{"pages":{"search":{"query":"AlphaOpt","originalQuery":"AlphaOpt","serpid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","parentReqid":"","serpItems":[{"id":"13725535334339629-0-0","type":"videoSnippet","props":{"videoId":"13725535334339629"},"curPage":0},{"id":"10093772887992817650-0-1","type":"videoSnippet","props":{"videoId":"10093772887992817650"},"curPage":0},{"id":"14757278499574252128-0-2","type":"videoSnippet","props":{"videoId":"14757278499574252128"},"curPage":0},{"id":"11974934385796364506-0-3","type":"videoSnippet","props":{"videoId":"11974934385796364506"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dEFscGhhT3B0Cg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","ui":"desktop","yuid":"1865162301769448056"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"1548015658623383286-0-5","type":"videoSnippet","props":{"videoId":"1548015658623383286"},"curPage":0},{"id":"17670816427421717288-0-6","type":"videoSnippet","props":{"videoId":"17670816427421717288"},"curPage":0},{"id":"6867508965353276445-0-7","type":"videoSnippet","props":{"videoId":"6867508965353276445"},"curPage":0},{"id":"1575977273860767372-0-8","type":"videoSnippet","props":{"videoId":"1575977273860767372"},"curPage":0},{"id":"8837099119282458309-0-9","type":"videoSnippet","props":{"videoId":"8837099119282458309"},"curPage":0},{"id":"16490576410348038561-0-10","type":"videoSnippet","props":{"videoId":"16490576410348038561"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dEFscGhhT3B0Cg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","ui":"desktop","yuid":"1865162301769448056"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"13533406073974104741-0-12","type":"videoSnippet","props":{"videoId":"13533406073974104741"},"curPage":0},{"id":"8382447513253249100-0-13","type":"videoSnippet","props":{"videoId":"8382447513253249100"},"curPage":0},{"id":"200881831292098223-0-14","type":"videoSnippet","props":{"videoId":"200881831292098223"},"curPage":0},{"id":"2956721971647633916-0-15","type":"videoSnippet","props":{"videoId":"2956721971647633916"},"curPage":0},{"id":"9921008449319883731-0-16","type":"videoSnippet","props":{"videoId":"9921008449319883731"},"curPage":0},{"id":"12588584131024358996-0-17","type":"videoSnippet","props":{"videoId":"12588584131024358996"},"curPage":0},{"id":"1174360805802683562-0-18","type":"videoSnippet","props":{"videoId":"1174360805802683562"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dEFscGhhT3B0Cg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","ui":"desktop","yuid":"1865162301769448056"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DAlphaOpt"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"0838428822879308352798","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472323,0,21;1472346,0,38;204184,0,20;1466867,0,88;1414493,0,38;124068,0,99;1424968,0,50;1468855,0,97;1460710,0,77;1462157,0,80;1459297,0,81;1152684,0,32;1472029,0,82;1471623,0,81;1461643,0,35;1383554,0,36;123842,0,90;1461712,0,15;1455763,0,30;1463532,0,33;1466295,0,88;1465958,0,72;1466086,0,85;1452016,0,63;1466618,0,43;1470513,0,23;1465681,0,4;124072,0,97;89018,0,61;1404022,0,84;263460,0,90;255407,0,90;1466270,0,43;1469407,0,42;1145219,0,75;1470415,0,97;1462741,0,35;151171,0,93;126309,0,35;1281084,0,72;287509,0,61;1447467,0,95;787997,0,80;1473595,0,54;1466397,0,98;912283,0,80"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DAlphaOpt","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=AlphaOpt","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=AlphaOpt","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"AlphaOpt: Yandex'te 34 video bulundu","description":"Результаты поиска по запросу \"AlphaOpt\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"AlphaOpt — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y5ace506fe97e4922a4eff7820949c532","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1472346,204184,1466867,1414493,124068,1424968,1468855,1460710,1462157,1459297,1152684,1472029,1471623,1461643,1383554,123842,1461712,1455763,1463532,1466295,1465958,1466086,1452016,1466618,1470513,1465681,124072,89018,1404022,263460,255407,1466270,1469407,1145219,1470415,1462741,151171,126309,1281084,287509,1447467,787997,1473595,1466397,912283","queryText":"AlphaOpt","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1865162301769448056","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769448066","tz":"America/Louisville","to_iso":"2026-01-26T12:21:06-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1472346,204184,1466867,1414493,124068,1424968,1468855,1460710,1462157,1459297,1152684,1472029,1471623,1461643,1383554,123842,1461712,1455763,1463532,1466295,1465958,1466086,1452016,1466618,1470513,1465681,124072,89018,1404022,263460,255407,1466270,1469407,1145219,1470415,1462741,151171,126309,1281084,287509,1447467,787997,1473595,1466397,912283","queryText":"AlphaOpt","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1865162301769448056","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"0838428822879308352798","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":163,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1865162301769448056","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"13725535334339629":{"videoId":"13725535334339629","docid":"34-2-1-Z85400D7DE2C1FE22","description":"How big does a snowball need to be to knock down a tree after rolling for 30 seconds? We answer this question using optimization in Python. Tools used: Python, numpy, scipy odeint, scipy minimize.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3936459/5ef257f1f35ab9f595e12cc30bbd83ab/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/t16AnQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhBcYXqRq500","linkTemplate":"/video/preview/13725535334339629?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Python Optimization Example Snowball Rolling with Scipy Minimize","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hBcYXqRq500\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoTChExMzcyNTUzNTMzNDMzOTYyOVoRMTM3MjU1MzUzMzQzMzk2MjlqkxcSATAYACJFGjEACipoaGlmb2tyd2dlb3loeGRiaGhVQ2tMMkhORGp5aHJUNmhnV2ppa21RQWcSAgASKhDCDw8aDz8TggOCBCQBgAQrKosBEAEaeIH3Bff8_gIA9AQFAfkD_wET9wH39gEAAOYO_fgH_QEA_fgO__gAAAAG-wQM-wAAAPsJ_QAE_gAAGAED__oAAAAT-QL_9wAAAAr9BAv_AQAA9voG-QIAAAAY-wL1_wAAAPwIAQH8_wAA-v30AwAAAAAM9QAFAAAAACAALVog2Ds4E0AJSE5QAiqEAhAAGvABYP34_h7m7gSyHM__yQv6_4EiCv4fBf8A1fvoAdfQyAHO3-cAANcDANkK9ACf6OYC6wXv_ykWF_8K5wH_CeYhAPP53AE-8yIBKPzrAeYm7P4BICn-BecuACPo9AAWCwz_HwQD_L_R9QTa9dcA7w0uAjcQGQMqEhkB5xQaAOkvIAPt4QIB7Bv3_dT_BAEaDQL88QnW-iYW2_7ZFgMEFhTuA_zkA_vpBOv0BB4QCeULCvrx-P4FDQn_CeshG_71MhYD5wMVAPvm4u0GHwjxG_z28PUA7AMK5f3-GfLn-M8CCADlDRH45jMDDwX6Ff35CvfyIAAt_yEdOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97tCpPC8cUQtPQnmw7yV0gO-lpinvL-0rDs-7FU-juXdPD1XBT04aYq-0Qw9PO2ufTw7GWw-rgzqPIKMJTwOMQ6-TQaRPEfoQrxFvPW9Z-jEPKy4J7ykCSo9fzQXvSZYNz3RHyo-6rAivVDCzLyygl-99AikvHl8lrykmJO6ajS5upF387wqqEg-uAbTu_4qgDwEVwk-661cPC9EQ7qHhFS9kiRoPb_h0zp6tqi9ruLDuymL6zvJIm09RYTaOyUzKDy3rdK8dozrvJReZTyyfU09xGdBPRxTgzsHJGE8MdC1PACmMbxzUrM8rlIwPBbHnDwMdw6-TdoWO5ZhFz31vCs-zSx4PPp6vjwX7xe-992OPWpQtDw-m3I7sB43vfuRhbrThuM9zHZqPdZ0vTw5doU9wiHKvfD2xTwTRbg9k0b7vHXMubyk3KI8mTqZPJeihbvxSJs60a5CPImSNbwo1d69aAr4vO0DubuGuok9BqTYO9fVC7zMyaU9136XPIX-sjsFzqk7UvvjO5R4rzx6Yqe8G8bTvCP9kbxDSIy8B4dNPWIbAbkiiuk9_fsnvcH-a7x96EK98Dscvf2N9zkDvSY9NL_1vJRQuDtjdGW77ZbJvGkOHLva6Hc8doOtvenLnLv7YJS96SC5vJLNlzsw31C9UrBrPGk_jDtowIo9tcCDPBQmiDslo9S8Rd3_OhjcLjrjxQI-2Z0JPbDlxbm4dEy9IYfvOwSWWLrUnDw9s8yXPYywzrgNbSA-rCYAO39DzLjVk3k8axaePEknWDlpQV48m6jKPGTkcjg0nWI9DHOHPS47HrmtL7c6_RLxvbwjiTnJ0Iw8WT_svPIqmzmbqRW9kNcjPf2WPLo8wf476P4FPWIp8LjXrVQ94K8TvJyYrLmDE9E9IfP1uzBLEDhkJ5c943ERvXPRSTih5a-8VE0VvbUYMbirs5q8TftBPFirQ7dq42M9lstrvYupNznN8iu84yaZPdrOH7gvs1k94fX0OkETsLc4kGS9meMrvTycETjz2va8CPnKvVqHe7YoWC09qw-KPVYUmri45Ci-0X-FvJ34Grk2i_y8-9vvvJL7h7gTuss716GauhpeN7Ya3qy95iHTvWhCyjjXvXU9b7-6O2rxArlKjA89tVNvO8AM3rc8cdS8yZ0IvfEbgLfcNFE9ebGwPFCeqje9rwU9pUkJvq2ehbigFw49FyW9PSh_ADmu75O9OuPAPR4C6bgv0lW84efkPGKkMrdUNuy8RviNvc4G0LcgADgTQAlIbVABKnMQABpgMPUAIML53j4eQPb8CvoXuu0dCBe0NP8D2f8lBgcn7v7ClCQcABjiIPefAAAAGBLBKeoAB3_VugkQ8eIKqKvXOP1XKfI8DucNJMsDafXu4efoTg82AP_JxvVE-sNR_x4qIAAtLR8XOzgTQAlIb1ACKq8GEAwaoAYAAIDAAACwwQAAEMEAAMhBAABQQgAALMIAAGxCAACgQQAA-MEAAPjBAADGQgAAjsIAADTCAACwwQAAaEIAAOBAAADYwQAAaMIAABjCAACowQAAJEIAAADAAABAwQAAoMEAAMBBAAAgwgAAeMIAAHjCAABwQgAA4EAAAAAAAABwQgAA1sIAAKDAAAB8wgAAiMEAAIjBAAAUQgAACMIAAJjBAADgwAAA-EEAAMDAAABsQgAALEIAAFDCAAB0wgAAFMIAAJxCAACYQQAAmMEAAARCAAAAwAAA4MAAADBCAABgQQAA6sIAAIBBAACAvwAAIEIAAIDAAAC4wQAAgMEAABTCAAAMQgAAoEAAAPjBAAAQwQAAAEAAAABBAAD4QQAAmkIAAIhBAADQQQAAmMEAAPDCAAAAAAAAuMEAAABBAACIwQAATMIAAMhBAACgwAAAwEAAAIbCAACQQQAAYEIAAEDBAAAwQgAAYMIAAFBBAAAQQQAAwEEAAILCAAAAwQAAlMIAADDBAAAoQgAAEMEAAADBAAAAwAAASEIAAABBAABgwQAACMIAADDBAADgwAAAcEEAAIjBAADIQQAAqEEAABjCAAAwwQAAmsIAAMDAAABAwAAA2MEAAATCAACAwAAAsEEAAMjBAAD4wQAASMIAANDBAACQQgAAAEEAAKBBAAAEQgAAyMEAAAjCAAAAQAAAiMEAABjCAAAAwAAAgD8AACxCAADIQQAAREIAAIjBAADEwgAAZMIAAPhBAADIQQAAQMAAAGBBAADYQQAAIMEAAAxCAABgQQAA-MEAAATCAAAQwQAAUEIAAADBAAAQwQAAsEEAAFBBAACuwgAACMIAAJhBAAAgwgAAgD8AAJLCAAAwQQAAWMIAAKBBAAA8QgAAikIAAFBBAADoQQAAksIAAIxCAACCwgAAkMEAAFRCAABAQAAAAEAAAHzCAABcQgAAoEEAANBBAADQwQAAEMEAABBBAAB8QgAAEEIAACjCAADQQgAADMIAAKDAAACEwgAALMIAALjBAAAAwQAAsEEAACRCAADIwQAAisIAAMLCAAAgwiAAOBNACUh1UAEqjwIQABqAAgAABL4AAIK-AABEPgAAQDwAAIq-AABwPQAAJD4AADO_AAD6vgAA2L0AAOA8AAAQvQAAcD0AAII-AADgvAAAZL4AACQ-AABwPQAAmD0AAJ4-AAB_PwAA4DwAAFA9AACIvQAAcL0AAHC9AADIPQAAuL0AAGy-AACIvQAARD4AAEA8AAC4vQAA6D0AAJo-AABUPgAAhj4AAHS-AABMvgAAoLwAAOq-AAA8PgAAyL0AAHC9AAAEvgAAcL0AACw-AACIPQAAmD0AAI6-AABQPQAA4DwAABw-AAAMPgAAPL4AAHC9AABZPwAAUL0AAJ4-AADgvAAAcL0AAAy-AAAMPgAAQLwgADgTQAlIfFABKo8CEAEagAIAAES-AAD4PQAA4DwAACu_AACIvQAAJD4AABw-AADIPQAAVL4AAM4-AAA8vgAAgDsAACy-AABAPAAAqL0AAIi9AAD4vQAATz8AADA9AADmPgAAyD0AAGy-AABAPAAAuL0AADS-AACWvgAAuL0AAHA9AABQPQAALD4AAOA8AAAwvQAAoDwAAMi9AACCPgAA6L0AAIo-AACYPQAAZL4AAEQ-AAA0PgAAmL0AAKA8AAAQvQAAoDwAAIo-AAB_vwAAED0AABA9AACgPAAARD4AAOA8AACOPgAA-D0AADQ-AACYPQAAgLsAAMi9AAAsPgAAMD0AALg9AACGPgAAuL0AAIi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=hBcYXqRq500","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13725535334339629"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3793100506"},"10093772887992817650":{"videoId":"10093772887992817650","docid":"34-5-0-Z8C3CE822EB6B2620","description":"A conceptual overview of gradient based optimization algorithms. This video is part of an introductory optimization series. QUIZ: https://goo.gl/forms/1NaFUcqCnWgWbrQh1 Transcript: Hello, and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4321834/e9534d38fe2605061dc430e8cade1e4e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RtPGnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dn-Y0SDSOfUI","linkTemplate":"/video/preview/10093772887992817650?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction To Optimization: Gradient Based