","description":"Doubtnut is a Q&A A...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4535967/13e7cb400ee11e60c7a9cff668dc9f30/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/evLTMAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLb5yn_w7bPs","linkTemplate":"/video/preview/15249331584879027539?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Let vec a , vec b , vec c\\nbe three vectors such that | vec a|=1,| vec b|=2a n d| vec c|=3.\\nIf...","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Lb5yn_w7bPs\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDE1MjQ5MzMxNTg0ODc5MDI3NTM5WhQxNTI0OTMzMTU4NDg3OTAyNzUzOWqBFRIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxPYAYIEJAGABCsqiwEQARp4gfv_Af_7BgD8BPwGAQb9Auz9CgP8AAAA_AX6_QYE_gD0AAAG_gAAAPkEBPgHAAAA_v7-__j-AAAK9gAB-gAAAAEFBvz4AAAACvv4Af8BAAD59_f9A_8AAAP7_QMAAAAA9gT_AP__AAABCQ3_AAAAAAYCAAAAAAAAIAAtxJ_jOzgTQAlITlACKs8HEAAawAchrK6-uB2_OrHDmDyNDf29VWxtu_yhfr1NOJq90KRiu0jBE70glsI9CqMZvRAGnrw4aYq-0Qw9PO2ufTz9vXQ-klRLvQOx7Dzc9Be-ftQ1PapiDTwVHE6-rE3IPDWXHzsk03E-2-xZvRbUgbxBthw-wTCqPI1JezvyeiC-s5cNPXVvajzFo669atTsu_F7nzsecP09d4Cru9HvGLt4JTk-ohEJPHZyALytGwq9yL5aPTydkLxdHka8EAaePGGZLb2Uwhw-5JPfu3qjGz1JRx68rn6wuFm49jxHVbg8Kgi5vNT5C71m90S9yOvBvDs8X7vq8VY8MB7UvDN3VLn5oAe-9BqbPS-BgDs-6r896LT4PHYKj7fHe3o8sAYBPOR8ObtwVzc7Jz2CPTpHkzxW66k8aHFrPDDnAry2H5q9bWugPSMNk7wJZMA8z1l1PYVjsTzs3Qe66Uuputsxtbz7z_U6sgXOPLLUujwSf_k85bijPVx9Djy9n8Q9ap1dPKnvoTz4dTs9nA4JPZZcJLvwNo897JzLvMKb2jz6WKa9y1CQvR2nrrulGLs9nWyevEI7jLzB7go9HtyCPKAabTu_Pdk8Th11vDlbZbsDr7s9uMJAPeebHztPHru81gGAPQC2E7tkJ7Q7J1MiO76BbrxaNb699b7xPCdFCTncyXE7G262vCeTqjt2wcM7b9l8vIP-HTuTpfs86PhoPR7nEbtRl9Y85dFtvaAaTLtfVx09MIH7vXa-OLe4Hbo9afwCvFr2vDkVs3Q9QGCvvY1ifjg6kLW8BSrOu_rlYzdyEYS8YhDYPYTUDrf2-FM9-oMcvQE2QrlcVAu9nBXxvdyedTkHPuu8D1hDvXm9Arrhax88vifgPIXAIbpqc_c8Pq4tvrpurznirfM83rAIPaATw7g3_w89GNs6vWxgxLXy3y29SywfPZ-pzrdsdqS9Zg-ZvNwtrTm_IDO8rBvPPUkMNDWiNdA8CGRlPIsoxDcQ45o8Jrr4PIVj0DiAtIQ94xcePrLngre792u9_eWZPYFGMbnUuki9aqWQvQ61NrhiZE49cSEqPZocGriVEp28hmE2PYN52TgJsK49zggFvaiJ8jj4pxQ-A_pOPR_07TbSL7Y9td8avSqAObgK74c9IdpYPRVA07hmgpG9epULvVTUhLdryj-9ePp3PG7WnDfCRn68D3vhPQy1wTe_f_O9v7uVvaQvWbhZknI8RjZBPZievzhPyw89Th_mPIc1t7jps-g8_upWvYqGjbYLMU28rSHnvIMYyzcgADgTQAlIbVABKnMQABpgVQIAB09PD98PBePp8RIi9QEN6P7N-v8A4gA8LNHW8zL0sg0M_yC_FOqdAAAAB9n19yEA3G8d5dAi2AoLLYLqFjF_ChkHFhco7jXncBUV2uE-50gGAMEQ79b2u-j2DuYEIAAtTHEdOzgTQAlIb1ACKq8GEAwaoAYAAEBBAAAAQgAANEIAAPhBAADAQQAAMEIAAKZCAACoQQAANMIAAAAAAADoQQAAcMEAAABBAACQwQAADMIAAKhBAACowQAAgsIAAIC_AACgwQAAcMEAAOBAAAC0wgAAyEEAABjCAAAAQAAANMIAAODAAACOQgAAiMEAAOBBAACwQQAAJMIAAIBAAAAkwgAAmMEAAADBAABYQgAAEMEAAPBBAABQwQAAqMEAAFBBAACqwgAAQMEAAHDBAAAUQgAA4MAAACBBAAAQQgAAcMIAANjBAACIQQAAiEEAADRCAAD4QQAAksIAAMDBAACAQgAAeEIAAMBBAAAEwgAAqsIAAADCAAAwQQAAgsIAAETCAAAQwQAAqMIAAIjBAADQQQAAVEIAAMDBAACIwQAAMEEAAIBBAABswgAAMMEAAABCAABMQgAAIEEAAJpCAACQwQAAgL8AAGTCAABIQgAAYEEAALDBAACSQgAAoEEAAHDBAAAEQgAAQMIAAMBAAADIQQAA-MEAADjCAACQQQAAlEIAAKDBAADQwQAA-EEAAIhBAABAQQAAgL8AAPDBAAAIwgAAGEIAAABAAABkQgAAOEIAAATCAADAwQAAxkIAAJDBAAC2QgAAEEIAAODAAACgQQAAMMIAAADCAABMwgAAbEIAAFDCAAAAwgAAEMIAABRCAACgwQAA8MEAAIjBAAAkwgAAzsIAAMhBAAD4wQAAbMIAAIBAAACqQgAAmMEAADBBAAAQwgAAAEEAABDBAACYwQAAiMEAAGBCAAAcQgAAUMEAAGRCAADgQQAAcMEAAEjCAACIQQAAgkIAAPhBAADoQQAAMMEAAKbCAAAAwgAAEMEAAMBAAAAwQQAAGEIAACBBAAAYwgAAkEEAAODAAACAPwAAkkIAAIhBAABEwgAAgMEAALhBAAAQQQAAgEAAACDCAADQQQAAAEAAANDBAAAkQgAAMEIAAIbCAABYQgAAiEEAADjCAACAQQAANMIAAPjBAADgQQAAYEEAAIhBAABwQgAAAMEAAChCAAAMQgAA4EEAAIxCAADQwQAAwMAAAFBCAAAcQiAAOBNACUh1UAEqjwIQABqAAgAAgr4AAAy-AAC6PgAADD4AAHA9AABEPgAAUL0AAPq-AAAwvQAAUL0AAFA9AABUvgAAuD0AAEw-AABwvQAA-D0AACw-AACYvQAAoLwAAGw-AAB_PwAAcD0AAOg9AACIPQAAuL0AAEC8AABAPAAA4DwAADA9AAAUPgAAFD4AAJ4-AACSvgAAHD4AAIi9AACAuwAAyD0AAPi9AACCvgAAbL4AAGy-AACYvQAAUD0AAMi9AAAsvgAAqL0AAAw-AADovQAANL4AAKa-AABQPQAAJL4AAII-AACoPQAAXL4AAJi9AAAnPwAA2D0AAIi9AACiPgAAqL0AADA9AACAOwAABD4gADgTQAlIfFABKo8CEAEagAIAAES-AACIPQAA4LwAADe_AAC4vQAA4DwAAGw-AABwPQAA2L0AACQ-AAAcvgAAZL4AAOC8AAAkvgAARL4AAIA7AAAEvgAALT8AAOA8AABUPgAADD4AANi9AAAQPQAA-L0AAHC9AACoPQAAqL0AAAw-AAA8vgAAmD0AAPg9AADIPQAAiL0AAOA8AACgvAAAur4AANY-AAAEPgAAir4AAFC9AAC2PgAAQLwAAIg9AABAvAAAgLsAAIi9AAB_vwAABL4AAFC9AAB8PgAAij4AACQ-AABMPgAAiD0AAHw-AACgPAAAqL0AAEQ-AABAPAAAgLsAAGw-AAA0PgAAXL4AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Lb5yn_w7bPs","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15249331584879027539"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3086270029"},"9606502443997638375":{"videoId":"9606502443997638375","docid":"34-4-15-Z549A19FF75E7081B","description":"vec c|` . Doubtnut के साथ १००% मार्क्स पायें, आज ही डाउनलोड करें :- https://doubtnut.app.link/91GzfmKxjP Related Questions & Solutions: 1. Represent graphically a displacement of 40 km, `30o` west...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/405756/0b6c208e74530c9dfe50258aba2a052b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CluV1AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAF1jd8TG5QQ","linkTemplate":"/video/preview/9606502443997638375?