{"pages":{"search":{"query":"Integrals ForYou","originalQuery":"Integrals ForYou","serpid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","parentReqid":"","serpItems":[{"id":"12615051969900981034-0-0","type":"videoSnippet","props":{"videoId":"12615051969900981034"},"curPage":0},{"id":"1365325187185584928-0-1","type":"videoSnippet","props":{"videoId":"1365325187185584928"},"curPage":0},{"id":"12458871617743588631-0-2","type":"videoSnippet","props":{"videoId":"12458871617743588631"},"curPage":0},{"id":"2072825662016090101-0-3","type":"videoSnippet","props":{"videoId":"2072825662016090101"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEludGVncmFscyBGb3JZb3UK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","ui":"desktop","yuid":"5190103371769177254"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"787543797431395244-0-5","type":"videoSnippet","props":{"videoId":"787543797431395244"},"curPage":0},{"id":"3482254653173653736-0-6","type":"videoSnippet","props":{"videoId":"3482254653173653736"},"curPage":0},{"id":"1930999456278746482-0-7","type":"videoSnippet","props":{"videoId":"1930999456278746482"},"curPage":0},{"id":"4489216167531479793-0-8","type":"videoSnippet","props":{"videoId":"4489216167531479793"},"curPage":0},{"id":"12722066716350592627-0-9","type":"videoSnippet","props":{"videoId":"12722066716350592627"},"curPage":0},{"id":"2453598555517141157-0-10","type":"videoSnippet","props":{"videoId":"2453598555517141157"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEludGVncmFscyBGb3JZb3UK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","ui":"desktop","yuid":"5190103371769177254"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"10984246358060969142-0-12","type":"videoSnippet","props":{"videoId":"10984246358060969142"},"curPage":0},{"id":"13893584749606851801-0-13","type":"videoSnippet","props":{"videoId":"13893584749606851801"},"curPage":0},{"id":"3037563882283317828-0-14","type":"videoSnippet","props":{"videoId":"3037563882283317828"},"curPage":0},{"id":"12106507926067141452-0-15","type":"videoSnippet","props":{"videoId":"12106507926067141452"},"curPage":0},{"id":"13009395592255300312-0-16","type":"videoSnippet","props":{"videoId":"13009395592255300312"},"curPage":0},{"id":"10785103366636643394-0-17","type":"videoSnippet","props":{"videoId":"10785103366636643394"},"curPage":0},{"id":"9881639768672126295-0-18","type":"videoSnippet","props":{"videoId":"9881639768672126295"},"curPage":0},{"id":"3595366480798106761-0-19","type":"videoSnippet","props":{"videoId":"3595366480798106761"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEludGVncmFscyBGb3JZb3UK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","ui":"desktop","yuid":"5190103371769177254"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegrals%2BForYou"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5813669078503916657125","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1460331,0,20;1457615,0,2;1468855,0,2;1460955,0,73;1460717,0,56;1464561,0,91;1459297,0,34;1152685,0,45;1444116,0,90;1461643,0,10;1464523,0,34;1470226,0,43;1466295,0,99;1465943,0,26;1472522,0,72;1352123,0,3;1467149,0,66;1452051,0,84;658770,0,15;364898,0,15;1466619,0,32;1439205,0,41;1470514,0,1;1472080,0,15;1467157,0,67;461652,0,24;1470316,0,79;1145208,0,56;45957,0,94;151171,0,18;1459210,0,52;1281084,0,34;287509,0,57;1447467,0,30;1006024,0,35;1466396,0,21;1467129,0,81;1296808,0,93"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DIntegrals%2BForYou","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Integrals+ForYou","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Integrals+ForYou","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Integrals ForYou: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Integrals ForYou\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Integrals ForYou — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y167d790f4d6f3e9f3f8ea710cbcab6fc","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1457615,1468855,1460955,1460717,1464561,1459297,1152685,1444116,1461643,1464523,1470226,1466295,1465943,1472522,1352123,1467149,1452051,658770,364898,1466619,1439205,1470514,1472080,1467157,461652,1470316,1145208,45957,151171,1459210,1281084,287509,1447467,1006024,1466396,1467129,1296808","queryText":"Integrals ForYou","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5190103371769177254","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769177256","tz":"America/Louisville","to_iso":"2026-01-23T09:07:36-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1460331,1457615,1468855,1460955,1460717,1464561,1459297,1152685,1444116,1461643,1464523,1470226,1466295,1465943,1472522,1352123,1467149,1452051,658770,364898,1466619,1439205,1470514,1472080,1467157,461652,1470316,1145208,45957,151171,1459210,1281084,287509,1447467,1006024,1466396,1467129,1296808","queryText":"Integrals ForYou","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5190103371769177254","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5813669078503916657125","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":155,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"5190103371769177254","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"12615051969900981034":{"videoId":"12615051969900981034","docid":"34-5-16-ZEDA0F057A5BC1A6E","description":"Final answer! 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐦𝐞𝐭𝐡𝐨𝐝𝐬 𝐩𝐥𝐚𝐲𝐥𝐢𝐬𝐭 ► Integration by parts • 🧑🔧 Integration by parts ► Integration by substitution • 🧑🔧 Integration by substitution ►...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/926621/504d798ceecbdec2ec433974f70e39f3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/nLCqCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dz96EoOKFk3w","linkTemplate":"/video/preview/12615051969900981034?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of arctan(2x) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=z96EoOKFk3w\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFgoUMTI2MTUwNTE5Njk5MDA5ODEwMzRaFDEyNjE1MDUxOTY5OTAwOTgxMDM0aogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E9UBggQkAYAEKyqLARABGniBASAE_wvyAOwG9PX9AAIA3vXy7vsAAQDcBQTy_vsDAPX7DA0LAAAABhHxDAYAAAD9_A398f0BAAQJ7PUDAAAADPD0DvkAAAAAHfMI_QAAAN8L9vgDAAAAAwzsCv8AAADt_xES_wAAAAMVAQoAAAAAEvYUDwABAAAgAC3pvKw7OBNACUhOUAIqhAIQABrwAX8U7P7k0PYB9yTXALos9QCNOi7_DCje_6jj7v_ICNYB6AjjAPgR6AEC8g7_zRTgABnNnwMa0yD_S9L7ABvv7ADLCeMAKe7YAUADCv8XF84B9vg1_-XW_f78ttUAJyC1AOP_6v4SFvX-JRy8AibiHQPd9zoFKAMe-gOKAQn1zd8D-9_V_fwJAgUDyf73rSogBBPaJwAbGAv48Rr1APbNBvwW1zD88BjO_iyuEP8cBP_7wg0VAQ0z4f0lMQ35yPD5Bu_0MQK5FPEFzeUe_zcPBu3xAOQE-9jvDTQeEgEH_QQG7LX16SXt9ALt9gkJvjj2-SAALdbM5jo4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7sd_DvTyoX71wvge94OLXvHi0EDzYkwa7_dKnPQmyFL1L_aE87DPHvfpysDyIvTC9y4AzPubRiL2YYjM8ehcvvgg8MD0pn9S8o3XUvbdP_bz9Lxc9msuyuSAax709sbM8wX6-PfL3wb0XrW28L5aYvFqptj0ooOS8Wq9TPcghx7xjJea8Pz9nPXthl7zSCw68oaOwPDZg67yq2os78QWXPQsmHr2ntBm9EJSZu8griz3u5s68uJNIvXjoAD2fhGM86_uFvT5oTL2HOxE8EXaVvQ8JX7ykJFq8lVKGPSMxwTy7ZWK8aTPzPB5v8r3XJdM60CpDvphzn7wPqIg8nyDxPRAOLL2OESc5erZdvWlAOD2PmsS7Q3m6PLdSOb2soDO8Sz9hvEePXzvWvg06Ms8lPSRNFz3mut88BSotPEZBED3d81c844IYPSOnqr3W3Je7P30aPbzG0zy4QII7EY3uPKdULj1to6a88LeDu4PkuD0ImT885BqXujxy2jt6iZY8JF6eu2L46L1TGGc74LzYvXdhgL0-fQK8d9zwPEb7Lj32Dae8bvzpPUzkrb0rc6m7QuOePe_Y2TxNvwI85Mj5vGkRq73IogC8d1nCvS5ORrzupTq8LX2jvdmHJj1eqYC7g23kPcKmmT1LomU5KcSrOyfrob1sBno7uiXBO8AAZzwr4Ue7o22BPZLjkz3DiRy4iSIpvc5Qv7saeCS77c9qvdX_nrzq-Xu6tCKlvW0tPb1quIQ5fZXcPRZuKb58PPK51ZN5PGsWnjxJJ1g5c0u7vfPt-Dzccuk4E6swvaF6pb0kdV24VBv8vWK7-70T0_I5s3cKPIEByT3scae4VF22vHGHFzvQpH66FByDvcckrb0aURU47aUkPWvGGD1C1uO2nlCePdjpLD2Z_HW4Q5OPPUXMFj0jctI3DbAlvYpyIbrGli45QZR5PCLCnrrKP0w3JEbPPG5chb1JXJ84nGsYvQRxDj6CCY25uTEivdX00TrafMu4FqeaPI5rbT39FsQ4iGmqPfZSQr0n6So4GMmDPWvLCj3OoTK3nHpzvddL0z2fjZc4DWYNOp2QjLw9M7a440LUPD-SrTzcL8G2eSQ5PVNBRTyRmD22H58APqTkkL0V6Dq5ORzIuZ89171uKD-3MpTuvLr4u702Fya4jrmhvMkJrj1kbhS3oW9BuwuLkL1ihgm4Iv_sPTUpBT7zflu4WZZ5PMUMYz0buI64UgmkvR_4Uz0JQzA4cuy_vcireD0X2Y04IAA4E0AJSG1QASpzEAAaYCEHAE8ENdfS4xDqDcXpCvS188QS2gr_18__EzQA7yAKyL74-_860uj6pgAAABHuAT0EAAB3GPDuKuUn6CmiETsPf7MJXsnIAgLO3xLwHfQL9Rb2WQDdDb4q-d3xaSA_4iAALZsTGjs4E0AJSG9QAiqvBhAMGqAGAADwwQAAXMIAAAhCAADgwQAAYEEAALBBAABAQgAAPMIAACDCAAAAwQAAsMEAAHjCAADAwAAAisIAAPDBAADQQQAAqEEAAKDAAAA4QgAAOMIAAKDBAAAEQgAAgL8AABDBAABIwgAAiMIAAIjCAAAAwgAAxkIAAFDBAACEwgAAcEEAABjCAAAswgAAjMIAAABCAAAIQgAA6EEAAADBAAAQQgAAEMEAAKDAAAC4wQAAgsIAACRCAACgQAAAQMEAACDBAACcQgAAwMAAAIBAAABwwQAAIEEAAABAAADAwAAAoMAAAMTCAABgwQAAIMEAAJBBAADgwAAAWMIAAKhBAACewgAA2MEAAPTCAAAAwAAAEMIAAFjCAAAQwgAAeEIAAABBAACiwgAAIEEAAIA_AAAIwgAA0MEAAKDBAACQQQAAUMEAAAAAAACOQgAADMIAABjCAAA8QgAAwMEAAHxCAAA8QgAAqEEAAJbCAAC4QQAAfEIAAKrCAAAcQgAAAEEAAEzCAABAQQAAQEAAAMBBAABQQgAAfMIAAFDBAAAQwQAAAAAAAETCAABQwQAAAEAAANhBAACoQQAAVEIAADDBAADwQQAAAEAAADDBAAAIwgAAuEEAACBBAACAwAAAYMIAAADBAABcwgAAgsIAANjBAACwwQAA4EEAACDBAADgwAAAIEEAAIDCAADgwAAAkMEAAABBAADAQAAAFEIAACDBAAAgQgAAJEIAACTCAADgQAAAOMIAACTCAACgwQAAHEIAAAAAAACoQQAAyEEAAAzCAACYQQAAAEAAAATCAACgQQAAYMEAAKpCAACAPwAABEIAALBBAADgQAAA-MEAACjCAAAQQQAAjMIAAEDAAABwwgAA6MEAAEDCAACQQgAAiEEAAL5CAABsQgAAcMEAAHhCAACgwAAAVEIAAPjBAACKwgAAiEEAADTCAAAgwgAAgD8AAIhCAACAPwAAiMIAAEDBAADwwQAAgEIAAODBAACUwgAA8EEAAMDAAAD4QQAAQEAAAATCAAAgQgAAiMEAAGDCAACWQgAAqMEAACDCAAAgQQAA4MEgADgTQAlIdVABKo8CEAAagAIAAIq-AACOvgAAmL0AAAQ-AAAkvgAARD4AAJg9AAAXvwAAgDsAAHC9AAC4vQAA-D0AACQ-AACyPgAAXL4AAAy-AAD4PQAATD4AAOA8AAAvPwAAfz8AANa-AACKvgAAUL0AAPq-AABAvAAAcD0AAJK-AAAUPgAATD4AAOg9AAAMvgAApr4AAIg9AADovQAAyL0AAIA7AABQvQAAzr4AANi9AAAQPQAAqD0AALg9AADIPQAAiL0AAJg9AACoPQAAkr4AALi9AABsvgAALL4AAEw-AAAjPwAAbD4AAHS-AADoPQAAbT8AAEw-AAA8PgAAtj4AAMg9AAB0vgAALL4AAOq-IAA4E0AJSHxQASqPAhABGoACAACIPQAAoLwAACy-AABrvwAAPL4AAIg9AAB8PgAAdL4AAAS-AADCPgAAJD4AAOi9AACAOwAA2L0AADw-AAAQvQAAQLwAABM_AABAvAAApj4AAJg9AADgvAAA2D0AAEA8AAAMvgAAXD4AAIK-AABAPAAABL4AAEA8AADgPAAAoDwAANg9AACivgAAUL0AAMg9AACYPQAAoDwAAOi9AAB8vgAAMD0AAJY-AACgvAAAoDwAAKg9AAAcPgAAf78AAHC9AAA8PgAAUL0AAHA9AAAQvQAAND4AAJI-AACCvgAA6D0AAIC7AAC4vQAABD4AACS-AAB0PgAATD4AAKA8AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=z96EoOKFk3w","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12615051969900981034"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"622691358"},"1365325187185584928":{"videoId":"1365325187185584928","docid":"34-3-10-Z5FB4A6830202043E","description":"sides 04:31 Rewrite expression 04:58 Integrate dx, cos(u)du and cos(v)dv 05:24 Undo substitution: u in terms of x 05:34...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3927639/215482fe4335781fbbfe78573aa0745b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wxn1WAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUp3uJXuTGFY","linkTemplate":"/video/preview/1365325187185584928?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin^4(x) (trigonometric identities + substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Up3uJXuTGFY\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTMTM2NTMyNTE4NzE4NTU4NDkyOFoTMTM2NTMyNTE4NzE4NTU4NDkyOGq2DxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxPzAoIEJAGABCsqiwEQARp4gfQI-wf9AwD9AgUC-gX-Av0B9Ab4_f0A7A79_fv_AAD68xMCBAAAAP4GBAoEAAAA9QED_PT_AQAMBPnuAwAAABD69QH1AAAAEBD6-f4BAADyCPrzAgAAAA3-__j_AAAAAAgC9wMAAAAEAQP8AAAAAAj-BAYAAAAAIAAtIz_cOzgTQAlITlACKoQCEAAa8AF_Bw0AzNTEANEFwAC6G9r_kTwE__w7ywDG4OgB6f7UAN0J8QAMBPgA_BEUALkE0v4W06kD9KT1ACrQ7v4qzewB3BYFARP-4AEtHh__KCAO_9kqFf_n2_3-8tWoACMdvAAd6vf--QAA_OoEuQIc4TMD2isdAjP7KwEDlgEI0tPlAvX3vf74M_cB7dj_-OYfHgENxhX9Kfr7_swG4AL88wP53esa_xAWyQAa7Af-EBUABNbjDgwlFe0IIiwL-c7x-gXR8DQGvP4C89Dr-fsk1gPwzRP7ACvj9Qkg6v_1ItP_CeHB5wEC5wER9_zz_MD46wMgAC1c0QA7OBNACUhhUAIqcxAAGmAX-gAqCxS29hIg-BK9CAT32v7BANIC_9PV_xsz-v8r9MjYFBkAI9YO7rAAAAAWDO07FQAVY9jeMh8aFfXbgecqGWENAArT6PMVu-g15zDs7TfsKTQA-BHRPA_27iEjGw4gAC0VAzI7OBNACUhvUAIqrwYQDBqgBgAAoMAAAFTCAACMQgAAwMEAAABBAABQQQAAgEIAABzCAABAwgAAgEAAAGDBAACOwgAA4MAAAMjBAAAIwgAAQEEAABBCAADgwQAAUEIAACDCAADYwQAAgEEAANjBAACIQQAAcMIAABzCAACWwgAAgD8AALpCAACwwQAAoMIAALBBAAB8wgAALMIAAIzCAADwQQAASEIAANBBAACYwQAAQEEAALjBAACAQAAAYMEAAGzCAABMQgAA-MEAAIBBAACwQQAAYEIAAMDAAAAQQQAAEMIAAIhBAADgQAAAwEAAAGBBAACIwgAAQMAAAGBBAABgQQAAqEEAAIrCAABAwQAAqsIAAIjBAADUwgAAcMEAAEzCAACYwQAAWMIAAPhBAADgwAAAzsIAADBBAABAwQAAqMEAAKjBAADAQAAAMMEAABDCAADgQAAAnkIAALDBAAD4wQAAKEIAAAAAAABUQgAAIEIAAIBBAAA8wgAAoEAAAJBCAABUwgAAUEIAAOBBAAAEwgAAwEAAAGDBAADYQQAAkEIAAJLCAABwwQAA4EAAAKBBAABowgAAUMEAAEBAAAAAQgAA0EEAALJCAACQQQAAREIAADDBAACoQQAARMIAAPBBAADwQQAAgEAAADDCAACgwQAAVMIAAL7CAAAUwgAAAEAAAAAAAAC4wQAAgMEAAEDBAAAwwgAA0EEAANDBAABgwQAAQEEAAFRCAADYwQAANEIAACBCAADAQAAAQEEAAFzCAADowQAAYMEAAEhCAAAEwgAAJEIAAMhBAACgwQAAsEEAAMDBAABwwQAAAEAAABBBAACIQgAAMEEAAARCAAAwQQAAiMEAALDBAAA0wgAA4MAAAJjCAABAQAAAVMIAAAjCAACowQAAlEIAAODAAADMQgAAOEIAAKBAAAA4QgAAoMAAACxCAAAswgAAisIAAIhBAAAowgAAIMEAAKhBAAB4QgAABMIAAHzCAAAEwgAAMMIAAERCAADAwAAAQMIAAODAAAAAAAAABEIAAAhCAABAwQAAKEIAAEDBAAA0wgAAikIAAKjBAABIwgAAmEEAALDBIAA4E0AJSHVQASqPAhAAGoACAAC4PQAA6L0AAEQ-AAAkvgAADL4AAJo-AABQPQAAEb8AAJg9AACYvQAAoLwAAJo-AAAkPgAAbD4AAAy-AADovQAAJD4AAHA9AAAMvgAALT8AAH8_AAAsvgAA4DwAAEQ-AABsvgAATD4AAOi9AACmvgAAND4AAI4-AACAuwAAgDsAAIi9AADYPQAAVD4AAIi9AABQPQAAuL0AAGS-AACavgAAPD4AAOi9AABwvQAAcL0AALi9AACAuwAAoDwAAJq-AAC-vgAA0r4AAPi9AAB8PgAAtj4AADQ-AADSvgAAmD0AAEk_AAAwPQAAmD0AAGw-AAAcvgAAqL0AADC9AACWviAAOBNACUh8UAEqjwIQARqAAgAAFL4AAHC9AABwvQAAZ78AAAy-AAAUvgAAqD0AAHy-AADYvQAAnj4AAKg9AAAwvQAADD4AADC9AACgPAAAmL0AAIi9AAAVPwAAPD4AAJo-AACYvQAAUL0AAKg9AACIvQAA4LwAAOC8AABAvAAAED0AAOA8AADIPQAAED0AABQ-AADIvQAAqL0AAIC7AAAEvgAAbD4AAKY-AAA8vgAANL4AAOg9AAA0PgAAXL4AAKg9AAC4PQAAmL0AAH-_AADYPQAAXD4AANg9AACWPgAAPL4AAMg9AAB0PgAAJL4AAPg9AACAOwAAoDwAABC9AABsvgAAdD4AAOg9AADYvQAATL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Up3uJXuTGFY","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["1365325187185584928"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"645092691"},"12458871617743588631":{"videoId":"12458871617743588631","docid":"34-9-5-Z01211B12CAC4B02F","description":"parts ► Integration by substitution • 🧑🔧 Integration by substitution ► Integration by trig substitution • 🧑🔧 Integration by trig substitution ► Integration by Weierstrass substitution • 🧑...