Algorithms","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=n-Y0SDSOfUI\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoWChQxMDA5Mzc3Mjg4Nzk5MjgxNzY1MFoUMTAwOTM3NzI4ODc5OTI4MTc2NTBqkxcSATAYACJFGjEACipoaGlmb2tyd2dlb3loeGRiaGhVQ2tMMkhORGp5aHJUNmhnV2ppa21RQWcSAgASKhDCDw8aDz8TxgKCBCQBgAQrKosBEAEaeIH0CPsH_QMA9gEB-fsBAAET_f0A9gEBAPYH_P7_Av8A8wD-_v8AAAD8BgT_9wAAAP7-_v_4_gAACwoMBgUAAAAZAv0A-AAAAAQE_vT_AQAA-fn-BgP_AAASCAL0_wAAAPcDC_wBAAAA_QwA-gAAAAD_9gH-AAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABfwIDAtH69f8H8AAA4BzqAJoAAf8VHOkA1Q0aAdkQ4gAC_gQA8-QWABvyBP-59AcAEBHyAD_8EQAW-RQAMAj-ANwKIQAb5AgARBgh_gnm_QACKBIA5P8OAPL66ADxBP0A9xEB_wXa3AD_7dkAMQQSARkD8wQF8eQBAQf9_gQBEwITD_P9IAHy_wsA_QAPFCMCF_XuAgMl_ADsA_UBDBEFBPznAgcFAun8_h3i_AEBCfoB8gD4Fw30BfPj-gPW_f0J5OkH-dgL-APpBgsBBhX8BfH7_v7rBvzzCv_-_QrXCAPjAgMG4hcL_OYB_wYA6Pz7IAAtpUBMOzgTQAlIYVACKs8HEAAawAenlcK-vuutPf6jJbzc8SY9DlVnvL2Ye7sZAiC-CGqAuzj8iTyf1qM9IfD2PEX2nLwceHW-anwQPXw40jxAvTk-4huqOQyl2Lnv5U6-EKhDPRiswLubdiG-GiU5vRtQCDsriCE-YxWlvGhhKryVels9Kp8XOv7BtjwgqOi6HXURPDPcAL2X1J47rFuYvaHQl7ysPGE-vzsjvTxZAD0YWh0-agdxu7SFEDwYQPi9Kjt9PEXPtTtDEXy9qEcEvZlq_7uUwhw-5JPfu3qjGz3EeTi8sky_u4P44TvGKNI5D4dbvDb6ILt8Pak9k9RYvZqzcjrq8VY8MB7UvDN3VLm5asM8lfW2PIxtLTyo_As-pYOVPSSOhry3JUK-jHCuPN8MSDwSycY8Kk-FvEJDf7wxsRk-qfUjPDtImTyRK1A95pZWvd7BdDxyE_e7LLmKPHMyzDxVZIk99pfdPZjyRrzuySi9aFtNvIsPfTvbARK9KJYAvepEG7pQCBM9VWMuPMYWgjuKPp89_LgHPIBsSLzJU1s9AICNvagwWzycvJ09LBTEPLpNOLsK6qW7H0CAPcfMVjVZh8M9Cs9VvfSCUzvDqrC9ZcM6vegnwbtWazy8Uq-wvWLHGDuTzfA8AmKCPWt3NLwoQi891p-rOoBNzrsgWHo8VHTkPOwq6ruG6JC9LxSwPHoxuTuB0gs9A2mFPZMbEbo7Bl89eLcSPUHGs7pse3s9TeCxPKuKmTppzD-90GM0vciPnbqHFo256WITPo4hWrkmskU9o86cPC4lQzm_qw-97Qa4uz6K2jnEI1C7zqZDPXuyLDuZLp87TH_AvYaUVjjuX_m9qwn9vIXoFLmhl4u9lzx5vZRdPziaalo7hwYYPbM_1DpfCs-9OHApuhhDtbmbTGY9NFNVvUuhCzjaHl09CrRlvTtQxjewZWg9RTcRPQBDfTjgn4I9eA0avapHB7m_IDO8rBvPPUkMNDUZy7Q8ArI8PbEtzzdZPwy9ru8oPTOTTbhR2fC8OeUbPZJKlDiJU1e9saIGvUY7R7gVFJA8c-WCvY_pfDghnpu84ZNTPcjQ1be45Ci-0X-FvJ34Grm7ngO9h22LPKADmLc3btE9J9BRPYcuajYwoYI9uFGOveKERLiQJ449ayjVPcHZjLiwVRK-rYqwPHxrx7d6lwG9qwNlvbVi5rfi0xe9mT4FvXTG1rZhBnk98zoSvkvnqbjMIQ69sTMlPYDVCrhFOKy9udSCPfLID7hLfo-9Wtk-vaR3fzZv-Dg8Z2aBvRF44bYgADgTQAlIbVABKnMQABpgSP4AEOw16PcILuDe2NsKw8Tv7AzL6P_c6_8LLuX56RvwrgDvAEL4HPKhAAAADenyPOQAC3_2n-gc8AoM5rwHSNZqRugntAYHE7Er-xQTwuoCEiINAOTirk1I9rtL40IYIAAt4TcaOzgTQAlIb1ACKq8GEAwaoAYAAPDBAADgQQAAwEAAAKhBAACwQQAAEEIAAIhCAACwwQAAnsIAALjBAACEQgAAyMEAAFTCAAA8wgAAiMEAAIxCAAAYwgAA-MEAAGDBAAAAQgAAwMAAAIrCAADgQQAA4EEAAIC_AACAQQAAmMEAAABCAABAQAAAKMIAAILCAAAcQgAA-MEAAJBBAABAwgAAAAAAAOBAAADAQQAABMIAAEDCAABowgAAcMEAAKpCAACgQAAA-EEAAKBAAACawgAAEMEAAADBAAB8wgAAwMEAANhBAAA4wgAAYMEAAADAAAAIQgAAbMIAAILCAAAoQgAAEMEAABDBAABEwgAAFMIAANDBAADIQQAARMIAAGDCAAAQwQAAkMEAACDBAADwwQAAUMIAAHjCAABcQgAAHEIAAIjBAADQQQAArkIAABRCAABgQQAAsMEAANpCAAAcwgAA4MAAAMhBAACAQQAAQEAAAOBAAACQwQAAcMIAAOjBAACGQgAAwMAAADxCAAAgQQAAhMIAAMBAAAAgwQAAoEIAALhBAABAwAAAQMEAAKBBAADAwAAAqsIAADRCAACQwQAAjEIAAADBAAAAQgAAkEEAACjCAABIwgAAlkIAAHBBAAC4QQAAhEIAABBBAACCwgAADMIAABRCAACAvwAA4MAAAMBAAACAwQAA6EEAAIBAAACAwQAA2MEAAAhCAACIwQAAqsIAALjCAAAAQQAAJEIAACRCAAAsQgAA4MEAAKBAAACOwgAAuEEAAAAAAACIwQAAIMIAAIBBAACIQQAAPEIAAGBBAACOQgAA1EIAALBBAADwQQAAUMEAABBBAAC4wQAANEIAACzCAACYQQAAgD8AAAhCAADQwQAAHMIAAFjCAAAcwgAAYMIAALDBAADYwQAAnEIAAIBAAAAQwQAAUEEAAPhBAAD4wQAABMIAAKBBAACowQAAAMIAAKBAAACoQQAAoEEAACjCAACAwAAAYMIAAFDBAAC2QgAAAEIAALDBAADIQQAATEIAAIA_AADgwAAAMEIAAGDBAACgwAAAwMAAANZCAACgQQAAcEEAAAAAAABwwiAAOBNACUh1UAEqjwIQABqAAgAAcL0AAKK-AAB0PgAAgDsAAEC8AACAuwAALD4AAA2_AACOvgAAML0AAAw-AACoPQAAMD0AAFQ-AAAUPgAAyL0AACQ-AACgPAAA2D0AAB0_AAB_PwAAoDwAACw-AAAcvgAAur4AAEC8AAAQPQAAqD0AADy-AAD4PQAAbD4AAAS-AABsvgAAtj4AAMo-AABQPQAAgLsAALi9AACOvgAAdD4AACS-AAAsvgAAcL0AAEA8AABwvQAAcD0AAMg9AADIvQAAPD4AAFy-AABUvgAAiD0AACQ-AABMPgAAgDsAAOA8AABBPwAAHL4AADC9AAAkPgAAiL0AAEA8AAAQPQAA2D0gADgTQAlIfFABKo8CEAEagAIAADS-AADIPQAAcL0AADe_AACYPQAAtj4AAJ4-AACgPAAAmD0AAJ4-AABQPQAAgDsAAOA8AADIvQAAcD0AAIC7AADgvAAAKT8AAAy-AAD-PgAABL4AABA9AAA8PgAALL4AAIC7AACAuwAABD4AAEQ-AABEvgAAoLwAABw-AACIPQAANL4AAPi9AAA8PgAAbL4AAFw-AACiPgAAor4AALg9AACGPgAAmL0AAIA7AAAQPQAAiL0AAMi9AAB_vwAA4DwAAEC8AAC6PgAAcD0AAMg9AAAQvQAADD4AAPI-AACYPQAAUL0AAHC9AADgvAAAyL0AACw-AACCPgAAPD4AAIC7IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=n-Y0SDSOfUI","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10093772887992817650"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4091396147"},"14757278499574252128":{"videoId":"14757278499574252128","docid":"34-4-0-ZD9249B196DC84B19","description":"A brief overview of the concept of objective functions and decision or design variables. This video is part of an introductory optimization series. Transcript: Hello, and welcome to Introduction...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4099328/ea824017dec1f19f388abdc79db14177/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Jh5HnQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAoJQS10Ewn4","linkTemplate":"/video/preview/14757278499574252128?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction To Optimization: Objective Functions and Decision Variables","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AoJQS10Ewn4\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoWChQxNDc1NzI3ODQ5OTU3NDI1MjEyOFoUMTQ3NTcyNzg0OTk1NzQyNTIxMjhqkxcSATAYACJFGjEACipoaGlmb2tyd2dlb3loeGRiaGhVQ2tMMkhORGp5aHJUNmhnV2ppa21RQWcSAgASKhDCDw8aDz8T5AGCBCQBgAQrKosBEAEaeIH0CPsH_QMA8P8D_v8CAAEcAPz-9AMDAPEB9wIHAf8A7AkOA_4AAAAFBP4K_gAAAAn8A_73_gEACgEA_-wA_wAZAv0A-AAAAAr5__0AAQAA7wEG_wMAAAAIBAIKAAAAAPkOBPEAAAAA_g8FAAAAAAAI8_kCAAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABawIRAqsWB_xG-fwA8f4AAYHw-_8g-O8AvgDqAMEO2f_yE_kA0e0M_xvyBP_ZD_cAEgTh_yoCEgAKAA7_IvwEAP4HFQE06PQBMQIQ__UD5AABBgv_BfMTABP4EgAT_wX_BRrw_vPx8AELAOECC-AEBBwWBv8E7wb_APTyBvID_ALzFhL_MPMIAAgU9__sIxkB7vTu_egbDP_o9_T-BQj7_wP28wEb9vYABhz9AgT78vv8AAr4GQsTAQbs8P77Ew0B_vAG9_oJ_fzi8_z9H_EFBAvpFQIB8wb8CRbvAAnn_ALl-wv14xcK_PYPFAX5_wP6IAAtkPpOOzgTQAlIYVACKs8HEAAawAfxLeS-M8U3PfVHHLy0ZEQ8l0qZPdOO0Tw8izm9chsIPceBHjqo6EM9Iywuu9x1oL2cTZe-6j1cuWSPFrw7GWw-rgzqPIKMJTxPWGK-TYVYPS3FHz1u32O-1W5FvQaeG71FZl4-nmB_vDi_Ab2fOwE-j5QoPTsYsTyzrna96z3wvCCAL70-8p29GYAcPdhb77wqqEg-uAbTu_4qgDwYWh0-agdxu7SFEDwKIRA8mw85vXVvqLoTC9y9pfz_PCHkPD3b74o9Y8MpvewY0zvkgz-7fAM9vSsOjDyseq88lMRtvQpPA71qc1c9YJTgvA0WMTtD8bk9zOFEPdxeFz2z7RS9d4ZkPXscPD319fw9nKIIPesrWbxberS88J29PFGC4zxz2P08SfaEOeXHKbylKqI9XFQwvGdjpbxDo4E7hpuSPeGQMjy63qE9NrMxvbtuHbtsnAg9ZnFVPQvUorzQGu67bXKIvT69iDxYa229Qo_eu4s-1by46vo9hNkkvWXIjLxReFo9_Y1RPJx-mrwcMF49v9ervBjHkjw6b2g9NzutPGH2l7x3wqa8xZcEvetySjzsOZQ9h5O6PefQWLwmiYo8AdR5vdaPybu-Clo91yfKvEUHajvYYfE7TpgQvUc3xjsjHJk907YLveKi4jukF5i7YupXu-p3grtNCr28OPUhPfXQYzuJZlk9AfGUPdF-vLiAY7K7lGD7PKDHpDvaozw96OVGPfOtATo-A2q7N-Hevdl8zrl_8Ls9y8xWPbQ0GTpH0PO8COgdO35PSLnwTl49c7I-PcFWQjlR1oQ97gZRvPBqvrlRbqY9SmxtveaCBjnXtjK9RhGIPAAoibd8y7G9wHD4PJvc8jnLrJS9Z1PkPI6nADqtdIy71XYzPUL_Gro3--I6vFQRPVxwubYjk3098ymWvZsvLTkcBtg828cFvTZXaTlqszs9zZGVvOBhCbnquiY8jYsZPGPUDDhV7_q8Y0_xuwXsDrm97C29z-hYvHtf1rjCwKM9JWMwvUHJ6zcqJRq9SDWcvWXAuDiHRVY902Wmvb8o9DZ42zu8ZJoEvVqIkji45Ci-0X-FvJ34Grk1tpc857RdPMFA5zizH069IpQQPD2kRLgOpjw8OgLZu-I2QTgdVCc9Ff6MPCyWX7efrm69V_DXOwab7rfVXZm8EZeCvQdxA7gIvMA7_itrvZErmLfsA707fNQPvhf63LjqG0G7pqnEPexBlziH1Uk9QC_8PbeqB7krpp29WPLCvPCopbe9QB-9650bvINQODcgADgTQAlIbVABKnMQABpgTwIAEOcR9N79Q_HZ6sEK79gS9ijGC__3v_8GSr0L8f72jvLsAEbyDwqgAAAAB-znMhYAKH_c9fIf7DYnv8n6Kft9Ly0YqsYE-7cL7iHj6cPH1_4_APvXoQdV669HHSwFIAAtncUTOzgTQAlIb1ACKq8GEAwaoAYAAIDCAADQwQAAFEIAABTCAACoQQAATMIAAJRCAAAwQQAAsMEAAJjBAAAIQgAASMIAACDBAAC4wQAAQEEAABRCAADwQQAAQEAAADjCAAAYQgAAOEIAAIjBAACIwgAACMIAAAjCAABwwQAAsEEAAOrCAADYQQAAiMEAAMBAAADCQgAApMIAAHTCAAAgwQAAAEIAABDCAAC6QgAAuMEAAEBBAADgwQAAuEEAAKhCAABQQgAAAAAAAJjBAAC-wgAABEIAAARCAAAcQgAABMIAABzCAADAwgAAgD8AABxCAACIQQAAZMIAAJDBAADAwAAAKEIAADBBAAAkQgAAoMAAADTCAABgwQAAGMIAAFzCAAAAQQAAAEEAAIBAAABAQAAAikIAADzCAABwwQAAgL8AAIDCAACAwQAAFEIAADBBAABowgAAcMIAAKRCAABwQQAAoEEAADhCAACAwgAAhkIAAKxCAADoQQAAIMEAAJpCAADEQgAAUEEAADDCAAAEwgAAYMEAAIjBAABAQAAAsEEAAIBAAABAQgAAyEEAABhCAADYwQAAeMIAAEBCAAAQQQAAUMEAADxCAAAAwQAAQEAAAGjCAADYwQAA6MEAAKDAAACoQgAAKEIAADDBAADAwQAAUEEAAKBAAADgwQAA3MIAABzCAAAgQgAAUMEAACDBAABAwQAAcMEAABDCAABcwgAAoMAAAITCAADgQQAAHMIAAABAAAA8QgAAVEIAAOjBAACIwgAAgD8AAGBBAABAQAAAMEEAABxCAABQwQAANMIAABhCAAAAQAAAgEEAAKhBAABwwQAAqMEAADDBAACoQQAAiMEAAEBAAACIQQAAgD8AAEBBAAAAwQAAwEAAAMDAAAA4wgAAyMEAAPhBAADAQgAA0EEAAJjBAACAvwAAgD8AAAxCAABowgAAwEAAAAzCAACIQQAAQEAAACjCAAAAQAAAQEAAAEDAAAAAQAAAIMIAANBBAACGQgAAkEEAAODAAAAsQgAAAEAAAFDCAAB4wgAA4EAAAEBAAAAAQQAAUMIAAOBAAAAswgAAGEIAAATCAACAwCAAOBNACUh1UAEqjwIQABqAAgAAyD0AALa-AACgPAAA-L0AACS-AAA0PgAAoDwAAAG_AAB0vgAAyL0AAOg9AAA0vgAAgLsAAHw-AACGvgAAMD0AAHw-AAAQvQAA2D0AAP4-AAB_PwAAoDwAADA9AABQvQAA2r4AADQ-AAAUPgAA-D0AAIi9AABEvgAAbD4AAAQ-AAAsvgAAHD4AAJ4-AACAuwAAgj4AAFS-AAB8vgAAED0AAJ6-AADIvQAAQLwAAEC8AACSPgAAbD4AAIg9AACovQAAbD4AAKi9AABQPQAAcL0AAEw-AACqPgAAmL0AAIA7AAA3PwAA2L0AADA9AADYPQAAZL4AAPg9AABAPAAAiL0gADgTQAlIfFABKo8CEAEagAIAADA9AACivgAAmr4AAC2_AAAsPgAApj4AACQ-AACgPAAAjr4AAHw-AAAcPgAAoDwAALg9AABUvgAA6D0AAHC9AABQPQAAQT8AAFC9AADWPgAAfL4AALg9AACoPQAAQLwAAKg9AAAkvgAAND4AAIA7AAD4PQAAEL0AAAw-AACgvAAAgr4AABA9AAA8PgAAbL4AABQ-AABkPgAA1r4AAIA7AAAkPgAAiL0AAIi9AAC4PQAAuL0AAJg9AAB_vwAAUL0AADA9AACAOwAAoLwAADS-AACgvAAA6L0AACQ-AABQPQAAUD0AALg9AAAMPgAAoDwAANg9AABsPgAA6L0AABy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=AoJQS10Ewn4","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14757278499574252128"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2159286638"},"11974934385796364506":{"videoId":"11974934385796364506","docid":"34-4-10-Z71E3590DC7E08BFF","description":"This video gives an overview of three ways to obtain derivatives for optimization, symbolic differentiation, numerical differentiation, and automatic differentiation.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/475266/300c7a7c3fa59f3c0482449e39479b0c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8Ft4GAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQGo31GQjEvE","linkTemplate":"/video/preview/11974934385796364506?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Optimization: Calculating Derivatives","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=QGo31GQjEvE\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoWChQxMTk3NDkzNDM4NTc5NjM2NDUwNloUMTE5NzQ5MzQzODU3OTYzNjQ1MDZqtg8SATAYACJFGjEACipoaGlmb2tyd2dlb3loeGRiaGhVQ2tMMkhORGp5aHJUNmhnV2ppa21RQWcSAgASKhDCDw8aDz8T5wGCBCQBgAQrKosBEAEaeIH2Cf71_wEA_goIAQQF_QEqBvoHCgQGAPwF-f0HBP4A7vwA8_gAAAD2BAr8_wAAAAT7_Av__QEAEfv--AMAAAAd7wIB-gAAAAYD9gH_AQAA8Pv8AwMAAAAMDg72AAAAAPkPBPH__wAABAT8BwAAAAD58QIGAAAAACAALUuj0js4E0AJSE5QAiqEAhAAGvABZfsDAscI8_4XCOsA1xn6AIEFC_8RB-wAvyICAMv51gAFEhYAz-wM_wvv_QHNAxEANuby_isCEwAe8A7_C8gNAekCCwAs4_4AHRMUAOr23wAA7hIA7AoLAAn5BgIGCfL_BRvv_uQD8f8E8usAGu8BABoOCwECBwcC8er4AQIUCwLf__YACfoFAx0I_wLxECsB9PX2_v0p8P7YGPD_-gnp_goNAP4P-OYAEgYDA-768v72Cv75GgMK-hbp7f3aEhIB_fzz-dcM-AP8BAcAJfn4BAblCgUOBAIB_uvsChf19ff2Aw372BoMBgn-BQUA6Pz7IAAtbidIOzgTQAlIYVACKnMQABpgQPUAIgIIDA4DNtzj-LsezcX53B66Gf_u5f8VSccLEh_2yv3fADv5JBeoAAAA-AXY_-cAC3_H3QQY4S7_y83XLyB4JixIvdEDFbX9Ew331vgK_xZRAOTVsCo_1qNP9jcOIAAtd1YaOzgTQAlIb1ACKq8GEAwaoAYAADRCAABswgAABEIAACTCAADAwAAAgD8AAL5CAAAsQgAACMIAABTCAABAQQAAUMEAAI5CAACAvwAAQMAAAFxCAABgwQAAMEEAAJjBAAAQwQAAPEIAAPjBAACwwQAABEIAAADCAABcwgAAiMEAAIA_AAA8QgAAyEEAAIA_AACKQgAANMIAAODAAAA8wgAA4MAAAOBAAACcQgAAIEIAADDBAACAQQAAYMEAAExCAACuQgAAgEEAACDCAAAUQgAA4EAAAJxCAADoQQAAiMEAAI7CAABgwQAAmMIAAIBBAACAvwAAyMEAAMDAAAAkQgAAQEAAAHhCAABIwgAAVMIAAIDAAACgQQAAosIAAIDAAAAgwgAAUEEAAAjCAACIQQAA8EEAAEDBAAAYQgAAjsIAAAzCAADowQAAFEIAAMZCAAAAQQAA2MEAAGBCAADwQQAAIMIAAADBAAAAQAAAXEIAAIBAAACIQgAAEEIAAIC_AAAkQgAAYMEAAIDCAABYwgAANMIAAHDBAAAAwAAAQMAAAHRCAAD4QQAAWMIAACDBAABwQQAAgD8AALDBAADAwAAAVEIAANBBAACAwAAACEIAAEBCAACIwQAAMMEAAKhCAAC4QQAAAAAAAIjBAACAQAAAoMAAAIA_AACywgAAmEEAAKBAAACYQQAAfMIAAIBAAAAwwQAAkMIAAKhBAADQwQAAEMEAADDBAACgwQAACMIAANhBAACgwAAAGMIAAHDBAACcwgAAAMEAAI5CAABAwQAAIEEAACBBAABQwQAAoMEAADhCAACCQgAA8EEAACBBAACWwgAABMIAACBBAAAsQgAAwEEAAJbCAACAvwAAvsIAAEBBAACQwgAAJMIAAMBAAACAQQAAyMEAAABAAABYQgAADEIAALjBAABQQQAAcEEAAAAAAADCwgAAhsIAAOBAAAAQwQAAgMEAAEDBAAAAQAAAqEEAAGzCAADQwQAApsIAAPjBAAAQQgAA8EEAAATCAABUQgAAJEIAALBBAABgwgAAuEEAAJhBAACiQgAAgsIAALBBAAB0QgAAsMEAAPBBAAAwwSAAOBNACUh1UAEqjwIQABqAAgAAiL0AANi9AABwPQAARL4AAJ6-AACAuwAALD4AAOK-AAB0vgAAcL0AADy-AAAMvgAALL4AAEQ-AACovQAALL4AAAw-AAD4vQAAJD4AAAc_AAB_PwAAgDsAAEA8AAAQvQAAtr4AAOA8AADgvAAAcD0AAKi9AACoPQAAqD0AAGS-AABQvQAAcL0AAHA9AACYvQAAUD0AAES-AACYvQAAqD0AAMK-AACAOwAAND4AAFC9AACAuwAAiL0AABA9AABEvgAAyL0AAMi9AAA8vgAAyD0AAAQ-AABQvQAAyL0AAIC7AAA3PwAAoLwAAOg9AABwPQAAPL4AABQ-AADIPQAAHD4gADgTQAlIfFABKo8CEAEagAIAAFA9AABcPgAAqL0AADO_AADIvQAAHD4AACw-AAAQPQAA6L0AAMo-AAA8PgAAHL4AAJi9AAAkvgAAiD0AAJi9AADgPAAAET8AABC9AAC-PgAAUL0AAJg9AADoPQAATL4AAMi9AABQvQAAiD0AAMg9AACgvAAAuD0AAAQ-AACgPAAATL4AAMi9AADgvAAAcL0AALg9AADGPgAAir4AAIC7AABkPgAAcD0AAOC8AACoPQAA2L0AAKI-AAB_vwAAcD0AAPg9AABMPgAAMD0AAIi9AACYPQAAUD0AAKY-AABwPQAAoDwAAFC9AACYvQAABL4AAKA8AAAkPgAAuD0AAIA7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=QGo31GQjEvE","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11974934385796364506"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1003723185"},"1548015658623383286":{"videoId":"1548015658623383286","docid":"34-1-12-ZA452CF19694AEE0A","description":"This video shows how to perform a simple constrained optimization problem with the Gekko optimization package in Python. This video is part of an introductory series on optimization.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4504529/a428e26c465bd7ffdab7d5820a9647e7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3a7bfQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUFMFMMHVMp0","linkTemplate":"/video/preview/1548015658623383286?