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Let ` vec a , vec b` and ` vec c` be three vectors such that `| vec a|=3,| vec b|=4,| vec c|=5` .","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AF1jd8TG5QQ\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhUKEzk2MDY1MDI0NDM5OTc2MzgzNzVaEzk2MDY1MDI0NDM5OTc2MzgzNzVqiBcSATAYACJFGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKhDCDw8aDz8T6AGCBCQBgAQrKosBEAEaeIH-_gEI-wUA9QEDBQcE_QHlAAcCCwEDAPwF-v0GBP4A9P0KCPwAAAD5BAT4BwAAAPz8BPv8_gAACvYAAfoAAAD_AwQF_QAAABL59Pn_AQAA9fL_AQP_AAAEAv0EAAAAAPYE_wD__wAAAQkN_wAAAAAGAgEAAAAAACAALXmg4js4E0AJSE5QAiqEAhAAGvABf_T_AMn75P_ZCgkA6A3VAbHtHgAqK_QA2uD9ANjv1gDQICIACgT5ANAMKQDR__3_Ed3NAO7p6wAr1g7_1u3i_xUE9wDutxIAWvE1A_8OAP7fIi7939zpARLa9wAn7xH__uMpAAj72QHX9NMAD_4_AR4NHgHyAhT87-cNAfDk2QHxt9YAG_j9_vzOLv_g9TEH79bo_QAD-vfRJwwEF-L__vLVJP_MVvX8GQgEBBT_-weqAvwD3ercBAQ3Fv_QIPcH--kZ_vYF_Ov76gUFE8z89O_v_u8juPsKEwTq-eUHFAXv4Oz26B4BAOQj_QcL7Pb1IAAtpDcROzgTQAlIYVACKs8HEAAawAf1Ssm-6JNLvF_7-DxmTge-_iqfu4L4pbz9hR6-AWpqPOHQW7xRu689ns46vAiiOLwkQz6-iHJYPUnombrLgDM-5tGIvZhiMzyG4wm-3yD1PKwBKr23siS-KRXDPETQYrzhtgY-HuBJvZg6AjyTbwY-b7AhPZyQDrxiUSy9ZFKoPKiWY7wYHCq9vk6KvQYOC7waT-Q9Ovk-PeuvEj28Wu49QGNLvCsBpzxw8Yu87NiMukMiyDnWMTO9jVL4PDQ_yLzHTAI-SAwsPV4cCz1JdCW9CFwSvf5cersGYn69HaVcvATmvjpFK6e9m8FkPZdS17zYwgc9RMeZvfI7sryX5DC-RG8sPeyCZrxGCuU9o5YgPFPN7jurTr28kRSsPExw5jsVdQW8n8SMvDGUOLypHp88tU6BvO0PtTtEFNM8R9KJPF8WyTxjYD09Dy7IPX357jzjghg9I6eqvdbcl7tGgZk9oaA0PVLfaLvfiM69khk5vLahT7o0R9Y99DY2vKFnPbo_vPg8eUWLPA6zYTyfZQw9guUGPGIB3Lkour69puy5vUOkjTsdbcE9OWkQPS4Ff7xQj809mVC3PJOty7oxdke9Or6MvbB9N7zDPps9E481vSUkEjzOJpa9-p6sPLXhMLtUruy75Fl4PZYVFrxFgJM8TzAtPW3tszvcyXE7G262vCeTqjvaV949J-vBvNr1bLlRbUs9YdULu7aGbzsJjcA9p9uovd-s2rlAwSW9KdaUvYg_lznHEUu9IE6WvNfoC7uUQLQ94M1kveKHajkcYnc9565ju9YUtLlfrX-9LuKwPQkCOjn_xXm7b5CavOgENrnLovC8W0IevjcF4zlf3Ly91eK4vLQlXLdXFru8Oz8gPYvlIDoS9UK9IhjnvXga6jctPR48OUlOvCHoc7gUfK49K8KNPeBkZTjKbIC9OC04vZOSmTh81cq966HiPGqJpDkfNBY98a_vPJoDiThRlBU9lHtrveK4ezmcqCU9YSgRPc1D5ThqiaU9G8WIPc-v0DdyM9w9IlQJPhsLqjmq-QU9Hw4yvcHhvzeg3Hs9AZm3PVgANri9j-O9OGXOPThzkThJjFS870qMvXkr1zagzms9zSa4u66rvTcCYUy8bLXivHYiMjgiC6I9vq61vdrsArmUbBC9ukmxvIPjc7e_iKG9s-30vEuCZbgdPoQ8kWHVPbj3vLc8fOO8IiYXveGisrfK9HA9IuErPvHLijj_CnQ9GMCaPU90cTcE0Qm9XYcvvczpGjeUzKC9LAY0PbotgjcgADgTQAlIbVABKnMQABpgQgIACSNF8-0G_tzd1B8VAP0IwgL___8UywAVJuP_GSXlvg79_wfPMdquAAAAKu32EQgADWYU7ugyBebj6LPx-kN__h0vzgY53UT3WjD15_lZ-U9HAMMo4A712O8BFP4WIAAtevooOzgTQAlIb1ACKq8GEAwaoAYAAAhCAAB0QgAApkIAAJTCAABAwAAAnkIAAJxCAAD4wQAAvMIAAIzCAABgQQAA2MEAACzCAAAcwgAACEIAAKDAAADAQAAApMIAAMBBAAAAwgAA4MAAABDBAABgwgAAKEIAAERCAACKwgAAgsIAAKjBAAB8QgAAIEEAAIhBAABAQQAAlMIAAEBBAACcwgAAAMEAAIC_AAB4QgAAOEIAABxCAACIwQAAMEEAAIC_AADYwQAAAMAAACBBAAC4QQAAQEEAAHBCAAAAQQAAisIAAKBBAAAkwgAAAMEAAFDBAABYQgAAqMIAADBBAACgwAAAFEIAADDBAAAcwgAAQMAAAGTCAACYQQAARMIAAHDBAACoQQAAzMIAACDBAABMQgAAkEEAAKjBAABkQgAAVMIAALhBAAB4wgAAgMAAAIhCAADYQQAAAEEAAIRCAABAwAAAyEEAAOjBAAB4QgAAIEIAAABBAAAsQgAAYMEAAEBAAAAwQQAAyMEAAFjCAAAQwQAA2MEAAHDBAACAwQAAYEEAAKBAAACmwgAAEEIAAGBBAACIwQAAgsIAABBBAABIwgAAuEIAAAjCAADwwQAAgL8AAIC_AAAUwgAAgEEAAEBBAAAsQgAAyEEAAOjBAABsQgAAwMAAAMjBAADgwAAAwMAAAPjBAADAwAAAUEEAAKBBAAAowgAAwMAAAFTCAACAQQAAkMIAAEDAAACAQQAAyMEAALhBAAAgQgAAcEEAAMDBAADwwQAAIEEAALhCAAAQQgAAiEEAADxCAAAwQgAA2MEAAMDBAAAAQQAAwMEAAMDBAACoQQAAAEIAAHDBAABAwQAAAAAAAIzCAADgwAAAuMEAAGzCAAAAQgAAoEEAAABAAACIQQAAAAAAADDBAAAAwQAA0EEAABBBAAAAQQAANMIAAMBBAAD4wQAAoEAAAKDBAACIwQAAMEEAAIrCAADQQQAADEIAAKzCAABswgAAgD8AADzCAACwQgAAfMIAAJDCAAAQQgAAwMEAAAxCAACgQQAAKMIAALBBAAAAAAAA4MAAAKpCAABQwgAA0MEAAJhBAADAQSAAOBNACUh1UAEqjwIQABqAAgAAZL4AAIC7AACmPgAA2D0AAKC8AACWPgAAUL0AABe_AACIvQAA6L0AAJg9AAB0vgAAgDsAANg9AAAMvgAAcD0AAAQ-AACIvQAA4DwAAHQ-AAB_PwAAUL0AAEw-AACgPAAA-L0AAKC8AACYvQAAgLsAABA9AAD4PQAATD4AAJo-AAB8vgAAUD0AAFS-AABwvQAAiD0AAPi9AADSvgAArr4AAMi9AABAvAAAQDwAADy-AAB0vgAAMD0AAI4-AAA0vgAAZL4AAMa-AABAvAAA-L0AAIY-AACIPQAAPL4AAHC9AAArPwAAHD4AABC9AACqPgAAUL0AALi9AAAQvQAAHD4gADgTQAlIfFABKo8CEAEagAIAAHS-AAAQPQAAEL0AAEO_AABMvgAAED0AALY-AADoPQAAML0AAFQ-AAAMvgAARL4AAOi9AADYvQAAbL4AAIg9AAAcvgAAMT8AAFC9AABsPgAAPD4AAAS-AAAQvQAAmL0AABy-AAAsPgAAUL0AADw-AACSvgAAED0AABQ-AACYPQAAQLwAADC9AABAPAAAbL4AANo-AABEPgAAjr4AAOC8AAD6PgAAQLwAAPg9AADYvQAAUD0AALi9AAB_vwAA2L0AAHC9AABQPQAAhj4AAGw-AACePgAAUD0AAKY-AABwPQAAuL0AAII-AABQPQAAUL0AAHQ-AADYPQAAmr4AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=AF1jd8TG5QQ","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9606502443997638375"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2681807500"},"3883356216583853342":{"videoId":"3883356216583853342","docid":"34-8-14-ZE2A9F24375B53994","description":"The sum and difference of two vectors vec(A) and vec(B) are vec(A) +vec(B) = 2hati +6 hatj + hatk and vec(A) - vec(B) = 4 hati +2 hatj - 11 hatk. courses to improve your performance and Clear...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/961279/8ced2ee67c2b29805a89250749e4f1a2/564x318_1"},"target":"_self","position":"17","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9cDMOA6Z74c","linkTemplate":"/video/preview/3883356216583853342?