{"pages":{"search":{"query":"Complexity Explorer","originalQuery":"Complexity Explorer","serpid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","parentReqid":"","serpItems":[{"id":"11900139896122271324-0-0","type":"videoSnippet","props":{"videoId":"11900139896122271324"},"curPage":0},{"id":"484701690531094010-0-1","type":"videoSnippet","props":{"videoId":"484701690531094010"},"curPage":0},{"id":"12574188980177506222-0-2","type":"videoSnippet","props":{"videoId":"12574188980177506222"},"curPage":0},{"id":"2603486225396366306-0-3","type":"videoSnippet","props":{"videoId":"2603486225396366306"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENvbXBsZXhpdHkgRXhwbG9yZXIK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","ui":"desktop","yuid":"4368173501769287840"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"6917473841773690498-0-5","type":"videoSnippet","props":{"videoId":"6917473841773690498"},"curPage":0},{"id":"1027685630433261309-0-6","type":"videoSnippet","props":{"videoId":"1027685630433261309"},"curPage":0},{"id":"2699663168813888337-0-7","type":"videoSnippet","props":{"videoId":"2699663168813888337"},"curPage":0},{"id":"5497887888205827790-0-8","type":"videoSnippet","props":{"videoId":"5497887888205827790"},"curPage":0},{"id":"14079667538814970098-0-9","type":"videoSnippet","props":{"videoId":"14079667538814970098"},"curPage":0},{"id":"14518805307748335022-0-10","type":"videoSnippet","props":{"videoId":"14518805307748335022"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENvbXBsZXhpdHkgRXhwbG9yZXIK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","ui":"desktop","yuid":"4368173501769287840"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"6995468420430888477-0-12","type":"videoSnippet","props":{"videoId":"6995468420430888477"},"curPage":0},{"id":"16015106436561118623-0-13","type":"videoSnippet","props":{"videoId":"16015106436561118623"},"curPage":0},{"id":"2626632674839883728-0-14","type":"videoSnippet","props":{"videoId":"2626632674839883728"},"curPage":0},{"id":"11215720910939443704-0-15","type":"videoSnippet","props":{"videoId":"11215720910939443704"},"curPage":0},{"id":"18419975817460109811-0-16","type":"videoSnippet","props":{"videoId":"18419975817460109811"},"curPage":0},{"id":"3747625691088049190-0-17","type":"videoSnippet","props":{"videoId":"3747625691088049190"},"curPage":0},{"id":"7929896159204726305-0-18","type":"videoSnippet","props":{"videoId":"7929896159204726305"},"curPage":0},{"id":"14249923927684853359-0-19","type":"videoSnippet","props":{"videoId":"14249923927684853359"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENvbXBsZXhpdHkgRXhwbG9yZXIK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","ui":"desktop","yuid":"4368173501769287840"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DComplexity%2BExplorer"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"8562164047900364557203","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466868,0,35;1405819,0,58;1457620,0,66;66182,0,42;1424968,0,76;1460712,0,70;1462157,0,6;1459297,0,67;1459323,0,67;1461639,0,63;138060,0,37;1461704,0,74;1474200,0,10;1464523,0,99;1470250,0,78;1463533,0,76;1282205,0,20;1466296,0,0;1465943,0,43;1472532,0,11;1463530,0,29;1464403,0,56;1146115,0,18;1466618,0,91;1188717,0,81;1470515,0,14;133998,0,53;89018,0,88;1467157,0,30;1470317,0,99;1352004,0,41;1470414,0,2;972818,0,91;45973,0,38;151171,0,55;126331,0,18;1269694,0,99;1281084,0,94;287509,0,12;1447467,0,37;1447551,0,71;1468028,0,64"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DComplexity%2BExplorer","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Complexity+Explorer","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Complexity+Explorer","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Complexity Explorer: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"Complexity Explorer\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Complexity Explorer — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yfa2ca7deb5d15cd3014d2bfb6a5fe7cf","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1405819,1457620,66182,1424968,1460712,1462157,1459297,1459323,1461639,138060,1461704,1474200,1464523,1470250,1463533,1282205,1466296,1465943,1472532,1463530,1464403,1146115,1466618,1188717,1470515,133998,89018,1467157,1470317,1352004,1470414,972818,45973,151171,126331,1269694,1281084,287509,1447467,1447551,1468028","queryText":"Complexity Explorer","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4368173501769287840","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769287881","tz":"America/Louisville","to_iso":"2026-01-24T15:51:21-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1405819,1457620,66182,1424968,1460712,1462157,1459297,1459323,1461639,138060,1461704,1474200,1464523,1470250,1463533,1282205,1466296,1465943,1472532,1463530,1464403,1146115,1466618,1188717,1470515,133998,89018,1467157,1470317,1352004,1470414,972818,45973,151171,126331,1269694,1281084,287509,1447467,1447551,1468028","queryText":"Complexity Explorer","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"4368173501769287840","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"8562164047900364557203","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":150,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"4368173501769287840","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"11900139896122271324":{"videoId":"11900139896122271324","docid":"34-2-8-ZE3193C23836642F5","description":"To celebrate our 10th anniversary, we're excited to share a lecture from SFI President David Krakauer sectioning the concept of complexity and exploring complexity epistemology and emergence...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/786445/3385734216bd328a90c035790316a597/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9tNFNAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFBkFu1g5PlE","linkTemplate":"/video/preview/11900139896122271324?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Complexity Explorer Lecture: David Krakauer • What is Complexity?","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FBkFu1g5PlE\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoWChQxMTkwMDEzOTg5NjEyMjI3MTMyNFoUMTE5MDAxMzk4OTYxMjIyNzEzMjRqiBcSATAYACJFGjEACipoaG9tZ3pxdmJhYnBoa3djaGhVQzZzLTFUWWEtMWZCclVVSUdpanNoQ1ESAgASKhDCDw8aDz8T7g-CBCQBgAQrKosBEAEaeIH7_wH_-wYA9QEDBQcE_QEAAw71-f7-AO4GBgAB_wAA-vX4_PkAAAAFA_wJCQAAAPn2CvT8_gAABgoE8QQAAAAP-vYB9QAAAAP89gf_AQAA9_oFDQT_AAAPBfkO_wAAAPMA-gMCAAAA9____wAAAAALA_wJAAAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABf98_AODiDwH93BIAyhgEAIP6EP9H8tv_l_TwAMoMEgB0GgMB7OsqADL77_-nzgAAGPLi_uL4CgBEJfv_Uv7Q__0KIAEy4gMAA-9GAgjj6_7aGdP-9_krAd3h4v8cGAf_JCPuAfUh2gH6Dez8HvoSBA80BgMR8OYBHvf6AhHoJgQr4wP-HBAIBNAj8Pwj_zQF4OLNBCQIBf_e8wH-HQEGBgwACgYNKu3zC0TqA9gH-wLcBwzz_en5-A4_Af_v-d0LuRoMA8DFFvwMCxnzIu4G9vDbCBXbI_790gEVCQT4GPjGBvgD5hrwBfYD_wf_4wcEIAAtrZcJOzgTQAlIYVACKs8HEAAawAfxLeS-M8U3PfVHHLxV2fc8ElXTPPgwIL3MpZe9car1PD08lTwU88c888CRPFrahDx06uq9OEIQvbZgELzGa6Y-yKpSPOmXLbwG9IK-rJ9IPPEhirkVHE6-rE3IPDWXHzv05SC9RbJsPJG92jtc-Gu9lF5lvF9bhTskfE8-Tw-APb8NMbwLzbo9BKC8OxH20ryF2qW82TgHveBWsLz50I89hUSKva6gxLwVPra8JK6IvOhXKT3aXxG9x3Yovaa0_jsEkiA-BpFaOiV0vLxgKqw8xU5CPCkqtDtWUIy90MEJvVoUkbxkk9w90dSWvUdnC7zwbmA9W1U7vVbYZ7wvhvK9dJB8vP0hrDzdYDg-KaZcPeMbPjomusi9Tz6cO8WIqzvV52q8CdFJOslEgDxi4JQ80UESvdiygLtEFNM8R9KJPF8WyTwbnq49X5wzPfVSjLtXGAy9VxsIPVvkQ7wqcX09p749vNV-RrxHCIq9432Gveggu7tmk429mlMzvQR8DjudHMQ9BLiPu6XDILwYzJ88mr7Pu_6o3Tu-MJk8xxfEOpTWhLwpjJI8gGORO_VXvLvsOZQ9h5O6PefQWLwrtD08XwEWvKPElTpzTHa9gfdEvcrp47rTRIQ8T-rsu7EBCTy_a6e7OsO5PNY1f7z47G-9dvUvvZf6XLszaJ296euePGh2wLuYb1g8w6CnPDF5Bzy61248ryoWPNegkjvII6093hHfPAhVTbssQla9SGP-vKFdDTuCENq8J7zkPX1SiLnP6Fi830SuvfVIyrjlGco9DonWPLMsyzjG-ds94knBPMxapbmCbWm87sLgPJikmjltEk28KyQvPams4reqAXQ99XtnvRER5blWUp28Q8pPvLcDxTYGOzQ8_CNHPe5tgbmOlXO977uzvVePnzg2vOo86OyePamjxrhyMtE9zqXYPXQ147dkkSY8SQ1xO9tUqDjIL3I8l6iePYSQB7jCtLm8TIqfvQZgdjipZvs8tHGJPWDP67jmFsS8O9EEvREW6rgSR4O8niNSvXurHrewD7G9twy4vf5YOLhiV4m8qGJXO95gQbjK4QO-ENcePJf9Tjfal4c9XWequ7Dmlzi3xDs9P96QvFHfhTitmrG7orJhvd0ItDdX6OM9NH27PRDkN7kKXAi94sORvTylWLiw37g8DnogPQV1uDcofsw9XrwPvjgfMzky7qw9XCa-vexqQzdqTxk-qW6ZPQgCMrfiGK48b6WiPUwnUriX9EG9vLy_PekOEjhUNuy8RviNvc4G0LcgADgTQAlIbVABKnMQABpgJQsAKSYO-f4TRdzjDPoY5Or5Id_14gDt1ADsMvHm9uLAtwgCAAm8F-i7AAAA8_7sJ-8A-l_d-NYK_wjvwbvSESR_8A4Jzv07Cqj_1-zpA84eEBoxANUZvyk92Av6-RH9IAAtB1M3OzgTQAlIb1ACKq8GEAwaoAYAACDBAAA0wgAAEEIAAADAAACqwgAAnMIAAGBCAADAwQAAgMEAAOBAAADgQAAAQMIAADzCAAA0wgAAgL8AAEBBAACMQgAAsMEAAMBBAACgwgAALEIAACjCAAAoQgAAUEEAABRCAAD4wQAACMIAAJhBAAAwQQAAyEIAADDBAAAAQQAAZMIAAMDAAACYwQAABMIAAEDBAABkQgAAIEEAAARCAADgQQAAAEAAAOhBAACQwQAAFEIAAFBBAABoQgAAFMIAABhCAACAQAAA4MEAAGDBAAAcwgAAiMIAABDCAADoQQAAlMIAAIjBAACsQgAAxEIAANjBAACMwgAAwEEAAOjBAAAcwgAAgEAAAGDBAABAwAAAoMEAAHBCAADYQQAANEIAACDBAACQQQAAZMIAAABCAADywgAAoEEAAIDAAADAQAAALMIAALhCAACgwAAAvsIAAOBAAAAAAAAAEEEAANhBAABUQgAAhEIAAJBBAACgwAAAAMEAAMjBAADwQQAAuMEAAKhBAAAwQgAAqMEAAEDAAAAowgAAEEEAACBBAADgwQAAUEEAACTCAADQwQAA8MEAAHBCAADgwAAAKEIAAHxCAACAwgAAAEAAAEBCAABUwgAAAAAAAKzCAAAcQgAAdMIAAIA_AABswgAAfEIAAOjBAACgwgAAAAAAAAjCAAAQwQAA4MEAAHRCAABAwQAAJEIAALDBAAAAAAAAmEEAALDBAABwQQAAAEAAAMjBAACowQAAIMEAACBCAACIQQAAcMEAANhBAABAQAAAqMEAAHDBAAAsQgAAqkIAABxCAABEwgAAWMIAAEBAAADwQQAA4EAAADTCAABwwQAAoMEAABBBAAAAQQAADEIAAMjBAABQQQAAAEEAAHDCAACQwQAAwEEAAADBAADoQQAAIEIAAOhBAADYwgAALMIAAIrCAAAgQgAADMIAAIhBAAAAwAAALEIAAKDCAADQQQAAhsIAADDCAABAQAAADEIAAKDBAAB4QgAAgMEAAIhBAAAAwAAAwEEAAFxCAAAwwQAA8MEAADBBAACEQgAAMMEAAEBAAAB0wiAAOBNACUh1UAEqjwIQABqAAgAARL4AAOA8AADgPAAAlj4AALg9AABQPQAAXD4AAC-_AACOvgAAVD4AAIC7AAAEvgAATD4AAOg9AAAQPQAA2L0AABA9AADYPQAAUD0AAPI-AAB_PwAAqD0AAAw-AAAQPQAABL4AAOg9AAAQPQAAPL4AAMg9AAAcPgAAHD4AABQ-AABkvgAAgDsAAII-AADIPQAAXD4AACy-AACIvQAAUL0AAOi9AACAuwAAiD0AAHA9AAAMvgAAyj4AAAQ-AADIvQAAJL4AAMa-AACoPQAAyD0AAAw-AACmPgAAcL0AAEA8AAA3PwAAFL4AACQ-AAAwPQAALL4AAOA8AAAwPQAAkr4gADgTQAlIfFABKo8CEAEagAIAAHy-AAB0PgAAgDsAAFG_AABEPgAAmL0AADC9AACovQAA-L0AAFw-AAA0vgAADL4AAAw-AAC2vgAAcL0AABC9AABAPAAAOT8AAEw-AAB8PgAAED0AANg9AACCPgAAmL0AAAS-AADoPQAAXL4AAOg9AABcvgAAgDsAABA9AABQPQAAND4AAIA7AABMvgAAdL4AABw-AAAQvQAAuL0AAIA7AABwPQAA2L0AACy-AACoPQAAiL0AAPg9AAB_vwAAir4AAKK-AAC6PgAAij4AAOA8AAC2PgAAXD4AAIK-AABAPAAAyL0AAAS-AADYPQAAlr4AAIC7AABUPgAAPL4AAES-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=FBkFu1g5PlE","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11900139896122271324"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2032726526"},"484701690531094010":{"videoId":"484701690531094010","docid":"34-1-8-ZB01DB94F8B0F98E3","description":"To celebrate Complexity Explorer's 10th anniversary, we're excited to share a lecture from SFI President David Krakauer sectioning the concept of complexity and exploring complexity epistemology...