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Python Optimization Example: Constrained Box Volume with Gekko","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UFMFMMHVMp0\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoVChMxNTQ4MDE1NjU4NjIzMzgzMjg2WhMxNTQ4MDE1NjU4NjIzMzgzMjg2arYPEgEwGAAiRRoxAAoqaGhpZm9rcndnZW95aHhkYmhoVUNrTDJITkRqeWhyVDZoZ1dqaWttUUFnEgIAEioQwg8PGg8_E-kBggQkAYAEKyqLARABGniB-AACBgH_APkIDfz7BP8BFwYGAvUCAgDlD_z4CP0BAPMACPz7AAAADf8MB_wAAAD8-wT7_P4AAAr8CAj4AAAAEAb-CPYAAAAJAwgI_wEAAPz7_fYC_wAAJff9-f8AAAD5Dvz6_wAAAAUL7goAAAAAEP0KBQAAAAAgAC30CdA7OBNACUhOUAIqhAIQABrwAVbv8f4L5gADwP72ANkFBAGB7Rz_JSb2ALkO7ACyEc__5ff0AAb5NADUFwYAoSYAAe4C3f40IAkAG_gZABn9EwAG_w4BMeoSACD7BwHg__f_AR8n_x7rKwIi1_YBKiHtAff9_P237eP-yPrSATAfFwMjGwj_NgL_AeoFAgD1-QT-3dbn_gv5BgPn6w0BFgoX_f395wYuIuz_9ffwAgYa-wQQ3vECJ-ACABYbBwXbFQMD3g75Ayv-C__xL_z_9w8gA-nxFvkJ-fb9Af_49B_26fz2GAELEuP6CfoB-ATo9fz25yMWAuE9BwIADBT2AOL7-iAALUFaJTs4E0AJSGFQAipzEAAaYDfuACDlANMAGkbn3d3eGZICBwABxRf_Erf_NCH2J_j45JMG5_8xBSQEnwAAACkH6iq1ACh_zuAfL9oFK4vt8hn9denoNOjRJSLKAV852M_RzBEHNQAB6Lb1TAfCStoaLCAALUdcETs4E0AJSG9QAiqvBhAMGqAGAABAwQAAIMIAAKBBAABUQgAADEIAAMjBAAAIQgAAgEAAAEDCAAA8wgAAsEIAACTCAABQwQAAwMAAAEBCAAAAwAAAoMAAADzCAAAgwgAAyMEAAKBAAADgQAAAGMIAABDBAADIQQAAEMIAAHDCAABEwgAA8EEAAIA_AABAQQAAkkIAAMLCAADgwAAA-MEAAKDAAADYwQAAbEIAAJDBAADowQAA8MEAAKBAAADgwAAAZEIAAABCAAA8wgAAIMIAAFzCAACcQgAAgD8AAEBAAAAoQgAAYEEAAFDBAACQQQAAiEEAAM7CAAAwQQAAQEEAACRCAADIwQAAoMAAAOjBAACwwQAANEIAAPBBAAAAAAAAiEEAACBBAAAQQQAAmEEAAI5CAABwQQAAPEIAAMjBAADiwgAAAMEAAKDBAACAQAAA6MEAABzCAACoQQAA8MEAAODAAACIwgAA2EEAAExCAAAswgAAQEIAABzCAACgwQAAiMEAAHBBAABowgAAAAAAAJrCAAC4wQAAWEIAACDBAACAwQAAQEEAAARCAABQQQAA4MAAADDBAAAAAAAACMIAAIhBAACowQAAoEEAAOBBAAAYwgAA2MEAAGjCAAAwwQAAAMAAACDBAAAgwQAAMEEAAIBBAAD4wQAAyMEAADTCAADgwAAAokIAAIC_AADQQQAA0EEAAIjBAABgwgAAkEEAAJDBAADowQAAYEEAACBBAABYQgAAyEEAAEBCAACAPwAA0sIAAI7CAADgQQAAEEEAALDBAAAwQQAADEIAALBBAABsQgAAgMAAAETCAAAswgAAEMEAAMBBAABgwQAAQMEAACBCAAAwQQAAksIAAMjBAABwQQAAHMIAAFDBAACqwgAAUEEAAEDCAAAMQgAAKEIAADxCAAAAQgAAKEIAAKjCAACEQgAAkMIAAHDBAABcQgAAuEEAABDCAACCwgAAFEIAABRCAADYQQAA8MEAAIDAAADQwQAAbEIAAIRCAAAcwgAA7kIAABjCAAAQwQAAfMIAAAzCAAAIwgAAoMAAAADAAABgQgAAYMEAALDCAADqwgAAHMIgADgTQAlIdVABKo8CEAAagAIAAEC8AAAsvgAAgDsAAFA9AAA8vgAAmL0AANg9AAANvwAA9r4AAFC9AAAUPgAAUD0AAIg9AACCPgAAUL0AANa-AACOPgAAQLwAAHw-AAAlPwAAfz8AALY-AADgPAAAiD0AAIC7AABwvQAAQDwAAEy-AADgvAAAmL0AAAQ-AABcvgAA-D0AANg9AACWPgAAUD0AAAw-AAA8vgAAqr4AAJg9AAAbvwAAlj4AAKC8AACYPQAAQLwAADQ-AAAMPgAApr4AANg9AAD4vQAAJL4AANg9AACGPgAA-D0AAKa-AACovQAAXT8AAIC7AABUPgAADL4AAGS-AAAcPgAAQLwAAFy-IAA4E0AJSHxQASqPAhABGoACAAD4vQAAHD4AADC9AAATvwAA2L0AAFQ-AAAUPgAA2D0AANi9AADCPgAA6L0AAKi9AADIvQAAEL0AAOA8AABwvQAAgLsAADE_AABQPQAAAT8AAIA7AABwvQAAQLwAAIi9AADovQAAFL4AAPg9AABQPQAAoLwAAPg9AACAOwAAED0AAAS-AACgPAAAmD0AAOi9AABcPgAAqD0AAJK-AADIPQAAUL0AAJg9AADgPAAA4DwAAIC7AACGPgAAf78AAKA8AACgPAAAoLwAAOC8AAAQvQAAoDwAABw-AACOPgAAyD0AAIg9AACIvQAA-D0AABQ-AAAQPQAAcD0AAKA8AAAQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=UFMFMMHVMp0","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1548015658623383286"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1684372917"},"17670816427421717288":{"videoId":"17670816427421717288","docid":"34-0-8-ZAF7F8019BD193EDC","description":"A basic introduction to the ideas behind optimization, and some examples of where it might be useful. Transcript: Hello, and welcome to Introduction to Optimization.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3884941/4efa8c198d42ae50262fd4a45c0e113d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/v9B7WgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQ2dewZweAtU","linkTemplate":"/video/preview/17670816427421717288?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Optimization: What Is Optimization?","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Q2dewZweAtU\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoWChQxNzY3MDgxNjQyNzQyMTcxNzI4OFoUMTc2NzA4MTY0Mjc0MjE3MTcyODhqiBcSATAYACJFGjEACipoaGlmb2tyd2dlb3loeGRiaGhVQ2tMMkhORGp5aHJUNmhnV2ppa21RQWcSAgASKhDCDw8aDz8T7AGCBCQBgAQrKosBEAEaeIHzDfr9_AUA-woA_P0DAAET_f0A9gEBAPIPBfkEAQAA6wMGAAL_AAD9BAgJ-QAAAAEE-wP9_gEADQIG_f0AAAAS-QL_9wAAAAACAfz-AQAA9voG-QIAAAAKCQT7_wAAAPkOBPEAAAAA_gn_AwAAAAD98_oEAAAAACAALVNm3Ts4E0AJSE5QAiqEAhAAGvABaQ8PAb8Z_P4Y-P8BChfxAYEFC_81COgAw_8AAL8O2P8DDQUA6PAV_xzxBP-xHwABChn_ACECIwAI9xoAHOkWAOkOAwAu8vwAFgQVAQHpCADv-gEADfoX_wnsCgEAHfv_EADrAOLr7wMLAOACG_wiAR0WBv8KAhAB7gQCAP8MHwDqG_oEIRYAAgjv_wMBJRgB7ALoAfQj_wPgDvb94hoFAwX1_fog6-D-FBr4CQT9_P4B8gD4Ggv6-v7x9gTtCQ4D6Pr8_P7__Pvr5fX_FAL-BwrxDvzqBgz28Af_C_vr9QLrCg354v_5BAn-BQUV6_v9IAAtbidIOzgTQAlIYVACKs8HEAAawAeV8-2-gFggPc2abr14e8A9aVGfu4yBt7ubG9O8FzMdvdBdt7y8P4493ZMoO4ngKb0dycW-ZgiRvH2ljT3-1Ys-IMSfPIapMTvv5U6-EKhDPRiswLvnVni-AlrEvHhSEbo5Kic-YLB6OznqDzwLv6o9PwqNvNJpwjxviwi9Q0cHuiPYGL2-UrG84YsCvH1By7zqIzA-w94avekeQLsQsSE-fFmkPCnM-7wjk4K9VYfcPLoVQjy6EZa9GTwIPL59Bz0r2fE9PX0EvS8BUzzP2QK9CSsAuwa3Wjyk63g8JTZEvNaw_LveDJ09M3nWO3_iHbsPdq89igMmu0ZRIrruk8i873QnPQ8WBrzkZvg9ZkzhPRgj1Dse0qm9FvLOOl4yqTyFURq9R-B0vSDv1bzLx2Q9Q5eLvN6ynjsyzyU9JE0XPea63zzRhYc8Go-MOidXCLtVZIk99pfdPZjyRrxBJym9WfbJPLUcgzyoFLC9JmMmvUl7C7y5MSI9ST0VvZkuo7vBi-M80uxwPOcZr7mgPVI9zB8YvUjaMjwxBYA9QXj-ukPiIryKhyG92I0pO8-zwDuGWp49J1BEul03gLxPUoU8qTOivZmEi7zKPv68ivOGvRKOkzubyIw8FHGfPKuGWTojHJk907YLveKi4jvjgCe9aL2OPNR8OrxxybG8l_wVPNG9WjuB0gs9A2mFPZMbEbqfbVq8ru2SPeOsCTcGv4g9NPwCPPVRvjuVDAC9V19YvTNTczhb62s9n-i6PRId3rjMEjg9T3l0vJakHTrVk3k8axaePEknWDmOpK48G3JiPWz7T7gTI5A9j7OfvQp-uDeycp68eSWkvFmLS7mTJem8VxAaPPrI9zrYMnS9CtkZPZKSLDiUxkO94kzdPA-GnLh067W8Vbm1vJ25HrkWjbA9m5KHvJ58mTjVAgA9-vLdPMeiN7gTbqg9UKmSPDOwp7cfNBY98a_vPJoDiTiSUS88URVTvAJIZLkQ45o8Jrr4PIVj0DiohPE8uZ2HvP7HgjWO_-e8REYNvKnSsriHRVY902Wmvb8o9DbQ3zq8kF0zvO3VazhodTK-ZKQoPRfKTLe7ngO9h22LPKADmLfjQtQ8P5KtPNwvwbYVeKI9GRnJvLoOybiiXzs9RR89PYfzcrjsI2G9vyeYu13D5berYiK8x62TvEzmfrefC_68ApCEvWGnnTcNEkc8dHz0vVZYWbjqG0G7pqnEPexBlzgHC6e8vfzuPYO0HrnD89K9jooEvYeyybZ6zky86G2HvLqxmzcgADgTQAlIbVABKnMQABpgPPsA_vb4__gIR-T5CNQc1xcC_f_fBQDx8gAMP9rw8P8S1A_vADIHHwy9AAAA8eXdJdwA_lrq2fIY6CEb19TwMwJ_NQYm5tft_sYBChP00en74iA7AAzyzhA83bQ8ABYXIAAti3pCOzgTQAlIb1ACKq8GEAwaoAYAAHzCAABcwgAAQEEAAPDBAAAIQgAABMIAAPhCAADQQQAAgMEAANDBAABIQgAAiMIAAPjBAABEwgAAMEEAAPhBAABgQQAAQMEAAEDCAACgQQAAtEIAACDCAADowQAA0MEAAAjCAAAMwgAAsMEAAJjCAACQQgAAUMEAALjBAAAsQgAAwsIAAEDAAAAkwgAA4MAAAHBBAACUQgAAkMEAAHBBAABAQAAAUEIAAEhCAACmQgAA4MAAADDBAAAMwgAAEEIAAGxCAAAwQgAAAMAAAMTCAABIwgAAAEEAAEhCAABQQQAAaMIAAJhBAADgwQAAgEEAAOBBAABwwQAAQMAAAHjCAADgwAAAgL8AALbCAADgwQAAAMAAAADBAAC4QQAAmEIAABDCAAAAAAAA6MEAAOjBAACgwAAALEIAAIA_AABQwgAAosIAAHhCAAB8QgAAfEIAAKBBAAAMwgAAikIAAFxCAAAAQgAALMIAADxCAACWQgAACEIAAKDCAADgwQAAFMIAAMBAAACAQQAAqEEAABBCAACIQQAAbEIAAMhBAABgwQAAeMIAAODAAAAQQQAAAEEAACRCAAA4QgAAwEEAAKjBAAAQwgAAgsIAAOhBAACAwAAAcEEAACDBAACgwAAAmEEAAEBAAAAwwgAAjsIAANjBAAAEQgAAEEEAAMDAAABAwAAAHMIAAHDBAAAQwgAAQMEAADjCAABgwQAAMMIAAKBBAAAIQgAAlEIAAKDBAACQwgAAJMIAAIBBAACgQQAAUEEAAKDAAACQQQAAZMIAAJhBAACQwQAAiMEAAAxCAACYwQAAwEAAALDBAADAQAAAqMEAAOhBAAAYwgAALMIAAFBBAABQwgAAyMEAAKjBAACowQAAYMIAAPhBAABYQgAAiEIAAGDBAAAcQgAAcMEAAFBCAACWwgAAEEEAAJDBAABAwQAAKEIAABzCAAAkQgAA2EEAAIA_AACYwQAAhMIAALhBAABQQgAAIEEAABzCAAC8QgAAgMAAADzCAAA0wgAAwMEAABTCAACQQQAAkMEAAFDBAADgwQAAIEEAAEDAAADwwSAAOBNACUh1UAEqjwIQABqAAgAAoDwAALK-AADovQAANL4AAIa-AACovQAADD4AAM6-AABcvgAABL4AABA9AADgPAAADL4AAAw-AAAsvgAAqL0AAHQ-AADIvQAA6D0AAA8_AAB_PwAAcD0AAIg9AADIvQAAzr4AANi9AABwvQAA4LwAADA9AABAPAAATD4AAIi9AAA8vgAA-D0AAGQ-AADYvQAAdD4AAAy-AAAsvgAALD4AAFS-AAAsvgAADD4AABQ-AAC4PQAA2D0AAEC8AAB8vgAAPD4AAJi9AABcvgAAiD0AAGw-AADgPAAAUD0AAFA9AABBPwAALL4AAPg9AADYvQAAnr4AAIY-AACgvAAAmL0gADgTQAlIfFABKo8CEAEagAIAAOC8AACoPQAAlr4AAEG_AACgPAAAuD0AAAw-AADovQAAcL0AAM4-AAA8PgAAEL0AAOi9AACivgAADD4AALi9AADovQAAMz8AAKg9AAD2PgAAgDsAALg9AAAkPgAAcL0AAAS-AADgvAAAgLsAAOg9AAAwvQAADL4AAAQ-AAAwvQAAuD0AAEC8AAAcPgAAXL4AABw-AAA0PgAAur4AAAw-AABkPgAABD4AALi9AACAuwAAmL0AAHw-AAB_vwAAuL0AAMg9AAAwvQAABL4AAPi9AADYPQAAoDwAALo-AACYPQAAED0AAMi9AABwPQAA6L0AAKi9AACaPgAAML0AAKg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Q2dewZweAtU","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17670816427421717288"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2289790689"},"6867508965353276445":{"videoId":"6867508965353276445","docid":"34-2-9-ZE733A06822657425","description":"A brief overview of Simulated Annealing, the Nelder-Mead method, and a survey of various metaphor and biological inspired optimization algorithms. This video is part of an introductory series on...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2368550/bb9b742cef9e2be8b1f8b0b966ff0bef/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/904nsQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNI3WllrvWoc","linkTemplate":"/video/preview/6867508965353276445?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction To Optimization: Gradient Free Algorithms (2/2) Simulated Annealing, Nelder-Mead","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NI3WllrvWoc\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoVChM2ODY3NTA4OTY1MzUzMjc2NDQ1WhM2ODY3NTA4OTY1MzUzMjc2NDQ1apMXEgEwGAAiRRoxAAoqaGhpZm9rcndnZW95aHhkYmhoVUNrTDJITkRqeWhyVDZoZ1dqaWttUUFnEgIAEioQwg8PGg8_E_0BggQkAYAEKyqLARABGniB8BMAAAEAAPgBAAr3B_0CFQX4BvUBAQDwAfcCCAH_APb4APYBAAAACv33_AMAAAD-Ce4D9v4BAA4A_QP7AAAAFPgC_vcAAAAHAf3-_wEAAPnzC_ACAAAAGfsD9P8AAAD5Fgj8_v8AAAEI-PkBAAAAAvfz8gAAAAAgAC12UM47OBNACUhOUAIqhAIQABrwAX_uAACfAxX8SNfrANgOxgCBAAL_GRoGAMLr9ADPFNoAGBERANzgMP4X4AYArBALAQMW8_9O-xYA-vM1AiHxBwDkAw0BNtz9ADkTA__k5e7-8gsU__3-AQADAgsC6goH_hcM9wAY1uUC7wPIAhvrFAJEKwACF-oG_-8A_Ab__gYF6Q4NBCID_gPs7P4BEBwZBdj24_7-HfsG0ST_-t8S_gD9Cub_Hfz7CRs-AwAG5_r_GOv8-TsUAAD49d_32f4iBubxBfD4C_z73f8D-jMPAQoa6gcE9iAHBeoA8QwU8vz96gL3AdUAAfwZDxALHt0DCCAALb9PJDs4E0AJSGFQAirPBxAAGsAHlfPtvoBYID3Nmm693PEmPQ5VZ7y9mHu7k1xZvZXnS70Rvr06K6uEPWmIbz0PCV-7mx2hvkahm7zIZ6g8Z2KaPk46m7wa71g8YtksvnICqjvDZAq99aGDvjx38TsuxZc7sRngPYyRWzwwwWO7MA7uPC8ZB7yYtkk8oQQHPdBT7jwJsOE6Twh8O3LSRb3fikS8iltFPiASqb39KM88L1H9PbEFYLqfq62811CKvYcyGLyNeFc8cv4BvfQSiDz2Ali8cNBePbMl67yGYMs86_uFvT5oTL2HOxE8TLQavY-RB7yttg08F2PgPU348bkdL027wCknPfBHi7032MA86jeIPRiTfj2AWIC7Xp0DPbvR5z24EBg8JrrIvU8-nDvFiKs7ABMivZ0vtrwJWre8Vkt1PUEalL2rRxS8nIyqPCdpfryHpqw8Eqt1PRABbD1rhDO5jxjdPfP7gz0OJo-87skovWhbTbyLD307u3xrvYPDZjwge5w7l6DQvHaGjrwz4Mk64eEHPdlF7LyRcRY8oD1SPcwfGL1I2jI8LoS2PWCzlz0NCCG8AA4QvQdEyDxD8lq6E8oMPZgkhbyYQrG7pj-QvXzgurvAnic7364RPEyp67293dQ7npEtPOSH6j3fo_Q5g2n4PSH2uDySX9c59XaVPB3_CTzMosm6N8yKO8eP5zsqyMu7lWulPHmLnD1l_nI78xDXPGFD5jx7n6o7GZEYPvh-tDwZ5m05gBvYPGhvtb10O0a5WIX2u9JXmz2JCve3Hl4GPbCj-7xoILw5vaLAPAS_lbu5cPq5CzHNPA8akD1163M5hOCnPQFoObwH1Gy5325pvVVzFLxA8tY65357u5jI4Dxllgu52DJ0vQrZGT2Skiw4rsALvaZpK7zmNsM5VaJsPCKo2r3LgVO3RprYPbIzAD3WC5A4Fm60Pd3TETyNy4A4XdWzPQJctbyT-Ec4vH0RvfUnNj3h9bo43bynPDrI0DyEzD64kEiAPKr_Qr0C_584YvXHPLUr37st-Q-3Y5-6OwqOgbyRUMC3j8ahPFd4N73RFC04U_gCvenOqD1v5_A4a_HpvXnWJLzuL2A2DAwPvXFa8Dyhh544VYRdO5PJCT0hMi04MrIfPe4hAb00_Vy48bDaPC7QyTxmqTm4n65uvVfw1zsGm-63Qec_vTN7jzs4uC43EMk1PBGn872DEz441ZTkPL42pr3zo024WQ8EvKYdiD30-T04KZ5pvHjNkD2h5pq4k8-hvM1imLytTog3e44jvUQ0er3L6BC3IAA4E0AJSG1QASpzEAAaYDH8AAPaMdzqECUA0fnLA_LE--b-x_r_6MT_Hx3U6vYjz8Qo-f9q9RMXmgAAAALN2PriAP5_9dr-O-_xMeHB_T_yeUsMHbHlNxK0AQDiDbkL7wkfSAD9vaslc_DYGvo-HCAALVioFjs4E0AJSG9QAiqvBhAMGqAGAAAIQgAA4EAAADBCAACwwQAA2MEAALjBAACYwQAAwMEAALbCAAAQwQAAUEIAAADAAACgQQAAyMEAALDBAABQQQAAIEIAAHDCAABAwQAA4EEAAABBAADYwQAAUMIAAAhCAAAQQgAAQMIAAILCAAAIwgAA-EEAAIjCAAAAwAAApEIAAJzCAAAMwgAAIMEAANhBAAAkwgAAWEIAAIA_AABAQQAAqMIAAADCAACAwQAAjkIAAJDBAACIwQAA4EAAAJDBAAB0QgAACEIAAIDBAAAQQQAAoEEAAETCAACwQQAAMEEAAKTCAAAgwQAAQEAAAPBBAAAAQgAA4EEAADhCAAAswgAAAMEAAJBBAADowQAALEIAALJCAAA8QgAACMIAAJZCAACgwQAA2EEAAIA_AADWwgAA8EEAADTCAABIQgAAgEEAAIDAAABEQgAAJMIAAJjBAAAwQgAA2EEAANBBAAAEQgAAbEIAABRCAACEQgAASEIAAMBBAADwwQAAgMEAACBBAAAAQAAA_kIAABBBAADAQQAADMIAAAAAAADwwQAAcMEAAILCAAAAwQAAgMAAAAjCAAD4QQAAyEEAAERCAACYQgAABMIAAODAAADwQQAA4MEAAIRCAACYQQAAUEIAAKBAAAAAwQAALMIAAFDCAADQwQAAAMAAACDBAACYQQAAgMAAAPDBAACewgAAuEEAACzCAABkwgAAdEIAAOhBAADowQAAEMEAAJBCAADAwAAAgsIAAIBBAAB0QgAAbMIAAABAAACQQgAAwMAAAEBAAAAgQQAAqMEAAGRCAABAwQAAAMEAAIA_AAAAQAAAIEEAAFBBAABwwQAAEEIAAFzCAADgQQAA8MEAALjBAACowQAAmMEAAGBBAABMwgAAwEEAACRCAACmwgAAcEIAAADBAACAwAAAIMEAAFzCAACAQQAAPEIAAMBAAACgQAAAoMAAAJZCAABUwgAAAMIAAIA_AAAYwgAAlkIAAJBBAAAwQQAAMEIAAFBCAABQwgAAaMIAAEjCAACIwQAAgL8AALjBAABwQQAAIEEAACTCAACywgAACMIgADgTQAlIdVABKo8CEAAagAIAAKg9AACCvgAAqD0AAOC8AADovQAAoLwAAJY-AAD-vgAAfL4AABA9AAAwvQAAiD0AAOA8AACKPgAAUL0AAFS-AABEPgAAML0AABw-AADyPgAAfz8AAIg9AADgvAAAmD0AAIK-AACIPQAAyD0AAOC8AACgvAAAMD0AAOg9AADYvQAAFL4AAHA9AAC2PgAAQDwAAKg9AACoPQAAJL4AAJg9AAA0vgAAJD4AADA9AABAvAAAEL0AAIC7AABcPgAAqL0AADw-AAAMvgAAQLwAADA9AACKPgAAED0AAHC9AADgvAAAHT8AABS-AABwvQAAcL0AACS-AAAQPQAAuD0AAJg9IAA4E0AJSHxQASqPAhABGoACAAB0vgAAbD4AAEA8AABDvwAAML0AABA9AADaPgAAVL4AADA9AACiPgAApj4AABC9AABsvgAATL4AABQ-AABAPAAAoLwAAA0_AAC4vQAAqj4AAMg9AACgPAAAoLwAAEy-AABQvQAABD4AAHC9AACaPgAAJL4AAPi9AAAEPgAA-D0AABS-AABMvgAAVD4AAIg9AACePgAA-j4AAJK-AAA8vgAA5j4AAKi9AADIvQAAED0AAHA9AADgPAAAf78AAKC8AAAkPgAAhj4AAAQ-AACIPQAAQDwAAKA8AABUPgAA2D0AAJi9AACgvAAAoDwAACS-AABwPQAAyD0AACw-AACePiAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=NI3WllrvWoc","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6867508965353276445"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1940349446"},"1575977273860767372":{"videoId":"1575977273860767372","docid":"34-10-0-Z1EA20C3891BDD8C8","description":"This video provides an overview of the Gekko Optimization Suite, an open-source Python package for optimization and control of dynamic systems. Gekko Docs and Download...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2954067/62f92e8512b100b1a59f4483b1e8e084/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lhLnBAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbXAkr7MPf4w","linkTemplate":"/video/preview/1575977273860767372?