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The sum and difference of two vectors vec(A) and vec(B) are vec(A) +vec(B) = 2hati +6 hatj + hat...","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9cDMOA6Z74c\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhUKEzM4ODMzNTYyMTY1ODM4NTMzNDJaEzM4ODMzNTYyMTY1ODM4NTMzNDJqrw0SATAYACJFGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKhDCDw8aDz8TnAKCBCQBgAQrKosBEAEaeIHxBQMB-wUA_AX8BgEG_QLuBQUG-___AAj-_voGAv8A7QkCBfsAAAAFDgP3CQAAAAL6Cv___gEAC-3-CAEAAAD__AD6-wAAAAH59v__AQAABP0J__oBAAAF_gMEAAAAAPUA__oDAAAA_g8FAAAAAAAGAgEAAAAAACAALRIG4Ds4E0AJSE5QAipzEAAaYEsaAC8wMPnHA_Hp-d_h_wYC9vvzyv7_CNkAEyLn5-co_70HEP9IwyDfpAAAACnLABgMAOdrG-bPE-r_FPyYx_Idfw4VFvXwKPBNAFQhFg8DG9oiFQCw_fLt0MP7Fg8jJyAALbwNKjs4E0AJSG9QAiqvBhAMGqAGAACQQQAAoMAAADRCAABAwgAA8EEAAEDAAAB0QgAA0EEAAHzCAAAQwgAAWEIAAMhBAAAIwgAAwEAAAGDBAACAwAAAMEIAAHTCAACCQgAAoEAAAIA_AAAgwQAA0sIAAGRCAAAAwgAA4EAAALDBAABAQAAAgMAAANhBAACAwAAACEIAACjCAADAQAAAVMIAAFDBAABwQQAAaEIAAFzCAADwQQAAJMIAAKBBAACgwAAAksIAAGBBAACAwAAAlEIAAAhCAADAQQAAoMAAAKDAAACEwgAAcEEAAFhCAACgQQAAEMEAALDBAACIwQAAZEIAABRCAABAQQAAEEEAAJLCAACGwgAADEIAAKDCAAAAwgAAEMEAACjCAADAwQAAqMEAACBCAADgwQAA4MEAAIBAAACwQQAAyMEAANDBAAAAAAAANEIAAGDBAACkQgAAmEEAAHDBAACgwQAAmEEAAKBAAAAIwgAAkkIAAAxCAABQwQAA-EEAAIrCAADwQQAAgEEAAHzCAACUwgAAgEIAAJhBAADoQgAACMIAADDBAACgwAAADMIAADzCAADAQQAAIEEAAJZCAACAwAAAtEIAAAhCAACQQQAAgMEAAIBBAACAvwAAyEEAACxCAADowQAAwMAAAIDBAACCwgAAcMEAAJhBAABgwgAAUMIAAFjCAAAQwQAAoMEAANjBAADQQQAAgMEAAIrCAADQQQAAAEEAAIDCAABEQgAAFEIAAExCAACYwQAAwMAAAIC_AABAwQAAAMEAABDCAABQQQAAmkIAAEBBAAAwQgAAoMEAAHBBAACCwgAAZEIAADRCAABAQgAAWEIAAJjBAADOwgAAQMEAAAjCAACQwQAA-MEAADhCAACKQgAAYMEAAEhCAACgQAAAAAAAAL5CAAAYQgAAAMAAACTCAAAswgAAAMAAAFTCAAA0wgAAEEEAABDCAAAEQgAAJEIAAHBBAABkwgAAwEAAADBBAAAAwgAAHEIAAIhBAADgwQAA4MAAAJjBAAC4wQAAIEEAAFDBAADwQQAAMEEAABBBAAB8QgAAAMAAAADAAABQQgAA2EEgADgTQAlIdVABKo8CEAAagAIAAFS-AAD4vQAATD4AAKA8AACIvQAAhj4AAKC8AAAbvwAAED0AABC9AADYPQAALL4AAFC9AABcPgAAXL4AABw-AABEPgAAqL0AAMg9AACaPgAAfz8AAJi9AACGPgAA4LwAAFy-AACoPQAAEL0AAOC8AADIPQAA6D0AAEw-AAA8PgAAnr4AAIg9AAD4vQAAUD0AAPg9AABAvAAAqr4AAIq-AABcvgAAVL4AAKA8AABAPAAAdL4AAIA7AABcPgAAlr4AABS-AACOvgAAQDwAADS-AACqPgAAQDwAABy-AABwvQAAKT8AAOA8AAAEvgAAgj4AANi9AACovQAAoLwAABw-IAA4E0AJSHxQASqPAhABGoACAACYvQAAqL0AABC9AAA3vwAAqL0AAHA9AADGPgAAUL0AAFS-AABEPgAAcL0AAIa-AABAvAAAbL4AAAy-AACAuwAAUL0AAB8_AABQvQAAZD4AALg9AACYvQAAyL0AAAS-AABwPQAAcD0AAKi9AACYPQAATL4AAFA9AAAUPgAA2D0AABS-AACgPAAAiD0AAI6-AADePgAAXD4AAMa-AAAEvgAAyj4AAIg9AAD4PQAAQLwAAIi9AACovQAAf78AAFC9AACIvQAAmD0AAHQ-AADYPQAAgj4AADC9AADYPQAAgDsAAFC9AABkPgAAUL0AAEC8AAA0PgAALD4AAES-AADgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9cDMOA6Z74c","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3883356216583853342"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"14324935084134805600":{"videoId":"14324935084134805600","docid":"34-4-16-Z5A6177208B758233","description":"Two vectors vec(a) and vec(b) are such that |vec(a)+vec(b)|=|vec(a)-vec(b)|. What is the angle between vec(a) and vec(b)?Class: 11Subject: PHYSICSChapter: VE...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1577330/ad0841b66f217b6af0b8af93b0f571eb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/B1G1MAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMLN9ZoM6I0k","linkTemplate":"/video/preview/14324935084134805600?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Two vectors vec(a) and vec(b) are such that |vec(a)+vec(b)|=|vec(a)-vec(b)|. What is the angle b...","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MLN9ZoM6I0k\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhYKFDE0MzI0OTM1MDg0MTM0ODA1NjAwWhQxNDMyNDkzNTA4NDEzNDgwNTYwMGqIFxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxPsAYIEJAGABCsqiwEQARp4gf7-AQj7BQD1AQMFBwT9AfABAQQXAAIAAwL48wME_gD0_QoI_AAAAPkEBPgHAAAA_PwE-_z-AAAF-fsK8wAAAAEFBvz4AAAACPD2-QABAAD-_Pf--gEAAAX-AwQAAAAA9QD_-gMAAAD_BgX9AAAAAAYCAQAAAAAAIAAteaDiOzgTQAlITlACKoQCEAAa8AF9DfkByv4DAOH47v-3FusAgSIK_hwk4gDN4hEBrRLN_-QH9AD28wYABxwSAMhA9QAw2NP_D9oFACu-CwL9APsA7wwkABLKAwBE8wUA__PS_t0OGv8V_f8A7M7zAQkWAf0B8QX-2OXPAfb03QYw1iQBDS0FAwn2If3x6QwBzh35_9US1f4C_Pn4B88MAd7-CQcN8Pr79xn2-dYF5gIj7hz8AdEM_gUdBgIhFAT_5QsK-sYLAwgSD_35IwsF_-b6BvngEg4B9wX97QrqDv35zRIBBfvv_Tfz6AoO_v789PT7_QTu__XUNvX--fgSDOn-DvwgAC3_IR07OBNACUhhUAIqzwcQABrAB7znwL4Vo9M77tfTPE5j-7036Qy9d-nwvEvTtr2Wyys9rO4Hvbw_jj3dkyg7ieApvThpir7RDD087a59PAovYT4XcbC8QdPGOdz0F75-1DU9qmINPBUcTr6sTcg8NZcfO9_hVj5-XzK9-UsLPdEfKj7qsCK9UMLMvCGys71NO627qzFXvF2psr3BnCq9PR5EvFOXDD4Ohrq8T3ulPARXCT7rrVw8L0RDuuZtFr1yD9M8CYeDuyOe0Tyvqw08rstavVcE3z0-fgq9M5MePbiDhTttRdE8Zlu8PA78A71lSqW9Ebj_vGgIprrnMIQ8QCajvMjw8zw0AGq9vJ_LO6jIIb4CfBw96OltPN1gOD4pplw94xs-OlzxojuRFt08tG09vP1S3Dumtre75BGcPGXNozx8wqe7g7kCvJniYDw16Ts9OZ8TPAlkwDzPWXU9hWOxPOzdB7rpS6m62zG1vCM03TwVuCs9t29_PCwsOLzaYo09IY3xO7vU6D3VeVQ8nKX3OcJZgDxZi5o9DEYbPKA9Uj3MHxi9SNoyPMeDbb1XEI69nbdWvFRkHj1YVQA673pEvLJbdT3cZ3U9eAayu0njZr2KEv48ZrbxuvHYzz3Io0i7ci54uj2BUL3yYYE9sLGmO5ELDj0h07U8zpwBvKejTb1phW49Q4oFO3hN_ryABfq8tMcPu3bBwztv2Xy8g_4dO11_ajq2R7Q9o16SuQfu4D163B679qUOutSggTt0FbG9PrNbuKRUQj3pZlo8Ld4DugaYXj1-6zm9HiXNOSfAsDo1UA-9MiCdODK7uDs3qN09m2wEODELjT0XzOk8JEcsucui8LxbQh6-NwXjOWblLb1JdEC9pV-zOR2tKj3c4WU8MMZeOBL1Qr0iGOe9eBrqN25x6LzB-689U-68uDf_Dz0Y2zq9bGDEtUswRr1vuE893AfGN3CX3b263tO53WSlOcnhOL0i2D09aHQxuEsN4zzqjJS8dt3qt-2DLDzeZKo9Xum9uI6UzT19kps9s6BUN787Q7yIE6M9ssdTuPPa9rwI-cq9Wod7tu4QtT1W98M9o_AhuXc9h72kw8M8gK_COOE0szzcYXi9OPeqt3MT9T0sppg9dUciN8plTT2sxtK8b5QbN6XTvz3vrH29oCwOuaNA_73GXjm87Vg2uGtwEb11UO485sJcNx0-hDyRYdU9uPe8t4NXJr11giy9Stwbt1kPBLymHYg99Pk9OJvYcLvVmAs9vxThuEyeHL0Wyrq6JN7It-ylBryLp169JK64NyAAOBNACUhtUAEqcxAAGmBc8QAQBEH-DAEO5AbXAwXlBPjtHOjf_yPL_xoE7fDZJ9Cs4hD_Lb0j8p0AAAASrwgGAADffw_eHw3rHQcOoa8bNWP-DjKhzzYuGPtaQtTc2hEnMDgA5R-hKQ-95SMlESEgAC3hAhk7OBNACUhvUAIqrwYQDBqgBgAAqEEAAIA_AACgQgAAKMIAAAhCAAAAQgAAfEIAANBBAAAwwgAAoMEAAEBAAACAwAAAIMEAACDBAADgwQAAqEEAAIBAAABwwgAAgEEAAAzCAABAwQAARMIAAIzCAACYQQAAIMIAANhBAAAgwQAA-MEAADBBAAAAQQAAEMIAAKJCAABgwgAAAEEAANTCAAAAAAAA8EEAAMBBAACYwQAAQMEAAIBBAACgQAAAEMEAAEDBAACIQgAAGMIAAADAAAAEQgAAwEEAAABBAAAUwgAAqsIAAEDBAACAQgAAHEIAAFBBAAAwwgAAAEAAAGRCAAB0QgAAFEIAAAzCAADIwgAAcMIAABhCAADUwgAAQMEAAPjBAAAcwgAALMIAAExCAAAMQgAAmsIAAMBAAACAQAAAuEEAAPjBAACgQAAACEIAAGBBAABAwAAAokIAABBBAABQQQAAkMEAADBBAACgQQAA6MEAALRCAAAgwQAAsEEAALhBAADIwgAAwEEAAMBBAABcwgAA0MEAAIC_AACYQgAAyEEAABjCAACowQAACEIAADBBAAAAwAAAAMAAAOjBAAAIQgAAYMEAALZCAAAgQgAAMMEAAOBAAACQQgAAsMEAABxCAABIQgAAYEEAADjCAABgwQAAGMIAADDCAAAYQgAAQEAAAFjCAABQwQAAmEEAADDBAAAAwAAAEEIAAMDBAABkwgAAAEAAAMBBAAAgwgAA0EEAACBCAAAMQgAAEMIAAOBAAACYQQAA-MEAADBBAABwwgAA-EEAAEhCAAAMwgAAaEIAAABAAADgwQAA0MEAAHhCAAAIQgAAEEIAAGRCAACAPwAA3MIAAODAAABQwgAAIEEAAOjBAABwQgAAOEIAAADBAAAQQQAAkMEAAAhCAACwQgAAeEIAABDBAABgQQAAIMEAAMDBAAA8wgAAjsIAANDBAACwwQAAQEEAAABBAAAQQQAALMIAAKDBAACAPwAAyMEAADxCAAAYQgAAGMIAAODAAACIQQAAgL8AABxCAADowQAABEIAAMDAAABwQQAAxkIAAKBAAAAAAAAAOEIAAEDAIAA4E0AJSHVQASqPAhAAGoACAABUvgAADL4AAIY-AAAwPQAAiL0AAFQ-AAAcvgAAAb8AAEA8AACAOwAAXD4AAEy-AAAwvQAALD4AACy-AADYPQAALD4AALi9AAC4PQAAbD4AAH8_AABAvAAAiD0AAAQ-AACovQAAoLwAAHC9AAAwvQAARD4AAFQ-AAC4PQAAjj4AAKq-AACIPQAALL4AAKC8AAAcPgAAcL0AAIK-AAA0vgAAVL4AAIq-AACAuwAAoDwAAES-AADIvQAAHD4AAGS-AABQvQAAir4AAAQ-AACYvQAAqj4AAOA8AAAMvgAAcL0AABs_AAAQPQAAQLwAAI4-AADovQAAcL0AAIA7AADoPSAAOBNACUh8UAEqjwIQARqAAgAAFL4AAJi9AACgPAAAO78AAOi9AACIPQAAsj4AAJg9AADIvQAAFD4AADS-AACCvgAAuD0AAJi9AAC4vQAA4LwAAMi9AAAvPwAAcL0AAAw-AACoPQAA2L0AABA9AACYvQAAQLwAAAQ-AACAuwAA2D0AAPi9AABwPQAAmD0AAIg9AAC4vQAAML0AAEC8AAB0vgAAvj4AABQ-AAB0vgAA2L0AAMY-AACIPQAAND4AADA9AAAQvQAAJL4AAH-_AACAOwAAQLwAAEQ-AABEPgAAJD4AAI4-AACoPQAATD4AAOA8AAAQvQAAVD4AAKC8AADYvQAAlj4AAEQ-AAA8vgAAJL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MLN9ZoM6I0k","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14324935084134805600"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1098350280"},"8911590476057153558":{"videoId":"8911590476057153558","docid":"34-7-8-Z9E2EA879B6C786EA","description":"Find a unit vector perpendicular to each of the vectors `vec(a) + vec(b) and vec (a) - vec(b) ` where `vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) ` and ` vec(b) = hat (i) + 2 hat (j) - 2 hat (k)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3111666/d799845b0ca41e121be8e418f4da1559/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W1sYFAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhVGHB7-lRUE","linkTemplate":"/video/preview/8911590476057153558?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Find a unit vector perpendicular to each of the vectors `vec(a) + vec(b) and vec (a)","related_orig_text":"Vec - Topic","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Vec - Topic\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hVGHB7-lRUE\",\"src\":\"serp\",\"rvb\":\"Eq0DChMxMjEyNDIzOTY1MDQ0MjM4OTU4ChQxMDM2MDc5NTUyMDI0Njc1ODIxMgoUMTQwNzk0NjExOTAyNjc3MTE4MzUKFDE0ODQ2NjQ1OTY5NDY0NjU3NTg1ChQxMDMzNjkxNzQyNDQyOTkxMjYzNQoUMTM4OTM3OTg0OTYzNTg3Mjg4MTIKFDExMDg1NTQ0MTMzMzgyNzYyOTcwChM2NzAxOTYzMjc2MDk1ODg3MjkyChM2MjE1NzE2MzYyMzcyMzEzODU0ChQxNDAyNjY1ODM1MTc3NDA1MjA0MQoSNTA3MDM1NjM1NjcwNTIxMTA5ChM0NzIwODQzNTA3ODEwMzM2NzE1ChMyODgyNjkwMzUwMTQ4MDAyNTA1ChQxNTI0OTMzMTU4NDg3OTAyNzUzOQoTOTYwNjUwMjQ0Mzk5NzYzODM3NQoTMzg4MzM1NjIxNjU4Mzg1MzM0MgoUMTQzMjQ5MzUwODQxMzQ4MDU2MDAKEzg5MTE1OTA0NzYwNTcxNTM1NTgKFDEzODM1ODkyMDM0NzY0OTQzMjQ3ChM0MTE0NjIxNjYyMzY1OTgwNDExGhUKEzg5MTE1OTA0NzYwNTcxNTM1NThaEzg5MTE1OTA0NzYwNTcxNTM1NThqtg8SATAYACJFGjEACipoaHhjbHBoa2J5eGxyeW1kaGhVQ2N2N3BzcEdIbU03QU95d3VMTTF1ZkESAgASKhDCDw8aDz8T8AKCBCQBgAQrKosBEAEaeIH7_wH_-wYA-f75BAwF_QH-BgUACf3-APr-AfkEA_8A7QkCBfsAAAAMDQz2AQAAAP0FAfv6_gAABfn7CvMAAAABBQb8-AAAAAjw9vkAAQAA8vMBAfYCAAEH_PsJAAAAAPP4AAcAAAAAAA4M9gAAAAABBAX-_wAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABfw3eANfW6AHaBMwArDjf_4MhCv4JHej_vvIKAK8Szv_Z7PYA7_P4AOQbEf-6Jvn_MNjU___mBwAqvwsCCdD9AOwcGAARywMASRQPAf_z5P7iHyr9FvXwABDe-AAJCf4EEuol_f8M7QEABuIDIwkGAw8tJAIo_TgD384MAdkHEgPl9tv97QP-A_nz-_vL_h0BBfHu_wEUAvrRL-ID-wAQB-LKGAIbGeP-KPEFBx0L9ALHCwMHFub6AhshFAjeFgP-1PwOAu0Q8fUICRkFAfgU9fnw9Akv8wAMBAzzAwX-AwUP7vMA_A4FCfcC_wbVEgP2IAAt5IofOzgTQAlIYVACKnMQABpgVfMAHw4eAxIC6-IXwhAD3tUo4yHv-v8OhP8eE8Lw_gLmpAoa_xXMIfKbAAAAFcjk9xQA0X_-EOf8-AIJD7OyHCljACFHscJBDPLRXlIY0-Eh6PwsAML-jh0W1LIkFPEeIAAt6CsUOzgTQAlIb1ACKq8GEAwaoAYAAARCAAAgQgAAeEIAACjCAACoQQAA0EEAAJ5CAAAAQQAAVMIAAADBAADoQQAAQMEAADzCAACgwQAA6MEAAMDAAACIwQAAoMIAAABCAACIQQAADMIAAADCAADMwgAAFEIAABjCAAAAQAAAMMEAAKDBAAAQQQAAcEEAAODAAADwQQAAXMIAABBBAACiwgAAYMEAALBBAABoQgAAkMEAAFBBAACYQQAAAEEAAIBAAACawgAAgEAAALjBAACgQQAAoMAAADBCAABgQQAARMIAAEDCAADYQQAAEEIAACRCAACAvwAAoMIAAMDBAADYQQAASEIAAARCAACYwQAAhsIAACTCAAAsQgAAnsIAAHzCAAAQwgAAaMIAADzCAAAMQgAAlkIAACDCAADAwQAAAEEAALhBAAAwwgAAoMAAAPBBAACAQgAA4MAAAIpCAABAQQAAgEAAALjBAACMQgAAsEEAANDBAACoQgAA0EEAAADBAACQQQAAyMEAAKBBAAA4QgAAVMIAABzCAADYQQAAPEIAAAxCAADYwQAAoEEAAFBBAABAQAAAgMAAAJhBAACowQAAQEIAAAAAAABwQgAA-EEAALDBAAAwwQAATEIAAATCAACyQgAAAEIAANDBAAAQwQAA6MEAAI7CAAAUwgAAwEEAABTCAAAQwgAAcMEAADRCAACYwQAAqMEAAJBBAAAkwgAAiMIAALhBAADgwAAAPMIAABhCAABgQgAAgEEAAODAAAAAwAAAMEEAAPjBAACAwAAAUMIAANhBAACeQgAAMMEAAJRCAABAQQAAwMEAAHjCAADgQQAATEIAAIhCAADQQQAAqMEAAK7CAAAswgAAgMEAADDBAACgwQAAQEIAABxCAAAAAAAAMEIAAOjBAACIwQAAmEIAAGhCAABEwgAAcMEAAKBAAAAAwQAAcMIAAODBAACAQAAAgD8AAPDBAABEQgAAEEEAAHTCAAD4QQAAgL8AAMDBAAA8QgAALMIAADzCAAAAAAAAsEEAAODAAAAEQgAA4MEAANhBAAAIQgAAYEEAAIRCAACAwAAAgEEAAGxCAACIQiAAOBNACUh1UAEqjwIQABqAAgAAFL4AAHC9AACCPgAAgDsAADC9AAC6PgAAqL0AACG_AAAMvgAAoLwAAIg9AABsvgAAcD0AAIg9AAC2vgAAZD4AAOg9AABwvQAAuD0AAKI-AAB_PwAA4DwAAFw-AADIvQAA-L0AAHA9AAC4vQAA2L0AAKA8AACKPgAAfD4AADw-AABsvgAAUD0AACy-AABAPAAAuD0AADS-AAC6vgAAgr4AAJa-AAD4vQAA6D0AAKi9AABUvgAAuD0AACw-AAA8vgAA-L0AAHy-AAAUPgAAmr4AAEw-AADIPQAAqL0AAJi9AAAnPwAAFD4AAKi9AAB8PgAA6L0AAMi9AABAPAAAMD0gADgTQAlIfFABKo8CEAEagAIAAFy-AACgvAAAgDsAAFW_AACovQAAyD0AAIo-AACgPAAAmL0AAIA7AABMvgAAlr4AAOA8AAA0vgAALL4AAKC8AAA8vgAAGz8AAOC8AAAkPgAABD4AADS-AAAMPgAAJL4AAHC9AABQPQAAXL4AAKg9AAAEvgAAoLwAAPg9AAAEPgAA6L0AABC9AACgvAAAnr4AAPo-AABUPgAAgr4AAIi9AAC6PgAAML0AAOg9AABAPAAA4LwAAEC8AAB_vwAAML0AAKC8AACOPgAAmj4AABA9AACyPgAADD4AAMg9AAAwPQAAqL0AAJg9AADgPAAA6L0AAIY-AADoPQAAhr4AAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=hVGHB7-lRUE","parent-reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8911590476057153558"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"303480908"}},"dups":{"1212423965044238958":{"videoId":"1212423965044238958","title":"Creando Tiempo","cleanTitle":"Creando Tiempo","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5pa5Qgz5Awc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5pa5Qgz5Awc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDamRqcFJPUl9IWWlfS05WRzhkYWtsZw==","name":"Lucas Vec - Topic","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Lucas+Vec+-+Topic","origUrl":"http://www.youtube.com/channel/UCjdjpROR_HYi_KNVG8daklg","a11yText":"Lucas Vec - Topic. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":201,"text":"3:21","a11yText":"Süre 3 dakika 21 saniye","shortText":"3 dk."},"date":"22 eki 2022","modifyTime":1666406558000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5pa5Qgz5Awc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5pa5Qgz5Awc","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":201},"parentClipId":"1212423965044238958","href":"/preview/1212423965044238958?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/1212423965044238958?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10360795520246758212":{"videoId":"10360795520246758212","title":"Idem Kuci A \u0007[Vec\u0007] Zora (Serbian Folklore Song)","cleanTitle":"Idem Kuci A Vec Zora (Serbian Folklore Song)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HWmaq379L2s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HWmaq379L2s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYzhMeGFqRGp2UE55czUzTlFZTGV5UQ==","name":"Šaban Šaulić - Topic","isVerified":true,"subscribersCount":0,"url":"/video/search?text=%C5%A0aban+%C5%A0auli%C4%87+-+Topic","origUrl":"http://www.youtube.com/channel/UCF3G-kuohLpN8aCIaF3aGIg","a11yText":"Šaban Šaulić - Topic. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":220,"text":"3:40","a11yText":"Süre 3 dakika 40 saniye","shortText":"3 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"23 eki 2015","modifyTime":1445616444000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HWmaq379L2s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HWmaq379L2s","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":220},"parentClipId":"10360795520246758212","href":"/preview/10360795520246758212?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/10360795520246758212?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14079461190267711835":{"videoId":"14079461190267711835","title":"Let \u0007[vec\u0007](a), \u0007[vec\u0007](b) and \u0007[vec\u0007](c) be three vectors such that \u0007[vec\u0007](a) + \u0007[vec\u0007](b) + \u0007[vec...","cleanTitle":"Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_N3iBuov4KU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_N3iBuov4KU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":322,"text":"5:22","a11yText":"Süre 5 dakika 22 saniye","shortText":"5 dk."},"date":"1 kas 2021","modifyTime":1635724800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_N3iBuov4KU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_N3iBuov4KU","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":322},"parentClipId":"14079461190267711835","href":"/preview/14079461190267711835?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/14079461190267711835?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14846645969464657585":{"videoId":"14846645969464657585","title":"For any three vectors `\u0007[vec\u0007](A), \u0007[vec\u0007](B)` and `\u0007[vec\u0007](C)` prove that `...","cleanTitle":"For any three vectors `vec(A), vec(B)` and `vec(C)` prove that `vec(A) xx (vec(B) +vec(C)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xMH0SY_JSfE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xMH0SY_JSfE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":200,"text":"3:20","a11yText":"Süre 3 dakika 20 saniye","shortText":"3 dk."