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3312451/80b40df4a09dded383d2a968bcf3e064/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/GptMAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDX0VW3zE3f0","linkTemplate":"/video/preview/12458871617743588631?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin^3(x) cos^4(x) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DX0VW3zE3f0\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFgoUMTI0NTg4NzE2MTc3NDM1ODg2MzFaFDEyNDU4ODcxNjE3NzQzNTg4NjMxaogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E50BggQkAYAEKyqLARABGniB9gn-9f8BAA8LBP_9BQAA8AT7Cfn-_gD1BvX99QL_APf8CgsJAAAA9A4BCgIAAAAK_AP-9_4BAA0E-e0DAAAAEPr1AfQAAAAREfr5_gEAAPUG7vgCAAAAAQH1BAAAAAAACAL2AwAAAP4QBQEAAAAADAP7CgAAAAAgAC1Lo9I7OBNACUhOUAIqhAIQABrwAX8P6P7R2vsADyC9_8Ql9wCkDh7_CiLj_7Xn8f-56NwBAA_dAOMx5QD06w__zf_9_0X0xf8N5_8AV7kK__H88AHx-NcBHOf0AT0RGQIaFev_7w4Y_9_u_QEa084DBCfX_u_yCv0PAgr__ffP_DDX9gL15CYGEy40AAS9EwDa-_sD6trV_fIX-gfm1RX71QUlAhDgIQAXFAn510ruAPjo9wAJ7hn14QrdCAqT_v_y_QUBywsSAQQ0-PglExTynfL9Bh4GJQDU8_oA4vcIAAsQB-7m5vgB_N7yCywaDwEB7QUIBscM8xP9DfXW4gMC-Dvu-yAALQhPCDs4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm7U2AcvSRC47xvkQW9lyy4PLcN_jwxdXy8mDDaPQUgpLwe1mU8BFQ4vpahorsESL68mN0jPoFJkL1D9PW8cT1avucWvz2FTKi8m3YhvholOb0bUAg7al0TPEZ8J70gcw677xEbPcHEv70IkAG9w_hEvEyJRD0tWVq9MqUaPVW0g7tMmQq9q0f1POpHeb3h7Na8yNQYPWzLRb2IXJm7z0mfPYWZkbwuqoe78Q97vb4aGz102Le6HroHPHJNJjzKnHi8Lz_Duy-xiTtygpu8NMPBvdpXPj3BE8A7JkCoPZCoKz1v0a68ZUOdPXc1tL2QdjK9fsUKvk8gDL2iRt873bQZPj0W0TwDYPq7xmGqvatbnT3u1Jo7EsnGPCpPhbxCQ3-8uTuGPCCu4jsetXg8My02PSAqTT2lKx47bV4LPYlNej0QYiE7AHVePYNMN73EN1A6_OAcPbnjSD1qu-y7BVEXPbaIKboe_ES8ud9BPfwjpz3TKTQ8-EAhPU8mCTysYbU8m5UIvQh2DL7NpeG7JpR5vbEJWr2Rgn05VGQePVhVADrvekS8FZBWPb9elr3dQ8K7-WhxPbokGDw6VxQ7364RPEyp67293dQ7UAKmvXofQj0EwUq788yGvfB63zw4npG7_tm6PSsSAz7LsVu5bAHnuzBH770_mqC6YYIEPfql9Dwg-6y7FMgxPR7ykD23kOK5d3ZDPIYKhDxRwqe6hHUNvYvYDL2_I3C7zbzLvafPTr3MSqm3x2cSPq6g6b2QCbS5u87tO1OFFT2Cb7-3izy0vX01UT04Hxg44PgVvWdTZL1S6ym4qz2RvRpSFb4wUQo66214PTVStT1yopI4L3UIPE86NrzRLDW5FXAPvd2CAL2VP2y5pBG9PCpprDrGZ2W4avFuPciSfj2QDg44gSaNPeHfcT121RS5JjfMOpH-qLyJCN45yCiqvOWiED0Mp5A4mLRSOz9wxb33LmA5CoCxvCcX4z1iYJK56w8evPpj9TwOMja36NgBPRITVD2qnIK23ln7PNjxn70YDZc4Lfe4PA-KjD2pvYq49AtAvIVFsD05Z-s4Xb8APb8ZC73JcmI4T9RoPXd-Nr0TCSM3aqKuO1IoCzwCmFk4kl0ZPtlPUL2swj-5jHEUvdt7Qr3F_Ge41TuBPO89h73Nk7838LsOvccWPT2_0rM23I1UvZ0ns70sNBK4Iv_sPTUpBT7zflu4PCn6u1UqbT3gMo24mA-Nvd0fhD2Mw9E3rwzFvSPuGz0HDd22IAA4E0AJSG1QASpzEAAaYB73AFf5OrDVDB_aHLz0B_nc3M_s8Ab_6ur_-yny1AoG4tsPEP8e2N0GqQAAAA7u5DzgAABxBAnOK-IF7SmD-EwKf-8GL7y9_SzX-RTx-QwOK-H8QQDVGNE3FLH8PxcwFyAALd0vITs4E0AJSG9QAiqvBhAMGqAGAACoQQAA4MEAAJBCAACgwQAAAEEAAABBAABwQgAAVMIAAGzCAADgQAAAEMEAAJjCAABQwQAAAMIAANjBAADIQQAAMEIAAMjBAABgQgAAPMIAABTCAABAQQAAAMIAAABBAAB4wgAARMIAAJzCAABwwQAAwEIAABDCAACOwgAA2EEAAFjCAACgwQAAgsIAAABCAAAMQgAA-EEAAKjBAACoQQAAAMEAAFDBAAAAwAAAhsIAADxCAACowQAAAEAAAJBBAABwQgAA4MAAAOBAAAAQwQAA4EEAAHBBAACYQQAAgEAAAKzCAACAPwAAAEEAAKBBAAC4QQAAXMIAAODAAACSwgAA4EAAAO7CAAAAwQAAEMIAAKDBAAAcwgAAXEIAAKhBAAC8wgAAwEAAAADBAACYwQAA4MEAADDBAACAQQAAAMEAAMBBAACSQgAATMIAAAzCAAAIQgAAgEEAAFBCAAAsQgAA2EEAADzCAABwQQAAlEIAAIzCAAAkQgAALEIAAEzCAADgQAAA4MAAAKBBAAA0QgAAnMIAANDBAABAQQAAgEEAADTCAABAQQAA4MAAALBBAABAQQAAcEIAADBBAAAsQgAAgMAAABBBAABYwgAAXEIAACRCAACAvwAAKMIAANDBAABcwgAAqMIAAATCAACgQAAAMEEAAEDBAACgQQAAAAAAACjCAAAwQQAAEMIAAADCAACYwQAASEIAAFDBAAA0QgAACEIAAIA_AADgQQAAQMIAAMDBAACowQAAQEIAACDCAAAoQgAA0EEAALDBAAAAQgAAkMEAAODBAACAQAAAMEEAAJZCAABQQQAAAEIAAJBBAABQwQAAuMEAAAjCAABwwQAAmsIAAIBAAABgwgAA0MEAAPjBAACeQgAAqMEAAL5CAABkQgAAYMEAAERCAAAwwQAAIEIAAEjCAAB0wgAA8EEAAATCAACYwQAAiEEAABxCAAAEwgAAhsIAALjBAAAcwgAAWEIAAGDBAACCwgAAgL8AACDBAAAgQgAAmEEAADDBAAAsQgAAAAAAABjCAACEQgAA2MEAADjCAACAQQAAwMAgADgTQAlIdVABKo8CEAAagAIAAMi9AAAQvQAAJD4AABA9AACgPAAADD4AAOg9AAAJvwAAUD0AABC9AABwvQAARD4AABA9AAAwPQAAEL0AAMi9AABkPgAAmD0AAFy-AAABPwAAfz8AAFC9AACovQAAoj4AAMq-AABUPgAAiL0AAL6-AAAUPgAATD4AAIg9AAA8vgAAcL0AAPg9AABcvgAAEL0AAHC9AACevgAAsr4AAHy-AABcPgAAgDsAABy-AABQPQAAML0AAPg9AABsPgAA5r4AAMq-AAALvwAANL4AAKo-AAD6PgAA6D0AALa-AACAuwAATz8AAFw-AAAwvQAAhj4AANi9AAAkvgAAFL4AAM6-IAA4E0AJSHxQASqPAhABGoACAAD4vQAAoLwAAFS-AABXvwAAZL4AAFC9AAB8PgAA-L0AANg9AABsPgAA4LwAAIg9AADIvQAAgLsAAJg9AACAOwAAhr4AAMI-AABkvgAAfD4AACw-AADIvQAAgDsAAIA7AADIvQAAND4AAIa-AADgPAAAFL4AAIA7AACAOwAAVD4AACS-AAC6vgAAuL0AAPg9AADmPgAAFD4AAEy-AACGvgAAoDwAABw-AACYvQAA2D0AAPo-AAAsvgAAf78AACQ-AACiPgAA4LwAANg9AADIvQAAyD0AAJY-AADIvQAARD4AAEC8AAB0vgAAMD0AAEC8AACSPgAAMD0AABA9AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DX0VW3zE3f0","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12458871617743588631"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3429383992"},"2072825662016090101":{"videoId":"2072825662016090101","docid":"34-0-13-Z6A3EACD7B4EE927B","description":"integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4568266/1a3954783a56d89f0f58a84d01f04126/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gEvOBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9AYy_VqmjoE","linkTemplate":"/video/preview/2072825662016090101?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos(x)*ln(sin(x)) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=9AYy_VqmjoE\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTMjA3MjgyNTY2MjAxNjA5MDEwMVoTMjA3MjgyNTY2MjAxNjA5MDEwMWqHFxIBMBgAIkQaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqD8IPDxoPPxN7ggQkAYAEKyqLARABGniB-Q_0_gL-ABEAEQACCP8B7f719vr-_gDnAff7-P4BAPf8CgsKAAAA9A8BCgMAAAD-8f_39_0BAAcLBPAEAAAAEfn1AfQAAAANDu4C_wEAAPUG7vgCAAAAAgvvCf8AAAD8BQ7vAAAAAAYNBvwAAAAACwL0AQAAAAAgAC2O-ss7OBNACUhOUAIqhAIQABrwAX_89f7k390C5eq8AdQ8_P-UIwwAFhvGAMb54AHQ7bIB2vTvAOnq3QEWBfkApwkB_0DLxf4nvQoBKrD0_ijBAwCzDtgAOPnDADEgIv_-Iez9_g4s_RTl___x0aH_5hq8_ukP8_nu-9r4BjrNAxXMHv72ATAHN_ouARKy9QbS2v8E8Pnq_wYd_Afr1P_4rykfBDIDLgQS_xr77j7a_Oj1FwD96wfy8BfP_vu2_gocBP_7xAMzBvoP_PwqFRfwofQiCAEPO_ncCfr22MEE9ygp9QjyAOUEB-vYBEIKBgEAvvYC6NUA8w3vAPPm-hf40Q_u_yAALX2_7Do4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK85hBnvRaoQL0sH4O9-DM8vIdLMz3EwZS7mDDaPQUgpLwe1mU8HEIVvlDwgzybSB-920_mPYW0xr0_lJO92UNLvkOSdjspf4K9qaIIvqJIsbtITFU9gkSJvHUrir38K1i77xEbPcHEv70IkAG9soJfvfQIpLx5fJa8IhehvTucirwFK1O995JGvFJzw70vE6g76-CwPX94jLx8FU-8v-NKPfYLVj2W-f28v5oDvZGUOT1165C6Eh24PG_Cs7zQHOM8SriLva0y07xHUAK8tzx7vRGfJjvN4DQ9D3uGPey5kT05oSu98gjuPXsUzr3HgKy8qMghvgJ8HD3o6W085Ib_PTl29TyMb5483O-Fvd0J9j3Ineu6e_KVPAKsIbwj4Ra9AZm3PdaiKrxXIYo80ICVPUOQgzzBfZG7L5G2PR_VhT0AeJ-8TR1aPWPNbbwkin-8hpi2PQpkiz38rde7sGhkvUmvNz1AaKI8s7AMPSuBqT3LOz28RU78u5J1GD2dJtg8m5UIvQh2DL7NpeG7x4NtvVcQjr2dt1a8EitIve2GaD2O4Gu8Q6kdPh9q273Emqk5RRv2PE-2Gjs9LC88Dj4DPec6yL0vM2w8UAKmvXofQj0EwUq7v2unuzrDuTzWNX-8cwdbPQNTxz1yDME508xpPQ7d7L2Piji6o3vSu3iWAD2qn5I7TBGaPUh9Yz06hV652hAtPejOHztGsgm8aRgfvBQiIL06JqQ60775vVMGLr3L5Fs5bQPXPbWj2L0Mn685zaHWPHhSlTw8ypc4LdEJvpYhLj2euGC4aDpAvaZC_Lz1yo85XFQLvZwV8b3cnnU5ulXGu_Ym5j2nz-g4O7-dPeCHXjznV664X3-9vR8YO70I1Te5umVqu9fdvLzuAcq4OBTePYs9nz0yrbe4KtV0vFbtvzyzH3E3DxYEvVx4GjzMrl24w3iSPRRUiT2x_DU4jBgxPRcYiL0zlRw5leHLOucBhz0yMYs3OAEfvA6DeTzgwUS4CRwkPdSv2bz_HCy4mBqsPdfwqb0C6F64sYsBvPTFyT0l-R05SlGovWNu7Tz7BT44O9WbvQndpbynmsC3m69tPTPinbxX5ps31zW1PD-FuD1jYgU4kl0ZPtlPUL2swj-5Fk4CvjCrZr1VKlY4MpTuvLr4u702Fya4m0tbvZI8pz1tcIE4NbeCvCwxar26oUa4Iv_sPTUpBT7zflu48LI1vVzMzz0MRgq5cMrBvTMX-D263KY4vUAfveudG7yDUDg3IAA4E0AJSG1QASpzEAAaYA4EACr0MNzS_CfxFdnyBAPi78v73Q7__dX_Gxzo3A0C084IBv8myu33sQAAACP5ATbkAANk-P7jKewR9Bqa-TABf-4BTsXR5g3h6zL8C-b9FAjvRgDhHMIeBdz7ZRMeEyAALWVoNDs4E0AJSG9QAiqvBhAMGqAGAABUQgAAkMEAAJJCAAAowgAAUEEAAMhBAACKQgAAgMEAADDCAACYwQAA4MAAAIjCAACAPwAADMIAAEBBAADgQQAAMEIAACzCAACaQgAAjMIAAKDBAAAAQAAAfMIAAMBAAAB8wgAA6MEAAITCAADwwQAAfEIAAJDBAABwwgAAkEEAACjCAAAwQQAAksIAANBBAADYQQAAwEEAAADBAAAgQQAAcMEAABDBAABAQAAA2MEAABBCAABwwQAAQEEAAJhBAACoQQAAAMEAADDBAAC4wQAAoEEAAJhBAAAAQAAABEIAAJzCAABwQQAAmEEAADhCAACIQQAAcMIAAEDBAACIwgAAFEIAAMbCAADgwAAAAMEAAEDCAAAMwgAAkEIAACRCAACAwgAAiEEAADjCAADAQAAAyMEAAAjCAACgQQAAoMEAABBBAADCQgAAWMIAAIDAAABQQQAACEIAABRCAADYQQAAUEEAAGTCAACgQQAALEIAAIrCAADYQQAAGEIAAHzCAABgQQAAiMEAAJhBAABIQgAAkMIAAFDBAACEQgAAgEEAAGTCAACAQAAAMMEAAChCAACYwQAAMEIAAABBAAAkQgAAcMEAAPjBAABQwQAAoEIAANBBAABYwgAAiMEAALjBAABMwgAAlMIAACDBAABAQAAAAAAAAIDBAACAQQAAqMEAANjBAACIQQAAwMEAAEzCAAAAwQAAZEIAABBBAABAQgAAGEIAAIBAAAAgQQAAosIAALDBAACAwAAA6EEAAFDCAACIQQAAREIAAETCAAAcQgAAoEAAAIjBAAAAAAAAsEEAAFBCAAAAQAAAAEEAAMBBAABkwgAAHMIAAADCAAAkwgAAksIAAOBAAAA8wgAAiMEAAIDBAABoQgAAEMIAAIpCAACkQgAAgMEAADhCAACgwAAAIEEAABzCAACWwgAAiEEAAADAAAAUwgAAFEIAAPhBAABYwgAAfMIAAEDAAAAwwgAAMEIAAEDAAACIwgAA-MEAACDBAAAYQgAAYEEAALjBAAAwQgAAAEEAANDBAADAQgAAYMEAABjCAADQQQAAEMEgADgTQAlIdVABKo8CEAAagAIAAKi9AABEvgAAiD0AAFA9AACCvgAAgj4AAOA8AAAjvwAADD4AAHC9AACIPQAAPD4AAAw-AABUPgAATL4AALi9AAA8PgAAyD0AAPi9AAARPwAAfz8AAIa-AAAcvgAAML0AAJ6-AACKPgAAML0AANK-AAAsPgAAfD4AAOg9AACYPQAAqL0AAOA8AABkvgAAJL4AAKC8AAAkvgAAqr4AAKi9AACWPgAABL4AABA9AAA8PgAARD4AAEQ-AADYPQAA7r4AALK-AACevgAAQLwAAKI-AADaPgAAcD0AAIK-AAAMPgAAVz8AAIo-AAAQPQAAlj4AAAQ-AAC-vgAAJL4AAD2_IAA4E0AJSHxQASqPAhABGoACAAC4PQAAuD0AAI6-AABZvwAAtr4AAEA8AAD6PgAAmr4AAHQ-AACWPgAAmL0AADA9AABAPAAAgDsAADC9AADgPAAAxr4AAPY-AACmvgAAoj4AAEw-AADSvgAAoDwAALg9AADIvQAAHD4AAKK-AABQPQAADL4AAIA7AABAvAAAyD0AAIK-AADKvgAAdL4AABw-AADCPgAAJL4AABy-AADCvgAAgDsAAKY-AADgPAAAqD0AAAs_AAC4vQAAf78AAKA8AACaPgAAqL0AADA9AAA0PgAAyD0AAI4-AACmvgAAdD4AAAy-AAA8vgAAuD0AAKA8AADGPgAARD4AAJg9AABsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=9AYy_VqmjoE","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["2072825662016090101"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2556513797"},"787543797431395244":{"videoId":"787543797431395244","docid":"34-5-2-ZBE401A35E3A3C610","description":"substitution • 🧑🔧 Integration by Weierstrass substitution Integrals by parts • 🧑🔧 Integration by parts Integrals by partial fraction decomposition • 🧑🔧 Integration by partial fraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1021996/a7c726a733e6ca7acafa299921aa728e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TPflogAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSATPZs7kHM8","linkTemplate":"/video/preview/787543797431395244?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(x - x*ln(x)) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SATPZs7kHM8\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFAoSNzg3NTQzNzk3NDMxMzk1MjQ0WhI3ODc1NDM3OTc0MzEzOTUyNDRqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TcIIEJAGABCsqiwEQARp4gfMN-v38BQAPCgT__QUAAPUB-AD5_v4A9gf8_v8C_wDz-gcBBAAAAPgFAgIAAAAA_QYB-_r-AAD8Bwj0BAAAAAnz9wv7AAAABA78BAoAAQHu_vT5AgAAAAsE-QUAAAAA9wML_AEAAAD_-wf-AQAAAAb6-v379v4AIAAtU2bdOzgTQAlITlACKoQCEAAa8AF_I_b_5uHfAs8FvgD9LPIBnA8h_wsl4f_J-uIB-dnCAevy4gAMCOP-CBsGALlQ8gA9zsj-It39ADatDgIG5gYAv_3vASbv2wAuHyD_-gER_8b-DQDe8-AA8tSm_yU13v7u8Qv9-isBAQY30AMj5BsDAucw_D7tHQEIx9QE1_r7A_AM6PXnIvT8DdoR9rMnHQQW7zcBODIl_g8QxgHqAAj48M4q_yL-vvoB1BP8-g0D_bLmGf3yBxQFMQIWArzjAgviHij9AOz-BO_z__8MEQft_CjtCx7k6PoZ9APrAMH3As_GBPPuDvv78Ov9A_ME9AAgAC24C_o6OBNACUhhUAIqzwcQABrAB4iCub7FJQG8WkX_vAoHzL1XDxS8NIUOvTyLOb1yGwg9x4EeOqWiQT6wYfy8zy8qvcN4V71BUps7GVkyvCb_8z3xBbe9oGUnPHV0_L0vE5o9CwIQvcqilb3mRzI88X4BPTlD8b2wbYa9xzgSPKtNoj1U3B29CXYSvTM4pbyAJds7WwBkvNxqGTr1EVi9E3xYvRbQNb3wxhu7towrO-2viD2D7hy9Ltpru1fpvj2q-eC8iq2gvCN-mr1NcGU9bzAvvGiqirsHj9u81Sh_PEq4i72tMtO8R1ACvJqvt72_pVK99UzKPN_8xj3sG_M8h1k-vfRsablgqyS-gDKAu7HhSb4ukvY8TwidPOSG_z05dvU8jG-ePBK97L2F9gA99EOZO93xoT1LepO9YCuXvODeMD3f8Mw8EFg9OjyUMjxK35o8nmutO3IT97ssuYo8czLMPLQ4xjtFHSy9XlSBvM8-kD1c-vw8Kh_CvF_dZ7zsZBU9cvdePLJgh72R0pw9-U4KO6cHZT1blNk82MJiPAUjpT3WAju-SeWaOgpCg71sv7u9DIPoO93Bfj28uyQ9iHuRvG786T1M5K29K3Opu_locT26JBg8OlcUO6X_QDzZ6rK9U5I3urco870mlQS9wahmu_x_Jr0ASm09kpbnu-zvpj1aTbI9T3OmucVlBj36DAi-VSEDupmLrjzrnmY9ZKIUu5kP6D0MA5Y9_F1Vunu5tDzV31w8jaJ_u2nMP73QYzS9yI-dumBCgL2AX2i9Cs5oOe50nD2s4s29Kv-9OXP_h7255oq7vFPjOIs8tL19NVE9OB8YOHpEG72VZzk858s3OhSdi72JeuG9xidwObhOrTwxlV49nEaOOFrdhT1-igO9zFJ3uQL0i71FNZC9O4YxOOucFb1AbOk7Pg_tt4Vwdj1Rdkk9ZleEOGLAkjyXIvU7FMdfOXWkRLwS6a08FWNLuXSSMj2VxRS8ewAfOOukYzyijKK9v1JkOUWc7zs90dU94glHuTBmS7z5NOE7VsMbuBcfsDxLoIc9ODPHuDm0mD2mj4q9zB3aNzV2rjzmrM899QzYNqBQz70V74Y9wtICOEFpYjvwQNM8Yvv8NgkRFT0sp3O9Gwk4OOO1AT18N0w9MUePtuNu8D0OTO69yWWXuSvcE7xklQK-cT0buM5yNLxdD8u9qHCbt-2Rl7xB9oU9foWftga_qLzmTJS9CspktyL_7D01KQU-835buLVXWj3SsoQ9kdm7uLQWwL1UNLs9PF-yOJTMoL0sBjQ9ui2CNyAAOBNACUhtUAEqcxAAGmAU9QAj9zLY5xUY9hfDBf7x8fbO9Pv8_-nuAAwnAt0V7ejYDBcAHcbv8boAAAAAFBMn3gASWfX54TfwEvwSkuUx-X_tCSrK6QcW2e8s6gju8BXqEDEA9SrVIPza9VQjIisgAC3LKEE7OBNACUhvUAIqrwYQDBqgBgAAEEEAAFjCAADCQgAAXMIAADxCAACAvwAAZEIAAABAAADowQAAQEAAAMjBAAAIwgAA4EEAAAAAAABEwgAALEIAAFhCAAC4wQAAEEIAAPjBAADgQAAAuEEAADDCAADgQAAAQMIAAHjCAADAwQAAQMEAAOBCAABgwQAA-MEAABDBAABUwgAAoMEAABzCAAAgQgAA-EEAACxCAADgwAAAoEEAALjBAADgwAAAsMEAADjCAABwQgAAJMIAAEDAAAAYQgAAiEEAANjBAABAwQAADMIAAIA_AABgQQAAAEEAAEBCAABswgAAwMAAANhBAABwQQAAKEIAACDCAABMwgAAmsIAAFDBAAAAwwAA4MAAAEjCAACIwQAARMIAAAhCAABQwgAA5MIAAARCAAAcwgAAAEAAADBBAAAAwQAAAMIAADjCAACgQAAAqkIAAGDBAACQwQAAAAAAACDBAAB8QgAA0EEAAJhBAAAAAAAAQMAAADBCAAAgwgAAHEIAABRCAAAswgAA2MEAAODAAACAvwAAqkIAADjCAACAwgAAIEEAACxCAAAEwgAAgMEAALBBAABgQQAA-EEAAL5CAACgQQAAQEIAAGDBAAAAwQAATMIAAJhCAAAIQgAAcEEAAFDCAAAkwgAAEMIAAK7CAADQwQAAoEEAAIBAAAAMwgAAgD8AAKjBAACAvwAAyEEAANjBAADAwQAAiEEAAExCAAD4wQAAwkIAAFBCAACYQQAANMIAAKDBAADgwAAAwMAAALhBAADYwQAA8EEAABRCAACgQQAAQEEAAADAAABAwgAAQMEAAABBAABQQgAADEIAAHhCAACIQQAAHMIAAODAAABEwgAAuMEAAGTCAADAQQAAJMIAAATCAAAAAAAAqkIAACDBAACGQgAATEIAAOBAAACgQQAAIEEAAMBBAAA8wgAATMIAANhBAABwwgAAgMAAAGBBAAC4QQAAyMEAAHDBAACQwQAAoMIAAJBBAACQQQAA-MEAADTCAACAvwAAAEIAAAxCAABwwQAAMEEAAIDBAAAcwgAAikIAAIA_AACEwgAAJEIAAMjBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAANL4AAFC9AAAwPQAArr4AAJg9AAD4PQAAO78AAOg9AADgPAAAZD4AAKA8AADgPAAAcD0AAHy-AABwvQAAbD4AAOg9AAAMvgAACT8AAH8_AABwvQAAHL4AAHC9AABkvgAAjj4AAHC9AACyvgAAiD0AAFC9AAAkPgAAJD4AADC9AADoPQAAUL0AAKi9AAAUPgAABL4AABy-AACCvgAAjj4AAI6-AACYPQAAiD0AAHw-AACGPgAA4LwAALq-AACOvgAAqr4AADQ-AACCPgAAzj4AACQ-AACavgAAED0AAGE_AABAvAAAED0AAEQ-AAAMPgAAFL4AALi9AAAFvyAAOBNACUh8UAEqjwIQARqAAgAAUD0AAFA9AACqvgAAO78AANa-AAD4PQAABz8AABC9AAAEPgAAqj4AADC9AAAwvQAAiD0AADC9AACAuwAAED0AAFS-AADmPgAAtr4AAJo-AACYPQAAbL4AAKA8AACoPQAAUL0AAFQ-AACivgAAMD0AAOi9AABUvgAAUL0AAOA8AAAQvQAAyr4AABy-AABQPQAApj4AANg9AACYvQAAnr4AADw-AABsPgAAuD0AAAy-AADqPgAA-L0AAH-_AADYPQAALD4AAAS-AABUPgAA-D0AAGQ-AAA8PgAATL4AACw-AAAEvgAALL4AAFA9AACgPAAAlj4AALg9AACovQAAQLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=SATPZs7kHM8","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["787543797431395244"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3584358783"},"3482254653173653736":{"videoId":"3482254653173653736","docid":"34-11-2-Z0C9FFA101D207A28","description":"substitution • 🧑🔧 Integration by Weierstrass substitution Integrals by parts • 🧑🔧 Integration by parts Integrals by partial fraction decomposition • 🧑🔧 Integration by partial fraction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4890576/4b71648b93dade512891accf397c40a1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CETTBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2n2hMArDX0g","linkTemplate":"/video/preview/3482254653173653736?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (x+1)/sqrt(x-1) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2n2hMArDX0g\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTMzQ4MjI1NDY1MzE3MzY1MzczNloTMzQ4MjI1NDY1MzE3MzY1MzczNmqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxPtAYIEJAGABCsqiwEQARp4gfoHAAb6BgADA_3--wP_AfIJ-fz6_v0A8gAC_P4BAAD0AAj8_AAAAP4GBAoEAAAA-P3-9vr_AAAGBQT7BAAAAAL19QD5AAAACQ4DAP4BAADz9Pn2AgAAAAUK_AH_AAAA_Af-_Ab6Af_9_wwFAAAAAAL8BQAAAAAAIAAtK_XjOzgTQAlITlACKoQCEAAa8AF__PX-5N_dAs0GugD6G_oBsCpA__xAxwDM2MoA5eHRAegf1QAHIfMBHCQFALVU8QAYz6EDFM4G_zXMEf8R2PAAtevlADj5wwAtOxMCCgsHANLVEf7wwun_8dGh_yc43P7i5fj7Bi7sAQY6zQMdAyYB9OArBjLcMv4DjQEIzs_jAgXs9vnpMA_-D-4Z_bcPFAMO-x36RAf9_-cX0_zpAAn35_szAREYxQAF6A8GISXkB7T6AwH0HA__NAIYAsfH_gvN7jkHvgwHBt3bDPUeDAb64DLnChPnAxcqCRX0BeH0-ASk7PkZDgr87vYICd8f1u4gAC19v-w6OBNACUhhUAIqzwcQABrAB4iCub7FJQG8WkX_vLHfw708qF-9cL4HvZ61W70PX2s9R_r-PBR2ET7fDt68Jr6DO-dGor3rAAi7Wn_LvJjdIz6BSZC9Q_T1vHoXL74IPDA9KZ_UvE_l1L369488uuwhPX0J9b2XAtK9CkR0PHIeaT07anG9vLQ8vQK1Xb1fehs907AuvdxqGTr1EVi9E3xYvRAXCr2-_6q8mQLjOmxIVz2x7Pi8VIaWvFuV5D0tJcu8NOYfvdYxM72NUvg8ND_IvGiqirsHj9u81Sh_PEq4i72tMtO8R1ACvB063b1Kq5u9US7NPGYW4T1BtQY9E9aGvPRsablgqyS-gDKAu37FCr5PIAy9okbfO_X1_D2cogg96ytZvBjSAb5Jg6s9liYlvAlfqT123Ru9kDpwvEsXBz3_iRs9NM9bPPEB57lpSrw82soHvASs1Twzopk89PNLPFCEGruN9oO9RcKSvE6OzD0eeiE9Pi7guxJ_-TzluKM9XH0OPMtxvb2PAbQ9kl5UvCGNLzyqR5o8vM9xPAUjpT3WAju-SeWaOgpCg71sv7u9DIPoO-sTyjwJ5kM8bkKrvE7wzT1mM-e9_1cAPH8jaz3Bvuc8cNlXPGS2YLuoBI-9mjQZu_utXb3EhCe9CviQO2Yev72FLWw9ajFbu3MHWz0DU8c9cgzBOSlwnD2SK8u9KPbaOKq6hzxxEtQ8IqLeuyf0rz1fQJQ9iNsWt7Jb1TxroT-8gfRiu2nMP73QYzS9yI-dumBCgL2AX2i9Cs5oOe50nD2s4s29Kv-9OaJgZr2ZOhm9ooj7Ops6z7247kE8LScKue5z47vSoYi9wyM8OVxUC72cFfG93J51Od-YVD3Tt5E9akXKNx2tKj3c4WU8MMZeOAL0i71FNZC9O4YxOEf4KLyQXt48bl2WuBs67DwKD5o8X4IDudc0yrxsAPy792uvuHWkRLwS6a08FWNLuVyiZD3XBl287uMgOeukYzyijKK9v1JkOQryE73jnb09lVPVuKhPlzwjQi09z9p-OOjYAT0SE1Q9qpyCtvs7Cz4PsBu9-RSduNU2j7xszRY-siFAOZx6c73XS9M9n42XOIfbwrvzyI89ls2DOLAETT0segy9VuL4N835Ez3i_II9T8q6NPcBKD5wYd298We_uVxJAb3K3tK9FyIEuWYStTxeoc-9gLqyNwcUoLrJILc9wteat3KMv7oz3MC8qMBmuCL_7D01KQU-835buPI2ID2RGZ494xxiuM6GYb3Q7Po9wBKWOFNQy70shA88Li5MtyAAOBNACUhtUAEqcxAAGmAK9wA1-EDK5ggXARrCCwT45vfT-eUN_9nj_wYyCPAd9NTlChAALMv477AAAAAFFP433AAWZQrw9DTfDu8qgewv9nf5DifD2PgCx_kx5jDr7xz59TQA8SLEFOrf5VUZOgsgAC09nTA7OBNACUhvUAIqrwYQDBqgBgAAkMEAAJjCAADEQgAAXMIAAAxCAAAAAAAAXEIAAPBBAAAYwgAAIEEAAGDBAABQwQAAIEIAAKBBAABwwgAAiEEAAHRCAACwwQAAgEEAALDBAAAgwQAAYEEAADzCAADgwAAAUMIAADDCAAAswgAA2EEAANJCAADAwQAAGMIAAADBAAB0wgAABMIAAIjCAAAoQgAAAEIAAExCAAC4wQAA4EAAABDCAAAgwQAAoMEAAADCAADQQQAAXMIAAAxCAABgQgAAmEEAAIA_AABAQQAACMIAAFDBAAAAwAAAQEAAAExCAAA8wgAAUEEAACRCAAAgQQAAsEEAAGTCAAAkwgAAksIAANDBAADkwgAAyMEAACzCAADAQAAAMMIAAABBAABgwgAApMIAADxCAABgwgAAAMAAAEBBAABAQAAAHMIAAIjCAAAAwAAAzEIAAEDAAAD4wQAAAAAAAMDAAABEQgAAIMEAABxCAAAAQAAA2MEAANBBAACgwQAANEIAAARCAAAQwgAADMIAAIDAAABAwQAA5kIAAKDBAAAwwgAAoEAAAI5CAABAwgAAiMEAAMhBAACYQQAAsEEAALRCAADIQQAAQEIAAMDBAAAAQgAAhMIAAGRCAAAgQgAAAMEAAHzCAADQwQAABMIAAK7CAADowQAAmEEAAMjBAAB0wgAA6MEAAGDBAAAAQQAAFEIAAFDBAAAgwQAAkEEAAGhCAABMwgAAkkIAABhCAADgQQAASMIAANjBAACIwQAAQMAAALBBAAAMwgAAiEEAADhCAACQQQAAgEAAAMDAAADAwQAAwMEAAIC_AAAMQgAA2EEAABBCAACQQQAAwMEAAIC_AAA0wgAA6MEAADTCAADgQQAAoMEAACjCAAAAAAAArEIAAGBBAACCQgAAZEIAAAxCAABAwAAAgD8AAHBBAAAowgAASMIAAGBBAAAswgAAgL8AAMBBAACEQgAABMIAAEDBAACQwQAAosIAAABAAACYQQAAUMEAAEjCAACgQQAAAEAAAPhBAACowQAAgD8AAJjBAAAIwgAAVEIAAIBBAAB8wgAAKEIAANjBIAA4E0AJSHVQASqPAhAAGoACAAAwvQAAuL0AAOi9AAAUPgAAFL4AAFw-AAAcPgAAAb8AAJg9AADoPQAAUL0AABA9AACAOwAAmD0AACy-AADYPQAA-D0AAFA9AABAPAAAHT8AAH8_AABAPAAAmL0AAKi9AABkvgAAXD4AADC9AACOvgAA-L0AAEQ-AACIPQAAqD0AAHS-AADYPQAAQLwAABA9AAAEPgAA2L0AAIK-AACyvgAAHD4AAGy-AAA0PgAA6D0AACQ-AACYvQAAHL4AAI6-AACqvgAAA78AAJi9AABsPgAAxj4AAPg9AACCvgAAQDwAADc_AABUvgAAND4AABw-AABQvQAA4DwAAMi9AAC2viAAOBNACUh8UAEqjwIQARqAAgAAuD0AAEC8AACCvgAAVb8AAGy-AABQPQAAwj4AADy-AAAQvQAAlj4AAFC9AABAvAAAQLwAAGy-AAAQPQAAQDwAABS-AADiPgAANL4AAI4-AAAkvgAABL4AAKi9AAD4PQAAmL0AAPg9AABsvgAAEL0AAJi9AABEvgAAUL0AAHA9AACYPQAA0r4AAI6-AABwPQAALD4AAMg9AABwvQAAVL4AABA9AAB8PgAAiL0AABC9AAB8PgAALL4AAH-_AACYvQAAjj4AAJg9AACCPgAAuL0AACw-AABQPQAAZL4AAJg9AACovQAAiL0AAAy-AACAuwAAZD4AAHQ-AABQvQAAcL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=2n2hMArDX0g","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":480,"cheight":360,"cratio":1.33333,"dups":["3482254653173653736"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1309329284"},"1930999456278746482":{"videoId":"1930999456278746482","docid":"34-3-4-ZD1039274A7C2F380","description":"fraction decomp...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2957823/fdd6675c15f1d9f0ff327849483f2476/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_6gWKQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFK5HFw6rXIU","linkTemplate":"/video/preview/1930999456278746482?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin(ln(x))/x (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FK5HFw6rXIU\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTMTkzMDk5OTQ1NjI3ODc0NjQ4MloTMTkzMDk5OTQ1NjI3ODc0NjQ4MmqHFxIBMBgAIkQaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqD8IPDxoPPxNGggQkAYAEKyqLARABGniB8BMAAAEAABAAEQACCP8B7AP1APr__wD0BvT99QL_APH3_A4FAAAA7wAEBAAAAAAC_v328_0BAAcLBPAEAAAAEuj8B_8AAAAREfr4_gEAAPUG7vgCAAAADAT4BgAAAAD__wn4AwAAAAMEC_cAAAAABQH7BQAAAAAgAC12UM47OBNACUhOUAIqhAIQABrwAX8sE__K1Pr_6QjLAOMQywGjKfYACj3uANLx8v8Q-u8A6B_VAPcg2ADJHeMAvzn9_0DLxf43wPP_NcwR__vI6AHK8c0BIdbTAAowNwARHCL_2AJL_hvKygD9uNYADfOwANII9P4eI9795i7LBCP5FQUe6EkAGhAuBS6l2QX1zuAD9ub__a7z9QIj_AAAs_QJB_vk9v8tIxb77j7a_AnlFPPm-zMBCjrK_RbBBP8S-Ar-nAMcA80KJwAlMAz5wQML-wEPO_mfLvP66_AbBh4g7PoTHOAE9e_nBBQhCP8PAPL7_Nr33SUY_vD93wgFvzf2-SAALasx7Do4E0AJSGFQAirPBxAAGsAHEW6avlXmnLxDFoC6opjcvSGDSzt9kMi77X7VvTvqg7znlFu8cemzPSZr-bwvh429jOKbveb0K7zF4wI9Jv_zPfEFt72gZSc82UNLvkOSdjspf4K9yqKVveZHMjzxfgE9gkSJvHUrir38K1i7snWaPaXL0bwt6AG8YP1kvXm5bbp4fLm7iUf9vJOdqL1rcBG9DXc5OmKBDz2rybY77a-IPYPuHL0u2mu74BHVPUJaiDuYsoK8phCDvR8AJz0zG_-8vs0RPZSBhzuZ5FY9ZCqzvUE-Mrw6xjo8sgKdvR9hPbySWNI8NuwyPQANBT3E0ju9ZUOdPXc1tL2QdjK9YaWKvnOcWzxVBO47_c-7PXi5iD2rJoi8FJsKvV01Tz34JVE8G9xxPcH6RL3MYmK8xstpPRslFL2-Dfc7b8qmvFlirzxirKU89oXGvMYtLLu6RnA8Ai09vW4kir1WhWG8E7ysPXAk0D3690-8SRXgvM_3cDvTctq6eb4QvU0xxz1_pXO82S4GvMyh-zzaM_A6BSOlPdYCO75J5Zo6V3s4vS-H_b0qoGY6d9zwPEb7Lj32Dae8bvzpPUzkrb0rc6m7pG5HPV7TqDw3Pou7pf9APNnqsr1Tkje6-Casvfnnc73ebYM7GlUBvYuBHz11LCW8g23kPcKmmT1LomU5vH1RPRhBM76xnJG5mYuuPOueZj1kohS7mQ_oPQwDlj38XVW6wW2zu48cabxmlJm77c9qvdX_nrzq-Xu60775vVMGLr3L5Fs5bQPXPbWj2L0Mn685k4prvftuhLxzr-I4B5bjvfub6zw0lXo38V7avI9_MDwRqXK5qz2RvRpSFb4wUQo68CTzPOWgjz2iHdK4ng1UPEL3G73Aag06Y3RqveAZaL1Zb_23i3xNPIuxfbkb2R-5yN6BPEANST2o5lE4Q5opO6Feujv5tXk49rKtvAg1KD1R50u49zy_PfrnzrwySdk45yLZPAPM_L1SScg5CvITveOdvT2VU9W4AFoQO9aXWzxrvCi4rBNhPAKE7z2oGp42zGLiPWkbv72o5my41mLmPAspHz5IB404KkwpvQ09vT3wz185g2LxuwbmNz0TQxO4llJhPHoQDLyWDMY4zfkTPeL8gj1Pyro09wEoPnBh3b3xZ7-5k4ycvCaxqr33Adu4SJZCvSwRw73BzI-4BxSguskgtz3C15q3A-xEO-TNK70yqpm4Iv_sPTUpBT7zflu4T8sPPU4f5jyHNbe4bgONvSdprj2_9xY3zEMmvhyQqTypZjG4IAA4E0AJSG1QASpzEAAaYA78AD7yRsXnCxL5JawOCOX15r_w2f7_6ND_CiAKzSj4z98VF_8O3OfrqgAAABsJ-R3dAAhq8v3VQfUN3yGTzD4Hfwr8Kr3Z8A7WACzyHeP-MdoCSADtB9g-8bEDXQIWFiAALe13JDs4E0AJSG9QAiqvBhAMGqAGAACAPwAAgMIAAKJCAADIwQAAHEIAABBBAACAQgAAmMEAAOjBAACAPwAA8MEAAITCAACIQQAAEMIAAAjCAADYQQAAPEIAAEDBAAAwQgAAJMIAAFDBAABAQQAAwMEAAHDBAABYwgAAeMIAAEjCAAAMwgAA-kIAAKDBAAAcwgAAoEAAAEDCAAAkwgAAqsIAAChCAAAkQgAADEIAABDBAAAEQgAAMMEAAMDBAACgwQAAVMIAAFxCAADowQAAuMEAAARCAABIQgAAQMAAAOBAAACYwQAAQEAAAEBBAAAAwAAA4EEAAMrCAACAvwAAgEEAABBBAAC4QQAASMIAADDBAADCwgAAQMEAAPzCAACAwAAAaMIAALjBAAA4wgAAEEIAAKjBAADQwgAA8EEAAKjBAADIwQAAAEEAAIjBAAC4wQAA2MEAAAAAAACYQgAA8MEAAKDBAABwQQAAoMAAAExCAAAUQgAAcEEAAOjBAAAgQQAAfEIAAGjCAABYQgAABEIAADjCAACAwQAAgMEAAIA_AACGQgAAaMIAAAzCAACwQQAAoEEAACTCAAAQwQAAgEEAADBBAABgQQAAlEIAAMhBAAAIQgAAEMEAAABBAAAcwgAAwEEAAKhBAACAPwAASMIAAODBAADwwQAApMIAAKDBAACAQAAAUEEAAKDBAADgwAAAAAAAANDBAACQQQAAIMEAAEDBAABgwQAAHEIAAIC_AACYQgAANEIAAADBAABwwQAAHMIAALDBAADAwAAAREIAAJDBAACYQQAABEIAAIC_AACgwQAAAAAAAAjCAAAAQQAAcEEAAJBCAABAQQAAREIAAJBBAABAwQAAqMEAAGTCAABQwQAAjsIAAEBBAAAwwgAABMIAACTCAACkQgAAMMEAALJCAABwQgAAQEEAAGRCAACgQAAAGEIAADDCAABcwgAAuEEAADDCAACgwQAAsEEAAIRCAADAwAAAcMIAANjBAABcwgAA0EEAAOBAAAAwwgAAEMIAAODAAAAkQgAAiEEAAPDBAADgQQAAyMEAAMjBAACUQgAA4MAAAIbCAADAQAAA-MEgADgTQAlIdVABKo8CEAAagAIAAHC9AABUvgAAUD0AADA9AABsvgAAFD4AADC9AAAXvwAAyD0AAKg9AADgPAAADD4AAFA9AABQPQAARL4AABC9AAAsPgAAcD0AAAS-AAAFPwAAfz8AACy-AAAMvgAAUL0AAJq-AAB0PgAA-L0AAJK-AAA8PgAA2D0AAJg9AACYPQAA4LwAALg9AACYvQAAJL4AAKC8AADIvQAAHL4AAPi9AACWPgAAPL4AAMg9AABwPQAA2D0AAKg9AACgPAAAyr4AAK6-AACmvgAAgLsAAL4-AACyPgAA-D0AAJa-AACYPQAAOz8AADw-AAAwPQAARD4AANg9AACGvgAAqL0AABW_IAA4E0AJSHxQASqPAhABGoACAABQvQAAQLwAAJq-AABrvwAA3r4AAHA9AAARPwAAHL4AAFQ-AACmPgAAoLwAABA9AAAMPgAA6D0AAKi9AABQPQAAkr4AANo-AACqvgAAhj4AABQ-AAB0vgAAUD0AAMg9AADIvQAAVD4AAK6-AABwPQAAHL4AAOi9AADgvAAAqD0AAKi9AADavgAAHL4AAOA8AADePgAAoLwAAJi9AADOvgAADD4AAHQ-AACAuwAAML0AAAc_AABEvgAAf78AAEw-AACGPgAAmL0AAIY-AABEPgAAXD4AAL4-AACuvgAAfD4AABS-AAA0vgAAZD4AAPi9AADaPgAAUD0AAOi9AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FK5HFw6rXIU","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["1930999456278746482"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1326792036"},"4489216167531479793":{"videoId":"4489216167531479793","docid":"34-1-15-Z51BE2BB16D2B5698","description":"Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4887154/ed73dcdd458b80b46565e3aa7f1d416f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FKr5BgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx9jBq_5RgAo","linkTemplate":"/video/preview/4489216167531479793?