{"pages":{"search":{"query":"𝐗 𝐄 𝐔 𝐀","originalQuery":"𝐗 𝐄 𝐔 𝐀","serpid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","parentReqid":"","serpItems":[{"id":"9980826194006867541-0-0","type":"videoSnippet","props":{"videoId":"9980826194006867541"},"curPage":0},{"id":"2756995658532527405-0-1","type":"videoSnippet","props":{"videoId":"2756995658532527405"},"curPage":0},{"id":"53090113614506651-0-2","type":"videoSnippet","props":{"videoId":"53090113614506651"},"curPage":0},{"id":"10559035452422958821-0-3","type":"videoSnippet","props":{"videoId":"10559035452422958821"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dPCdkJcg8J2QhCDwnZCUIPCdkIAK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","ui":"desktop","yuid":"6274685851765331126"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"10122080351495490132-0-5","type":"videoSnippet","props":{"videoId":"10122080351495490132"},"curPage":0},{"id":"15706741925894238316-0-6","type":"videoSnippet","props":{"videoId":"15706741925894238316"},"curPage":0},{"id":"612986554215400653-0-7","type":"videoSnippet","props":{"videoId":"612986554215400653"},"curPage":0},{"id":"1155982793502681107-0-8","type":"videoSnippet","props":{"videoId":"1155982793502681107"},"curPage":0},{"id":"17064957034594980111-0-9","type":"videoSnippet","props":{"videoId":"17064957034594980111"},"curPage":0},{"id":"6010904591683262437-0-10","type":"videoSnippet","props":{"videoId":"6010904591683262437"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dPCdkJcg8J2QhCDwnZCUIPCdkIAK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","ui":"desktop","yuid":"6274685851765331126"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"5783782863637244135-0-12","type":"videoSnippet","props":{"videoId":"5783782863637244135"},"curPage":0},{"id":"1784979871755279296-0-13","type":"videoSnippet","props":{"videoId":"1784979871755279296"},"curPage":0},{"id":"8317217419070658426-0-14","type":"videoSnippet","props":{"videoId":"8317217419070658426"},"curPage":0},{"id":"6688872890650770395-0-15","type":"videoSnippet","props":{"videoId":"6688872890650770395"},"curPage":0},{"id":"1982617444478559853-0-16","type":"videoSnippet","props":{"videoId":"1982617444478559853"},"curPage":0},{"id":"4651655610159867996-0-17","type":"videoSnippet","props":{"videoId":"4651655610159867996"},"curPage":0},{"id":"18369388764356629499-0-18","type":"videoSnippet","props":{"videoId":"18369388764356629499"},"curPage":0},{"id":"5402026719980102816-0-19","type":"videoSnippet","props":{"videoId":"5402026719980102816"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dPCdkJcg8J2QhCDwnZCUIPCdkIAK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","ui":"desktop","yuid":"6274685851765331126"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D%25F0%259D%2590%2597%2B%25F0%259D%2590%2584%2B%25F0%259D%2590%2594%2B%25F0%259D%2590%2580"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"8565160867228394867204","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"video_nohost_full_filter_onboarding_enable":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1407484,0,4;1414496,0,55;124067,0,59;1410881,0,44;1432976,0,97;1437713,0,50;1430176,0,23;1312967,0,6;1152684,0,67;1434896,0,80;1439360,0,49;1002672,0,67;1427956,0,5;1434398,0,46;1418769,0,91;1425772,0,66;1373787,0,97;1417827,0,41;1431292,0,59;1430622,0,66;1440098,0,64;1419905,0,98;1349038,0,51;132360,0,78;1421869,0,97;1429765,0,82;1426815,0,94;1422266,0,60;1435632,0,20;151171,0,95;1281084,0,24;287509,0,24;1006734,0,34"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3D%25F0%259D%2590%2597%2B%25F0%259D%2590%2584%2B%25F0%259D%2590%2594%2B%25F0%259D%2590%2580","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"𝐗 𝐄 𝐔 𝐀: 3 bin video Yandex'te bulundu","description":"\"𝐗 𝐄 𝐔 𝐀\" sorgusu için arama sonuçları Yandex'te","shareTitle":"𝐗 𝐄 𝐔 𝐀 — Yandex video arama","keywords":"yandex video, video araması, çevrimiçi izle, dizi, film, müzik klipleri","hasPorno":0},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y22afd5cef16cb530bf6f38050fb98ec1","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1407484,1414496,124067,1410881,1432976,1437713,1430176,1312967,1152684,1434896,1439360,1002672,1427956,1434398,1418769,1425772,1373787,1417827,1431292,1430622,1440098,1419905,1349038,132360,1421869,1429765,1426815,1422266,1435632,151171,1281084,287509,1006734","queryText":"𝐗 𝐄 𝐔 𝐀","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"6274685851765331126","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1441146,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1765331199","tz":"America/Louisville","to_iso":"2025-12-09T20:46:39-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1407484,1414496,124067,1410881,1432976,1437713,1430176,1312967,1152684,1434896,1439360,1002672,1427956,1434398,1418769,1425772,1373787,1417827,1431292,1430622,1440098,1419905,1349038,132360,1421869,1429765,1426815,1422266,1435632,151171,1281084,287509,1006734","queryText":"𝐗 𝐄 𝐔 𝐀","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","userRegionName":"","userRegionId":"function() {\n return this._region.id;\n }","yandexuid":"6274685851765331126","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"8565160867228394867204","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"enableSlowBufferingAlert":false,"enableSlowBufferingAlertDedup":false,"userConnectionRtt":153,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"forceSlowBufferingAlert":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"useSendBeacon":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"isIslandsDisabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":false,"isCommentsEnabled":false,"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"6274685851765331126","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1729.0__491d2077c35fc53c28577367d9c4833c662b0670","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"9980826194006867541":{"videoId":"9980826194006867541","docid":"34-1-3-ZAC604AB139B55D65","description":"Integral of exponential function - a^x (with verification)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3383616/b8750e45d81141a404069ecf92445bf3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ex2OpgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dcu2wdHkf5NQ","linkTemplate":"/video/preview/9980826194006867541?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of e^x - Exponential Function","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cu2wdHkf5NQ\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzk5ODA4MjYxOTQwMDY4Njc1NDFaEzk5ODA4MjYxOTQwMDY4Njc1NDFqhhcSATAYACJDGjAACiloaHJzc3liYm1samR0Ym5oaFVDakRwVllBR0VmT2JBbGV1a00xVk9qQRICABEqD8IPDxoPPxN2ggQkAYAEKyqLARABGniB-Q_0_gL-ABgEBwj6C_0BHgL6_wMCAwDsBwcAAv8AAO0ABf8OAAAA5gwECv0AAAD1AQP78_8BAPYMCgMFAAAAAvT0APkAAAAOGvoC_QEAAO0J7wUD_wAADPX7__8AAAD3Awz8AQAAAAUJBAQAAAAA-_0E_AAAAAAgAC2O-ss7OBNACUhOUAIqhAIQABrwAX65CPi4-Lr_xgexAOVO3QDOQxD_KjbTAIHd_f_30rYCyem5_wP6xf_Ey-QB5jTvABfPugDMqRP_M8Xq_sXX8wEBDtIBJd_xAj8BQgEiBe7_40wW_ez46wEixb8EBjLK_TH66v1UEhv__PXA-yQUFv40GFEAEOpWAQWpGQAC78gB_c-n_uIp8vv95x8A4SYlATf0BgbS8OwIyz_vA-7kwP8Y0zX7C0HD_BbQ4xEzBQH-vA4XARQN_w0FTB__zCIF_RvxLe7W8df59gAhFDoO6wsQAsjyG67aDS8KGPITHx0IB-X-7-veEf-j2eny0Vj6_iAALebG0To4E0AJSGFQAirPBxAAGsAHcSDMvtQ9HL0GL1W89vOBPMPKWDkaVHa8mbfqPTuFwTzUvek8UbuvPZ7OOrwIoji80nKQvv2ufj1cEQ26y4AzPubRiL2YYjM8dckovtpUnT2TkKM8WGM_vds2jDpEFNO8eP2XO-J5xDz-6oa9Qd4jOxk5m71sKma8CcypvVTDA71owyu8839dvYGGDb0dkYy6fwzCvAzI_r3A27K8y8iPvGNzn7yRMQ29Vo7_PLYAYz0AZ3M87hhovbU2Tb1-9Fk70CAqPHd2BTtUO8M6F8u-vHqysLtjwiC8T2YyvQpCfj2zl608uQC0vGVNkT1MrGe8xh6FPbAPQT1RHoy8kwddvSw0RrxIrCC9dK3iPCqM7T3tEP-8TzwHvQ15yj2HYOY7c9j9PEn2hDnlxym8KJ4DPqytWLzx5c876XYAPTBiBD0bB8U7_XGxPHhEtT21V3o8rkb2PVLpTDzl0KK8KAWCvMXeoD2mP-C8QLTgPKWqpDxIbk28pUNMPCAalz2FHOM7hBwIPMO2Kj2CChw8BSOlPdYCO75J5Zo6zvIGvZA4ir2cy0O8LJEVPERcTz0jNAA8SBgGPm7JZb3t1QW8H304PRFBq70xYTQ89P7fPbyiJb2ULZa7YEGFvU15_jz51Fa8iJi3vQ6_27zKcJe7IB8ZPdhhnD0krBW7clP_O7-C1L06i4M6MYK-O_he8jw8SxU6f4eSvbLCiLzzUSm75lsAPESQnrwlIVO7XDEtPY5JNb2NKiK73x3Xur5bb72SnY46yjT6PRN7zbxZhmE4APLUvIaBHT3tJ524KmKHvfDrkTwOxL04LI40vYWfM72Y45Y5XFQLvZwV8b3cnnU5Tz0CPrGz9Dttk2q5FK0BPQTAnTwq8KO4JdY4vRjMRL0fH8w5LUEmvSJOzLuUfwu58923vPhEyL3_BdC4ufzJu3IDtDzo8pC5WHIVvcKSIb0R6Kw57xjDPOQGLjtrvcQ4HGW4PZ_6Eb0pQnQ5mnW7vX_Eyj38AC65B5bEO1qv8bq2S7G3ss0XvXHa3TwO5qy4Z2dsPQVN671fJjU4ulK6vSMgkboGzhg5zXDJuohRSz3_6xo5b4-EPdrzpj1XwQ45nXClPNmXDL0jCXe4Wp3cvfXAQj28Gv03H58APqTkkL0V6Dq5HVVNvOEMvryhMiS4ZhK1PF6hz72AurI38Z34vRKkAj72qps4va8FPaVJCb6tnoW4yvRwPSLhKz7xy4o4L8EpvArExjxbTJa4mA-Nvd0fhD2Mw9E3bQ6WvS6EZj0E77c3IAA4E0AJSG1QASpzEAAaYEX6AEAHQAHt9RjbD6j46PrQBdX_1yP__8T__i_k-_4L5q36PP8C9QzppgAAACEz50S8AAxy-iHNHgwT8--X-Qs9f-UdUuTPHA66tSst99Tq_OcVMADw97k7Fu3VLUQRHyAALXnZGzs4E0AJSG9QAiqvBhAMGqAGAACIwQAAnMIAAIhCAACwwQAAQMEAAERCAAAsQgAALMIAAIbCAACYQQAAwMEAAAzCAACAPwAAEMIAAPjBAADQQQAAFEIAAKjBAADYQQAABMIAADDBAABAQAAAuMEAAIhBAABkwgAAwMAAAKLCAACQQQAAjkIAAIjBAACMwgAA2EEAAADCAAAUwgAAjMIAAPhBAAAwQgAAcEIAAKjBAAAAQQAAkMEAADDBAADIwQAAOMIAADRCAACAQAAAiEEAAOBBAABEQgAAgMEAAOBAAACwwQAAAAAAAADBAACAwQAAQEIAAEzCAADYQQAALEIAAARCAABgQQAAjMIAAFDBAADIwgAALMIAAPzCAAAQQQAAcMEAAAzCAAAYwgAAqEEAABDBAAC-wgAAcEEAAIjBAADowQAAEMIAAMBBAACYwQAAsMEAAAAAAACSQgAAEMIAAAzCAADIQQAA4EAAAJRCAAAUQgAAEEEAAFDCAABgwQAATEIAABjCAAAQQgAAgEAAAIjBAACAvwAAUMEAAMBBAACyQgAAnMIAAEDBAABAQAAAyEEAABjCAADgwAAA8MEAADBCAACwQQAAhEIAAOhBAADQQQAAUEEAAMhBAABAwgAAqEEAADRCAAAAQAAAiMEAAGDBAAB0wgAAtsIAACjCAACgwAAAiEEAAEzCAADowQAAAMEAANjBAACAPwAAmMEAAABBAADwQQAADEIAAMjBAABEQgAAUEIAABDBAAAMQgAALMIAADDCAAAQQQAAdEIAANjBAAAkQgAA0EEAAJjBAAAIQgAAoMEAAOjBAACAQQAAQMAAAJBCAACAwAAALEIAAMBAAADAwAAAQMAAAEzCAABwwQAARMIAAIBAAAA4wgAAKMIAAHDBAABoQgAAgEEAAKZCAABAQgAAgMAAALBBAADgwQAAfEIAADzCAACIwgAAMEEAACDCAACAPwAA2EEAAJhCAAAswgAA4MEAAJDBAABIwgAAIEIAABDCAADYwQAAwEAAAFDBAACwQQAAOEIAAEDBAAAkQgAAmMEAAITCAADKQgAAEMIAAFTCAAA4QgAADMIgADgTQAlIdVABKo8CEAAagAIAAJg9AAC4vQAAJD4AAEC8AABkvgAAsj4AAIC7AADWvgAAgLsAAIg9AAAwPQAABL4AAAw-AACIPQAAqL0AAKi9AABEPgAAUD0AAFA9AADGPgAAfz8AAHA9AAAQvQAA6D0AAKK-AAAwPQAAQLwAAFC9AABwvQAAHD4AABA9AAD4PQAANL4AAAQ-AADoPQAABL4AAAw-AAA0vgAAbL4AAJa-AACAOwAALL4AAOA8AADgvAAAND4AADA9AAAsvgAALL4AAJ6-AAC2vgAAyD0AAKY-AABsPgAAZD4AABy-AACAOwAAOT8AAJg9AABcPgAArj4AAPg9AAD4vQAAcL0AAIK-IAA4E0AJSHxQASqPAhABGoACAABkvgAAcD0AALi9AABTvwAAgDsAADC9AAAXPwAANL4AAEw-AAB0PgAAXD4AAIA7AAAQPQAA2L0AAOC8AABQPQAAyL0AACs_AAAsvgAAXD4AAKi9AAB0vgAA2D0AALg9AAAwvQAAdD4AAFS-AADgPAAA2D0AAIi9AABwvQAA6D0AAMa-AACevgAA-L0AAKA8AAA8PgAAyL0AACy-AACevgAAiD0AANg9AADgPAAA4DwAAJY-AACoPQAAf78AAJi9AADYPQAA-L0AACw-AABMPgAAbD4AAEA8AABcvgAA6D0AAIi9AABsvgAAHD4AABy-AACSPgAAXL4AABS-AAD4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=cu2wdHkf5NQ","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9980826194006867541"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2756995658532527405":{"videoId":"2756995658532527405","docid":"34-8-5-Z03A57A99F118E618","description":"What's the number e and why is the derivative of e^x = e^x? Take a course from Brilliant to learn more about calculus 👉 https://brilliant.org/blackpenredpen/ (20% off with this link) In this...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3417457/490dde056c6a1ca3eb7b65069b901f9a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/k3rLRQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoBlHiX6vrQY","linkTemplate":"/video/preview/2756995658532527405?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Why is the derivative of e^x equal to e^x?","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oBlHiX6vrQY\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzI3NTY5OTU2NTg1MzI1Mjc0MDVaEzI3NTY5OTU2NTg1MzI1Mjc0MDVqiBcSATAYACJFGjEACipoaHJ3cGl6a2NucW5hZ3hiaGhVQ19TdllQMGswNVVLaUpfMm5kQjAySUESAgASKhDCDw8aDz8TzgWCBCQBgAQrKosBEAEaeIHzDfr9_AUABQQOBfoI_AIHAQf6-P__AObx-wAI_QEA7f38AwT_AADy_g0CBgAAAA3--Pb__wIACAoEAgQAAAAD_vj59wAAABj99wT-AQAAAvn8BgP_AAACCAH8_wAAAPkOBPEAAAAA9QwFBgAAAAD4Auz7AP8AACAALVNm3Ts4E0AJSE5QAiqEAhAAGvABf_v0Ac785__iIfEA9QToAZgUDP8WCecAtxUBAdTw_gAYDPYBwfDp_0kJFQHjGhv_D-DRANzz-gAi2PH_MOMHAQTy6QEuBPgCLfX6APv7___PBRv_2ub4__Xk5wI6INgAB9Ua_ukO2AEG7-UADv46AR7tIwIWxvcA8_TzAdT7CAL-38X_0xYIARPBF_3L_h0BAtwICPEbDfgMHQb9FtAB_g7ZDPwYLPz96wz1BffgEQPq-_f7x-bl_wfpKAf0Auf59g8eA8npBP4Q2wv0LBb5_QYP9Abi6wcGDe0BB9398Pr8Gvb0-Bb6AO0K7Abf4eUDIAAtY8sdOzgTQAlIYVACKs8HEAAawAdr88e-crKDvMjjk72p9xS8RCXDu3cuzLwNVEY9-jyAPUsdhL3Toxk-qDZ4PWEJ97oN47a-Bi5vvWsz5zsDYPw9cggrvSd5H73c9Be-ftQ1PapiDTwXfgC-6mA4PfmutzzwhvQ9p7PTPHebHL3vERs9wcS_vQiQAb1nDNM9JNl-vFgRATwYHCq9vk6KvQYOC7w39Hu9XGFRO90se7tpGRk-vV87vWUX7zsM8qk92QF8PF_qqbsQlJm7yCuLPe7mzrx9WF8-1-C7O-q5-7wumdm8f_h5PBHC4Lg1P6O9xipKPdAWxrwNFzm9RJEkvCqQWTzog8q8CoMaOYULlLxeo8C8DWKRPY7TqzzXWBe8SIEqPJWyMbzc74W93Qn2Pcid67qfKKQ9RvpDPaejrTz0NOA9OJPAPXcCUDw41_A9UMiOvGhaRbuQJBC8EN-jPaZiAz0B_Tm98yOZPWVZi7wJu9E7HLbNPe96RLzSbQ69SJKbPTjdD7yCMME8P_X6O9KEs7uEL-e86T2_PRufKDvfZsY9ObXzvYcfGDxyogK9qTxwvJ0uCzvQA0S9GRTXPK_JIjzAhes8pQSjvb3SRzvYGrC9fNf_u0y8aruoxPU938OVPRCRO7vYiDu8ycduPc46ITwHIza9vBybO6PKMLweMmU9xzX0PLZi5jsozJW9gPkgvMtDrjvwP2g7nrliO2dOfDpNCp29AqwCPNiGxDqBW_c9CEuWvfhf7jhBpps9aiSjvQxECbvCKFI8qCA6vTv2nzmqgqE9GhiZvUdKoDiix1Y7uM2kPXEZwjjW7Ke94Pt2PPk7JDk5Yr092Qr5O0F-grkB4DO8hlzjuxbsUDqBryg9jC5vvSGK_LnGJmM9S9aXvPZvzjmXoBC9iUEAPZjNELl8HcI8_LuIPA1mg7m4pxQ8D-cKPO5cn7g18EM95NkIvLbw07gPFgS9XHgaPMyuXbhXCBs-giJxPJLSITm-58Y9AB2mvWpDhjnU7le8pDkSPsX9VblalQ47kO9XPbd1jbiDcUs8Y3l8vUPL8jfbfTg9NMCwPWxIBTfMXYs8nA6uPHXfBrjHYqC9Im95vam4oLg5y5E94tFhvbqsZDi4Cwg9x8qZvXBWfTirP8K8b8OevB42bDRfDhY93u5bvdm177de8gE8gaQZPDTN9jbK1-88r-X6vCNsMTeRvwq9gx6VPYtDkTdcqKE9fcSUvbihljdZDwS8ph2IPfT5PTj_CnQ9GMCaPU90cTdvyPW8vbNsPb83NjgZI608qmIKPUeshDggADgTQAlIbVABKnMQABpgKQkAHRQP2gEMHfD22OUCAOoREsvT-AAJ-AAGL-YCLQn1yQ_w_y7KBOa7AAAAG_P6APwAAVv48OkZG_j23ZnLFRV_-BD_ygAx5dnd8yH7BPop6iArAL8utxoozu41EgsaIAAtjw9BOzgTQAlIb1ACKq8GEAwaoAYAAGhCAACUwgAArkIAADzCAABQwQAA6EEAAARCAABAwQAAYMIAALBBAADAwAAAcEEAAIDCAAC4wQAAaEIAAADAAAAQwgAAPMIAABhCAAB8wgAAcMEAAEDBAACwwQAA0EEAAABBAAAsQgAA-MEAADzCAACUQgAAAEIAAGBBAABEQgAA4MAAAMBAAABkwgAAGEIAAOBBAAC2QgAAQEEAABDBAADgwAAAmEEAABBCAAAwwQAAwMAAAFzCAACgQAAAKEIAAKxCAACAQQAAgMEAAMBAAAAAwQAAUEEAAIjBAACgwQAAFMIAAMBBAACAPwAALEIAAADBAACwwQAAOMIAAOjBAAAEwgAAiEEAAJDBAACewgAAGMIAAEDBAACKQgAAyEEAAK7CAADWQgAAMEIAALTCAACgwgAAmMEAAKhBAAAAAAAAiMIAABBBAABAwAAAIEIAAHBCAACCQgAA4MAAABBBAAAEQgAAEMEAACjCAACcQgAAUEEAAEDBAACoQQAAJMIAAIDAAAAoQgAA1EIAABBBAAAMwgAAjkIAAI5CAAAEwgAAisIAABBCAACAQgAAHEIAAEzCAABEQgAAlkIAAOhBAAAwwgAAgD8AANJCAAAkQgAAQMAAAMBAAACAvwAAvMIAAKDBAABEwgAAiMEAAHzCAAAQQQAAoEEAAJDBAAAUwgAAEMEAAPDBAAAswgAA8MEAAIBBAAB4QgAAUEEAAMhBAACQQQAAYMEAAMBAAABswgAAgL8AAJhBAAAEwgAAmMEAAGBCAACAQQAAiMEAAMhBAAAYwgAAOMIAAIBBAAAcQgAAgEEAAAjCAADgQAAA0MEAAABBAAAcwgAA2EEAADBBAAAkwgAAPEIAAMDAAACAwQAA4EEAACBBAAAgQQAAQMAAADBCAAAcwgAAbMIAAIhBAAAIQgAAEEEAALjBAAAIQgAAIEEAAETCAAA0QgAApEIAABjCAAAkwgAAAMIAAAzCAAAwQgAAHMIAAEBAAAAAwQAAqMEAANBBAADAwQAAZEIAAIDAAACgQAAAYMEAAFDBAADAwQAADEIAABjCAABQwiAAOBNACUh1UAEqjwIQABqAAgAAiL0AAHQ-AADYPQAA4DwAACy-AAAkPgAARL4AANa-AADgvAAA4DwAAKg9AACgvAAABL4AAIA7AAAkvgAA2L0AAKA8AAC4vQAAQLwAAOC8AAB_PwAAmL0AAMg9AAAQPQAATL4AAFA9AAAcvgAAmD0AAKC8AACIPQAA-D0AABQ-AADovQAAiL0AAMg9AAAMvgAALD4AAIa-AACOvgAAjr4AAMg9AABAvAAAfD4AALi9AAD4PQAAjj4AAIC7AABwPQAAcL0AAGS-AAAwPQAADD4AAHC9AAAEvgAA2L0AAIC7AADuPgAAUD0AAEw-AABkPgAAcL0AAFy-AABwPQAA2D0gADgTQAlIfFABKo8CEAEagAIAAHS-AABAvAAADD4AACe_AACIvQAAEL0AAMY-AAAQPQAAfD4AAFw-AAAQvQAAML0AAII-AABQvQAAmL0AAAQ-AAAEPgAATT8AAIA7AACGPgAAMD0AADy-AACAuwAA-D0AAIA7AACOPgAAgj4AALg9AAD4PQAAyD0AALi9AAAQPQAAVL4AALa-AABEvgAAqD0AAJg9AAC4vQAAXL4AAEy-AAAQvQAADD4AAMY-AADYvQAArj4AAKC8AAB_vwAAML0AAEy-AAD4vQAAQDwAAKI-AABEPgAAUL0AAFC9AADIPQAAML0AAFA9AADIPQAAQLwAAJI-AACqvgAADL4AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=oBlHiX6vrQY","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2756995658532527405"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"53090113614506651":{"videoId":"53090113614506651","docid":"34-4-11-Z5BA5CC61182A748E","description":"𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integra...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2841882/c5665469231d048cfc7daabd141dc217/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/G2TdegAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQ9qoPrQC1Ds","linkTemplate":"/video/preview/53090113614506651?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of e^sqrt(x) (substitution + by parts)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Q9qoPrQC1Ds\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhMKETUzMDkwMTEzNjE0NTA2NjUxWhE1MzA5MDExMzYxNDUwNjY1MWqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOjAYIEJAGABCsqiwEQARp4gfATAAABAAD6CwD7_QMAAecE7_j6AAAA4gQD9f77AgDx9P8BAgAAAPMD-gcBAAAA__H_-Pf9AQAAAP_6BAAAAAL09AD5AAAABRUA-v4BAADt_vP5AgAAAAwE-AYAAAAA-P0LBQEAAAAHDgsKAAAAAAb_-vYAAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AF_RfYA3urEAZz2wwD6GvsBmg8h__w-yQDI-uIB-dnBAff40__9NOH_Fxfy_6cW6f8X0KQDE7j0_yzN7f4MwvwAz-8LABT-3wErORMC6Oon_9zUMP322Oj-8dOk_yQeuQD17PX_5jjcAAY4zwMe4DYDEAo1BCzADwEDkQEIvPf3CQXt9vrFCAUHDdkS9rIoHgQxAy0ELx359egW1fza5hL47_Eh9xAXxwAZ4RUSCDPxBLb6AwHi9gcDNPIb99TpBfrP7zcHzPoL9QjxAvYm6wb1_CntCyDy8g8BFA3s393o_enWAPT2HPgA6NoGAOAe2O8gAC2lrPU6OBNACUhhUAIqzwcQABrAByAqxb4sloe8pbb5vDVuwL3RUt68RTOJu0vTtr2Wyys9rO4HvRR2ET7fDt68Jr6DO68I3r2G1GW7icTOuyb_8z3xBbe9oGUnPNlDS75DknY7KX-CvQLMtr3jUx28TQRgPX0J9b2XAtK9CkR0PKtNoj1U3B29CXYSvcP4RLxMiUQ9LVlavYlH_byTnai9a3ARvWc9AjwAEhm8pgcHPFsxoj2xkVq9T2xPPFuV5D0tJcu8NOYfvXuuBb3DB3s9I8oNvVpHNT2Dxqe7yIPjPO7QML1Yeoi8iyrPuzfd0r1rpIC8k2XSOyZAqD2QqCs9b9GuvIKr_Lw4n_q9MkUvvWO0Hr42Fnu7f2BYPN20GT49FtE8A2D6u7Di1L11Nsk9PI5VPAlfqT123Ru9kDpwvJHWeD2fwja8EEnjPFZakDxVcf48KpMWvAUqLTxGQRA93fNXPEanuLxAbpq9MJAxvM8-kD1c-vw8Kh_CvLJSGDwCCQ892by_O7Jgh72R0pw9-U4KO3mEKT0Q3xM9IGIDPQUjpT3WAju-SeWaOseDbb1XEI69nbdWvD0VRj3qa6c8egZDvFmHwz0Kz1W99IJTO24Fgz1BAN88lxK0u22kkTxeyHm9H6w1OxmBQr0jsQ69MVIYvBYthb15I9M9r0XOOYNt5D3Cppk9S6JlOdPMaT0O3ey9j4o4upmLrjzrnmY9ZKIUu5CD0j1GlFs91RwUuNrHKj0hSzW9gLa4u-3Par3V_5686vl7urQipb1tLT29ariEOaGd0z1RgZi9l51ROQQpB72jiuy83QaquKkomL398QM9y0V9OOVCZbykb9K8hj8OuFxUC72cFfG93J51OfAk8zzloI89oh3SuH0FST0Lf6O7qwijuAYkRr3DV7W9CMhdN4H94bzAKBy8NWqxN-v4FD1plTQ9oRWyOE5FqrzPo-K8vqRTOaAfAb1JLKk86xtaOX0gqT3VPbI89Uj1OEyoAD3H8J29_u4wOVegDL1PdpM96khnuDormDwS-Z49bJ6HuGCJLD0wVxA9EgwqN6AV-D3izYW9vFWfuFT-1jvO4uU9T1VaOJr_nL3QkJs9AtsuOHX1tjvAyiY9fhUmOHHbKD0SBem8yUO4OOO1AT18N0w9MUePth-fAD6k5JC9Feg6uVxJAb3K3tK9FyIEuc5yNLxdD8u9qHCbtwcUoLrJILc9wteatwPsRDvkzSu9MqqZuCL_7D01KQU-835buOIYrjxvpaI9TCdSuG4Djb0naa49v_cWNyXSob0Yw2Y8q5dqOCAAOBNACUhtUAEqcxAAGmAX-wAxBlXW9AwV_xjEBwLn3vLT-tgJ_-HK_x0qAdwd8tLFCw__PcIB66UAAAAUF_8yzQAodPLa4if8NOkPgQQy-3P8B0el7AQN7cRN9TTx9BX-BUIA8RS4IQHP5mAaKhAgAC3sKx47OBNACUhvUAIqrwYQDBqgBgAA-MEAAIzCAABwQgAA-MEAAIA_AAAMQgAAEEIAAAjCAABAwgAAkMEAANDBAABMwgAAUEEAAKDBAAB0wgAAQEAAAFxCAACAwQAAKEIAACTCAADAwAAAQEEAAJjBAACYQQAAaMIAAPDBAACiwgAAmEEAAJBCAACgwAAApMIAAAhCAABUwgAAKMIAAHTCAAD4QQAAMEIAAJBBAAAQwQAAEEEAANjBAACgwQAA2MEAACDCAAAYQgAA4MAAAARCAACYQQAAUEIAACDBAADYQQAAQMIAAIC_AAAAwQAAAMAAANhBAAAIwgAAoEAAALBBAACoQQAAQMAAAHjCAABwwQAAnsIAAMjBAADYwgAAgMAAAPjBAADgwQAAHMIAAABAAABAwgAA0sIAAOBAAADgwAAAqMEAALDBAACAQQAAkMEAAIDCAACgQAAAwkIAAKDAAAAcwgAALEIAAEDBAAB0QgAAAEIAAKBBAABUwgAAoEEAADBCAABowgAAhkIAAIDAAADowQAAoMAAAGDBAAAYQgAAsEIAAEDCAAAgwQAAAAAAAFBCAACEwgAA2MEAAIBAAAD4QQAAsEEAAMBCAADgwAAA4EEAACDBAACIQQAAWMIAACBBAAAYQgAAQMAAABzCAACAwQAAUMIAALzCAAAcwgAAQEAAAFDBAAAswgAA4MEAAHDBAADowQAA0EEAAIDBAABAwQAAGEIAAExCAAAMwgAABEIAAERCAAAQwQAAYEEAAEjCAAAMwgAAkMEAABBCAADowQAAqEEAAMhBAADQwQAAoEEAAKDBAAAwQQAAqEEAAIA_AACAQgAAEEEAACxCAAD4QQAANMIAAADBAABMwgAAAEEAAJTCAADgwAAARMIAAPDBAACwwQAAjEIAACBBAAC2QgAAMEIAAOBAAAAQQgAAsMEAADhCAAAgwgAAqsIAAABAAAAwwgAAAAAAAEBBAACCQgAAJMIAADDCAABwwQAAVMIAAAhCAACIQQAA4MEAAEDAAADgwAAAgEAAAABCAACYwQAAYEIAAADBAACEwgAAtkIAAAAAAAAkwgAAHEIAAAjCIAA4E0AJSHVQASqPAhAAGoACAACYvQAAgDsAAAw-AAA0PgAALL4AABQ-AAD4vQAA5r4AAJg9AACAOwAAmD0AANg9AACoPQAAZD4AACy-AADYvQAAmD0AAIg9AABEvgAAqj4AAH8_AACIvQAALL4AAHA9AACGvgAA4DwAAKi9AAB8vgAAcD0AANg9AABAPAAAZD4AADS-AAAEPgAAMD0AAKi9AAA0PgAADL4AAGS-AACSvgAA2D0AAFA9AACAuwAAQDwAAIC7AADgPAAAiL0AADC9AABEvgAAdL4AAOA8AACKPgAAgj4AAPg9AACevgAAoDwAACc_AAAQPQAAXD4AAK4-AAAMvgAAJL4AAOC8AADovSAAOBNACUh8UAEqjwIQARqAAgAAML0AADC9AAD4vQAASb8AAHC9AAAUPgAAgj4AACS-AABwvQAABT8AADC9AABAPAAA4DwAABS-AABQvQAAcD0AABS-AAA3PwAAHL4AAIo-AAAQvQAAPL4AAAw-AAAkPgAAiL0AAFw-AAA8vgAAMD0AAIA7AACovQAAcL0AAHA9AACAuwAAGb8AAHy-AADIPQAAND4AAIA7AACovQAAhr4AAEC8AABMPgAAED0AAGS-AADSPgAAEL0AAH-_AAA8vgAAXD4AAFA9AAA8PgAAML0AAII-AADYPQAAXL4AABA9AABwvQAAiL0AAKi9AACoPQAAuj4AABw-AADgPAAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Q9qoPrQC1Ds","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["53090113614506651"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"10559035452422958821":{"videoId":"10559035452422958821","docid":"34-6-17-Z21DC3C5FC863CC6B","description":"𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 Facebook...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3372075/10a92aa27974db821de95be1fb3b0505/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/i2PkIAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTPvLXjjYook","linkTemplate":"/video/preview/10559035452422958821?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of x/e^x (by parts)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TPvLXjjYook\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhYKFDEwNTU5MDM1NDUyNDIyOTU4ODIxWhQxMDU1OTAzNTQ1MjQyMjk1ODgyMWqHFxIBMBgAIkQaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqD8IPDxoPPxN8ggQkAYAEKyqLARABGniB8BMAAAEAAAP-C_r9A_8B9ggE7vn9_ADlAwT9Cf0CAOn2-fkJ_wAA8Bb-_wQAAAAG-gf0-_0BAAgCD_IEAAAAAvT0APkAAAAPDvwDEv4BAfD7_AMDAAAA_Ar3Av8AAAD29w3yAAAAAPsIB_QBAAAA-_H87gAAAAAgAC12UM47OBNACUhOUAIqhAIQABrwAX8HDQDm4uAC1RTZAMBN5wG8IxYACjjvANDbzwD49LcB3fXwAAPn2wACD_gA0i3ZABbTqQMkwgkBL-ju_-fW-QDpDfoBDBDGAiMHIAEKCgcA__1G_uLeDAH9vtkAAxvkBPXt9v8hGAIABjbRAysLBwP3ASwHM_srAQOWAQj20uMD_OLZ_fYoBgUA5Pj-tSYcBDLvFfgAA_n26RXX_NznEfnwzyn_EBbJACe-7gM8BhT8pAMZAvUZDv83OQQFu_fb_-PtHPfK-Onz0-ga_yr8Bf39J-4LBQLwDx7xEAUHDgsOCcfq7w7w8gDc8fwQxDL3-iAALVzRADs4E0AJSGFQAirPBxAAGsAHICrFviyWh7yltvm8opjcvSGDSzt9kMi7MgDUvWEmID1Cpds8z9vYPcjkib3WL2K97DPHvfpysDyIvTC9mN0jPoFJkL1D9PW8dXT8vS8Tmj0LAhC9bTvtvX24P7wa8hU8_5U1vQ8blr1Ap3s84Nl-PVJxTb3NN0e8b4sIvUNHB7oj2Bi9Q-f1vX-2H71aIgG9bjC5PNkFSL1qocc7agSBPZOQk70PWCQ7QsFWPdeEGb3VUeG7e64FvcMHez0jyg29iy3pvHi1GrtSOuI8RCC9vbRgPb1b1Uc5NSbkvSidKL2UqsS73_zGPewb8zyHWT69aTPzPB5v8r3XJdM6DVMrvlyypjtiujW85Ib_PTl29TyMb548Jgx0vV1Guz1MLLo8f2VKPb_R87z_zKC8qR6fPLVOgbztD7U71IXzPLrSVzwziUG6DBsqPQWd2jviqaw8UIQau432g71FwpK8ql2oPUtwDzxuNWu8oBu1vNyPijwAD1Y8sfObvMgkYz1Uh6K75BqXujxy2jt6iZY8m5UIvQh2DL7NpeG74ofUvIOIhL2AUbg76xPKPAnmQzxuQqu8SBgGPm7JZb3t1QW8kS4yO6KU9Ty3_uk7Vms8vFKvsL1ixxg7M96Gvef34rxk29S7KHJSvXQwMT0-qf67g23kPcKmmT1LomU5vH1RPRhBM76xnJG5gdILPQNphT2TGxG6c_yLPWRdxz3vqLC3h-nSu_R4kDwo_RS7acw_vdBjNL3Ij526YqDrvXdLcrzXPIY57nScPazizb0q_705zaHWPHhSlTw8ypc4-5tLvfuoCz1q9MM5BQuvuylt-7wbFd84y6LwvFtCHr43BeM5me-FPGY_rD35-ZE5xiZjPUvWl7z2b845L1DyvahcnL1DgL-3NZUqvdvitby6Qg-5WRyZPXWFaD3hTo44v2iqvAHRXTtxYIu5mBk2vHnou7x-ebc6FKOoPWzq_js66CA5t2J_PD3PRL2FTso2CvITveOdvT2VU9W4UdnwvDnlGz2SSpQ4Wk8oPTPUcjwBYEy3mBqsPdfwqb0C6F6432hsPL1ipz2wGok3tJAQvtiMoj2ZewS3QWliO_BA0zxi-_w24hyaPAUiurxuO4S3qdEVPbP_S7zl31G39wEoPnBh3b3xZ7-5XEkBvcre0r0XIgS5BqhfvBueDr6Zf8A37ZGXvEH2hT1-hZ-20zOIPYUL-bxAeiS4Iv_sPTUpBT7zflu4o-3Su6Z-Xjy_hge5tBbAvVQ0uz08X7I4zWdvvSH0Ir2jUNK3IAA4E0AJSG1QASpzEAAaYCMBAED-RdLTExjy_rwVAxTp9-P57Qn_A8MAFibh4SIUydwgEv8b2fDergAAABkX_Cy8AABlHRPsJgQo9RuB9hgJfOklN8HrHwgFyS3zFencI_fjLwDdHsYS5NcDWSMBCyAALYGOKzs4E0AJSG9QAiqvBhAMGqAGAAD4wQAAlsIAAIhCAAAcwgAAuEEAAMhBAAAUQgAAyMEAABTCAAAgwQAA6MEAABTCAAAIQgAAEMEAABjCAACIQQAALEIAAOjBAAAkQgAALMIAAMDBAACQQQAAAMEAAHBBAAAAwgAAIMIAADTCAABgQQAArkIAAADAAACgwgAAiEEAABzCAAD4wQAAGMIAABhCAABIQgAAXEIAABDBAACwQQAA0MEAAHDBAAAIwgAAHMIAAABCAACAwQAAyEEAAMBBAABAQgAAsMEAAFBBAAAowgAAoMAAAADAAACgQAAAGEIAACzCAAAwQQAAEEEAALhBAAAAQQAAUMIAAAjCAADCwgAAAMIAAOTCAADgwAAA-MEAAGDBAABgwgAAoEAAAIjCAADawgAAiEEAAKjBAAAAAAAAYMEAAJBBAADwwQAAcMIAAODAAACYQgAAgMAAAOjBAADoQQAA4MAAAJpCAAAEQgAAgEAAAIDBAACwwQAAREIAADjCAACIQgAAiEEAAADCAABgwQAAyMEAAPBBAACoQgAAQMIAABDCAACAvwAA6EEAABjCAACwwQAAIEEAAAhCAACAQQAAtkIAAFBBAAAAQgAAiMEAANBBAACSwgAA6EEAAOhBAACAvwAAIMIAAADCAABMwgAAxMIAAODBAAC4QQAA2MEAAIjCAAAMwgAA2MEAAEDBAAAQQQAAmMEAAEDAAAAkQgAAPEIAAETCAACIQgAAOEIAAEDAAAAAAAAAIMIAALjBAADgwQAAIEIAALDBAAAUQgAAGEIAADDBAACgQQAAqMEAAIDAAABAQQAAAMAAADhCAABQQQAAAEIAANhBAAAAwgAAEMEAAJTCAACAPwAAeMIAAIBAAABcwgAALMIAAGDBAACMQgAAoMAAAKZCAADwQQAAEEEAANhBAABQwQAAVEIAADjCAACQwgAAgMAAAHDCAAAQQQAA4EEAAIBCAACgwQAABMIAAEDBAACMwgAAQEEAAJhBAAD4wQAABMIAACBBAADYQQAA2EEAAKDAAABQQgAAYMEAAHzCAACiQgAAwMAAAETCAAAgQgAAAMIgADgTQAlIdVABKo8CEAAagAIAAKC8AADIvQAATD4AABw-AACevgAATD4AADy-AADSvgAA-D0AABC9AAC4PQAA4LwAAFA9AADYPQAALL4AAKi9AAAcPgAAgDsAAMi9AACSPgAAfz8AAKg9AACYvQAAMD0AACS-AADIPQAADL4AAIa-AACoPQAABD4AAOA8AACqPgAAiL0AAAw-AAC4PQAABL4AABw-AABMvgAAgr4AAHS-AAA8PgAAcL0AAMg9AABAPAAAUD0AADQ-AABcvgAAUL0AAKK-AABUvgAAoDwAAIY-AABkPgAAFD4AAIK-AAAQPQAAMT8AAHA9AAAsPgAAoj4AAIi9AAA8vgAAcL0AAFS-IAA4E0AJSHxQASqPAhABGoACAADgvAAAZL4AALi9AABPvwAAED0AAKg9AADqPgAAir4AAAw-AAALPwAAEL0AAHw-AAAEPgAAcL0AAAy-AAD4PQAApr4AAEc_AAA8vgAAqj4AAEA8AACavgAAQLwAALo-AABQvQAAFD4AAEC8AAC4PQAAmD0AABC9AAC4vQAAgLsAABA9AAAhvwAAnr4AABQ-AAD4PQAAgr4AAMi9AAAUvgAA4DwAAGQ-AAA0PgAAhr4AAAk_AACGvgAAf78AALi9AACmPgAAXL4AAHC9AADoPQAAbD4AAKi9AAB8vgAALD4AAAy-AAAcvgAAQLwAAMg9AACmPgAAQDwAAAy-AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=TPvLXjjYook","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["10559035452422958821"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"10122080351495490132":{"videoId":"10122080351495490132","docid":"34-3-6-ZC29DAB9DCE1B4A52","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2003748/9668eabdbfdacd7e914c28a8a7d89b28/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pit7PQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZgeCyyDf5OE","linkTemplate":"/video/preview/10122080351495490132?