},"views":{"text":"4,7bin","a11yText":"4,7 bin izleme"},"date":"29 ağu 2020","modifyTime":1598659200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xMH0SY_JSfE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xMH0SY_JSfE","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":200},"parentClipId":"14846645969464657585","href":"/preview/14846645969464657585?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/14846645969464657585?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10336917424429912635":{"videoId":"10336917424429912635","title":"The vectors `\u0007[vec\u0007](a), \u0007[vec\u0007](b) and \u0007[vec\u0007](c) ` are related by `\u0007[vec\u0007](c) = \u0007[v...","cleanTitle":"The vectors `vec(a), vec(b) and vec(c) ` are related by `vec(c) = vec(a) + vec(b)` . Which","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MEt5CeiAjgE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MEt5CeiAjgE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":132,"text":"2:12","a11yText":"Süre 2 dakika 12 saniye","shortText":"2 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"11 nis 2020","modifyTime":1586563200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MEt5CeiAjgE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MEt5CeiAjgE","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":132},"parentClipId":"10336917424429912635","href":"/preview/10336917424429912635?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/10336917424429912635?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13893798496358728812":{"videoId":"13893798496358728812","title":"Show that the vectors `\u0007[vec\u0007](a), \u0007[vec\u0007](b), \u0007[vec\u0007](c)` are coplanar, when (i) `\u0007[...","cleanTitle":"Show that the vectors `vec(a), vec(b), vec(c)` are coplanar, when (i) `vec(a)=hat(i)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lCtaxLCxR4w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lCtaxLCxR4w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":306,"text":"5:06","a11yText":"Süre 5 dakika 6 saniye","shortText":"5 dk."},"date":"18 nis 2020","modifyTime":1587168000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lCtaxLCxR4w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lCtaxLCxR4w","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":306},"parentClipId":"13893798496358728812","href":"/preview/13893798496358728812?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/13893798496358728812?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11085544133382762970":{"videoId":"11085544133382762970","title":"Let `\u0007[vec\u0007] a` and `\u0007[vec\u0007] b` be unit vectors that are perpendicular to each o...","cleanTitle":"Let `vec a` and `vec b` be unit vectors that are perpendicular to each other then `[vec a+(ve...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DbWCG79clGI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DbWCG79clGI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":465,"text":"7:45","a11yText":"Süre 7 dakika 45 saniye","shortText":"7 dk."},"date":"11 eki 2018","modifyTime":1539216000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DbWCG79clGI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DbWCG79clGI","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":465},"parentClipId":"11085544133382762970","href":"/preview/11085544133382762970?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/11085544133382762970?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6701963276095887292":{"videoId":"6701963276095887292","title":"Three vectors `\u0007[vec\u0007](A), \u0007[vec\u0007](B)` and `\u0007[vec\u0007](C)` are such that `\u0007[ve...","cleanTitle":"Three vectors `vec(A), vec(B)` and `vec(C)` are such that `vec(A) = vec(B)+vec(C)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CVXhXyBUjv4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CVXhXyBUjv4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":253,"text":"4:13","a11yText":"Süre 4 dakika 13 saniye","shortText":"4 dk."},"views":{"text":"5,4bin","a11yText":"5,4 bin izleme"},"date":"22 ağu 2020","modifyTime":1598054400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CVXhXyBUjv4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CVXhXyBUjv4","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":253},"parentClipId":"6701963276095887292","href":"/preview/6701963276095887292?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/6701963276095887292?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6215716362372313854":{"videoId":"6215716362372313854","title":"Find the value of `lambda` for which the vectors `\u0007[vec\u0007](a), \u0007[vec\u0007](b), \u0007[vec\u0007](c)&...","cleanTitle":"Find the value of `lambda` for which the vectors `vec(a), vec(b), vec(c)` are coplanar, where","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Jioqxl5dywk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Jioqxl5dywk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":408,"text":"6:48","a11yText":"Süre 6 dakika 48 saniye","shortText":"6 dk."