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2834910/03360f9d0afab0f462feb30f93d7a9bd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FvAVNAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJR93X7xK05o","linkTemplate":"/video/preview/484701690531094010?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Complexity Explorer Lecture: David Krakauer • What is Complexity?","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JR93X7xK05o\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoUChI0ODQ3MDE2OTA1MzEwOTQwMTBaEjQ4NDcwMTY5MDUzMTA5NDAxMGqIFxIBMBgAIkUaMQAKKmhoZmhvanRldGxwdGd3YWJoaFVDOXJIWGdVRTlwaWt6WWNHckF1ak1YURICABIqEMIPDxoPPxPuD4IEJAGABCsqiwEQARp4gfv_Af_7BgD1AQMFBwT9AQADDvX5_v4A7gYGAAH_AAD69fj8-QAAAAUD_AkJAAAA-fYK9Pz-AAAGCgTxBAAAAA_69gH1AAAAA_z2B_8BAAD3-gUNBP8AAA8F-Q7_AAAA8wD6AwIAAAD3____AAAAAAsD_AkAAAAAIAAtxJ_jOzgTQAlITlACKoQCEAAa8AF_3z8A4OIPAfPtBQHKGAQAm_cMADD05wCX9PAA4g0GAWIS5QEE-yX_MQrbAafOAAAY8uL-4vgKAEQl-_9S_tD_AR0VARTCAwD6_i4CCOPr_uIW6P_q6h0C9_LNAC0jCP4oC-n9DwzWAe8F3QEw7A78HCb8Bw3c5AQt7wMHKOgc_hbx9vsnFxcE0CPw_BcdMwTg4s0EHRz1CezoAvsdAQYGAe8PAhAp7gULROoDxAj0_OXyFP7n4e_5Dj8B_wn73Qa5GgwDwMUW_CEGEvgR-wH_8NsIFe4U_wDSARUJDvQLAMYG-APnIAEAAgL9AP_jBwQgAC2tlwk7OBNACUhhUAIqzwcQABrAB_Et5L4zxTc99UccvFXZ9zwSVdM8-DAgvTyLOb1yGwg9x4EeOszSTj3o6Cc8k-V_vKFHDL5S3Iy8sCwCvcZrpj7IqlI86ZctvAb0gr6sn0g88SGKuRUcTr6sTcg8NZcfO_TlIL1Fsmw8kb3aO0zSK724Lsa83G2NPCR8Tz5PD4A9vw0xvAvNuj0EoLw7EfbSvIXapbzZOAe94FawvPnQjz2FRIq9rqDEvBU-trwkroi86FcpPdpfEb3Hdii9prT-O_c_ED4XoG28n0nyO2AqrDzFTkI8KSq0O1ZQjL3QwQm9WhSRvGST3D3R1Ja9R2cLvPBuYD1bVTu9VthnvC-G8r10kHy8_SGsPPsFOz7aN9c9RHXKOwmp-72l50w8JUQWuyZIF7znEa2875rGPF6WID0q9wy97xlLu0QU0zxH0ok8XxbJPBuerj1fnDM99VKMu1cYDL1XGwg9W-RDvCpxfT2nvj281X5GvEcIir3jfYa96CC7u2aTjb2aUzO9BHwOO50cxD0EuI-7pcMgvJ9lDD2C5QY8YgHcub4wmTzHF8Q6lNaEvCmMkjyAY5E79Ve8u-w5lD2Hk7o959BYvHicUrr3PSM68ztNPHNMdr2B90S9yunjutNEhDxP6uy7sQEJPL9rp7s6w7k81jV_vPjsb7129S-9l_pcuzNonb3p6548aHbAu5hvWDzDoKc8MXkHPLrXbjyvKhY816CSO8gjrT3eEd88CFVNu2nMP73QYzS9yI-duoIQ2rwnvOQ9fVKIuc_oWLzfRK699UjKuOUZyj0OidY8syzLOMb52z3iScE8zFqluYJtabzuwuA8mKSaOW0STbwrJC89qazit6oBdD31e2e9ERHluVZSnbxDyk-8twPFNjzB_jvo_gU9YinwuI6Vc73vu7O9V4-fODa86jzo7J49qaPGuHIy0T3Opdg9dDXjt2SRJjxJDXE721SoOMgvcjyXqJ49hJAHuMK0ubxMip-9BmB2OKlm-zy0cYk9YM_ruMF907xGGDC9gMFMuBJHg7yeI1K9e6set7APsb23DLi9_lg4uGJXibyoYlc73mBBuMrhA74Q1x48l_1ON9qXhz1dZ6q7sOaXOLfEOz0_3pC8Ud-FOK2asbuismG93Qi0N1fo4z00fbs9EOQ3uQpcCL3iw5G9PKVYuNvBCD3FUkk9dTGptih-zD1evA--OB8zOTLurD1cJr697GpDN2pPGT6pbpk9CAIyt-IYrjxvpaI9TCdSuG4Djb0naa49v_cWN1Q27LxG-I29zgbQtyAAOBNACUhtUAEqcxAAGmAhBwAhFhUBAhdA6egH_xLo5_EY7enlAPLZAOgm8-764sTAEv4ADb0R7r8AAADz-Pgj8wD2VuDv1QD3_-vLvtQSH3_vEgPZBzoIpgfm7fkA0RYCFSUA0yDDJjPaCALzEfsgAC0xt0Y7OBNACUhvUAIqrwYQDBqgBgAAaMIAAIBBAADYQQAAdMIAAGBBAABwwQAAzkIAAGBBAACiwgAA2MEAAEDAAAB8wgAA0MEAAKBAAAAIwgAAsEEAAGDBAAAgwgAAAMIAABBCAACIQQAASMIAAADAAADgQQAAkEEAAIDAAAAUwgAAgsIAADDBAAAAwQAAUEEAAIRCAAAkwgAAQMIAAK7CAAAIQgAAoMAAAJhCAAAEQgAAoEAAANjBAAAgQQAAAEIAAKBBAABAwAAAcMEAAETCAABMQgAAqEIAANBBAAAQwgAACMIAAMDAAAAwwQAAMEEAADRCAACWwgAAGEIAADBBAADwQQAAqEEAAKDBAAAQwQAABMIAAGBBAAAgwQAAFMIAAABCAABMQgAA6MEAAI5CAACYQQAAoEAAAOBBAACgwAAAiMIAAJDBAAA8wgAAKEIAAFzCAAC4wgAAzkIAAJjBAACQQQAAAEIAACzCAABMQgAAikIAALhCAADgQAAAIEIAAOxCAAAAAAAAgMIAACDBAAB0wgAAHMIAAEBAAABEQgAAMEEAAJjBAAAAQgAAaEIAAGzCAABEwgAAhEIAACDBAABgQQAABMIAANBBAACEQgAAQMEAACjCAADoQQAATMIAAAxCAABQQQAAuMEAAGDCAABowgAA8MEAANDBAADIwQAAkEEAAKBAAABAQAAALMIAAODAAACAPwAAgEAAAADAAADgwAAAwsIAALDBAACAwAAAAAAAAIBBAAC4QQAAPEIAAGDCAABcwgAAwEEAAOhBAAAIwgAArEIAAKDBAACKwgAAkMEAAExCAABQQgAA6MEAABjCAACQwQAAQEAAAIDAAAAQwQAA4EAAAARCAACAwQAAIEEAAATCAACAPwAAJMIAAIA_AACwwQAAYEEAAODAAADIQQAAoEAAADTCAAAAQgAAuEEAAATCAACIwgAAqMEAACDBAAAYQgAALMIAAKjBAADgwAAAsMEAAGDBAAD4wQAAEMEAAKJCAABcQgAAPMIAAFBBAABkQgAADMIAAM7CAACQQQAAQEIAAIC_AAAEwgAA0MEAAARCAACAvwAAAAAAAAhCIAA4E0AJSHVQASqPAhAAGoACAABUvgAAqD0AADA9AAA8PgAAmD0AAJg9AACCPgAAL78AAHy-AAAsPgAAcD0AAKC8AAA0PgAAND4AAIC7AAD4vQAAcD0AAMg9AACgPAAAAz8AAH8_AABQPQAA-D0AALg9AAA8vgAAqD0AAFA9AAAUvgAA2D0AALg9AAAcPgAADD4AAEy-AABQvQAAgj4AAEA8AABsPgAA-L0AAJi9AADgvAAAUL0AAKi9AACoPQAA4DwAAFC9AADGPgAA6D0AAAS-AACIvQAAur4AAMg9AADIPQAAPD4AAKY-AACovQAA4DwAAD8_AAAkvgAADD4AAIg9AAAsvgAAuD0AADA9AABMviAAOBNACUh8UAEqjwIQARqAAgAAir4AAAw-AADovQAAU78AADw-AABwvQAAML0AADS-AAAkvgAAFD4AABS-AAC4vQAABD4AANK-AACgPAAAEL0AABA9AAArPwAAdD4AALI-AAAwPQAAFD4AAII-AADIvQAAyL0AAHA9AAB8vgAAMD0AAFy-AACIvQAAcD0AAFA9AACCPgAAqL0AAMi9AABkvgAA-D0AAIA7AADovQAAcD0AADA9AAC4vQAAJL4AADA9AABwvQAAHD4AAH-_AADCvgAArr4AAJo-AACuPgAAyL0AAK4-AAA0PgAAir4AAEA8AADYvQAAHL4AALg9AACOvgAAoLwAAJY-AAAUvgAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=JR93X7xK05o","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["484701690531094010"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2064449717"},"12574188980177506222":{"videoId":"12574188980177506222","docid":"34-5-4-Z43A8A9C843772BBA","description":"This video will show you how to use the Complexity Explorer platform to take online courses and tutorials. For more information see complexityexplorer.org Complexity Explorer is the online...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2779904/0769d82396028bd0cda4ff0cc6a77a1a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/orx2MwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3ifx3EOtSm8","linkTemplate":"/video/preview/12574188980177506222?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"2019 How to Use Complexity Explorer","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3ifx3EOtSm8\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoWChQxMjU3NDE4ODk4MDE3NzUwNjIyMloUMTI1NzQxODg5ODAxNzc1MDYyMjJqiBcSATAYACJFGjEACipoaG9tZ3pxdmJhYnBoa3djaGhVQzZzLTFUWWEtMWZCclVVSUdpanNoQ1ESAgASKhDCDw8aDz8TigWCBCQBgAQrKosBEAEaeIH_-fz7_AUA8foK__sCAAEe-wb29QMDAO4J_wUIAAAA-_P__QMAAAAA-wENBQAAAPrzA_oC_gAA_g8A-vkAAAAS-QL_9wAAAP0C9wT-AQAA_fwJBAP_AAALBPkFAAAAAPX-BAEBAAAA__YBAAAAAAACAvwNAAAAACAALVsG4Ts4E0AJSE5QAiqEAhAAGvABcejt_7bsFv3_BAMBJQ75AakNHP8yB-wAgfjwAabP4QAsL_kBzg0N_ybrBf_E9jP_mQvpAEwQEgAL8yT_-joV_yMDAQAi7wUBLCbfASMMFQDfA9UAJQ_5AOrfFAAAKfj_Q_gB_xwk9Pz4Ah0A6jEBAP8cFwUO8xAItR8PBf8r5AHD1AgD6esPCKcQ9P77F_YH8PDy_hIz7__8MA7_CNr4-Bwt8vrHF_QCNRgUBQIEIgAAwwYHHfbl-Pbi4QQP5gAE7fX9B9zYAAAzChD2CvXh-xf0EATf6QgG7BD1AvL6HwQF7P709PYMCfcgBQz_2_cMIAAtwoQPOzgTQAlIYVACKs8HEAAawAeRt9y-vkiNPe_QC71Nnx0-MtUCPO9OIz0v4aA9kzpBvWDzoDyQoh4-ShLfPLdDATwEVDi-lqGiuwRIvrxxcrc-y6upPOgRKD2g_Ri-TezrvGd5AbwXfgC-6mA4PfmutzyoNc09c6nAvMVrw7wrMR8-bu-kvMsjST1NsIm8i8GDvTTfe7sRQpY969qDvZo737yESjw-yInAun5BQT13Urq8Z6G4PFeNyrxRTN679jnIPCncPLzMG1S79iUbvPUZBr0gD1i9Go_tPJT5R7zs3ko9e8WOvYh65jwiGfI9laLwvN5zabrEXig-Na0ePLnTZ7yNJRG9OMGSvZ-3pzwb6VY8cbXpvBlVSDuV3Fw9BkI3PXC2yDnZQpC9Nr26PEjsajv_mTy9oRsQPde3ODxYfi89dPU-PDt4XDzUhfM8utJXPDOJQbpINtc9SN8kvKJpAbsAdV49g0w3vcQ3UDqGyv890t4FvSrfWDw4PIO9k7g9veXbsbw-Mrc9uZ3HPMplpzhcTWg9h9K4vZkTkzukLcM9Bsq3vF2ofLvn3-49WVI2OkQ8CLzrciq9XOTevQOUK7zB7go9HtyCPKAabTvZhaW9GtNdvQvnPzxbcgY9B1NePKTwyTtt3p09jsAFOQQNS7soQi891p-rOoBNzrsmCbi9LCttPe0ELTkd9LY83EvaPaH0sDjzmg29hNqpOtaPCzz7m2s99gtWPQ4rJ7qH6dK79HiQPCj9FLth_9W9RmdUPQE22blV8bu9a-2CPYBa8zjiW5g9uiSYvB2fezkmA1s9aXFGvPKEczu7YNA9kmkjPQyik7i50mE9Lt6UvXNP3TjOuPq8xo4BvRJoxrfA7SQ9W--uOR6PxbkRaku9mMNJPLFlmTlKCxe-Ctyavamq4bZlRJi8clNDPa0ZMbcnPYK80wd9uvTwCbkk1hu631-jPYAisLeOuQQ8jQsHPc44CTmJEmi9vnMePRZZWTgKtaq7M7HvvBJOvLhJr4e94a0YPbpOkzjljkg8CY4mPOlbhLgRc-k9v8I4PQaX6jd2U2q9V8_JvVw6argPVDc98YLoPelBgjc9k-K8V8YLPTbNNjg5y5E94tFhvbqsZDhVhF07k8kJPSEyLTgkWne9HW3BvQ4WGjlC3Ku9K2U-vWBmOjjLODo7KlwKPeuwgzcFHxm9n9MiPX7tjTdMY7U93zywvd5-3DWHrTQ9E1wRPYh_M7iFVWE83Q39PJNPdziu75O9OuPAPR4C6biTz6G8zWKYvK1OiDdXCMs9-bIdPH73F7ggADgTQAlIbVABKnMQABpgUAIAI9Hz5QUrZQX2ALj5-9b2Bsu-Pv_r4v8G__H3DL6-4xEbADXsHPKiAAAAKv_sN7oAEX_DyOn15MvlrLPoID5j8SAUycQzEfTp3OX0_cAj_wkfABvmvxByLgsM4QbkIAAtXF8aOzgTQAlIb1ACKq8GEAwaoAYAAKDAAAA0QgAAnkIAAMjBAAAgwQAAgD8AAIDBAACAPwAAoMAAAKDAAAAAQAAAUMEAAILCAADAQAAANMIAAMjBAABwQQAAyMEAAABBAAAgwQAAyEEAAIBAAACAvwAAUEIAAABCAACKwgAAhsIAAIBBAABQQgAAgkIAADRCAAB0QgAAIMIAAABBAACQwQAAJEIAAMBBAABIQgAAIMEAABBBAAAEwgAAuEEAAAAAAABwwQAAAEIAAAhCAAAgwQAAKMIAAPZCAAC4wgAAKEIAAFBBAABwQQAAgL8AAPBBAACAQAAAcMIAAABBAACIQgAAAEAAAIBBAAAYQgAAMEEAAKDAAACAQQAAgL8AABhCAAC4wQAAQMIAAKhBAAAAwAAADEIAAIDBAACYQQAAQEEAAOjBAABgwgAAEMEAAHBBAACAQgAAPEIAAIJCAACYQQAAhsIAAABBAABgwQAAgEAAALBBAACQQQAAgMAAAPDBAACEQgAAgEAAAHDBAABwwQAAQMIAACDCAABgQgAAhMIAAIhBAABAQAAAXMIAAADAAAAAwwAAfMIAADDBAACwwQAAgL8AAOhBAABMwgAAfEIAAADCAACuwgAAkMEAAFRCAADIwQAAgMAAALBBAAAUQgAAHMIAAEBAAACgQQAAuMEAAKhBAABgQQAA2MEAABBCAAA0QgAAvsIAAJTCAABoQgAAHMIAAKDCAABIQgAAEEEAAEzCAACYQQAAgMAAACDBAADYwQAAFMIAAOBAAADCwgAAMEEAAHhCAAAgQQAAFEIAAFBBAABgQQAAuEIAAEDBAACAQQAASMIAADTCAAC4QQAAgEAAAJhBAAAkwgAAYMIAAPhBAACgQgAAAMEAAK7CAAA8QgAAysIAAPjBAADAQAAAHEIAAEDAAAD4QQAAYEEAABxCAAA8wgAAgMEAAJjBAACAwQAAQMAAACDBAAAIwgAAFEIAAFTCAADYwQAA6MEAAODBAAAQQgAAAEEAAIDAAAD4QQAA2EEAAODAAACgwgAAAMEAAADAAACgwAAAyMEAAEBCAABQQQAAkMEAABTCAAC2wiAAOBNACUh1UAEqjwIQABqAAgAAbL4AAEC8AADoPQAA3j4AABw-AAAwPQAArj4AAEG_AACyvgAAij4AAHA9AACOvgAA4DwAAOg9AADIvQAAMD0AAIA7AAA0PgAAhj4AAOI-AAB_PwAAqL0AAOi9AACAOwAAXL4AABQ-AABAvAAAVL4AABA9AABsPgAALD4AAMg9AACavgAAQDwAAII-AAAwPQAADD4AAMq-AAAcvgAAED0AAAw-AAAQPQAAgLsAAEC8AADYvQAAwj4AAKA8AACovQAAmL0AAKK-AAAMPgAA6D0AAFw-AABcPgAAQLwAADA9AAAzPwAAdL4AAFQ-AADIPQAAVL4AAFA9AABwvQAATL4gADgTQAlIfFABKo8CEAEagAIAAIK-AAC4vQAAPL4AAEW_AABMPgAAQDwAAAQ-AAAkvgAA-L0AAOg9AABEvgAA6D0AAKg9AABEvgAAUD0AAEC8AADgPAAAET8AACw-AADOPgAAyL0AABA9AABkPgAAoLwAABy-AACAuwAA2L0AAJi9AADgvAAAcL0AAKA8AADIPQAAFD4AANi9AACIvQAAyL0AAHw-AACYvQAAML0AALg9AACoPQAAQLwAAJi9AADYPQAA4LwAAPg9AAB_vwAAor4AABS-AACqPgAArj4AAOi9AABkPgAAXD4AAFy-AABQPQAAUL0AAJa-AACIPQAAuL0AAIg9AAAsPgAApr4AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=3ifx3EOtSm8","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12574188980177506222"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2702746262"},"2603486225396366306":{"videoId":"2603486225396366306","docid":"34-9-8-Z4B022957773C2AF3","description":"Introducing the first offering from Complexity Explorer in Spanish: a talk focused on philosophy of science in which SFI Professor Miguel Fuentes examines the concept of epistemological emergence...