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos^2(x)/sin^4(x) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x9jBq_5RgAo\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTNDQ4OTIxNjE2NzUzMTQ3OTc5M1oTNDQ4OTIxNjE2NzUzMTQ3OTc5M2qIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOWAYIEJAGABCsqiwEQARp4gfYJ_vX_AQD5CA38-wT_AfMJ8AX4_f0A9Qb1_fUC_wD3_AoLCQAAAP8TCAsGAAAAAfYBBPX9AQANBPntAwAAABD69QH0AAAADA7vAv8BAAAABfruAgAAAAAE-v7_AAAAAAgC9gMAAAD_BwX9AAAAAAkJARQAAAAAIAAtS6PSOzgTQAlITlACKoQCEAAa8AF_FPv_0Pr5_-AYtgHrO-UAiRcO_xMXzgDHDeb_svbCAc_35QDTJM4ADQgY_7QbCQA30s3-MMn1_yfT7_4b3AABxf7wASLx3wA1AgkA7_Hp_ukLKQD48PoA89iuAOoWxv76_BUA4_vWAx8YxwIR4hEDBP9IABnzJAL2t_QD3u4JBu4W0f379QgICPIH-7okGwMrAygEFxQJ-eoU2f3t5wH83-0Z_x__xPv8wP8JDQgC-Nb9EgTsKAn0Nx0rCrD1CP7y9ikC8d4B7gTY__wR-wH_7_vc8wbu3QQw9Ar668jyAvjx9e_sAPDu_eQHBOEO8xUgAC1SbQk7OBNACUhhUAIqzwcQABrAB2Zrxb5-c3-8I036u7Hfw708qF-9cL4HvUleJ73jVVY9pr_NvB5P6z3an4W9czO3vBToM77779w8WdOGvNtP5j2FtMa9P5STvYbjCb7fIPU8rAEqvVexOL5HpX08pdQKPVZhMzwxvK29G66fvKA0xD2m1VC9Ef_WOStXw72dbF69-pQIvYlH_byTnai9a3ARvU2foTvKuHO9GI4RPYU4gD1v3rS6rtcUvbPNcj1B-4c8CvfKvHcIvb34Em89veMUvWiqirsHj9u81Sh_PJ0u672vT2-8X5rDu7ICnb0fYT28kljSPPcm4TxdhpQ98LXxvPRsablgqyS-gDKAuyY19L1-Ay49q7oCPeyG7T2M94M9cluROwNzWb0N5po9L2MvvH9lSj2_0fO8_8ygvADyhD2JKwI9-CsuPNCAlT1DkIM8wX2RuyTRDbyZaCs9WJBmPE0dWj1jzW28JIp_vJwlcj1UEYg9W-uLOnqslL3IluU84TOIPHNPgj2WOFc9Q7DFvI5fM71Rqlg8Uw4BPZuVCL0Idgy-zaXhu8eDbb1XEI69nbdWvNdcpLyV5ws9Tcg9vHcvBz4Ie269k-Q5PC8yojsUFPW8GPaLO6X_QDzZ6rK9U5I3unPZyL1iM3s9Ce3Ju79rp7s6w7k81jV_vP7Zuj0rEgM-y7FbuXJT_zu_gtS9OouDOrwpQDzSwzA9EJp6uyVIuz2eoCM9YE8ruUkOfT1FwPy8KzLXu1Rhoryc_QG9zOHFurwiyL0yqsG9nAFSuN1hkz27lwu-pQ5oOdWTeTxrFp48SSdYOaw84b1pQ1Q9lVuyOCrG-byIOyi9VnZMt8ui8LxbQh6-NwXjOZnw8LzQS6A9O9uzOBVbrD0y32a9B-Y4OT5Cnb3oqlS9lodOucSxTr2V_5o8aUFhuFkcmT11hWg94U6OOKw2Hz0Qaae6Z95uue-aRr20hCY9XBLSOKGlRj1lOzo98H-_OFqvgz0Bj8O9ptFaOXMYBjxOlj891tyTN1s9TLu7NLQ8y7WZuOvQPz2z3TM9y4-TuO5ubz0UQRy9CRWxttvQnj1245g9UAX1uGVTzr3C6Kg8_jLoN8pRoL1xEvc62o4VtQqouz1cWqA5aasaOAoouTz-3ZE90q9lN5JdGT7ZT1C9rMI_uaqex716nY69kk3VN7vtgryX5qG9-jj_tyBNq73ORIc9Zzw0OL-fdbzgC7i8xGiAuCL_7D01KQU-835buJiTZTuAC9I9mOQPuUuRDL6X4po9rk2fOEspjr3yKJA94DNcuCAAOBNACUhtUAEqcxAAGmAM_AA49znD8gYr9RzQ8hLt7NjL7_IM_-7e_xYFA9YT9tTO-Pz_I8vt_qwAAAAj_Pg72AARafX06C_mD-gYiPcm_3__FUywz_gI9eY08v_tACDh7kkA6ha6FxPf5lgxHRwgAC2K9yo7OBNACUhvUAIqrwYQDBqgBgAAwEEAADzCAAC8QgAAAMIAACRCAABQwQAATEIAAKDBAAAgwgAAAMEAAFDBAABAwgAAsEEAAGBBAACwwQAAoEEAABBCAABwwgAAhEIAAATCAAAwwgAADEIAALDBAADAQAAAyMEAAHTCAAA4wgAAAAAAANhCAAAcwgAAQMIAAEBBAACGwgAAJMIAACTCAABUQgAASEIAABhCAACgwQAAPEIAAMDBAACgwAAAQEAAAFDCAAAgQgAAQMIAACBBAACwQQAAGEIAAIjBAACgwAAAUMEAADBBAACAQQAAqEEAAMhBAACgwgAA4MAAAADBAACYQQAAFEIAAEzCAAAwwgAAnsIAAMDAAADawgAAoMEAAFjCAAAAQAAAXMIAAAhCAAD4wQAAwMIAAOBBAADwwQAAoEAAAIDAAACAwQAAAMEAANDBAABAwQAAaEIAACDCAACowQAAEEEAAKBAAAAwQgAA6EEAAOhBAAAwwQAAYMEAAIZCAAAkwgAAWEIAAFhCAAAowgAAoMEAAHDBAAAwQQAAgEIAAHTCAABAwgAA4EAAAHBBAADYwQAAwEAAAIBBAACAQQAAEEEAAIhCAAD4QQAAMEIAACDBAADYQQAAlMIAAJBCAACoQQAAgL8AADzCAAAYwgAATMIAAJ7CAAAAAAAADEIAAEDAAAAwwgAAgL8AAABAAAAcwgAAgL8AAATCAACQwQAAgEEAAGhCAAAQwgAAtEIAANhBAADgQAAAoMEAAEjCAAAgwQAA0MEAAMhBAACwwQAAEEIAACBCAACAQAAAgEEAABDBAAD4wQAA8MEAAIBAAACAQgAADEIAAPBBAABgQQAA8MEAAFDBAABQwgAAQEAAAJLCAABAQQAAUMIAACDCAAAwwQAAjEIAABDCAACSQgAAsEEAABBBAAAYQgAAwMAAAAxCAABwwgAAIMIAAPBBAACSwgAAwMAAABxCAAAsQgAABMIAAEzCAABQwQAAisIAACBCAABQQQAATMIAAETCAACAQAAAlEIAAOBAAADgQAAATEIAAKDAAADgwQAAgkIAAJjBAABEwgAAQEAAAGDBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAFL4AAMg9AADovQAAgDsAAKo-AABMPgAAH78AAJg9AABAvAAAoLwAAAw-AADgvAAAVD4AAPi9AACgvAAAsj4AABA9AAAQvQAAFz8AAH8_AABcvgAAJL4AAGQ-AADyvgAAij4AAOi9AADCvgAAJD4AALo-AAD4PQAA6L0AALi9AABQvQAAQLwAAIi9AACAuwAAML0AALK-AAA8vgAA2j4AAIg9AACovQAAuD0AAOC8AABEPgAAZD4AAAG_AAC-vgAADb8AAOi9AAB0PgAADT8AAMg9AAA0vgAAuD0AAFM_AACCPgAAuL0AALI-AABwvQAAgr4AAES-AADSviAAOBNACUh8UAEqjwIQARqAAgAAEL0AAOC8AABcvgAAbb8AAFy-AADYvQAAmj4AAKa-AADIPQAAij4AAJg9AAAUPgAAqL0AAEA8AACovQAAQLwAAL6-AADaPgAAhr4AAGQ-AABsPgAAZL4AABA9AABQvQAA-L0AAMg9AACmvgAAuD0AAIi9AADIPQAAqD0AACQ-AACCvgAApr4AAIi9AAAEPgAA3j4AADA9AABkvgAAnr4AAEQ-AADoPQAABL4AACw-AADSPgAA6L0AAH-_AAA0PgAA3j4AAOA8AAD4PQAAQDwAAFA9AACSPgAALL4AAFQ-AACYvQAATL4AAJg9AADIvQAAgj4AAAQ-AABwPQAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=x9jBq_5RgAo","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["4489216167531479793"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"945386151"},"12722066716350592627":{"videoId":"12722066716350592627","docid":"34-6-7-Z7785004AD2F954AE","description":"𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4362296/125fd6a2d3b4728ca4b3bdf1040e7cd5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/__fcMgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfdEmDPuLp2I","linkTemplate":"/video/preview/12722066716350592627?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(x*(1+ln(x))^4) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fdEmDPuLp2I\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFgoUMTI3MjIwNjY3MTYzNTA1OTI2MjdaFDEyNzIyMDY2NzE2MzUwNTkyNjI3aocXEgEwGAAiRBoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioPwg8PGg8_E2qCBCQBgAQrKosBEAEaeIH0CPsH_QMAAwP9_vsD_wH9CPj9-P79AOj9BQL__gEA8_0KCPwAAAD-BgQKBAAAAAEHAf7y_gEABgoE8QQAAAD47_UG_QAAAAYL-v3-AQAA7v70-QIAAAANCAEFAAAAAPUA__oDAAAA_fkO-QAAAAAD-f4DAAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABfyP2_-bh3wLUFNgA6B7kAJwPIf_2JewA4_DW_9LutwHpCOUA8gXY_wgbBgCaK8wAPc7I_iLd_QAyzxD_HtgAAcsb8gEL7-UBGysJAej_Bv_h-Cr7FcYJAP282AAFKtP--eD79v4P6AEGN9ADEt8TAwLnMPwk6hUC9bDyBMbQ_AAB_Or9-DX2ARnxBfSzJx0EIesb_yohFfzb68r-2-YS-NzrG_8QFsgAFd0DCCQr8vahAxoCzwolADECFgKqDxr-AQ44-v3--vgN5BL9LATw9_wo7Qsg8vIOFAsK_fLh8ev01BL27g77-wrn_P_k_egFIAAtuAv6OjgTQAlIYVACKs8HEAAawAcuIKS-IrjbPGfzUDlOY_u9N-kMvXfp8LwjE_C91y0nPff9QLwglsI9CqMZvRAGnrxoN4-9Jn7WPED8l7xB1eg9hJUUvRs237t6Fy--CDwwPSmf1LxXsTi-R6V9PKXUCj2ay7K5IBrHvT2xszzg2X49UnFNvc03R7xiUSy9ZFKoPKiWY7xD5_W9f7YfvVoiAb1uMLk82QVIvWqhxzvr4LA9f3iMvHwVT7z98r49fnAdvLelRLx7rgW9wwd7PSPKDb0SHbg8b8KzvNAc4zwX1RK-6d75vDYlFD0OmKy9CWxuvbIMlrvf_MY97BvzPIdZPr30bGm5YKskvoAygLtjtB6-NhZ7u39gWDzkhv89OXb1PIxvnjx8mtO9saImPX1esbxDebo8t1I5vaygM7xcSaE82GvVPOLyzjw8Xbc91iV5PYo1CjpoOgE8GeQuvHGBOjxGp7i8QG6avTCQMbwTvKw9cCTQPfr3T7yyUhg8AgkPPdm8vzuyYIe9kdKcPflOCjvhRuU8th2JvKq-jjzFNUM9-FENvglvLLv6WKa9y1CQvR2nrru3MIG8DszFOV0KmbzkLEw-6lePvQMMhTu_Pdk8Th11vDlbZbtktmC7qASPvZo0GbtrAMW9xHUxvYNujru_a6e7OsO5PNY1f7zs76Y9Wk2yPU9zprkpcJw9kivLvSj22jgNmoy8F5llParaSbs2qw4-YcCnPZB7aLraEC096M4fO0ayCbzMDJu888CsvMkpzzvFE0u9-I3KvT_tR7ltA9c9taPYvQyfrznycTe8bomMvUNonDesPOG9aUNUPZVbsjibcPE7gEQ4vbbDaTjLovC8W0IevjcF4zneoXK8zJC_PZMSqzow2gM9pF4mvQHds7nMIMO91A0EvghThTmB_eG8wCgcvDVqsTcMhLM9jy8GPUh15riyo8w8pGw2PI9W7DeFsYm7kvr8OzqMQrh9IKk91T2yPPVI9TjDgCU8546OvcNmcjnN8iu84yaZPdrOH7giCfG8WN-CO_boDrjo2AE9EhNUPaqcgrZwRNc9ZYTcvI2YCLgt97g8D4qMPam9irhaNKO9fFpKPXIgbDgMDA-9cVrwPKGHnjibr209M-KdvFfmmzeDh4k9Tny1Paoo6Tf3ASg-cGHdvfFnv7lOwZC9P75OvVNOZTd19fS8Wd3qvQ0j8TWRvwq9gx6VPYtDkTda_AE9AuF5vIkqwbci_-w9NSkFPvN-W7glzV07LR5jPUERC7m0FsC9VDS7PTxfsjhYJIG9FgpiPYySOLggADgTQAlIbVABKnMQABpgCgcALAAp1e4IFfcMzwAZCPjt3fPzBADl7AASFADhIQLn2QoDAB3L9_7FAAAABRELIOUADE0EAuAZ8iL4JqrrHPx_9xEyzN72Bd7rM_IV_OwY8vEvAOcb0BP75Oo_IR4UIAAtTrxYOzgTQAlIb1ACKq8GEAwaoAYAAJhBAAAgwgAA3EIAABzCAAAEQgAAUMEAAJJCAAAgQQAAEMIAAEBBAACQwQAATMIAANBBAABgQQAALMIAAARCAABMQgAAkMEAAChCAADIwQAAoEAAAFRCAAB0wgAAoEAAAITCAABswgAA2MEAAIjBAAD2QgAAcMEAAGDBAAC4wQAAfMIAAOjBAABMwgAAQEIAAJBBAACwQQAAQMAAAHBBAADAwQAAAEAAAIC_AABQwgAAOEIAAGzCAACAwAAAKEIAAABBAAAgwQAAAAAAAKDBAABgQQAA2EEAAFBBAAD4QQAAhMIAALDBAADgQQAAgEAAACRCAABAwgAAEMIAAFzCAACAQAAA5MIAALDBAAA8wgAA4MAAAAzCAABEQgAA-MEAAM7CAAA0QgAATMIAAKBAAAAAQQAAgL8AACDBAAAgwgAAwEEAAK5CAACwwQAAmMEAAIBAAABAwQAALEIAAOBAAADYQQAAAEAAAAAAAABAQgAAAMIAAMhBAABEQgAALMIAAFDBAABAwAAAwMEAAKZCAAAcwgAAhMIAALhBAABUQgAAKMIAAFDBAABQQQAAAEEAABhCAACsQgAAqEEAAFBCAACQwQAAiMEAAADCAACyQgAAAEIAAABBAABAwgAADMIAAJDBAACkwgAAwMEAABBBAADgQAAAmMEAAIhBAACgwQAAwMAAAPBBAADAwQAAyMEAAEBAAABUQgAAoMEAANxCAABMQgAAuEEAACTCAADAwQAAYMEAACDBAAAIQgAABMIAAPBBAAAIQgAAHEIAANBBAABQQQAAPMIAAPjBAAAwQQAAREIAABxCAAA0QgAAUEEAABTCAABAwQAAoMEAAPjBAABwwgAAwEEAAMDBAADwwQAAwMAAAKhCAADAwAAAZEIAAHRCAADAQAAABEIAACxCAADwQQAASMIAABjCAADAQQAAKMIAAPjBAAAAAAAA2EEAAAzCAAAYwgAACMIAAHTCAADoQQAAoEAAAOjBAAAwwgAAAEAAAOBBAAAgQgAAoMAAAEDAAACAwQAAKMIAAIhCAABAQQAAosIAAAxCAACgwSAAOBNACUh1UAEqjwIQABqAAgAABL4AAHC9AADIvQAAQDwAAIK-AADIPQAAPD4AACu_AAD4PQAAUL0AABw-AACAOwAAgDsAAEA8AAB8vgAAML0AAFw-AACIPQAAQLwAAAk_AAB_PwAA4LwAAHC9AAAEvgAA2L0AABw-AABQvQAAhr4AABC9AAC4PQAAND4AAEw-AADYvQAAgDsAAJi9AABAPAAAdD4AALi9AABsvgAArr4AAGw-AABcvgAAcD0AAOg9AACePgAAXD4AAJg9AACWvgAAur4AAMa-AACYPQAA-D0AAJ4-AAAcPgAARL4AAJg9AAA9PwAA2L0AAEC8AAA8PgAA2D0AAEA8AAC4vQAADb8gADgTQAlIfFABKo8CEAEagAIAAIg9AACIPQAAzr4AAE-_AADKvgAAFD4AABM_AAA0vgAADD4AAKY-AABwvQAAoLwAABC9AAAQvQAAUD0AAEC8AACmvgAAxj4AAL6-AADGPgAAQLwAALK-AAAwvQAAyD0AAJi9AAAEPgAAlr4AAHA9AADovQAAdL4AADC9AADgPAAAUL0AAKq-AAAkvgAAoDwAAKY-AAD4PQAAcL0AAIa-AAAsPgAAfD4AALg9AACIvQAApj4AAAS-AAB_vwAAiD0AAIY-AADgvAAA2D0AADA9AAAMPgAAXD4AAGy-AAA8PgAABL4AAAS-AADgPAAAUD0AAJY-AAA8PgAA4LwAAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=fdEmDPuLp2I","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["12722066716350592627"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2664798627"},"2453598555517141157":{"videoId":"2453598555517141157","docid":"34-5-11-ZA371DC4C56A88B89","description":"𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2731499/d936a2257bb43f0b881ac11c59721426/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3PsgtQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPx5eC3D4LyY","linkTemplate":"/video/preview/2453598555517141157?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(x*(ln(x))^4) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Px5eC3D4LyY\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTMjQ1MzU5ODU1NTUxNzE0MTE1N1oTMjQ1MzU5ODU1NTUxNzE0MTE1N2qHFxIBMBgAIkQaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqD8IPDxoPPxNRggQkAYAEKyqLARABGniB9Aj7B_0DAAP-Cvv9A_8B_Qj4_fj-_QDtAvwEAAAAAPP9Cgj8AAAA_gYECgQAAAABBwH-8v4BAAYKBPEEAAAAA-cCB_wBAQAFFAD6_gEAAO7-9PkCAAAABQr8Af8AAAD4AAACBvr_Af35DvkAAAAABfz5_gAAAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAXsaCf_YsvMAxALlAeUh-QGBGA___DvLAMbg6AH52sMB2P3WAPgd2wD2IQIAu07yADvPyf4kwgkBMNEQ__vM6gHO8tIBC-zQAkASGwLaDif_4vgp-_ba6f7y1agAIx28AOD1APv0DN0CBjbRAwDnGf8E_00BPe0cASqt3AW93ekB3wPjAPcA8AUM2xH3tSYcBBHeIwAZFQr5-wTcAvzzA_nfAREBCTXO_f_SBwwQFQAEpAMZAtc1B_sZCBYHrA4Z_gEON_oF6PvyBNb__BkO-u0RGuIEH_PyDicIE_X98ef69_D17gUm9f7v9wgI1Q7w_yAALQGwADs4E0AJSGFQAirPBxAAGsAHzF3DvmTS-LpL8P47CgfMvVcPFLw0hQ69SV4nveNVVj2mv828n1s4PucTfr3YCj-8booHvr9qwDzmXXW8Jv_zPfEFt72gZSc8dXT8vS8Tmj0LAhC9qaIIvqJIsbtITFU9WBUmvaHcMb0VGZ28wX6-PfL3wb0XrW28b4sIvUNHB7oj2Bi93GoZOvURWL0TfFi9ZTsbvFf0Xb2f2mM6-ERoPb3Dbbze2747_fK-PX5wHby3pUS8e64FvcMHez0jyg29Wkc1PYPGp7vIg-M8WP68vcXZnr0qS187VRLZvQuDjbzvExE9NuwyPQANBT3E0ju9ZUOdPXc1tL2QdjK9DVMrvlyypjtiujW899a2Parw1DloVwQ7sOLUvXU2yT08jlU8mscKu1iTgr2u9YW80pGaO3zeorswbt07_oePPY_LEz2uieA8kCQQvBDfoz2mYgM99PNQPdPAD727kq68hpi2PQpkiz38rde7KRTYvKFvAT0diUC6qLieO0IZVD1hn2e6871QPSJrETzWbn07RVylPHO49r3kBDc8KLq-vabsub1DpI073cF-Pby7JD2Ie5G8Q6kdPh9q273Emqk5b7swPZ5KIb2jJsw5pf9APNnqsr1Tkje6t0TuvcCexLsFepe7bcVDveP1lT03TI257O-mPVpNsj1Pc6a5xWUGPfoMCL5VIQO6tGBYPc_56TzEL6s6-5trPfYLVj0OKye6BeoDPbZHD70dhM67WL2NvayZyrs9K-W6LolYvd3pM730jaa67nScPazizb0q_705qvBKu_R-7TuZZKK6lInbvQndmj3vveg4Yu8qvRQ9lTygfEO6XFQLvZwV8b3cnnU5xUJjvHjePD2odcO4QIUjPRrwQ7zJoLI5X3-9vR8YO70I1Te5N1OhvLOvFTn9MjU5FiMhPXBbwDw_YBI5xtwVPccbjz0zaBC3cU88vX_VNrw0oL84POkTPa-hKj3_27U4Wq-DPQGPw72m0Vo5429yOcm_oD25_Sc4uTEivdX00TrafMu45lViPVOSVT0ALio4ge2LPQjKTb3nrKA44tf-uop6rD3VWJW4-Pd-vVvFLD0YKb44WUumvIyadD2CBn84B3csPfgZN72e6as4Tw41PZwgID3KUkc4427wPQ5M7r3JZZe5XEkBvcre0r0XIgS5c_lqPFX4o73jEDs3kb8KvYMelT2LQ5E3L0UDvavpWr0tMPS3Iv_sPTUpBT7zflu4T8sPPU4f5jyHNbe4fifMvSy8iz3JKcE4GjOZvV-E3zxjGDG3IAA4E0AJSG1QASpzEAAaYA_0AC_9QLP3HA78H7gKEAro0M337w7_6Ob_DiIM4hD51NEPAwAovPPsqQAAAA4G-ynDAChw_fDkPOkf8SWHAzPufwUQNJ_c9wvp7E7WE9zxJeoEMwDhM7Mo7dvoURg2JiAALVUxIDs4E0AJSG9QAiqvBhAMGqAGAACAPwAAiMIAANBCAADwwQAAOEIAACDBAACAQgAAgMAAABDCAADAQAAA-MEAAEDCAAAEQgAAQEAAAEDCAADgQQAATEIAAEDBAAAMQgAA0MEAAABAAAAQQgAAPMIAAAAAAABQwgAAUMIAALjBAABgwQAA_kIAAJDBAACQwQAAMMEAAGjCAAAMwgAAVMIAADxCAADgQQAA4EEAAMDAAACoQQAAkMEAADDBAACQwQAAQMIAADxCAABQwgAAMMEAAEhCAAAgQQAAUMEAAMBAAADwwQAAgL8AAKBBAABAQAAALEIAAIDCAABAwQAA8EEAAIBAAADgQQAATMIAABTCAACOwgAA4MAAAPjCAAAgwQAAUMIAAMDAAAAgwgAAJEIAADzCAADiwgAAOEIAABTCAACAQAAAoEEAAABAAAAMwgAAbMIAAKBAAACaQgAAgMEAACDBAAAgQQAAQMEAADxCAACAQQAAMEEAAAAAAACAvwAAXEIAAATCAAAkQgAAOEIAACTCAACQwQAAUMEAACDBAACuQgAALMIAAIzCAABwQQAALEIAAAjCAADgwAAAiEEAAHBBAAD4QQAArEIAAARCAAAsQgAAIMEAAAAAAABEwgAAaEIAAAxCAACoQQAAXMIAACTCAADAwQAAnsIAAIDBAADgQAAAgEAAANjBAABAwAAAiMEAAIBAAADYQQAAQMEAAJDBAABAwAAAWEIAAHDBAADWQgAAWEIAAKBBAAA0wgAAwMEAAMDAAAAAwQAAFEIAALjBAADAQQAADEIAANhBAACAPwAA4EAAACjCAABwwQAAmEEAAGBCAADgQQAATEIAAIhBAACowQAAoMAAABDCAADgwQAAeMIAAKhBAADwwQAAyMEAABDBAACoQgAAgD8AAJBCAABUQgAAqEEAAPhBAADQQQAAEEIAADzCAAA8wgAA4EEAAFTCAACgwAAA4EAAADBCAACIwQAAIMIAAAzCAACWwgAAsEEAAOBBAACowQAASMIAAMBAAAD4QQAAJEIAAEDBAABAQAAAyMEAABDCAACIQgAAEEEAAKjCAADoQQAA0MEgADgTQAlIdVABKo8CEAAagAIAAIA7AABAvAAAoLwAADA9AACOvgAAED0AAOg9AAAfvwAAcD0AAFC9AAA0PgAAgDsAAKA8AABwPQAAXL4AALi9AABkPgAAuD0AALi9AADuPgAAfz8AAKC8AADovQAAqL0AADS-AABEPgAAcL0AAI6-AAAwPQAAiD0AABQ-AABkPgAA2L0AAFA9AACYvQAAoDwAAGw-AADYvQAAPL4AAKq-AABMPgAARL4AAOC8AAAUPgAAfD4AAGQ-AAAQPQAAkr4AAKK-AACmvgAADD4AAEQ-AACePgAAFD4AAFy-AACIPQAANT8AADC9AACAuwAAPD4AAJg9AAAEvgAAML0AAO6-IAA4E0AJSHxQASqPAhABGoACAABQPQAAQDwAAKq-AABHvwAAtr4AAOg9AADaPgAADL4AALg9AACqPgAAUL0AAKC8AABwPQAA4LwAAHA9AACgvAAAfL4AAOo-AACGvgAAuj4AAKA8AACOvgAAED0AAOA8AAAQvQAALD4AAHS-AAAQPQAAqL0AABS-AABwvQAAED0AAKC8AACuvgAA6L0AAEA8AACGPgAALD4AAHC9AACGvgAAPD4AAFw-AADIPQAAuL0AAJo-AAAEvgAAf78AAKg9AABMPgAA4LwAABQ-AACAuwAA-D0AAFw-AAA0vgAAHD4AALi9AAAMvgAAoDwAAKA8AACaPgAADD4AAOC8AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Px5eC3D4LyY","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["2453598555517141157"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3164501183"},"10984246358060969142":{"videoId":"10984246358060969142","docid":"34-8-6-ZFA72770CF2C7F846","description":"Integral of sqrt(9-x^2) - How to integrate it step by step using the trig substitution method! ✅ 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐭𝐡𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 Derivative of (9/2)arcsin(x/3) + (x/2)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1597833/06c06cf142430c91a45dfdb38c0fd103/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3eaTNgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLIOWZCm_ls8","linkTemplate":"/video/preview/10984246358060969142?