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Deriving e from the limit (1+1/x)^x as x approaches infinity","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ZgeCyyDf5OE\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhYKFDEwMTIyMDgwMzUxNDk1NDkwMTMyWhQxMDEyMjA4MDM1MTQ5NTQ5MDEzMmqIFxIBMBgAIkUaMQAKKmhoc3l0bmdzb2tic3RicGJoaFVDWXhBT0c2S3ozdF9oYUY0NWpZUEZQURICABIqEMIPDxoPPxOIA4IEJAGABCsqiwEQARp4ge4F_AUB_wAG8ggDBAj9Agf_AO_3__8A4gH2_wr8AgDlAff1AP8AAPQQCAD7AAAAAQgC_vH-AQD4CAAE-wAAAAkCAADzAQAABwoCCv4BAAD-_Pb--QEAAPcC8gj_AAAA7QkB8___AADwAgEEAAAAAPvx_O4AAAAAIAAtaizPOzgTQAlITlACKoQCEAAa8AF_CAgB4BDFAsn21QDr_f8Bz0Yi__w00gC76fIA1AbgAe46Bv_dCPsA8DAIAbUp-P8T2LQC-c8CACTW8P8z4QgBzAQFACHvBAE8Ey3_Fvf3AawzHf3m4woBGNbSAwVQ3v0K8hP5IQXmAB0WywIwLDAB89o_Ah7uEgLdsP0B7QT6Agrl6f_5LfgB-fL6-9jeDwAS2u38AO0E_tQY2AAA-RD9CO8X9iw21f83_QEEJCsV_8fm_gUJ6vsJBAcs_-_y8wDgyCYGwyIDA-T3BwAXA-MF9Qr0EQUC8g0a8w4EDd37AyQQ6gP8DwUK5SL9B_sd8fogAC2NuxM7OBNACUhhUAIqzwcQABrABx-8zr6xEpg7Ru3AO5wBibzj1Ji8OO1uvcyll71xqvU8PTyVPD9zRj4O7jO9lvl9OyaGmb0V3oo8PMZwPKZCPD5lYTm9PHxDPYc0Kr6eaag9tnJlvEpNwb1m5jg7TxqPPASjV717yAy7paWNvODZfj1ScU29zTdHvG-LCL1DRwe6I9gYvSgTMj2wXyu9sac9velDp71D6Jy7pIM_vOvgsD1_eIy8fBVPvLPNcj1B-4c8CvfKvKxw673w04I8MgWpuy_i1jzO3Kg9MMehPCU9vL2tmca82RaUvGwHg73NFto8ljCJvJy0uj1K7UU8sHqbvNjCBz1Ex5m98juyvC-G8r10kHy8_SGsPC03wj25RlU9-K6cPK70Kr5txd49itQLu3PY_TxJ9oQ55ccpvA-_hj3vnKw9w1WUPABgKzyP0IW8DTXKvG62I735WHA9CRLAPFuVlD3qDqi9MDCGvKCbhz0I-H88a76Iu9yLHr0D0n48icAJvOB9Or1GIW49EqkCvOHhBz3ZRey8kXEWPAUjpT3WAju-SeWaOgpCg71sv7u9DIPoO-sTyjwJ5kM8bkKrvEOpHT4fatu9xJqpOYxMwDwgMlu9uUgMPEdU6DzMKDa9KoUIvJDZWb2wI2m8NaUIvPxlgb2OoVI83-tavMSSdjvfb6Q9XEDDOk4CZbzwrIi9-PXHOnkToj0nAQO7kMPcu94e5D1PxMc8iFcjOdrHKj0hSzW9gLa4u2ZWpTz20Wm9tWxOO22fADyl9829k-aeue6vDj6fEpG9ftCUOQf1YzuCFpY63poNO5s6z7247kE8LScKuQZ2Jj3q24i9As1mOGr2I7vvnae9YkjcuPXgtD3J6nM71qQmuC666TvMeWs9HLxNORQcg73HJK29GlEVOP2KkLzpPfq8h4-AuStziT1tFQm93SrGOLmMvLuiauw7Q026OgoGoTze30W83sv0OXh9Rj255qc7BjUANyOsjD30bAa-z3ClOXVuH71znFs9XstiNwdqJz0fQgY9nnEmuDAuEbyom1o9Y2b6uIsWgD1EKsG9fSojOC33uDwPiow9qb2KuKBQz70V74Y9wtICOFKpJ7vXHWY8Hs8XOEbx6DqWAre8xu9nN2ikrzy3G249F0UPOK2n9j2z6pi8ezs6uVxJAb3K3tK9FyIEuaaGkTwjY1q99H6KN9psob2N5rI9IXQJOB2XDD1JD0O-VDFNucr0cD0i4Ss-8cuKOJiTZTuAC9I9mOQPuWBGp70XgRC7k3TZN1QfaL0IEzA9PRyMOCAAOBNACUhtUAEqcxAAGmAh6ABE5CrINAYh9AvL7w7O3OzQ9eQM_87M_9BByOcT_MnXNQn_J84Y6JoAAABAEv4u3QD0f-P4_VEFBwOul8pSLn0FLsnPylr70tISCSL9KQsMBAYAuyehOCT1u0saBiogAC0uWRA7OBNACUhvUAIqrwYQDBqgBgAAsEEAAHjCAAAYQgAAIMIAAODBAACAvwAAQEIAADBBAACGwgAAIEEAADBCAAAMwgAAQMAAACjCAAAgQQAAQEAAANhBAACQwQAAEMEAAEDAAAAcwgAA2MEAAIDCAADoQQAAmsIAALBBAAAUwgAAXEIAAMhBAACgQAAAgsIAAMBBAAB4wgAAcEEAACzCAACgQQAATEIAAJJCAACgwQAAaEIAAIC_AACAPwAANEIAAPDBAAC4QQAAAMAAAERCAAAQQgAAaEIAAJBBAACAvwAAAMIAAABAAAAgwQAAwMAAAKDAAACwwgAAQEEAANhBAAD4QQAAiEEAABjCAACgwQAAcMIAAGzCAADawgAAUMEAAGDCAACAwAAA4MEAAChCAACYQgAAgsIAAIpCAAC4wQAAgMIAAIjCAAAYQgAAEMEAACRCAAAIwgAAcEIAAEDBAADIwQAAQEAAAHhCAAAAQgAAsEEAAIBAAAAAwQAAUMIAAIZCAAD4wQAACMIAAAhCAACAvwAACMIAADRCAADgQQAAdEIAAJ7CAABgQQAAgL8AANjBAADYwQAAgEAAAABBAAAUQgAAQEEAADhCAACuQgAAkEIAAMDAAABgQQAAIEEAAAxCAACgQQAAYMEAAExCAAAEwgAAfMIAAIDCAAAAAAAA-MEAAIBBAACgwQAAlMIAAEBBAACMwgAAUEEAABzCAACgQQAAAMEAAGhCAAAwwQAA4MAAAKDAAABQQQAAEEEAAKrCAAAAwQAAEEIAALhBAACYwQAAGEIAACRCAABQwQAALEIAAHDBAABAwAAAsEEAABjCAADoQQAAVMIAAKBAAACgQAAAgL8AACDCAACcwgAA4EAAAFTCAACQwQAAQMAAAABBAAAEwgAAJEIAAMDAAACYQgAATEIAAIDAAAAAQQAADMIAAIC_AAAwwgAAMMIAAKhBAAAswgAAOMIAALDBAADwQgAAwMIAAKjBAABQwQAAcMEAAAxCAABowgAA-MEAAFBCAAAYwgAAEMEAAABCAAAEwgAA8EEAAMDBAAAIwgAAiEIAAMDAAAAYQgAAiMEAAMjBIAA4E0AJSHVQASqPAhAAGoACAAB8PgAANL4AAMI-AAB8vgAAJL4AACQ-AACIPQAA6r4AAKC8AABAPAAAZD4AAHC9AACoPQAARD4AAKi9AACYvQAATD4AAKA8AABQvQAAND4AAH8_AAB8PgAANL4AAJ4-AADgPAAABL4AACQ-AADYvQAAcL0AAJg9AACgvAAAcD0AAOi9AABQPQAAXD4AACS-AACWPgAAHL4AAMq-AACCvgAALL4AANi9AACgvAAAqL0AABQ-AAA0vgAAQLwAAPg9AADoPQAAZL4AAKo-AACAOwAAXD4AACw-AACivgAAcL0AAEM_AAAsvgAAiD0AACw-AAAsPgAAqL0AAAw-AAAUviAAOBNACUh8UAEqjwIQARqAAgAA4LwAAMi9AABwvQAAJ78AABS-AAA8PgAAFD4AACw-AADIvQAAkj4AAIi9AABQvQAAgDsAALg9AAAwvQAAiL0AAAS-AAAxPwAADL4AAOI-AAAUvgAAfL4AAKC8AAAUvgAAcD0AAKC8AADgvAAAUL0AAJI-AADIPQAAuL0AAIC7AAD4vQAABL4AALg9AACYvQAAyD0AAEA8AABwvQAAQDwAAJg9AABAPAAAgDsAAHC9AAA8vgAAcL0AAH-_AAAUPgAAED0AAFA9AADIvQAAoDwAAKg9AABUPgAAQDwAADA9AACgvAAA6L0AAEC8AABwPQAADD4AALi9AAC4PQAAUL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ZgeCyyDf5OE","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10122080351495490132"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15706741925894238316":{"videoId":"15706741925894238316","docid":"34-1-10-Z4B76A5C871ED05D1","description":"Ejercicio resuelto de cálculo integral, por el método de integración por partes. x e^-x dx...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1523374/34a5aea81b58bed5f802c9c3f7ea9796/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/42mciQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQFhxrNxAZAI","linkTemplate":"/video/preview/15706741925894238316?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"integral x e^-x dx","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QFhxrNxAZAI\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhYKFDE1NzA2NzQxOTI1ODk0MjM4MzE2WhQxNTcwNjc0MTkyNTg5NDIzODMxNmq2DxIBMBgAIkUaMQAKKmhoZnV2dGhmaWFuaGVhYWJoaFVDOVdPRFRrbE9wbG9CZmpGbzRrWW9qdxICABIqEMIPDxoPPxPgAYIEJAGABCsqiwEQARp4gfEFAwH7BQAL_QUD-gb-AQcAAPD4__8A7gcGAAH_AADn8fsIAv8AAPEU_v8EAAAA_AQI8_v-AQAQAwL1BAAAAAL19QD5AAAADg39AxH-AQH5CfYCA_8AAAUBAP3_AAAA9wML_AEAAAAEAQP8AAAAAPj6_vkAAAAAIAAtEgbgOzgTQAlITlACKoQCEAAa8AF_FPv_0uji_9gS3ADKGAQAiRcO__w4zwClFRYBsvbCAesb2wDkFdD-8w3-AMMB7f830s3-EdUGAFr-CAAh5O0A6fr8ASLx3wA8KxsA_gXm_-kLKQDp3f3-FrzqAAAr-P__Cx38_g3qAeon0gMQ_kMBBfgeAi_7KAHZxg0B_eL5AQ4F3v3yF_oH7tr_-dUFJQILzPz-Khr69so23gQP8wsH8dIm_wgy0v0n_wn_Mx0HANnlDQvv6xMDNBcPAsgbGgLU8TEGzhX68PD0__9O8P77whvxCAUC8Q4ACAgC_fLp-xvj9PL3GfkAyvEFDN0J9OsgAC1SbQk7OBNACUhhUAIqcxAAGmAeBAAm7jLDASEV7fGzIBME7ePU8vkK__vjAPwR8uAACdvMEzoADdkI2bUAAAAbA_gexwAbY_UVAiDyIxEQgdQ0Emf_DjbB5R_sANQu5v3f_Qb8BxAA0jS1HRfP_y0c-QQgAC3r6zc7OBNACUhvUAIqrwYQDBqgBgAAkEEAAJrCAACMQgAAqMEAACBBAAD4QQAArEIAAJjBAAAEwgAAuMEAAFBBAAA4wgAAgD8AABDBAACAwQAAEEEAAIA_AADowQAAYEIAADzCAAAAQAAAKEIAANDBAAAAQgAAQMIAAChCAACUwgAAIEEAAFxCAAAgwQAAUMIAAGBBAACowQAA4MEAAIjCAADIQQAA-EEAADxCAACgwQAAiMEAAAzCAACwQQAAmEEAAADCAADQQQAAAMAAAIxCAABcQgAAXEIAAIDAAADAQAAASMIAAFBBAAAAQQAA4EAAAMBBAADQQQAAiEEAAKhBAAA4QgAAgL8AAIzCAADQwQAAtsIAADTCAACowgAAAAAAAIjBAAAAAAAAIMEAAIhBAAAEQgAAWMIAAADAAADAwAAAHMIAAIDCAABgQQAAwMAAAIDAAACAwAAA3EIAABBBAABQQQAAuEEAAOBAAABYQgAAAEIAAJBBAAB0wgAAgMEAAIxCAACYwQAAmEEAALBBAADYwQAAAMIAABBBAACSQgAAYEIAAEDCAAAsQgAA0EEAACxCAAAwwgAAiMEAAPDBAACMQgAAmEEAAMZCAAA0QgAAAEIAANjBAABAQAAAqMEAABDBAAAYQgAAyMEAAGBBAABAwQAAbMIAAADDAADIwQAAEEEAAADCAABQwgAAGMIAANjBAACgwQAAIEEAANjBAADAQAAAYEEAAIJCAACKwgAAmkIAABhCAAAgwgAAMEIAADzCAADgwQAAoEEAABxCAABUwgAADEIAADBCAAAAwgAATEIAAIDCAACgwAAAgL8AANBBAAAgQgAAmEEAAChCAACgQAAAgMEAAADCAAA0wgAAgMAAAGTCAAD4wQAAMMEAANjBAADgQQAAqkIAAADAAABkQgAA2EEAAIhBAADgQAAAsMEAAARCAABIwgAAKMIAAMBAAAAAQQAAQEAAACBCAABIQgAA0MIAAPDBAABQwQAAIMIAAHBBAAA0wgAA8MEAAEBAAABQwQAAoEAAABxCAABAwAAAsEEAAIhBAABYwgAAtEIAADBCAAAQwgAAKEIAALjBIAA4E0AJSHVQASqPAhAAGoACAACAOwAAZL4AAJo-AAD4PQAAdL4AAFw-AACuvgAA1r4AAEC8AACYPQAAgj4AAAy-AAD4PQAAED0AAEy-AADgvAAAhj4AAKC8AACIPQAAZD4AAH8_AABQPQAAFL4AAKg9AABAPAAAQDwAALi9AACYvQAAMD0AANg9AACgPAAAgj4AAMi9AACSPgAAHD4AAAS-AACoPQAATL4AAHS-AAB0vgAAyD0AAAy-AACAuwAAuL0AAKA8AABAvAAAmL0AAKA8AABkvgAAir4AAMg9AAAsPgAAZD4AACQ-AACOvgAAgLsAACU_AAAkPgAAFD4AAI4-AAAQPQAALL4AAIi9AABcviAAOBNACUh8UAEqjwIQARqAAgAAPL4AAMi9AACgvAAAM78AANg9AABQPQAAnj4AAAS-AAAMPgAAyj4AAOC8AADYPQAARD4AADA9AAAEvgAAUD0AAHS-AABLPwAALL4AAFw-AAAQvQAAir4AAJg9AAA8PgAAML0AAPg9AADYPQAAUD0AAGQ-AAAQPQAAmL0AAHA9AAAsvgAAgr4AAHy-AACAOwAA6D0AAOi9AADIvQAARL4AAJg9AADoPQAATD4AABy-AACOPgAAuL0AAH-_AAC4PQAAhj4AAOi9AACgvAAA4DwAAII-AACgPAAAyL0AANg9AABAvAAABL4AAEA8AADgPAAAVD4AAI6-AABcvgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=QFhxrNxAZAI","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1268,"cheight":720,"cratio":1.76111,"dups":["15706741925894238316"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"612986554215400653":{"videoId":"612986554215400653","docid":"34-2-9-Z56948B63E5659D03","description":"integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4077894/da1b5b2711836b5bf664ace4ae1602ad/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/DHWMewAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dw8l355zxL-g","linkTemplate":"/video/preview/612986554215400653?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (1+e^x)/(1-e^x) (substitution)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=w8l355zxL-g\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhQKEjYxMjk4NjU1NDIxNTQwMDY1M1oSNjEyOTg2NTU0MjE1NDAwNjUzarYPEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E5UBggQkAYAEKyqLARABGniB8w36_fwFAAMD_f77A_8B9QH4APn-_gDkBf0BAPwCAPMAAAf-AAAA_gYECgQAAAAHBgHx_P0BAP__B_kEAAAACfP3C_sAAAAOC_wD_gEAAO7-9PkCAAAA_gb9Bf8AAAD3Awv8AQAAAPoCAwcAAAAA_AP_9_8AAAAgAC1TZt07OBNACUhOUAIqhAIQABrwAX8HDQDOzOMB6OD3ANg3_ACdIAsACyTi_8bg6AHU7rkB6wkGAOkE6__eFgIA6yryADvPyf4Uuzr_O-sA__rc-QDRCOYATe7cAEUWNP8NDfD-6-Ie_9vX5gHy1agAHh7YAOUBAf4QFPb-BjbRAxTzCgDh-DQFM_srAQOWAQj_suP-6djT_fYoBgUDz_740R4lAijVDAIUG_r96RXX_NznEfn95ysGCTXO_RTGBP8O7AMFpAMZAgYXB_4wIf0Bx9r3-wEON_rj5P4C9s0SCisE8fjwNOr0H_PyDgcT9_LuDAYEBKzt-iQK-AT39hYPxDL3-iAALVzRADs4E0AJSGFQAipzEAAaYCP7ADoOQ9H5CBf5IM3_EhLcBc0A7_n_4PX_-DcJ2h0H2NMjHQAv2vD4swAAAAsY7yvXAAJgBwTbIeMK_CqF6yj0f_wgK7ndDwnM5iTu_fvpIADwMQDbN8QV9NDuRCsVGSAALU0OMjs4E0AJSG9QAiqvBhAMGqAGAABAQAAAGMIAAM5CAABUwgAA0EEAAFBBAACCQgAA4EEAAADCAACAvwAAgMAAAIC_AABAwAAAoEEAABDBAAAwQQAAUEIAAGzCAACWQgAAGMIAABzCAACAwAAAHMIAAIBAAAAkwgAAEMIAAIjBAAAAQgAATEIAAMBAAAB0wgAAEMEAAKbCAACIwQAAnMIAABBCAADQQQAAmkIAAIDBAABgQQAAFMIAAEBAAACIwQAAqMEAAKhBAAA8wgAAAEIAAHhCAABQQQAAIMEAAIDAAAAkwgAAwMEAAABBAAAAwAAAAEIAAADCAADgQAAAkEEAAFhCAAAgwQAAjMIAADTCAAB8wgAAQMAAANLCAAC4wQAA-MEAACjCAABIwgAAqEEAADDBAACqwgAAYEIAAIjCAAAQwQAAEMEAADDBAADQwQAAaMIAALjBAACkQgAAAAAAAADBAABQQQAAkEEAADRCAAAgwQAAkEEAAFBBAAB8wgAAGEIAAIjBAADYQQAAhkIAAFjCAAAowgAAEEEAAGBBAADQQgAAwMEAABTCAACIwQAA0EEAAJjCAABgQQAAwEEAAMhBAADQQQAAgkIAAIhBAADQQQAAmMEAAIDAAAAwwgAAoEIAAOBAAAAswgAAVMIAALDBAABYwgAAjsIAAKDAAABAQQAAdMIAAIrCAAAAwQAANMIAAMBAAACgwAAAsMEAABzCAAAMQgAApEIAACTCAADAQgAACEIAAIRCAAAcwgAADMIAABDBAADAQAAAREIAAEjCAAAgQQAAZEIAAKDAAAD4QQAA4MAAAEDAAADgwQAA4MAAAIBBAADgwAAAMEEAADBBAABEwgAADMIAADDCAADAwQAA8MEAABhCAAA8wgAA8MEAADBBAAA8QgAA8MEAAJJCAABgQgAAMEEAADDBAADgQQAAoMAAAAzCAAA4wgAAoEAAANjBAADAwAAAkEEAAGxCAACMwgAAYMEAANDBAABwwgAAYMEAAJhBAAAkwgAAhMIAAOBAAACgQQAABEIAAODBAABgQQAAiMEAAGDBAABwQgAAcEEAAADBAAAwQgAAQMAgADgTQAlIdVABKo8CEAAagAIAAOi9AACIvQAA-D0AAKg9AAAsvgAAZD4AAMi9AAADvwAAoDwAAPg9AABMPgAAuD0AAIA7AAA8PgAATL4AAHC9AADoPQAAgLsAAHC9AACuPgAAfz8AAJi9AAC4vQAA4DwAANi9AACgPAAA2L0AAEy-AADgvAAAij4AABA9AABcPgAAXL4AABQ-AAAQvQAAqL0AADw-AAAEvgAAir4AAI6-AADIPQAAPL4AABA9AAAQPQAAoDwAAHA9AABwPQAAiL0AAJq-AADSvgAAUD0AAJg9AACuPgAAqD0AAM6-AADgPAAAHz8AAKC8AAAMPgAAkj4AAKC8AABAvAAA4LwAAHy-IAA4E0AJSHxQASqPAhABGoACAAAwvQAA4LwAAKi9AABDvwAAoDwAAIg9AABcPgAAJL4AABC9AADaPgAAoLwAAIA7AAAcPgAALL4AAKi9AABAvAAAyL0AACs_AAD4vQAAmj4AAMi9AABUvgAAmD0AABw-AACgPAAA6D0AAAy-AADgPAAAiD0AAIi9AACovQAAcD0AABA9AACWvgAAgr4AADC9AAC4PQAAgLsAAEC8AADYvQAAoDwAAOA8AACAuwAARL4AAEw-AADYvQAAf78AAIC7AAAwPQAAmD0AACQ-AABwvQAAbD4AAHA9AAC6vgAAED0AAJi9AAAQvQAAUL0AADA9AAAkPgAAML0AALi9AACAuyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=w8l355zxL-g","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["612986554215400653"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"1155982793502681107":{"videoId":"1155982793502681107","docid":"34-1-17-Z8C87D1811FF5A125","description":"✍🏼 https://integralsforyou.com - Integral of sqrt(e^x - 1) - How to integrate it step by step using the substitution method! ✅ 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐭𝐡𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3433222/9736fa075b78e48369afcb3ac2c87aec/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8BiTDAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcD_-zkTmsUQ","linkTemplate":"/video/preview/1155982793502681107?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt(e^x - 1) (substitution)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cD_-zkTmsUQ\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzExNTU5ODI3OTM1MDI2ODExMDdaEzExNTU5ODI3OTM1MDI2ODExMDdqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8TnQGCBCQBgAQrKosBEAEaeIH0CPsH_QMA-woA_P0DAAHxCvn8-f79AO4HBwAB_wAA8_IHCgAAAAD-BgQKBAAAAAL-_fbz_QEAAgoN_QQAAAAI6Pf8_QAAABAUB_n-AQAA7v70-QIAAAAIBAIKAAAAAPoGAQYEAQAA_f8MBQAAAAD_Av0A-_X-ACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABfwwA_Mnj3P-69MkA0z78_406Lv_7QsUA1RLgAPjWvQLoCOMA-BHoAR4PD_-7G_ABUfK6_xS08_8rrvP-774FAMvs9QEM6csDOiYHAO0QA_7e9y371r34AdnUwP4oOtv-7c_4AOkd5_8HPMwDFsoe_gLlNPs32RQCA4oBCc3O4gLb88z83QzqARmqH_yT_iQJNAMwBD80Cvz__ML76AAJ9-7KLf8l_rj6F78E_ykY_vPCDRUBBhoI_lMPKP7I8PkGzO47B9_pEfv19gPwIPgb8d8z5woi8fEPD-YO-ffb7APstfXp7Q_6-_TZ8gLWCvHnIAAtcN7mOjgTQAlIYVACKs8HEAAawAdma8W-fnN_vCNN-rs1bsC90VLevEUzibuetVu9D19rPUf6_jwglsI9CqMZvRAGnrznRqK96wAIu1p_y7wm__M98QW3vaBlJzzZQ0u-Q5J2Oyl_gr0CzLa941MdvE0EYD19CfW9lwLSvQpEdDzg2X49UnFNvc03R7x-Hfi8nE1HPYtAK7zcahk69RFYvRN8WL2t5SS9fIEZvQmlrzvr4LA9f3iMvHwVT7w1mAY-wHLnOxx8obwjfpq9TXBlPW8wL7zDHfm8qTXovEeTyzxY_ry9xdmevSpLXzuar7e9v6VSvfVMyjwaagQ-4jGROIPdsLz0bGm5YKskvoAygLtjtB6-NhZ7u39gWDzkhv89OXb1PIxvnjzGYaq9q1udPe7Umjuy8eA9ek8KvcLtmrxgIRM9G9yBPU6IzjspOQw9g3AgPXfYhLwMGyo9BZ3aO-KprDxQhBq7jfaDvUXCkrxGgZk9oaA0PVLfaLuV2NA8UtJjPfvbr7qE04e9xk7YPXqVbzvhRuU8th2JvKq-jjwFI6U91gI7vknlmjqV3Dy9PPHBvUPp5rstS4k7IR2BO9h4erxu_Ok9TOStvStzqbvNlcE8hrD1PPnyJzxWazy8Uq-wvWLHGDvwdL29ApqovWSftrptxUO94_WVPTdMjbns76Y9Wk2yPU9zprnTzGk9Dt3svY-KOLq8KUA80sMwPRCaeruZD-g9DAOWPfxdVbpSF8K7sW-GO0z6oLvtz2q91f-evOr5e7qRYaW9JUaKvfSouznudJw9rOLNvSr_vTlywgS9AxAyvU15k7lCTLi9rvI9um3Bj7c_GaO8svZXvUP1C7hcVAu9nBXxvdyedTnwJPM85aCPPaId0riH7Z09j4GGvMDQFrhrHsG9xK6ivVn4IjhH-Ci8kF7ePG5dlrgW0is9vDBjPUviwDafTuA7RvWxvBSnLLcXwZq8rgxPPC2TYTkkI2w9wEkqu7wFcDieSTY9BMX0vA7xfTcp9LC8etCSPdE5Src4AR-8DoN5PODBRLjv5xQ97eLsPOP6mLU5tJg9po-Kvcwd2jfQgBU9gEq1PZY0kLicenO910vTPZ-NlziDYvG7BuY3PRNDE7gJERU9LKdzvRsJODhopK88txtuPRdFDzgfnwA-pOSQvRXoOrkr3BO8ZJUCvnE9G7hyNAk7cI60vTjSjbab0o-74uSOPWDeRzenR4k8yfeWvCH7uLgi_-w9NSkFPvN-W7gpnmm8eM2QPaHmmri0FsC9VDS7PTxfsjgzDn-9ae2uutM8nzcgADgTQAlIbVABKnMQABpgCfEALwBQ0v4DKQcfsgkH8_LgvvzLCP_m1_8SKBb0EQXZvA0HAC69_PmiAAAAFxD-PcoACHn57gUz2h_4LYHcM_F-_Rs2nt_8C8nqPvUj6vskAhk2APBBpBf5xNdtKSwgIAAt9OMWOzgTQAlIb1ACKq8GEAwaoAYAACDBAACawgAAqEIAABjCAADoQQAA0EEAACRCAAAQwQAAMMIAAMBAAABwwQAAAMIAAMhBAAAwwQAAgsIAAIhBAABMQgAAiMEAAMBBAAAIwgAAwEAAAABAAAAQwgAAQEAAAETCAADgwQAAkMIAAIC_AACgQgAAuMEAAFjCAADQQQAANMIAADDCAACQwgAASEIAAPhBAABQQQAAuMEAAIDAAACwwQAAgMEAALjBAADQwQAAWEIAANDBAAAAQgAAAEIAABxCAACgwAAA4EAAAEDCAAAAwAAAAEEAAADAAAA0QgAAKMIAADBBAABsQgAAwEEAAGBBAABswgAAFMIAAKDCAABAwQAA7sIAAAAAAAD4wQAADMIAAAjCAAAwQQAASMIAAMLCAADQQQAAMMEAAKDBAAAAwAAAwEAAANjBAACOwgAAiEEAAMhCAACAwQAALMIAANhBAACAwAAAWEIAAFBBAAAMQgAAEMIAABBBAAAYQgAAMMIAAHBCAADIQQAAwMEAAMjBAADAwAAAwEEAANRCAAAIwgAAUMEAAIBAAACMQgAASMIAAAjCAAAQQQAADEIAAKBBAACsQgAAMEEAANBBAAAQwQAA2EEAAIrCAAAAQgAAUEIAAKjBAAA8wgAAcMEAAAzCAACcwgAAGMIAACBBAABAwQAANMIAADDBAAAQwQAAQMEAAARCAAAgwQAA4MAAAGBBAACGQgAA6MEAAGRCAABUQgAAQMAAAMjBAAAEwgAADMIAAEBAAAAEQgAATMIAAIBBAAA4QgAAkMEAAOBAAACgwQAAoMEAAABAAAAQQQAAQEIAAHBBAAAwQgAAYEEAAMjBAACgwAAAVMIAANDBAACQwgAAgEAAADTCAACgwQAAcMEAAJxCAACAQAAAnkIAADBCAAD4QQAAiEEAAKDBAAAkQgAAUMIAAIrCAADoQQAAEMIAAIBAAABgQQAAlEIAACzCAADYwQAAUMEAAMLCAAAAQgAA4EAAAJDBAACAwQAAIEEAAIhBAAAkQgAAyMEAAAxCAACAwAAANMIAAKpCAABAwAAASMIAAPhBAAAswiAAOBNACUh1UAEqjwIQABqAAgAAoLwAAJi9AABwPQAABD4AANi9AAAsPgAAiL0AAN6-AACIPQAAmD0AAIg9AABwPQAAoDwAAOg9AACCvgAAoLwAAMg9AACgPAAAyL0AAKY-AAB_PwAAED0AAPi9AACoPQAADL4AAHA9AADIvQAADL4AAKC8AABwPQAAoDwAAPg9AAAkvgAABD4AABA9AAC4vQAALD4AABS-AABkvgAApr4AAPg9AACIvQAAED0AAFC9AABAPAAA2L0AAIA7AABQvQAAlr4AAMq-AAAwPQAAND4AAI4-AAC4PQAAjr4AABC9AAAVPwAAgLsAAAw-AABMPgAAcL0AABA9AABQvQAAHL4gADgTQAlIfFABKo8CEAEagAIAAJi9AADgPAAAfL4AADW_AAD4vQAAJD4AANI-AACovQAAgDsAANo-AAAMvgAAED0AAOC8AAAsvgAAmL0AAJg9AABMvgAABz8AAHy-AACKPgAA-L0AADy-AADgvAAAij4AAKi9AAAUPgAAXL4AAEA8AAAwvQAAgr4AAKi9AAC4PQAAQLwAANK-AACqvgAAgLsAALY-AAAQPQAAqL0AAIq-AACovQAARD4AAOA8AABUvgAA_j4AAAy-AAB_vwAAcL0AAIY-AACIPQAAgj4AABC9AACOPgAAuD0AAIq-AACoPQAAuL0AAPi9AACgvAAAVD4AAJ4-AADoPQAA2L0AAOC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cD_-zkTmsUQ","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["1155982793502681107"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"17064957034594980111":{"videoId":"17064957034594980111","docid":"34-6-3-Z8E8BB8AB4D65BD38","description":"Why