},"views":{"text":"2,5bin","a11yText":"2,5 bin izleme"},"date":"11 nis 2020","modifyTime":1586563200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Jioqxl5dywk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Jioqxl5dywk","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":408},"parentClipId":"6215716362372313854","href":"/preview/6215716362372313854?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/6215716362372313854?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14026658351774052041":{"videoId":"14026658351774052041","title":"If the vector `\u0007[vec\u0007](a), \u0007[vec\u0007](b), \u0007[vec\u0007](c)` form the sides BC, CA and AB respective...","cleanTitle":"If the vector `vec(a), vec(b), vec(c)` form the sides BC, CA and AB respectively","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Axowa_V9YnE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Axowa_V9YnE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":186,"text":"3:06","a11yText":"Süre 3 dakika 6 saniye","shortText":"3 dk."},"views":{"text":"1,8bin","a11yText":"1,8 bin izleme"},"date":"27 oca 2020","modifyTime":1580083200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Axowa_V9YnE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Axowa_V9YnE","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":186},"parentClipId":"14026658351774052041","href":"/preview/14026658351774052041?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/14026658351774052041?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"507035635670521109":{"videoId":"507035635670521109","title":"Which of the following is the unit vector perpendicular to `\u0007[vec\u0007](A)` and `\u0007[vec\u0007](...","cleanTitle":"Which of the following is the unit vector perpendicular to `vec(A)` and `vec(B)`?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=amxXuO0ywNk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/amxXuO0ywNk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":135,"text":"2:15","a11yText":"Süre 2 dakika 15 saniye","shortText":"2 dk."},"views":{"text":"2,1bin","a11yText":"2,1 bin izleme"},"date":"18 oca 2020","modifyTime":1579305600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/amxXuO0ywNk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=amxXuO0ywNk","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":135},"parentClipId":"507035635670521109","href":"/preview/507035635670521109?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/507035635670521109?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4720843507810336715":{"videoId":"4720843507810336715","title":"Let \u0007[vec\u0007](a), \u0007[vec\u0007](b), \u0007[vec\u0007] (c ) be the positions vectors of the vertices of a triangle , pr...","cleanTitle":"Let vec(a), vec(b), vec (c ) be the positions vectors of the vertices of a triangle , prove that t...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SuPzGQZ9xKs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SuPzGQZ9xKs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":237,"text":"3:57","a11yText":"Süre 3 dakika 57 saniye","shortText":"3 dk."},"date":"9 kas 2021","modifyTime":1636416000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SuPzGQZ9xKs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SuPzGQZ9xKs","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":237},"parentClipId":"4720843507810336715","href":"/preview/4720843507810336715?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/4720843507810336715?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2882690350148002505":{"videoId":"2882690350148002505","title":"What is the property of two vectors ` \u0007[vec\u0007] A and \u0007[vec\u0007] B`, if ` | \u0007[vec\u0007] A+ vec...","cleanTitle":"What is the property of two vectors ` vec A and vec B`, if ` | vec A+ vecB| = | vec A- vec B|","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ujDbB7rfTvY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ujDbB7rfTvY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":111,"text":"1:51","a11yText":"Süre 1 dakika 51 saniye","shortText":"1 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"25 tem 2020","modifyTime":1595635200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ujDbB7rfTvY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ujDbB7rfTvY","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":111},"parentClipId":"2882690350148002505","href":"/preview/2882690350148002505?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/2882690350148002505?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15249331584879027539":{"videoId":"15249331584879027539","title":"Let \u0007[vec\u0007] a , \u0007[vec\u0007] b , \u0007[vec\u0007] c\\nbe three vectors such that | \u0007[vec\u0007] a|=1,| \u0007[vec\u0007] b|=2a n d...","cleanTitle":"Let vec a , vec b , vec c\\nbe three vectors such that | vec a|=1,| vec b|=2a n d| vec c|=3.