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/471708/226f3cfefc37a9c8a8d14ce9083fbf31/564x318_1"},"target":"_self","position":"3","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_UQoYnOKWzU","linkTemplate":"/video/preview/2603486225396366306?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Complexity Explorer Lecture: Epistemological emergence • Miguel Fuentes","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_UQoYnOKWzU\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChMyNjAzNDg2MjI1Mzk2MzY2MzA2WhMyNjAzNDg2MjI1Mzk2MzY2MzA2aq8NEgEwGAAiRRoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioQwg8PGg8_E_ILggQkAYAEKyqLARABGniB-_D8B_8BAPUBAwUHBf0BA_gNAfn-_gDrBRH6Bf8BAAQJBQD4AQAA-wX1_P8AAAAD-_37_f4BAA0CBv38AAAAFfkP-fcAAAAAF_YH_gAAAPf5BQ4E_wAAFgX-BgAAAADtAxAC_wAAAP0E_v0BAAAAFP_3DQAAAAAgAC0g_9c7OBNACUhOUAIqcxAAGmAfFwAwHPXw2ytA5fQX_gD1-SEVCOTiAA4MAAAa9eL1--nIHCb_Dq39Ab4AAAAu6u481QDmVwDo7QMa_RLvs9cQH3_9IfzXBSHq0ubx0yAM-uz5wxYAzRbc_ybR4THyERMgAC3t7kU7OBNACUhvUAIqrwYQDBqgBgAAAMEAAIjBAACoQgAAREIAANDBAAAYwgAAEEIAAOjBAAAgwgAALMIAAEDAAAB8QgAAQMIAALDBAABAQAAAIEEAAKDBAACowQAAUMEAAMbCAAAAwQAAAAAAAGTCAAAkQgAAQEEAAHhCAAA4wgAASMIAAJhBAABQQgAAHEIAAPhBAACYwQAAKEIAAIrCAADQQQAAAAAAAK5CAAC4wQAA2MEAAGDCAAC4wQAAAEEAAMDAAACgQAAAVEIAAGDCAAAgwQAADEIAAIjBAAC4QQAAUEEAAABAAACYQQAAWMIAALjBAACAvwAAgEEAAAAAAAAEQgAAgMIAAEDBAABYwgAAmMEAAEDBAABgQgAADEIAAIA_AAB8wgAALEIAAADBAAAgQgAAcMIAANRCAACwwQAAKMIAAIA_AADowQAAMMEAADTCAABgQQAAQMEAAMDAAADIwQAAFEIAAGDBAAAAwgAAgMAAACxCAACwwQAAPMIAADBCAAAMQgAA4EEAAMBAAABgwgAAgEAAAATCAACAPwAAoEEAAMDBAAAAQQAAEEEAAGzCAADAwQAAjEIAADTCAABQQQAAUMIAAPBBAAAQQgAAYEIAAIA_AADowQAA3EIAAPhBAAAgwgAApsIAAKDAAACowQAANMIAAITCAABMQgAAUMIAAEBAAAAIwgAATEIAACjCAACQQQAAlsIAAIA_AABQwgAAoMAAADhCAACSQgAAJMIAANhBAABAQAAARMIAAJTCAACwQQAAwEAAAPBBAAAwQQAA6MEAAARCAAAAAAAAgEIAAEDAAACgwQAAlkIAAMBAAACQQQAAmMIAABBCAAAAAAAA4EEAAHDCAAAAQgAAOEIAAEDCAACgQQAA2MEAAIDAAAC4QQAALMIAAGBBAACAvwAACEIAAPDBAABswgAAIEEAAODAAAAAQQAAwEEAAMBBAACAQgAAUMEAABBCAAA8QgAAdMIAACjCAACgQAAALMIAALjBAACowQAA3MIAAFRCAABYQgAAkEEAAAjCAACQQQAAEEEAAChCAACAQQAAYEEAABzCAAAwwQAAFMIAANBBIAA4E0AJSHVQASqPAhAAGoACAAAsvgAAuD0AADC9AABcPgAAcD0AAIg9AAAsPgAAHb8AAIq-AAAUPgAAUD0AABS-AABwPQAALD4AAMi9AABAvAAAoLwAALg9AABsPgAAwj4AAH8_AADovQAADD4AAIA7AACivgAAQLwAADA9AACGvgAA-D0AAJI-AABkPgAAmD0AAGy-AAAcvgAAND4AAHw-AADYPQAAhr4AAIq-AABEvgAAmr4AADA9AACAuwAAoLwAANi9AAA8PgAAnj4AAIa-AADovQAArr4AADC9AAAwPQAAqD0AAHw-AAC4vQAAgDsAAAs_AACgvAAAPD4AACQ-AAD4vQAAUD0AAJg9AACyviAAOBNACUh8UAEqjwIQARqAAgAAqL0AAII-AABQPQAAMb8AAMg9AADIvQAAML0AAOi9AAAkvgAAjj4AAEC8AABsvgAATD4AAMa-AAC4PQAAiL0AAFA9AAA5PwAAJD4AADw-AACgPAAAMD0AAII-AADYvQAA4DwAAOg9AAAcvgAAFD4AAFS-AABAvAAA4DwAADA9AACIPQAAgDsAAAy-AABEvgAAQDwAADw-AAAUvgAAiL0AABQ-AAAwvQAA6L0AAEA8AABwvQAAQLwAAH-_AAAkvgAAVL4AAHw-AABkPgAAcL0AABQ-AADYPQAAHL4AAIA7AACYvQAAMD0AAMi9AAAsvgAA4DwAACw-AACgvAAALL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_UQoYnOKWzU","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2603486225396366306"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6917473841773690498":{"videoId":"6917473841773690498","docid":"34-11-4-Z706F0ED0DE9C535D","description":"Marco Buongiorno Nardelli discusses his papers: Buongiorno Nardelli, M. (2020) Topology of Networks in Generalized Musical Spaces. Leonardo Music Journal, 30, 01079. & Buongiorno Nardelli, M...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/999509/c963ce58b38130a3a24505ec289d6419/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lHSbLgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7JTG5OPcp0U","linkTemplate":"/video/preview/6917473841773690498?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Complexity Explorer Journal Club: Marco Buongiorno Nardelli • Complexity of Music","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7JTG5OPcp0U\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChM2OTE3NDczODQxNzczNjkwNDk4WhM2OTE3NDczODQxNzczNjkwNDk4aogXEgEwGAAiRRoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioQwg8PGg8_E-kMggQkAYAEKyqLARABGniBAfoKBv4DAPb-AwX-Bf4BAg4G9Pj__wDtBwcAAf8AAAQJBQD4AQAA9P0D_QYAAAD4-gwAAv8AABgLBfMDAAAAFvn7AP8AAAD5-vUN_wAAAP_1BAgE_wAA_Qr3Av8AAAD29QUC_P8AAPoA9_sAAAAABAb4_AAAAAAgAC1prdo7OBNACUhOUAIqhAIQABrwAX8OGAKz1QH9BvbiAMIT7gCs4Bn_AR4JAMbfAgHG-NIA-Ar8ANL9DgH2Cv8Axu8SAO4E8f8RGAgAJQ8I_zoM7ADyJgkARNT4AR8VFgD47vgA4gwW__QBCwIU-f_-Fgvq_h_9Hf8mFPH_K-Tn_vzwJQDxCBQFFewG__b5AvzjGREA-fzkAPz4BgYUDv_7zOEfAdz35v4OE_z-7P7lAw0HCgb_6fEEGvz8CP0j7gP2EhL16ALxBecV9v3WChoC4hMD_uvnGAAK3hEAKjIDAP77-gD61woFB_L3Bs7y-wkQ7Qf6JxP5Dt_r9_cDCv4HCvkB_SAALfQXNzs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6JZtGPYR2Q7dAtha9_YUevgFqajzh0Fu8UMXNvTPXbj3vTBG7GM0avtPCYL0ZL6e8GHcTPtWKgLz-jYe7Y3yQvmZ5KL3SBKW8FRxOvqxNyDw1lx87EIR6vTqc1Dxd7yi9ILQuPhMvKr29qF08ukuCPfwTwbzyOge9figFPN75ajwRMOM7_tVDPWA-eb181rU8YOcmPg3TDb3xHvG8EYvYvMSiuD3TDqQ8QxF8vahHBL2Zav-7lMIcPuST37t6oxs9FaSAu8-XmL2A0Yo86_azvda-JTxV18a7p9myPJSGer1CobO7jz-MPRBl3jz4x5Y8Wz8dve7DCTzn2VE854knPQ68Wj3q4RA9TzwHvQ15yj2HYOY7wUwAvX-0ST1TfYK8XB0APpBmkTwzV4I7ogg5PgZMIL3ptJM8G56uPV-cMz31Uoy7Vg3CPGjFPD0eibg7M4tQvGByYz1So-s8Tl7kvdZCfzwHr8Q7jQGCuzvZl7wOyoe7lpYRPqizCb3PZ4C8Km8XPlYZzL33wxW7tUYuvRQZR70G62s6_J3Yu0PQhzwe0IQ7Ag02vdl3Bb259b-7bgWDPUEA3zyXErS7oCV-vKiljr04SIi8sestvWuKtrxe3Uo7tuQnPZj-ID25XSC8efNKPVwtBTyzmi48N0TGvZqHor0c-Vo5OYBevYAr2T2BSJY6soOIO-YEzb15O-i4yCOtPd4R3zwIVU27ZKuwvJbnhr2I5Ni6kuYPvWxGAT1PfG-6c_ONuiic-rubbnc3NyUPPeu4gD0d1bs5XGx_PFPjSjzjc785_o4yvUxREbwxQUE5-yDrvf-FVDy4vz-52GLXPdg-DbwsiL64pa2wvVrAnzzV2YS5ax7BvcSuor1Z-CI4Le4_PTwFWjrfEeW4k6kCPlx1fLvDyBA51QIAPfry3TzHoje4arM7Pc2RlbzgYQm5hjNkvTXNHjwPbVm47V9ePZ713zyJqFS4BGuBPK0MdLyxigM4u89WPXslmj3WzBM4Xg7AvXrbET0_EBW5nQ5HO3efA75D3oy3NXauPOaszz31DNg2SlGovWNu7Tz7BT442kJGPPj6Wr0o4xm4Yi-UPa1pHrw_ddy1EcOjvZ1Vlbxh3Zg3gpESPWV74zr4uIO4o0D_vcZeObztWDa417CFPakW0byn-EM3PiqZvA7Rjb0Gjfu3uHMBPcwrgr0vZnS4h9NTPf9RBT25UNM461zsvKqkpD0Bi8S4-zcUvYnONz2vDY-3X9LYvEmpuryR6gu3IAA4E0AJSG1QASpzEAAaYEMRACkrJuflET_I0Kv87wLdJwcA0vf_9O8Ay_YQ_DXoB8zmEgDgzQfltAAAAPbz9ArOAANr7-jg8OMF8xCKA0Upf_xDFNzpPvrW9u8C9Pjt-SEKCgDM-7YpQT8jHwkaKCAALVDsKTs4E0AJSG9QAiqvBhAMGqAGAAAAQgAAAAAAAMpCAABIQgAAGMIAAJjCAADIQQAATMIAABzCAACgwQAAgD8AAHRCAABIwgAAVMIAALDBAADYQQAAAMEAAEDBAAAMwgAAlsIAAIA_AACgQQAA4MEAAJhBAADgQAAA2MEAACTCAABIwgAAlEIAAIBCAAAQQgAAEEIAALjBAAC0QgAAUMEAAIhBAAAAQQAAXEIAACDBAABAwAAAEMEAANjBAACAwAAAUMEAAEBAAAAgQgAA4MAAAAjCAABQQgAAuEEAAMBAAACAvwAAwMAAAOBBAADAwQAALMIAAJDBAACAQAAAQEAAAODAAABwwgAAcMEAAODBAACYwgAAwMAAACRCAACMQgAAwMAAAKjBAAAoQgAAgD8AAIDAAACKwgAAnEIAACDBAACEwgAA-MEAABBBAADowQAAmMIAAPhBAABAwAAAYMEAAADAAABAQQAAEMEAAAjCAAAQQQAApEIAAGDBAAAQwQAAJEIAAHBCAAAAAAAAsMEAADDCAACAPwAAIMEAAADBAABAQQAAgEAAACRCAAD4QQAAZMIAAEBAAAAgQgAARMIAANBBAACKwgAA8EEAAJRCAACAQgAAoMAAAEDCAACiQgAAiEIAALDBAACcwgAAkEEAABDCAAA0wgAACMIAAAxCAAAgwgAAgEEAAIjBAABQwQAAMMIAAIhBAABAwgAAcMEAAJDCAAAQQQAAAEEAAFxCAABkwgAAgEEAANDBAACQwgAAEMIAAIhBAACgQQAAAMAAAARCAACAvwAAJEIAAEBBAACYQgAAgEAAAIjBAACEQgAAcMEAAMBBAAAAwgAAIEEAABhCAAAIQgAAIMEAAPhBAABQQgAACMIAALDBAABgwQAAiMEAAERCAAAcwgAAVEIAACBBAAC4QQAAuMEAALDBAAAYwgAABMIAACBBAAAAQQAAAEIAAJZCAAAEQgAAkkIAAPhBAAA8wgAAuMEAAEDBAABQwQAAjsIAAIDAAADowgAAnEIAAERCAACAPwAA2MEAAJBBAAC4QQAAmEIAAKBAAABAQQAAcMEAAABBAADIwQAAAEEgADgTQAlIdVABKo8CEAAagAIAAAS-AADCvgAATD4AAOg9AAAkPgAAZL4AAMi9AAAjvwAAbL4AAIg9AAAVPwAAEL0AAKI-AAC4PQAAcL0AABC9AABQvQAA-D0AAL4-AADyPgAAfz8AALo-AABEvgAAyj4AAEQ-AABQvQAA2L0AAKa-AACCPgAAnj4AAJg9AAB8PgAAUL0AAFA9AACKPgAAij4AABA9AACSvgAAmr4AAFy-AAC4vQAAQDwAANi9AAA0vgAAor4AABQ-AACmPgAAbL4AAMg9AAAlvwAAHD4AAK4-AACSPgAADD4AAPK-AADIvQAAST8AAII-AAD6PgAAHD4AAGS-AABQvQAAXL4AAFy-IAA4E0AJSHxQASqPAhABGoACAABsvgAADL4AAMg9AABtvwAAuD0AAFC9AAC4PQAAir4AAEy-AADgPAAARL4AAKC8AAAcPgAADL4AAFA9AAAQPQAA4DwAAGM_AACaPgAAyj4AAIA7AAAUvgAAPD4AAMi9AAAUvgAAEL0AAHC9AAAwPQAAPD4AAOA8AABAvAAAgLsAAJ4-AAD2vgAAgLsAAOg9AABEvgAAmL0AAPg9AAAwvQAAmj4AAEC8AABQvQAAyL0AADS-AADYPQAAf78AAAe_AAAwvQAAhj4AAK4-AACgvAAAqD0AAGQ-AACCvgAAmD0AAPi9AABwPQAAgLsAAHy-AAB8PgAA-D0AAOi9AAB8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7JTG5OPcp0U","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["6917473841773690498"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3908280662"},"1027685630433261309":{"videoId":"1027685630433261309","docid":"34-11-15-Z3735EB32DEC37B23","description":"These are videos from the Introduction to Complexity course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics you'll...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sfGdcAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbNbbbrB_aUk","linkTemplate":"/video/preview/1027685630433261309?