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt(9-x^2) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=LIOWZCm_ls8\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFgoUMTA5ODQyNDYzNTgwNjA5NjkxNDJaFDEwOTg0MjQ2MzU4MDYwOTY5MTQyaogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E7ECggQkAYAEKyqLARABGniB8BMAAAEAAPkIDvz7BP8BAQzu__b-_QDwAQL8_gEAAOXw-wkC_gAA_QcECwQAAAD-_v7_-P4AAAYG_Pr7AAAACef2-_0AAAAFFQD6_gEAAOkBAQD2AgABDAT4BgAAAADwCgYRAAAAAPwICQUAAAAACf4EBgAAAAAgAC12UM47OBNACUhOUAIqhAIQABrwAX8bCv_Xr_MAzwa-AOlB4wC0KD3__D3KAM7azQDMB9oBBSfaAOP9AAAW-Qn_twXQ_hTXxQD4xgIARtb7AB7YAAHfFucAJu_bADsCCQAdBfH_vhZCAdKmAQLy06X_BSrT_urT3v4cIeD9IhrBAiPkGwPg-DUFGQ8rBNqdLADV3P8EDO3PAAYcEQXs4Oz53RIVCfa9BAFAB_3_7Q3nBe7RLAb97AfzBB7eBhXEBP8QFgAExgwTAREL_wsfUAf2xdn3--HcI_-29e8F2sQE9zMOBu7OCd4LIPLyDv_eBQP-2wMH7br26w7w8gD-__Lr4R7Y7yAALe5a-To4E0AJSGFQAirPBxAAGsAH4xixvl-QXj0RYEc8TmP7vTfpDL136fC8FNqYvSdPeT0LEYm7D9LzPZDuLL2gBNE8aDePvSZ-1jxA_Je8mN0jPoFJkL1D9PW8hzQqvp5pqD22cmW8V7E4vkelfTyl1Ao9_5U1vQ8blr1Ap3s8wX6-PfL3wb0XrW289r08vdq9hj1saPm8KBMyPbBfK72xpz29pZr-O5XJurx45eG7-ERoPb3Dbbze27478QWXPQsmHr2ntBm9EJSZu8griz3u5s68UpCpPL93AD0hG608RCC9vbRgPb1b1Uc5BmJ-vR2lXLwE5r466gd1Pb-ExDux1Qq99GxpuWCrJL6AMoC7Qgouvj5fDr1sw3K899a2Parw1DloVwQ7UMPXvcSSdz1rjM46f2VKPb_R87z_zKC8PJnJvM5VszwqXeg53lq2PY8mDT2233M7qh5GuoCBgD1U02Q89LduPXpYk70qdxs8_OAcPbnjSD1qu-y7EY3uPKdULj1to6a8g4nfvVxrqT37ozk8Y59bPEzZjrqYGOY8JF6eu2L46L1TGGc7CcMAvvnZuL0_iiI66xPKPAnmQzxuQqu8TvDNPWYz573_VwA84SipPSUphLx1t6G7ZLZgu6gEj72aNBm7awDFvcR1Mb2Dbo67Zh6_vYUtbD1qMVu7_tm6PSsSAz7LsVu5uNIGPQhW1b0-uhK6Yt-pPNOueDy1d1u7ARjKPdJTxD0XWPC5wW2zu48cabxmlJm7CM6kvRsRqTt87BE7LolYvd3pM730jaa6bQPXPbWj2L0Mn685vaLAPAS_lbu5cPq56-PhvXWICbwkthW5KTWFvCQfxb3IGDA5VBv8vWK7-70T0_I54gKlOaEFkj3nZAe2VF22vHGHFzvQpH66EvVCvSIY5714Guo3ZUSYvHJTQz2tGTG3eJ6TPW642Tz9qJ24zLJnPQdzlT1soxs3na8DvY4IhLu_FiU52FmAu_ds47rdgME3jBgxPRcYiL0zlRw5nGsYvQRxDj6CCY2549yLvMYNyTyTw4-2PLBtPSTtiz3CRq-4aXezPaWy8rzT-Ps3q6xyPbkbwDv_rNG4nHpzvddL0z2fjZc4F9U6uvlQMTrQWNw3lRESPWN4srobg4E4alOAPRsAAD1XJUM4427wPQ5M7r3JZZe5ClwIveLDkb08pVi4SJZCvSwRw73BzI-4jrmhvMkJrj1kbhS3oW9BuwuLkL1ihgm4Iv_sPTUpBT7zflu48jYgPZEZnj3jHGK46FWzvRYk7DzNuCE4SV6nvUasqj1UMog4IAA4E0AJSG1QASpzEAAaYAQWACEEHunuABP_CNj7_-fz9-Ty8P4A6eoABxgI7xcL8uYB-AAP3P8F1QAAAP4DBiEPAP8yCgD2G_0D7hW98RkSf_MGK9_h-gnuBRr_EgINE_j3IADzEu4DCPP2Jw4aGSAALUoHjTs4E0AJSG9QAiqvBhAMGqAGAACAQAAAgMIAALhCAAAswgAAkEEAABBBAAAgQgAAkMEAAETCAABQwQAA4EAAABTCAAD4QQAA4EAAAHDCAABQQQAAXEIAAMDBAAAYQgAAIMIAAODAAAAAwAAA-MEAAIBBAAAgwgAAyMEAAJDCAADgQAAAgEIAAADCAAB8wgAAIEIAAGjCAAAUwgAAUMIAADRCAADIQQAAkEEAAMjBAABAQAAAgMEAAFDBAADIwQAAwMEAADhCAADAwQAAMEIAANBBAAAgQgAAQMAAAFBBAAB0wgAAQEAAAABAAABwQQAAOEIAAMDBAABQQQAATEIAAIhBAADwQQAAVMIAACjCAACWwgAAEMEAANbCAABgwQAAiMEAAHDBAAD4wQAAoEAAAEjCAAC-wgAAwEAAAGDBAAAgwQAAYMEAAADAAADIwQAAjMIAAJBBAAC2QgAAqMEAAPjBAACYQQAAgL8AAFRCAAAwQQAAIEIAABjCAACAQAAAKEIAAGTCAACAQgAAoEEAABzCAADgwQAAYMEAAIhBAADOQgAALMIAANDBAACAwAAAgEIAADTCAACAwQAAEEEAACxCAACYQQAAukIAAABBAAAYQgAAEMEAADBCAACGwgAAPEIAAFhCAAAgwQAARMIAANjBAAA0wgAAtMIAAADCAADIQQAAwMEAAEDCAACgwAAA4MAAAHDBAAAQQgAA2MEAAMDBAADQQQAAnkIAADDCAABQQgAAOEIAADBBAABwwQAAAMIAAJjBAABQwQAAoEEAAEDCAAAAQgAANEIAAADCAACgQQAAwMEAAJDBAACAvwAAgEEAAARCAADwQQAAOEIAAMhBAAAQwgAAAEAAAFTCAACAwQAAjsIAACBBAABMwgAAqMEAAODAAACgQgAAgMEAAIRCAAAAQgAA2EEAAKDAAADwwQAAEEIAAFjCAACGwgAAFEIAAFzCAACIQQAAYEEAAHBCAAAYwgAAoMEAAODAAADCwgAA6EEAAMhBAACowQAAuMEAACBBAACgQQAA2EEAACDBAAA4QgAAwEAAABjCAACcQgAAQMAAAGDCAAAgQgAA6MEgADgTQAlIdVABKo8CEAAagAIAAJi9AADovQAAoLwAAHA9AAAkvgAAyD0AABA9AAAbvwAAoLwAAIg9AACGPgAALD4AABC9AACmPgAAoLwAADy-AACGPgAAcD0AAGy-AAAnPwAAfz8AAHy-AACuvgAAcD0AAMa-AABcPgAATL4AAJ6-AAAsPgAAJD4AAJg9AACCPgAAVL4AABA9AACAOwAAJL4AAHC9AACoPQAArr4AADS-AAAkPgAAUL0AAOC8AACoPQAANL4AAIi9AAAcPgAAjr4AABy-AAB8vgAAqL0AABQ-AAAfPwAAuj4AAP6-AAAEPgAAVT8AABQ-AADoPQAAfD4AAOi9AAB0vgAAgDsAAIK-IAA4E0AJSHxQASqPAhABGoACAAD4vQAAUL0AAFC9AAA9vwAADL4AAAQ-AACGPgAAMD0AAOC8AADSPgAAUD0AAKA8AACAuwAAiL0AAIi9AAC4PQAAgDsAAA0_AABcvgAAZD4AAIC7AACYPQAAgLsAAIC7AAC4vQAAXD4AAIa-AABwPQAAXL4AAKi9AACgPAAABD4AAKg9AACqvgAAoDwAAKA8AACuPgAAlj4AABy-AACGvgAAND4AAKA8AAC4vQAAVL4AAI4-AAAMvgAAf78AAAw-AAAMPgAAUL0AAKI-AAAwPQAAmj4AADw-AADIvQAAqD0AAFC9AAA0vgAAuD0AAIC7AABMPgAAqL0AAAS-AABEPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=LIOWZCm_ls8","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10984246358060969142"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"923208937"},"13893584749606851801":{"videoId":"13893584749606851801","docid":"34-9-15-ZF3DCF40F983F5E72","description":"𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1780239/32eab34e0a6e7fd9f5c473397d899cbb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/q5wBPgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLx_NTB5WiGg","linkTemplate":"/video/preview/13893584749606851801?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(1-sqrt(x)) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Lx_NTB5WiGg\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFgoUMTM4OTM1ODQ3NDk2MDY4NTE4MDFaFDEzODkzNTg0NzQ5NjA2ODUxODAxaocXEgEwGAAiRBoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioPwg8PGg8_E3mCBCQBgAQrKosBEAEaeIH7DwIG_QQA-woA_P0DAAHtA_YA-v__APEB_wX2AQAA8_oHAQQAAAD-BgQKBAAAAPb4___0_wEABgUF-wQAAAAJ8_cL-wAAAAUUAPr-AQAA8_P49QIAAAANCAEFAAAAAPoGAQYEAQAAAQIJAAAAAAAC-AUHAAAAACAALTLI3Ds4E0AJSE5QAiqEAhAAGvABfw0n_-XS9gG89MsA1Tv8_5YiDAAKPO4AzNjLANDtswHoCOQA7inw_xYF-QDPMNYAGM-iAxS29P80zRH_8MAFANEC-wEaNswAMCAi_-Tw-v_sDxz_2-z8AdrWw_4FLNH-B-X5Agkb3wLmLcsEHAMlAfYBLwcy3DL-A44BCNXs4QbwDOf11iMDCg3YEvawKR8EKgMS_BYd-f3h_dcF6QAJ-O_MLP8RF8UAFtwDCREXAAS0DwQK9BsP_zwaEQOeFQMMzu44B87x-QAJ-A4HOggb9e446PQh8vEP-fEN-wPy_frr2ej0DxL2_ujZBgC79-kDIAAt3JTvOjgTQAlIYVACKs8HEAAawAcgKsW-LJaHvKW2-bxOY_u9N-kMvXfp8LwU2pi9J095PQsRibvUgQw-Ur2AvQLSwLtuige-v2rAPOZddbwW-8s9dOGRveFMp7yG4wm-3yD1PKwBKr1P5dS9-vePPLrsIT19CfW9lwLSvQpEdDyg4tg9YTyevMVPiLwukna9iaZCPRvuyLv5Rrm9U5ecvWWa37wFKYK8mn5EvWbPrzxbMaI9sZFavU9sTzxbleQ9LSXLvDTmH717rgW9wwd7PSPKDb0SHbg8b8KzvNAc4zxkKrO9QT4yvDrGOjzRXoi9-oIRvfal6Tvf_MY97BvzPIdZPr30bGm5YKskvoAygLuoyCG-AnwcPejpbTzkhv89OXb1PIxvnjwmusi9Tz6cO8WIqzvd8aE9S3qTvWArl7wA8oQ9iSsCPfgrLjyZ4mA8Nek7PTmfEzwIm_C8_2McPRcNmTyk1BI8zkKxvN6P27z84Bw9ueNIPWq77LuDFP475xiAPWpcbrzrt6W9FjdpPZgnwjtEIM08EziGuqIVDjzFNUM9-FENvglvLLsJwwC--dm4vT-KIjo9FUY96munPHoGQ7xu_Ok9TOStvStzqbtuBYM9QQDfPJcStLttpJE8Xsh5vR-sNTv4Jqy9-edzvd5tgzuUdyS9L4W3PSeh17vTlKM9e45-PQH16jvTzGk9Dt3svY-KOLoxgr47-F7yPDxLFTqZD-g9DAOWPfxdVbprFG08PIykOwkc97nR1ZG99TasvCIn4Tq0IqW9bS09vWq4hDkyVyY9uOSYvaBq8rdBb7C9fT8VvYfhRTkqRWG9alyOPYdkK7iQbfQ8suhHvW3rwLmrPZG9GlIVvjBRCjp8Gfu8GAltPRlZjTfjx1M9qGU1vcuvabkS9UK9IhjnvXga6jdw6V29F-R8uydFDrbIg-M8dQzjPL4c2be9mJy8kG1UvZxUgLkIqcC8BKnUvOvZRzk86RM9r6EqPf_btThB8QM9cU_Bvdc4ezlXoAy9T3aTPepIZ7itDiU8UcAWPQ3JVbd7kqo8L4JLPWEN77iIaao99lJCvSfpKjgt97g8D4qMPam9irhaNKO9fFpKPXIgbDhvj4Q92vOmPVfBDjm3aeI8mk6hvOE9sLiEG1-82hU_PSRUDjjjbvA9Dkzuvclll7kr3BO8ZJUCvnE9G7hmErU8XqHPvYC6sjftkZe8QfaFPX6Fn7YvRQO9q-lavS0w9Lci_-w9NSkFPvN-W7gnESE9XjhmPbbjq7h-J8y9LLyLPckpwThy7L-9yKt4PRfZjTggADgTQAlIbVABKnMQABpgD-4AKQhF2gAOIgMcuP8M-Ovh1vTeCv_T7v8NIxLrIfbFyPUGAELZBeeqAAAAFSH3R84ADnEN4PUs7yoLJJYJL-9_AwVBk9j1-sDnP-gg8fIt_CAxAPAXvyTg9-lZNSYYIAAt7LQhOzgTQAlIb1ACKq8GEAwaoAYAAMDBAACawgAArEIAAFTCAABEQgAAcEEAAGBCAABgQQAA6MEAAGBBAACgwQAAqMEAADRCAACgQAAAbMIAAGBBAABQQgAA4EAAAEBBAABQwQAAcEEAABBBAABYwgAAQEAAADTCAAAowgAANMIAAGBBAADcQgAAcMEAAOjBAABAwAAAPMIAANjBAACAwgAALEIAAPhBAAAYQgAAMMEAAAAAAAAMwgAAUMEAALDBAADwwQAAIEIAADDCAADgQQAATEIAALBBAABgwQAAoEAAAFTCAABQwQAAoMAAAKDAAAB4QgAAIMIAAJBBAACEQgAAIEEAAIBBAABYwgAALMIAAITCAAAEwgAA2MIAACDBAADowQAA4MAAACzCAABAwAAAkMIAALrCAABMQgAAGMIAAABAAAAgQQAAQEEAADDCAACewgAAQEAAANJCAAAAwAAAkMEAAOBAAABQwQAAWEIAAKBAAADYQQAAQMEAAEDBAAC4QQAAgMEAAFxCAACoQQAADMIAAOjBAACYwQAAwEAAAPBCAACYwQAAQMIAAEBAAACQQgAAVMIAABzCAACoQQAAIEIAAIhBAAC8QgAAuEEAADhCAAD4wQAAIEEAAGDCAAAoQgAAOEIAAADBAABYwgAAiMEAAIDBAACYwgAAHMIAAEBBAABwwQAARMIAANDBAADAwQAAcEEAACxCAACAPwAAgL8AAGBBAABAQgAATMIAAJZCAABIQgAAYEEAAEzCAACIwQAAgMEAAABBAAAwQQAABMIAAIhBAAAsQgAAYEEAAMDAAAAAwAAA0MEAAKjBAADAQAAABEIAAMhBAAAsQgAAIEEAAODBAABAQQAATMIAAMDBAAAkwgAAqEEAAKjBAAAgwgAAQEAAALBCAADYQQAAjEIAAFhCAAA0QgAAgMAAAMBAAADoQQAAFMIAADjCAABQQQAANMIAADBBAABQQQAAhEIAAADCAADgwAAAwMEAALbCAAAgQQAAuEEAAMBAAAAYwgAAyEEAAIDAAAA0QgAAyMEAAABAAABQwQAA2MEAAIxCAACoQQAAkMIAADhCAAAgwiAAOBNACUh1UAEqjwIQABqAAgAAyL0AAJi9AABwvQAAMD0AAAS-AAAkPgAAoDwAAAO_AACoPQAAMD0AAMg9AABQPQAAcD0AAHw-AADovQAA4DwAABw-AABwPQAAHL4AAA8_AAB_PwAAmL0AAAy-AAAQvQAArr4AADw-AADgvAAAgr4AAKC8AABkPgAAqD0AADw-AABcvgAAJD4AABC9AACgPAAADD4AAKi9AABMvgAApr4AAFA9AACCvgAAJD4AAAw-AABwPQAA4LwAANi9AACWvgAAlr4AAM6-AADgPAAAPD4AAAE_AAAcPgAA0r4AABA9AABRPwAABL4AAHw-AABMPgAAiL0AAHC9AAAwvQAAur4gADgTQAlIfFABKo8CEAEagAIAAKA8AACAuwAAdL4AAFO_AABcvgAAMD0AALI-AAAEvgAAoLwAAEQ-AABAPAAAiL0AADA9AAAkvgAAED0AAIA7AACovQAA4j4AADS-AABkPgAAyL0AAAy-AABwPQAAQDwAAFC9AAA8PgAAmr4AAOC8AAAQvQAATL4AAEC8AACoPQAAcD0AAK6-AABEvgAAMD0AADw-AACCPgAAQLwAAI6-AAB8PgAADD4AABC9AACovQAAXD4AANi9AAB_vwAA4DwAAGw-AAAEPgAAwj4AALi9AABcPgAAHD4AAHy-AAC4PQAAuL0AANi9AADYvQAAiL0AAGQ-AACoPQAAFL4AAIA7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Lx_NTB5WiGg","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":600,"cheight":360,"cratio":1.66666,"dups":["13893584749606851801"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2160020470"},"3037563882283317828":{"videoId":"3037563882283317828","docid":"34-7-6-ZE7220A58367C031C","description":"by Weierstrass substitution Integrals by parts • 🧑🔧 Integration by parts Integrals by partial fraction decomposition • 🧑🔧 Integration by partial fraction decomp...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4233250/c4b0e5bf241944233ee9ecf472d598b6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/VSBrEAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEMcw0ESfMR0","linkTemplate":"/video/preview/3037563882283317828?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sqrt((1-x)/(1+x))","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EMcw0ESfMR0\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTMzAzNzU2Mzg4MjI4MzMxNzgyOFoTMzAzNzU2Mzg4MjI4MzMxNzgyOGqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxOrAYIEJAGABCsqiwEQARp4gfEFAwH7BQADA_3--wP_AQAD__j5_v4A9v8JAAYC_wDj-Ab3Af4AAAUM_wUDAAAAAv799vT9AQAHAg7zBAAAAPzs-voAAQAABgv6_f4BAAD4-Oz-Av8AAAgFBAEAAAAA_AwH_wIAAAD_-wb-AQAAAPfzA_0AAAAAIAAtEgbgOzgTQAlITlACKoQCEAAa8AF_KPr_6tv4Acn21QD7FfwBrAwb__wz0wDO5OwB6ufaAd3-3AD5GeAAFh0EALUp-P8z1tH_IdrkACrXDv8O4PMA1_H3ASDy4QAlDg0A5wAWAN7uFQD33-3-9Nu0AB4ZxgDo6vr89R_dAQUu1wML8yH_BP9DAB7uEgIPwvcF3vDnBQwA-fjzFfoHC-AP-Mf-HwEoAiUDPRcOAA0NzwHh6g_669sPAB3_yPsB2xD9GT_8_L_rFf33Fgz_QAwf_sLt_vnY8i0G2PT6APL1__8KDPb4_Bbp-hv09AwRCQj-5ePt_vDG-O4K8wD17OAFANsM8v8gAC355xQ7OBNACUhhUAIqzwcQABrABywrzb7IMN06vUgyvVNgHL0kQuO8b5EFveDi17x4tBA82JMGuz9zRj4O7jO9lvl9O421D76nQ4I85ZeDOyb_8z3xBbe9oGUnPBmBor1Atbs94aRfvfGE3r2AH588t0EOPHMv0L2uDK-9XjbwvHIeaT07anG9vLQ8vSGys71NO627qzFXvNxqGTr1EVi9E3xYvViTor0P5wu9eM47PPnQjz2FRIq9rqDEvOAR1T1CWog7mLKCvCN-mr1NcGU9bzAvvFpHNT2Dxqe7yIPjPBMJi70KN1S9sraOvNFeiL36ghG99qXpO5y0uj1K7UU8sHqbvIKr_Lw4n_q9MkUvvUC3sb09KRM9mtwcPPX1_D2cogg96ytZvLclQr6McK483wxIPN3xoT1LepO9YCuXvLTJYTwVp489_xYuPCCihzz5pG49oEiBvG62I735WHA9CRLAPP4f8Tx8_mq9XBjOvFZHbj1_6Hg9qxPGvDY8HjzLpQw94TxBvCsyGr4QLqM9FJmYuuFG5Ty2HYm8qr6OPMU1Qz34UQ2-CW8suyi6vr2m7Lm9Q6SNOyKwmD0WxnE8I7t3vEOpHT4fatu9xJqpOYyB1T3d3-q8zFsHuTCrU7nuzpq8bZOGu0lwWb10LsG7K5DRO3mx0L01mdE9do1xu3MHWz0DU8c9cgzBOUq5Nj3Neoy9k3GYN2LfqTzTrng8tXdbu5gyAD4Wf0A9LT-1t8ks8TxurjC9r4oBOx_V1bxKnLC8ZGaXup2ovroD2ZG9GkoIupRAtD3gzWS94odqOUFvsL19PxW9h-FFOZs6z7247kE8LScKubX0jTxwmOi8a6DiN64ZT7zsNkO9Gk61OQaWyDwq5Co95ZIRuTuYAz3OCvu7vTHrunfXHbz6H5q9RPFKOTWVKr3b4rW8ukIPuc0oTLx3LBs8FndnOOoquDx15AU6YERTuA9SJrxg7s26QlgnOIK_hD0-iE49DmtHOEUO0T0pI-694iy_OQqAsbwnF-M9YmCSuV2uODuB8509sxhitgib8Dy5_dI9R2llOCcDlj04-AK9qrxnN99obDy9Yqc9sBqJN0QfJ71R-pI9NvDBOPCVDz1Klqg9fzjROAkRFT0sp3O9Gwk4OPbRKTz0lJs9QY8lNx-fAD6k5JC9Feg6udld4rpQt6K9EJtBuNPLPj3nOeK9rWpaOO2Rl7xB9oU9foWftv7NgL2tOHC9LpfttiL_7D01KQU-835buMGAjz2j-rg9p22IuCGsJr1UAXc9YStSuOIf1r2crLw9tLHntCAAOBNACUhtUAEqcxAAGmAUBQA18TvW5gwS9AOzIAj889nd-e0L__DVABIZ_9kRC-fPCBgA-sQM9LcAAAACDQ82ywAMXPf69Dn0IfUriO8VCH_1GTHH3Q8S-dg29gny7Cj89hsA8ifLEvfg61MeGBMgAC0Dlzk7OBNACUhvUAIqrwYQDBqgBgAAqMEAAIzCAACiQgAAqMEAAMBBAAAAQQAAaEIAAFBBAAAEwgAAuEEAABBBAACIwQAA2EEAALBBAABswgAAYEEAAExCAADQwQAAqEEAAHDBAACgwAAAoEAAAETCAAAAQAAANMIAACzCAACMwgAA6EEAALJCAAAAwQAALMIAAEDAAACcwgAAEMIAAKTCAAAwQgAAZEIAALhBAAAEwgAAoEAAADTCAAAQwQAA4MEAACDCAAAAQgAAhsIAAAxCAABoQgAAuEEAACDBAAC4QQAAUMIAAMDAAABQQQAAQMEAAGBCAAAUwgAAwEAAADxCAACgQQAAQEAAAKrCAABQwgAAjsIAAKDBAADGwgAAgMEAAATCAAAgQQAAPMIAAMDAAABQwgAAtMIAANhBAAAowgAAQMEAAIDAAACAPwAAKMIAAILCAACgwAAA3EIAALDBAADowQAAkEEAAEDAAAAsQgAAkMEAABxCAAAAwAAAIMEAAPBBAADowQAAQEIAAChCAAD4wQAAyMEAAMDAAABAwAAA_kIAALjBAABwwQAAAEEAAJ5CAABgwgAA0MEAAMBBAAAgQgAA8EEAALZCAADIQQAAREIAAJDBAADgQQAASMIAAPhBAAAkQgAAyMEAAHDCAACgwQAAAMIAAIrCAAD4wQAAQEEAALDBAAAgwgAAAMEAAKjBAAAAQAAAHEIAACDBAADowQAA4EEAAIBCAABswgAAlEIAACBCAADYQQAADMIAABjCAAAYwgAAgD8AAChCAAAgwgAAQEAAAFRCAACAPwAAcEEAAEDBAADowQAAGMIAAOBAAACgQQAAuEEAAPBBAAAAQAAA6MEAAAAAAABQwgAAsMEAAFjCAACIQQAANMIAAATCAADAQAAAgEIAAIBBAACgQgAAKEIAAAhCAAAgQQAAYEEAAKBBAAAUwgAATMIAAEBAAADowQAAIEEAAOhBAACGQgAAUMIAADDBAAD4wQAAlMIAAKhBAACwQQAAQMEAABzCAABgQQAAoEAAAPBBAAAQwQAAEEEAAKDAAADAwQAAbEIAAJBBAABYwgAAIEIAAEDBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAyL0AAOA8AABAvAAAVL4AAEQ-AAAkPgAACb8AAIg9AAAEPgAAND4AAHC9AACoPQAAcL0AADS-AACoPQAAhj4AAEA8AADgPAAAoj4AAH8_AAAcPgAAQDwAAKg9AADovQAAkj4AADC9AAB0vgAAuL0AAFC9AADIPQAAED0AAIi9AAD4PQAAQDwAAKi9AADIPQAAFL4AAGy-AACevgAAyD0AAGy-AAA0PgAAUD0AABQ-AADIPQAAmL0AAMi9AACGvgAAkr4AANg9AACAOwAA3j4AADQ-AABkvgAAQLwAADE_AAA8vgAA4LwAANg9AADIPQAAmD0AADC9AACaviAAOBNACUh8UAEqjwIQARqAAgAADD4AAKg9AABEvgAAN78AAJ6-AACIPQAABz8AAFC9AADgPAAAsj4AADC9AABAPAAAED0AAKi9AACgvAAA4DwAAGy-AAD-PgAAVL4AAJI-AADYvQAATL4AAPi9AADIPQAADL4AAKg9AADovQAAQDwAAIC7AAA0vgAAyL0AAFA9AAAEvgAApr4AAKa-AACYPQAAxj4AADA9AAAMvgAAur4AABC9AAB8PgAAoLwAAIC7AADCPgAAgLsAAH-_AACovQAAgj4AAOC8AAAEPgAAHD4AACw-AACIPQAAbL4AABQ-AACovQAAHL4AAOg9AAAcPgAAqj4AAKg9AAAUvgAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=EMcw0ESfMR0","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["3037563882283317828"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"4242189781"},"12106507926067141452":{"videoId":"12106507926067141452","docid":"34-7-6-Z26549332B56509B1","description":"𝐨𝐰 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsf...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1118064/771b6a56da48524c845c3fbeebfee78e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZIA-ZwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Drrsblo75dT4","linkTemplate":"/video/preview/12106507926067141452?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/(1+sin^2(x)) (substitution + substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rrsblo75dT4\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFgoUMTIxMDY1MDc5MjYwNjcxNDE0NTJaFDEyMTA2NTA3OTI2MDY3MTQxNDUyaogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E6ECggQkAYAEKyqLARABGniB_An1AfsFAPsKAPz9AwAB6gX0CfsAAADqAfj7-f4BAPr1_Qf9AAAA_gYECgQAAAD-_v7_-P4AAAgG-_kEAAAACfP3C_sAAAAJDgMA_gEAAPb8_u8BAAAABQr8Af8AAAD1CgP6AgAAAPoCAwcAAAAADv8DDgAAAAAgAC1gPeE7OBNACUhOUAIqhAIQABrwAX_3D__p2PgB1AXFAOce-QGnDR3__DfQAO31DwDX8L4B6xz2AAr07AD9EBMAyyQUADbTzv4RwfX_LdQO__zR7AHl6_YA_fzuAl0vBQDaAwf-zOwY_fLL7P_z2K8ACQzO_vTfCgAIF-QCGCXmASTnAQAOCS4EC-IY_gKeAQfv49gB7xXS_QAf8vzv2__5xP4hAR3tGP8wFAkD6xTa_dcQG_bx0yX_H__F-_zB_wk1B_8JqwMXAg8K_wpCIgIC0vP6BdXxMAbUA_j_7QIQ-CHZA_HlKusIK_vxAh3s__YM2OUA8ML37fj_AAP58vwQ5Brd8SAALU78Czs4E0AJSGFQAirPBxAAGsAHICrFviyWh7yltvm8sd_DvTyoX71wvge9FNqYvSdPeT0LEYm7GJgFPoAz6zt_s7277DPHvfpysDyIvTC9FvvLPXThkb3hTKe8ehcvvgg8MD0pn9S8_FQlvjHZLrwHc-Y3OUPxvbBthr3HOBI8ch5pPTtqcb28tDy9yVfCvOYMAD1C7gK9D1hDvT8ZY7xsiea811YHvYPlY72pw2W86-CwPX94jLx8FU-8g20UPiEnB71S-bK8OC_uvScRQT24jCC9aKqKuweP27zVKH88m41avcN3rLyzCEU80V6IvfqCEb32pek7xF4oPjWtHjy502e89GxpuWCrJL6AMoC7L4byvXSQfLz9Iaw8LTfCPblGVT34rpw8GNIBvkmDqz2WJiW83fGhPUt6k71gK5e8D7-GPe-crD3DVZQ8xBCUPcRW9TzWlL-8IaQYvUUtzbygsWU8pNQSPM5Csbzej9u8_OAcPbnjSD1qu-y7gxT-O-cYgD1qXG68smCHvZHSnD35Tgo7RCDNPBM4hrqiFQ48BSOlPdYCO75J5Zo6Yyp9vKNFzL2HKka8H4cgvFD65zsIZpa7Wz6XPfikw72o1Dq7kS4yO6KU9Ty3_uk7ZLZgu6gEj72aNBm7tyjzvSaVBL3BqGa7lHckvS-Ftz0node7cwdbPQNTxz1yDME5hehVPTVwsb0ixxk6FHkSPStaLz0k-xS7J_SvPV9AlD2I2xa3zrsWPcZKcTzzYU27BMomvb13bbtN5oo6kWGlvSVGir30qLs5ZrZQPYnu2b0hlb05ROySvZmvHL1kz8q4qSiYvf3xAz3LRX04aDpAvaZC_Lz1yo85XFQLvZwV8b3cnnU535hUPdO3kT1qRco3Wt2FPX6KA73MUne5L1DyvahcnL1DgL-36ln1vBF55jwL7Ns4YB3HPDaxGz1eFFm4vZicvJBtVL2cVIC5CKnAvASp1Lzr2Uc55s2hPF4lRLxeYxc57Lmvu8XBmr0TgHY5CoCxvCcX4z1iYJK549yLvMYNyTyTw4-2S2yEO5cEIz2ApPK4aXezPaWy8rzT-Ps3D1Q3PfGC6D3pQYI3opOqvVenxD29NqA4pOicPD_ERj3oupM4UjGJPd9yUL1zUlg3AxGYvM8KoT3UE8k3H58APqTkkL0V6Dq5bh5ivbErsr0Tv7-4r2IsPXiUb72CXCQ37ZGXvEH2hT1-hZ-2coy_ujPcwLyowGa4Iv_sPTUpBT7zflu4bSfAPOvD-jyaD7i41xcZvpuQ9j3q7iw5fCS6vTmJtzxcbAq3IAA4E0AJSG1QASpzEAAaYBD3ACYFSNH-_x_1KtnzB9Xo9MT-6gL_2-r_FyAg4iUG3sIL6v8-yukFrgAAABQFAS_uAChq_vj7MegR7COU5CICf_YILrTQ5hHM5VviHvf-HODyTADyIrsY-dnWXxYpEiAALd-2Jjs4E0AJSG9QAiqvBhAMGqAGAACgQAAAgsIAANhCAAAwwgAAPEIAAABBAACQQgAA4EAAAMDBAADAQQAABMIAADDCAABgQQAAgL8AACzCAAD4QQAAJEIAALjBAAAMQgAA6MEAAODAAAAMQgAAZMIAAAAAAABcwgAAZMIAAKDBAACAwQAA3EIAAADBAADwwQAAcMEAAILCAADwwQAAhsIAAERCAAC4QQAAJEIAALDBAABwQQAAcMEAAIDAAABQwQAAEMIAAFxCAABowgAAgL8AADxCAAAIQgAAgMEAAAAAAACowQAAIEEAAEBBAABAQAAACEIAAJLCAABAwAAAyEEAAIBBAAAAQgAAWMIAABDCAACGwgAAgMAAAADDAACQwQAAgsIAAGDBAABMwgAAKEIAAMjBAADCwgAAPEIAADjCAABwwQAAMEEAAIDAAACYwQAALMIAAOBAAADEQgAAAMAAALjBAACoQQAAqMEAAFhCAABgQQAAAEIAAEDBAAAwwQAANEIAANDBAAD4QQAAIEIAADzCAAAAwQAAoMAAAOBAAAC0QgAAOMIAAEDCAABgQQAASEIAACjCAAC4wQAAiEEAAGBBAAAEQgAAnkIAANhBAAA8QgAAuMEAAGDBAAAcwgAAkkIAACxCAABAQQAAWMIAANjBAAAMwgAArMIAABTCAAAgQQAAEEEAAMDBAABAQAAAiMEAAFDBAAAIQgAAoMEAAGDBAADgQAAAKEIAALDBAADCQgAAVEIAAKhBAAAwwgAAwMEAAJjBAAAAQAAALEIAAATCAACoQQAAHEIAALBBAAAAQQAAQEAAADTCAABAwQAAgEAAAHxCAACwQQAASEIAAABAAACowQAAiMEAABjCAAAEwgAASMIAALBBAADwwQAAJMIAAHDBAAC8QgAAoEAAAIpCAACGQgAAgEEAACRCAADgQQAA0EEAADDCAABQwgAAcEEAANDBAACwwQAAgEAAAAxCAAAUwgAADMIAANDBAABYwgAA6EEAAAAAAAAQwgAAKMIAAADAAADIQQAABEIAAMjBAACAvwAA0MEAABzCAABsQgAAgD8AAGTCAAAIQgAAAMIgADgTQAlIdVABKo8CEAAagAIAAOi9AAAEvgAA4LwAAKA8AABAvAAAij4AADA9AAAJvwAA6D0AABC9AAAwPQAAUD0AAOA8AAAUPgAA6L0AACw-AAD4PQAAQDwAADC9AAAHPwAAfz8AABS-AAAkvgAAqD0AAOK-AAAUPgAA4LwAACS-AACYPQAAXD4AABQ-AAAQPQAAbL4AAEA8AACYPQAA4DwAAIA7AAAQPQAAdL4AAJa-AABsPgAAPL4AAEQ-AAAwPQAAmL0AABA9AABcPgAAfL4AAJK-AAADvwAAQDwAAIg9AADmPgAADD4AAL6-AABwPQAART8AAEC8AABQPQAABD4AALg9AABAvAAAmL0AANa-IAA4E0AJSHxQASqPAhABGoACAACYvQAAmL0AADy-AABhvwAA-L0AABC9AABcPgAARL4AAFA9AAD4PQAAQLwAALg9AAD4PQAAUL0AAKA8AACgvAAAPL4AAN4-AAA8vgAAbD4AAKA8AAA8vgAA-D0AAJi9AAAQvQAAyD0AAHy-AACgPAAA2L0AAKi9AADgPAAAHD4AAKC8AAAMvgAAyL0AAKA8AABkPgAAhj4AAHC9AACSvgAAgj4AAKA8AACIvQAA4DwAAHQ-AAB8vgAAf78AADw-AACKPgAAHD4AAJI-AAAQvQAAFD4AAJY-AACmvgAAFD4AALi9AAAUvgAAUD0AABy-AAA0PgAAQDwAAAS-AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=rrsblo75dT4","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["12106507926067141452"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2541450583"},"13009395592255300312":{"videoId":"13009395592255300312","docid":"34-2-4-Z9EE64F420462B8F9","description":"📸 Instagram: / integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrationbyparts #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4565106/5b8b41ce6fce51042a2662776948d807/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Gww7egAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUYmXmkujrtQ","linkTemplate":"/video/preview/13009395592255300312?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of sin(sqrt(x)) (substitution + by parts)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UYmXmkujrtQ\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFgoUMTMwMDkzOTU1OTIyNTUzMDAzMTJaFDEzMDA5Mzk1NTkyMjU1MzAwMzEyaogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E6UBggQkAYAEKyqLARABGniB8BECCAj3AAT-DPr9A_8B3QjvAvoBAQDeBv0BAPsCAPbp_gcIAAAA8QP6CAEAAAD-8P_39v0BAAgMBe4FAAAADu79_vgAAAAGGAD5_gEAAPQH7PcCAAAADQX3BgAAAAD__wr3AwAAAAELD_8AAAAAF_sABgABAAAgAC1X6Lk7OBNACUhOUAIqhAIQABrwAX8bCv_f68UBv_TNANc5_ACcDyH__D3KAM7azQD52cIB1_3VAAcf9AEbDg7_n_3iAhfRpgMTufT_Jtv-_h7YAAHbFwUBGxTYAkITHAPo_wb_9_gx_9nvEv7Tvtz_BSrT_gTP8Pz-D-gB8RnSAh3gNQP3AS0HPu0dAdah_AHhwu4G--HY_QUb_QYN2hL20B8mAjPvFvgAA_n26BbV_PzzA_kBxA_-EBbIACm1D_8QFgAEuPoDAfsP_Pw9IDALtwT1-dDvNgfQ8vkAAPf6BBDiCvzfFe0KPPD_DxQLCv0D8_364L7nAQMCDwHw6_0DvvfqAyAALe5a-To4E0AJSGFQAirPBxAAGsAHgO7TvhHew7rl6Ja8sd_DvTyoX71wvge9zKWXvXGq9Tw9PJU8D9LzPZDuLL2gBNE8rwjevYbUZbuJxM67y4AzPubRiL2YYjM8ehcvvgg8MD0pn9S8HNPTvWc5Gr2m6dg7R3-uvZsBjr1LRJM8ch5pPTtqcb28tDy9w_hEvEyJRD0tWVq93JsEPNST3rz87QG9P-MivY_JXb3ghYg87a-IPYPuHL0u2mu7z0mfPYWZkbwuqoe7e64FvcMHez0jyg29VTt5vOD9J7u_kx48KEJvvULRp72hf6e7mq-3vb-lUr31TMo8zHoRPhaHEz18k4u8aTPzPB5v8r3XJdM6seFJvi6S9jxPCJ08Hhk7PkGkujurEEW87-SzvfeRmz3N_bq83fGhPUt6k71gK5e8hO1MPeTzaj1UkPo8VlqQPFVx_jwqkxa8CWTAPM9ZdT2FY7E8huJOPZD-cr1GoFW8Xf8pPQy1wTw_dJy8DBgpvWrGvTwWpLo7bD_ZPDus0D0bGPE7IY0vPKpHmjy8z3E8BSOlPdYCO75J5Zo6zvIGvZA4ir2cy0O83cF-Pby7JD2Ie5G8TvDNPWYz573_VwA8RRv2PE-2Gjs9LC88ZLZgu6gEj72aNBm72fWxvUhHKbojMBm6_H8mvQBKbT2Slue77O-mPVpNsj1Pc6a5clP_O7-C1L06i4M6DW7rPACbYjwQpeY6TBGaPUh9Yz06hV65r3LPOzc_NLxVrb-6lQwAvVdfWL0zU3M4kWGlvSVGir30qLs5bQPXPbWj2L0Mn6854WLgvDjNjLwGZaW4rDzhvWlDVD2VW7I4BF-HvMWaIL1G4T85y6LwvFtCHr43BeM5s3cKPIEByT3scae4-D2FPTBfFroUmwU4X3-9vR8YO70I1Te5yZRqPCn4NzxcvAC4pGc_PbsOlT3YPnY4YsCSPJci9TsUx1853c_pvHfkfry_NrW4u4-rurUFujxj-AU5TKgAPcfwnb3-7jA5efmpu6clxj3Erv-46FGMvFpAcj0J5bw37-cUPe3i7Dzj-pi1xzdqPSBfgr12-co2D1Q3PfGC6D3pQYI3WjSjvXxaSj1yIGw4ePq3vHu80Dxyqpo3UjGJPd9yUL1zUlg3aKSvPLcbbj0XRQ84kl0ZPtlPUL2swj-5zcd6vdMV7L3mm_i4B-IGPeGWT72ZpM41kb8KvYMelT2LQ5E3NbeCvCwxar26oUa4Iv_sPTUpBT7zflu47ZZGOnXopD0KbuO4cMrBvTMX-D263KY4wHJpvfg7r7xQuLS3IAA4E0AJSG1QASpzEAAaYBj6ADb0RMfvEhHwBs0F8t_m7Mblzg__7cf_ES795Q0CuMIYDgA0ygvzpgAAABwK8zXdABZz-OIDJu8b8R-CCDTqf_ENXafo7gfQ7E_2OfPrNfUEOwDtHsUk9dHaYgouHSAALdypGzs4E0AJSG9QAiqvBhAMGqAGAACowQAAisIAAERCAACgwQAAgD8AAAhCAABEQgAA-MEAABDCAABAQAAAoMEAAIrCAABAwQAAOMIAACDCAAAQQQAABEIAAKjBAADwQQAA4MEAAHDBAAAAQQAAmMEAAOBAAABwwgAARMIAAKTCAACgQAAA0EIAAFDBAABswgAAYEEAAGzCAABAwgAAxMIAAPhBAABIQgAAQEEAALjBAACoQQAAuMEAAFDBAADIwQAAYMIAADxCAABAwQAAQEEAAKhBAABoQgAAwEAAAJBBAADowQAAYEEAABBBAAAQwQAAiEEAAKjCAACgwAAAwEEAAIBAAABAQAAAjMIAAKBAAACowgAADMIAANrCAAAAAAAANMIAABjCAAAYwgAAsEEAABDBAAC6wgAAmEEAAEDAAAAIwgAAgMEAAODAAABAwQAA8MEAAKBAAAC0QgAAoMEAABTCAAA8QgAAIMEAADxCAAAkQgAAQEEAAHjCAAAAQgAAjEIAAHjCAAA4QgAA4EAAAAzCAADAQAAAAMEAAMBBAACcQgAAgsIAAFDBAABQQQAAuEEAAIrCAADwwQAAUEEAAARCAAC4QQAApkIAAEBBAABIQgAAQMAAAIBBAAAEwgAAQEAAAPBBAACAwAAAYMIAAHDBAABEwgAAnMIAABDCAABgwQAAcEEAAADBAAAwwQAAoEAAAFTCAADwQQAAgMAAAAAAAABQQQAAIEIAAODAAAAgQgAAGEIAAIDAAACgwAAAVMIAACzCAAAQwQAAGEIAAADBAACYQQAAwEEAAPDBAACAQAAAiMEAAIDBAABgQQAAIEEAAJ5CAAAAQQAADEIAAGBBAAAAwAAAuMEAACzCAADgQAAAksIAAIC_AAA8wgAA2MEAAAzCAABwQgAAoEEAANZCAABcQgAAMEEAAEhCAABAwQAAMEIAAPDBAACIwgAAAEAAAAjCAAC4wQAAIEEAAK5CAADowQAAiMIAAADCAAA0wgAAcEIAAEDBAABswgAAEEEAAKBAAABgQQAA4EEAAOjBAADYQQAAcMEAABjCAACQQgAAoMEAAETCAACAQAAADMIgADgTQAlIdVABKo8CEAAagAIAALi9AADYvQAA6D0AACw-AADIvQAAlj4AAIA7AADyvgAAQDwAAEA8AABwvQAAFD4AABQ-AAAcPgAAHL4AAKC8AAAQPQAAcD0AAMi9AAD-PgAAfz8AAFS-AAAkvgAAQDwAAO6-AAB0PgAAgLsAAKq-AAA0PgAAbD4AAFA9AAAwPQAARL4AACw-AACgvAAAoLwAAEC8AAAsvgAAfL4AAKi9AADYPQAAUD0AANg9AAAEPgAA4DwAANg9AABAPAAARL4AAHy-AACSvgAA6L0AAI4-AADaPgAAJD4AAI6-AACIPQAAMT8AAIg9AAD4PQAAJD4AAIi9AABkvgAAiL0AAOa-IAA4E0AJSHxQASqPAhABGoACAACgPAAAcD0AALi9AABlvwAANL4AAIA7AAC6PgAAqr4AALg9AACuPgAAcL0AAKA8AAAkPgAAmL0AAHC9AABQPQAAmr4AABs_AAAUvgAAdD4AAHA9AACqvgAABD4AAJg9AACYvQAAcD0AAKq-AAAwPQAAHL4AAAS-AABQvQAAFD4AAJi9AAC-vgAAXL4AAEA8AACuPgAABL4AAPi9AADCvgAAqL0AAGw-AAAMvgAAiL0AAOo-AAAcvgAAf78AADC9AACePgAAUD0AAHw-AACIPQAABD4AAKo-AAD2vgAALD4AAAS-AAAMvgAAiD0AADA9AADCPgAAiD0AABC9AABEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=UYmXmkujrtQ","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["13009395592255300312"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"1505139099"},"10785103366636643394":{"videoId":"10785103366636643394","docid":"34-11-12-Z6E8627B48C285037","description":"💥 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 / @derivativesforyou 🙈 𝐒𝐚𝐦𝐞 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥, 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 𝐦𝐞𝐭𝐡𝐨𝐝𝐬 [Method 1] - Integral of 1/(x*sqrt(x^4-1)) - [u=1/sqrt(x^ 4-1)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2891134/6b8361d1f9b655c846e7f4c394b03029/564x318_1"},"target":"_self","position":"17","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaYYnyNVjlHg","linkTemplate":"/video/preview/10785103366636643394?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"(Method 2) Integral of 1/(x*sqrt(x^4-1)) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aYYnyNVjlHg\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFgoUMTA3ODUxMDMzNjY2MzY2NDMzOTRaFDEwNzg1MTAzMzY2NjM2NjQzMzk0aq8NEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E8sCggQkAYAEKyqLARABGniB8w36_fwFAPwF_AYBBv0CDgzzBPUAAADlBgcC9_wCAPMA_v7_AAAACQcGDwEAAAD-_v7_-P4AAAAA__oDAAAACfP3C_sAAAAFFAD6_gEAAP33Afn2AgABBQr8Af8AAAD8DAf_AgAAAPkDDPsAAAAACfUIAwAAAAAgAC1TZt07OBNACUhOUAIqcxAAGmAAHAAkBhDi3A8X5w3p_gMQ-f333vb-AO3yABEXEtYM9_nTFAD_H9b2BNAAAAAFHPof9wADPxsFzxACBPIexvURDn_7Dfju7fHi3f4i7RoQ5wLwAB0A4h3tAAXjCTcfIiwgAC0-qno7OBNACUhvUAIqrwYQDBqgBgAAAMAAAJDCAADAQgAAbMIAADRCAAAAQAAAbEIAAPBBAADIwQAAIEEAAIjBAAAIwgAACEIAAABAAACAwgAAgEEAAIRCAAAAAAAAgEAAAIjBAAAIQgAAgEAAAHTCAAAAQAAAfMIAABTCAAAUwgAA4EAAANZCAADgwAAAAMIAAFDBAAB4wgAAiMEAAIDCAAAMQgAAoEEAAAhCAADAwAAAoEAAAAjCAABQwQAA-MEAAMDBAABMQgAAKMIAALhBAABUQgAAEEEAAODAAAAAAAAATMIAAFDBAAAQQQAAgMAAAEhCAAAowgAAYEEAAGBCAAAQQQAAuEEAAFjCAAAkwgAAjsIAAEDBAADewgAAkMEAADDCAADgwAAAFMIAAJBBAAB4wgAAtsIAACxCAAAgwgAAwEAAAABAAAAgQQAAHMIAAIjCAACYQQAA1kIAAKDAAACQwQAAAMAAAHDBAABEQgAAgL8AALBBAADgwAAAgEAAANhBAADIwQAAKEIAAIhBAAA4wgAAFMIAACDBAABAwAAA5kIAAATCAABQwgAAiEEAAJpCAABYwgAAEMIAALhBAADgQQAAGEIAAMpCAADwQQAAPEIAALDBAAAAQAAAPMIAAExCAABEQgAAgEAAAIDCAAC4wQAAgMEAAKrCAADgwQAAcEEAACDBAAAUwgAAiMEAAKDBAABAQQAAJEIAAODAAAAgwQAAcEEAAEhCAAAYwgAAnEIAADxCAAD4QQAAgMIAAKjBAABQwQAAkEEAAKhBAADowQAAUEEAABRCAADAQAAAwMAAAMDAAADgwQAAqMEAAMBAAAA4QgAAwEEAAFhCAABQQQAANMIAAIC_AAA4wgAAFMIAACzCAACoQQAAiMEAAMjBAAAAAAAArkIAAKhBAACAQgAAikIAAARCAADAQAAAIEEAACBBAAAgwgAAIMIAAKBAAAAowgAA4EAAAGBBAAA8QgAA-MEAAFDBAADIwQAApMIAAIBBAADwQQAAgMAAAAjCAABgQQAAwMAAAEBCAADowQAAgD8AAJDBAADQwQAAfEIAAJBBAACYwgAAKEIAAAjCIAA4E0AJSHVQASqPAhAAGoACAABQvQAAQLwAAOC8AABQPQAAVL4AAMg9AAAkPgAAD78AABA9AAAwvQAAuD0AAJi9AADgvAAAgLsAAGy-AABAvAAAbD4AAOA8AAAQPQAA_j4AAH8_AAC4vQAALL4AAPi9AAB8vgAAFD4AAIA7AACWvgAAyL0AAOg9AAAcPgAAXD4AAPi9AADoPQAAQLwAABw-AABcPgAAgDsAAFS-AAC6vgAAFD4AAHC9AADYPQAA2D0AAFw-AAAsPgAA-D0AANi9AABUvgAAtr4AAOA8AAAwPQAA0j4AADQ-AABEvgAAED0AAB8_AABMvgAAEL0AAAQ-AAAQvQAAcD0AABC9AACCviAAOBNACUh8UAEqjwIQARqAAgAA4LwAAIg9AACuvgAAR78AAK6-AAA0PgAACT8AALi9AADYPQAAuj4AAJg9AACoPQAA4DwAAKi9AACgvAAAED0AAM6-AAAJPwAAvr4AALI-AACAuwAA5r4AAFA9AACAuwAAcL0AANg9AACSvgAAFD4AAAS-AACqvgAAQLwAAEA8AADYvQAApr4AAKA8AACIvQAAoj4AAIo-AAAUvgAAkr4AAGw-AADgPAAAmD0AAFS-AADOPgAAJL4AAH-_AAAQPQAAfD4AAKi9AABUPgAAcD0AABw-AAAsPgAALL4AABw-AAAsvgAAuL0AAMg9AAC4PQAAmj4AAMg9AAAQvQAAMD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=aYYnyNVjlHg","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10785103366636643394"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9881639768672126295":{"videoId":"9881639768672126295","docid":"34-0-15-ZFAD17682C1600A69","description":"integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integrationbysubstitution...