does e^(ln x) equal to x (Proof) Start the proof by letting y = e^(ln x) and applying the natural log to both sides. By following standard logarithmic rules you can derive that e^(ln x) is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/221396/85bff9053cfab40a404c0b21bfba1488/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/7t1CZgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHL6AWNjVOnU","linkTemplate":"/video/preview/17064957034594980111?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Why does e^(ln x) = x","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HL6AWNjVOnU\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhYKFDE3MDY0OTU3MDM0NTk0OTgwMTExWhQxNzA2NDk1NzAzNDU5NDk4MDExMWqHFxIBMBgAIkQaMQAKKmhob2Rmd3BvcHpoeHl0cmNoaFVDNUU1RFE1S2FHZVNIT2JDVHNLTTNsdxICABIqD8IPDxoPPxN8ggQkAYAEKyqLARABGniB7gH5_fwFABj2CQD_Bv8AAAP_-Pj-_gDz-_38BwEAAPYDAQIHAAAA9P0D_QYAAAD8_AT7_P4AAAYKBPEEAAAADPH9__oAAAAMAfkCCP8BAQH58wMD_wAAEPv4BQAAAAD3Awv8AQAAAP79_v0AAAAA_wP18gD_AAAgAC1xht47OBNACUhOUAIqhAIQABrwAXH4Dv_RFuwA3QP3AMwg-ACBIgr-_THVAM8PA__NFdkA5PfzAPv67AD6ABP_1P_-_xsBxwAdzQcBJ-zx_y37BgD9BgQBEsoDADgSKv8OAeX__gsh_gbxCQL9yuAA9xLi_wz5A_vS-voD1RK2_A7-OwEE-RoCFvUgAv_gCfrhAgoB9_nJ_g4c6gLx3__65i4hAiX4BAQZHgYD0S_iA_v15v0H8Bb3ByvX_g_g7Qvy9wz3y-f-BfwM_f0a_gn9zxcXAgELLfvl8_v02-0W_zjm7_7XHfv3GdT4ERsl-_gC3Pnz5_oC9_IL_Pzg-xrn5RT__CAALf8hHTs4E0AJSGFQAirPBxAAGsAHsg7HvudZJDzfCpe8TBgNvqeatDxUPRe8KuAevgPuWT1zVY-8z9vYPcjkib3WL2K9FOgzvvvv3DxZ04a8Ci9hPhdxsLxB08Y5huMJvt8g9TysASq9Rbz1vWfoxDysuCe8O0VdPZm6K7xd34c8tWsCPsSTXTugWKO7b7EMvVZbG71SOMy8mK1rvRflQ728SQK9Wt82PenbnbxTkco8WzGiPbGRWr1PbE88mO2Su9iIO7zwdnO8I57RPK-rDTyuy1q9H6EmPZ6ekrxvkxk848xFvfastTzeZAY7aIBBvWuZsbz-nKO7ERZbu1dcfD3jJCO9yPDzPDQAar28n8s7yqk9vtsWtT20TPu49bwrPs0seDz6er48ywajvYbVbj2m3Ng8GQ_Cu5dNhb3Azk08Sw-ZPSEYrLw_iCa7feuDPCyrizfaNtI79oXGvMYtLLu6RnA8pNQSPM5Csbzej9u8KnF9Pae-PbzVfka8Tl7kvdZCfzwHr8Q7uOr6PYTZJL1lyIy8pwdlPVuU2TzYwmI8JF6eu2L46L1TGGc7KLq-vabsub1DpI07HW3BPTlpED0uBX-8IorpPf37J73B_mu8MXZHvTq-jL2wfTe8QdgJPUJYor3kPyK6xzkAvboatLw_eTO8_GVBvIXs2buHQjq8xJJ2O99vpD1cQMM6oPqou3vAXL2EUaS729wIPp7CwLyvTI06PD6QPHpnvrxNTFC6ElDBPcF4Qb1h0wq6zAybvPPArLzJKc87H01QvQZZAL04ixM67nScPazizb0q_7058r-bPTQEg7lGiAM5doR4vaWeBT6jQ6K3WJygPAtP3jzRj8U46Q9NPKg4Pr5yn105eilmvXN7Dr1Rw-I4S7F-vN16zTzFqXe5BiRGvcNXtb0IyF03i3xNPIuxfbkb2R-51ZbaPcQvKzxC8DQ4Gq1ePRHJ67xtHgI5ZraVvRpWTD03TYY5fr_9POQfTD0Hayg5IjylPeXCh707jFI5xvOuPeSfqT3kAmo2uBmcuSa4orxt-Dm3csJkPd__Aj1sDQw4EtG3uwz9iL1QZfo3IjPXPXIpmTv5LWw3aHUyvmSkKD0Xyky3joi1OtnKcL3_CWc3lRESPWN4srobg4E4QYMJvHlAOb3PAAk49wEoPnBh3b3xZ7-5IpWYO4X6Z72-wCy4dfX0vFnd6r0NI_E1gSZivU2oGz12B3U4FPRNPbS9p72Xl423Iv_sPTUpBT7zflu4G3fUPNMnYz2lNKC4seFpvbYqjTuLvMK3zzwPvUBJJr2MT8g3IAA4E0AJSG1QASpzEAAaYC_-AC_mNMwKIjXrCej_J-HoCu3L9f3_IvsADP-5Fff56tQ0If8M9SLwsAAAADX-6hnjAAhn2wDVQ_YD89mB4yoRWQTsELcDDf3nwTYF2_YFCQM2JgDb88kgE83fEyXzMSAALeB2NDs4E0AJSG9QAiqvBhAMGqAGAAAAwAAAhsIAAKJCAABgwQAAuEIAABRCAABkQgAAAEAAAEDAAADAQQAAuEEAAAzCAACYQQAAyMEAAKDAAAAAQQAANMIAAOjBAAB0QgAAKMIAADDBAADgQAAAQMEAAEDAAADgwAAAkEEAABzCAACgwgAAOEIAALjBAABQwgAAoEEAAABAAACowgAAlMIAADxCAAAEQgAAnkIAAODBAAA0QgAAIMEAAOBBAABwQQAACMIAAFRCAABkwgAAsEEAAJpCAAA0QgAAkEEAABzCAACAwAAAGMIAAIA_AAAwwQAA8EEAACzCAACgwAAAAEIAAFhCAACAQAAAdMIAAEDAAABYwgAAkMEAANbCAADQwQAAgsIAAKDBAAAcwgAAmEEAADBCAACQwQAAAAAAAPDBAACiwgAA2MEAAHDBAADAwAAAoMAAANDBAACYQgAAwEAAAOBAAABIQgAAQEEAABxCAACgQgAAAEIAAHjCAACgwAAAuEIAAJDBAADIQQAACEIAAIDBAAD4wQAAQEEAAKBCAAA0QgAAPMIAADBCAAA0QgAAQMIAADDCAADIwQAAgEAAABBCAACgQAAArkIAAIpCAAAQQQAA4MEAABRCAACowQAAAEAAALhBAAAIwgAAMMEAADDBAADQwQAA1sIAANDBAAAIwgAAoMAAADTCAABcwgAAYEEAALBBAACAwAAAkMEAAPhBAABAQQAAMEIAAFDCAACEQgAAuEEAAKjBAAC4wQAAJMIAAEBAAABQQQAAEEIAAATCAAAYQgAAFEIAAEzCAAAQQQAAJMIAAAAAAAC4wQAA2EEAAPBBAACAPwAADEIAABzCAAAAwAAA6MEAACzCAACAwAAAeMIAAEBAAADgwAAAgMIAAMhBAACQQgAA6EEAAJhCAAAYQgAAQMEAAExCAABQwQAAAMEAAAzCAAAYwgAAoEAAAKBAAABwwQAAXEIAACRCAACGwgAAFMIAAABBAAAwwQAAUEEAABTCAADIwQAAvMIAABhCAAD4QQAAMMEAAODBAABUQgAAoEAAAABBAABkQgAAwMAAAJjBAAD4QQAAgMEgADgTQAlIdVABKo8CEAAagAIAACS-AAAQvQAAJL4AAKg9AADGvgAAQDwAAKa-AAARvwAAZD4AAKA8AACmPgAAiL0AAAy-AAC4PQAAjr4AACS-AAA0PgAAED0AANg9AAA0PgAAfz8AAKA8AAAwPQAAiL0AAFy-AADoPQAAJL4AADy-AAD4PQAAEL0AADw-AABEPgAAmD0AAMi9AADgvAAAFL4AAAQ-AACGvgAAbL4AAKK-AABUPgAAJL4AAHQ-AACAuwAAbD4AAHQ-AAD4vQAAXL4AACS-AAD4vQAA-D0AALI-AABAvAAAgLsAAOC8AABwPQAAKz8AAII-AACCPgAAgj4AAPg9AABsvgAAgLsAAO6-IAA4E0AJSHxQASqPAhABGoACAAAQvQAA6L0AAES-AAA1vwAAmr4AACw-AAAZPwAAPD4AACw-AADmPgAA-D0AAMg9AABkPgAABD4AAHC9AADoPQAAmL0AAEM_AAAkvgAAzj4AAKA8AAA0vgAAQDwAACQ-AADYvQAAjj4AAIA7AAAQPQAAoDwAAJg9AACovQAAcL0AADS-AAC2vgAAEL0AAOC8AAAcPgAATL4AAFS-AABUvgAAiD0AAHw-AAB0PgAA6L0AAMY-AAAwPQAAf78AAFA9AAAwPQAA3r4AABC9AADaPgAAXD4AAAQ-AADgPAAAVD4AAJi9AABUvgAApj4AAOC8AADePgAA-L0AAFS-AABMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=HL6AWNjVOnU","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17064957034594980111"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"6010904591683262437":{"videoId":"6010904591683262437","docid":"34-4-13-ZD3347ADC2B732DD4","description":"Integral of e^(-x)/1+e^(-x) , In this video, you will learn how to integrate this question step by step. Watch the video till end. Also comment below if you have any question. Don’t forget to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4772376/c5c2aa23944993b8d161f6e80cecab71/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PbBZ_QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1X-DNuMaohs","linkTemplate":"/video/preview/6010904591683262437?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of e^(-x)/1+e^(-x) | By Substitution","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1X-DNuMaohs\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzYwMTA5MDQ1OTE2ODMyNjI0MzdaEzYwMTA5MDQ1OTE2ODMyNjI0MzdqhxcSATAYACJEGjEACipoaHh4bndleXl1bW5ydWZjaGhVQ0VhZzVHd2wxOGQ0cFpqczZYV2RiU3cSAgASKg_CDw8aDz8TaoIEJAGABCsqiwEQARp4gfMN-v38BQD7CgD8_QMAAfUB-AD5_v4A5AX9AQD8AgDy9f8BAgAAAPEGAQEJAAAABwYB8fz9AQD7AgsCBAAAAAnz9wv7AAAAGhD_AP4BAADu_gD2AgAAAP4G_QX_AAAA9wML_AEAAAD2-wYIAAAAAPcJ9_b__wAAIAAtU2bdOzgTQAlITlACKoQCEAAa8AF_Hh4A-OS_A9cE9gD2JdYCoQ4f__w6zQDM-uQB1e-7Adn91wDmFucAETAZAMYz_v_798b-BMEY_ynR7v4P3PIAyxwKASgJ3P8-ERoCAOwEANfZEP4K1fv_9dbM_iIcvgD27fb_Gx_i_fIY1AI67SQCDwkxBAzgGv3Zpv0B197_BAvu0gDlQvn_DNwR97clHAQmAxD9ESEc-fgtxAIU5BYD8PIf-A8VywAd4h78Fv_7CKEC_ATcCP0ABAgx_s_y-gXx9ioCy_np8yfq_wH-8AP2_SbuCgbt3AQI-g8E4eDq_QjJ6-_j3P0B1eEDAszz-RAgAC1qTQQ7OBNACUhhUAIqzwcQABrAB6onm75iaxU8g7zku1fsf74E-QO9BIYWPSMT8L3XLSc99_1AvCqxJj32zFe9D9YhuaHhI72KUBY9xiVYvG0b5j0fxho9QkO9uobjCb7fIPU8rAEqvU_l1L369488uuwhPedZBL3pojy92GxAPOkL4T2tHou8I9QxPPtBOL20kqY99dcOOyIXob07nIq8BStTvf7VQz1gPnm9fNa1PKr0Lj1HUve81B5APDaWKz3s7os8EilSvXuuBb3DB3s9I8oNvf5ukD3H7HI7oXMNPTvhNb6Mv829WgQeutSAAb4s4PW7QDCHPN_8xj3sG_M8h1k-vYKr_Lw4n_q9MkUvvXf1Cr6gny49XPlRvP3Puz14uYg9qyaIvDL7Qb2kZAO9ILMzPJjqyD2tQam895OxPKoGZj2h6Is9G9Wru2M9ij0gIIQ8-UiKPJAkELwQ36M9pmIDPVCEGruN9oO9RcKSvBO8rD1wJNA9-vdPvNO2hjugJmk83ejIvIOJ371ca6k9-6M5PDk9lD1j2Qe983AHPcU1Qz34UQ2-CW8suyi6vr2m7Lm9Q6SNO0NHgb1emBG9npx8vHcvBz4Ie269k-Q5PJb40jxBdgi9IrH2uvMnYLw_xty9KcrGuxcJkr2u-Uy9TnAcvM9MwL1V8es8SXXwujd1-TzVQik94B-Au2wB57swR--9P5qgugVdsTz8FoK8pe4xu8ITuj1qm-q6mQCyutrHKj0hSzW9gLa4u1h23LyxU4w9Ay04Ozwilb1VLtS9WaDQOHltID1hj7S9W9CXOe2spz3igEy8A4xluQVTzb0TQ1e93ChqtxMjkD2Ps5-9Cn64N77F4DusUxW-pozJOYHobryXFIk9qP0KuUCFIz0a8EO8yaCyOcwgw73UDQS-CFOFObHRo71BpYA9hKO1uCOTfT3zKZa9my8tOd4bqL22ZLo8O70KuWNKv7yaOrS9_uV1OVfSBb3WTAg9f0GMNyI8pT3lwoe9O4xSOSnbdrzn7LM9J5-AN0xKprzOZTQ8Y6OeuKwTYTwChO89qBqeNhbxJz0VPAU7ykXRtrDiVD2yV0y75dGFOKBQz70V74Y9wtICOINmHD35w6o8kqDwOG-1E73cYq6992q2Nzl_K7ojCrI9VJVOOK2n9j2z6pi8ezs6uQpcCL3iw5G9PKVYuHkzFL1qLJa9SOgwtxpNLr7SB6Y9rGYbOdecaD3fETq9T2IZuCL_7D01KQU-835buESCjrz-hI487aK1uJVpT73nr6m78Ly3Nklep71GrKo9VDKIOCAAOBNACUhtUAEqcxAAGmAaDgAwBCPa5BQX5BzPDgz9_wvn6fkSAN_jAPosEOMWDOrICgr_HeT17sEAAAAVFPYZ7gAMVADz7g_-C_kWmOUxGH_9DDXY9grr79QxBRT5BAz4_TUA6TLRJP7U70gnEhsgAC0im007OBNACUhvUAIqrwYQDBqgBgAAcEEAAFzCAACqQgAAjsIAANDBAACIwQAAqkIAANhBAAAQwgAAMMEAAKDAAACYwQAAIEIAALjBAAA4wgAAXEIAAEBCAADgwAAA4EEAALjBAACAwQAAQEEAABjCAABQQQAAeMIAAADAAACAwQAABEIAADhCAACQwQAAkMIAACDBAACMwgAAMEEAAKjBAAAYQgAA8EEAAJBCAACAvwAAwEAAAADBAACgQAAALEIAAJDBAADAQQAAJMIAAGBCAAAEQgAAMEIAAJjBAAAAQAAAAMIAAJDBAAAAQQAAwEEAAAhCAACMwgAAAMEAAAxCAACAQgAAIEEAAKLCAABMwgAAmMIAAMjBAAAAwwAAQMEAABTCAAAAAAAAKMIAAOBBAACQQQAAosIAAJBCAAAwwgAAmMEAAOBAAACwQQAAgEAAACDBAADgwAAAjkIAAIC_AAAQwgAAgL8AADBBAAAkQgAAcEEAAAhCAADIQQAAiMIAABRCAACYwQAAgMEAAEBCAAAwwQAAQMEAAGxCAABgQQAArEIAADTCAABwwQAAuMEAAARCAACgwAAAmMEAABBBAAA0QgAAiEEAACRCAABwQgAAqEEAALDBAAAAAAAAUMIAAJJCAACYQQAA-MEAAJBBAABAwQAAuMEAALjCAACowQAAsEEAAMDBAACYwgAAhsIAAMBAAABEwgAAMEEAABTCAAAAwQAAEEEAAIhCAABgwgAAmEEAABBBAADgwAAAAMEAABDCAACIwQAAOEIAABRCAABkwgAAeEIAAGBCAAAgQQAAFEIAALjBAACQwQAAIEEAAATCAAAwQQAAUMEAAMBBAACoQQAA8MEAAFjCAACKwgAAoEAAALjBAABAwAAAqMEAAMDBAABAwQAAeEIAACjCAAAMQgAAmEEAAIDAAACIwQAAUMEAAMBBAABgwgAAgsIAAFxCAABAwgAACMIAADBBAACYQgAAlMIAABBBAAAAwQAApsIAABDBAABIwgAAsMEAAEDBAAAwwgAA8EEAACxCAAAcwgAAoEAAAFDBAAAIwgAAjEIAAKDBAADAwAAAAAAAACDCIAA4E0AJSHVQASqPAhAAGoACAADgvAAAED0AAFw-AADYPQAAEL0AAII-AAAEvgAAA78AAFA9AAAcPgAAiD0AAFA9AADgvAAAJD4AAJa-AABwvQAAVD4AADA9AACIvQAAlj4AAH8_AACovQAAqL0AACQ-AAAkvgAAqL0AAKC8AABcvgAAUD0AAEQ-AADgvAAAfD4AAPi9AACoPQAAiL0AAAy-AAAkPgAAfL4AAHS-AACKvgAAFD4AAKi9AACYPQAAQDwAABC9AAAkPgAA6L0AAKA8AACWvgAAmr4AAOg9AABMPgAAVD4AANg9AADCvgAAML0AACM_AACYPQAAMD0AAJo-AABwvQAAgDsAAFC9AACIvSAAOBNACUh8UAEqjwIQARqAAgAAkr4AAHC9AACovQAAKb8AAFA9AACoPQAAqj4AAJi9AAD4PQAA9j4AACS-AAAEPgAAqD0AAFC9AAAkvgAAiD0AAAS-AAAdPwAAfL4AAKo-AAAQPQAAPL4AAOC8AACqPgAAEL0AAAQ-AABQvQAAmD0AAFA9AACovQAAyL0AAAw-AAAwvQAArr4AAIq-AADgPAAAvj4AAJi9AACIvQAAyL0AAMi9AABAPAAA2D0AAHS-AAALPwAALL4AAH-_AADIPQAAoDwAAEA8AADoPQAAMD0AAL4-AACoPQAArr4AANg9AACIvQAA-L0AAMg9AAAkPgAAND4AABS-AAAEvgAAuD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1X-DNuMaohs","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6010904591683262437"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5783782863637244135":{"videoId":"5783782863637244135","docid":"34-2-11-ZE40CCC53B97F1AFC","description":"Ejercicio resuelto de cálculo integral por el método de integración por partes. x^3 e^-x dx...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2235207/0c1a4d68a625e176248ae1f1cfdd6b7e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cnv1ewAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DymGR2Drq3EM","linkTemplate":"/video/preview/5783782863637244135?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"integral x^3 e^-x dx","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ymGR2Drq3EM\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzU3ODM3ODI4NjM2MzcyNDQxMzVaEzU3ODM3ODI4NjM2MzcyNDQxMzVqhAkSATAYACJFGjEACipoaGZ1dnRoZmlhbmhlYWFiaGhVQzlXT0RUa2xPcGxvQmZqRm80a1lvancSAgASKhDCDw8aDz8T7AKCBCQBgAQrKosBEAEaeIHxBQMB-wUAA_4K-_0D_wES9wH39wEAAPUFAv8HAf8A5_H7CAL_AADxFP7_BAAAAPkH-vP2_gEADPsG_AQAAAAC9fUA-QAAAA4N_QMR_gEB9v_0AgP_AAD7APwCAAAAAPcDC_wBAAAACQQIAQAAAAD8-voAAAAAACAALRIG4Ds4E0AJSE5QAiqEAhAAGvABfxT7_9Lo4v_YEtwAyhgEAJ8xJ__mJs__s_AMAbL2wgEABO0A-vrpAPMN_gCwFOv_N9LN_u_wBQAt1A__PtXoAOwTDwHt2OkASQMY_xoE8v_YEB7-6-nxARrTzwMEJtf-DvgD-g8M1gHqJ9IDEP5DAfgBKQYr4Sv-8MEI_-vl9AT2-ML-DjbzAuC5Fv7qFz8BGbgLBBcUCfnqFNn99gv_-PHSJv82E-MBGfcICSEN8gPW9v4H5uILBjQXDwLRDv0G3sQoB_YF_Or76QYFPOkR-6j6-Awd9PMN8QET-f3y6fsW2eoC1P71BtoB_gndCfTrIAAtUm0JOzgTQAlIYVACKnMQABpgIPsAKvk_uf8hCuTwpykM-u_j1efr7P_i3AAdE-7EEPrm1Q8zAP3DEcypAAAACPkEJs4AE3LvFfY__BgFHIrSIyh_-xpE07UkBQu_KuH80Qf-9v0hAJxCriYHteoXDgsdIAAtBLAdOzgTQAlIb1ACKo8CEAAagAIAAOC8AAAUvgAArj4AABQ-AAAEvgAADD4AAGS-AADOvgAA4DwAABA9AAD4PQAAuL0AACQ-AADYPQAA2L0AAIg9AAB8PgAAED0AADC9AABUPgAAfz8AAJg9AADYvQAAUD0AAIA7AADgPAAAcL0AAKi9AACgvAAAmD0AAIA7AAA8PgAAML0AAEQ-AACIPQAAmL0AABA9AAA0vgAAgr4AAHS-AAAwPQAAQDwAAIA7AACovQAAgLsAALi9AACgvAAAyD0AADS-AAA0vgAAFD4AADQ-AABcPgAATD4AAKK-AABAvAAAGz8AALg9AAAMPgAAfD4AAEC8AADovQAAQDwAAEy-IAA4E0AJSHxQASqPAhABGoACAAAcvgAAJL4AAFA9AABDvwAAqD0AABA9AACSPgAAyL0AAIg9AACqPgAAcD0AAAw-AADYPQAAoDwAAMi9AACIPQAAXL4AAFE_AACIvQAAbD4AAIC7AAA8vgAAcD0AALg9AAC4vQAAUD0AAHA9AACAuwAABD4AAIg9AAAwvQAAcD0AAKi9AACSvgAA6L0AAKA8AAC4vQAAJL4AAAy-AADYvQAAyD0AAAw-AAAcPgAALL4AADQ-AAD4vQAAf78AAJg9AADKPgAAgr4AAIC7AACYPQAAPD4AAFA9AAAQPQAAuD0AAEA8AADYvQAAoLwAADC9AAAcPgAAnr4AAEy-AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ymGR2Drq3EM","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1268,"cheight":720,"cratio":1.76111,"dups":["5783782863637244135"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"1784979871755279296":{"videoId":"1784979871755279296","docid":"34-5-14-Z3DCA2C30B62EAEE2","description":"This calculus video tutorial explains how to find the integral of e^x sinx using the integration by parts method. Calculus 1 Final Exam Review: • Calculus 1 Final Exam Review Integration - Free...