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: Definitions of Complexity","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bNbbbrB_aUk\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChMxMDI3Njg1NjMwNDMzMjYxMzA5WhMxMDI3Njg1NjMwNDMzMjYxMzA5apMXEgEwGAAiRRoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioQwg8PGg8_E4kDggQkAYAEKyqLARABGniBAQP9AvsFAAMABQYBCPwCAg0F9Pj__wDnBAoIBv4BAPf5APcBAAAA_QL8BQEAAAD4_f72-v8AAAYFBPsEAAAADPr5_P4AAAAFAfwR_wEAAPf6BQ0E_wAAAAD5Cv8AAADwCAIG_gAAAPsA9_wAAAAAD_4JBAAAAAAgAC13W-M7OBNACUhOUAIqhAIQABrwAXQLBAKwAxH9OgDw_-8J4QGBBQv_MfbnAKX69QGs7t__CCH7AN3vCwAFEh3_3v_-AP_n5QAO8wkBIQECADgLCwAJAR0AN_4GACUCBgDqBe0A9wr2_yX5HgH96BcAExEFABUQAv7i-OsAAxL6_vfzGAL-Bw0BHfIAAQwL-wP_Ef_9_AgCAxkEFgDoA_f62_gH_uwC6AH0DfoD--UCBvkR_wPrAAsBHPb1ACkZ_QH67fb88wEGAA4M_vsQBQ4ECxb3-_DyBwAG6_8A3xgACDXsDAn69hj2-fUO-vYV7vgKAQL47fwC-e0MAgb6-g4K-f8D-iAALW4nSDs4E0AJSGFQAirPBxAAGsAH6V8Sv_mFlzxO-N87d1EPPfwBmj0kMw-8J4UZPX_1XTyjOp080hC8O-xcYj0DVIK8mx2hvkahm7zIZ6g8_tWLPiDEnzyGqTE73PQXvn7UNT2qYg08T3iRvmcVTD2p5ou6bueBPZakXzsUi0k9KoYwPbL0QT0cnwM8IKjouh11ETwz3AC9mK1rvRflQ728SQK9S1fQPUlkP73qeEy8aRkZPr1fO71lF-87WG7OPH8bHDvY1WQ8dvk7vf_jKTxLTUw89z8QPhegbbyfSfI7YhB4PQliSj38mEW8qncAvC7lmTtr6DA80sWmPHg7Jz22aja7GrWcPTHwt7ww4Sc76tCUvWnvwjxv3Qg99fX8PZyiCD3rK1m8suSeOwyk1TyFTdM8FXUFvJ_EjLwxlDi8y8dkPUOXi7zesp47oxe9OwUz6DsQtcg8Yu8qPX5AuTqO2P66ZsECO7mEqDzDzjk7ml13vAIlCr1Syxy7C7jnvXZQiTtbhJi82ChwPcXuob01yfY7871QPSJrETzWbn07lmR4PD_A_zxoGZA7Y-xEPXswKT26FBO8N-JJPcXbNL3OORc8E-OrPJ1Rjj38o3O7n_irvc3K9jwMnY28uphQPR8bV71iaqY89rXuPIdbUzu4x3M7aPbvPLMqHb36NF28jpOSvWAu87uEERi7trwyvSvWFb3urnW7oYbPPaUX0juj6rK70dUxvWy6eTvDBrA7h-nSu_R4kDwo_RS77c9qvdX_nrzq-Xu6a3ueu3SbwD04_TC5XdWCO5ouurwQFym7tFgru1lgGT3NeVA5puSWPalWGr2Mj465m2jhPI-GGL1XrnQ6HHfvPPhmZbwxagI6QLgnveN9pjzcgSI6h-T_PO67_Tzynac5Bjs0PPwjRz3ubYG5HBXuvNAVmzxRiwS5Z3yEPLdcorzNVhq43FS0uqPAjLzQkW053c_pvHfkfry_NrW4sVUbvLTWhrz2Hmu466RjPKKMor2_UmQ5OeWbvH1v3TwYt_y3XkZWvMUK7bwECPS3Br33vMXRy7w0_mU4UkjPuz48q71PsuQ4THVcPER9MTnoP4q27CWXvQObzrxEeBE4SEhJvNkMS7zoiSW44hyaPAUiurxuO4S3sK-1PLPmnL3qqSw2lcBBPXu80DzELwq5B7ZKvP9YDDyjUaI2M4ckPJ6gKD13jv63PTvsOwy0Nr3NhCi49nR6PeAP370_mZu3ipZXPRBY-T2NF0A48LI1vVzMzz0MRgq5BqF8vWAcgTxhfLU3e7o_vVELD73IH7e3IAA4E0AJSG1QASpzEAAaYDoHACjwIsfuFXTf5wvAD-H0A_oKxgr_3-j_CwXA1eIj06zk9v8gpOf3pQAAAPgA5SfIAAh_xvTTIeAO-9uZ5gs6cgU9_9q-KeSc-iMW3-jyBCD2IgD984MlRR7tSxQG_iAALRV_FTs4E0AJSG9QAiqvBhAMGqAGAACwwQAAEEIAACBCAAAQwgAA-MEAAMDAAAAYQgAAEMIAAJbCAACwQQAAmEEAAPhBAAAAwAAA0MEAAPBBAACaQgAAsEEAAEDBAACAPwAAuMEAAGRCAACgwQAA0EEAAEDAAAC4QQAAYEIAAGTCAABcQgAAAEEAADjCAADoQQAAnEIAALTCAABcwgAAFMIAAAjCAABQwQAAeEIAADhCAABwQgAAXMIAABhCAAAQwgAACEIAALjBAAAgwQAAAMEAAIBAAADUQgAA8MEAAJLCAABAQAAA4EEAABjCAABAwAAAmkIAANbCAAD4QQAAEEIAANBBAAAQQQAAhMIAAKhBAADAQAAAcEEAAJBBAAAgwgAAuMEAACBBAABQQQAAcMIAAEBCAACWwgAAYEEAAPjBAAAgwQAAOMIAAFDBAACYQQAAoMAAAI7CAAAcQgAASMIAAPDBAADAwAAAAMEAAERCAADAQAAAQEIAAJjBAABAwQAAVEIAAKBBAACawgAAOEIAANDCAACEwgAAOEIAADDBAABQwQAAGMIAAIDAAADwQQAAMMIAAIBAAACEQgAAoMEAAMBAAADowQAAsEEAAHBBAAC4QQAALMIAAEDBAACAPwAAeMIAACjCAABgwQAAvkIAAAjCAACKwgAAoMAAALhBAACYwQAAGMIAABDBAAAgQgAAOMIAALDBAACCQgAAnEIAAABCAABAwgAAuEIAAOBAAACwQQAAaEIAAJZCAADowQAAwMEAAFDBAABIQgAAQMAAAJhBAACWQgAAAEAAAKZCAACAPwAAoEAAAOBAAACwQQAAMEIAAEDAAAAkwgAAIEIAALBBAABIwgAAIMEAADzCAACYQQAAQEEAAOBAAACgwQAABMIAACTCAADAwQAAEEIAANhBAACowQAAIMIAALhBAADowQAAgL8AAAjCAAAAAAAAmEEAAIC_AADAQAAAjMIAAExCAAAIwgAA4MEAADBBAADQQQAANEIAAKBBAADgQAAAlkIAACDBAAAAQQAAFMIAACDCAACAQQAAMEEAAIhBAABcQgAADEIAAPjBAACAQQAAQEAgADgTQAlIdVABKo8CEAAagAIAAOK-AAC4vQAAqL0AAI4-AABQvQAAHD4AAOY-AAAxvwAAsr4AACy-AACOPgAAgr4AAKC8AACOPgAA4DwAAIK-AACAOwAA6D0AAGQ-AAA_PwAAbz8AANg9AACAOwAAcD0AAHy-AACWPgAAqL0AANi9AABEPgAAhj4AAL4-AAA0vgAAVL4AAKg9AADKPgAABD4AAMg9AAC-vgAAnr4AAMg9AABwPQAAtr4AADC9AACoPQAAFL4AACE_AACWPgAAvr4AADS-AACqvgAA6L0AADC9AACyPgAAVD4AACS-AAAEPgAAfz8AANg9AAAUPgAAmL0AAJ6-AADYPQAABL4AAP6-IAA4E0AJSHxQASqPAhABGoACAACavgAALL4AAEC8AABdvwAAXD4AACw-AAA0PgAAJL4AAGS-AADIPQAAJL4AAIg9AABAvAAAfL4AAKA8AADYPQAAVD4AAEk_AAC6PgAA5j4AABS-AABEPgAAdD4AAIC7AACevgAAbL4AAJi9AABAPAAAJL4AAIi9AAAsPgAAyD0AADQ-AACgvAAAVD4AAJi9AAB8PgAAMD0AAFy-AACYPQAARD4AAKg9AABsvgAAoDwAAMi9AACePgAAf78AAAO_AACgvAAAVD4AAPI-AADgPAAAsj4AADw-AACYvQAAqD0AAFC9AAAcvgAAdD4AAI6-AADYPQAAsj4AANa-AAAEviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=bNbbbrB_aUk","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1728,"cheight":1080,"cratio":1.6,"dups":["1027685630433261309"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2943857526"},"2699663168813888337":{"videoId":"2699663168813888337","docid":"34-1-15-Z3B2C49281738DE24","description":"These are videos from the Nonlinear Dynamics course offered on Complexity Explorer (complexity explorer.org) taught by Prof. Liz Bradley. These videos provide a broad introduction to the field...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/218633/39f49c660062e48f61a37d58233010ce/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/XATTWQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVA29THVdNz0","linkTemplate":"/video/preview/2699663168813888337?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Complexity Explorer Nonlinear Dynamics Teaser","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VA29THVdNz0\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChMyNjk5NjYzMTY4ODEzODg4MzM3WhMyNjk5NjYzMTY4ODEzODg4MzM3aogXEgEwGAAiRRoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioQwg8PGg8_E94BggQkAYAEKyqLARABGniB_v4BCPsFAO8DBgYAA_8BAAMO9fn-_gDlEQcBA_0BAPvz__0DAAAACgr4CfwAAAD_-v7x__4BAAUGB_n4AAAADPsAAAEAAAD9AvcE_wEAAP38CQQD_wAADP7-AQAAAAD2BwgD__8AAPsA9_wAAAAABgIBAAAAAAAgAC15oOI7OBNACUhOUAIqhAIQABrwAX_xIwHD_QD-8fz-AN0NzQCpEQoAByb1AO74AADkCfkBYin7AMDaDQAt-goAtv75ABIi8f4gAhEABgUBACYP_AHQ9REA_dsFAhjxHAEK5P0AyyEI_uMDAf_s9PMB-f8BAdnu9QAuDf___-34_yEAEP756O8B_h_o_wDz8QYMIfcDIOsC_gQH-AAVAR8B6QYL_RoB_fsjDPMD9QX9Awv3CAUb9P8GIQn8AgMEB_rn9A377fPx-PY4B_8E8gAIAwgN-fDkBvjz3wz1Jfr8-fAM-QXpAPkEzQYABeHaCgHT9QD_FzH4Bggw_P8B2QMJDdsNBCAALUEIPDs4E0AJSGFQAirPBxAAGsAHkgfyvqZACz3gg5e8bUGqPba5Fj0AaaQ8uRrZvZDY7rxTK6c8K6uEPWmIbz0PCV-7irm6vRAsHb0tVMg8fnMfPoXveD2P_8I87-VOvhCoQz0YrMC7T3iRvmcVTD2p5ou6uYZpud2D6zsp2DW8GtzWvd7zMjwoGW88xApXPslsmrzixWc8D1hDvT8ZY7xsiea8G0dcPirZe71HulG7hh5xPU-bJ73Vgi29bEaBvdTUcj2RZgc9f-dtPaj16bv31yG8OMBMPe1OUr0tYUg8MHSZO8O2ZT0HVTQ8l1fOvaCpMrwQ_Lm87iYYPuPxjr1NBpG80qOOPZmkDb1Q37I86tCUvWnvwjxv3Qg9VI5JvZqyMz0k-Do8B-R3vfW8mzxQKqu8d2O2vV1WPDx7JZ25xxL3un5uCD31RvM7xYN3PT0mF71RB8O81V-KPWswiD1v4po8kcT9uzTQ4Tzd4YC8k30GvWloSD2I0Ro8lWJHvOmbFD2x6Iy80PHRvRXw4bwpYmw8HxTvvMuX4TxoJB-81sHGPSOUCLx1oFo7RRngvCYE5TtDk5-8D28MvKd6Mj1nJ4M8NGIHu1goyrsYZro7dOQQPIOIs7sJumK8qQiBPCaOvLynBti77j0Mvm_QAz2Qn886MJNSPeq5QL2f7IO7_NDLPSerfTy9U-C7eE3-vIAF-ry0xw-76HCovdMUP7vkzwE8Jd9WvZFsxzvk_Y86a7uEPfuzerw3uWe7zwSUPDR6j70nmQi6LVolPWXh67yRsoc6jzfZPZ1pbbrhBgm5qNltPaZ3Nr0HOfe54eSYPXt5Ljvhu2Y5fzadPWglyLxGpvq4nP6Xvb31K72j25y47BqIPLOCmr1VQxm59lXDvQdn5rwl7SE69pA6vAtWZjw9V4Q5PmqivRoks7wxjDm4XCQIvbNkpzv0loK5LE1lPTdMuT1jxlS4Dw0LPbWVTbzk4ai4vC-dvIuBnz3Srmw3jBgxPRcYiL0zlRw5YDzjPfiIXT34cHc4dOgZu8mwJT2kwxE4VpnpPZd1H70Bexk4UkjPuz48q71PsuQ4mYIFPvnzUj0erga51YogvQOzwryeYP818JUPPUqWqD1_ONE4zHvcPZLDcTycQoo3SrYKvmee3L1blvY4pdO_Pe-sfb2gLA65sFUSvq2KsDx8a8e3n1UrPd3q2T1hKpM35jApPDdwB72uYyU40jToPQV-Hj0Lh7645GBbvWF0VL20Avy4WvJ4vZhLrjto6V64lmBMPGxRkL1V0Ks3WCSBvRYKYj2Mkji4IAA4E0AJSG1QASpzEAAaYFP4ABnUIf_lKj3MAcvLQ-Hb8gwEv-f_1dj_6e3uIv4jysoSCAAf3jTepAAAABvl-vbLAAd__sjTF84CGtSpxwktciAm39koPQba_xfD9OQEL_cmDwCzJb82c__fRAIkLCAALX8TGTs4E0AJSG9QAiqvBhAMGqAGAAAQwgAAgD8AAARCAADQwQAAaMIAAKBAAADeQgAAgMEAALBBAACIwQAAgEAAAJRCAACQQQAA0EEAAFRCAAAwwQAALEIAADDCAABIwgAAYMIAAARCAACqwgAAisIAAOBBAAAQQQAAAEIAAPDCAACIwgAALEIAAADCAAAgQgAABMIAABhCAAAIQgAABMIAAERCAAAQQQAAREIAABhCAACAwQAAyEEAACTCAAAgwQAAMMIAANhBAADAQAAAsEEAAIhBAABgQQAANMIAAKDBAAAQwgAA0MEAAPDBAAAgwQAAYEEAAFDBAABAwAAAcMEAAHhCAACQwQAAAMIAACjCAACgQAAAAEIAADTCAABswgAAMMIAACDCAADAQQAAwEAAAFhCAAAAwgAATEIAANBCAABQwgAAAEEAAIBAAAAEwgAAwMEAANBBAACgQAAA6MEAAKjBAACYQgAAIEEAAHDCAABgwQAAqkIAAKDAAAAUQgAAEMIAACBBAABIwgAAmMIAANDBAAAEQgAAbEIAAIBAAACQwQAAgMIAAHRCAAAUQgAASMIAAIjBAADgwAAAIEIAAIhBAADgwAAAgEAAACRCAABwwQAAiEEAANDBAAAQwQAA4EEAAABBAAAAQQAA4EEAAEDCAAAAQgAAwMAAAIBCAADIwQAAgsIAAIbCAAAAwgAAlsIAAEBAAABwwQAAkMEAAEDBAACIQQAAsEEAAJhBAAAkQgAAwEAAAGDBAAAMwgAAQMIAAPBBAAAowgAAAAAAABxCAAAMQgAAQEAAAIA_AABgQgAAwEAAALDBAADoQQAAwEIAAATCAADAwQAALMIAAJBBAACIQQAAgMEAAKDAAAAYQgAAKMIAAABAAADowQAA4MEAAPDBAACIwQAAmEEAADBBAAB4QgAAmEIAALDBAABUwgAAoMAAAIA_AACgQQAAkEEAAEBBAACgwQAA4EEAAKhBAABwQgAAEMIAACDCAADkwgAA2EEAAKDBAABIwgAAoEIAADBCAACIQQAAJMIAALjBAAAwwQAAmEEAAJBBAABAQQAAsMIAABjCAABAwgAAQMAgADgTQAlIdVABKo8CEAAagAIAACS-AAAkvgAADL4AAI4-AAC4PQAAJD4AAHw-AAAXvwAAsr4AADA9AAAQvQAAcL0AAOg9AAAUPgAAXL4AAJi9AAA0PgAABD4AAIi9AACaPgAAfz8AADS-AADYPQAAML0AALi9AAD4PQAAMD0AANi9AAAEPgAAuD0AAJ4-AAC4vQAAir4AAEC8AABwPQAAgDsAAFA9AABkvgAAtr4AAIi9AABQPQAALL4AAKA8AACAOwAAyL0AACQ-AACqPgAATL4AAOC8AACivgAAED0AAEA8AACKPgAABD4AAHA9AACgPAAAFz8AAKg9AADYPQAAiD0AAKi9AACIvQAAQDwAAO6-IAA4E0AJSHxQASqPAhABGoACAABkvgAA4DwAABC9AABbvwAABD4AALi9AACgPAAAXL4AAIq-AAAsPgAAMD0AAMi9AAD4PQAAPL4AALg9AAAQvQAAED0AACk_AAAkPgAAZD4AAAw-AAAsPgAAhj4AAOi9AAAUvgAAyL0AAIK-AAAQPQAAoLwAADC9AADYPQAAUD0AAAQ-AAA8vgAAoLwAABC9AACgPAAAuD0AAIi9AACovQAAJD4AAIC7AAAkvgAAQLwAABC9AABcPgAAf78AABS-AACIPQAA-D0AAKI-AACovQAAfD4AAJ4-AACWvgAAuD0AAFC9AACIvQAAyD0AAJq-AADgvAAAiD0AAMi9AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VA29THVdNz0","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["2699663168813888337"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"713881557"},"5497887888205827790":{"videoId":"5497887888205827790","docid":"34-1-4-ZB874900105B6F63B","description":"These are videos from the Introduction to Complexity course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics you'll...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2294907/1b5d284faa9abec64c224e472e4c8b4b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/tH7RJAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYx-U80-9WeQ","linkTemplate":"/video/preview/5497887888205827790?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: The Koch Curve Part 2","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Yx-U80-9WeQ\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChM1NDk3ODg3ODg4MjA1ODI3NzkwWhM1NDk3ODg3ODg4MjA1ODI3NzkwaocXEgEwGAAiRBoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioPwg8PGg8_E0SCBCQBgAQrKosBEAEaeIH-BwgE_AQA9v4DBf4F_gH-BgUACf3-APMBBgkDAv8A7_wA9PkAAAAA_wIE_gAAAPz8BPv8_gAAEQYEBAQAAAAFA_jw_wAAAAoG9wj-AQAA8gIMBwMAAAANCAEFAAAAAPML__77_wAAAQf4-gEAAAAH-AD-AAAAACAALbtK3js4E0AJSE5QAiqEAhAAGvABUfgP_84H5AD-5A4A7QreAYEV8P_7A_IAyQT9APsOwwAFAhQABfovANcG6_-wIxsA-gbs_yECEQAI4yf_9fX-ABAHBgEp-AMAJRgEAOv0DQDzH-7_HAIVAAYG__7sCfL8RwEA_-3n-f3N-tYA8QsoAhj6EP0k_B4A6A_tA_D4DAUQFP39A_nXARXtBQLd7wEHFy36ATITDADp6PkEHvEY_Qv7FAEEGQUBIBkh_wHvD_sdEff5COsR9goAAAD6Fg8B4xT_AwDy_gP_LPEFG-79Dd0Z_PguI_oGGCYMAg4P5QL7Lgn08DP6_wcY_Ajy4wQBIAAtUfQ1OzgTQAlIYVACKs8HEAAawAfkTba-QgUsPGvnpDujUzy99MgbvOtNMbxh3x6-fpv0vF_Xqr1YYek8pDhHvJTsIj0dycW-ZgiRvH2ljT3m6BE-kkrnPMXLc71ERba9VHcAvXnGY7zLg1S-mlWpvBGakzz2czS9f76tvEY54rqg4tg9YTyevMVPiLw4G8a8C2H1PHVPpjvYqH091zCTvbwZNDoaT-Q9Ovk-PeuvEj0EVwk-661cPC9EQ7p_dJC9wJGFvV8ZZTwYfSW-SaGsvAovQbxzCLE9QL3ZvIXDnDxvh2E8qgptveKenbvzfec82UD8Oomgxbxqc1c9YJTgvA0WMTu7u6k9kiSIvXIoWbrEzI69NpHZPWjsJrzshu09jPeDPXJbkTtWF7u90FlLvSzlxrrRsJi8uYa-PL7vhDxwLOu53IVBvHfvrLsIuky94c9wPfa8tLsdW889UuKUvZQqdry71sk91VXouyJocTyo7Ko8oV4VPf0dwLuAa8K9PyoPvSyLeDxPXG49kbc8PWF8B7vVI809grxovLZYmzwvTnw8HyQ1vQXIzDtPXck9nBtOvSJvObzmKcY84wfdPAjYfTw-Qoi9GVXGvKWuCDzipWC9R5DqPXhrwbkn-aE9648QvvsHkTqPrBe9R3FuPapQFbxB1AE8VkfQu9cZGzyrg3K8ddAAvNad-jvMqrm9OLRyvUP_uDlUhYs9D5voPV6kUTpRISq7d5BNPSYZHLsZkRg--H60PBnmbTka_H08HPmyPbLBujof9Oy8WAqWO5WRZbu3aLw9xXDFPYZi17m4JGa76OFfvUlw3jhyEYS8YhDYPYTUDrd89Sw913e0PMHPc7e756U8v5gSveJjAjrfLbk7RSPJvfw5ATk4Bp69bXcKvVHXiTlrHsG9xK6ivVn4IjgtpZg9ZCoYvTSWEria-io9HjK6PWbdeLciy508WlKkvBy1ADnHo589iwSuvXVETzcFpH08moSBPbC1qTgi3XS817OQOw-0-LigjXc90Yr5vF2ynrhi9cc8tSvfuy35D7d7kqo8L4JLPWEN77hv9ge9AhB3vXj4gTfWYuY8CykfPkgHjTjCS7W9jU0CPA26Tzb-G6q8fXsyvag-zzcdCS89NS1MPf1YGDgVeKI9GRnJvLoOybhYvpg9zeaRvZJbHbk0UxA9glTqveUcjrgbCRk9laqTPbwSyje7iKU8zsg7PUUchbcy7qw9XCa-vexqQzc4CAQ81M3Nul4drzjqnWC9e_pIvdvOjLjaETi9LSuoPPQiJLjsrkK9OvGrvajeSzUgADgTQAlIbVABKnMQABpgKgEAM-sn0xtLXOW278c67uTr8ezW2P8C4v8s4vP8DgGvrvUD_y7K_N6fAAAAIyfZQ8oACX_b8gAg2lgSvq_hMht5FRwLoesdDPTQVfH-AdoM_ec0AB_WphtCHQROHDYhIAAt21kROzgTQAlIb1ACKq8GEAwaoAYAALDBAAAUQgAAIEIAABDCAADwwQAAwMAAABhCAAAMwgAAlsIAALhBAACYQQAA-EEAAADAAADQwQAA8EEAAJpCAACoQQAAUMEAAIA_AAC4wQAAZEIAAKjBAADQQQAAQMAAAMBBAABgQgAAZMIAAFxCAAAAQQAANMIAAPBBAACcQgAAtsIAAFzCAAAUwgAABMIAAFDBAAB4QgAAOEIAAHBCAABYwgAAHEIAABDCAAAIQgAAwMEAADDBAAAAwQAAoEAAANRCAAD4wQAAksIAAEBAAADYQQAAGMIAAEDAAACaQgAA1sIAAABCAAAQQgAA0EEAABBBAACCwgAAsEEAAMBAAABwQQAAkEEAABzCAACwwQAAEEEAAFBBAABwwgAAQEIAAJTCAABwQQAA-MEAACDBAAA4wgAAUMEAAJhBAACAwAAAjsIAABxCAABMwgAA8MEAAMDAAADgwAAAREIAAMBAAABAQgAAoMEAAFDBAABUQgAAoEEAAJrCAAA8QgAAzsIAAITCAAA8QgAAQMEAAFDBAAAYwgAAgMAAAPBBAAAswgAAQEAAAIRCAACgwQAA4EAAAOjBAACwQQAAcEEAALhBAAAswgAAMMEAAIA_AAB8wgAAKMIAAGDBAAC-QgAADMIAAIzCAADAwAAAuEEAAJjBAAAYwgAAAMEAABxCAAA8wgAAsMEAAIJCAACcQgAABEIAAEDCAAC6QgAA4EAAALBBAABsQgAAlkIAAPDBAADAwQAAQMEAAERCAABAwAAAmEEAAJZCAAAAQAAApkIAAIA_AACgQAAA4EAAALBBAAAsQgAAQMAAACDCAAAgQgAAsEEAAETCAAAgwQAAPMIAAJhBAAAwQQAA4EAAAKDBAAAAwgAAHMIAAMDBAAAQQgAA2EEAAKjBAAAcwgAAuEEAAOjBAAAAwAAACMIAAAAAAACYQQAAgL8AAMBAAACMwgAATEIAAAzCAADgwQAAMEEAANhBAAA0QgAAqEEAAABBAACWQgAAEMEAAABBAAAUwgAAIMIAAIBBAAAwQQAAiEEAAFxCAAAMQgAA-MEAAIBBAABAQCAAOBNACUh1UAEqjwIQABqAAgAAjr4AAEC8AAAQPQAAPD4AABC9AAAwPQAAoj4AACG_AADevgAAcD0AADQ-AAA0vgAA-L0AALo-AABQPQAAir4AAAw-AAAEPgAAbD4AACU_AAB_PwAAEL0AANi9AACgPAAAqr4AAGQ-AABwvQAARL4AAFA9AABEPgAAJD4AAKg9AABQvQAA2L0AAII-AACYPQAAiD0AAJa-AABkvgAAuD0AAKA8AAAMvgAAFL4AADA9AABAvAAA_j4AAHw-AAAsvgAARL4AAKq-AACAOwAA-D0AAMI-AACSPgAAsr4AAOg9AABJPwAAqD0AAGw-AAAwPQAAbL4AADA9AABwvQAAfL4gADgTQAlIfFABKo8CEAEagAIAAJa-AAAQvQAAoDwAAC-_AADmPgAARD4AABA9AAA0vgAABL4AACQ-AADIvQAAyD0AAIi9AAB0vgAAyD0AAHA9AAAUPgAATT8AAOA8AADCPgAATL4AABw-AABMPgAAmL0AABS-AAAEvgAAgLsAAIA7AAA8vgAA4DwAABQ-AABEPgAAyL0AAOg9AAAkPgAAoLwAACQ-AADIPQAAkr4AAJi9AAAQPQAAuL0AAFS-AABQPQAADL4AAEw-AAB_vwAAxr4AAKi9AAAEPgAATD4AAOC8AAB0PgAAyD0AADC9AADgPAAAMD0AAAy-AAAsPgAAoLwAABC9AADIPQAAPL4AAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Yx-U80-9WeQ","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1728,"cheight":1080,"cratio":1.6,"dups":["5497887888205827790"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1209565198"},"14079667538814970098":{"videoId":"14079667538814970098","docid":"34-11-12-ZE667744085E7D800","description":"These are videos from the Introduction to Complexity online course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hrTKNAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaPkGo76wX-g","linkTemplate":"/video/preview/14079667538814970098?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: Evolving Virtual Creatures Part 1","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aPkGo76wX-g\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoWChQxNDA3OTY2NzUzODgxNDk3MDA5OFoUMTQwNzk2Njc1Mzg4MTQ5NzAwOThqhxcSATAYACJEGjEACipoaG9tZ3pxdmJhYnBoa3djaGhVQzZzLTFUWWEtMWZCclVVSUdpanNoQ1ESAgASKg_CDw8aDz8TZIIEJAGABCsqiwEQARp4gff-_AD-AwAEAAUHAQj8AhAJC_T2AQEA6PkDDgT_AQAC8Qf2BAAAAAD_AgX-AAAA_PwE-_z-AAADAwQC_AAAAAsJ7gT9AAAAB_L6A_8BAAD2__wMBP8AAAgED_z_AAAA8wv__vr_AADwDfT8AAAAAAz-_gEAAAAAIAAtAFPbOzgTQAlITlACKoQCEAAa8AF_wuwCux3i_xUW8ADj-eQAn-FF_1gb3wEGGykBDPzzAAQg4QDF3yr_9e0O_6YSCwFW6AT_xgL9ACfsEv8d9Sf_0xgJABPdBAIOABsBEuXG_jQC-f_dBAL_39gX_fUMGwASCgUA7B0MAtwM-wLl9yMC6OX3AVUCEP4GLRgA-PAhA9gU5_8p5A_8CAvz_uQIDv396_j_2xDxBv37-gcF2vwJEQAI-Crl1v0yFhIFBfz7_hUu6fr3FQz_NfoCBQseCfv2EB4D9PDyB_opA_ooCfIHAOoE-hMFAwEq-_kB9Of0790I8Pz0Kvv3zhAS-zD7FAMgAC08eBk7OBNACUhhUAIqzwcQABrABywrzb7IMN06vUgyvVPkVb1R3oc8i-IwvA3-_r1SDqY8iF2APNIQvDvsXGI9A1SCvB3Jxb5mCJG8faWNPW0b5j0fxho9QkO9ukRFtr1UdwC9ecZjvKDFEr4UIgC9_0WrvGRMUD1Gz608-6qeuqDi2D1hPJ68xU-IvMQKVz7JbJq84sVnPG50hL04Fak8-s3IO-dhVz1GuCS9ZNdMPdwRjj69U8G8YDh8PIOh7j2LWjC9_AfHuwU0Mb7zuhQ9PgeWvOerVD7wXZQ8bMkNPDB0mTvDtmU9B1U0PJKRiD1p_MK8a9jKvAgBuT0RGVY8EtYLPS5qYT1m52M96a2NO4Z3hL1HVC0935m7u4RL5z1RNkC8eU1ZvBIdOLxJQJa8b4-vPJjqyD2tQam895OxPIR-Fj6Nd5y9q7VNu05obb2Dtbu8GEfAPJeR9rvXAUu9HMcvut1rNz2MnKo9BH6DvIaYtj0KZIs9_K3Xu37dLr0pp0c9d0l_Oy0zlj2reCO9Eo40vD-8-Dx5RYs8DrNhPEO5o7wJslQ8L4wPPDehtby0euI8mDxUPLkaib0VcC-9djWaOnWoSzwMf8w9LwFPuyl2JL5-m7Q8q_WXOgPBLT3svHK9l7hBuMDLbL1lSrW8bxYMPPPMhr3wet88OJ6Ru6H8GD3RfEk9dioqPCS2u73SxBw8weiwug1u6zwAm2I8EKXmOn-Hkr2ywoi881Epu5VFoTz9uwO9smg2uwChjz2z8LW8SeI8O6RUQj3pZlo8Ld4Duu94jr2ngsC76MBfOQr3Cj3PBio99q29OWA7uD2bdoy7ANjFuXmrUzyTcWy9qoYDOcmJmzzhJ448u43CN5gf7jzbuGq8ERzFuBFqS72Yw0k8sWWZOSxe0TxgDjE90uy8ObzCjL0Rhb879ULEuJIbSr3gpS-8cXmUuMXUTDyPrUK84x8Iutn5ijtBqKG95Te8OVyiZD3XBl287uMgOa2Ka72LpvO8ApC2uH5yVL2TcSw9JpqxuF5GVrzFCu28BAj0t4TyADygeto8Tu9pt24xH72im_070JSPOMjtN70emBI9JtmCOKEzxDyLTga-tW0rOf_b2zycHWQ9voU8OexSwDuXBJO9BOveNwPHyjxPisu92S6vtknhpT3cdxQ81LYjuX5xib1rlbU9RnP6uMMm_bezQ4y9TYoON8ya2LzjtWE9kN-htybckLwWMDG-QaBauUMj87w0Wlg9J5YOt-cgQ70LdHI9BXWVuCy_xrur-gY9-9D2tzkmaz0Dd4W9Du5XuCAAOBNACUhtUAEqcxAAGmAdBAAj8P3yDitV1eMC4hQf6ujuAdHf_w29_y4G1hXgFeSr8PD_P5gn1KYAAADs6-IE6AApfwICH-jeDfCg7-EgS3jcSgW28hYk1S0mGgcKAxkb_UwA5wCqHTXe_2EFIiogAC2jhxs7OBNACUhvUAIqrwYQDBqgBgAAsMEAABBCAAAgQgAAEMIAAPjBAADAwAAAGEIAABDCAACWwgAAsEEAAJhBAAD4QQAAAMAAANDBAADwQQAAmkIAALBBAABAwQAAgD8AALjBAABkQgAAoMEAANBBAABAwAAAuEEAAGBCAABkwgAAXEIAAABBAAA4wgAA6EEAAJxCAAC0wgAAXMIAABTCAAAIwgAAUMEAAHhCAAA4QgAAcEIAAFzCAAAYQgAAEMIAAAhCAAC4wQAAIMEAAADBAACAQAAA1EIAAPDBAACSwgAAQEAAAOBBAAAYwgAAQMAAAJpCAADWwgAA-EEAABBCAADQQQAAEEEAAITCAACoQQAAwEAAAHBBAACQQQAAIMIAALjBAAAgQQAAUEEAAHDCAABAQgAAlsIAAGBBAAD4wQAAIMEAADjCAABQwQAAmEEAAKDAAACOwgAAHEIAAEjCAADwwQAAwMAAAADBAABEQgAAwEAAAEBCAACYwQAAQMEAAFRCAACgQQAAmsIAADhCAADQwgAAhMIAADhCAAAwwQAAUMEAABjCAACAwAAA8EEAADDCAACAQAAAhEIAAKDBAADAQAAA6MEAALBBAABwQQAAuEEAACzCAABAwQAAgD8AAHjCAAAowgAAYMEAAL5CAAAIwgAAisIAAKDAAAC4QQAAmMEAABjCAAAQwQAAIEIAADjCAACwwQAAgkIAAJxCAAAAQgAAQMIAALhCAADgQAAAsEEAAGhCAACWQgAA6MEAAMDBAABQwQAASEIAAEDAAACYQQAAlkIAAABAAACmQgAAgD8AAKBAAADgQAAAsEEAADBCAABAwAAAJMIAACBCAACwQQAASMIAACDBAAA8wgAAmEEAAEBBAADgQAAAoMEAAATCAAAkwgAAwMEAABBCAADYQQAAqMEAACDCAAC4QQAA6MEAAIC_AAAIwgAAAAAAAJhBAACAvwAAwEAAAIzCAABMQgAACMIAAODBAAAwQQAA0EEAADRCAACgQQAA4EAAAJZCAAAgwQAAAEEAABTCAAAgwgAAgEEAADBBAACIQQAAXEIAAAxCAAD4wQAAgEEAAEBAIAA4E0AJSHVQASqPAhAAGoACAACSvgAA4DwAADA9AABcPgAAED0AADQ-AACyPgAAC78AANa-AADgvAAA6D0AAI6-AACoPQAAND4AAEC8AADYvQAALD4AAFA9AAAcPgAABT8AAH8_AAAwPQAAQLwAABA9AACovQAAkj4AAIA7AAAwvQAAED0AALg9AABkPgAABD4AAPi9AAAkvgAAlj4AADA9AAAEPgAAxr4AADy-AACgvAAADL4AAFS-AAAUPgAA-D0AAIC7AADWPgAABD4AAHy-AACavgAAHL4AAKC8AACovQAAfD4AAIo-AABMvgAAyD0AACc_AABAvAAAVD4AAOC8AACYvQAAbD4AAEA8AAC2viAAOBNACUh8UAEqjwIQARqAAgAAir4AAKC8AADYPQAAJb8AAIo-AABwPQAAND4AACS-AABwvQAAED0AADy-AACYvQAAgLsAAES-AADoPQAAQLwAAEw-AAA1PwAAgj4AANY-AACAuwAAED0AAEw-AADgvAAAyL0AAHS-AAAQvQAAgDsAAIA7AADoPQAA2D0AABw-AABwvQAAED0AAEw-AABwvQAAgj4AAKg9AABsvgAAXD4AAEQ-AAAQPQAAQLwAAAQ-AACgvAAAZD4AAH-_AABkvgAAUL0AAHQ-AACWPgAAmL0AACw-AACoPQAAmD0AANg9AACAOwAAdL4AAIC7AABQvQAA4DwAADw-AABUvgAA2L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=aPkGo76wX-g","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["14079667538814970098"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3163879039"},"14518805307748335022":{"videoId":"14518805307748335022","docid":"34-1-4-ZECDD051022233429","description":"These are videos from the Introduction to Complexity online course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fo6QgwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTk3SHBp5rSc","linkTemplate":"/video/preview/14518805307748335022?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: Network Terminology Part 1","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Tk3SHBp5rSc\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoWChQxNDUxODgwNTMwNzc0ODMzNTAyMloUMTQ1MTg4MDUzMDc3NDgzMzUwMjJqiBcSATAYACJFGjEACipoaG9tZ3pxdmJhYnBoa3djaGhVQzZzLTFUWWEtMWZCclVVSUdpanNoQ1ESAgASKhDCDw8aDz8TkwKCBCQBgAQrKosBEAEaeIH2-gL-AQAACAj7BwcI_QIQCQz09QEBAOz9AQUJAAAA-fT4-_gAAAAGBP4K_gAAAPf9_vX6_wAADgQB_gQAAAAN8P3_-QAAAPgG-QD-AQAA-fENCAP_AAAP_gEIAAAAAOwOCf3_AP8A_Q_zAgEAAAAC_AUAAAAAACAALa0-0Ts4E0AJSE5QAiqEAhAAGvABaAYLANfV6AHkFb8B2yvEAYEiCv4cJOIAvfILALz3ygD-F_QA4esb_wDeDQC9BwH_BPjf_-r3-QAcBC0AEu8SANsQFAEa7hABIw0MANQA4__oOvz_GRUaAOLl5v_fCvIAKvkBAPYpx_729N0G5fciAjE34wMm5Sb-_T4gA_MFJAP3-cn-GQ4HBOEZAgLaBCAC_Q7kBQnu8gP2RP0A7-ob_eL4_QUH5N0ASBL__vL3DPcc7BMAERHm9vz6Fwr6Ff4M7eTz-PjVIP_yKfD2ROcPC_PhAwHoIwcJ8vUEBjHpBvPiFQAD2v73BSYCBAMeDwkAIAAt_yEdOzgTQAlIYVACKs8HEAAawAeM9vi-XgImPPEN6ry_jX49Hq4QPTQwzbxeHiG9nFPmOyritDwrUfY8c77YPDp0eryXx6q-E8fsO74RnbyKH1M-yxDoO6T2x7yG4wm-3yD1PKwBKr2m1AW-P0ypugVmqrwHtNS9EtYrPd4uRTwnwHA99M4ZvE-x6rzSaDc9QGxJvf9107y-UrG84YsCvH1By7wFw3k9MM2-vbvnijzr4LA9f3iMvHwVT7yzzXI9QfuHPAr3yrxeLiK-TY-cPFidpjyswPU8tK5RvbDP9zzFJbI9vldDPZX1-rtJLKk8aF4OPTa9Gj02iYs9bQC2PYRLR7y7u6k9kiSIvXIoWbqI8NQ8ODRgPXOVtLvkZvg9ZkzhPRgj1DsX7xe-992OPWpQtDwLAvW8e_w5vHDvmjzxZj0-fTVRvYlxyLujF707BTPoOxC1yDyLITQ9qFEoPd9hh7sRTx083o8LPm7XCDpWR249f-h4PasTxrzcix69A9J-PInACbwyQtM8BglWvR2WYbzzvVA9ImsRPNZufTvdV7o9QzGTvS4d0rvX6jy8whwYveRFrju1kSY9f6swPbsdzLsplbA8CjWnOOk_0rvn88u96B0hvGK09TttpJE8Xsh5vR-sNTtqM0q7ffYyPd3ftTkoclK9dDAxPT6p_rs0DwA9nRgKu-g_NTwpxKs7J-uhvWwGejtjpJ09agYnPZCf8DoeGKM7iZKFvSCjADkSUME9wXhBvWHTCroIzqS9GxGpO3zsETuoNri8kHu0PRzS_rjeuaY9O2gbvdoZxzmQwtA8ybtZPZ42HjnvQik9SkeUvGPJh7r8vgQ9f2nRPHFCbrjJiZs84SeOPLuNwjf076M7j_2svKAKZTlf3Hw8NeWUvIYCjLhpWXK90wY2vS7g6bpru0S9sdBYvQQj97gWIyE9cFvAPD9gEjkiIms9naSUvagXJLc9_ZQ7HB0BvS-lorgkI2w9wEkqu7wFcDh7Eti8zwZqvfGnoTg6uoC84bKvu1kxXzijhsA8lFBVPEJ4UrgymWU94NpJvZPnaTeHRVY902Wmvb8o9DYZ6ou8pGzxPaXexzive-u9c3-lvVDAEbjQ23O9j-JcvRsKlrf1m2w7cLYUveO69zYt0dm9vKCEvevJlDegVMs99_HGvC2P1bifrm69V_DXOwab7rfVuX08jBMfvXFzMLVpbkW9fyNQvR1WUri9rwU9pUkJvq2ehbhhrMo8eNOdPZMLhThxfGO9-iUCPqmBLLluA429J2muPb_3FjfcWvC8gBH0vcgN67cgADgTQAlIbVABKnMQABpgLAEAJdAHuAA7Q_T259AMBdYLDxDW4__a0AArAP71AxHxqgEPACLLMviuAAAAEPzeIuMA-G_h7gAi5SMWvbPoHEJ_Hj4M1N8EB8PcNhge_RAk-P4WABHnm_lWBM4uFAQVIAAtqR0nOzgTQAlIb1ACKq8GEAwaoAYAALDBAAAQQgAAIEIAABDCAAD4wQAAwMAAABhCAAAQwgAAlsIAALBBAACYQQAA-EEAAADAAADQwQAA8EEAAJpCAACwQQAAQMEAAIA_AAC4wQAAZEIAAKDBAADQQQAAQMAAALhBAABgQgAAZMIAAFxCAAAAQQAAOMIAAOhBAACcQgAAtMIAAFzCAAAUwgAACMIAAFDBAAB4QgAAOEIAAHBCAABcwgAAGEIAABDCAAAIQgAAuMEAACDBAAAAwQAAgEAAANRCAADwwQAAksIAAEBAAADgQQAAGMIAAEDAAACaQgAA1sIAAPhBAAAQQgAA0EEAABBBAACEwgAAqEEAAMBAAABwQQAAkEEAACDCAAC4wQAAIEEAAFBBAABwwgAAQEIAAJbCAABgQQAA-MEAACDBAAA4wgAAUMEAAJhBAACgwAAAjsIAABxCAABIwgAA8MEAAMDAAAAAwQAAREIAAMBAAABAQgAAmMEAAEDBAABUQgAAoEEAAJrCAAA4QgAA0MIAAITCAAA4QgAAMMEAAFDBAAAYwgAAgMAAAPBBAAAwwgAAgEAAAIRCAACgwQAAwEAAAOjBAACwQQAAcEEAALhBAAAswgAAQMEAAIA_AAB4wgAAKMIAAGDBAAC-QgAACMIAAIrCAACgwAAAuEEAAJjBAAAYwgAAEMEAACBCAAA4wgAAsMEAAIJCAACcQgAAAEIAAEDCAAC4QgAA4EAAALBBAABoQgAAlkIAAOjBAADAwQAAUMEAAEhCAABAwAAAmEEAAJZCAAAAQAAApkIAAIA_AACgQAAA4EAAALBBAAAwQgAAQMAAACTCAAAgQgAAsEEAAEjCAAAgwQAAPMIAAJhBAABAQQAA4EAAAKDBAAAEwgAAJMIAAMDBAAAQQgAA2EEAAKjBAAAgwgAAuEEAAOjBAACAvwAACMIAAAAAAACYQQAAgL8AAMBAAACMwgAATEIAAAjCAADgwQAAMEEAANBBAAA0QgAAoEEAAOBAAACWQgAAIMEAAABBAAAUwgAAIMIAAIBBAAAwQQAAiEEAAFxCAAAMQgAA-MEAAIBBAABAQCAAOBNACUh1UAEqjwIQABqAAgAAVL4AAOg9AACgvAAAND4AALi9AADYvQAADD4AAPa-AAC2vgAAQLwAAOg9AABAvAAAQLwAAEQ-AABQvQAAML0AAJg9AACAOwAAPD4AAPo-AAB_PwAAgLsAAKA8AACgPAAAgr4AAI4-AAAsvgAA-L0AADy-AAC4PQAAVD4AADA9AAAcvgAAVL4AAJI-AAC4PQAADD4AAJ6-AAAkvgAAgLsAAKA8AAA8vgAAED0AABw-AABQvQAA4j4AAIY-AACOvgAARL4AAIq-AACIvQAAVL4AAJ4-AACYPQAALL4AAOg9AAAVPwAAUL0AAJg9AABAvAAAFL4AAHw-AABQvQAAdL4gADgTQAlIfFABKo8CEAEagAIAAIK-AACYPQAA4LwAACe_AABUPgAAyD0AAFA9AAAEvgAA4LwAABA9AAAEvgAAmL0AAIA7AACevgAARD4AAOA8AAAkPgAAPT8AAEQ-AADCPgAAQLwAAAQ-AACKPgAADL4AAPi9AACgvAAAcL0AAKA8AABEvgAA4DwAAAQ-AAD4PQAAgLsAABC9AABMPgAAcL0AAPg9AAD4PQAAhr4AALg9AAAcPgAA6D0AADC9AAD4PQAAcL0AABw-AAB_vwAAxr4AAJi9AABkPgAAfD4AALi9AADoPQAAHD4AAIY-AAAQPQAAgLsAAFS-AADIvQAA2L0AAOA8AACaPgAAML0AACy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Tk3SHBp5rSc","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["14518805307748335022"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3548616223"},"6995468420430888477":{"videoId":"6995468420430888477","docid":"34-5-3-Z222D6E545DB43798","description":"These are videos from the Introduction to Complexity course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics you'll...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fXC_uQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-S0wNYVnims","linkTemplate":"/video/preview/6995468420430888477?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: Core Goals, Disciplines, and Methodologies of the Sciences of Complexity","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-S0wNYVnims\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChM2OTk1NDY4NDIwNDMwODg4NDc3WhM2OTk1NDY4NDIwNDMwODg4NDc3arYPEgEwGAAiRRoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioQwg8PGg8_E7UBggQkAYAEKyqLARABGniB_v4BCPsFAPv-Av8DBP4B9QQH-vr-_QDuBwYAAf8AAPX3A__4AAAACgr4CfwAAAD3_v7-_P8AAAj9_v0DAAAAGAL9APgAAAAH-fwJ_wEAAPz4Av8C_wAACwT5BQAAAAD4Cgb7-_8AAPkJ-v8AAAAABwUJAwAAAAAgAC15oOI7OBNACUhOUAIqhAIQABrwAX8KDQOv6xT8S_7tAP0DBQGuEAkAMQb7ALIDCgC49-0ABwj5AOLmKP4rEQcA6Qr-_w8D7wAj-QsAEfIL_0gSEP_dEwcAG-MIACIWBAD09vD_EQbWAQcJFf_z_fr_CxIM_woNGf_aHN_9-uIBARP7_wP56vABDvP9AxX5_AH6EfMD_-n5AyH3Bf_v-_z71AkMAu0J9APxFgEC6fcB_zEN6v8b-PX9AAv4BAkMBf__9gL9Agj7AA4dGf70_vYE2ScUAfbmDwgO_wAA_Qv9ASX5-AQM6BYCAwH9AAX68_0L1_v1-gf7_u8WAQDtDAUQ4wMLASAALWnqRjs4E0AJSGFQAipzEAAaYEf_ABjwEQTQN1zj5_3MCRL5D_0b2e__CAEA_gHq9woD1sL2FP8ZyQ8BtgAAABb_2hvrAP1k5vvfF-Du-Nyx_BgWfwoWDNXmHgqv8t0iD-3DHggaLgD4DLkhNg7jPgY9FCAALWvPNzs4E0AJSG9QAiqvBhAMGqAGAACwwQAAEEIAACBCAAAQwgAA-MEAAMDAAAAYQgAAEMIAAJbCAACwQQAAmEEAAPhBAAAAwAAA0MEAAPBBAACaQgAAsEEAAEDBAACAPwAAuMEAAGRCAACgwQAA0EEAAEDAAAC4QQAAYEIAAGTCAABcQgAAAEEAADjCAADoQQAAnEIAALTCAABcwgAAFMIAAAjCAABQwQAAeEIAADhCAABwQgAAXMIAABhCAAAQwgAACEIAALjBAAAgwQAAAMEAAIBAAADUQgAA8MEAAJLCAABAQAAA4EEAABjCAABAwAAAmkIAANbCAAD4QQAAEEIAANBBAAAQQQAAhMIAAKhBAADAQAAAcEEAAJBBAAAgwgAAuMEAACBBAABQQQAAcMIAAEBCAACWwgAAYEEAAPjBAAAgwQAAOMIAAFDBAACYQQAAoMAAAI7CAAAcQgAASMIAAPDBAADAwAAAAMEAAERCAADAQAAAQEIAAJjBAABAwQAAVEIAAKBBAACawgAAOEIAANDCAACEwgAAOEIAADDBAABQwQAAGMIAAIDAAADwQQAAMMIAAIBAAACEQgAAoMEAAMBAAADowQAAsEEAAHBBAAC4QQAALMIAAEDBAACAPwAAeMIAACjCAABgwQAAvkIAAAjCAACKwgAAoMAAALhBAACYwQAAGMIAABDBAAAgQgAAOMIAALDBAACCQgAAnEIAAABCAABAwgAAuEIAAOBAAACwQQAAaEIAAJZCAADowQAAwMEAAFDBAABIQgAAQMAAAJhBAACWQgAAAEAAAKZCAACAPwAAoEAAAOBAAACwQQAAMEIAAEDAAAAkwgAAIEIAALBBAABIwgAAIMEAADzCAACYQQAAQEEAAOBAAACgwQAABMIAACTCAADAwQAAEEIAANhBAACowQAAIMIAALhBAADowQAAgL8AAAjCAAAAAAAAmEEAAIC_AADAQAAAjMIAAExCAAAIwgAA4MEAADBBAADQQQAANEIAAKBBAADgQAAAlkIAACDBAAAAQQAAFMIAACDCAACAQQAAMEEAAIhBAABcQgAADEIAAPjBAACAQQAAQEAgADgTQAlIdVABKo8CEAAagAIAAGS-AACgPAAAmD0AAKI-AADIvQAAML0AAEw-AADqvgAAor4AAOA8AADYvQAAPL4AAAw-AACCPgAAgDsAAGy-AAAQvQAAUD0AABw-AAD2PgAAfz8AABA9AABwvQAAQDwAADy-AABMPgAAED0AAES-AAAQvQAAVD4AABw-AAC4PQAApr4AAJi9AAA8PgAAmD0AAOg9AAAUvgAAfL4AAEC8AACAuwAADL4AAFA9AADYPQAAUL0AANI-AACKPgAA-L0AANi9AABcvgAAyL0AABS-AADuPgAADD4AAJi9AACoPQAALz8AABC9AACAuwAAUD0AAFS-AABQPQAAcL0AAFS-IAA4E0AJSHxQASqPAhABGoACAADCvgAABL4AANg9AABDvwAAVD4AAEA8AABwPQAAZL4AAGy-AABQPQAAVL4AAOi9AACgPAAAlr4AAKg9AACgPAAAJD4AAEM_AACWPgAApj4AAOA8AACoPQAATD4AADC9AACovQAADL4AAPi9AABwPQAABL4AAFC9AADoPQAA6D0AABw-AACgPAAAdD4AAHC9AABkPgAAuD0AAES-AADIPQAAVD4AAIA7AADovQAAoLwAAAS-AADYPQAAf78AAKK-AAAkvgAAHD4AAK4-AAD4vQAAfD4AACw-AAAUvgAAcD0AABC9AAAQPQAAoDwAAES-AACAuwAAPD4AAGy-AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=-S0wNYVnims","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1728,"cheight":1080,"cratio":1.6,"dups":["6995468420430888477"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1057235958"},"16015106436561118623":{"videoId":"16015106436561118623","docid":"34-2-3-Z75BD690B4FFC5556","description":"These are videos from the Introduction to Complexity course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics you'll...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ILTihAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYj-KI3Z9pCM","linkTemplate":"/video/preview/16015106436561118623?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: The Koch Curve Part 3","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Yj-KI3Z9pCM\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoWChQxNjAxNTEwNjQzNjU2MTExODYyM1oUMTYwMTUxMDY0MzY1NjExMTg2MjNqiBcSATAYACJFGjEACipoaG9tZ3pxdmJhYnBoa3djaGhVQzZzLTFUWWEtMWZCclVVSUdpanNoQ1ESAgASKhDCDw8aDz8TtwGCBCQBgAQrKosBEAEaeIH-BwgE_AQA-AcFCAAG_QICDQb0-P__APMBBgkDAv8A7_wA9PkAAAAA_wIE_gAAAPz8BPv8_gAAFgAD_wUAAAAFAO_8AAAAAAoG9wj-AQAA9_oFDgT_AAAFCvwB_wAAAPgKB_v7_wAAAQf4-gEAAAAH-AD-AAAAACAALbtK3js4E0AJSE5QAiqEAhAAGvABbglLALLz6_4f9f4Bxxbg_4EiCv4o_9kAsRITAezp3AEZEhIAuu4d__b07QDUDQkA7QPb_hHIL_866en_NfMUAQf-DwEj2woAFBYdAd7_9v8MQf_-4fIP_unx8AEECQr_LQj-_BwEAwAh9tQC--0sASj8_fwnvQQBKvwN_hT5CQQJ8dkAJxED_P8AEwDi9i0HzQ7bBQof6QD3DAkDFeT__uPvFf8AD-_4KP30B_sKAv74zv75wiQD_wfaAf_iMhAB6Bgg_tzPCfcLKxP6GLX6-98F9_UBFAMHBPf-AhXx_P3V9wX-4fn9-cwFAQDm8QQEIAAt_yEdOzgTQAlIYVACKs8HEAAawAeSB_K-pkALPeCDl7y0ZEQ8l0qZPdOO0TwU2pi9J095PQsRibujARy9blQCPXnDxzybHaG-RqGbvMhnqDy14ZA-uhE2vRqJMD3PwHi-k4FNvIi2CL1u32O-1W5FvQaeG73gQy69ASaaPc0rTzthXYs9Ug_RPJALEz1AAUo9NpXFOy_PuTx-KAU83vlqPBEw4zvX6sE9N_CUvQnpHzxqBIE9k5CTvQ9YJDv5D448Wc9_vDZ13jzejwu-L7_Xu5aZLTz3PxA-F6BtvJ9J8jvEeTi8sky_u4P44TvrRi49xruIPOX4fLwZLRW8YLcdvC7gijwFF-s9p577PK16DDxTCWq9RDagPZhnRTrcBKk9g7_fPRwxqbxQ_q68vRBcPZqCkLxrufM8MA1IPeM1DjwBmbc91qIqvFchijyiI769QV9fPVa2jzwxLUW9JGC2O_SwhjyeV4E9wF-nPIqGFryWWak8ogGGPMA9sju7fGu9g8NmPCB7nDs_KB49Q0uovFoxt7yGjSI-I4rmu4F4ZrotyhE9XxeEvZpD8zse05Q9FEmKvQeBcLz7eU49KDAXvM1cYDwxpHk8As63vMIHBDyOT1K9SSCPvbN10ztWazy8Uq-wvWLHGDsIkhc9wd_UvO9kATyz_iI8c3VRvVcHgLzLogs9MuS7O_nRgrpkDb29QzrcvdCRN7d5E6I9JwEDu5DD3LvdtXG6XosRvWUi37oONFk6DcUdvR_bcLuamK687g8MPCPcgTvYInO9PscMPa6lFDoCpkI8n6kcvdiyhLq3qUs9LVoFPbniYjmpIqa8dWJFvEPRzbh89Sw913e0PMHPc7eC9988u0cWPShhJjui13q8qBFkvd0ES7lFjTg9wWwHPQrSHjkXj8G8G9QDvdeR9TnEAC48_g-wPES7rLe3JKw8H7kVvdMaDTnv0YE9PB_EvX4GF7lKYd67bLd4vVNjwzn-G8W8EyqXu0rMhrirzAo6y6spvQlVwrfyYFI6VysPvFVxhLeohPE8uZ2HvP7HgjXBSFk9pJEKvY3WJjg03Ns85l0lvgac57j06Lw8Q6MlPYwX27fuiY-9a5-pvXJkLzcmjfK7yenrPOw5ujfhiAQ9SckBvTf5mjZ3c-e88GMxvcLD3DdB7rc9PGHTu0EZ_LisG0-9cABivXH6orgq6xA8f57rvBoxhTd5dty7EbWjPIHqjLi9rwU9pUkJvq2ehbgi_-w9NSkFPvN-W7htJ8A868P6PJoPuLiQONq8FeWyPcSiLTcJXbi8CZl1vZHuODggADgTQAlIbVABKnMQABpgNg8AGgI-tRIwTNvK6-Eo6swG-AjO4__37AA28vEAGR3YsBwLAB3LC-CpAAAA_gveDMEAAHfa8u0f5yADs7LcETZ__EUNusUeGunnEPHgAf4eBfg1AOrsqCU2BAdMC0ENIAAtvmsgOzgTQAlIb1ACKq8GEAwaoAYAALDBAAAQQgAAIEIAABDCAAD4wQAAwMAAABhCAAAQwgAAlsIAALBBAACYQQAA-EEAAADAAADQwQAA8EEAAJpCAACwQQAAQMEAAIA_AAC4wQAAZEIAAKDBAADQQQAAQMAAALhBAABgQgAAZMIAAFxCAAAAQQAAOMIAAOhBAACcQgAAtMIAAFzCAAAUwgAACMIAAFDBAAB4QgAAOEIAAHBCAABcwgAAGEIAABDCAAAIQgAAuMEAACDBAAAAwQAAgEAAANRCAADwwQAAksIAAEBAAADgQQAAGMIAAEDAAACaQgAA1sIAAPhBAAAQQgAA0EEAABBBAACEwgAAqEEAAMBAAABwQQAAkEEAACDCAAC4wQAAIEEAAFBBAABwwgAAQEIAAJbCAABgQQAA-MEAACDBAAA4wgAAUMEAAJhBAACgwAAAjsIAABxCAABIwgAA8MEAAMDAAAAAwQAAREIAAMBAAABAQgAAmMEAAEDBAABUQgAAoEEAAJrCAAA4QgAA0MIAAITCAAA4QgAAMMEAAFDBAAAYwgAAgMAAAPBBAAAwwgAAgEAAAIRCAACgwQAAwEAAAOjBAACwQQAAcEEAALhBAAAswgAAQMEAAIA_AAB4wgAAKMIAAGDBAAC-QgAACMIAAIrCAACgwAAAuEEAAJjBAAAYwgAAEMEAACBCAAA4wgAAsMEAAIJCAACcQgAAAEIAAEDCAAC4QgAA4EAAALBBAABoQgAAlkIAAOjBAADAwQAAUMEAAEhCAABAwAAAmEEAAJZCAAAAQAAApkIAAIA_AACgQAAA4EAAALBBAAAwQgAAQMAAACTCAAAgQgAAsEEAAEjCAAAgwQAAPMIAAJhBAABAQQAA4EAAAKDBAAAEwgAAJMIAAMDBAAAQQgAA2EEAAKjBAAAgwgAAuEEAAOjBAACAvwAACMIAAAAAAACYQQAAgL8AAMBAAACMwgAATEIAAAjCAADgwQAAMEEAANBBAAA0QgAAoEEAAOBAAACWQgAAIMEAAABBAAAUwgAAIMIAAIBBAAAwQQAAiEEAAFxCAAAMQgAA-MEAAIBBAABAQCAAOBNACUh1UAEqjwIQABqAAgAA0r4AAIC7AACIPQAAnj4AADA9AAC4PQAApj4AACO_AADivgAAcL0AAIg9AAA0vgAAiL0AAK4-AAAcPgAARL4AAHA9AAAsPgAA-D0AAAs_AAB_PwAAED0AAIA7AACAOwAArr4AABw-AACovQAAbL4AAIi9AADYPQAAbD4AAOg9AACovQAAFL4AACw-AACoPQAAyD0AANq-AAC6vgAAiD0AAEA8AACovQAANL4AAFA9AACgvAAACz8AAFw-AABEvgAAPL4AAMK-AAAQvQAAiD0AAKI-AACKPgAA2r4AANg9AABZPwAAyD0AAJI-AABUPgAARL4AAHA9AACYvQAAqr4gADgTQAlIfFABKo8CEAEagAIAAK6-AAC4vQAAoDwAADG_AADuPgAATD4AADA9AAAMvgAABL4AABQ-AACovQAA-D0AADC9AACCvgAAmD0AAKg9AABEPgAAVT8AAIg9AADGPgAAhr4AAGQ-AABkPgAAUL0AADy-AAAEvgAAcD0AAKA8AAA8vgAAoLwAADQ-AAA8PgAA2L0AAMg9AAAsPgAA4LwAABQ-AAAkPgAAnr4AAHC9AACIPQAAuL0AAGS-AACgPAAADL4AAEw-AAB_vwAA3r4AAKi9AAD4PQAAbD4AAEC8AACCPgAAuD0AABA9AADgPAAAMD0AANi9AAAsPgAAiL0AAOC8AACoPQAAbL4AAJi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Yj-KI3Z9pCM","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1728,"cheight":1080,"cratio":1.6,"dups":["16015106436561118623"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3452085451"},"2626632674839883728":{"videoId":"2626632674839883728","docid":"34-3-10-Z32FC565D7A670A64","description":"Donate now: https://sfi.secure.force.com/event/Cn... Thank you all for your support and for being a part of the Complexity Explorer community. If you are able, please consider donating any...