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Python Gekko Optimization Suite - Free Engineering Optimization Software","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bXAkr7MPf4w\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoVChMxNTc1OTc3MjczODYwNzY3MzcyWhMxNTc1OTc3MjczODYwNzY3MzcyarYPEgEwGAAiRRoxAAoqaGhpZm9rcndnZW95aHhkYmhoVUNrTDJITkRqeWhyVDZoZ1dqaWttUUFnEgIAEioQwg8PGg8_E5wDggQkAYAEKyqLARABGniB-w8CBv0EAPsKAPz9AwABG_b9BvYCAgD0Dvf1AwEAAPf5APcBAAAABvsEDPsAAAAD-_37_f4BAA_7CAQEAAAAGQL9APgAAAADAAQD_gEAAPz7_fcCAAAAEggC9P8AAAD6FQj9_v8AAP0E_v0BAAAA-_oBAwAAAAAgAC0yyNw7OBNACUhOUAIqhAIQABrwAXccHADpA9wBqR_J_9ERvACBCi3_IgX_AKb6HQG09sQAzQv4AM7nDwAKBzsAkC3_AQcG9P43EAgBDOQC_woHAQDgFAQBOscRAS376ALd6PoA7w0Y_wbkNAAP5iMBNRDp_iIFBPvo0-L-7AO_AhrkLwNMFQQDFAQGB8AYAADlFhEC4QPmAAUZDwT_9wUG8QocDPAK0fn8Jtz62EfvAPnp9wDaBPP7COHZAD1D-AXx8vf28twC-kUXAADl-gn17xUF9-IL_vPs_fL48wP4_iHZA_Hx3AgUBAsLEO3z8f8fA_n00xUQBdYW_vsPGAX6OPr49CAALVAjDTs4E0AJSGFQAipzEAAaYDT3AATLA-AOAz_v9ADrIMT7NuDrxgj_G7n_Pkn7F-sN4Z8s5gAPFjYboAAAABXs2hivABZ_8MAiDMccDcvJzDf1bQIgPenUGRDAGWMHEd8LCB0wUwDz7avrUejCV9wLHCAALbz5FDs4E0AJSG9QAiqvBhAMGqAGAABwQQAAoMAAAJpCAAAAAAAA4EAAADDBAABwwQAAQEEAAJjCAACMwgAAqkIAAHDBAADgwAAAwMEAAHBCAADQQQAAqEEAAEDCAADgwAAAgMEAANhBAABgwQAA4MAAAEDAAABAQQAAoEAAAADAAAAIwgAAwEEAAEDBAABwwQAAyEIAAKbCAAAMwgAABMIAAKDBAAAgwgAA9EIAALBBAAAQwQAAhMIAAAAAAADYQQAAIEIAACDCAAAAQQAAkMEAALjBAAC4QQAAkEEAACzCAAAwQgAAUMEAADTCAACOQgAAcEEAALLCAABwwQAAEEIAAJhBAAAgwQAAQEEAAKBAAABQwQAA4EEAALDBAACAvwAAFEIAAODBAACAQQAA0EEAAP5CAABAQgAAMEIAAAjCAACEwgAAiMEAAIBAAADoQQAAFMIAAHDCAAAcQgAAUMEAAIBBAABwwgAA-EEAAFRCAACAwQAAgEEAAADCAAAIwgAAAEAAAIDBAABAwgAAoEEAAILCAAAEwgAAlkIAAABAAAAcwgAAyEEAAKDAAADAwQAAyMEAAFTCAABUQgAAAEEAAGhCAADAwQAAcEEAAGBBAACowgAAKMIAAEDCAAAgwQAAgEEAANDBAACgwAAAIEEAAADAAACQwQAABMIAAIhBAAAYwgAAwEEAAFDBAACIQQAAgEAAAKBAAACkwgAAgEAAAMDBAAC4wQAAqMEAAFRCAABAQgAANEIAAHBCAAAQwQAAvsIAAMjBAACAwAAAEMIAAADAAADgQAAAqEEAAMDAAABoQgAAIEEAANDBAADgQAAAgMEAAEDAAAAswgAAQMEAAAhCAADIQQAAPMIAAKBAAAAAwAAAMMIAABBBAAA8wgAA2EEAACzCAADwQQAAUEEAAADAAADwQQAAgMEAAKbCAADYQQAAcMIAAAjCAACAwAAAYEIAAADCAACmwgAAoMAAAI5CAAAQQQAAwMAAABzCAACEwgAA8EEAAMpCAACCwgAAjEIAAEjCAADAQAAAsMIAAMDBAAAYwgAANEIAAKjBAABsQgAARMIAAOjBAABEwgAAAMIgADgTQAlIdVABKo8CEAAagAIAAES-AABsvgAA4LwAAIg9AABEvgAAlr4AAOC8AAApvwAA_r4AAJi9AAA8PgAADL4AAOg9AAA8PgAAML0AAM6-AAC2PgAAMD0AAIo-AAAjPwAAfz8AAKg9AADgvAAAqL0AAGy-AABwvQAAVD4AABC9AADovQAAfL4AAIY-AACqvgAAyL0AAAQ-AADePgAAHD4AAJg9AAAUvgAAmL0AAPg9AADmvgAAmD0AAHA9AAAQPQAAQDwAACw-AABEPgAAPL4AANg9AAA8vgAAlr4AAKA8AABEPgAAJD4AALg9AAAwvQAAVT8AAOA8AABwPQAABL4AAFC9AAAUPgAAQLwAADA9IAA4E0AJSHxQASqPAhABGoACAABwvQAAgj4AAKi9AAAXvwAAHL4AAIY-AAAsPgAADD4AABy-AAD-PgAA-L0AAKC8AAC4vQAAMD0AAIg9AACYvQAAXL4AAEs_AACoPQAABz8AABQ-AAAUvgAAoDwAAJi9AACOvgAAgr4AABw-AAAcPgAA4LwAAOg9AABwPQAAyL0AALi9AAAwPQAA2D0AAJi9AACGPgAAFD4AAJ6-AACoPQAAiD0AALg9AACoPQAAmD0AAHA9AADaPgAAf78AAIA7AAAkPgAAUL0AAMi9AABAvAAA6D0AABw-AADCPgAALD4AABA9AAD4vQAAfD4AALg9AAAwPQAAkj4AABC9AAAEviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bXAkr7MPf4w","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1575977273860767372"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1247951479"},"8837099119282458309":{"videoId":"8837099119282458309","docid":"34-7-15-ZFDD9B79F2E6204A2","description":"A conceptual overview of gradient free optimization algorithms, part one of two. This video is part of an introductory optimization series. Transcript: Hello, and welcome to Introduction To...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2992943/476fa3a568e7794f8e34c5fc2fe1583e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/oGmJQAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3QJjfeVrut8","linkTemplate":"/video/preview/8837099119282458309?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction To Optimization: Gradient Free Algorithms (1/2) - Genetic - Particle Swarm","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3QJjfeVrut8\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoVChM4ODM3MDk5MTE5MjgyNDU4MzA5WhM4ODM3MDk5MTE5MjgyNDU4MzA5aogXEgEwGAAiRRoxAAoqaGhpZm9rcndnZW95aHhkYmhoVUNrTDJITkRqeWhyVDZoZ1dqaWttUUFnEgIAEioQwg8PGg8_E8QCggQkAYAEKyqLARABGniB7QT79wP8AO8F9fb9AAEAFf38APUBAQDhBv0BAPwCAPwDAPn2AQAACggGEQEAAAASB__69wABAQv8CQn4AAAAIP3y-vwAAAACDPcG_gEAAOr_AgkEAAAAEwoJAf8AAAD2DRP6_wAAAPQIAvcBAAAA__UB_gAAAAAgAC2c1cY7OBNACUhOUAIqhAIQABrwAX_1GAHZCAIA9vXqANsh5wGJAAH_KQbvAK328wDD-NAABhUaAN7aEAAT8g4BsQ8KAeAV9v89DCUA--kaADQBFADjBR8BL9IOASYZBAD37fcA_Rr6_-fy_gD49PcBBwnY_gQD_v8L6uEADf_bAizxGwIhGgf_BewH_-TpAAAMJPYD5wD9ADgSCAINAP0AEhcoA-AY9v39L-7-8wnuBAELBAn5-P0EB-fhAAYV-QbzBfz7AOP5-zI4-gHx7_D_0hsIB9_lCPj09f796O748hkIDgXr9hUF9wQABwHg9f8E6_j63BENBNgAAfz1EhgGCu_7BiAALQ9sLzs4E0AJSGFQAirPBxAAGsAHkbfcvr5IjT3v0Au9Ndq1PU1PMzwryCW97X7VvTvqg7znlFu80v_SPWkqdT1UlAW8-MGBvn_o-LxEaU89nUaCPn8WS7y-Esi8z8B4vpOBTbyItgi9TMQ7voKcRbtWMte6EFwFPpuTVbvtrCu7oDTEPabVUL0R_9Y56JmDPCRU-jybKSO9Wq9TPcghx7xjJea8ZeQcPoZisb3CVNC6suXGPaIvGD1dfxy9I5OCvVWH3Dy6FUI8rHDrvfDTgjwyBam7BTTxPRUkDbw2Q186iQMtvQdAYb2elv67vNnRO6LGjjz99787DWqEPar5Zb02GM-8zmGIPPkFhbyXY0M8v54vPMLVJj3I6vs85Gb4PWZM4T0YI9Q7tyVCvoxwrjzfDEg8nxozu-eO_rwL1ei8r2d-PcFCHDxCeR08Yz2KPSAghDz5SIo87e4DPBcvFDx4o4U83Ws3PYycqj0EfoO821e5vD1awTzyQ6U8Ig9uvT1ZG70dg-M6z08svYcMdTzyfAI7NVKVPdTBcL3pRli8yM8WPmljVr2Xals68wQiPchrgTkiP5G8LJEVPERcTz0jNAA8bvzpPUzkrb0rc6m7bVO8vL2rHr23voI6Vms8vFKvsL1ixxg7yy-DPKlFiT0quwm7U1q_PVX53rwHsr-7N3X5PNVCKT3gH4C70E8nvXeihL2h94Q6Md5FvYyRmz3Y6AM7AACMN6VOwLyzXus681nePW727Dz6gZy4dfV5vbW3tb2s_5S6ubzDvHhQjz1Nz6K55CkwPaVWDr3x2A071ZN5PGsWnjxJJ1g5uh2QvCY-kjxFtjk6kG30PLLoR71t68C5iQ-3vbdCuL0xQro4alBPPRN8EzyUSxK5sCIevevwRjx2dJY52FuUvcQ-JrySkdS6voKZvIGalb0F5_q30HwePt0Xobz1jxM4Fm60Pd3TETyNy4A4_cYSPRma4bzZlXq4ZXimuwCUGj02cdA4bq6QPIl9ozv2i1q3p70XPVZswjy1l0U5V30JPaRpdTztNAe44-PTPMaFAz3N4TK4FRSQPHPlgr2P6Xw4cBalPMqURTxXzIm4yuEDvhDXHjyX_U43DlFAvRfJB7xe9pK2DxW-PS1_GT1_0pq4FYNRPG9WzrwlJhA49JenvLBLHj0W75E2uZ-tvcMzvLyGhhC3Kv0lu-Nm3bygGck2rQ3fvGVtqL2us5q3va8FPaVJCb6tnoW4WTp6vFXezj0o5a44BwunvL387j2DtB65-zcUvYnONz2vDY-3cvJMveEeUL0B0g24IAA4E0AJSG1QASpzEAAaYEPwAB_0IsT0CjXk3d3CEOfKCdn4wwv_2dP_FTjk7-8z3cYC6QBB9BEYnwAAAAjuCjzSAPV_ArD-KejxGtu1DjnSdCEgP7TlIBajEhsCB8QEGREDPQDTzqAIS_jTIOIoFSAALTMnGjs4E0AJSG9QAiqvBhAMGqAGAADgwAAAQEAAAFBCAACIwQAAgL8AAGDCAABAQgAAAAAAAITCAACYwQAAHEIAAOhBAADAQAAAwMEAAADAAACYwQAAhEIAACBBAACAwAAAgD8AADBCAAAcQgAASMIAAAhCAABAwQAAIMIAAJjBAABgwQAAeEIAAIjBAABQQgAAikIAAATCAAAUwgAAYMEAALhBAABgQQAAyEIAAIA_AABIQgAAmMEAAMBAAABkQgAAIEEAAAjCAAAAQAAA4MEAAJBBAACIQgAAEEEAANhBAACAwQAAoMIAAFDBAABgwQAAgD8AAPrCAACgwQAA2EEAAIBCAABMQgAAAEIAACBBAAAcwgAAgEEAAIjCAAAQwgAAQMAAANjBAAAsQgAAMMEAAIZCAAAAwQAAIEEAANhBAAB4wgAAgMAAAOhBAABAwAAAgEEAABTCAAB4QgAAYMEAAIBAAAAEQgAAwEAAAExCAAAAQQAAxEIAACRCAAAgQQAAvkIAALBBAACUwgAAEEEAAHjCAAAAwgAArkIAADDCAABgwQAAmEEAAMBAAACYwQAAQMIAAIDBAABoQgAAgL8AAMBAAACIQQAAVMIAAHhCAAAAQQAAoMAAAEjCAAAQQQAAIEIAAAxCAADgQAAAIEEAAJjBAACYwQAA4MEAAGjCAADgwgAAIMEAABTCAABAwQAAIEEAAMDBAAAQwgAAgL8AAAAAAADkwgAADEIAAPjBAACMQgAAZEIAAOBBAAAwQgAAOMIAAFDBAACUQgAAJMIAAHDBAABgQgAACEIAABRCAAAwQgAAEEIAAARCAACAQAAAIEEAAJLCAAAAwgAAUEEAACBBAABQQQAAgMEAADzCAACIwQAA2EEAAMDAAAAgQQAAyMEAAIDCAABwwQAANEIAAHBBAAAUwgAAEMEAAKBAAADoQQAAgMIAAChCAAAgQQAAJEIAAAzCAAAEwgAA-MEAAGBCAAB0wgAA2MEAAATCAACAPwAAXEIAAMhBAACAQQAAokIAAJbCAAAwwQAAUMIAAGTCAADgwAAAwMEAABTCAADoQQAAMEIAAJjBAACAwQAAYEEgADgTQAlIdVABKo8CEAAagAIAAIi9AADqvgAAmL0AADS-AAAsvgAAUD0AACw-AAApvwAArr4AAIC7AAA0vgAAiD0AAFS-AACCPgAA2D0AACS-AABcPgAAgLsAABA9AABBPwAAfz8AAAy-AABcPgAAjr4AAKa-AABQvQAAhj4AACQ-AAAEPgAAJD4AAI4-AACgvAAAuL0AAHw-AAC2PgAAFD4AAIg9AACgvAAAmL0AAMg9AAB0vgAAor4AABC9AABsvgAAcD0AACy-AAAMPgAAqL0AABA9AACuvgAAqL0AAIC7AAAQPQAARD4AAOg9AAAQPQAAcz8AAGS-AADYPQAA6D0AAEA8AABAPAAATD4AANg9IAA4E0AJSHxQASqPAhABGoACAACYvQAAyD0AAJa-AAAbvwAAQDwAAGQ-AACoPQAAfD4AAFS-AABsPgAAMD0AALi9AAB0vgAADL4AAHA9AACIvQAA2L0AACM_AACGvgAAZD4AAEC8AAAwPQAAiD0AALi9AADgvAAAUD0AAOC8AAAEPgAAQLwAAOA8AABEPgAA4LwAAL6-AAD4PQAADD4AAEy-AADCPgAAXD4AAM6-AAAkvgAALD4AAKC8AABwvQAATD4AAKA8AAAwPQAAf78AAMg9AABQPQAAPD4AANi9AABwPQAAiD0AAPg9AACmPgAAUD0AAKA8AADIPQAA2D0AAOA8AADIPQAAtj4AACw-AABcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=3QJjfeVrut8","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8837099119282458309"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3658878388"},"16490576410348038561":{"videoId":"16490576410348038561","docid":"34-0-9-ZF691A3F73B59EAFE","description":"A quick introduction to Least Squares, a method for fitting a model, curve, or function to a set of data. Transcript Hello, and welcome to Introduction to Optimization.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1632829/5525274b8792fa11732b1af351e07be6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/t2EgEQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DS0ptaAXNxBU","linkTemplate":"/video/preview/16490576410348038561?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is Least Squares?","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=S0ptaAXNxBU\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoWChQxNjQ5MDU3NjQxMDM0ODAzODU2MVoUMTY0OTA1NzY0MTAzNDgwMzg1NjFqiBcSATAYACJFGjEACipoaGlmb2tyd2dlb3loeGRiaGhVQ2tMMkhORGp5aHJUNmhnV2ppa21RQWcSAgASKhDCDw8aDz8TogGCBCQBgAQrKosBEAEaeIH2_vQB_AQA-_4NBPsG_QL0DQML-f39AP0BDgkGBf4A-Aj8AQAAAAD_BQH_BQAAAO7--gL7AQAACAoEAgQAAAD98AICAgAAAAr7-AH_AQAAAwAA_AIAAAAR9gIBAAAAAPUKA_oCAAAA-Qn6_wAAAAAJ8QED-_P-ACAALVAZ4Ts4E0AJSE5QAiqEAhAAGvABXxUnAL8Z_P4I-vr_4yLRAYEFC_8VFQUA8BEaAfvo2QHqIPkAz-wM___p7QDMEwYA9hTw_zD-Av8e8A7__-7wAAXs-AAc3_cBIv0SAQT59AD8EjUB8wj__f78AP8HIfIAASzp_vTx4P8E8usAEuwhAgwI-AEKAhAB5gYUA-Xp_wPO-w3-GOwGBRIM__sH9x8D3_jp_vwQ7__2Oe0FCvcHBfAM-gIwBOcBBy_xAvrkA_b8_fv4ExgOAfnq6gPaEhIBHg8L9-v2_PflGAX_FvLnCQju9wT0FfoK7ukBBArXCAP_-AAByhUI-wT7Ef0ZG_r2IAAtbidIOzgTQAlIYVACKs8HEAAawAfxLeS-M8U3PfVHHLy_jX49Hq4QPTQwzbyV0gO-lpinvL-0rDuKwhM9tE1bPbYOEDwdycW-ZgiRvH2ljT09KXM-lMDmu_VyDj16Fy--CDwwPSmf1LwVHE6-rE3IPDWXHzsHmg8-Vt6EvEV4xTwwDu48LxkHvJi2STyhBAc90FPuPAmw4TpcAB47ecg5vEYiNLxl5Bw-hmKxvcJU0Lq8Wu49QGNLvCsBpzyG2TW932xTPfW4Dz181N-97PKyPebBZbuUwhw-5JPfu3qjGz3P2QK9CSsAuwa3Wjz5FIC8NnSzvD0KV7wmQKg9kKgrPW_RrrwDaIo9d0ZAvUqC7DpTCWq9RDagPZhnRTr9z7s9eLmIPasmiLxQw9e9xJJ3PWuMzjoH_da8awqmuu8ip7wKStE9JDxrvaq-TrwPVm09hSHXvC88pTzyM788qmvjPHRiDz1snAg9ZnFVPQvUoryTfQa9aWhIPYjRGjySHcC895ijvBXpWTyF-WG7GGqjvZzrqrzPAw4933k4vUsPtztFgPM9vGG2vXsvHTsk1ue5c_G3vI6WXjxhOPK8ZM6OPMNiVDzkabk9XXSNvEcBIDwGdcu97x2FvWEWVblgUDC96SgHvj06YLs5Who919yhPYPu_Ts0mpE9nEXWOybOZTx580o9XC0FPLOaLjw7iQy8BGkQvUEWnjuVa6U8eYucPWX-cjuAY7K7lGD7PKDHpDv3P6s9QyHduyr5u7tAwSW9KdaUvYg_lzkU6mm8lJVQPfxBcrtA1oG6f8iGvbseG7m063c7CPpVvIJlOzotyea83_TTPABpRbkjBWA9rFwBvLeZGTitL7c6_RLxvbwjiTn0RYw8zNC4PHmjJTq08Ku7M3V5OvKpjDkRkwu9W4iEPBD_yjj9ipC86T36vIePgLkdNcs9UJZQPVusYTg1Gro9yuQvvagWnDgXwZq8rgxPPC2TYTm6MFI95NcPvR3YPjj6f9U86ShnPV-NDbcu1KC9p4sevec2sDfpSl88NLP7vJMTFTgfR3M8vxLhO-wWL7hnZ2w9BU3rvV8mNTiUX0e6DWcGPB4xZTe45Ci-0X-FvJ34Grm-lTa9tMBIPRXvMTnvLXY8L3KqPMV_3TgVg1E8b1bOvCUmEDicho28qw6UPcvS0beTQ7q9HS14PRJNbrgq6xA8f57rvBoxhTeU2YW8TD5RvE94ELc9c5A9yK9kvSSyBDemDlK9DzNKPRKI1zbwsjW9XMzPPQxGCrnoVbO9FiTsPM24ITjStYW9ssq2vQvfVrggADgTQAlIbVABKnMQABpgQA4AIxQo8-32O-cA1hQYEAcCIN3Z3f8TEgAWMCkC6-Hy0uzc_w_CKO-yAAAAN-7VFO0A623f2wUn6Q_7ksnQESV_7jYcv-kgMBDo1Qrm5uL57RVaAPLxuv8i5uwU9AQdIAAtCN0vOzgTQAlIb1ACKq8GEAwaoAYAADhCAADIQQAAYEEAABDBAAAAAAAAGMIAAHRCAACQQQAAKMIAAEzCAAAQQgAAoEEAAJBCAACQQQAAyMEAAKJCAACQQQAAmMEAAPDBAAAgwgAAeEIAAFDCAAAAQAAAqEEAAEBAAADQwQAAAAAAAHDBAACgQQAAkEEAAIDBAADoQQAAPMIAAMjBAACQwQAAEMEAAGBCAACIQgAAqMEAABDCAACAQQAAyMEAAOBBAACoQQAAMEIAAEDBAACAQQAAXMIAANhBAAAAQgAAuMEAAJrCAABcwgAAyMEAALjBAAC4QQAA2MEAAPjBAABAQQAA2EEAAAxCAABswgAA6MEAALLCAACgQAAAwsIAAEDAAACAwQAAgD8AAIhCAABgwQAAUMEAADTCAACYQQAAHMIAAKjBAABAQAAA0EEAAABCAADIQQAAQMIAAPJCAABQQQAAwMEAADRCAAAMwgAA3kIAAKDBAACgQgAAmEEAAEhCAAAgQgAAbMIAAIjBAABIwgAAwsIAAFzCAABAwQAA2EEAAIBBAACgwAAAFMIAAFBBAACYwQAAEMEAAJBBAABQwgAA4MAAAABAAACwQQAAgEEAAMBBAABAwQAACEIAAADAAACYwQAAAAAAACzCAAAAwAAAgMEAAODBAADwwQAAgMEAAGDCAABcwgAASMIAACDCAABAwQAAUMIAAMpCAACgwAAAJMIAAJTCAADgQQAAQMAAAAxCAAAcQgAAgMAAAAzCAACCwgAANEIAAGxCAABwwQAAMMEAAABCAACCQgAAiMEAAJjBAADgQQAAJEIAAEBAAADAQQAAqMEAAHBBAAAEQgAAAMEAADTCAABgQQAAjMIAALhBAAAAwQAAgEAAAOjBAAA0wgAAgsIAAMDAAABgQQAAMEIAAGBBAACAQAAAoEAAAIjBAAAwwgAAJMIAAEDCAADYQQAAXMIAAKhBAACgwgAAoMEAAGDCAAAIwgAAxMIAAJDBAACWQgAABEIAAJBBAACwQQAArsIAAJhBAADwwQAAgL8AACBCAACgwAAAQEAAAKpCAABgQgAAwEEAAKBAAAAUQiAAOBNACUh1UAEqjwIQABqAAgAAML0AAIA7AABAvAAAcD0AABS-AAAUPgAAMD0AAAe_AACWvgAAED0AAHC9AABwvQAAQLwAAFQ-AAB0vgAAuL0AAFQ-AAAwPQAA6D0AAA0_AAB_PwAAkr4AAJg9AADgvAAABL4AAKA8AABwPQAAgDsAAIA7AAA8PgAAFD4AAGS-AABMvgAA6D0AAPg9AAAUvgAA2D0AAGS-AABMvgAAcL0AAPi9AAB8vgAAUD0AAIC7AADovQAAoLwAAPg9AAAsvgAAUL0AABA9AADYvQAA4DwAABQ-AADYPQAAoLwAAJg9AAAnPwAA2L0AADw-AAA8PgAAVL4AAI4-AACoPQAAVL4gADgTQAlIfFABKo8CEAEagAIAAFA9AAAsPgAAoDwAADG_AAAUvgAAQLwAALo-AADIPQAA6D0AABC9AABAPAAApr4AAFw-AABcvgAAJD4AAIC7AAAcPgAADT8AABA9AAB8PgAAED0AAIC7AAA8PgAAPL4AAHC9AAAUPgAAur4AADC9AAAMvgAAiL0AAEC8AAAkPgAAiL0AADA9AACIPQAA-L0AAKI-AAAQPQAADL4AAOi9AABMPgAABD4AAIi9AACoPQAAML0AAFw-AAB_vwAAEL0AAES-AABAPAAATD4AAGQ-AABMPgAAlj4AAMi9AAAUPgAAUL0AAL6-AACoPQAADL4AAPg9AAD4vQAAbL4AAOC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=S0ptaAXNxBU","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["16490576410348038561"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"589102388"},"13533406073974104741":{"videoId":"13533406073974104741","docid":"34-6-9-Z531395A5AED85318","description":"A basic introduction to the ideas behind machine learning, some of the major categories, and some examples of where it can be applied. Transcript: Hello, and welcome to Introduction to Machine...