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4084449/c20545ac223d5de60343c903fa958f04/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gKNTaQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2JKPTCBaI4w","linkTemplate":"/video/preview/1784979871755279296?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of e^x sinx","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2JKPTCBaI4w\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzE3ODQ5Nzk4NzE3NTUyNzkyOTZaEzE3ODQ5Nzk4NzE3NTUyNzkyOTZqiBcSATAYACJFGjEACipoaHdkYWhpeWRwbWRxb2RiaGhVQ0VXcGJGTHpvWUdQZnVXVU1GUFNhb0ESAgASKhDCDw8aDz8TpwKCBCQBgAQrKosBEAEaeIHwEwAAAQAADP0GA_kG_gH1A_z3-f39APEQBfkEAQAA6e0KAAT_AAD0DwEKAwAAABLz_vX8_wIABgAM_wUAAAAF__QH9QAAABgK9gj-AQAA5An4-QIAAAD5_PYA_wAAAAAIAvYDAAAA-wgH9AEAAAD19_sHAAAAACAALXZQzjs4E0AJSE5QAiqEAhAAGvABfxfwAOEQxwLL99YA3iALAq0bCgD9MtQAygIOALb09gAU__IA-O6x_xEE-gDN-BIAGQXW_wPJFf876On_NMkLAOv7_QBG3-8BIBItAgQW4f7g_RP_8vvyAfbb0__uA-D_8PMb_fL84_rUErT8D_48AffnIgX05gr-29n3Auf6Afvyu9gA-xLk_fTIAwEDCzH-6NUKABUSCPr5Hv_6EgL1BxX2BwIDGeUF8fb-BezkBvzz3gL65e38AR36Igan8_0F5uId_9n0-gD4-AL0Lhb5_cz--f7oAQL_FAIZAwDN-AH_6-0A9_gL-t4yAALnGODyIAAt77kYOzgTQAlIYVACKs8HEAAawAd6UeO-b1EguoUyQzwcyD-9CeqMO5zMLr3MpZe9car1PD08lTwglsI9CqMZvRAGnryBCAG-Nz5JPa5tgLz9vXQ-klRLvQOx7DxxPVq-5xa_PYVMqLxtO-29fbg_vBryFTwrS3S8s773vMckSDvWoi89VD30vNqkKrsgqOi6HXURPDPcAL0sDue9TLDTPERgFr0TXLS7McwOvS_6yDsvY4Q9u8oEve3UnDzxBZc9CyYevae0Gb2aOlS9TFOlu7gA-rpe_4W5qPe5PKv11TtY_ry9xdmevSpLXzs33dK9a6SAvJNl0juctLo9Su1FPLB6m7zyCO49exTOvceArLyt-QG-VKWSPCHR3zs-6r896LT4PHYKj7fSV5u93UhUPRr0Lbt_ZUo9v9HzvP_MoLx-oey6HuI_PQhGlDzIbWq7zJGZO64iijtyE_e7LLmKPHMyzDzZzew9gPTtvddYP7oqcX09p749vNV-Rry7fGu9g8NmPCB7nDsK6uW81wRHPcUhFzwWGA08bnNfOymveDvFNUM9-FENvglvLLvHg229VxCOvZ23Vrw9FUY96munPHoGQ7xu_Ok9TOStvStzqbscIUi9r9yBPEjAjbvKPv68ivOGvRKOkzvZ9bG9SEcpuiMwGbrpC2G92c63vGTivbuvZni8LTeSPZ5VDzu8fVE9GEEzvrGckbl1oq49xs2fPDcu57ujbYE9kuOTPcOJHLgi7TU8db7pvA5hhLsqWSm8m1RUvW8d0juRYaW9JUaKvfSouzmqgqE9GhiZvUdKoDi3qUs9LVoFPbniYjkqYoe98OuRPA7EvTi19I08cJjovGug4jetL7c6_RLxvbwjiTljOyk9enZ0PR_d0DjkgrM8DtcqPVDjaLovUPK9qFycvUOAv7ctPR48OUlOvCHoc7gHDNI9X2nPvNXf1bSr-xG91oqbPC_jOLgCA1I9WpzxvCm8NbnIKKq85aIQPQynkDgRoFA9ukmcvaiweTkK8hO94529PZVT1bi5MSK91fTROtp8y7htkwU9iAgpPT_1CbmLFoA9RCrBvX0qIzjMXYs8nA6uPHXfBrhodTK-ZKQoPRfKTLcCQxi8foQIPIOLsDdugB691oOTOyJNCrioL1U9RArQOtaTDjaSXRk-2U9QvazCP7lcSQG9yt7SvRciBLnOcjS8XQ_Lvahwm7fabKG9jeayPSF0CTg_jsY9K94IvocitLjK9HA9IuErPvHLijiSqBy9R1UzPeavfLitbeq9FDu_PG_S4zeEc_y8YoNlvSF6D7ggADgTQAlIbVABKnMQABpgHvoAJPIh3OkUFu76xgwJCezx9NrrBADe0gDvC_XKBSLq2QwY_xXn_ezAAAAADQLtHtIAAVPy-7sO-iH6EZvdNAV_AQAi1tQDBv7YAhT08wIjAw0cAO4VwBL2uucoASYaIAAt3PtMOzgTQAlIb1ACKq8GEAwaoAYAANhBAAAIwgAAAEIAAATCAAAQwQAAKEIAAHxCAACgQAAAHMIAACBBAACAvwAAtsIAAKBAAADAwQAAgMAAAHDBAACAQQAAyMEAAAhCAAAAwgAAoMEAAADCAAAAwQAAgEEAADTCAACgQQAA0MEAAARCAAAYQgAAcEEAAOjBAACIwQAAaMIAAKBAAAC6wgAAkEEAAJBBAACqQgAAAMIAAEhCAAAoQgAAgL8AAExCAABwQQAAwEAAABzCAABAwAAAbEIAAKBCAAC4QQAAoEAAADTCAACAwAAAgMAAAHDBAAAAQQAAoMIAAFBBAAAUwgAA6EEAAKhBAABUwgAAJMIAADDCAACCwgAAiMIAAPjBAAA4wgAAgEAAABzCAAAcQgAArkIAAODBAABQQgAAEMIAAMTCAAAYwgAAIMEAAExCAAAcQgAAgMIAAJBCAACAwQAAwEEAAIA_AABEQgAAcEEAAMhBAADwQQAAoMIAAAzCAAB4QgAAkMEAACTCAACIwQAALMIAAIDBAAAQQgAAgEEAAHBBAAAEwgAAaEIAAKBBAAAEwgAAisIAAPjBAABwwQAAnEIAAEDBAACIQgAAKEIAAJBCAABwwQAAgEEAABRCAAD4QQAACMIAACTCAACwQQAA2MEAAFzCAACiwgAADMIAABDCAAAQQQAAIMEAAMzCAACIQQAAXMIAAAAAAACAwAAAuEEAAHBBAAAkQgAAUMIAAJhBAACgwQAAQEAAAGDBAADOwgAAoMAAABBBAACwwQAAcEEAALhBAACAPwAAAMAAAKhBAAAQwQAAiMEAAHRCAAAAQQAAXEIAANjBAACQQQAAAEIAAEDAAACAwgAABMIAAExCAABUwgAA4EAAAIC_AACQwQAAcMEAAHRCAAB8QgAAFEIAACxCAACgwAAAMEEAAIBAAAAMwgAAMEEAACzCAADgQQAAIMIAAAzCAAAwQQAA_kIAAGDCAAAAwAAAwMAAAKhBAAAkQgAAPMIAAAzCAAAcQgAA4MEAAGDBAAAAwgAA0MEAAIC_AAAIwgAA4MEAAHhCAAC4wQAA4EAAAITCAABIwiAAOBNACUh1UAEqjwIQABqAAgAA4LwAAOA8AACGPgAAUD0AAOi9AAB0PgAAED0AALq-AAD4PQAA4DwAANg9AABwPQAAuD0AABw-AAAkvgAAML0AAGw-AABwPQAA4LwAAIY-AAB_PwAAqL0AAOC8AAD4PQAAnr4AAPg9AACgvAAAFL4AAOA8AABcPgAAED0AAMg9AAC4vQAABD4AAFA9AADIvQAAiD0AAFy-AAB0vgAAnr4AAGQ-AACIvQAALD4AAOC8AACAOwAAqD0AAPi9AAAEvgAAqr4AACS-AACIPQAAoj4AAI4-AABAPAAARL4AAEA8AAAbPwAA4DwAAAw-AACSPgAAoDwAABS-AAAQvQAALL4gADgTQAlIfFABKo8CEAEagAIAAEC8AAC4vQAAmL0AAGW_AACGvgAAUD0AABk_AABMvgAAHD4AAKo-AACYvQAAQDwAADQ-AABAPAAADL4AAKg9AACWvgAAEz8AABy-AACCPgAAJD4AAJa-AAAQvQAAij4AACS-AAAUPgAAir4AAFA9AACIPQAAiL0AAJi9AADYPQAA-L0AAAe_AACGvgAAqD0AAAs_AAA0vgAAPL4AALq-AACIvQAAmj4AAPg9AADIvQAAFz8AAOA8AAB_vwAAmD0AAI4-AAAkvgAARD4AABQ-AACuPgAAND4AAMa-AAB0PgAAyL0AAIa-AABsPgAA4DwAAPY-AADgvAAAXL4AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2JKPTCBaI4w","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1784979871755279296"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8317217419070658426":{"videoId":"8317217419070658426","docid":"34-5-0-Z987102CD766A5B73","description":"Integration by Weierstrass substitut...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3554623/50910b7864d7e63ca439f3c2b3e08104/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sULpVAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLEMqHXa7QMw","linkTemplate":"/video/preview/8317217419070658426?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (x*e^x)/(1+x)^2 (by parts)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LEMqHXa7QMw\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzgzMTcyMTc0MTkwNzA2NTg0MjZaEzgzMTcyMTc0MTkwNzA2NTg0MjZqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8TrwGCBCQBgAQrKosBEAEaeIH0CPsH_QMAAwP9_vsD_wH2A_34-f39AO39AQQJAAAA7fwD-gP_AAD9GPwFAwAAAAcGAfD8_QEAB_8C9QQAAAAD8_71-gAAAA4N_QMR_gEB9fv-_AMAAAD-B_0F_wAAAPcCBvb__wAA-QMM-wAAAAD4-v75AAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABfwb7_ufV9wHrB9AA2Db9ALcmOv8JN-8Ax-DpAdTt0gD1DvoA9BH8_xrtEwHTEuMAFtOqAyPDCQEw0Q__7OXtANUC_AEz-skAPxIaAhEB3__cAUT-28X5AfLVqQAFKNX-79X5ABsf4v0hGcQCM-sP_AT_TAEy-yoB2KX9AeLF7wXf9NL9BhsQBe3Y__nSHiUCFdwL_hoF9wgJHdv-3ecR-f7bGvwPFcoAFMcE_yUV_vSlAxkC7B0ACEk2F_TMzP4K8fUrAsv56fPT6Rr_MA0F7-Ug0fkK7PMJHfIQBQvw-AvuvvfsDfDyAOoJDQfiHNrwIAAtLKoCOzgTQAlIYVACKs8HEAAawAfGNLO-rDkAPbtTDzyx38O9PKhfvXC-B70jE_C91y0nPff9QLweT-s92p-FvXMzt7xoN4-9Jn7WPED8l7wfoAs-6T26vHvJ9bx6Fy--CDwwPSmf1LxXsTi-R6V9PKXUCj2ay7K5IBrHvT2xszzBfr498vfBvRetbbx-Hfi8nE1HPYtAK7yYrWu9F-VDvbxJAr1uMLk82QVIvWqhxzv4RGg9vcNtvN7bvjtBP7g94TuLvW06wrwQlJm7yCuLPe7mzrw4Aic8U5IWPE3XGD2Jzw2-InyOvZhvmDzRXoi9-oIRvfal6TsmQKg9kKgrPW_Rrrz0bGm5YKskvoAygLvQKkO-mHOfvA-oiDxGCuU9o5YgPFPN7jvgoD299ZHlPLhvmjwb3HE9wfpEvcxiYrxwLOu53IVBvHfvrLtjPYo9ICCEPPlIijy4P9c8HvKBuyqRRDzfyxQ8LzuvvRiIL7ycJXI9VBGIPVvrizoN9gs9cqYJPeY8JTvrt6W9FjdpPZgnwjtjn1s8TNmOupgY5jyblQi9CHYMvs2l4bsour69puy5vUOkjTt_sMK80FKovEqGkrx3Lwc-CHtuvZPkOTwIiBM9MolOOaXwpLs5WQ-9wanPvaeDDDyBSqu9JWLlvOuLCLw0kYi99KZiPX5m2rv-2bo9KxIDPsuxW7nFZQY9-gwIvlUhA7pibL67qIEwPT6ByboBGMo90lPEPRdY8LmLiri81moXvBwZt7sIzqS9GxGpO3zsETt4jce9AmP9vMe21jfdYZM9u5cLvqUOaDnyhX887SBAvPM64jiOCpe9WvERO6nQjThYEiq9vEHUvY_yYrmrPZG9GlIVvjBRCjorYwc85MDrPXJyDDpf3Hw8NeWUvIYCjLhTHpK9ShvIveFzmzesvgS9Up8fPUmRvDmFcHY9UXZJPWZXhDi5jLy7omrsO0NNujqdrwO9jgiEu78WJTnBgXo9wWmmPOfY1zhZ08Y8UBxgvSDSFzgKgLG8JxfjPWJgkrkGCkG9kO-3PBEHYzhywmQ93_8CPWwNDDi71Mg9A0A1vdi-ezdwcBM9EVxAPOrdgDmik6q9V6fEPb02oDhrEay7i4DxuwU9hTh56o07_3gvPEmoILjXRmE9xlRVPD1Wprf3ASg-cGHdvfFnv7mTjJy8JrGqvfcB27h_iYO9Dtj1vQvRErgHFKC6ySC3PcLXmrfXnGg93xE6vU9iGbgi_-w9NSkFPvN-W7h0p4U8V5fTPPGVVbh-J8y9LLyLPckpwThtDpa9LoRmPQTvtzcgADgTQAlIbVABKnMQABpgIggAKwYn0d4ODvT-2gkFBOP_3ecB_wD70gAcIfPeGhP04RUJ_xXV7vvEAAAACgYDEu0AA0wWFegkAA31E5D0FhV_8B8v2-oREQTaJ_sM8fUH9eMoAOMkyQP66fhHEBMVIAAtaC9YOzgTQAlIb1ACKq8GEAwaoAYAAKBAAABQwgAA0kIAABjCAACwQQAAgMAAAERCAACAQQAAJMIAAKBAAABQwQAAwMEAAPhBAAAIQgAANMIAAPhBAAA4QgAASMIAAEhCAAAswgAAGMIAAChCAAAYwgAAIEEAABDCAAB0wgAAFMIAAIBBAADAQgAAyMEAAEDCAABAQAAAcMIAACTCAAAkwgAAZEIAABBCAABYQgAA6MEAAKhBAAAQwgAAIMEAAJDBAABMwgAA4EEAAFDCAADAQQAAFEIAAMBBAADgwAAAgD8AALDBAACAQAAAQEEAAHBBAAAoQgAAXMIAAIC_AACIQQAAcEEAADxCAABMwgAAJMIAAIbCAAC4wQAA9sIAALjBAABkwgAAAMAAACjCAAC4QQAALMIAALbCAAD4QQAAVMIAAOBAAABgQQAAwMAAAEDBAAAwwgAAEMEAAIhCAACAwQAA8MEAAIA_AABAQAAAXEIAAMDAAACgQQAAMEEAAOjBAAA0QgAA2MEAACxCAAAoQgAAPMIAAPjBAADAwAAAEMEAAK5CAAAMwgAAgsIAAIDAAAAcQgAAsMEAAMDAAACYQQAAiEEAALBBAACmQgAAgEEAAHBCAAC4wQAAHEIAAI7CAACmQgAAmEEAABBBAAA4wgAAAMIAAFTCAACswgAAQMEAAMBBAACowQAAZMIAABDBAABQwQAAkMEAAJBBAAAAwgAA8MEAABxCAABkQgAAXMIAAMxCAAD4QQAAyEEAAPjBAAAUwgAAcMEAABDBAADIQQAAEMIAACBCAAAwQgAA4EEAABRCAACIwQAA8MEAALjBAAAAwAAAGEIAACBCAADAQQAAoEEAAJjBAADgwAAARMIAAHDBAABkwgAA0EEAABjCAAAMwgAAwMAAAIpCAADYwQAAgkIAABBCAADgQAAAmEEAAEBBAAAAQgAAXMIAABDCAADIQQAAcMIAAAAAAACwQQAAfEIAAPDBAAD4wQAAkMEAAJTCAAAQQQAAuEEAAAzCAABgwgAAAAAAAAhCAACQQQAA4EAAALhBAACQwQAAPMIAAFRCAACAvwAAYMIAADhCAAAgwSAAOBNACUh1UAEqjwIQABqAAgAAmL0AAMi9AAC4PQAAUD0AAK6-AAB0PgAAED0AABO_AABcPgAAUL0AAGw-AAAQvQAAQDwAAOg9AABsvgAAEL0AAFQ-AABQPQAAyD0AAK4-AAB_PwAAcD0AAKC8AABwPQAAVL4AAGw-AAD4vQAApr4AALg9AACgPAAAuD0AAIo-AACgvAAAoDwAANg9AACAuwAABD4AAOi9AACKvgAAir4AALo-AAAwvQAAJD4AADA9AACoPQAAJD4AADS-AACgvAAAZL4AAHS-AACYPQAAXD4AAM4-AACOPgAAqL0AAJg9AAAxPwAAUL0AADC9AAAUPgAAUD0AAOi9AAAwvQAAkr4gADgTQAlIfFABKo8CEAEagAIAADA9AACYvQAAJL4AAD2_AAA8vgAAUD0AABs_AAAcvgAADD4AAP4-AABAvAAAHD4AADC9AADovQAA-L0AAMg9AACqvgAAFT8AAJa-AACyPgAA4DwAAJq-AAB8vgAApj4AAKi9AADoPQAAiL0AAFA9AABAPAAA2L0AAOi9AADgPAAAyL0AAA2_AACyvgAALD4AAHw-AAAkvgAAFL4AACS-AABwvQAAVD4AABQ-AAAkvgAAET8AACS-AAB_vwAAcL0AAII-AACWvgAAmL0AADw-AACKPgAAJL4AAHS-AAAsPgAABL4AAAy-AABQPQAAPD4AAIo-AACAOwAABL4AAEA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=LEMqHXa7QMw","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8317217419070658426"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"6688872890650770395":{"videoId":"6688872890650770395","docid":"34-3-5-Z231F2B9D5EF0428B","description":"In this video, we have established the two Laws of Expectation, viz:- Product Law of Expectation: E(XY)=E(X)E(Y) Sum Law of Expectation: E(X+Y)=E(X)+E(Y)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1221744/f5cb7d3939e3631ddd57156d5a83d7e7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cMdRFAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrQFW6VDBBwc","linkTemplate":"/video/preview/6688872890650770395?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"E(XY)=E(X) E(Y) || Laws of Expectation","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rQFW6VDBBwc\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzY2ODg4NzI4OTA2NTA3NzAzOTVaEzY2ODg4NzI4OTA2NTA3NzAzOTVqiBcSATAYACJFGjEACipoaG5iZW9yanBoZHJ3aXZiaGhVQ3VIRHVqeVNmWkhWTkxCNzVwQkdrTEESAgASKhDCDw8aDz8TxQWCBCQBgAQrKosBEAEaeIHzDfr9_AUAAQsDBvgH_QL3BwTv-f39AOsFEPoF_wEA7wAF_w0AAADxBgEBCQAAABME-P4DAAIACvwICPkAAAAJDPwC-gAAABQF_wD-AQAAA_f5-QL_AAALBPkFAAAAAO0OCf3_AP8ABQIHCAAAAAD4Auz7AP8AACAALVNm3Ts4E0AJSE5QAiqEAhAAGvABfwcNAPrX4wTB9c4AwSj2AIEYD__xE8gAzwf2AsEa0ADBIfgAEPD7AAgcLf__NwP9SfTC__TmLAFctQr_EAjuAQsS9QH65eQBaQciAA78_v7pPhL9RcoA__XUy_4DG-QEIdoF_S7w4wDpGfgCIPkTBAgnMwsj6u8A_tkM-dj7-wPf9NL8BRv9BtzB9fvlCCsBEOz5-SIL8PrCJej_3OcR-QHtEAL5ROH5_Lz_CToH_gmfAvwE4h_iDEYQA_XH2vf7ItsjArz-AvPT6Br_O_IA8-j3_f0L7PMJDegN-hoD8Ara6vj1-eb2APXd8wLVDvD_IAAtXNEAOzgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7zNrKU8KKyevfklrLzzdw68YhwyPV8Ieb3UgQw-Ur2AvQLSwLs0TSi-WS7AO_QJjzzLgDM-5tGIvZhiMzx6Fy--CDwwPSmf1LxHjw--baSRPGg4yjzc9RI9kQvOvKAHELvBfr498vfBvRetbby8ywW-XI8hvPw9AzqYrWu9F-VDvbxJAr2rR_U86kd5veHs1ry3n2c8RTGUvJABD7yvx6k9KCYQu6zQFr0WkmK9EV51uz7007wP_I49_IwrPd8g9TwxQhi9wvr_PDGviLwbNfg7tpiEvIpZrzzZ-vM8bFXHPRrrUbxlQ509dzW0vZB2Mr2i09O97umqvBSwTLoq0Yg9ig0MPSymyDwY0gG-SYOrPZYmJbwSycY8Kk-FvEJDf7xw3bM9-BHkPD01arsgooc8-aRuPaBIgbw3b5y8zI2jPZ2R1jrDuhE-zpGwvH2nk7wE8AU9JWv9u0ETPDyV2NA8UtJjPfvbr7qqcxY9BJ4qPXz0xDu1ZUq9-hLFvIL4ijzFNUM9-FENvglvLLtXezi9L4f9vSqgZjqBCLE8dxVSvAvqgLxu_Ok9TOStvStzqbvKpSE-eycLvR3jDDwOPgM95zrIvS8zbDwhjwC-1Xu6PSuLobr5DL29JL-pPZiivztzB1s9A1PHPXIMwTmg-qi7e8BcvYRRpLvmX-Q6gUxBvTJBibuoktw8O8C4PUXGKroocQc9BlTNOp8xXbtS-Y28Jw6FPBdyV7vFE0u9-I3KvT_tR7ltA9c9taPYvQyfrzmfZlS7b3rdu5VCA7vW7Ke94Pt2PPk7JDmJyNU8fT-FvUdahTn8s1W9dz2yvYUbMLixHlI8788APYVLmTlFjTg9wWwHPQrSHjk-Qp296KpUvZaHTrmXDaG8SPXCPPQImriEhhk9kSGsvGGPwLidmzY8qo_BPSN6vjayLs69GOE3PAWn1jmeAzC9D_IqPr3F37irJog9z7eavfufhzmadbu9f8TKPfwALrli9cc8tSvfuy35D7dI1qs8GxChPRH5bzeain49huO5vNIF1DbfaGw8vWKnPbAaiTfEiIO9r3JtPRlrqjgj0bC8clPDvOMQO7hLj7s9Qj4IvTxjfDiEG1-82hU_PSRUDjitp_Y9s-qYvHs7Orm4hZi9P4ILvMIP3reTa089_O6MvW0iDTcgTau9zkSHPWc8NDhVL1-9G8aDvVV7Kbci_-w9NSkFPvN-W7j6T-067HXBPIvtoLghrCa9VAF3PWErUrhy7L-9yKt4PRfZjTggADgTQAlIbVABKnMQABpgLPcAKRIvDAIBIvgjz_T8-OkI6Qb58AADwgD4Gwb5CRcGvyQM_ynTE9SyAAAANAH0ItsADWLYCuEmFPkK8pXkHzJ_AfAd4ewmAvfYGBsL5gYE7PswAPUOwQ7_saoqIicwIAAtTwM5OzgTQAlIb1ACKq8GEAwaoAYAAEhCAACAQQAAiMEAALhBAAAUwgAAEEEAAGRCAABQQQAAwMEAAGBBAAAgQQAAQMAAAIjBAABcwgAA2EEAAJjBAABAQgAAYMEAAMjBAAAQwQAAvEIAABDBAAAEwgAA0MEAAADAAADQQQAApsIAALhBAABEQgAAgL8AAABAAAAcwgAAusIAAExCAABgwQAAIEIAAARCAADAQgAAAEAAAKBBAADAQAAA-EEAAJRCAABQQQAAoEEAANjBAACIwQAAwEAAAPBBAADowQAAAEAAAIhBAAAEwgAAAEEAAKBAAACAQgAAqsIAAADCAAAIQgAAwkIAAIC_AACCwgAA2MEAABTCAABIwgAAIEIAALBBAACgQQAAAMEAAABBAAAwQgAAUEIAAIjBAAAkQgAAoMAAAJDCAABwQQAA6EEAADBBAACQwQAAEMIAAABCAAAAAAAAQEIAADzCAADAwQAAoEAAAMBBAACAvwAAwMAAAPBBAAAgQQAAwMAAAADDAABAwAAA4MAAAIA_AABAQAAAAMIAAABBAAAQQQAA-EEAAKRCAADoQQAAKMIAAHDBAADYwQAAuEEAAKDAAACAwAAAoEEAACTCAABAwQAAHMIAAFBCAABAQAAAuEEAAPDCAAB0QgAAAAAAAEDAAAAgwQAALMIAAJLCAABoQgAA8EEAAATCAAA8wgAAGMIAAPDBAABoQgAAFEIAAIDAAACCQgAA2MEAABhCAABAQQAAwMAAACjCAACawgAA6MEAAJpCAAAgQgAAEEEAADDBAACAPwAAqMEAAPBBAADwQQAAgMAAAADBAADYwQAAEMEAADDCAACAPwAA0EEAAIC_AACOwgAATMIAAKBAAAAEQgAAiMEAAFTCAABAQQAAcEEAANDBAADAQQAAwMEAALBBAABkQgAAWMIAAAhCAACIwQAAoEEAABDBAABEwgAAgsIAAETCAABIQgAAwkIAAKrCAABgwQAAuMEAADDBAACKQgAAoMIAANjBAACOQgAAqMEAANBBAAB4QgAA2MEAAIC_AAAAQAAAMMEAAIpCAABYwgAAMMIAAKDCAAAAwiAAOBNACUh1UAEqjwIQABqAAgAAuL0AADQ-AABcPgAAPD4AAHC9AAA8PgAATL4AAAO_AACgPAAA4DwAABQ-AABEvgAAgLsAAHw-AAAsvgAA4LwAALg9AAAwPQAAyD0AAII-AAB_PwAADL4AAEC8AADYPQAAir4AAFS-AACIvQAA4DwAAOA8AADoPQAAuD0AALg9AADovQAAoDwAAEC8AADIvQAAHD4AAIa-AACWvgAAZL4AABC9AACAOwAAcL0AABS-AAC4vQAA2D0AAHQ-AAAMvgAAir4AAKK-AADIPQAAND4AALg9AACYPQAAdL4AAKC8AAAjPwAAHD4AABQ-AACePgAA4LwAAOC8AAAwvQAAqL0gADgTQAlIfFABKo8CEAEagAIAAIK-AAAwPQAAqL0AAAe_AAAUPgAA2D0AAHw-AABMPgAABD4AABs_AACgvAAAJD4AAMi9AAB8vgAAwr4AAAw-AABwvQAAUz8AAPi9AACCPgAAML0AAKi9AABQPQAApj4AAHS-AACuPgAAoDwAABQ-AAAEPgAAoDwAAEA8AABAPAAAPL4AADy-AABcvgAA4LwAANI-AACovQAAlr4AAEA8AACIPQAAoDwAAAw-AABkvgAAzj4AAGQ-AAB_vwAA4LwAAOC8AAAMvgAAoDwAAMg9AAD2PgAAHL4AAII-AACgPAAA4LwAAIa-AABQPQAA2D0AAOA8AAAMvgAAnr4AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rQFW6VDBBwc","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6688872890650770395"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1982617444478559853":{"videoId":"1982617444478559853","docid":"34-10-1-ZEB3585727D23E39D","description":"in