\\nIf...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Lb5yn_w7bPs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Lb5yn_w7bPs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":216,"text":"3:36","a11yText":"Süre 3 dakika 36 saniye","shortText":"3 dk."},"date":"4 oca 2023","modifyTime":1672790400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Lb5yn_w7bPs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Lb5yn_w7bPs","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":216},"parentClipId":"15249331584879027539","href":"/preview/15249331584879027539?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/15249331584879027539?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9606502443997638375":{"videoId":"9606502443997638375","title":"Let ` \u0007[vec\u0007] a , \u0007[vec\u0007] b` and ` \u0007[vec\u0007] c` be three vectors such that `|...","cleanTitle":"Let ` vec a , vec b` and ` vec c` be three vectors such that `| vec a|=3,| vec b|=4,| vec c|=5` .","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AF1jd8TG5QQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AF1jd8TG5QQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":232,"text":"3:52","a11yText":"Süre 3 dakika 52 saniye","shortText":"3 dk."},"date":"4 haz 2017","modifyTime":1496534400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AF1jd8TG5QQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AF1jd8TG5QQ","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":232},"parentClipId":"9606502443997638375","href":"/preview/9606502443997638375?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/9606502443997638375?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3883356216583853342":{"videoId":"3883356216583853342","title":"The sum and difference of two vectors \u0007[vec\u0007](A) and \u0007[vec\u0007](B) are \u0007[vec\u0007](A) +\u0007[vec\u0007](B) = 2hati +...","cleanTitle":"The sum and difference of two vectors vec(A) and vec(B) are vec(A) +vec(B) = 2hati +6 hatj + hat...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=9cDMOA6Z74c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9cDMOA6Z74c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":284,"text":"4:44","a11yText":"Süre 4 dakika 44 saniye","shortText":"4 dk."},"date":"9 kas 2021","modifyTime":1636416000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9cDMOA6Z74c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9cDMOA6Z74c","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":284},"parentClipId":"3883356216583853342","href":"/preview/3883356216583853342?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/3883356216583853342?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14324935084134805600":{"videoId":"14324935084134805600","title":"Two vectors \u0007[vec\u0007](a) and \u0007[vec\u0007](b) are such that |\u0007[vec\u0007](a)+\u0007[vec\u0007](b)|=|\u0007[vec\u0007](a)-\u0007[vec\u0007](b)|....","cleanTitle":"Two vectors vec(a) and vec(b) are such that |vec(a)+vec(b)|=|vec(a)-vec(b)|. What is the angle b...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MLN9ZoM6I0k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MLN9ZoM6I0k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":236,"text":"3:56","a11yText":"Süre 3 dakika 56 saniye","shortText":"3 dk."},"date":"9 kas 2021","modifyTime":1636483479000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MLN9ZoM6I0k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MLN9ZoM6I0k","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":236},"parentClipId":"14324935084134805600","href":"/preview/14324935084134805600?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/14324935084134805600?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8911590476057153558":{"videoId":"8911590476057153558","title":"Find a unit vector perpendicular to each of the vectors `\u0007[vec\u0007](a) + \u0007[vec\u0007](b) and \u0007[vec\u0007] (a...","cleanTitle":"Find a unit vector perpendicular to each of the vectors `vec(a) + vec(b) and vec (a)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hVGHB7-lRUE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hVGHB7-lRUE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":368,"text":"6:08","a11yText":"Süre 6 dakika 8 saniye","shortText":"6 dk."},"views":{"text":"12,2bin","a11yText":"12,2 bin izleme"},"date":"9 mayıs 2020","modifyTime":1588982400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hVGHB7-lRUE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hVGHB7-lRUE","reqid":"1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL","duration":368},"parentClipId":"8911590476057153558","href":"/preview/8911590476057153558?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","rawHref":"/video/preview/8911590476057153558?parent-reqid=1769517219851297-7414367948081257959-balancer-l7leveler-kubr-yp-sas-157-BAL&text=Vec+-+Topic","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4143679480812579597157","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Vec - Topic","queryUriEscaped":"Vec%20-%20Topic","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}