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1011532/7dabfbbec2ffd965f21459479502fb95/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZJQPOQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYKOQ5vtLw1M","linkTemplate":"/video/preview/13533406073974104741?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is Machine Learning?","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YKOQ5vtLw1M\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoWChQxMzUzMzQwNjA3Mzk3NDEwNDc0MVoUMTM1MzM0MDYwNzM5NzQxMDQ3NDFqiBcSATAYACJFGjEACipoaGlmb2tyd2dlb3loeGRiaGhVQ2tMMkhORGp5aHJUNmhnV2ppa21RQWcSAgASKhDCDw8aDz8TyQGCBCQBgAQrKosBEAEaeIH2_vQB_AQA-ggM_PsE_wEHAwkJ-P__APP7_fwHAQAA_QQA_QUAAAD6_wEFCAAAAPH98_0CAAAABhf9AAQAAAD7_gb9_QAAAAYC__8Q_wEB-fINCAP_AAARCQgB_wAAAP0G-fz6_gABBQz5AgAAAAAH-_4JAAAAACAALVAZ4Ts4E0AJSE5QAiqEAhAAGvABc-wV_pj__Psj7NsBIRreAIEKLf9VEA0BtdUCAdIG3gEWGwIB7tcf_yDn7QG-3vz_xP0S_lj9_gAABg7_Muj3AA0ZBQAJ8egBHtkUANoDB_7uICAA5B8W_wDl8AArDAD8HhYD_SMF5QDwBd4BFuP_AU8y_wIe2RP-1QILB_b5Ff3rBBj_SAAOBPIEEf0Z-BsE0fXf_eUf0QPYR-8A7ege_QYt6gDzE9f_Ehj7_xLl7fcc6Pz4LDL7_9vu4QD2ESUDEO4M9AcL7QfxLu71T_vvEfnLDQblJwcKz-UJBjbmB_LJ3PMLxhfx9AYVCQU4-vj0IAAtUCMNOzgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLwmp4Y9Hzj8u4Ey-Dt5B5O9Hom3vVFsoDyJXSs-013DPX2GBTz4wYG-f-j4vERpTz214ZA-uhE2vRqJMD0rYJy9ux7WvE5eRL2JCxC-Nmquus6P-Tsq_4o9878mPNnNzjtGULY92MoVvWd0cT3JV8K85gwAPULuAr2pT_I9gPOCvcABEr3-1UM9YD55vXzWtTyUhOQ91i63PPwRUDzYRfG9zOyDPWSVEr0ZWBe-FU0RvS4dczz3qY89gM1evGo39jt_FeC9bjsjvfGdmDxMtBq9j5EHvK22DTzEXig-Na0ePLnTZ7zAKSc98EeLvTfYwDzVEoE9Jj0HPd-3jDvwf2w9ZqnAPeVlCTwX7xe-992OPWpQtDyUbcu96qRoPSIGNb1wLOu53IVBvHfvrLvgFLG8EU_bvHILpzxtXgs9iU16PRBiITtVZIk99pfdPZjyRrxBWWI97RsOPReVXLtZJFe9--Z-vP2FgTvqgoC9VZyfvXM3gLqPVP89XRjpvfVQNrzTvgk-t-uKvdJGvztravS8EN1NOo3qtrq3MIG8DszFOV0KmbyGWp49J1BEul03gLxxY4m9zBG9vSy1JDs5WQ-9wanPvaeDDDy5AC892c_iPcd3tTqHOXw9eVe9vN4DtjsEplg94XAwPfIgg7ug-qi7e8BcvYRRpLuje9K7eJYAPaqfkjs7PF88qtyfvbNgRjpp5NM9ydK9vFKwBrhkq7C8lueGvYjk2LoPKcS7GusxPWol6TkH0Vo9D0wJvbOFgLo7KxK84wgovRvUGrma_cu8f9-_vHWjdreBQwg-p5EbvcdcCbnDbLy7bGvVvJZH2bggmJM9NoMNu-Ia8zlhDNU7c0w2PbnuZrg-Qp296KpUvZaHTrnb3q69kZ2ivfL-gjg4FN49iz2fPTKtt7gSuMo96zCAvQplDDiJGIU9jD0FPQ8rxzf0I7Q87FwnvTLoSje-nhQ9SHHMu_i_nbkDsKa8EHHaO6DWuzbvpI073vYuvd3mPLhgiSw9MFcQPRIMKjcQrK8928PevcifPLgu1fu8-OtkPcB3mDhUU9K96HTPvC_4xTca97u9sa4gPc4InDid-CW9tKNiPdkGtjZJ_tY8LzUfPErZgzhK8yK9RJQFPTdlOTjb5h-8EOisPaDkkLiN5YY6rQ4lPPAsvzfo5Fu91vAjvUkiMLXzt4M9WPMtPLEJVrj9tUa9FDcTPWeUobdxfGO9-iUCPqmBLLkX8d28X6RbOhiG87fA-Fi9F7iMvX0tubcgADgTQAlIbVABKnMQABpgCAcAKRAp0vMMMej86v0gBPs42xXKJP_2GP8iTAPh6ALbwRga_y7jNPqqAAAAFdzTBvcA-nAHxu80_Nrvm57wCeJ__DUO6QEUJs_V7vUW3usn-0dnAAwDsfpU3t0JEQcXIAAtjuwjOzgTQAlIb1ACKq8GEAwaoAYAAIDAAAAQwgAAnkIAAKDBAABQQQAAAEEAAFBBAACIQgAAiMEAACDCAACKQgAA-MEAAMhBAACAwAAAuMEAAAhCAAAsQgAAuMEAAHDCAAAwQQAASEIAAIDBAACgwQAAoMAAAADCAADAQAAA0MEAAMhBAACgwAAAkEEAACRCAAAQQQAAcMIAAEzCAAAIwgAAyEEAAOjBAAD-QgAAgL8AAKDBAACUwgAALMIAANBBAACiQgAAIMEAABzCAADgQAAABMIAANhBAABMQgAAmEEAABBBAAC4wQAAYMIAANhBAABQwQAAbMIAAMDAAADAwAAAiEIAAKZCAACwQQAAQMEAAAAAAACgQQAAYMEAAATCAAAYwgAAdEIAABxCAAAAAAAAkkIAAMDAAACIQgAAYMEAAM7CAADgwQAAgMEAAOBBAAAUQgAAQEAAAIxCAAAwwQAAdMIAAABBAAAYQgAAaEIAAIDAAADSQgAAoEEAAIDBAAAcQgAAgMAAAATCAACSwgAAbMIAAJzCAAA8QgAAsMEAAGBBAABcQgAAoEEAAIjBAADgQQAApsIAABBBAACowQAAoEAAAEDBAAAwwQAAQEIAACBCAACewgAAmMEAADBCAAAEQgAA0EEAACjCAACoQQAAIMEAABDBAABgwgAAUMIAAGDCAACKQgAACMIAALDBAADgQAAA6MEAALDBAADAwAAAQMAAAKjCAABQQQAAAMEAAAAAAACQQQAAqEEAABTCAACSwgAABMIAAGBCAAAgwgAAMMEAAGhCAADAwQAAmMEAAExCAAC4QQAAQMAAAOjBAACCwgAAIMIAACDBAADoQQAAwEAAALDBAAAcwgAAAMIAAOBBAADAQQAAmMEAABDBAAAEwgAAksIAAPjBAABEQgAA4EEAAMDAAAAIQgAAsEEAAKDAAADKwgAAAMAAAHBBAADAwAAAOMIAAADCAADAwAAAgkIAAIjBAADAwAAATMIAAIjBAADIQQAAcMEAACBBAACIQQAAmEEAAADCAACAwgAA6MEAAEDAAADoQQAAUMIAAAhCAABkQgAATMIAABjCAAAoQiAAOBNACUh1UAEqjwIQABqAAgAAdL4AALi9AAAQPQAAkj4AAPi9AABwvQAAED0AAO6-AACmvgAA-L0AAOA8AAAMvgAAgLsAAOg9AABUvgAA4DwAAHw-AABwvQAAdD4AANY-AAB_PwAA2L0AAPg9AACgvAAAHL4AANi9AAC4PQAAmL0AAKA8AAAwvQAAVD4AAHA9AAB8vgAA2D0AACw-AAAsvgAAVD4AAJa-AAAUvgAAqD0AADy-AADYvQAAJD4AADA9AABAvAAA-D0AAFQ-AAAMvgAAmD0AAFC9AABwvQAA6L0AAJg9AACAuwAAjj4AABA9AAArPwAANL4AADQ-AACYvQAAfL4AAKo-AACIvQAAcL0gADgTQAlIfFABKo8CEAEagAIAAOC8AAAsvgAAPL4AACW_AACAuwAA6D0AAIg9AACYPQAAyL0AAIi9AAA0vgAAkr4AAOi9AACSvgAAZD4AAOC8AAA0PgAAEz8AAKA8AACqPgAAmD0AAIo-AAAQPQAADD4AAMi9AACYvQAAHL4AAOC8AABQPQAA6L0AALg9AADoPQAADD4AAKC8AADIPQAAoLwAAKY-AAAwvQAAkr4AABw-AACoPQAAHD4AANi9AAAQPQAAcL0AADw-AAB_vwAAMD0AAOA8AADovQAAyL0AADS-AACYvQAATD4AADw-AAA0PgAAqD0AAIC7AABQPQAA2D0AAFC9AACgPAAAuL0AAOg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=YKOQ5vtLw1M","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13533406073974104741"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4057354798"},"8382447513253249100":{"videoId":"8382447513253249100","docid":"34-6-8-Z930C448427411D8A","description":"This video shows how to perform a simple constrained optimization problem with scipy.minimize in Python. This video is part of an introductory series on optimization. Gekko Optimization Version...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/789983/2e7c6fd56d057366cf0afbdd9c8d147e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8eN3YgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiSnTtV6b0Gw","linkTemplate":"/video/preview/8382447513253249100?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Python Scipy Optimization Example: Constrained Box Volume","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iSnTtV6b0Gw\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoVChM4MzgyNDQ3NTEzMjUzMjQ5MTAwWhM4MzgyNDQ3NTEzMjUzMjQ5MTAwapMXEgEwGAAiRRoxAAoqaGhpZm9rcndnZW95aHhkYmhoVUNrTDJITkRqeWhyVDZoZ1dqaWttUUFnEgIAEioQwg8PGg8_E7oCggQkAYAEKyqLARABGniB-AACBgH_APkIDfz7BP8BG_sG__UCAgDlD_z4CP0BAPMACPz7AAAADf8MB_wAAAD8-wT7_P4AABAKDQD1AAAAEAb-CPYAAAAGAf0H_wEAAPT7_vwDAAAAJff9-f8AAAD8CQEB_P8AAPoC8g4AAAAAEP0KBQAAAAAgAC30CdA7OBNACUhOUAIqhAIQABrwAVn97PwL5AADwvfn_93uAQCB4f3_NxjxAM73_wDMFdgA6-na_-7tJQDWFuoApxELAeUFyf9AMBAAHfcbAB31J_8I_QAANekTAC8CCADXEgj_ASEq_iDqLgIk1fYBGf8H_gUE_v--0fUExPnPAQ4RFgclHQj_OQL_AdzzBf_yBwgA1v7zAAD1FgPF3gz-GAsY_Qv92AAxJev_8QrsBAAQ9Ar73gMJF_gH_A4IFAXLDgMHxAjtABwbAAT6HwAB9xAiA_YEFfL9_vv6Ef76-SL16Pz1GgIMJOj3BxHt8gHa-gn45iUYAt9BCAIADBX2_fD-ASAALRQFGzs4E0AJSGFQAirPBxAAGsAHI6LAvm4WTz1idK-80rqnvbhAIj1VZYS8ldIDvpaYp7y_tKw7PuxVPo7l3Tw9VwU99pZivgV4gTx5Pw28OxlsPq4M6jyCjCU87-VOvhCoQz0YrMC781kOvjhvNz12-yy7165fPY7Krb1PiuA8ILQuPhMvKr29qF08yi59vUnnrjvglx-9jMeLPSrTnjyPrNe8KAsPPmIEIz14PJI8GFodPmoHcbu0hRA8h4RUvZIkaD2_4dM6umetvUFSGr2Z2UI84Z-tPJ_a6jx5qM-4vsXevB6107yMx7u8uBIQPeYelz1Jaba89OH0PFW6oDzQLwQ7f8K0PFp3Pb1HJe27L4byvXSQfLz9Iaw8PUQjPlYc2LxNmqs8UMPXvcSSdz1rjM46vj8UvWD9ZL2Pqbs8WH4vPXT1Pjw7eFw8OXaFPcIhyr3w9sU8E0W4PZNG-7x1zLm8pmoxPTPOVT1LQp66e_TrvKlXwrs_b-q834jOvZIZOby2oU-6NEfWPfQ2NryhZz26UXc0PXvBRz3A8CW7NxrgPfCnSzpJ93M8mSF_vXnKzbtF2oa84OmfvDo4vT3m5TC8Xpk8PZOEabzbAIe85xYfvY1Hqbz5A7O6PZFxPfhhLr355oq7hSziugLMwjsoyu-6YhAYPWhlMb3AQ027vfB5vc7MwrzpnOG7oVhdvQ5PCryWjh683mdGPSWjlLyoi9Y7ZSOGvZYE6LwT9oo6GZEYPvh-tDwZ5m05CM6kvRsRqTt87BE79jeiPROc2j21y6o5DW0gPqwmADt_Q8y4NyUPPeu4gD0d1bs5s78ivfqQwTzjrR85elrJPbnwTT1mztK53SqjvFc9wL2RBh45wxHkPMjo5bxiRhS6PuOHvZCqnrv3Zwg5gDYIPUFutbwdA2K5pBG9PCpprDrGZ2W41ZbaPcQvKzxC8DQ4k9jeOwNMT71GXwW4Z-_MvZoRlLwexIw5LiuDvJ4OH73X4hy3ojXQPAhkZTyLKMQ3RZzvOz3R1T3iCUe59ICjPW7ZRrwxpFE4R_LLPDd_nbwlvBC5rz2YvBf0Hr79iqq4_NKRPMOOcD1y2Dg4uOQovtF_hbyd-Bq5SYxUvO9KjL15K9c2wvPau2JN5bwcBcS3hyGovQbgmr3KdC44gpESPWV74zr4uIO4HVVNvOEMvryhMiS4q2IivMetk7xM5n63vc5BPdsv5bvwyrc3bXIYPmGkF76n-N64VRimPW0LxT2Dx-c4mJNlO4AL0j2Y5A-5fE6FvWOES7zCyOi2KDWqvDPcIL0Vkkw2IAA4E0AJSG1QASpzEAAaYD77ABvr_tIfI1H94_PlELflB_cLwQz_F8b_MBMAIQH7z4Ei7_8u8yMHngAAADj49BnBACV_x-z9JtwbLpbeAwwPdPjdM-3jFSnBD10dzt-5wRz2IgAC4LkGSQLKVts1IiAALerCEzs4E0AJSG9QAiqvBhAMGqAGAADgwAAAAMIAAEBBAAAwQgAAFEIAANDBAADIQQAAMEEAACDCAABMwgAApkIAACjCAACgwQAAgL8AAFBCAAAAwQAAqMEAAETCAAAswgAA0MEAAEDAAACAPwAAJMIAAKDAAADgQQAADMIAAIbCAABswgAAwEEAAMBAAACAQAAAjkIAAMTCAACAwAAACMIAADDBAAD4wQAAZEIAAJDBAADIwQAAiMEAADBBAAAAwAAAbEIAABxCAABwwgAAFMIAAFzCAACiQgAAAEAAAADAAABQQgAAoEEAABDBAADAQQAAUEEAANrCAACYQQAAIEEAAChCAACwwQAAMMEAAOjBAADAwQAAQEIAAPBBAACgwAAAQEEAAEBBAAAAQAAA8EEAAJBCAADgQAAAVEIAALjBAADgwgAAUMEAAMjBAACAvwAAuMEAABTCAACYQQAA4MEAAADBAAB8wgAA2EEAAERCAAAYwgAASEIAAETCAACAwQAAQMEAAKhBAABowgAAQMAAAKLCAACowQAAMEIAAKDAAAAgwQAAMEEAACRCAACYQQAAIMEAACDBAADgwAAAKMIAAFBBAAD4wQAA2EEAAOhBAAAIwgAA-MEAAHDCAAAAwQAAwMAAAIDBAADAwAAAMEEAAIBBAAAAwgAA-MEAAETCAAAAQAAAmkIAAIDAAADYQQAAyEEAAKDBAAA8wgAAcEEAALDBAADYwQAAgEEAADBBAABUQgAAiEEAAFBCAACAvwAA1MIAAIbCAAD4QQAAiEEAAIjBAABgQQAA2EEAAIhBAABQQgAAgL8AACzCAAA4wgAA4MAAAABCAABAwAAAgMEAAPBBAACAPwAAnMIAAPDBAACQQQAALMIAAODAAACgwgAA4EAAADDCAAAMQgAAIEIAAGRCAADwQQAAJEIAAKrCAACYQgAAkMIAAEDBAABYQgAAsEEAALjBAAB4wgAAOEIAAMBBAAAEQgAADMIAAABAAAC4wQAAYEIAAGxCAAAcwgAAykIAABDCAAAwwQAAdMIAACTCAADowQAAAMEAAIhBAABIQgAAyMEAALDCAADuwgAAEMIgADgTQAlIdVABKo8CEAAagAIAAHC9AABcvgAAcD0AAHA9AABEvgAAHL4AAOg9AADWvgAAzr4AAHA9AACgvAAAiD0AAHA9AAB8PgAAQLwAAK6-AABcPgAAUL0AAEw-AAAFPwAAfz8AAII-AABAvAAAcD0AAAS-AADYvQAAUD0AABy-AAAMvgAAoLwAAKg9AABkvgAAcD0AAHA9AABEPgAAUL0AACQ-AACIvQAAjr4AADw-AAAJvwAAij4AADC9AAAQvQAAiD0AAEQ-AACCPgAAir4AAMg9AAAkvgAA-L0AAIA7AADCPgAA4LwAAGS-AACYvQAASz8AAOi9AAAUPgAAUL0AAGS-AAAUPgAA4LwAALi9IAA4E0AJSHxQASqPAhABGoACAAAMvgAATD4AAIi9AAAFvwAA6L0AAFw-AAAcPgAA-D0AAMi9AADCPgAAVL4AAMi9AADYvQAAcL0AAIA7AABQvQAAED0AACs_AABAPAAADz8AAKA8AAAwvQAAQLwAAHC9AAAsvgAANL4AAIg9AACIPQAAML0AAMg9AADgPAAAED0AAOC8AACAuwAAmD0AAMi9AACaPgAAFD4AAHS-AAA0PgAAQDwAAOA8AACgPAAA4LwAAEC8AACqPgAAf78AADC9AADovQAAUD0AAIg9AABAvAAA6D0AACw-AACKPgAAuD0AAKA8AACovQAAuD0AADw-AACAuwAAHD4AAEA8AACgPCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=iSnTtV6b0Gw","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8382447513253249100"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"513480498"},"200881831292098223":{"videoId":"200881831292098223","docid":"34-5-5-Z0D6F101691F78728","description":"A quick example of solving the Rosenbrock problem, which is a classic unconstrained optimization test problem, using fminunc in Matlab. CODE: https://github.com/abe-mart/alphaopt/...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/933877/907279ed82ff30ebe3eddf2a81f8f0ae/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NNsCFgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dbd43rrHmsx0","linkTemplate":"/video/preview/200881831292098223?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to solve the Rosenbrock optimization problem in Matlab with fminunc","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bd43rrHmsx0\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoUChIyMDA4ODE4MzEyOTIwOTgyMjNaEjIwMDg4MTgzMTI5MjA5ODIyM2qTFxIBMBgAIkUaMQAKKmhoaWZva3J3Z2VveWh4ZGJoaFVDa0wySE5EanloclQ2aGdXamlrbVFBZxICABIqEMIPDxoPPxPiAYIEJAGABCsqiwEQARp4gfcF9_z-AgD4AQAK9wf-Ahz2_Qb2AgIA7AL8BAAAAAD6_AD__wAAAPoI-hACAAAAAPvyDfj-AAAN-wb8BAAAABDuCPf7AAAABgz6_f4BAAD89Az8AgAAABP3D_3_AAAACAEL9f__AAAAEv3_AQAAAAv1BQ0AAAAAIAAtWiDYOzgTQAlITlACKoQCEAAa8AFJFRv8FA_7BKr3EwHYDOoBgQAC_wMEAwDX--kBsRLP_wYCFgDq_gAAAfr8AKwQCwHrEPv_NRn1_xsEKwATAQwAFPQMACHdCgA5EwP_4P_2_-4_I_4R4BoAHdkWAS0O7P4F7PsCtu3j_tXs6gAzDQgAIBINAkXz9wD3-QwF8gcIAOLX_fpCBuv-1ffz_xYbDf8S_-0ILiPs__8F9P8gNAQBAdH0AibA-PoaJxUE3gX8AtYU-fkpFQ4G_vj8_fnzH_foAxQAD-zv-Ov59foX9A0H2x4BBzD6BPvuDvYCAA72AeYMEPjnMQMOE_4TAg_a_v8gAC2_TyQ7OBNACUhhUAIqzwcQABrABwwfsb50EoA97fEivaoLnb3Lgb87wP6QvBkCIL4IaoC7OPyJPNOjGT6oNng9YQn3uvjBgb5_6Pi8RGlPPVEwMz76gJs7kedEPQb0gr6sn0g88SGKufWha76E0wc9dDXDuyAwyj3Ay1G9F7eTux0A8T311RW9-Z4xvTM4pbyAJds7WwBkvKaX2DzkY5w87E3MvIRKPD7IicC6fkFBPXglOT6iEQk8dnIAvGtzELy2V9U8fbAOPL-1g715ioE8WmkMu3VmLD2mi8M8_3SoPEoPHrttxb68wlGNPLzZ0Tuixo48_fe_OxhA-Dyyp5O8dIcBvJ8R1zv5tXq99k6eu-rQlL1p78I8b90IPfW8Kz7NLHg8-nq-PO3xAr4BuUk9ps5IPDFbgr1uR128taqAPAkQDz3QA4S8NT3Nu8yQDz2CIzy9guHcPJuxgz36Hv-8APqiPGLcaD3hspo9ytw-O46dZr1h9le8yXLSvCjV3r1oCvi87QO5uyJlpT0xNj69aOc0PD6NoDzmCYA7fvSXu0ehpj3lS8O8kUNEPL_HKjxdl6u8GTJovP2k2ju6jbE9DQ20uhWQVj2_Xpa93UPCu6ERjbu5sCS84ML0uvMnYLw_xty9KcrGu7XkTDyI-U095xelO9GV6D24UMO8vc_IOsw3vL0KeY68CMTvOzuJDLwEaRC9QRaeOz0yMTtJWyY9k5PDO5WZUr25b_U8CmtkuuPFAj7ZnQk9sOXFue3Par3V_5686vl7usDVlTuCLFU9e3iJuDSXtT26qdy85lh4uEqhZz3pB5o88xonOQ4gUj1ItoQ9JNXDOZto4TyPhhi9V650OlxUC72cFfG93J51OZ7wULucqSu91YHFucxMP70KaKK8-ZF1uaejLbxN-4M6CqcBur1hkbzHq2K8wJHFuAcM0j1fac-81d_VtCJfOD3zZdg8IYIiuXFPPL1_1Ta8NKC_OKxMgr0xZ7E9q_tIOLqeCD0flSw8XjGYt6e9Fz1oTmg9hmA6ORg8UT0LHvA8C4MBt89h47w8uOA81WbZtyuxQb2Mo029CdiMN9pO5TxkLIk8fJqYuG3F_r2i1D69Gi_0uGSEAT1rkrm9mJeVOBxe8D19BP489OeQuK2asbuismG93Qi0N9_sJDvwFki8PhwcuCd3vr06mwm9RMozOKkIwzu4BWi7WZ9XOEP7OzuJI8-9yDPlNh2XDD1JD0O-VDFNualrjT2LC5E9EyciOLoTrLxy3Lk9dDAYuSumnb1Y8sK88Kilt85mGr0P7s68kCQ_tyAAOBNACUhtUAEqcxAAGmDz-AAZ1g-nDwhA3vkJ_w679fDrEr01_-74_wYzIe3oGZasLwsANiYhDKUAAAAA7csK4AD_c-W8-ErU3BPP4vtH7EYS8SO-Ltkr6wtE5vHx8OH8JyYA-Q7d_n8XzB8v-SggAC2_dyA7OBNACUhvUAIqrwYQDBqgBgAA4EAAAADCAADAQQAAYEEAAAAAAADIQQAADEIAAIBAAACiwgAACMIAAKZCAAAcwgAAyMEAAGDBAAAcwgAAjkIAABTCAABcwgAALMIAABBBAADAQQAAgMIAABBBAADYQQAAAMAAACBBAAAAwgAAuMEAAMDAAAAAwgAAGMIAAMhCAACAwQAAmMEAANjBAACgQQAA6EEAAAxCAADowQAAgsIAAODAAAC4QQAAOEIAABBBAABwQQAAQMAAAKTCAACGwgAAFEIAAKDAAAAEwgAAAEAAABzCAABEwgAAgL8AAADAAACKwgAAgMAAAOBBAAAAQAAAuEEAAFDCAADgQAAAuMEAANBBAAAIwgAARMIAAPjBAAD4wQAAiEEAAABCAABAwAAA4EAAAEBCAAC4QQAAwMEAALhBAACIQgAAgMAAAIDAAACgQAAAoEIAAHBBAACAPwAAoEEAAFBBAAAsQgAAAEEAACBBAAAwwQAAgEAAAIxCAACgwQAAiEEAAKjBAADYwgAAAMIAALDBAACAvwAArEIAAIDCAACYwQAA0EEAAKjBAAAcwgAAHEIAAFjCAACWQgAA6EEAAPBBAAAoQgAA6MEAAITCAABEQgAAQMAAADxCAABEQgAAUMEAAJbCAABUwgAAqEEAAODBAABwwgAAkMEAAODBAADgwQAA4EAAAMBAAAAMwgAAqkIAAIA_AABAwgAAkMIAALBBAABMQgAAZEIAAIhBAAAQwQAA6EEAACjCAAAwQQAAAEAAAIDAAACQwQAArEIAAABCAADAQAAAGEIAAMxCAAC8QgAAPEIAAKDAAACAQAAAAEEAAHDBAAAgQQAAjMIAAADBAADAQAAAAEIAACBBAABMwgAAUMIAAKDAAACowQAACEIAAKDBAACuQgAAmMEAAKDBAACAvwAASEIAAKhBAADuwgAAAEAAALhBAAAAwQAAHMIAABTCAAAAQgAAJMIAALDBAAAgwgAAgL8AAGxCAACqQgAAwEAAAIpCAAAYQgAAgMEAAIhBAADAwAAAwEAAAFBBAABQwQAANEIAANBBAADowQAANEIAALjBIAA4E0AJSHVQASqPAhAAGoACAACAOwAAgLsAADQ-AAAUPgAAPL4AAIi9AAAwPQAA5r4AAPi9AABwvQAAcL0AAHA9AABQPQAAED0AAFS-AAAUvgAAgj4AAIC7AAA0PgAAzj4AAH8_AABAPAAAiD0AADQ-AAAsvgAAQDwAAFQ-AAAQPQAAML0AAIC7AABwPQAAPL4AABC9AABkPgAA-D0AAAw-AAAEPgAAir4AAFS-AAAkvgAAdL4AAKg9AAAcPgAA2D0AAIA7AABwPQAAdD4AAOi9AADIvQAAML0AADA9AAAUPgAAND4AAHA9AACIvQAAiL0AABc_AADgvAAAEL0AAFS-AACIvQAAqD0AAKA8AAAkviAAOBNACUh8UAEqjwIQARqAAgAA6L0AAFQ-AAAQPQAAP78AAKi9AADoPQAATD4AAFA9AACYvQAA1j4AABA9AACgvAAALL4AAPi9AABMPgAAyL0AADC9AAA7PwAA-D0AAPY-AAA8vgAAor4AAEC8AACYvQAAcL0AALi9AABQvQAAgDsAAEC8AABQvQAABL4AABC9AACIPQAAUD0AAGQ-AABQvQAAiD0AAKY-AABEvgAAUL0AAKg9AAC4PQAAyD0AAAS-AAAQvQAAZD4AAH-_AADoPQAAqD0AAPi9AACgvAAAiL0AAHQ-AAD4PQAA6L0AAFA9AABwPQAAVL4AABw-AABAPAAAmD0AABC9AAAMvgAAXD4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bd43rrHmsx0","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["200881831292098223"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3277233640"},"2956721971647633916":{"videoId":"2956721971647633916","docid":"34-8-4-Z7D617FE38FC23027","description":"A quick introduction to the Traveling Salesman Problem, a classic problem in mathematics, operations research, and optimization.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4432671/43e3324cae3ef68a615093982d7cb28f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kUTFMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1pmBjIZ20pE","linkTemplate":"/video/preview/2956721971647633916?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is the Traveling Salesman Problem?","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1pmBjIZ20pE\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoVChMyOTU2NzIxOTcxNjQ3NjMzOTE2WhMyOTU2NzIxOTcxNjQ3NjMzOTE2aogXEgEwGAAiRRoxAAoqaGhpZm9rcndnZW95aHhkYmhoVUNrTDJITkRqeWhyVDZoZ1dqaWttUUFnEgIAEioQwg8PGg8_E6EBggQkAYAEKyqLARABGniBBwH-Av4CAO_7-wkKA_4AEQMG-gf__wDpAfj7-f4BAPUGBgEBAAAAAPsBDQUAAADtDgQL-wEAAAz_7fwCAAAACv4JBAMAAAAC8QDyAAEAAPnyDQgD_wAAEfgLDAAAAAD5_QoFAQAAAPkAAREAAAAAB_gA_gAAAAAgAC1usto7OBNACUhOUAIqhAIQABrwAX_pEwO8BNr-O_3_ABoY-gCJFPH_LBP0ANgNA_-9D9f_-gkRAAPrBv8X7vIB1xD2AAkEEgBC_BIABQ4UAD75Gv_iDRABI-sCACII-QAc6vj_8QQIABP5DAAe6QUABxIB_goUBAHh-OoACv3_AATzAQEKJQQC8QcGBAH7-v_eEQIBAP0HAR729gX2_PoF4RQZAenr3APhEv_93gTrAgEKCPwM--v-FerqBAMYDQjw2gYDCggE_CYN-gUH-eoE3_4dBe30E_oLGPkG9BAH8xYHDQUQ3wT31u0AAQ_99gfk_vP77QYFAfgVB_3tDAUR-PwFBCAALbMBQjs4E0AJSGFQAirPBxAAGsAHlfPtvoBYID3Nmm690BDJPVC9vzwLMOK7msydvOtdsrxcwxQ8m7dgPcD6uT234Lu8-MGBvn_o-LxEaU89_tWLPiDEnzyGqTE7YsrGvVrAXzwD5zG8T3iRvmcVTD2p5ou6K4ghPmMVpbxoYSq8BcQkvETj5LyBSj26X2VIPNCdYDzzmFy88Mk7O6rQZb3SI3w8iltFPiASqb39KM88YOcmPg3TDb3xHvG8MuT4vaTqzTzr6-882WC8PHeJhTx3F4M8EQAsPpZbGj3bHe08R-KKPPgnp7wtQ9o7D0LEump-4zpcilC8F2PgPU348bkdL027tbXPOy-uBz2BerO7gtQ7u2548DyOMSA8O8hrPgDZ9TzoJ2Y7W3q0vPCdvTxRguM8ziinvCfxjj1V4L-7lP8EPQkxXL2EI447nIyqPCdpfryHpqw8CnqpvSDtHz2JU3c8U3nbPdbxDj0NRja8qOyqPKFeFT39HcC72XgwvIXtI7tLnTa8J3gUPagjG717kT88mTpZPDmhq7xeKWw7-gEZPbNWOb3l-WO76DmYPN9tXjyUZUo7j5b5vDKy_btrXri7T9-8PAMqd70IBaU8P531Obt7QL3JsOk7hmCPOTs5A73eSys8kiISPsIT-j0JJyQ55OUfPQ7LVbx92pc6cwdbPQNTxz1yDME5SDGlPGWO4TtnxQG8KXCMvYfTcz3XEqc4xdopvHItf7xGZ_Q6nRhtO86gCjxvjYC70vGyvSeoPLy36p06uMj9PLbkRz2G77O6fgmLvL4lir3wTS05SvFMvBF6bLwRY8E4TLMvPG_24rz2aMc4g-FXPYbcsbxMshS5cErUPMhRSr3NhYq5uE6tPDGVXj2cRo44HEXxPPJ5hbx2Hz-5-cDpu_mkbrwOL5C4a7tEvbHQWL0EI_e4-lhmPXDVkDwMI2C4-AmmPeKIX71rJsu58Qw_PTKpArxEDKu452nlPEiWwrz3Fws5P316PfVkHbzp5Gg4Z6rxPC8xFrx5CGi5AFoQO9aXWzxrvCi48CeUvWlTFT3BQOe4EKyvPdvD3r3Inzy4b20XvULCQb26nbo47omPvWufqb1yZC83hPJevV-AtzuqJRg4TQN1u_EaKjwI1L44LWKTPRRQ8rsFZiW3nX8bPYFwCj3LHii5chfhvcBC5j3pkmG5u-2CvJfmob36OP-3yH3Mu51h7rvCoHw3cvikO6j5j7zjp8S3nr50vf3GEj0OjK247_KzvdoCAj5Q8WC5_OoFvYawtTxZymq3xEDXvJgGNLyrgL42IAA4E0AJSG1QASpzEAAaYBIZAC_lCfP79yDa-vL49R4GAgPu8gwAJNgA_BvK8Rfg8uzOLwA-1RbZtwAAABC50Pk8ANxm8czwEQ8T0rTFAQ3_f-QPPc03-_e96sPr-OYDAgEgPgD6EcwrRdLO_hEgHSAALRDsMjs4E0AJSG9QAiqvBhAMGqAGAACQQQAAqMEAAIZCAAAwwgAAIMIAAABBAACEQgAAIEEAAIbCAAAgwQAAIEIAAIBAAACAwAAAuMEAACBBAAAgQQAAqEEAALjBAAAwwgAAgD8AAERCAABkwgAA8MEAAEhCAAAUwgAAUEEAAJjBAAAAwQAAQEIAAIDBAAB0QgAAREIAAADDAADQwQAA8MEAAMBAAADwQQAA2EIAAAhCAAAQQQAA2MEAANhBAABIQgAAtEIAAJDBAACQwQAATEIAAJjBAAD-QgAAgEAAACTCAAA4wgAAFMIAAJjCAADwQQAAwEAAAHTCAACgwAAAAAAAABxCAABIQgAAgEEAACDBAAC4wQAAUMEAAMBAAACgwgAAqMEAAPBBAADAwQAA0MEAAIJCAABgwQAA2EEAAJDBAABgwgAAPMIAAHBCAAAcQgAAjMIAABjCAACUQgAAcEEAAKDAAAAQQQAAgMEAABhCAAAoQgAAsEIAAHRCAAA0QgAApEIAAEBBAACcwgAA2MEAALDBAAAgwgAAKEIAAMDAAABwQQAAwEEAABDBAACYQQAAqEEAAGDBAADIQQAAFMIAAEBAAAAEQgAAEMIAAHhCAABIQgAAcEEAABBBAACAQAAAiEEAAFBCAACAwQAAREIAAKjBAAAAQgAAEMIAAHDCAABMwgAAwMAAAGDBAADYQQAAAEAAAIDCAADQQQAASEIAAAAAAAAAwQAAAEAAAIDBAAD4wQAAAEIAAAhCAAAYwgAAJMIAADjCAACWQgAAoMEAABDBAABAQgAAIEEAALjBAAAgwQAAwMEAAABAAADAwAAAmMEAABDBAAA0wgAAQEIAAABAAACYwQAALEIAAJTCAADIwQAAkMEAABDBAAAgQQAAkMEAAFjCAACAwAAAUEIAADBCAABgwQAAMEEAAKDAAACgQAAAlsIAAEDBAACQwQAAQEEAALBBAAAwwQAAgMIAAFRCAACiwgAA8MEAADTCAABAQAAAsEIAAIBAAACQQQAAWEIAAEDAAAD4QQAAJMIAAIDAAACQwQAAEEIAANjBAACIwQAAIEEAAIC_AADowQAAyEEgADgTQAlIdVABKo8CEAAagAIAAJi9AAAwPQAALD4AACQ-AACAOwAA-L0AAFC9AADGvgAATL4AAIg9AACgPAAAiD0AABA9AAC4PQAA2L0AACS-AADYPQAA4DwAAHA9AACKPgAAfz8AAHA9AABQPQAAVD4AAAS-AADIvQAA-D0AAIC7AABUPgAAPD4AAOA8AACgPAAAgr4AAKg9AAAQPQAAQLwAABQ-AABEvgAAFL4AADy-AAA8vgAAmL0AACw-AADgvAAAML0AAIi9AADIPQAAuL0AAOA8AABwPQAALD4AADA9AAAMPgAAMD0AAIC7AACYvQAAFT8AACS-AADgvAAAqL0AABS-AACoPQAABD4AACS-IAA4E0AJSHxQASqPAhABGoACAACIvQAA4DwAAPi9AABFvwAANL4AAOi9AAC4PQAA6L0AADA9AACePgAAiD0AADS-AAAQvQAA6L0AADQ-AAAsvgAA6L0AACE_AADgvAAAtj4AABC9AAAcvgAAoDwAABC9AAAwPQAA4DwAAOC8AABwPQAAfD4AAIi9AACovQAAMD0AAOg9AAAMvgAAiD0AAIA7AABEPgAATD4AAJi9AADgPAAALD4AAOA8AAC4vQAAML0AAKi9AABwPQAAf78AADw-AACgPAAAMD0AACy-AABMvgAAuD0AAAw-AACovQAAiD0AADA9AACgPAAAQLwAAHC9AAC4PQAAEL0AAFA9AABEPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=1pmBjIZ20pE","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2956721971647633916"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"101967049"},"9921008449319883731":{"videoId":"9921008449319883731","docid":"34-5-17-Z9DAEF5C02F4A468B","description":"Optimization, Education, Engineering, Tutorial, Matlab, fmincon...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3593791/2b69598b1b1b26dac0f652607b82b676/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/q2irAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D8uDpy-pbJr0","linkTemplate":"/video/preview/9921008449319883731?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Matlab Fmincon Optimization Example: Constrained Box Volume","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=8uDpy-pbJr0\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoVChM5OTIxMDA4NDQ5MzE5ODgzNzMxWhM5OTIxMDA4NDQ5MzE5ODgzNzMxapMXEgEwGAAiRRoxAAoqaGhpZm9rcndnZW95aHhkYmhoVUNrTDJITkRqeWhyVDZoZ1dqaWttUUFnEgIAEioQwg8PGg8_E6ACggQkAYAEKyqLARABGniB9AMC_v8BAAELAwb4B_0CGvsG__UCAgDtCvAABQAAAOoDBwAC_wAA_QUICvkAAAAGCPn7-f0BAAr8CAj4AAAAEgn3_fYAAAD5BQT__wEAAO76DvkCAAAAHgII-_8AAAAADgH5_f8AAAAY9wsAAAAAD_8DDwAAAAAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAWAVB_8d5-8EvQoAAM75BAGB7Rz_GRoGANPn7gGyEc__5AwCAP3vE__6ABL_nQ_wARID7AA1GPX_DQYhAB0ZE_8G_w4BNd39AC8a9f_xAvT_D_kj_x7rKwIk5Qb_Lf77APf9_P237eP-1ezrADAfFwP9JQkCNgL_AQDYCAXx7__-2vIB_iID_gP69Pv7CgkF_gII-AYuIuz_AuvwAxYh-QEB0vQCEN_2AhYOIAfOB_b85A3z9xoaAAQSHP73AP8ZA-kDFAAn1ev_9RjtBhj3-AHwCAQKLfQACwIE7_DYHPEH9AQQ-tsj_QQF-hT98eAFASAALUFaJTs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7yrufvVpGij18hku8uRrZvZDY7rxTK6c81xQIPiIGNT1HwqM8xJdZvoxmZbz1uiW9OxlsPq4M6jyCjCU87-VOvhCoQz0YrMC7Efw_vn9geD0QRBK8IuSXPaqgfb2EAMs7Cp0XPpObFbwRiq28JLoivQkMg71L6iS9MqUaPVW0g7tMmQq9veMkPh-0g7xkHv075gNCPvY9T71HAQG7b2e6vHjCIT1iLPQ7eraova7iw7spi-s7H2caPYZm6DuzPJO6SXQlvQhcEr3-XHq7tl5dPcktPD27W768naJ-PJdBeTrpp2686vFWPDAe1Lwzd1S5DHcOvk3aFjuWYRc99bwrPs0seDz6er480lebvd1IVD0a9C27MVuCvW5HXby1qoA8r2d-PcFCHDxCeR08kStQPeaWVr3ewXQ8ujACPma9mLzMPrS8umMWPeT2yzym1Yy7e6A1vYdtizxWLq-734jOvZIZOby2oU-6O8UKPlaDK71f8OU7iFcoPaWNmTx8Z826IZ_GPWLMJ70Kzgc8E4kYvee6Oryk8ZW8Cuqlux9AgD3HzFY1Xpk8PZOEabzbAIe8QI5BPCxEx7yzEk68baSRPF7Ieb0frDU7XE8bvLszCT09wh88MJNSPeq5QL2f7IO7knTNvSeMQTw70s86n53Cuz92mDkbs_S6qh3yOx2iJLrylxY8vjkSvfaykrwO69y5AaXhPZurhj3EXTO50dWRvfU2rLwiJ-E60WAuPY1dZz1cczW3PL3yPUrIUb1XwY45KKeMPcOMfz13boE5xCNQu86mQz17siw7ogaoPeUtsjzEjCe5HF2lvD0ybL39Fcs45fZDu_wDAL2s6wq5pa2wvVrAnzzV2YS5TurwPJNojzrihSE3uFTru6i7nTuoiCO5k6kCPlx1fLvDyBA5PfE8PaNYLr3cABS5cJfdvbre07ndZKU5bQuFvNjDsDrR3kE4HYK0vFXs-bxHXSO4Kdt2vOfssz0nn4A39jPLPejKlry8bgU4ZJXSuzc4kbzvNwc4nQ5HO3efA75D3oy3p22NPGjcRT3g9sa4XAA6vgETjb1g8zG5joi1OtnKcL3_CWc3ySIovEj_Jr3Tmk22PLavvRNLRb3-r7w3kkcLPfg_tjyL9C-4GZtsvYmE5by0Ss43VE-LOlb_lrwI8tm1fko_PYozK72TVqA3P47GPSveCL6HIrS4Iv_sPTUpBT7zflu4mJNlO4AL0j2Y5A-5YEanvReBELuTdNk3wHJpvfg7r7xQuLS3IAA4E0AJSG1QASpzEAAaYBz7ACDmAcoNFUjz0uz8Hrfl7uccwyD_At3_MCMP_vYLwoHy8v8i8i8LoAAAABgN5DTsAP94uQX3MuX_QaDdBR0GcPr2Ief8HQvw_zgR8NPSxQj3IQD--bYCaS6bXQ05KSAALerhGDs4E0AJSG9QAiqvBhAMGqAGAACgwAAABMIAAIA_AABAQgAAHEIAAJjBAABIQgAAmEEAAOjBAAAswgAAskIAAFjCAADowQAAQMEAAGBCAAAAwQAAiMEAAGjCAAAQwgAAmMEAALBBAAAgwQAANMIAAEDBAADgQQAAJMIAAJ7CAABYwgAAGEIAAIBAAAAAQAAAUEIAANbCAACAvwAARMIAAADBAABQwQAAGEIAAKDBAADYwQAAgMEAAJhBAAAAwAAAYEIAAFxCAACEwgAALMIAAFDCAAC6QgAAoEAAAAAAAADYQQAAgEEAAKBAAADAQQAAoEEAAM7CAADYQQAAQEAAADRCAABgwQAA2MEAAPDBAADwwQAAOEIAADBCAABAwQAAAEAAAGBBAACAQAAAsEEAAIpCAADAQAAAQEIAAMjBAADiwgAAgMAAAMDBAADAwAAAqMEAAATCAACgQQAAmMEAAMBAAACOwgAAmEEAADRCAAAUwgAANEIAAEzCAACAPwAAEMEAAMhBAABswgAAEMEAAJDCAADIwQAAEEIAAEBAAACAPwAAgL8AAFxCAADIQQAAoMAAALjBAACwwQAAKMIAAFBBAACIwQAACEIAAABCAAAEwgAA4MEAAIbCAABAwAAAiMEAAKDBAAC4wQAAEEEAALBBAADgwQAA-MEAAEzCAACgwAAAokIAAGBBAADAQQAAyEEAAODBAAAMwgAAcEEAALDBAADowQAAwEEAADDBAAA8QgAAMEEAAGBCAABAwQAAuMIAAILCAAA8QgAAqEEAAGDBAAAAQQAABEIAAJBBAAAYQgAAAMAAADDCAABIwgAAAMAAABhCAACgwAAAIMEAALhBAAAAQAAAqsIAAAzCAADYQQAACMIAAIDAAACKwgAA4EAAACzCAADoQQAAJEIAAHRCAADgQQAAUEIAAJ7CAACYQgAAjMIAABDBAAB0QgAAgL8AAFDBAABcwgAAXEIAALBBAAC4QQAADMIAAAAAAAAAAAAAgkIAABhCAAAUwgAA1kIAABDCAAAQwQAANMIAABTCAADgwQAAMMEAAOBBAAA0QgAAkMEAAKDCAADswgAAFMIgADgTQAlIdVABKo8CEAAagAIAADA9AAAQPQAAiD0AABw-AADovQAA-L0AAOA8AACKvgAATL4AAEA8AACovQAAUD0AAKg9AAAEPgAAcL0AAGS-AAAsPgAAED0AACw-AAAFPwAAfz8AACw-AAC4vQAA2D0AAPi9AADYvQAA4LwAAKi9AAAsvgAAoDwAAIA7AACCvgAA-D0AADA9AAA8PgAABD4AACQ-AAA0vgAAor4AABA9AACavgAAqD0AAOA8AAA0PgAAoLwAALg9AAAkPgAA6L0AAEA8AACAOwAA2L0AAJg9AACSPgAAND4AAGS-AACAuwAACT8AADC9AABAPAAAuL0AAFy-AAAcPgAAoDwAAAS-IAA4E0AJSHxQASqPAhABGoACAAAwvQAAhj4AAFC9AAAVvwAAHL4AAFA9AABcPgAA4LwAAEA8AADOPgAAMD0AACy-AADYvQAARL4AAKg9AACYvQAAQDwAACU_AABQvQAA4j4AADS-AAA8vgAAUL0AAIi9AACAuwAAUL0AAKA8AACIPQAAqD0AABC9AACovQAAyD0AABS-AAAQvQAAgLsAAKC8AAAUPgAAdD4AADS-AACgPAAAiD0AAIA7AADIvQAAmL0AAKi9AABsPgAAf78AAKA8AACgvAAAgLsAAKC8AAAsvgAAEL0AAOA8AADIPQAAUD0AAOA8AADgvAAAqL0AABw-AACAOwAA-L0AAFA9AAAUPiAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=8uDpy-pbJr0","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9921008449319883731"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"558408765"},"12588584131024358996":{"videoId":"12588584131024358996","docid":"34-1-2-Z477379AD5CA54F03","description":"A quick introduction to Newton's Method, a technique for finding the roots, or zeros of a function or equation.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1968627/498012b01552a926e79d7fcc4d309eec/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/b-ggEQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzqezrB_VssQ","linkTemplate":"/video/preview/12588584131024358996?