both sides 00:14 Substitute -x and dx 00:24 Rewrite expression 00:29 Integrate e^u 00:33 Undo substitution: u in terms of x 00:35 Add integration constant +C 00:40 Final answer...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4511902/ff09be15318518e86087ab0de38bc34b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/MF1PHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBIurgGAv5Sk","linkTemplate":"/video/preview/1982617444478559853?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of e^-x (substitution)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BIurgGAv5Sk\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzE5ODI2MTc0NDQ0Nzg1NTk4NTNaEzE5ODI2MTc0NDQ0Nzg1NTk4NTNqtQ8SATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TK4IEJAGABCsqiwEQARp4gfkP9P4C_gAQCwT__QUAAOcG8wr6AAAA4gUD9f77AgDy8AcLAAAAAPIGCwsBAAAAAv799vL9AQAICwQCBQAAAAry9gz6AAAADhr6Av0BAADt_vP4AgAAAAUD_QQAAAAA7AMRAv8AAAD8_g0FAAAAAPoJ9f8A_wAAIAAtjvrLOzgTQAlITlACKoQCEAAa8AF__PX-wfnC_wsH5wAYKr4D7AsIADM18gC6AhMADuErAODG-gHqRbwA2BjHAIv99QEgBsr_ANHzASqw9P79CuQA5CjXAfvS9QIGEBACHwXw__gfWQLl1_3-8treAk0rywDjAgL-FPfw_OgEsgIa3f8BPOsWAvn7QgQSsvUG_d74Ac_F3P216tcBChcB9tzMMAMx9QUG_yIa_9BV7AAKyg37IdkVArEz3wFLvvgFJufd-LMPBAoQ7RcHGyks_qlCB_wBDzv55xXr8evwGwbnIuEH7PrX8QkL0Q7aH_gWHvHmA9L3E-w23u7z5voX-OZD-A0gAC19v-w6OBNACUhhUAIqcxAAGmAFCgAt-CnX7gcY6AXA_P8L8wnh-usDAOXmAAgdFtUQ__nsEP__F-Ty_soAAAANCvQv9wAARQ8P3f0FCu4dtPIl_n_vET_h3fgO4Oga9xr9_hP59zkA8xvaG_jeBj0ZFRUgAC3nWmU7OBNACUhvUAIqrwYQDBqgBgAAoMEAAIDCAAB0QgAAFMIAAGBBAACQQQAAJEIAABDCAAAowgAAiMEAANjBAABAwgAAkEEAAOjBAAAYwgAAIEEAADRCAAC4wQAASEIAAGTCAACQwQAAuEEAAGDBAAAQQQAATMIAACDCAABUwgAAEEEAAKJCAABAQAAAtsIAAAxCAAAswgAA2MEAAFDCAAAgQgAANEIAABhCAABAQAAAuEEAAKjBAABAwQAA-MEAACDCAADwQQAAUMEAAIhBAAC4QQAAYEIAALjBAABgQQAAMMIAAFDBAADgwAAAQEAAAJhBAABgwgAAAAAAAABBAADwQQAAAEAAAETCAACYwQAArMIAAJDBAAD2wgAAMMEAACTCAADQwQAATMIAABBBAAAwwgAA0MIAAOBAAABgwQAAkMEAAFDBAACQQQAAUMEAAITCAAAAwAAApEIAAKBAAADYwQAAREIAACDBAACSQgAAPEIAAKBBAAAUwgAAAEEAAGBCAABQwgAAjkIAAIBBAADgwQAAcMEAALDBAAA8QgAAjEIAAHDCAACYwQAAgD8AAPhBAAAcwgAA0MEAAABBAADgQQAAqEEAALxCAAAAQAAABEIAAKDBAACAQQAAcMIAALhBAAAAQgAAwEAAACDCAACQwQAAdMIAAL7CAADwwQAAAAAAALjBAABYwgAADMIAAGDBAACYwQAAcEEAAODBAACAQAAAIEIAAERCAAAgwgAANEIAAEhCAABAwQAAUEEAACzCAACowQAAyMEAACBCAAAIwgAAJEIAANhBAACowQAAoEEAAIjBAAAgQQAA4EEAAADBAABAQgAAAEAAABRCAADwQQAAHMIAAIjBAAB4wgAAgMAAAJTCAABAQAAAXMIAABzCAACgwQAAmkIAACDBAAC2QgAAXEIAAADAAABEQgAAYMEAACxCAAAUwgAAnMIAAEBAAAAswgAAEMEAAIBBAAB4QgAA4MEAAEzCAAAAwQAATMIAAIhBAAAQQQAABMIAAJDBAAAAwQAAsEEAAARCAACwwQAAWEIAAIDBAACYwgAAnEIAAODAAAAQwgAAHEIAAOjBIAA4E0AJSHVQASqPAhAAGoACAACovQAAcL0AAMg9AADoPQAANL4AACQ-AAD4vQAA6r4AAAQ-AABAvAAAFD4AAMg9AACIPQAADD4AAFy-AABQvQAAJD4AABA9AAAUvgAAoj4AAH8_AAAEvgAADL4AADA9AACGvgAAMD0AABS-AABMvgAAgLsAAKg9AACIPQAARD4AABy-AAAUPgAAiD0AAPi9AAAsPgAARL4AAIK-AACOvgAAXD4AAFC9AAAQvQAAgDsAAKg9AADoPQAAgLsAABS-AACmvgAAqr4AAIC7AABcPgAAhj4AAKA8AACavgAAED0AACc_AACoPQAARD4AALI-AACovQAAHL4AABS-AAAsviAAOBNACUh8UAEqjwIQARqAAgAA-L0AAFC9AAA8vgAAP78AAAy-AABQPQAAvj4AAAy-AAAEPgAA6j4AAIi9AACoPQAAND4AAJi9AAAkvgAAyD0AAEy-AAAjPwAAir4AAEw-AACYPQAAbL4AAAQ-AAB8PgAAmL0AAJI-AACavgAAyD0AAOA8AAA8vgAAcL0AAHA9AABwPQAABb8AAGy-AACIPQAAvj4AAIC7AACAuwAApr4AABw-AAAUPgAAUD0AAJ6-AAAPPwAAJL4AAH-_AABwPQAALD4AAIi9AACSPgAAMD0AALI-AAAcPgAArr4AAAQ-AAAcvgAATL4AAOA8AAAQPQAAkj4AABC9AAA0vgAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=BIurgGAv5Sk","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1982617444478559853"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"4651655610159867996":{"videoId":"4651655610159867996","docid":"34-6-0-Z7860E56E3B881BF3","description":"1) Integral of x*e^(x^2) (substitu... https://integralsforyou.com/integral-... 🎓 𝐇𝐚𝐯𝐞 𝐲𝐨𝐮 𝐣𝐮𝐬𝐭 𝐥𝐞𝐚𝐫𝐧𝐞𝐝 𝐚𝐧 𝐢𝐧𝐭...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2050590/d92a063688b8dfbb2f62c3eb7bd90b61/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/pN1zEgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dkia88ymbOzE","linkTemplate":"/video/preview/4651655610159867996?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"(Method 2) Integral of x*e^(x^2) (substitution)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kia88ymbOzE\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzQ2NTE2NTU2MTAxNTk4Njc5OTZaEzQ2NTE2NTU2MTAxNTk4Njc5OTZqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8Tb4IEJAGABCsqiwEQARp4gfMN-v38BQADA_3--wP_AQEM7__3_v0A2wH3__r5AwDy9f8BAgAAAP8SCAoFAAAAAv799vT9AQABAQMBBAAAAA717QH-AAAAEBD6-f4BAAD99wH59gIAAf0J9wL_AAAA9wsR-_8AAAD6AQUAAAAAAAcKAvwAAAAAIAAtU2bdOzgTQAlITlACKoQCEAAa8AF_FPv_0c_kAdgE9gDQKuABpQ0e_wk08ADf3-oB-d3HAesH6ADzBdv_GQ0N_9Uq3AAV1q4CIsYIAUDD4_8B5tUA5AXsATD6ywAWGQkCGPb2AeP5Jvzyyuz_89iuAAQm1_7w1_kADxP3_h8YxwIK_BMGAuks_CEDGvsDnQEH5MjwBera1v3yF_oHA9L_-cENEQMe7Rj_NSwI_OoU2f331QX98dIm_w8UzQAN0xsIGBcL-6oDGAL2GA3_QQ8D9sLlAgoBDTP68PL9_NLc_wcXDvru9kbqAQUC8Q4Q_v78BeX2-e_B9-3sAPDu8PcHCNgN8f8gAC1SbQk7OBNACUhhUAIqzwcQABrAB3TsuL51JBK9SNoRvDVuwL3RUt68RTOJuxTamL0nT3k9CxGJu80-zz1KZ6u9V2erPGg3j70mftY8QPyXvCb_8z3xBbe9oGUnPNlDS75DknY7KX-CvUdrVr0pGhC9GQQxPXMv0L2uDK-9XjbwvODZfj1ScU29zTdHvAK1Xb1fehs907AuvZita70X5UO9vEkCvRNctLsxzA69L_rIO-2viD2D7hy9Ltpru9Fjyj3Ofi49mpfDu6YQg70fACc9Mxv_vBr0Cr25vP87t5ZOPWQqs71BPjK8OsY6PDfd0r1rpIC8k2XSOyZAqD2QqCs9b9GuvGkz8zweb_K91yXTOg1TK75csqY7Yro1vPCLCz7zP7O74jrGOyYMdL1dRrs9TCy6PCrh6T0fTjs8Ja2dvMvHZD1Dl4u83rKeO_EB57lpSrw82soHvAjNST1-baI86v_FO0anuLxAbpq9MJAxvOZAzz3vSKs8UcC2vA32Cz1ypgk95jwlO4kzFb2Qq5c9hfL4OyGNLzyqR5o8vM9xPJuVCL0Idgy-zaXhu5PHM72drZK9VnknPGo2DTyfeyo9McltvEgYBj5uyWW97dUFvM2VwTyGsPU8-fInPGS2YLuoBI-9mjQZuxmBQr0jsQ69MVIYvDSRiL30pmI9fmbau4Nt5D3Cppk9S6JlOS8RtD1Kmg--ilfiud67PDzvlIk9mYvsu5kP6D0MA5Y9_F1Vug40WToNxR29H9twu1i9jb2smcq7PSvlutO--b1TBi69y-RbOW0D1z21o9i9DJ-vOcbgYbwJTuA6miMvuyQygr3vGx-8elL3t2g6QL2mQvy89cqPOR4RqL3O_Eq-AcsOOfltIz2yp7M9XnbgOTuYAz3OCvu7vTHrui9Q8r2oXJy9Q4C_t7hU67uou507qIgjub2Y3Dwq8Uo9Aq8iOAwHgry0i8y7D7P_ORfBmryuDE88LZNhORSjqD1s6v47OuggOSRGzzxuXIW9SVyfOGAncL2aEVk9B6eZt1qVDjuQ71c9t3WNuIO41zwZfxM8C0WUOJGbET4I77G9MKXVuLGLAbz0xck9JfkdOZx6c73XS9M9n42XOE-Adrsu5mc9m_S0OJ1wpTzZlwy9Iwl3uBIykDzEgzw9isWjN5JdGT7ZT1C9rMI_uVxJAb3K3tK9FyIEuTKU7ry6-Lu9NhcmuAcUoLrJILc9wteat5XfWD31zNy82S39t2pPGT6pbpk9CAIytwBIN7t3VTY9PpXduBWOsL2x4Sk-OGv6OCt4kL1sC-q862w1uCAAOBNACUhtUAEqcxAAGmAU9wBEAzHO7gEc9RrWBPn86gzf6-XtAOX6AAslEd8b99XEIQoAKc79BrgAAAAZG_Ih3QAKV_0K5Dv4-tsdiPEv7n8UBQbH8gUF3PYoBAbv-RHpBDAA7jDbHQzR7UgeLSQgAC3oNT47OBNACUhvUAIqrwYQDBqgBgAAMMEAAGTCAABwQgAAFMIAAKDAAAC4QQAABEIAAOjBAABowgAA8MEAAJDBAABMwgAAAMAAAMjBAAAswgAAMEEAAFBCAADgwQAAMEIAAGTCAABwwQAAiEEAADDBAAAAQgAATMIAAPjBAACSwgAAcEEAAHhCAAAwwQAAvMIAANhBAAA4wgAAmMEAAODBAAAYQgAA8EEAADBCAABAwQAAMEEAAMjBAADgwAAAoMEAAFzCAAA8QgAAwMAAAAhCAACAQAAAdEIAAKjBAABAQQAAIMIAAGBBAACAPwAAMEEAAEBBAADwwQAAgD8AAABAAAAMQgAAmEEAAEzCAABwwQAArsIAAHDBAADwwgAAkMEAAPjBAAAIwgAA6MEAAJBBAACgwQAA1MIAAADBAABgwQAAcMEAAOjBAAAwQQAA4EAAACzCAACgQAAArEIAAMDAAAAYwgAAPEIAAIBAAACOQgAAKEIAAKhBAAAcwgAAAMAAAERCAACSwgAAdEIAAIBAAAAkwgAAkMEAAABAAAA0QgAAiEIAAIbCAACAwQAAEMEAAKhBAAA0wgAAgMEAAODAAAAAQgAA8EEAAKpCAACAwAAA8EEAAKDBAABQQQAAbMIAAARCAAAUQgAAAMAAALDBAACIwQAAmMIAAMbCAAAAwgAAMEEAAIjBAABowgAAGMIAAHDBAAAgwgAAEEEAABzCAACAwQAADEIAADhCAABswgAAHEIAADBCAABgwQAAyEEAACzCAACwwQAAoMEAAAhCAAD4wQAAUEIAAOBBAACwwQAALEIAAODBAAAAQQAAoEEAABDBAAB0QgAAoEAAABBCAADIQQAANMIAAIjBAAB8wgAAEEEAAHzCAAAAwAAAOMIAABTCAACgwQAAkkIAAKDBAADGQgAANEIAADDBAAAQQgAAoMEAACBCAAAYwgAAiMIAADBBAABswgAAAEAAAKBBAABkQgAAHMIAACzCAADAwAAAQMIAAMhBAADgwAAAIMIAAEDAAACYwQAAqEEAABBCAABgwQAAgkIAAJDBAACWwgAAlEIAAKDAAADgwQAAOEIAAEDBIAA4E0AJSHVQASqPAhAAGoACAABAvAAABL4AAMg9AADgPAAANL4AAEQ-AABwvQAAGb8AAKg9AACAuwAAZD4AAIC7AABQvQAAPD4AAGS-AADgvAAAjj4AADA9AAAQPQAAvj4AAH8_AAA0vgAAFL4AADA9AACyvgAAuD0AAFS-AABcvgAAHD4AAJg9AADYPQAAFD4AAKi9AABwPQAABD4AAOA8AADIPQAAoLwAAGy-AACCvgAAlj4AABA9AAAwvQAAMD0AABC9AACgPAAAyD0AABS-AAAMvgAAor4AADA9AABUPgAArj4AADw-AACKvgAAiD0AAA0_AAC4PQAA4DwAAFw-AADovQAA-L0AAEC8AAAEviAAOBNACUh8UAEqjwIQARqAAgAAZL4AAJi9AAAsvgAARb8AAIK-AADgPAAAAz8AAIC7AACGPgAAvj4AAAQ-AAAsPgAA2D0AAFC9AAAkvgAAJD4AAIa-AAAdPwAAqr4AAIY-AAAsPgAAmr4AAIi9AABEPgAAqL0AAI4-AAAkvgAARD4AACy-AAAkvgAAQLwAAIg9AAAQvQAA2r4AAKi9AAAQPQAAhj4AACw-AAAUvgAARL4AAHw-AADYvQAAHD4AAJa-AAAhPwAAhr4AAH-_AAAcPgAA2D0AAK6-AABcPgAATD4AAJo-AABAvAAALL4AAEQ-AAA8vgAAUL0AAGQ-AACgPAAAgj4AAFS-AACCvgAAPD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=kia88ymbOzE","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["4651655610159867996"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"18369388764356629499":{"videoId":"18369388764356629499","docid":"34-5-17-ZE58426F729AD76E6","description":"𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 F...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1022545/3dbfb1a7e2edbd692878d05f41e10c21/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/N-IsbwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqZtZNb_IQmU","linkTemplate":"/video/preview/18369388764356629499?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (x^2)*e^x (by parts)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qZtZNb_IQmU\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhYKFDE4MzY5Mzg4NzY0MzU2NjI5NDk5WhQxODM2OTM4ODc2NDM1NjYyOTQ5OWqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOuAYIEJAGABCsqiwEQARp4gfATAAABAAADA_z--wT_Afn99vH4_fwA4gP8Cwn8AgDo-AMHCf8AAPAW_v8EAAAABwYB7_v9AQD__wj5BAAAAAnn9vv9AAAADA7vAv8BAADt_gD1AgAAAPcL-Av_AAAA9vcN8gAAAAD5Aw37AAAAAP_9AO8AAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AF_DAD849_cArQY2v_HMtoBkiMNAPtCxQDh79P_zuywAdnz7wD4EegBHg8P_7EFzf4ZzZ8DKLsKASuu8_4pvwMAzAnjAC4Zvf4yISP__gbh_t73Lfvl1v3-2dTA_gsOw_0H5PgDAP7l__AbzgIf3jkD9gExBzfZFALTmfwB5-DyBebTzv3vG_kIDtcT9cwiKQIj6R3_GxgL-MgfzQAJ5BTz7sot_xEYwwAm0QUCGzgM-cINFQEKAf75JTEN-bb7_A_M7jsHzPH5AMfWCuwC9RvxEx3fBCLx8Q8J-RIEH_HlA-rY5_MYJff759cGAKQX9QMgAC1w3uY6OBNACUhhUAIqzwcQABrAB7IOx77nWSQ83wqXvKoLnb3Lgb87wP6QvBTamL0nT3k9CxGJux5P6z3an4W9czO3vOwzx736crA8iL0wvZjdIz6BSZC9Q_T1vHE9Wr7nFr89hUyovFacur2jtX28rOTjPP-VNb0PG5a9QKd7PODZfj1ScU29zTdHvMlXwrzmDAA9Qu4CvbGczryXnEm8tu1gvWU7G7xX9F29n9pjOqr0Lj1HUve81B5APLSwsj1MJTK96eUgu08kc7y4ghw9Wg2JvDgCJzxTkhY8TdcYPZxYNr0tnjW9kOPiPDfd0r1rpIC8k2XSO9_8xj3sG_M8h1k-vWVDnT13NbS9kHYyvQ1TK75csqY7Yro1vD1EIz5WHNi8TZqrPNzvhb3dCfY9yJ3ruhvccT3B-kS9zGJivBzz1TwzV-G85y6uPDyUMjxK35o8nmutO41KJT3WIyg9LPOWPFuVlD3qDqi9MDCGvISODD0fgiq8lpWmvLt8a72Dw2Y8IHucO6VDTDwgGpc9hRzjOyGNLzyqR5o8vM9xPMU1Qz34UQ2-CW8su8eDbb1XEI69nbdWvGMvnz0m_6M9uGI1vEOpHT4fatu9xJqpOUUb9jxPtho7PSwvPGS2YLuoBI-9mjQZu1MRjb33ZFW7EJSZOhpVAb2LgR89dSwlvOzvpj1aTbI9T3OmucVlBj36DAi-VSEDupxygD1qPEc8bToCvCf0rz1fQJQ9iNsWt69yzzs3PzS8Va2_ui_wtr2CR4q9YChHuAO4lL3ePUC8CTiOOe50nD2s4s29Kv-9OWYJvDy9cMY7FO-dOl-tf70u4rA9CQI6Of6OMr1MURG8MUFBOcui8LxbQh6-NwXjOaxoPTxIqSQ9JcnyuR2tKj3c4WU8MMZeOC9Q8r2oXJy9Q4C_tyyoXrwfzo27N9cEuhR8rj0rwo094GRlOL6OEzue-CA9lTtNuIV_rLxDmJG6lLRfNhcDFT2_fHc9PQcHOUyoAD3H8J29_u4wOXn5qbunJcY9xK7_uFrG_LypUFg9KtoEtZoflD2jrwA9sGTON4dFVj3TZaa9vyj0NvzSkTzDjnA9ctg4OL2P4704Zc49OHOROPH8Grw_-aA8Cl6VOIBxGzyhcde8tHkfuBbz2DxKv7M8ZYWVt_cBKD5wYd298We_uW4eYr2xK7K9E7-_uEcn5jy-p629yTRvt003JL2Nu8w9rO4ONwa_qLzmTJS9CspktyL_7D01KQU-835buJ9b5DsVIvs8CcbAuLQWwL1UNLs9PF-yOHLyTL3hHlC9AdINuCAAOBNACUhtUAEqcxAAGmAm-gA0_jPJ6Q4T_f_HERAG4fbs7fL1__G7ABod6-QaD8vVHBAAFtL647MAAAAUFfko0QAIYxECAi8BLgUUgfkn_m0IFTW44x4OB81A7Rrf5Bj25CsA7R21GvXX9k0iDhYgAC26wTM7OBNACUhvUAIqrwYQDBqgBgAAwMAAAEjCAABoQgAAJMIAAAAAAABgQQAAJEIAAODBAABkwgAAmMEAAADBAABIwgAAgEAAAIjBAAAswgAAoEEAAFBCAADwwQAAPEIAAGTCAAC4wQAAIEEAAFDBAAAEQgAAKMIAAPjBAACKwgAAQEEAAGxCAACYwQAAxsIAAOhBAABIwgAAsMEAAOjBAAAgQgAA-EEAAFBCAACYwQAAIEEAANDBAADAwAAAYMEAAHDCAAAoQgAAiMEAABRCAACAQAAAYEIAAHDBAADgQAAALMIAAJhBAAAAwAAAiEEAAKhBAADgwQAAAEEAAMBAAAAQQgAA8EEAAEjCAACYwQAAtsIAAIDBAADewgAAwMEAAMjBAADIwQAA4MEAAFBBAADAwQAAzMIAABDBAACowQAAUMEAAAjCAACgQAAAQEAAACjCAAAAQQAAokIAAGDBAAAUwgAAJEIAABBBAACYQgAAHEIAALhBAAAQwgAAQMEAAEhCAACEwgAAhEIAAIDAAAAwwgAAkMEAAIC_AAAgQgAAmkIAAITCAACYwQAAcMEAALhBAAAwwgAA4MAAAADBAAAMQgAA4EEAAKxCAABAwAAAIEIAAJjBAADwQQAAgsIAADBCAAD4QQAAQEAAAKDBAACIwQAAiMIAANjCAAAAwgAAkEEAALDBAABwwgAAEMIAAKDBAAAkwgAAEEEAABjCAADAwQAAEEIAACxCAACGwgAAKEIAACRCAAAQwQAAuEEAACDCAABwwQAAyMEAAPhBAAAIwgAAgEIAAOhBAADAwQAAJEIAAODBAACAvwAAwEAAAADAAABcQgAA4EAAAAxCAACgQQAAHMIAAJDBAAB4wgAAIEEAAGDCAAAAQQAAWMIAACzCAABgwQAAjkIAAODBAAC-QgAAFEIAAADAAADYQQAAkMEAAEhCAAAwwgAAdMIAACBBAACEwgAAwEAAAMBBAABIQgAAAMIAAPjBAAAgwQAATMIAANhBAAAgwQAADMIAAEDBAABwwQAA2EEAAAxCAAAAwAAAcEIAAJjBAACIwgAAiEIAABDBAAAQwgAALEIAABDBIAA4E0AJSHVQASqPAhAAGoACAACIvQAAFL4AAAQ-AAAEPgAAqr4AACw-AAA8vgAAC78AAEQ-AACIPQAATD4AADA9AABQvQAAfD4AAEy-AACAOwAAij4AAKC8AAAwvQAAoj4AAH8_AACgPAAAiL0AAFA9AADYvQAAgj4AAIq-AACSvgAATD4AAHA9AACAOwAAmj4AAIi9AAAQPQAAyD0AAAy-AAC4PQAAqL0AAGy-AAA0vgAAjj4AAHC9AABAvAAA-D0AAIi9AACgPAAA-L0AAKi9AABcvgAADL4AAOg9AAAcPgAAnj4AAIo-AAB8vgAAyD0AABs_AACYPQAAQDwAAEQ-AADYvQAAFL4AAOA8AACKviAAOBNACUh8UAEqjwIQARqAAgAAoLwAAAy-AAAwvQAAQ78AAHC9AABwvQAAvj4AAGS-AAAMPgAA3j4AAJg9AABkPgAAUD0AALi9AACYvQAAqD0AAIK-AAAhPwAA4LwAAMI-AAAUPgAAVL4AAMi9AACCPgAAuL0AAAQ-AACoPQAAqD0AAEC8AADIPQAAiL0AAFA9AADgPAAAB78AALq-AAA8PgAAQLwAAIi9AADovQAAQLwAAFA9AADoPQAATD4AAAy-AAALPwAATL4AAH-_AABwvQAAmj4AAES-AABQvQAAuD0AACQ-AAAMvgAAJL4AADQ-AAAEvgAADL4AADC9AAC4PQAAbD4AABC9AAAMvgAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=qZtZNb_IQmU","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["18369388764356629499"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"5402026719980102816":{"videoId":"5402026719980102816","docid":"34-4-8-Z59876D237144613C","description":"𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsfo...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1577578/6207bd071fb68a2c0360f8479422f391/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/92Z7VgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Do74iTZWBBMc","linkTemplate":"/video/preview/5402026719980102816?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (e^2x)/(1+e^x) (substitution)","related_orig_text":"𝐗 𝐄 𝐔 𝐀","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"𝐗 𝐄 𝐔 𝐀\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=o74iTZWBBMc\",\"src\":\"serp\",\"rvb\":\"EqcDChM5OTgwODI2MTk0MDA2ODY3NTQxChMyNzU2OTk1NjU4NTMyNTI3NDA1ChE1MzA5MDExMzYxNDUwNjY1MQoUMTA1NTkwMzU0NTI0MjI5NTg4MjEKFDEwMTIyMDgwMzUxNDk1NDkwMTMyChQxNTcwNjc0MTkyNTg5NDIzODMxNgoSNjEyOTg2NTU0MjE1NDAwNjUzChMxMTU1OTgyNzkzNTAyNjgxMTA3ChQxNzA2NDk1NzAzNDU5NDk4MDExMQoTNjAxMDkwNDU5MTY4MzI2MjQzNwoTNTc4Mzc4Mjg2MzYzNzI0NDEzNQoTMTc4NDk3OTg3MTc1NTI3OTI5NgoTODMxNzIxNzQxOTA3MDY1ODQyNgoTNjY4ODg3Mjg5MDY1MDc3MDM5NQoTMTk4MjYxNzQ0NDQ3ODU1OTg1MwoTNDY1MTY1NTYxMDE1OTg2Nzk5NgoUMTgzNjkzODg3NjQzNTY2Mjk0OTkKEzU0MDIwMjY3MTk5ODAxMDI4MTYKEzg1MDQyOTcyOTYwOTA2MDAwNjMKFDEwODYxNjU2MzE4Nzk1NDg4NDgyGhUKEzU0MDIwMjY3MTk5ODAxMDI4MTZaEzU0MDIwMjY3MTk5ODAxMDI4MTZqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TdoIEJAGABCsqiwEQARp4gfkP9P4C_gADA_z--wT_AfMJ8AX4_f0A4QX9AQD8AgDp-AUF_P8AAP0HBAsEAAAABgj4-_j9AQABAQQBBQAAAAL09AD5AAAAHBL_AP4BAAD1_P7tAQAAAAUD_QQAAAAA6wIHAwMA_wD8Ag0PAAAAAPYK9_X__wAAIAAtjvrLOzgTQAlITlACKoQCEAAa8AF_DAD8yePc_6303v-uOAwAlBAj__tCxQDR8PL_-Na9AugI4wANCOD-EAoc_80U4AAZzZ8D8przAEvS-wDk0fgA5g75AfYU1v9IFB4D8-PzAAD2JP_X0-MB2dTA_gUuz_4B7Af9HiTe_Qc8zAMU3BQE9gExBzn6LwH0qvEE1OvfBtvzzPwfKPgFDtcT9a0qIAQ0AzAEFx_5_OYY0vz78gT47sot_xEYwwAm0QUCLwQB_pkDHAP7MAv_PhsSA78DC_vv9DEC59nt9toE_AQ8CBz1-x3i-DX77gMP5g75DwDx-grB6O3nAQH04sIJDcEf8wwgAC1w3uY6OBNACUhhUAIqzwcQABrAB3HMur7mrws6R-EhvHdlJ74VRJO8QcnuvCMT8L3XLSc99_1AvB5P6z3an4W9czO3vIv7z71urpA8nVPiu4mZDT7MP1-9652fuYbjCb7fIPU8rAEqvUePD75tpJE8aDjKPJrLsrkgGse9PbGzPKA0xD2m1VC9Ef_WOS6Sdr2JpkI9G-7Iu_lGub1Tl5y9ZZrfvFFWgjwrN8y9JXXCPFsxoj2xkVq9T2xPPIOh7j2LWjC9_AfHuxCUmbvIK4s97ubOvBIduDxvwrO80BzjPEQgvb20YD29W9VHOZqvt72_pVK99UzKPN_8xj3sG_M8h1k-vfRsablgqyS-gDKAuw1TK75csqY7Yro1vPW8Kz7NLHg8-nq-PNlCkL02vbo8SOxqO93xoT1LepO9YCuXvEsXBz3_iRs9NM9bPJniYDw16Ts9OZ8TPAib8Lz_Yxw9Fw2ZPFCEGruN9oO9RcKSvLLLgTxqBIE9yQyKvDZDw7sD7z898Bv8urJgh72R0pw9-U4KOz-8-Dx5RYs8DrNhPJuVCL0Idgy-zaXhuwpCg71sv7u9DIPoOz0VRj3qa6c8egZDvG786T1M5K29K3OpuwiIEz0yiU45pfCku22kkTxeyHm9H6w1OxcJkr2u-Uy9TnAcvDSRiL30pmI9fmbauw-peD2oMIs9GDBUuy8RtD1Kmg--ilfiuaq6hzxxEtQ8IqLeu5kP6D0MA5Y9_F1VunVEtLzMYfe8kd8MutHVkb31Nqy8IifhOpFhpb0lRoq99Ki7ORWzdD1AYK-9jWJ-OOFi4Lw4zYy8BmWluBEmG70BGIo9WDWRuT8Zo7yy9le9Q_ULuMui8LxbQh6-NwXjOTu4Rb1ElZA9HOi-OECFIz0a8EO8yaCyOVMekr1KG8i94XObN8z77rxWPQk7u7uWuRYjIT1wW8A8P2ASOb8HlLwiqou8skUGuVhyFb3CkiG9EeisOTzpEz2voSo9_9u1OEHxAz1xT8G91zh7OXn5qbunJcY9xK7_uJ_PO734AIg9sZSoN-ZVYj1TklU9AC4qOLvUyD0DQDW92L57N6dtjTxo3EU94PbGuKBQz70V74Y9wtICOGNBhj38bMk9LSpLOewYsjx5_Ci8pl3st7_hkbrsxtY8KfCmOPcBKD5wYd298We_uSvcE7xklQK-cT0buM5yNLxdD8u9qHCbt465obzJCa49ZG4UtwPsRDvkzSu9MqqZuCL_7D01KQU-835buCSsNz30Ycc8Q_LxuLQWwL1UNLs9PF-yOHLsv73Iq3g9F9mNOCAAOBNACUhtUAEqcxAAGmAb9AA3AkrR_w8g_Q3FDwUM7vzI6uQB__TpAAAeE9sFAt3FDgQALd4F8bMAAAAQD_gnzAAJYgIF_iLpEPEthf4eA3_8Gje03Qz-0tU47RL87hsEBjMA6DDAEfbO5zczHx8gAC01uDM7OBNACUhvUAIqrwYQDBqgBgAAQMEAAJzCAADMQgAAIMIAACBCAACQQQAAZEIAAHBBAAD4wQAAgD8AAPjBAADAwQAATEIAAHBBAABMwgAAAEIAABRCAAAQwgAAOEIAADDCAADYwQAA8EEAABDCAAAQQQAAGMIAAEDCAAAQwgAAoEAAAMZCAABAwQAAcMIAAMBAAABIwgAAKMIAAEDCAABQQgAAFEIAAGBCAAC4wQAAwEAAACTCAACAwQAAoMEAAAjCAADYQQAANMIAANBBAAAEQgAAREIAALDBAAAAAAAA6MEAAABAAAAAQAAAQEEAACxCAABowgAAEEEAAJBBAACwQQAA6EEAAFTCAAA0wgAAjMIAAPjBAADswgAAcMEAAFzCAADgwAAAeMIAAKBBAAB0wgAAusIAADhCAAAEwgAAAEEAAGBBAACAQAAA8MEAAEDCAADgwAAAkEIAAADBAAAEwgAAYEEAADDBAAB4QgAAIEEAAPBBAADAQAAA-MEAACRCAACowQAATEIAANBBAADowQAAoMEAABDBAAAgQQAAskIAABzCAABQwgAAoMAAAExCAADwwQAA2MEAAKhBAADQQQAAIEEAAIxCAADAQQAAOEIAAMjBAADgQQAAoMIAAGRCAACoQQAAAEEAAEzCAADowQAAQMIAALjCAACgwQAA6EEAAHDBAABowgAAmMEAAIC_AACIwQAAUEEAAIDBAACQwQAA6EEAAEBCAABAwgAAqkIAADRCAAAgQQAA0MEAABTCAACQwQAAQMEAAABCAAAYwgAA-EEAADRCAAAwQQAAIEEAAJDBAADQwQAAYMEAAODAAAA4QgAAsEEAAOhBAACQQQAAQMEAAHDBAABkwgAAgMEAAEDCAAC4QQAAKMIAACzCAACYwQAAnkIAAHDBAAB4QgAA-EEAAMhBAAAQQQAAAAAAADRCAAB0wgAAbMIAAHBBAAA8wgAAQMAAAOBBAACWQgAAoMEAALjBAACYwQAAusIAAEBBAACgQQAA4MEAAEzCAAAAQAAAAEIAANBBAAAQwQAAuEEAAIjBAAAowgAAjEIAAKBAAABYwgAA8EEAAADCIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAiL0AADQ-AADYPQAAJL4AACw-AAA8vgAA8r4AAKg9AACoPQAAPD4AAKg9AACgPAAATD4AAFS-AACAOwAALD4AAEA8AACovQAAgj4AAH8_AACYvQAADL4AABQ-AABUvgAA4LwAAKi9AAAUvgAA4DwAABw-AACgPAAABD4AAGy-AAAEPgAAED0AADS-AAAEPgAA2L0AAFy-AACOvgAAHD4AAAy-AACgPAAA4LwAAHC9AAAQPQAAyD0AAJi9AABkvgAAur4AAPg9AAD4PQAAjj4AABA9AACmvgAAQLwAAB8_AACYPQAA2D0AALI-AACgPAAA4LwAAFC9AAAkviAAOBNACUh8UAEqjwIQARqAAgAANL4AAOi9AAAMvgAAQb8AABA9AACIPQAABD4AAPi9AABAPAAAzj4AALi9AADYPQAABD4AAFC9AAAEvgAAMD0AANi9AAAfPwAAHL4AAIo-AACAuwAAVL4AANg9AABsPgAA4LwAADQ-AADovQAAgLsAANg9AACAOwAAiL0AAJg9AACgPAAAmr4AAI6-AADgPAAAHD4AAJi9AACAuwAAHL4AAOC8AAAQPQAAuD0AAES-AAC-PgAA2L0AAH-_AADIPQAAqD0AAOA8AAA0PgAAyL0AAJI-AAD4PQAA0r4AALg9AABwvQAA2L0AAFA9AABQPQAALD4AAAy-AAA8vgAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=o74iTZWBBMc","parent-reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["5402026719980102816"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false}},"dups":{"9980826194006867541":{"videoId":"9980826194006867541","title":"Integral of \u0007[e\u0007]^\u0007[x\u0007] - Exponential Function","cleanTitle":"Integral of e^x - Exponential Function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=cu2wdHkf5NQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cu2wdHkf5NQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDakRwVllBR0VmT2JBbGV1a00xVk9qQQ==","name":"KC LEUNG","isVerified":false,"subscribersCount":0,"url":"/video/search?text=KC+LEUNG","origUrl":"http://www.youtube.com/@aGuyWithConscience","a11yText":"KC LEUNG. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":118,"text":"1:58","a11yText":"Süre 1 dakika 58 saniye","shortText":"1 dk."},"views":{"text":"167,4bin","a11yText":"167,4 bin izleme"},"date":"2 oca 2017","modifyTime":1483315200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cu2wdHkf5NQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cu2wdHkf5NQ","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":118},"parentClipId":"9980826194006867541","href":"/preview/9980826194006867541?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/9980826194006867541?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2756995658532527405":{"videoId":"2756995658532527405","title":"Why is the derivative of \u0007[e\u0007]^\u0007[x\u0007] equal to \u0007[e\u0007]^\u0007[x\u0007]?","cleanTitle":"Why is the derivative of e^x equal to e^x?","host":{"title":"YouTube","href":"http://www.youtube.com/live/oBlHiX6vrQY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oBlHiX6vrQY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":718,"text":"11:58","a11yText":"Süre 11 dakika 58 saniye","shortText":"11 dk."},"views":{"text":"432,6bin","a11yText":"432,6 bin izleme"},"date":"8 ağu 2021","modifyTime":1628412003000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oBlHiX6vrQY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oBlHiX6vrQY","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":718},"parentClipId":"2756995658532527405","href":"/preview/2756995658532527405?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/2756995658532527405?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"53090113614506651":{"videoId":"53090113614506651","title":"Integral of \u0007[e\u0007]^sqrt(\u0007[x\u0007]) (substitution + by parts)","cleanTitle":"Integral of e^sqrt(x) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Q9qoPrQC1Ds","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Q9qoPrQC1Ds?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":163,"text":"2:43","a11yText":"Süre 2 dakika 43 saniye","shortText":"2 dk."},"views":{"text":"143,9bin","a11yText":"143,9 bin izleme"},"date":"22 şub 2016","modifyTime":1456099200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Q9qoPrQC1Ds?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Q9qoPrQC1Ds","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":163},"parentClipId":"53090113614506651","href":"/preview/53090113614506651?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/53090113614506651?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10559035452422958821":{"videoId":"10559035452422958821","title":"Integral of \u0007[x\u0007]/\u0007[e\u0007]^\u0007[x\u0007] (by parts)","cleanTitle":"Integral of x/e^x (by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TPvLXjjYook","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TPvLXjjYook?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":124,"text":"2:04","a11yText":"Süre 2 dakika 4 saniye","shortText":"2 dk."},"views":{"text":"103,3bin","a11yText":"103,3 bin izleme"},"date":"3 oca 2016","modifyTime":1451779200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TPvLXjjYook?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TPvLXjjYook","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":124},"parentClipId":"10559035452422958821","href":"/preview/10559035452422958821?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/10559035452422958821?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10122080351495490132":{"videoId":"10122080351495490132","title":"Deriving \u0007[e\u0007] from the limit (1+1/\u0007[x\u0007])^\u0007[x\u0007] as \u0007[x\u0007] approaches infinity","cleanTitle":"Deriving e from the limit (1+1/x)^x as x approaches infinity","host":{"title":"YouTube","href":"http://www.youtube.com/live/ZgeCyyDf5OE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ZgeCyyDf5OE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWXhBT0c2S3ozdF9oYUY0NWpZUEZQUQ==","name":"Tambuwal Maths Class","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Tambuwal+Maths+Class","origUrl":"http://www.youtube.com/@tambuwalmathsclass","a11yText":"Tambuwal Maths Class. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":392,"text":"6:32","a11yText":"Süre 6 dakika 32 saniye","shortText":"6 dk."},"views":{"text":"37,1bin","a11yText":"37,1 bin izleme"},"date":"26 kas 2022","modifyTime":1669478431000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ZgeCyyDf5OE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ZgeCyyDf5OE","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":392},"parentClipId":"10122080351495490132","href":"/preview/10122080351495490132?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/10122080351495490132?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15706741925894238316":{"videoId":"15706741925894238316","title":"integral \u0007[x\u0007] \u0007[e\u0007]^-\u0007[x\u0007] dx","cleanTitle":"integral x e^-x dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QFhxrNxAZAI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QFhxrNxAZAI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOVdPRFRrbE9wbG9CZmpGbzRrWW9qdw==","name":"Física y Mate","isVerified":false,"subscribersCount":0,"url":"/video/search?text=F%C3%ADsica+y+Mate","origUrl":"http://www.youtube.com/@fisicaymate7892","a11yText":"Física y Mate. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":224,"text":"3:44","a11yText":"Süre 3 dakika 44 saniye","shortText":"3 dk."},"views":{"text":"64,1bin","a11yText":"64,1 bin izleme"},"date":"31 mayıs 2018","modifyTime":1527724800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QFhxrNxAZAI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QFhxrNxAZAI","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":224},"parentClipId":"15706741925894238316","href":"/preview/15706741925894238316?