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/762233/cc12a19ff48549199790f787d9fe9d66/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/7y-m0QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCJ1x3igorMg","linkTemplate":"/video/preview/2626632674839883728?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Complexity Explorer 2019 Fall Fundraiser","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CJ1x3igorMg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChMyNjI2NjMyNjc0ODM5ODgzNzI4WhMyNjI2NjMyNjc0ODM5ODgzNzI4arYPEgEwGAAiRRoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioQwg8PGg8_E4IBggQkAYAEKyqLARABGniB_v_4__sGAPIBDwP6BP8BAAMO9fn-_gDuCf8FCAAAAAHxBP_6AAAA-P8BDP0AAAAE-gL8BP0BAAQCCwfrAP8AEf4A-f8AAAABAfn6_wEAAPz1C_wCAAAAB_z7CQAAAAD1_gQBAQAAAPv7AgMAAAAABAz4CwD_AAAgAC3ZbeQ7OBNACUhOUAIqhAIQABrwAX8S-QO3Ag_9UOz6Afv7DAG_IwIAEvr4ALwM-wHF4OwAHhcHANr-CwE0Bw8B5_wJABDk9v8cCvgABQ0RAEEQD_8DAvYADucDAR398QEP-voAB_rw_y8MBf_r-gIAEv8F__wQ9QDkEQAAE84HAAIC6QL7Df4BG-r1_Cfe8gP__gQE_tL8_gsI8_78BQEC5QMXAf3s7wHlIAL_6_EIBPYJDfogAPn--A4AAQMTHgIF7fz_Fe_u_hgKEgHv_Ab5-gsYAvsECwEABAYABhH1Bfj19woK7QH8FAD4-_0X-AUIAPj9D_kF-vP3_v_zBggE-fwEBCAALUbBWzs4E0AJSGFQAipzEAAaYCr7AE3a9fnoAj3Y5u-0-TPd-BXj1An_Een_vRvt7A3Q7bAdF_9Yw_fsoAAAAB4lDx3cAB5__8XHCtwC5ROt_ikfc_Uy_cbZPx_MxLzMCO_N69sF8wDDHKNAWxEYSgobzCAALX6bFTs4E0AJSG9QAiqvBhAMGqAGAAAQwQAACEIAALBBAACAQQAAmMIAAFDBAAAAAAAAaMIAAMBAAAAowgAAAMEAALjBAABkwgAA6EEAAI5CAACwQQAAEMIAAIBBAAAYQgAAUMEAAFBBAAAAwQAANMIAAChCAADgQQAAuEEAANbCAAAcwgAAtEIAAEBCAACgwAAAyMEAAABBAABQQgAAhsIAAPjBAAAgwQAAlkIAAFBBAABEwgAAYMEAAPDBAAAAAAAA4EEAAPBBAABwQgAANMIAAAzCAACgQQAAkEEAANjBAACIQgAAiMEAAFhCAACYwgAAoMAAAIhBAABAQAAAQEAAAHRCAACowQAABMIAAEDCAACAQAAAIMEAAMDBAAAMQgAAjsIAABTCAADQQQAAyEEAAOJCAAA0wgAArkIAAATCAABgwgAAiMEAAHBBAADAwAAAAMEAAMBBAACQQQAAAMEAAIDBAACYQQAAREIAAPDBAACwwQAAxEIAAIbCAAAYwgAAhEIAAEhCAACIwQAAiMEAAATCAAAgQgAAAAAAAMDAAAAsQgAAkMEAAARCAABAwQAAeMIAALjBAAAMwgAAGMIAAIC_AAAQwgAAJEIAABBBAAB8QgAABMIAAEDBAABEQgAADEIAALDBAABAwQAAmMEAAETCAADgwQAAIMEAAOhBAACYwQAAQEEAAKBAAAAkwgAAGEIAALhBAACuwgAA-EEAAHjCAAAEwgAAWEIAAPBBAAAMwgAAOEIAABjCAACcwgAAgMIAAIJCAACIQgAAYEEAAABBAADAwAAAkEEAALhBAADoQQAAAEEAAPDBAACAwAAAgL8AALhBAACAwQAAMMEAAIBAAAD4wQAAwEAAAHRCAAA4QgAA4MEAAKjBAACIQQAAsMEAACTCAAAwwQAAUMEAACBBAAA8QgAALMIAAIhBAABwQQAAoEAAAJhBAABAwQAAkMEAAADAAADYQQAAqEEAAEhCAABQQQAAQMIAABhCAACKwgAAUEEAAIBAAACAwAAAqkIAAChCAAAQQQAAsEEAAMBAAADIwQAAsEEAAEBAAAC4wQAAssIAAIDBAABowgAAgD8gADgTQAlIdVABKo8CEAAagAIAAIC7AAD4vQAAJD4AAEQ-AADgPAAAQLwAAGQ-AAAVvwAA0r4AAPg9AABkPgAANL4AAFQ-AACmPgAAmD0AAFC9AAA8PgAAuD0AAAQ-AACOPgAAfz8AAAQ-AABwPQAA2D0AAHS-AADgvAAAQLwAAHy-AAAcPgAAyD0AADw-AACSPgAARL4AAAS-AAC6PgAAcD0AAGw-AAAUvgAA6L0AADS-AADovQAAiD0AAOC8AAC4vQAAJL4AAHw-AAD4PQAADL4AADA9AADivgAALD4AAOA8AACYPQAATD4AAGS-AADgPAAAST8AAFS-AACWPgAAgDsAAHS-AABAvAAA6D0AAK6-IAA4E0AJSHxQASqPAhABGoACAACKvgAAmL0AAFA9AABJvwAAij4AAIg9AAAQvQAAFL4AAOi9AABwPQAAVL4AAIg9AABEPgAAJL4AACw-AABAPAAAqL0AAGM_AAAcPgAAwj4AAKC8AAAcvgAAmj4AAOi9AADYvQAADL4AANi9AABAvAAAMD0AAKC8AABAvAAAUD0AAHw-AAB8vgAAFD4AABC9AACgvAAAMD0AAOC8AAAwPQAA2D0AAAS-AABAPAAAFL4AAOC8AADgPAAAf78AAMa-AACovQAALD4AAGw-AACovQAAgj4AAEQ-AABEvgAAED0AAKi9AAA0vgAAmD0AAFC9AAAsPgAA-D0AAAS-AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CJ1x3igorMg","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2626632674839883728"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3640516694"},"11215720910939443704":{"videoId":"11215720910939443704","docid":"34-0-0-Z19985BFBB643DA13","description":"These are videos from the Introduction to Complexity online course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/g6j4dQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DsCclweQ7vRc","linkTemplate":"/video/preview/11215720910939443704?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: What is Scaling Part 2","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=sCclweQ7vRc\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoWChQxMTIxNTcyMDkxMDkzOTQ0MzcwNFoUMTEyMTU3MjA5MTA5Mzk0NDM3MDRqiBcSATAYACJFGjEACipoaG9tZ3pxdmJhYnBoa3djaGhVQzZzLTFUWWEtMWZCclVVSUdpanNoQ1ESAgASKhDCDw8aDz8TpgKCBCQBgAQrKosBEAEaeIH1BAD4_AUA9QEDBQcE_QEPEwP69gICAO0J_wUIAAAA-_0A__8AAAD4_wEN_QAAAO0DAAT_AQAADQMB_gQAAAAH9PP1_wAAAAP89gf_AQAA8gIMBwMAAAAIBAIKAAAAAPgKB_v7_wAAAQf4-gEAAAAJ9gcDAAAAACAALSvk3js4E0AJSE5QAiqEAhAAGvABb_sEAs4H5ADv6voAAA7kAYEV8P8qMOb_yQT9AM4s4QAICfgA2QoK_xcHHQHDIfr_BQzm_wL9GgAy-RD_MfMnAO4ZFQA29R4BGQUXAQny_f_vLA3-FPkNAPnA-wDxAub_JQIL_8_u7__xA80BCN0zAhcABP8w--8C2vruAP8NIgDoAuwAJAHw_wPl8AbrGQcADwvvAQoiBvr2-PEB_AAOBvr4_QQT-vH8Lhz9Avb9BAH49Af7E_8A-x76_ALWEe_-9ff_9vT1_v3-C-_5I-4GBfn-CwUBBhT4EQv5AALh-vXRLAYC8woJAOoc_QYA5fz7IAAtUfQ1OzgTQAlIYVACKs8HEAAawAd1ywK_hFUrPZhBBr2cAYm849SYvDjtbr3O3Ai9VWWEOl8OFr0rq4Q9aYhvPQ8JX7u9jpC-fOdcvdimKTsUlEI-RkUcvXPoALxxPVq-5xa_PYVMqLz1oWu-hNMHPXQ1w7s7noA9KMAGvZGM5jqrTaI9VNwdvQl2Er0BnMW7ff7Bu6CSbr35Rrm9U5ecvWWa37xCoLk9230YvbgE_TsvUf09sQVgup-rrbwv67Q8CQApvdtdFr3Xfqe9C_1dvHdLcrzJIm09RYTaOyUzKDzlg3k9_4A9POAwUbzfCQy9zylQObaOHrw27DI9AA0FPcTSO73wbmA9W1U7vVbYZ7xeo8C8DWKRPY7Tqzz7BTs-2jfXPUR1yjudhZi83hB0u6UNZToDuso8VGBXvRl3Xjx9E5k9D3AUu0o_ozvEMcE8NA7VPSpAbzzt7gM8Fy8UPHijhTzPpK09YGQ4PObilLyaXXe8AiUKvVLLHLvDCpy9STXHPCQpirs-Mrc9uZ3HPMplpziEHAg8w7YqPYIKHDzFNUM9-FENvglvLLvB0g-9KNMIvTWfTrxLeEI9IOY3PN9Y6TutmJu8wnnCvFYRibxBPFy9whrCvFNPDzwXmSO8Zyx1vYu4SjxDNJ-8CgMAPQkVILv-LNa8YVygvPO-O7wfjdg7K3QYO_a7KDtyU_87v4LUvTqLgzpFU6w8S68NPtl6hjrYABs9De4dPUm9BrvzWd49bvbsPPqBnLhUYaK8nP0BvczhxboHVRQ9GU-pPEKiSbnQkHs9oq-FvONrz7lmCbw8vXDGOxTvnToGO9E7yTwSPdKXXTjg-BW9Z1NkvVLrKbhcVAu9nBXxvdyedTleyQS97Qn1u7H9Ubrjx1M9qGU1vcuvabk-Qp296KpUvZaHTrnVD6W98DoWPTLY0rlA4908tZ6bvRavuLZlrVw9BSGPvFHEmTnmpQs7U7s1vX3cwjjaQmY9AUeHPRPRCjbfAw89wLA8vdCgE7gKgLG8JxfjPWJgkrl7QAq91ULJPBOm5zZTM7W8DiByPSSYIrkS0be7DP2IvVBl-jdiZE49cSEqPZocGrhr8em9edYkvO4vYDZJjFS870qMvXkr1zYKqLs9XFqgOWmrGjjKZU09rMbSvG-UGzeSXRk-2U9QvazCP7nsCdy84SlfvcSlY7imhpE8I2NavfR-ijcwRgS-poH6u-2PcDjsA707fNQPvhf63LhCy189Yxq3PW6QjjgASDe7d1U2PT6V3bhSCaS9H_hTPQlDMDggs_O8rzhBPEH9_zcgADgTQAlIbVABKnMQABpgJQQAGPcL0wk1W-fvC9gi0evt-vj7AP_l5f8nAtf5BQDCt-T2_zGiGOGqAAAAE_zfItAAA3fy7w8K-hEBrqHGJhl_HB8r1QAr_LzwNyIDz97yEOhGACnspCdF8uJKHCMyIAAt9h8eOzgTQAlIb1ACKq8GEAwaoAYAALDBAAAQQgAAIEIAABDCAAD4wQAAwMAAABhCAAAQwgAAlsIAALBBAACYQQAA-EEAAADAAADQwQAA8EEAAJpCAACwQQAAQMEAAIA_AAC4wQAAZEIAAKDBAADQQQAAQMAAALhBAABgQgAAZMIAAFxCAAAAQQAAOMIAAOhBAACcQgAAtMIAAFzCAAAUwgAACMIAAFDBAAB4QgAAOEIAAHBCAABcwgAAGEIAABDCAAAIQgAAuMEAACDBAAAAwQAAgEAAANRCAADwwQAAksIAAEBAAADgQQAAGMIAAEDAAACaQgAA1sIAAPhBAAAQQgAA0EEAABBBAACEwgAAqEEAAMBAAABwQQAAkEEAACDCAAC4wQAAIEEAAFBBAABwwgAAQEIAAJbCAABgQQAA-MEAACDBAAA4wgAAUMEAAJhBAACgwAAAjsIAABxCAABIwgAA8MEAAMDAAAAAwQAAREIAAMBAAABAQgAAmMEAAEDBAABUQgAAoEEAAJrCAAA4QgAA0MIAAITCAAA4QgAAMMEAAFDBAAAYwgAAgMAAAPBBAAAwwgAAgEAAAIRCAACgwQAAwEAAAOjBAACwQQAAcEEAALhBAAAswgAAQMEAAIA_AAB4wgAAKMIAAGDBAAC-QgAACMIAAIrCAACgwAAAuEEAAJjBAAAYwgAAEMEAACBCAAA4wgAAsMEAAIJCAACcQgAAAEIAAEDCAAC4QgAA4EAAALBBAABoQgAAlkIAAOjBAADAwQAAUMEAAEhCAABAwAAAmEEAAJZCAAAAQAAApkIAAIA_AACgQAAA4EAAALBBAAAwQgAAQMAAACTCAAAgQgAAsEEAAEjCAAAgwQAAPMIAAJhBAABAQQAA4EAAAKDBAAAEwgAAJMIAAMDBAAAQQgAA2EEAAKjBAAAgwgAAuEEAAOjBAACAvwAACMIAAAAAAACYQQAAgL8AAMBAAACMwgAATEIAAAjCAADgwQAAMEEAANBBAAA0QgAAoEEAAOBAAACWQgAAIMEAAABBAAAUwgAAIMIAAIBBAAAwQQAAiEEAAFxCAAAMQgAA-MEAAIBBAABAQCAAOBNACUh1UAEqjwIQABqAAgAAir4AAEC8AACgvAAApj4AAJi9AACgPAAAdD4AABG_AAC2vgAA4LwAACQ-AAAkvgAAQDwAAKI-AABQvQAARL4AABw-AAC4PQAAkj4AAB8_AAB_PwAAqL0AAEC8AADoPQAAgr4AAHw-AAAwvQAANL4AAHw-AAB0PgAAZD4AAOA8AABsvgAA-L0AAGQ-AAAwPQAAQLwAAIK-AAAcvgAAyD0AAOA8AACOvgAAMD0AANg9AADIvQAA4j4AAJI-AACevgAA-L0AAAS-AABAvAAAgLsAAK4-AACIPQAAUL0AAOg9AAA9PwAA4DwAAAQ-AACYvQAAbL4AABw-AABQvQAAgr4gADgTQAlIfFABKo8CEAEagAIAADS-AACYvQAAcL0AAEW_AAA8PgAAqL0AALg9AACivgAAgDsAAKg9AABwvQAAoDwAALg9AAB8vgAAXD4AABC9AACIPQAALz8AAEw-AADaPgAAmL0AAMg9AACOPgAA-L0AAPi9AADYvQAAFL4AAIA7AACIvQAA4LwAAHA9AABUPgAAED0AABS-AAA0PgAAQLwAAHQ-AABMPgAAJL4AAEA8AABEPgAAcD0AAIq-AACYPQAAgDsAAAQ-AAB_vwAAwr4AADC9AAAUPgAAdD4AAKi9AADoPQAAPD4AABC9AADIPQAAoLwAAJK-AABAPAAABL4AANg9AACCPgAA-L0AABS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=sCclweQ7vRc","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["11215720910939443704"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2725277564"},"18419975817460109811":{"videoId":"18419975817460109811","docid":"34-5-9-ZEF26CF8D4ADA7BFD","description":"These are videos from the Introduction to Complexity online course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5-lFmwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFf-Ib8C4Tpw","linkTemplate":"/video/preview/18419975817460109811?