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1774354/11b4820367d072f27212f47a0f1f236f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/rfrFcQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqctDsxqxDTI","linkTemplate":"/video/preview/9881639768672126295?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of 1/sin^4(x) (substitution)","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qctDsxqxDTI\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTOTg4MTYzOTc2ODY3MjEyNjI5NVoTOTg4MTYzOTc2ODY3MjEyNjI5NWqIFxIBMBgAIkUaMQAKKmhocXRiYWl6d2NodnZoaGJoaFVDTkxSd2lRU1BsQW5faGlFTTJ5V0l3ZxICABIqEMIPDxoPPxORAYIEJAGABCsqiwEQARp4gfkP9P4C_gADA_z--wT_AecG8wr6AAAA6w_9_fr_AAD4-v8FBQAAAP0HBAsEAAAAAfYBBfX9AQAHCwTwBAAAAAr2AQfyAQAADhr6Av0BAAD8-_LyAQAAAAYL_AH_AAAA_gn-AAIBAAD4Aw37AAAAABD_AxAAAAAAIAAtjvrLOzgTQAlITlACKoQCEAAa8AF_ERP-09HmAav3zADTKOIBqQ0c__w10QDa9PX_2PDAAeEI8wD6DewBDQgX_9AOCgA11M_-ENcFAC-4DAL14QgAygQFAAnx6QEzAggA7P8F_-X5JPz33uz-89myAAQk2f704AoA9QvhAgUw1gMQ4xADAuoq_CADGPsPwPcFxvj4B-L11_0QDOv9C98P-Kj-HQctHBwCJR0S_OsT2_389QP68tUk_x7_x_sSzAP_Dh4Z_sEMAwjpMAMKKgITAcwDCfwBDDH71uQA-PjoBfcQ_AH_7A3s-Qnu9Qgk7RX5AMr4Af3h-OTxDPz87N8FAOwa8wEgAC0dRhA7OBNACUhhUAIqzwcQABrAByAqxb4sloe8pbb5vE5j-7036Qy9d-nwvEleJ73jVVY9pr_NvNSBDD5SvYC9AtLAu4v7z71urpA8nVPiuxb7yz104ZG94UynvHV0_L0vE5o9CwIQvVacur2jtX28rOTjPAC-xb03ZE29a-dFvKA0xD2m1VC9Ef_WOclXwrzmDAA9Qu4CvSuIwbzDFxy9SVvmvAWjUr1SqQO9Ee2ZPGxIVz2x7Pi8VIaWvIOh7j2LWjC9_AfHu3cIvb34Em89veMUvWiqirsHj9u81Sh_PCU9vL2tmca82RaUvJqvt72_pVK99UzKPGYW4T1BtQY9E9aGvPRsablgqyS-gDKAuwx3Dr5N2hY7lmEXPUYK5T2jliA8U83uO3zcor2_YPc8TEQuvN3xoT1LepO9YCuXvADyhD2JKwI9-CsuPNSF8zy60lc8M4lBunIT97ssuYo8czLMPP4f8Tx8_mq9XBjOvPzgHD2540g9arvsu5IqwLygp2E9pX1RuZP-3rwpR8w9_Z_kOzt_JLzPOtu6_ECLOwUjpT3WAju-SeWaOvnj7rtbYfq9hQK-Oy1LiTshHYE72Hh6vE7wzT1mM-e9_1cAPKq1VbzmUNA8T9BkO-J5hLxpqHG99Yy3u7co870mlQS9wahmuyhyUr10MDE9Pqn-u-zvpj1aTbI9T3OmuT9BnDtXJBa-IpoKuhR5Ej0rWi89JPsUuyf0rz1fQJQ9iNsWt1IXwruxb4Y7TPqgu3khHb1Ut2m8l87BOtO--b1TBi69y-RbOXltID1hj7S9W9CXOWnmZL2du_o5GFZTuYs8tL19NVE9OB8YOCrG-byIOyi9VnZMt1xUC72cFfG93J51OcVCY7x43jw9qHXDuIOdpz31jR698kcsuS9Q8r2oXJy9Q4C_txwV7rzQFZs8UYsEucjegTxADUk9qOZROHo_BD29dG68_IVIuN3P6bx35H68vza1uLdXED0qtOY63j8NOZi0Ujs_cMW99y5gOQqAsbwnF-M9YmCSuQYKQb2Q77c8EQdjODywbT0k7Ys9wkavuMc3aj0gX4K9dvnKNg9UNz3xgug96UGCN5r_nL3QkJs9AtsuOGLfCDyP_nc9bQ5rOFIxiT3fclC9c1JYN0GDSbuhDjA9vduEOB-fAD6k5JC9Feg6uc3Her3TFey95pv4uEcn5jy-p629yTRvt465obzJCa49ZG4Ut3KMv7oz3MC8qMBmuCL_7D01KQU-835buPJrWjxt8xA9886KuHDKwb0zF_g9utymOCXSob0Yw2Y8q5dqOCAAOBNACUhtUAEqcxAAGmAO9QA2AELMAhMZ9h27_gz969bH8-oL_-fr_wIXDtMc-97NBfYANdP79LAAAAAOCvsv2QASZgb3_y_iIe8pjQM17H8BDi2p1_0D1uA96xHz9yf7-joA6SHBKPjF50clMRYgAC3eayw7OBNACUhvUAIqrwYQDBqgBgAAoEAAACDCAADcQgAAhsIAAFBCAAAQQQAAjkIAAIBAAACowQAAkMEAAADCAADwwQAAAAAAAABAAACIwQAAQEEAAERCAADowQAAhEIAAODBAACAwQAAAEEAABTCAAAwQQAATMIAACDCAADAwAAAgD8AAJxCAADgwAAAXMIAACDBAACgwgAAgMEAAIDCAAAUQgAAiEEAAExCAAAAQAAA4EAAANDBAACQQQAAIMEAAMDBAABoQgAANMIAAIhBAABIQgAAUEEAAHDBAACgwQAAZMIAABDBAACQQQAAkEEAAABCAAD4wQAAAEEAAMBBAAAMQgAAoEAAAIjCAABEwgAAcMIAACBBAADKwgAAwMAAABzCAAA4wgAAWMIAAEBCAACwwQAA5MIAAIxCAABMwgAAAMAAAABAAACwwQAAAMIAAGTCAAAAwQAAmkIAAIC_AABAwAAAMEEAACBBAAAwQgAAuEEAAGBBAACwwQAA4MEAACxCAAD4wQAA8EEAABhCAABswgAAwMAAAMDAAADIQQAAukIAADzCAABAwgAA4EAAAJhBAACqwgAAcMEAAIBBAAD4QQAAuEEAALBCAACwQQAA8EEAAFDBAADowQAA4MEAAIpCAAAAQgAAuMEAAGTCAAAIwgAA-MEAAKrCAABAwQAAkEEAAADCAADQwQAA4MAAAFjCAADgwAAAEEEAAHDBAAAMwgAA4EAAAJBCAABgwQAAzEIAADRCAABgQgAAZMIAAAzCAABAQQAAgEAAAABCAAAUwgAAqEEAABRCAAAAwAAAgD8AABDBAAC4wQAAmMEAALhBAABEQgAAIEEAABhCAADAQAAAQMIAAOjBAAAswgAAQMEAAGjCAACoQQAADMIAALjBAAAAQAAAgEIAAIjBAACoQgAAUEIAAHBBAACgQAAA2EEAAJBBAAAIwgAAdMIAAIBBAABIwgAAgL8AAMBAAADwQQAASMIAAAzCAAD4wQAAhMIAAJhBAADQQQAALMIAAITCAABQQQAAEEIAACBCAADgwQAAoEEAAJDBAAAAwQAAlkIAABBBAAA8wgAAqEEAAADCIAA4E0AJSHVQASqPAhAAGoACAADgPAAAuL0AADA9AACAuwAAEL0AADw-AAAcPgAA6r4AAMg9AACAOwAAqL0AADQ-AABAPAAAmD0AAPi9AACgPAAABD4AABA9AAAMvgAAEz8AAH8_AADIvQAAUL0AAAQ-AADGvgAAPD4AAFC9AABkvgAARD4AAMI-AACYPQAA4DwAAOi9AAA8PgAAyD0AANg9AAAEPgAAZL4AAFy-AACavgAAVD4AAAS-AACIPQAAMD0AAKA8AAAwPQAAQLwAAJq-AADyvgAAC78AAJi9AACGPgAAuj4AABw-AABkvgAAUD0AAEM_AAAwvQAAmD0AACQ-AABwvQAAoLwAAFC9AADWviAAOBNACUh8UAEqjwIQARqAAgAAEL0AAJi9AACGvgAAc78AAGS-AAD4vQAAND4AAIa-AACYPQAATD4AADC9AABQPQAAmD0AABC9AADgPAAAUL0AAJq-AADWPgAA6L0AAJI-AABAvAAARL4AAHA9AAAwvQAA4LwAAHA9AACGvgAAgLsAAFC9AABQvQAAgLsAACQ-AAAQPQAAbL4AAKi9AAAQvQAAmj4AAFQ-AACYvQAATL4AAEw-AADYPQAAVL4AAFA9AABsPgAAkr4AAH-_AAAsPgAApj4AANg9AACCPgAAXL4AAHA9AACWPgAAhr4AADQ-AACovQAAHL4AAHC9AAD4vQAAhj4AALg9AAD4vQAAqL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=qctDsxqxDTI","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["9881639768672126295"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"919448248"},"3595366480798106761":{"videoId":"3595366480798106761","docid":"34-10-13-Z80AA46587B9F1DE9","description":"Here is your 4th of \"13 Integrals in 13 Days\" Counting DOWN to 2025! Sorry for the delay with uploading--I've been having Massive technical difficulties since updating to the new iOS and it's...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3502618/82bdd9f02b9ad6a4e12eab0ed87295e9/564x318_1"},"target":"_self","position":"19","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrilMu6No27s","linkTemplate":"/video/preview/3595366480798106761?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Countdown to 2025: 13 Integrals in 13 Days! (x lnx) /(x^2-1)^(1/2) dx | Math with Professor V","related_orig_text":"Integrals ForYou","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Integrals ForYou\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rilMu6No27s\",\"src\":\"serp\",\"rvb\":\"EqwDChQxMjYxNTA1MTk2OTkwMDk4MTAzNAoTMTM2NTMyNTE4NzE4NTU4NDkyOAoUMTI0NTg4NzE2MTc3NDM1ODg2MzEKEzIwNzI4MjU2NjIwMTYwOTAxMDEKEjc4NzU0Mzc5NzQzMTM5NTI0NAoTMzQ4MjI1NDY1MzE3MzY1MzczNgoTMTkzMDk5OTQ1NjI3ODc0NjQ4MgoTNDQ4OTIxNjE2NzUzMTQ3OTc5MwoUMTI3MjIwNjY3MTYzNTA1OTI2MjcKEzI0NTM1OTg1NTU1MTcxNDExNTcKFDEwOTg0MjQ2MzU4MDYwOTY5MTQyChQxMzg5MzU4NDc0OTYwNjg1MTgwMQoTMzAzNzU2Mzg4MjI4MzMxNzgyOAoUMTIxMDY1MDc5MjYwNjcxNDE0NTIKFDEzMDA5Mzk1NTkyMjU1MzAwMzEyChQxMDc4NTEwMzM2NjYzNjY0MzM5NAoTOTg4MTYzOTc2ODY3MjEyNjI5NQoTMzU5NTM2NjQ4MDc5ODEwNjc2MQoUMTcwMzk5NjkwMTAzMjk0NjA2MjYKEzQ1NjQ3MDUwNDc2NTgzMTY5OTQaFQoTMzU5NTM2NjQ4MDc5ODEwNjc2MVoTMzU5NTM2NjQ4MDc5ODEwNjc2MWqvDRIBMBgAIkUaMQAKKmhoYm16a3N2dWZranljb2JoaFVDb2t1aG9oNU5fQjBaeEhjRVVfRVdiURICABIqEMIPDxoPPxPzBIIEJAGABCsqiwEQARp4ge0E-_cD_AD3-hb9_QT_AQj_AO73__8A4gDwCgD9AgDo9vn5Cv8AAAoY_gEJAAAA-Aj58vX-AQD9EQD5-AAAABD6_PT1AAAAEA78AxP-AQH49vb9A_8AABIF9v3_AAAACQEM9P__AAAFCP7-AAAAAAMNAwQAAAAAIAAtnNXGOzgTQAlITlACKnMQABpgEQcALxIQ29AJGeL--OsR-eoM8-Hm-P_8CAAgBOnt8BjvvAP-_yexEPK6AAAABBH8Ig0A9lscDZw_DBv08KHkDR9_Cw32CtD32PPbEvci7gPy5vosAOUO2wwV1v8sJBYeIAAtvYFHOzgTQAlIb1ACKq8GEAwaoAYAACBBAABQwQAAeEIAAEzCAABAwAAA8EEAAHRCAAAwwQAAQEEAABDCAACAQAAAgL8AANDBAACIQQAAbEIAAEDAAADwQQAAoEAAAIZCAACAQAAA6MEAAGzCAACAvwAACEIAAAzCAAAAQgAAyMEAAHBBAACgQAAAgEIAAJ7CAABwwQAA4EAAAAxCAABswgAAsMEAAEDBAADwQQAAgD8AAKBAAAA4wgAALEIAADRCAACIwQAAwEEAALDBAABgQQAAgEEAACxCAAB0QgAAUEEAABzCAAAgwgAAEEIAAKhBAAAEwgAAGMIAABBBAAAQwQAArEIAAJDBAABswgAAoMIAAEjCAAAYQgAA2MEAAMBAAACewgAA2MEAAFTCAAAUQgAAokIAAFDCAACeQgAA8MEAACTCAACiwgAAiMEAAMjBAAAQwQAAbMIAAEBBAACQwQAAwMAAAJBBAABwQgAAAEEAAABBAACAQQAAgEEAAEzCAAAwQgAAHMIAAADAAABUQgAAjsIAAGDBAABwQQAAaEIAAMZCAACYwQAAAEEAAKjBAACOwgAA5sIAAJBBAADwQQAAcEEAAADAAACqQgAAkkIAAKjBAAAQwQAAAEAAAIC_AACYQQAAEMEAAADCAACAPwAAgsIAAIBAAACAQAAAgMEAAPjBAACAwAAAQEAAAIDBAABAwAAAMMIAAILCAABQQQAAFMIAAOjBAACKQgAAAMAAAJBBAABgQQAA4EAAADDCAADOwgAAjkIAAPBBAACAPwAAmMEAAJBBAAAMQgAAkMEAAEBBAABAwQAATMIAAIrCAAAgwQAAiMEAANTCAACIwQAAEMIAADjCAAAQwQAAQMAAAOBBAACwwgAAYEEAAJBBAAAAQgAAgL8AAJhBAAAQQQAAGEIAAHBCAAAkwgAACMIAACBBAAAoQgAAAEAAAFTCAAAgwQAAgMEAAIjBAADYQQAAuEIAAATCAAAwwgAAAAAAAKDBAAAoQgAAwMAAAMjBAACQQQAAUMEAAIhBAAAIQgAAiMEAAMhBAACQwQAAmMEAAGBBAABQwgAAlEIAANjBAACewiAAOBNACUh1UAEqjwIQABqAAgAAuD0AAHC9AAAcPgAAED0AAOC8AACKPgAAcD0AADG_AAD4vQAAmj4AAOg9AACAOwAA4DwAAMY-AAB8vgAAQDwAALI-AACYvQAAcL0AAO4-AAB_PwAAUL0AALg9AAC4PQAAXL4AAJY-AAAMPgAAgr4AAOA8AAD4PQAAMD0AAJI-AADgvAAAuD0AAKC8AADYvQAAED0AAHA9AACevgAA-L0AAGy-AAC4PQAAzj4AAIg9AABEvgAAgj4AADQ-AABEvgAAgLsAAMK-AAB0PgAAmD0AAA0_AACqPgAAjr4AAPi9AAAzPwAA4DwAABA9AABQPQAAiL0AABy-AADIPQAA4LwgADgTQAlIfFABKo8CEAEagAIAADy-AADovQAAHL4AADG_AABAvAAADD4AALY-AAAkvgAAcL0AADw-AADgvAAAqL0AALi9AADIvQAAiD0AAIC7AABAPAAAFT8AANi9AAC-PgAAgDsAANi9AABwvQAA4LwAAKA8AAAMPgAAmL0AAKC8AAAwPQAAoLwAAKA8AACIPQAADL4AAHS-AABQPQAA4DwAACw-AAD4PQAAdL4AAFy-AAAUPgAALD4AAIo-AACovQAAUD0AADA9AAB_vwAAQLwAALg9AABQvQAAqD0AADC9AADYPQAAqD0AAIA7AABwPQAA4DwAAFC9AACAuwAAmD0AAAQ-AADIvQAAgLsAAOg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=rilMu6No27s","parent-reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["3595366480798106761"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"12615051969900981034":{"videoId":"12615051969900981034","title":"\u0007[Integral\u0007] of arctan(2x) (substitution + by parts)","cleanTitle":"Integral of arctan(2x) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=z96EoOKFk3w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/z96EoOKFk3w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":213,"text":"3:33","a11yText":"Süre 3 dakika 33 saniye","shortText":"3 dk."},"views":{"text":"29,4bin","a11yText":"29,4 bin izleme"},"date":"8 mar 2020","modifyTime":1583625600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/z96EoOKFk3w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=z96EoOKFk3w","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":213},"parentClipId":"12615051969900981034","href":"/preview/12615051969900981034?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12615051969900981034?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1365325187185584928":{"videoId":"1365325187185584928","title":"\u0007[Integral\u0007] of sin^4(x) (trigonometric identities + substitution)","cleanTitle":"Integral of sin^4(x) (trigonometric identities + substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Up3uJXuTGFY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Up3uJXuTGFY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/channel/UCNLRwiQSPlAn_hiEM2yWIwg","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":371,"text":"6:11","a11yText":"Süre 6 dakika 11 saniye","shortText":"6 dk."},"views":{"text":"3,9bin","a11yText":"3,9 bin izleme"},"date":"15 oca 2017","modifyTime":1484438400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Up3uJXuTGFY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Up3uJXuTGFY","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":371},"parentClipId":"1365325187185584928","href":"/preview/1365325187185584928?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/1365325187185584928?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12458871617743588631":{"videoId":"12458871617743588631","title":"\u0007[Integral\u0007] of sin^3(x) cos^4(x) (substitution)","cleanTitle":"Integral of sin^3(x) cos^4(x) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DX0VW3zE3f0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DX0VW3zE3f0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":157,"text":"2:37","a11yText":"Süre 2 dakika 37 saniye","shortText":"2 dk."},"views":{"text":"27,1bin","a11yText":"27,1 bin izleme"},"date":"24 şub 2020","modifyTime":1582496238000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DX0VW3zE3f0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DX0VW3zE3f0","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":157},"parentClipId":"12458871617743588631","href":"/preview/12458871617743588631?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12458871617743588631?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2072825662016090101":{"videoId":"2072825662016090101","title":"\u0007[Integral\u0007] of cos(x)*ln(sin(x)) (substitution + by parts)","cleanTitle":"Integral of cos(x)*ln(sin(x)) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/v/9AYy_VqmjoE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/9AYy_VqmjoE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":123,"text":"2:03","a11yText":"Süre 2 dakika 3 saniye","shortText":"2 dk."},"views":{"text":"22,4bin","a11yText":"22,4 bin izleme"},"date":"31 tem 2016","modifyTime":1469923200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/9AYy_VqmjoE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=9AYy_VqmjoE","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":123},"parentClipId":"2072825662016090101","href":"/preview/2072825662016090101?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/2072825662016090101?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"787543797431395244":{"videoId":"787543797431395244","title":"\u0007[Integral\u0007] of 1/(x - x*ln(x)) (substitution)","cleanTitle":"Integral of 1/(x - x*ln(x)) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SATPZs7kHM8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SATPZs7kHM8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":112,"text":"1:52","a11yText":"Süre 1 dakika 52 saniye","shortText":"1 dk."