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/15706741925894238316?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"612986554215400653":{"videoId":"612986554215400653","title":"Integral of (1+\u0007[e\u0007]^\u0007[x\u0007])/(1-\u0007[e\u0007]^\u0007[x\u0007]) (substitution)","cleanTitle":"Integral of (1+e^x)/(1-e^x) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/v/w8l355zxL-g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/w8l355zxL-g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":149,"text":"2:29","a11yText":"Süre 2 dakika 29 saniye","shortText":"2 dk."},"views":{"text":"31,4bin","a11yText":"31,4 bin izleme"},"date":"10 kas 2018","modifyTime":1541808000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/w8l355zxL-g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=w8l355zxL-g","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":149},"parentClipId":"612986554215400653","href":"/preview/612986554215400653?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/612986554215400653?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1155982793502681107":{"videoId":"1155982793502681107","title":"Integral of sqrt(\u0007[e\u0007]^\u0007[x\u0007] - 1) (substitution)","cleanTitle":"Integral of sqrt(e^x - 1) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/v/cD_-zkTmsUQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cD_-zkTmsUQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":157,"text":"2:37","a11yText":"Süre 2 dakika 37 saniye","shortText":"2 dk."},"views":{"text":"57,3bin","a11yText":"57,3 bin izleme"},"date":"4 oca 2017","modifyTime":1483488000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cD_-zkTmsUQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cD_-zkTmsUQ","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":157},"parentClipId":"1155982793502681107","href":"/preview/1155982793502681107?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/1155982793502681107?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17064957034594980111":{"videoId":"17064957034594980111","title":"Why does \u0007[e\u0007]^(ln \u0007[x\u0007]) = \u0007[x\u0007]","cleanTitle":"Why does e^(ln x) = x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HL6AWNjVOnU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HL6AWNjVOnU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNUU1RFE1S2FHZVNIT2JDVHNLTTNsdw==","name":"Cowan Academy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Cowan+Academy","origUrl":"http://www.youtube.com/@CowanAcademy","a11yText":"Cowan Academy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":124,"text":"2:04","a11yText":"Süre 2 dakika 4 saniye","shortText":"2 dk."},"views":{"text":"349,1bin","a11yText":"349,1 bin izleme"},"date":"19 mar 2018","modifyTime":1521417600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HL6AWNjVOnU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HL6AWNjVOnU","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":124},"parentClipId":"17064957034594980111","href":"/preview/17064957034594980111?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/17064957034594980111?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6010904591683262437":{"videoId":"6010904591683262437","title":"Integral of \u0007[e\u0007]^(-\u0007[x\u0007])/1+\u0007[e\u0007]^(-\u0007[x\u0007]) | By Substitution","cleanTitle":"Integral of e^(-x)/1+e^(-x) | By Substitution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1X-DNuMaohs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1X-DNuMaohs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRWFnNUd3bDE4ZDRwWmpzNlhXZGJTdw==","name":"HV Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=HV+Math","origUrl":"http://www.youtube.com/@hvmath","a11yText":"HV Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":106,"text":"1:46","a11yText":"Süre 1 dakika 46 saniye","shortText":"1 dk."},"date":"26 mar 2022","modifyTime":1648252800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1X-DNuMaohs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1X-DNuMaohs","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":106},"parentClipId":"6010904591683262437","href":"/preview/6010904591683262437?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/6010904591683262437?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5783782863637244135":{"videoId":"5783782863637244135","title":"integral \u0007[x\u0007]^3 \u0007[e\u0007]^-\u0007[x\u0007] dx","cleanTitle":"integral x^3 e^-x dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ymGR2Drq3EM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ymGR2Drq3EM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOVdPRFRrbE9wbG9CZmpGbzRrWW9qdw==","name":"Física y Mate","isVerified":false,"subscribersCount":0,"url":"/video/search?text=F%C3%ADsica+y+Mate","origUrl":"http://www.youtube.com/@fisicaymate7892","a11yText":"Física y Mate. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":364,"text":"6:04","a11yText":"Süre 6 dakika 4 saniye","shortText":"6 dk."},"views":{"text":"27,8bin","a11yText":"27,8 bin izleme"},"date":"9 tem 2018","modifyTime":1531094400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ymGR2Drq3EM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ymGR2Drq3EM","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":364},"parentClipId":"5783782863637244135","href":"/preview/5783782863637244135?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/5783782863637244135?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1784979871755279296":{"videoId":"1784979871755279296","title":"Integral of \u0007[e\u0007]^\u0007[x\u0007] sinx","cleanTitle":"Integral of e^x sinx","host":{"title":"YouTube","href":"http://www.youtube.com/live/2JKPTCBaI4w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2JKPTCBaI4w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDRVdwYkZMem9ZR1BmdVdVTUZQU2FvQQ==","name":"The Organic Chemistry Tutor","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Organic+Chemistry+Tutor","origUrl":"http://www.youtube.com/@TheOrganicChemistryTutor","a11yText":"The Organic Chemistry Tutor. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":295,"text":"4:55","a11yText":"Süre 4 dakika 55 saniye","shortText":"4 dk."},"views":{"text":"299,3bin","a11yText":"299,3 bin izleme"},"date":"14 mar 2018","modifyTime":1520985600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2JKPTCBaI4w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2JKPTCBaI4w","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":295},"parentClipId":"1784979871755279296","href":"/preview/1784979871755279296?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/1784979871755279296?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8317217419070658426":{"videoId":"8317217419070658426","title":"Integral of (\u0007[x\u0007]*\u0007[e\u0007]^\u0007[x\u0007])/(1+\u0007[x\u0007])^2 (by parts)","cleanTitle":"Integral of (x*e^x)/(1+x)^2 (by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LEMqHXa7QMw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LEMqHXa7QMw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":175,"text":"2:55","a11yText":"Süre 2 dakika 55 saniye","shortText":"2 dk."},"views":{"text":"80,7bin","a11yText":"80,7 bin izleme"},"date":"13 eyl 2020","modifyTime":1599955200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LEMqHXa7QMw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LEMqHXa7QMw","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":175},"parentClipId":"8317217419070658426","href":"/preview/8317217419070658426?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/8317217419070658426?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6688872890650770395":{"videoId":"6688872890650770395","title":"\u0007[E\u0007](XY)=\u0007[E\u0007](\u0007[X\u0007]) \u0007[E\u0007](Y) || Laws of Expectation","cleanTitle":"E(XY)=E(X) E(Y) || Laws of Expectation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rQFW6VDBBwc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rQFW6VDBBwc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdUhEdWp5U2ZaSFZOTEI3NXBCR2tMQQ==","name":"HDG MATHS TUITION","isVerified":false,"subscribersCount":0,"url":"/video/search?text=HDG+MATHS+TUITION","origUrl":"http://www.youtube.com/@HDGMATHSTUITION","a11yText":"HDG MATHS TUITION. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":709,"text":"11:49","a11yText":"Süre 11 dakika 49 saniye","shortText":"11 dk."},"views":{"text":"35,3bin","a11yText":"35,3 bin izleme"},"date":"13 nis 2020","modifyTime":1586736000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rQFW6VDBBwc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rQFW6VDBBwc","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":709},"parentClipId":"6688872890650770395","href":"/preview/6688872890650770395?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/6688872890650770395?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1982617444478559853":{"videoId":"1982617444478559853","title":"Integral of \u0007[e\u0007]^-\u0007[x\u0007] (substitution)","cleanTitle":"Integral of e^-x (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BIurgGAv5Sk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BIurgGAv5Sk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":43,"text":"00:43","a11yText":"Süre 43 saniye","shortText":""},"views":{"text":"89,6bin","a11yText":"89,6 bin izleme"},"date":"7 haz 2020","modifyTime":1591547691000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BIurgGAv5Sk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BIurgGAv5Sk","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":43},"parentClipId":"1982617444478559853","href":"/preview/1982617444478559853?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/1982617444478559853?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4651655610159867996":{"videoId":"4651655610159867996","title":"(Method 2) Integral of \u0007[x\u0007]*\u0007[e\u0007]^(\u0007[x\u0007]^2) (substitution)","cleanTitle":"(Method 2) Integral of x*e^(x^2) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/v/kia88ymbOzE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kia88ymbOzE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":111,"text":"1:51","a11yText":"Süre 1 dakika 51 saniye","shortText":"1 dk."},"views":{"text":"529bin","a11yText":"529 bin izleme"},"date":"4 oca 2016","modifyTime":1451865600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kia88ymbOzE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kia88ymbOzE","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":111},"parentClipId":"4651655610159867996","href":"/preview/4651655610159867996?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/4651655610159867996?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18369388764356629499":{"videoId":"18369388764356629499","title":"Integral of (\u0007[x\u0007]^2)*\u0007[e\u0007]^\u0007[x\u0007] (by parts)","cleanTitle":"Integral of (x^2)*e^x (by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qZtZNb_IQmU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qZtZNb_IQmU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":174,"text":"2:54","a11yText":"Süre 2 dakika 54 saniye","shortText":"2 dk."},"views":{"text":"225,2bin","a11yText":"225,2 bin izleme"},"date":"3 oca 2016","modifyTime":1451779200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qZtZNb_IQmU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qZtZNb_IQmU","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":174},"parentClipId":"18369388764356629499","href":"/preview/18369388764356629499?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/18369388764356629499?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5402026719980102816":{"videoId":"5402026719980102816","title":"Integral of (\u0007[e\u0007]^2\u0007[x\u0007])/(1+\u0007[e\u0007]^\u0007[x\u0007]) (substitution)","cleanTitle":"Integral of (e^2x)/(1+e^x) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/v/o74iTZWBBMc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/o74iTZWBBMc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":118,"text":"1:58","a11yText":"Süre 1 dakika 58 saniye","shortText":"1 dk."},"views":{"text":"125bin","a11yText":"125 bin izleme"},"date":"6 ağu 2017","modifyTime":1502034439000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/o74iTZWBBMc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=o74iTZWBBMc","reqid":"1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL","duration":118},"parentClipId":"5402026719980102816","href":"/preview/5402026719980102816?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","rawHref":"/video/preview/5402026719980102816?parent-reqid=1765331199629746-9856516086722839486-balancer-l7leveler-kubr-yp-klg-204-BAL&text=%F0%9D%90%97+%F0%9D%90%84+%F0%9D%90%94+%F0%9D%90%80","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"8565160867228394867204","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"regular":{"default":"R-I-48058-715","mail":"R-A-13411721-3"},"adult":{"default":"R-I-474674-108","mail":"R-A-13426421-3"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"𝐗 𝐄 𝐔 𝐀","queryUriEscaped":"%F0%9D%90%97%20%F0%9D%90%84%20%F0%9D%90%94%20%F0%9D%90%80","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}