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What is Newton's Method?","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zqezrB_VssQ\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoWChQxMjU4ODU4NDEzMTAyNDM1ODk5NloUMTI1ODg1ODQxMzEwMjQzNTg5OTZqiBcSATAYACJFGjEACipoaGlmb2tyd2dlb3loeGRiaGhVQ2tMMkhORGp5aHJUNmhnV2ppa21RQWcSAgASKhDCDw8aDz8TlQGCBCQBgAQrKosBEAEaeIH0CPsH_QMA9AkOCQQF_QH_Bgj_-P7-AOv4_PMC_wEA-v0A__8AAAD09wkMAQAAAPr7-PoC_gAACQb7-QQAAAAc_AIDAgD_AAgGCf_-AQAABP4GCgP_AAAHAgX4_wAAAPML__76_wAA9gb-CgAAAAAP_QkEAAAAACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABfO0gAdsN3wDh-O7_xxbg_4EiCv4cJOIA3wMIANcNvwH-BDEA4esb_ynb8f-zBCQB9Pfv_i33DgA45xgADeL0AM8FFQAw9wQAJRgaAOsNEP_wHRwA9RQLAAPr3QDrGub-Jg7aALPs4f7_580AMNYkAQ7t4gIhDQT-3PMF__IXHgHY8QL-Ig_0BSPq_PztFDcB9zHt_wMw-wHzL-T9-wAQBxX2BwLuEPECIB74_f4sDvvp8e_32frz-PH98wbXDP0F5wMVAOUH_PjK_v31Hh_4BvQTBvsEAfMM_BEBDQvc6ADfDAHy4AMMAuUZDggV9P8FIAAt_yEdOzgTQAlIYVACKs8HEAAawAcjosC-bhZPPWJ0r7yyGZs9guOyvBgzM72O2bi94hAgvWZQSL28P4493ZMoO4ngKb34wYG-f-j4vERpTz1RMDM--oCbO5HnRD2HNCq-nmmoPbZyZbz1oYO-PHfxOy7FlzuxGeA9jJFbPDDBY7tB3iM7GTmbvWwqZryRVkY8tI6qvJSAHb1BmtY81nvgPPJwjrt3hMM9E_s6vDJvmzt19YQ9FIIrPfLB_LzHVR28QuoWvajHtjwFNDG-87oUPT4Hlrzqr_c9MbJROshNAz1EIL29tGA9vVvVRzlJLKk8aF4OPTa9Gj0mQKg9kKgrPW_RrrxoOpA9UCBHPE5pmLwSLoU7rg9LPTVd8DvkZvg9ZkzhPRgj1Du3JUK-jHCuPN8MSDwb3HE9wfpEvcxiYrwaTIg9wAhavUypiTv-h489j8sTPa6J4Dy4P9c8HvKBuyqRRDy5vx895_mIPRvNmzx1DOO8DacMPBDL6joibJ28uYP9vHd7tbxtjjM9Vfo9OqSLzbsY64s9BVklvd5UZjvFNUM9-FENvglvLLtTghU86KaovdtcCrxDSIy8B4dNPWIbAbmLy5w9pBd6vV94Sryscfa8fI9kvYDCjzpgUDC96SgHvj06YLuQYHS8Exa7PdQmEjxPt7c9WzqbvYI3n7kCADa8hX2WvJ_HLLuBsR27FkoLvbHSsLtFU6w8S68NPtl6hjo42Ds9owIHPj2c67l65Ko9I1-uvG9Igrl19Xm9tbe1vaz_lLqYqSS8ywt1PYrF0jpHT7Y9FtIrPDTOhzj1KSy9NZiGvGMqOzmpKJi9_fEDPctFfTgiiPM8tZ6rvLLGFDkDlaG9Fx1avZ27zzkSqIk90ZZOvDu567lUXba8cYcXO9Ckfrq273a8I9cNvVy9JLntQKK9s3tyu05397gHDNI9X2nPvNXf1bSatp89BEe4vM0bBzjZ5HU9J2DFvGL2Obje_yc9mhOaPRnbFLnapl29rqdMPXsUCLmcqCU9YSgRPc1D5ThalQ47kO9XPbd1jbhVmZQ7k0yDPZQPmbjeWfs82PGfvRgNlzjqY3m9GKoMvafCrTjK4QO-ENcePJf9TjeJtuO8rI-HvBTa_Tj4pxQ-A_pOPR_07TZzMNs9QgLrPPAmnreVLqg9IbigPX0cMLhmgpG9epULvVTUhLdCr7S9es5MvXLLiLd5oMS8K5WmvF5X2bdJ9448rVDEvXOc8rhBNo89w_s-Ovet_DjtlkY6deikPQpu47i0FsC9VDS7PTxfsjgupJi9fbtbvJDlJ7ggADgTQAlIbVABKnMQABpgJQEADPMg8OoNMeruwvkZ5_dF-Orut_8CG_8iKAQO8ebQuSv9AF_3NO-tAAAAHAD1KbwA93LF0Swx5Q4Q4L3aC_B_EQD84_8GDszb9jXP2BQj_F9OAA3-xBdF8PZHBTU5IAAtpFUiOzgTQAlIb1ACKq8GEAwaoAYAALDBAACgwQAAgD8AAIC_AAC4QQAAiEEAALpCAADwQQAAoMEAAEjCAADQQQAAAAAAABxCAADIQQAAEEEAAIRCAAB4wgAAcMIAAPBBAACAPwAAoEAAAEBAAABowgAAOMIAADzCAABAwQAAsMEAAKhBAACAQQAAIEEAAPjBAABAQgAAGMIAAIA_AAB4wgAAsEEAAPhBAADYQgAA4EAAAADBAADgQAAAUMEAAAhCAAAUQgAA0EEAAOBBAABkwgAAOMIAAFBBAABgQQAADMIAANDBAABEwgAAkMEAABxCAABAwAAAisIAAOjBAAAsQgAAyEEAALpCAABgwgAAuMEAALhBAADgwAAA8sIAAMDBAAAYwgAAyEEAACTCAAAMwgAACMIAAILCAADgQAAAAMIAAEDAAAAEwgAATEIAAEBCAABAQQAAYMIAAARCAABwwgAAgL8AADBBAABgwQAAYEIAAIBAAACgQQAAAAAAAMjBAAAAQQAAcMEAAIhBAABgwQAAZMIAAAzCAAAIwgAAGEIAAAhCAACgwAAAdMIAAABAAAAYQgAAyMEAAKBBAACgwAAAoMAAAKBAAAAIQgAAnkIAALhBAAAQwQAAEEIAACBCAAC4QQAAQMAAAPjBAADIwQAA8MEAAIBAAABUwgAAgMEAAJDBAABAQQAA2MEAADBCAAAQQQAAjMIAANRCAACYQQAAdMIAAODAAACIQQAADEIAAGBBAABQQgAAFMIAALLCAABswgAAkMEAAKRCAADAwQAAMEEAAADAAABwQQAACEIAAIhBAAAsQgAAQEEAABDBAABgQQAAgEAAAHBBAAB4QgAATEIAANjBAAAswgAAgsIAAABCAACMwgAAqMEAAABAAAAcwgAATMIAAIDBAABgQQAAZEIAAMDAAAAwwQAALMIAAEDBAAAwwgAAwMEAAMDBAAAgQgAAQMAAAEDAAAD4wQAA4MAAAFTCAAAcwgAAyMIAAHTCAABwQgAAAEIAAIrCAACAwAAAIEEAAIJCAACgwAAAkkIAABhCAACaQgAAgsIAAOhBAABIQgAAmEEAANjBAABAQSAAOBNACUh1UAEqjwIQABqAAgAA6L0AAK6-AACmPgAAML0AAKA8AAD4PQAABL4AABO_AACKvgAAqD0AAIC7AAAUPgAAoLwAADQ-AACAOwAAQLwAAJ4-AACIPQAAmL0AAJ4-AAB_PwAAcL0AADA9AACoPQAAyL0AAFS-AAAEPgAAuD0AAEA8AAD4PQAAiD0AAHC9AACIvQAAcD0AAOA8AACgvAAAPD4AABy-AACYvQAAuD0AANg9AACCvgAAbD4AAOg9AAD4vQAALL4AAKC8AACIPQAAyD0AAOi9AABUPgAAmD0AAEw-AADYPQAAmL0AAFA9AAA9PwAABL4AAJg9AABwvQAAQLwAALg9AABEPgAAmL0gADgTQAlIfFABKo8CEAEagAIAAIg9AABQvQAAQDwAABu_AAB8vgAARL4AAJ4-AAAEPgAAUD0AAHw-AADYPQAAPL4AAII-AABsvgAA2D0AAIi9AACovQAANT8AAIg9AACCPgAA-L0AAEC8AADIvQAAoDwAAIC7AACYvQAABD4AAHA9AABQPQAAqL0AALi9AAAEPgAA2L0AAOA8AACgPAAABL4AALY-AAB8PgAAnr4AAKg9AAAEPgAAEL0AAES-AAAQPQAAuD0AAEA8AAB_vwAAiD0AAMi9AACivgAAEL0AAIA7AAAUPgAADL4AAPg9AADYPQAA4DwAAOA8AABQPQAAQDwAACw-AACovQAAqr4AAFC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=zqezrB_VssQ","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12588584131024358996"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1305173520"},"1174360805802683562":{"videoId":"1174360805802683562","docid":"34-3-12-ZC9334FA7D615B593","description":"Alpha Sentai - Get All Alpha SEO Tools For $47.00 per month!http://anthonyhayes.me/alpha-sentai-2/Alpha Sentai includes:Live Stream AlphaVideo Synd AlphaOpt...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1016501/27a0675a60b7e05d1bb9caf274a37225/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/q5JLPgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0OcJljPrcUM","linkTemplate":"/video/preview/1174360805802683562?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Alpha Sentai - Get All Alpha SEO Tools For $47.00! - YouTube","related_orig_text":"AlphaOpt","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"AlphaOpt\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0OcJljPrcUM\",\"src\":\"serp\",\"rvb\":\"EukCChExMzcyNTUzNTMzNDMzOTYyOQoUMTAwOTM3NzI4ODc5OTI4MTc2NTAKFDE0NzU3Mjc4NDk5NTc0MjUyMTI4ChQxMTk3NDkzNDM4NTc5NjM2NDUwNgoTMTU0ODAxNTY1ODYyMzM4MzI4NgoUMTc2NzA4MTY0Mjc0MjE3MTcyODgKEzY4Njc1MDg5NjUzNTMyNzY0NDUKEzE1NzU5NzcyNzM4NjA3NjczNzIKEzg4MzcwOTkxMTkyODI0NTgzMDkKFDE2NDkwNTc2NDEwMzQ4MDM4NTYxChQxMzUzMzQwNjA3Mzk3NDEwNDc0MQoTODM4MjQ0NzUxMzI1MzI0OTEwMAoSMjAwODgxODMxMjkyMDk4MjIzChMyOTU2NzIxOTcxNjQ3NjMzOTE2ChM5OTIxMDA4NDQ5MzE5ODgzNzMxChQxMjU4ODU4NDEzMTAyNDM1ODk5NgoTMTE3NDM2MDgwNTgwMjY4MzU2MhoVChMxMTc0MzYwODA1ODAyNjgzNTYyWhMxMTc0MzYwODA1ODAyNjgzNTYyarYPEgEwGAAiRRoxAAoqaGhud3JqaHRrdm9iZXZ5Y2hoVUNjLXYyWTB4ODQ4eTVid0wxa1RITktnEgIAEioQwg8PGg8_E9AGggQkAYAEKyqLARABGniBBv74_fwEAPALDAL6A_8BDv4GAvcAAADlAvH3AvwCAPcI_AEAAAAAEvoFAAAAAAD5BAEA__8AAAEK_wUEAAAABgT-B_0AAAAD_PYH_wEAAO70_QsD_wAABQP69_8AAAD9Bvn8-v4AAfv_BPgAAAAA-_4M_v8AAAAgAC2mjt87OBNACUhOUAIqhAIQABrwAVCv2fXZPEAD1_M6ACcf2ACh0vAARx_tANziFgDZ3C8A0uYx_xsGsv_c6goA2skg_834Av9_OP4B6wcjALgcBv9JrvYAPS3XAh_zGQLXDyr_9TfI_P7_IAEN8_f_ER_v_UAe9v4K-dABxh_j_xIhEgT13RQGEgzBBuVR_AE--Pz53tbpAMMIBQf_7ub-HM8SBR_xCv45Bxn8FCbz_P7uJAQHNeYASiwqAasqEvzk4BMPEfYU8-gR8PYgnw3-5NfCAh8F8gUvQssG8SHlCCweIQYA1A_wPFf_Bw7nDvnq9Qv-MQj7BNsZDPAfJe0GKtAFCyAALUr57jo4E0AJSGFQAipzEAAaYCoRAAMVHf4QHi3oFREc-Nr57Qve5RQAC8sACQr4AwQl984J9wABFvMUzAAAABwdDDHnABI8NwjRGO4TB-LZARLnf-AG0w0W-wnFBAXw8Obo1RQb7AD4AvP1-uLmFRfs_SAALWA3bjs4E0AJSG9QAiqvBhAMGqAGAACUQgAAYEEAADRCAAC4QQAAYEEAAChCAAAgQQAAUMEAAL7CAADowQAAMEEAAIjBAAC4wQAAIEEAAIA_AACAQAAAoEEAAFzCAAAAwQAAHMIAAEhCAACAvwAAbEIAABBCAADIwQAAUMEAAGDCAAAQwgAAcEIAAOBAAAAwwgAAEEEAAFTCAABUQgAAUEIAAIDCAACgQQAANEIAACBBAAB0QgAAQMAAANBBAADIQQAAAMAAADjCAAAUwgAA4EAAAHDBAADwQQAA4MAAAJbCAAAwwQAAdMIAAAAAAAAUQgAAhkIAACjCAADAwQAA8MEAAMBAAABAwAAAsMEAAODBAADIwQAAwkIAALjBAADoQQAAWEIAAADAAADYwQAAyEIAAGRCAAAwQQAACEIAAPBBAACgQAAAeMIAALJCAABcQgAAiMEAAFDCAADoQQAAEEEAAOBBAACgwgAAkMEAAMDAAADgQAAAMEIAAFBBAABwwQAAAEEAAKBAAACmwgAAMEEAAJ7CAAAcwgAA6EEAAEDBAAAAAAAAisIAAJBBAABMQgAARMIAAITCAAAQwQAAoEIAAKZCAAAAAAAAXEIAAChCAAAIwgAANMIAAJ5CAACQQgAAHEIAAFBBAAAoQgAAyMEAABBBAAAQQgAAhsIAAAAAAABowgAA6MEAAEBAAACgwQAANEIAABDBAAAowgAAHMIAAIC_AACgwAAAQEEAAAzCAACAQgAAWEIAAMBBAAAAwgAAmMIAAEBCAABAwAAAmMEAAOBAAACYQgAASMIAAEjCAAAcQgAAMEEAAIjBAAAwQgAA8EEAAIZCAADQQQAA-EEAAMhBAAAAwAAAgL8AAJBBAAAkQgAAuEEAAIRCAAAQwQAA4MAAAHBBAACAwQAAwMEAAMBAAACQQgAA4EAAAEzCAAC8QgAAMEEAAKhBAACIwQAAQEEAADDBAADYwQAAMMEAAERCAACowQAAsMEAAAjCAACwwQAASEIAAIRCAAAMwgAAFEIAAFBBAACQQQAAQEAAAFBBAABAQAAAoEEAALDBAAAAwAAAOMIAAIDBAAA4wgAASMIgADgTQAlIdVABKo8CEAAagAIAAKA8AACgPAAA2j4AAEC8AAAMvgAAPD4AABC9AAAzvwAAgj4AAAy-AAAsPgAAJL4AABQ-AAAcPgAAgDsAANi9AACCPgAAqL0AAOC8AADyPgAAfz8AAIK-AAAMvgAA2D0AABC9AAAQPQAAcL0AAIA7AABUPgAAhj4AAIg9AABwPQAANL4AAJg9AACKPgAAoDwAABC9AACovQAAqL0AALi9AAC4vQAAEL0AANI-AAAwPQAAED0AABS-AABcPgAAoLwAADS-AABEvgAAML0AACw-AAAwPQAADD4AABy-AAC4PQAAIT8AABS-AACYPQAAcD0AAKA8AAAsvgAAJD4AABw-IAA4E0AJSHxQASqPAhABGoACAAAMPgAAPL4AAGQ-AAAbvwAAMD0AAEA8AADIvQAAFD4AAJi9AACovQAAHL4AALi9AABEPgAAur4AAKi9AABAPAAAXL4AAEk_AACAuwAAUD0AAIg9AAAkvgAAoLwAADC9AACAuwAAyL0AAKA8AAAwPQAAgDsAADA9AACoPQAA6D0AAJi9AADIPQAAoLwAAHC9AACKPgAARD4AAMa-AAAQPQAARD4AAHC9AABQPQAA4LwAAHA9AACSvgAAf78AALg9AADYPQAAuL0AADC9AAAwvQAAZD4AACS-AAAMPgAA4DwAADC9AACoPQAAdL4AAPg9AACYPQAA4LwAAGy-AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=0OcJljPrcUM","parent-reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":716,"cratio":1.7877,"dups":["1174360805802683562"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1249456468"}},"dups":{"13725535334339629":{"videoId":"13725535334339629","title":"Python Optimization Example Snowball Rolling with Scipy Minimize","cleanTitle":"Python Optimization Example Snowball Rolling with Scipy Minimize","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hBcYXqRq500","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hBcYXqRq500?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":386,"text":"6:26","a11yText":"Süre 6 dakika 26 saniye","shortText":"6 dk."},"views":{"text":"20,6bin","a11yText":"20,6 bin izleme"},"date":"25 kas 2017","modifyTime":1511568000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hBcYXqRq500?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hBcYXqRq500","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":386},"parentClipId":"13725535334339629","href":"/preview/13725535334339629?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/13725535334339629?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10093772887992817650":{"videoId":"10093772887992817650","title":"Introduction To Optimization: Gradient Based Algorithms","cleanTitle":"Introduction To Optimization: Gradient Based Algorithms","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=n-Y0SDSOfUI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/n-Y0SDSOfUI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":326,"text":"5:26","a11yText":"Süre 5 dakika 26 saniye","shortText":"5 dk."},"views":{"text":"80,4bin","a11yText":"80,4 bin izleme"},"date":"29 mar 2017","modifyTime":1490745600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/n-Y0SDSOfUI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=n-Y0SDSOfUI","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":326},"parentClipId":"10093772887992817650","href":"/preview/10093772887992817650?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/10093772887992817650?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14757278499574252128":{"videoId":"14757278499574252128","title":"Introduction To Optimization: Objective Functions and Decision Variables","cleanTitle":"Introduction To Optimization: Objective Functions and Decision Variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AoJQS10Ewn4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AoJQS10Ewn4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":228,"text":"3:48","a11yText":"Süre 3 dakika 48 saniye","shortText":"3 dk."},"views":{"text":"112,9bin","a11yText":"112,9 bin izleme"},"date":"22 haz 2017","modifyTime":1498089600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AoJQS10Ewn4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AoJQS10Ewn4","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":228},"parentClipId":"14757278499574252128","href":"/preview/14757278499574252128?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/14757278499574252128?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11974934385796364506":{"videoId":"11974934385796364506","title":"Introduction to Optimization: Calculating Derivatives","cleanTitle":"Introduction to Optimization: Calculating Derivatives","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=QGo31GQjEvE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/QGo31GQjEvE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":231,"text":"3:51","a11yText":"Süre 3 dakika 51 saniye","shortText":"3 dk."},"views":{"text":"12,6bin","a11yText":"12,6 bin izleme"},"date":"23 nis 2019","modifyTime":1555977600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/QGo31GQjEvE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=QGo31GQjEvE","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":231},"parentClipId":"11974934385796364506","href":"/preview/11974934385796364506?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/11974934385796364506?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1548015658623383286":{"videoId":"1548015658623383286","title":"Python Optimization Example: Constrained Box Volume with Gekko","cleanTitle":"Python Optimization Example: Constrained Box Volume with Gekko","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UFMFMMHVMp0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UFMFMMHVMp0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/channel/UCkL2HNDjyhrT6hgWjikmQAg","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":233,"text":"3:53","a11yText":"Süre 3 dakika 53 saniye","shortText":"3 dk."