},"views":{"text":"5,1bin","a11yText":"5,1 bin izleme"},"date":"10 oca 2016","modifyTime":1452384000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SATPZs7kHM8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SATPZs7kHM8","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":112},"parentClipId":"787543797431395244","href":"/preview/787543797431395244?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/787543797431395244?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3482254653173653736":{"videoId":"3482254653173653736","title":"\u0007[Integral\u0007] of (x+1)/sqrt(x-1) (substitution)","cleanTitle":"Integral of (x+1)/sqrt(x-1) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2n2hMArDX0g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2n2hMArDX0g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":237,"text":"3:57","a11yText":"Süre 3 dakika 57 saniye","shortText":"3 dk."},"views":{"text":"14,8bin","a11yText":"14,8 bin izleme"},"date":"17 oca 2016","modifyTime":1452988800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2n2hMArDX0g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2n2hMArDX0g","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":237},"parentClipId":"3482254653173653736","href":"/preview/3482254653173653736?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/3482254653173653736?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1930999456278746482":{"videoId":"1930999456278746482","title":"\u0007[Integral\u0007] of sin(ln(x))/x (substitution)","cleanTitle":"Integral of sin(ln(x))/x (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FK5HFw6rXIU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FK5HFw6rXIU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":70,"text":"1:10","a11yText":"Süre 1 dakika 10 saniye","shortText":"1 dk."},"views":{"text":"22,2bin","a11yText":"22,2 bin izleme"},"date":"28 şub 2016","modifyTime":1456617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FK5HFw6rXIU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FK5HFw6rXIU","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":70},"parentClipId":"1930999456278746482","href":"/preview/1930999456278746482?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/1930999456278746482?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4489216167531479793":{"videoId":"4489216167531479793","title":"\u0007[Integral\u0007] of cos^2(x)/sin^4(x) (substitution)","cleanTitle":"Integral of cos^2(x)/sin^4(x) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=x9jBq_5RgAo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x9jBq_5RgAo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":150,"text":"2:30","a11yText":"Süre 2 dakika 30 saniye","shortText":"2 dk."},"views":{"text":"24,2bin","a11yText":"24,2 bin izleme"},"date":"8 eki 2016","modifyTime":1475884800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x9jBq_5RgAo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x9jBq_5RgAo","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":150},"parentClipId":"4489216167531479793","href":"/preview/4489216167531479793?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/4489216167531479793?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12722066716350592627":{"videoId":"12722066716350592627","title":"\u0007[Integral\u0007] of 1/(x*(1+ln(x))^4) (substitution)","cleanTitle":"Integral of 1/(x*(1+ln(x))^4) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fdEmDPuLp2I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fdEmDPuLp2I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":106,"text":"1:46","a11yText":"Süre 1 dakika 46 saniye","shortText":"1 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"19 haz 2016","modifyTime":1466294400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fdEmDPuLp2I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fdEmDPuLp2I","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":106},"parentClipId":"12722066716350592627","href":"/preview/12722066716350592627?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12722066716350592627?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2453598555517141157":{"videoId":"2453598555517141157","title":"\u0007[Integral\u0007] of 1/(x*(ln(x))^4) (substitution)","cleanTitle":"Integral of 1/(x*(ln(x))^4) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Px5eC3D4LyY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Px5eC3D4LyY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":81,"text":"1:21","a11yText":"Süre 1 dakika 21 saniye","shortText":"1 dk."},"views":{"text":"6,6bin","a11yText":"6,6 bin izleme"},"date":"8 eyl 2019","modifyTime":1567900800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Px5eC3D4LyY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Px5eC3D4LyY","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":81},"parentClipId":"2453598555517141157","href":"/preview/2453598555517141157?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/2453598555517141157?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10984246358060969142":{"videoId":"10984246358060969142","title":"\u0007[Integral\u0007] of sqrt(9-x^2) (substitution)","cleanTitle":"Integral of sqrt(9-x^2) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=LIOWZCm_ls8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/LIOWZCm_ls8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":305,"text":"5:05","a11yText":"Süre 5 dakika 5 saniye","shortText":"5 dk."},"views":{"text":"61,3bin","a11yText":"61,3 bin izleme"},"date":"31 oca 2021","modifyTime":1612051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/LIOWZCm_ls8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=LIOWZCm_ls8","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":305},"parentClipId":"10984246358060969142","href":"/preview/10984246358060969142?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/10984246358060969142?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13893584749606851801":{"videoId":"13893584749606851801","title":"\u0007[Integral\u0007] of 1/(1-sqrt(x)) (substitution)","cleanTitle":"Integral of 1/(1-sqrt(x)) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Lx_NTB5WiGg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Lx_NTB5WiGg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":121,"text":"2:01","a11yText":"Süre 2 dakika 1 saniye","shortText":"2 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"3 şub 2018","modifyTime":1517616000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Lx_NTB5WiGg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Lx_NTB5WiGg","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":121},"parentClipId":"13893584749606851801","href":"/preview/13893584749606851801?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/13893584749606851801?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3037563882283317828":{"videoId":"3037563882283317828","title":"\u0007[Integral\u0007] of sqrt((1-x)/(1+x))","cleanTitle":"Integral of sqrt((1-x)/(1+x))","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=EMcw0ESfMR0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EMcw0ESfMR0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":171,"text":"2:51","a11yText":"Süre 2 dakika 51 saniye","shortText":"2 dk."},"views":{"text":"18,1bin","a11yText":"18,1 bin izleme"},"date":"7 oca 2016","modifyTime":1452124800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EMcw0ESfMR0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EMcw0ESfMR0","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":171},"parentClipId":"3037563882283317828","href":"/preview/3037563882283317828?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/3037563882283317828?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12106507926067141452":{"videoId":"12106507926067141452","title":"\u0007[Integral\u0007] of 1/(1+sin^2(x)) (substitution + substitution)","cleanTitle":"Integral of 1/(1+sin^2(x)) (substitution + substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rrsblo75dT4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rrsblo75dT4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":289,"text":"4:49","a11yText":"Süre 4 dakika 49 saniye","shortText":"4 dk."},"views":{"text":"103,7bin","a11yText":"103,7 bin izleme"},"date":"8 oca 2017","modifyTime":1483833600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rrsblo75dT4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rrsblo75dT4","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":289},"parentClipId":"12106507926067141452","href":"/preview/12106507926067141452?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/12106507926067141452?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13009395592255300312":{"videoId":"13009395592255300312","title":"\u0007[Integral\u0007] of sin(sqrt(x)) (substitution + by parts)","cleanTitle":"Integral of sin(sqrt(x)) (substitution + by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/v/UYmXmkujrtQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UYmXmkujrtQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/channel/UCNLRwiQSPlAn_hiEM2yWIwg","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":165,"text":"2:45","a11yText":"Süre 2 dakika 45 saniye","shortText":"2 dk."},"views":{"text":"49bin","a11yText":"49 bin izleme"},"date":"23 eki 2016","modifyTime":1477180800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UYmXmkujrtQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UYmXmkujrtQ","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":165},"parentClipId":"13009395592255300312","href":"/preview/13009395592255300312?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/13009395592255300312?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10785103366636643394":{"videoId":"10785103366636643394","title":"(Method 2) \u0007[Integral\u0007] of 1/(x*sqrt(x^4-1)) (substitution)","cleanTitle":"(Method 2) Integral of 1/(x*sqrt(x^4-1)) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/live/aYYnyNVjlHg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aYYnyNVjlHg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":331,"text":"5:31","a11yText":"Süre 5 dakika 31 saniye","shortText":"5 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"29 eyl 2024","modifyTime":1727568000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aYYnyNVjlHg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aYYnyNVjlHg","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":331},"parentClipId":"10785103366636643394","href":"/preview/10785103366636643394?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/10785103366636643394?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9881639768672126295":{"videoId":"9881639768672126295","title":"\u0007[Integral\u0007] of 1/sin^4(x) (substitution)","cleanTitle":"Integral of 1/sin^4(x) (substitution)","host":{"title":"YouTube","href":"http://www.youtube.com/v/qctDsxqxDTI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qctDsxqxDTI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":145,"text":"2:25","a11yText":"Süre 2 dakika 25 saniye","shortText":"2 dk."},"views":{"text":"40,2bin","a11yText":"40,2 bin izleme"},"date":"23 oca 2017","modifyTime":1485129600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qctDsxqxDTI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qctDsxqxDTI","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":145},"parentClipId":"9881639768672126295","href":"/preview/9881639768672126295?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/9881639768672126295?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3595366480798106761":{"videoId":"3595366480798106761","title":"Countdown to 2025: 13 \u0007[Integrals\u0007] in 13 Days! (x lnx) /(x^2-1)^(1/2) dx | Math with Professor V","cleanTitle":"Countdown to 2025: 13 Integrals in 13 Days! (x lnx) /(x^2-1)^(1/2) dx | Math with Professor V","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rilMu6No27s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rilMu6No27s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDb2t1aG9oNU5fQjBaeEhjRVVfRVdiUQ==","name":"Math with Professor V","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+with+Professor+V","origUrl":"http://www.youtube.com/@mathwithprofessorv","a11yText":"Math with Professor V. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":627,"text":"10:27","a11yText":"Süre 10 dakika 27 saniye","shortText":"10 dk."},"date":"22 ara 2024","modifyTime":1734825600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rilMu6No27s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rilMu6No27s","reqid":"1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL","duration":627},"parentClipId":"3595366480798106761","href":"/preview/3595366480798106761?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","rawHref":"/video/preview/3595366480798106761?parent-reqid=1769177256764733-9581366907850391665-balancer-l7leveler-kubr-yp-sas-125-BAL&text=Integrals+ForYou","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5813669078503916657125","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Integrals ForYou","queryUriEscaped":"Integrals%20ForYou","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}