},"views":{"text":"4,3bin","a11yText":"4,3 bin izleme"},"date":"4 mar 2018","modifyTime":1520121600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UFMFMMHVMp0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UFMFMMHVMp0","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":233},"parentClipId":"1548015658623383286","href":"/preview/1548015658623383286?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/1548015658623383286?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17670816427421717288":{"videoId":"17670816427421717288","title":"Introduction to Optimization: What Is Optimization?","cleanTitle":"Introduction to Optimization: What Is Optimization?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Q2dewZweAtU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Q2dewZweAtU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":236,"text":"3:56","a11yText":"Süre 3 dakika 56 saniye","shortText":"3 dk."},"views":{"text":"288,9bin","a11yText":"288,9 bin izleme"},"date":"29 mar 2017","modifyTime":1490745600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Q2dewZweAtU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Q2dewZweAtU","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":236},"parentClipId":"17670816427421717288","href":"/preview/17670816427421717288?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/17670816427421717288?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6867508965353276445":{"videoId":"6867508965353276445","title":"Introduction To Optimization: Gradient Free Algorithms (2/2) Simulated Annealing, Nelder-Mead","cleanTitle":"Introduction To Optimization: Gradient Free Algorithms (2/2) Simulated Annealing, Nelder-Mead","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NI3WllrvWoc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NI3WllrvWoc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":253,"text":"4:13","a11yText":"Süre 4 dakika 13 saniye","shortText":"4 dk."},"views":{"text":"44bin","a11yText":"44 bin izleme"},"date":"21 eki 2017","modifyTime":1508544000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NI3WllrvWoc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NI3WllrvWoc","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":253},"parentClipId":"6867508965353276445","href":"/preview/6867508965353276445?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/6867508965353276445?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1575977273860767372":{"videoId":"1575977273860767372","title":"Python Gekko Optimization Suite - Free Engineering Optimization Software","cleanTitle":"Python Gekko Optimization Suite - Free Engineering Optimization Software","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bXAkr7MPf4w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bXAkr7MPf4w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":412,"text":"6:52","a11yText":"Süre 6 dakika 52 saniye","shortText":"6 dk."},"views":{"text":"14,2bin","a11yText":"14,2 bin izleme"},"date":"1 ağu 2018","modifyTime":1533081600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bXAkr7MPf4w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bXAkr7MPf4w","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":412},"parentClipId":"1575977273860767372","href":"/preview/1575977273860767372?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/1575977273860767372?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8837099119282458309":{"videoId":"8837099119282458309","title":"Introduction To Optimization: Gradient Free Algorithms (1/2) - Genetic - Particle Swarm","cleanTitle":"Introduction To Optimization: Gradient Free Algorithms (1/2) - Genetic - Particle Swarm","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3QJjfeVrut8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3QJjfeVrut8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":324,"text":"5:24","a11yText":"Süre 5 dakika 24 saniye","shortText":"5 dk."},"views":{"text":"48,1bin","a11yText":"48,1 bin izleme"},"date":"14 tem 2017","modifyTime":1499990400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3QJjfeVrut8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3QJjfeVrut8","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":324},"parentClipId":"8837099119282458309","href":"/preview/8837099119282458309?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/8837099119282458309?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16490576410348038561":{"videoId":"16490576410348038561","title":"What is Least Squares?","cleanTitle":"What is Least Squares?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=S0ptaAXNxBU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/S0ptaAXNxBU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":162,"text":"2:42","a11yText":"Süre 2 dakika 42 saniye","shortText":"2 dk."},"views":{"text":"141,9bin","a11yText":"141,9 bin izleme"},"date":"17 nis 2022","modifyTime":1650153600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/S0ptaAXNxBU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=S0ptaAXNxBU","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":162},"parentClipId":"16490576410348038561","href":"/preview/16490576410348038561?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/16490576410348038561?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13533406073974104741":{"videoId":"13533406073974104741","title":"What is Machine Learning?","cleanTitle":"What is Machine Learning?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YKOQ5vtLw1M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YKOQ5vtLw1M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":201,"text":"3:21","a11yText":"Süre 3 dakika 21 saniye","shortText":"3 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"4 eyl 2023","modifyTime":1693785600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YKOQ5vtLw1M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YKOQ5vtLw1M","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":201},"parentClipId":"13533406073974104741","href":"/preview/13533406073974104741?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/13533406073974104741?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8382447513253249100":{"videoId":"8382447513253249100","title":"Python Scipy Optimization Example: Constrained Box Volume","cleanTitle":"Python Scipy Optimization Example: Constrained Box Volume","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=iSnTtV6b0Gw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iSnTtV6b0Gw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":314,"text":"5:14","a11yText":"Süre 5 dakika 14 saniye","shortText":"5 dk."},"views":{"text":"40,4bin","a11yText":"40,4 bin izleme"},"date":"5 mar 2018","modifyTime":1520208000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iSnTtV6b0Gw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iSnTtV6b0Gw","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":314},"parentClipId":"8382447513253249100","href":"/preview/8382447513253249100?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/8382447513253249100?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"200881831292098223":{"videoId":"200881831292098223","title":"How to solve the Rosenbrock optimization problem in Matlab with fminunc","cleanTitle":"How to solve the Rosenbrock optimization problem in Matlab with fminunc","host":{"title":"YouTube","href":"http://www.youtube.com/live/bd43rrHmsx0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bd43rrHmsx0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":226,"text":"3:46","a11yText":"Süre 3 dakika 46 saniye","shortText":"3 dk."},"views":{"text":"16,3bin","a11yText":"16,3 bin izleme"},"date":"9 ağu 2019","modifyTime":1565308800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bd43rrHmsx0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bd43rrHmsx0","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":226},"parentClipId":"200881831292098223","href":"/preview/200881831292098223?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/200881831292098223?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2956721971647633916":{"videoId":"2956721971647633916","title":"What is the Traveling Salesman Problem?","cleanTitle":"What is the Traveling Salesman Problem?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1pmBjIZ20pE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1pmBjIZ20pE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/channel/UCkL2HNDjyhrT6hgWjikmQAg","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":161,"text":"2:41","a11yText":"Süre 2 dakika 41 saniye","shortText":"2 dk."},"views":{"text":"176,7bin","a11yText":"176,7 bin izleme"},"date":"4 şub 2021","modifyTime":1612396800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1pmBjIZ20pE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1pmBjIZ20pE","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":161},"parentClipId":"2956721971647633916","href":"/preview/2956721971647633916?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/2956721971647633916?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9921008449319883731":{"videoId":"9921008449319883731","title":"Matlab Fmincon Optimization Example: Constrained Box Volume","cleanTitle":"Matlab Fmincon Optimization Example: Constrained Box Volume","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=8uDpy-pbJr0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/8uDpy-pbJr0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":288,"text":"4:48","a11yText":"Süre 4 dakika 48 saniye","shortText":"4 dk."},"views":{"text":"38,9bin","a11yText":"38,9 bin izleme"},"date":"8 mar 2018","modifyTime":1520467200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/8uDpy-pbJr0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=8uDpy-pbJr0","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":288},"parentClipId":"9921008449319883731","href":"/preview/9921008449319883731?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/9921008449319883731?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12588584131024358996":{"videoId":"12588584131024358996","title":"What is Newton's Method?","cleanTitle":"What is Newton's Method?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zqezrB_VssQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zqezrB_VssQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa0wySE5EanloclQ2aGdXamlrbVFBZw==","name":"AlphaOpt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=AlphaOpt","origUrl":"http://www.youtube.com/@alphaopt2024","a11yText":"AlphaOpt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":149,"text":"2:29","a11yText":"Süre 2 dakika 29 saniye","shortText":"2 dk."},"views":{"text":"4,5bin","a11yText":"4,5 bin izleme"},"date":"6 tem 2022","modifyTime":1657065600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zqezrB_VssQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zqezrB_VssQ","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":149},"parentClipId":"12588584131024358996","href":"/preview/12588584131024358996?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/12588584131024358996?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1174360805802683562":{"videoId":"1174360805802683562","title":"\u0007[Alpha\u0007] Sentai - Get All \u0007[Alpha\u0007] SEO Tools For $47.00! - YouTube","cleanTitle":"Alpha Sentai - Get All Alpha SEO Tools For $47.00! - YouTube","host":{"title":"YouTube","href":"http://www.vids.eu.org/video/0OcJljPrcUM/alpha-sentai-get-all-alpha-seo-tools-for-4700.html","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0OcJljPrcUM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYy12MlkweDg0OHk1YndMMWtUSE5LZw==","name":"Anthony Hayes","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Anthony+Hayes","origUrl":"http://www.youtube.com/@TonyHayes","a11yText":"Anthony Hayes. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":848,"text":"14:08","a11yText":"Süre 14 dakika 8 saniye","shortText":"14 dk."},"date":"3 eki 2016","modifyTime":1475452800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0OcJljPrcUM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0OcJljPrcUM","reqid":"1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL","duration":848},"parentClipId":"1174360805802683562","href":"/preview/1174360805802683562?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","rawHref":"/video/preview/1174360805802683562?parent-reqid=1769448066912034-10838428822879308352-balancer-l7leveler-kubr-yp-sas-98-BAL&text=AlphaOpt","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"0838428822879308352798","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"AlphaOpt","queryUriEscaped":"AlphaOpt","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}