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: Network Terminology Quiz 2 Solutions","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ff-Ib8C4Tpw\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoWChQxODQxOTk3NTgxNzQ2MDEwOTgxMVoUMTg0MTk5NzU4MTc0NjAxMDk4MTFqhxcSATAYACJEGjEACipoaG9tZ3pxdmJhYnBoa3djaGhVQzZzLTFUWWEtMWZCclVVSUdpanNoQ1ESAgASKg_CDw8aDz8TGIIEJAGABCsqiwEQARp4gfQDAv7_AQD4_vkEDQX9ARQK_Pz1AgIA5_kDDwT-AQD16f4C-gAAAAUE_gr-AAAA_AP5-_3-AAAI_PX9-AAAAAPy_vX5AAAA-Ab5AP4BAAD58Q0IA_8AAAsE-AUAAAAA5QoIB_8A_wD9D_QCAAAAAAEEBv7_AAAAIAAt2DLUOzgTQAlITlACKoQCEAAa8AF_CAgBgxPa-lHS6QDo9MoAkRUN_1Eb8gEXEQoABxrKAP4Y8wDuHhb_whoYAOHhM__s9v0ACRM3AArdMP8yER0AB_4QAd7jKgA1HfP_5xX0_wED8AHq6zAC6-ATAOsF-wEjGx8AEPnz_Qv-6wBK-isAGhPuAOwJCAbuG_P_0foJAw8CAgPy_-T-EvPyB_Xc8goQAQP7_Djq_vZI_QD42AT92_kQ9wfk_AH_DgkFQwn2_wUF4PsCGvwI8sPjAOAZJgHPDB4B_f77-fMD-P7zrfoCAv0C_9069gn16QoSHwwC_xHs8gC1A_3uCDkT9iAQCgAgAC2NuxM7OBNACUhhUAIqzwcQABrABwSqB78pCJ68mKt6PGtyJz25kS09kjk7PPiBtbwDq888aRT3vBDoHL4Qr2s8b2FwuJsdob5GoZu8yGeoPBSUQj5GRRy9c-gAvGLZLL5yAqo7w2QKvRUcTr6sTcg8NZcfO2DWGj2zNoc93MkWvGjjDT2soPU6XlLQvKEEBz3QU-48CbDhOtiofT3XMJO9vBk0Om4wuTzZBUi9aqHHOwXB4z3JOOa9FIxvO-4CKr2bBXW9g21EOxML3L2l_P88IeQ8PeKSAz6Ho5A8OA9MPMrVmT1p1DK8wo1vvPqtZz13uIK8i-PbPHG1uT36Jzi8T-oLveV6wD0pFeA7wwnxvPmgB770Gps9L4GAO7lmtz1zE7A9vxuBPHrvNLpw8AO8QViZu9lgIb0dqk48krzpPFNEoT3adoW9fGvWvDydEL1kbKI94dSHu105Nr3G4GE9z6mCutTMpDzx9Co9IVwBPSFtKL0WyRI9EHkEuSpZib0ldDi7prXMuoIwwTw_9fo70oSzu8bB5T0dVY29jP_xuueFP7thgam96wgWvHkHCD5k34-9ZzroOn446D1CQIA7fH0QvK1PmLvuSsG8yXfnuqRuRz1e06g8Nz6Lu13-njuAthW-XYNGu-vqCDxgZi49M3UyvChCLz3Wn6s6gE3Ou0I9IjwtcWk9WemkOzhxqLwZYgu9pTqROjECj7wA0Iw9ciGkOzw-kDx6Z768TUxQugJmPrxsTQm9m6hnOwxBaTxTCwA6PenIutDxUTzvy7Q9rhmDOCHUuzyzZwW93cGvONlwQr0xfMS7JC8JuhbMzrzToXM960NuOluUOT3GzzU8_0EWOcb7sTxk7cq85wKcuWjZSTyFZ1e7ypkaO5Rnnr3JaoS9meZ_OYmAXr24U588tpZMufy3_TpLL3-7aglZt9WW2j3ELys8QvA0OGQnlz3jcRG9c9FJOMYAJD3aCeU88AuyuQ93Wr0tRvg8XBwWOL9_MbtGpYI98Ue3NxqzujuL_1a9T8EVuAdAkT2N49G8fiBUOEtshDuXBCM9gKTyuK6DXrxrg-68OSgOOFP4Ar3pzqg9b-fwODirtLxL1tU7yig1OWFM_rvUmLW9M7SCNgqouz1cWqA5aasaOMWcFr20k6y9UYKDOPFYjb3IjMG8m3pYOL6D37x4CQ69eXt4uIG9eDyntHk9yOiXN5iwbL0R38m8X8KAOD-Oxj0r3gi-hyK0uELLXz1jGrc9bpCOOKwERr0RJTA9D3KzuK0A17otl-09ykhoOAET2L2TRou9nA-tuCAAOBNACUhtUAEqcxAAGmBDAQAv0BWyCCkz2QgG4w0P7_wDE-Dg_-bmACAK-uj3FfDLAQT_Kc0XBroAAAAT5-4n4gAFYOz_Ax_zFvXYx9QmJH8cJeXa4QQL0NUSGxsD_SbY9hEABtzDEUn01E4nDTIgAC3jDDs7OBNACUhvUAIqrwYQDBqgBgAAsMEAABBCAAAgQgAAEMIAAPjBAADAwAAAGEIAABDCAACWwgAAsEEAAJhBAAD4QQAAAMAAANDBAADwQQAAmkIAALBBAABAwQAAgD8AALjBAABkQgAAoMEAANBBAABAwAAAuEEAAGBCAABkwgAAXEIAAABBAAA4wgAA6EEAAJxCAAC0wgAAXMIAABTCAAAIwgAAUMEAAHhCAAA4QgAAcEIAAFzCAAAYQgAAEMIAAAhCAAC4wQAAIMEAAADBAACAQAAA1EIAAPDBAACSwgAAQEAAAOBBAAAYwgAAQMAAAJpCAADWwgAA-EEAABBCAADQQQAAEEEAAITCAACoQQAAwEAAAHBBAACQQQAAIMIAALjBAAAgQQAAUEEAAHDCAABAQgAAlsIAAGBBAAD4wQAAIMEAADjCAABQwQAAmEEAAKDAAACOwgAAHEIAAEjCAADwwQAAwMAAAADBAABEQgAAwEAAAEBCAACYwQAAQMEAAFRCAACgQQAAmsIAADhCAADQwgAAhMIAADhCAAAwwQAAUMEAABjCAACAwAAA8EEAADDCAACAQAAAhEIAAKDBAADAQAAA6MEAALBBAABwQQAAuEEAACzCAABAwQAAgD8AAHjCAAAowgAAYMEAAL5CAAAIwgAAisIAAKDAAAC4QQAAmMEAABjCAAAQwQAAIEIAADjCAACwwQAAgkIAAJxCAAAAQgAAQMIAALhCAADgQAAAsEEAAGhCAACWQgAA6MEAAMDBAABQwQAASEIAAEDAAACYQQAAlkIAAABAAACmQgAAgD8AAKBAAADgQAAAsEEAADBCAABAwAAAJMIAACBCAACwQQAASMIAACDBAAA8wgAAmEEAAEBBAADgQAAAoMEAAATCAAAkwgAAwMEAABBCAADYQQAAqMEAACDCAAC4QQAA6MEAAIC_AAAIwgAAAAAAAJhBAACAvwAAwEAAAIzCAABMQgAACMIAAODBAAAwQQAA0EEAADRCAACgQQAA4EAAAJZCAAAgwQAAAEEAABTCAAAgwgAAgEEAADBBAACIQQAAXEIAAAxCAAD4wQAAgEEAAEBAIAA4E0AJSHVQASqPAhAAGoACAAAEvgAA2D0AAOA8AAAcPgAAiL0AALi9AABMPgAADb8AAJq-AACgPAAAHD4AAJi9AAAQPQAAnj4AAIC7AACovQAALD4AAJg9AACGPgAACz8AAH8_AACYvQAA4LwAAHC9AACGvgAAhj4AABS-AAAEvgAA-L0AANg9AABMPgAAcL0AALi9AACGvgAAwj4AACw-AABwPQAAJL4AAES-AADgPAAA4DwAAHC9AACgPAAAND4AAHC9AAC2PgAAtj4AAIK-AAAwvQAAJL4AAOC8AACovQAAqj4AABw-AAC4vQAA-D0AAPo-AACAOwAAuD0AAMi9AAAsvgAA4DwAAIA7AADovSAAOBNACUh8UAEqjwIQARqAAgAAqr4AAEC8AABAvAAANb8AAKo-AAC4PQAABD4AAOi9AAAQvQAAED0AAIC7AABwPQAAgDsAAIK-AAA0PgAAcD0AAPg9AAA_PwAABD4AAMY-AACgvAAAmD0AAI4-AAAkvgAA-L0AAIg9AABQvQAAMD0AADy-AACYPQAABD4AAAQ-AACYvQAAUL0AAEw-AAAwvQAAcD0AAPg9AAB0vgAAMD0AAFw-AAAwvQAA4LwAAOg9AABwvQAAFD4AAH-_AADavgAAyL0AACQ-AABkPgAAgLsAAEw-AACYPQAALD4AADA9AACgvAAAir4AAFA9AAAkvgAAQDwAADw-AAAMvgAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Ff-Ib8C4Tpw","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["18419975817460109811"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4223301214"},"3747625691088049190":{"videoId":"3747625691088049190","docid":"34-11-8-Z55A76D1E1574A368","description":"These are videos from the Introduction to Complexity online course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LllVXgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2_8cFBvumQU","linkTemplate":"/video/preview/3747625691088049190?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: Small-World Networks Quiz Solution","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2_8cFBvumQU\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChMzNzQ3NjI1NjkxMDg4MDQ5MTkwWhMzNzQ3NjI1NjkxMDg4MDQ5MTkwaocXEgEwGAAiRBoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioPwg8PGg8_E1yCBCQBgAQrKosBEAEaeIH_BwcFAAAA9_z6BwEG_QEUEA4G9QICAOID_AoJ_AIACvv3AQAAAAAA-_gL_gAAAPcLBQH5_wAAAg4A-wUAAAAN8P3_-QAAAAEJBQT-AQAA7fP9DAT_AAAC_Q8QAAAAAPcLB_r7_wAA8hHyCAAAAAAHBgoD_wAAACAALWQm0js4E0AJSE5QAiqEAhAAGvABcQsA_YET8fom8_4B9vWgAqfqIQA_Fr0At_omAMfQAgHgFRb_-jn5_-b8HQLt-hb_BBzw_-_qvABhFQgAyiE2AQzFGAFE0_wBTgMa__4G5f_ZKhX_Cw4g_wo0BwLv4gL-JRAa_yEhwv308dYHDRkqAC0jCv_eKB795ioSBJ8UEv7_3fUFFub7CgkVAfee_iAIDfzQABgVCvkwQP_-FeMXA9bOBfnz9er8Auv4AAIaAe8I9hkGFAHYAfcVBPwKKf8J8CsF9DO7_QAHJQntHaT4-grx-_8ND_oG980FCS7f-fIH4Avyy__q9ALHBA0NHwT6IAAtpGMBOzgTQAlIYVACKs8HEAAawAfXhee-RLw6vQqhpDtrcic9uZEtPZI5Ozz4gbW8A6vPPGkU97zqUYI8ET5vvAf1yLwEVDi-lqGiuwRIvrzGa6Y-yKpSPOmXLbx6Fy--CDwwPSmf1Lz9B7K9v63HO3sOE7zPFku9MGTVPRmx6jxphMg9rXIcPSSTuLxpv4o9m5B2vczaXLxLEnq9TUMavI6TQjxuMLk82QVIvWqhxzuVzPe7c4ukvexFOb2Hr-U894Q2vN2grLypSza-1Fa2vNXkjjyCi9U9xL0ovVr4k7uZnNo9zAcpOmkqGr0MIx09OD25vG85jbw2iYs9bQC2PYRLR7y1tc87L64HPYF6s7shkw48l0lePePInrxenQM9u9HnPbgQGDwchL-9Ta0NPTec5Dsy44K9uajWPV80-bs3bNs9fuAPvekvz7w8nRC9ZGyiPeHUh7sFKi08RkEQPd3zVzx11p08f7n7PChJsrxyFgY--ty_PXedD7xQQTS9YGG3vCnlmjy5MSI9ST0VvZkuo7vIKM89vvs-PMKQi7y8B-g9xsElu7g8Vrx_72A9iK2PvaHJFTyfsLQ96Y9LubhGfLtQj809mVC3PJOty7ofFpW9KVmOPPM05Lqa4wE99-civctkuDv2te48h1tTO7jHczv5DL29JL-pPZiivztR9es9aTVkvV9lyDkx0FW9i5lOveb4_jlH1zs8K-C5vIl0BTxeNBy8escJvqCVUrlse3s9TeCxPKuKmTrKyDQ7xG2fu2hsWLty8WG9RMk_PbM51rrcjVQ92EQGPTMlZTlmYVQ9t_GHPUrcsTlDSGw9mm24PCllFrk9LO88uH4wvNjVxLdflMG7QTCiPdq6_DiBryg9jC5vvSGK_Lluxdk8CuTIvN_lAjppWXK90wY2vS7g6bohHf69L1IDvYZenTgtf_i6142SPUxKXbj5iQG8PnbXvb3FRLjL_307jup0vVPqwDdRJpw7TrYnOj8qOjcdgrS8Vez5vEddI7j4Fta8rWjTvR4t_DiXyrs9uNopuqV9prjiZ709w6_iPJjSsLjxWSg9d5aKvdU16zgPVDc98YLoPelBgje0wEi96QAyvVIzlze8lLq87r2-vUmLmzdjG8I8-wF0valGvDgpkh--tPSivYdBqDiAR3G7Zsp9vTfcaDgqBA-8jCJVPZZS3Deh6Xa9J-XkvOqbPLgKNZ48GbcnvWlznTfe6F49eOWEvUFStLgi_-w9NSkFPvN-W7gAO_c8rHQ3Pjd9HrkYqJi709YtPaNMTrjREJS96BhLvUZoBrggADgTQAlIbVABKnMQABpgQ_wAH_YgyAwhLvMk_d0nAPsB6Ay6Dv_y7f8mGPLP6inzsuf0_xi_DwOtAAAADx_cOM8AGnHw9xEBADHw4anOFTB_7zYHutYSB57hHCIg8voB9hcrABzunxE4GNVOLgQgIAAtMjwkOzgTQAlIb1ACKq8GEAwaoAYAALDBAAAQQgAAIEIAABDCAAD4wQAAwMAAABhCAAAQwgAAlsIAALBBAACYQQAA-EEAAADAAADQwQAA8EEAAJpCAACwQQAAQMEAAIA_AAC4wQAAZEIAAKDBAADQQQAAQMAAALhBAABgQgAAZMIAAFxCAAAAQQAAOMIAAOhBAACcQgAAtMIAAFzCAAAUwgAACMIAAFDBAAB4QgAAOEIAAHBCAABcwgAAGEIAABDCAAAIQgAAuMEAACDBAAAAwQAAgEAAANRCAADwwQAAksIAAEBAAADgQQAAGMIAAEDAAACaQgAA1sIAAPhBAAAQQgAA0EEAABBBAACEwgAAqEEAAMBAAABwQQAAkEEAACDCAAC4wQAAIEEAAFBBAABwwgAAQEIAAJbCAABgQQAA-MEAACDBAAA4wgAAUMEAAJhBAACgwAAAjsIAABxCAABIwgAA8MEAAMDAAAAAwQAAREIAAMBAAABAQgAAmMEAAEDBAABUQgAAoEEAAJrCAAA4QgAA0MIAAITCAAA4QgAAMMEAAFDBAAAYwgAAgMAAAPBBAAAwwgAAgEAAAIRCAACgwQAAwEAAAOjBAACwQQAAcEEAALhBAAAswgAAQMEAAIA_AAB4wgAAKMIAAGDBAAC-QgAACMIAAIrCAACgwAAAuEEAAJjBAAAYwgAAEMEAACBCAAA4wgAAsMEAAIJCAACcQgAAAEIAAEDCAAC4QgAA4EAAALBBAABoQgAAlkIAAOjBAADAwQAAUMEAAEhCAABAwAAAmEEAAJZCAAAAQAAApkIAAIA_AACgQAAA4EAAALBBAAAwQgAAQMAAACTCAAAgQgAAsEEAAEjCAAAgwQAAPMIAAJhBAABAQQAA4EAAAKDBAAAEwgAAJMIAAMDBAAAQQgAA2EEAAKjBAAAgwgAAuEEAAOjBAACAvwAACMIAAAAAAACYQQAAgL8AAMBAAACMwgAATEIAAAjCAADgwQAAMEEAANBBAAA0QgAAoEEAAOBAAACWQgAAIMEAAABBAAAUwgAAIMIAAIBBAAAwQQAAiEEAAFxCAAAMQgAA-MEAAIBBAABAQCAAOBNACUh1UAEqjwIQABqAAgAAjr4AAKg9AADYPQAApj4AAEA8AAA8vgAAbD4AALK-AACSvgAAEL0AAIC7AACAOwAAQLwAAII-AACgvAAA2L0AAOg9AADIPQAAij4AAD8_AAB_PwAAiD0AAIi9AAAwvQAAhr4AAEw-AACgvAAAUL0AADA9AACqPgAAJD4AAAS-AABQvQAA4LwAAJY-AADoPQAA4DwAAJ6-AAB8vgAAED0AAHA9AABUvgAAgDsAADA9AAD4vQAAxj4AAKY-AAB0vgAAuL0AAOi9AAAwvQAA4DwAAI4-AAA0PgAABL4AALg9AAA7PwAAQLwAADQ-AADovQAApr4AANg9AACIvQAApr4gADgTQAlIfFABKo8CEAEagAIAAPK-AADYvQAA4LwAAE2_AADSPgAAQLwAANg9AACGvgAAgLsAAOi9AACovQAAED0AACS-AAB0vgAAgj4AAHA9AACIPQAAOT8AAMg9AADCPgAAiL0AAKA8AADYPQAAML0AAKC8AACgPAAAZL4AAIC7AAC4vQAA4LwAAFA9AAAsPgAAMD0AAKg9AAC6PgAA2L0AAHw-AAAkvgAAXL4AAOC8AAAwPQAAEL0AAES-AADYPQAAPL4AAKC8AAB_vwAA0r4AABy-AACIPQAAUD0AAEC8AAAEPgAAHD4AADS-AACoPQAA4LwAAIa-AAB8PgAAcL0AAEA8AACIPQAABL4AAKA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2_8cFBvumQU","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["3747625691088049190"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2490592341"},"7929896159204726305":{"videoId":"7929896159204726305","docid":"34-6-13-ZC8DF9042DDD8FF27","description":"These are videos from the Introduction to Complexity online course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2294907/1b5d284faa9abec64c224e472e4c8b4b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/s2N9XwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3De66vmkjVatg","linkTemplate":"/video/preview/7929896159204726305?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: Small-World Networks Part 2","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=e66vmkjVatg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoVChM3OTI5ODk2MTU5MjA0NzI2MzA1WhM3OTI5ODk2MTU5MjA0NzI2MzA1arYPEgEwGAAiRRoxAAoqaGhvbWd6cXZiYWJwaGt3Y2hoVUM2cy0xVFlhLTFmQnJVVUlHaWpzaENREgIAEioQwg8PGg8_E4wDggQkAYAEKyqLARABGniB-wAB-v8CAAQABQcBCPwCFBANBvYCAgDjA_wKCfwCAAD8-Aj_AQAABQT-Cv4AAAD0DQj58wABAA4NAfoFAAAAE_kC__cAAAD9Af8D_gEAAPT3BwIDAAAAB_sHDP8AAAD4Cwf6-_8AAAAX9wsAAAAA_wEKBv8AAAAgAC1ZJtc7OBNACUhOUAIqhAIQABrwAWAENf687RT-CAXtAAEJxQGBIgr-NBLJAJHzDQHc8cYBExgCAdrfMv7V9_cAqBELARME6wAJCP8AD-MX__8Q-gDs-_0AKL71ATwUA__64Oz-5xUG_gsK_gLwGdr_7fvtABYk_v0HFOcC6tvZAAAGGQIZN_MBLvQJAu8A-wfpLyADFeX2ABff8_zR_hj_-O4PBg0Q3P8VEekB3EDxAPwCAQP2-gwGFvnv_CL_B__6JfT4HOwTADEY6PoDB_D1Jx4EBtbwBfz8zfL86jEABRHJFvX60AwGAhP4EeL4AAv83_QUyTIHAvcf5gIQ7g0JG_cB9CAALf8hHTs4E0AJSGFQAipzEAAaYEnvADThJc0oTED7BezNDu3O7u8P0_H_1tH_Khnq5_kW170CBgAdwiDkowAAAPkU_i_UAB5_7N0aGO0zFrOb6iI5fAwxBsHkIyWe4x8FJ94AEAb2NAAm8IsRTiDmPRczLCAALQkqFjs4E0AJSG9QAiqvBhAMGqAGAACwwQAAFEIAACBCAAAQwgAA8MEAAMDAAAAYQgAADMIAAJbCAAC4QQAAmEEAAPhBAAAAwAAA0MEAAPBBAACaQgAAqEEAAFDBAACAPwAAuMEAAGRCAACowQAA0EEAAEDAAADAQQAAYEIAAGTCAABcQgAAAEEAADTCAADwQQAAnEIAALbCAABcwgAAFMIAAATCAABQwQAAeEIAADhCAABwQgAAWMIAABxCAAAQwgAACEIAAMDBAAAwwQAAAMEAAKBAAADUQgAA-MEAAJLCAABAQAAA2EEAABjCAABAwAAAmkIAANbCAAAAQgAAEEIAANBBAAAQQQAAgsIAALBBAADAQAAAcEEAAJBBAAAcwgAAsMEAABBBAABQQQAAcMIAAEBCAACUwgAAcEEAAPjBAAAgwQAAOMIAAFDBAACYQQAAgMAAAI7CAAAcQgAATMIAAPDBAADAwAAA4MAAAERCAADAQAAAQEIAAKDBAABQwQAAVEIAAKBBAACawgAAPEIAAM7CAACEwgAAPEIAAEDBAABQwQAAGMIAAIDAAADwQQAALMIAAEBAAACEQgAAoMEAAOBAAADowQAAsEEAAHBBAAC4QQAALMIAADDBAACAPwAAfMIAACjCAABgwQAAvkIAAAzCAACMwgAAwMAAALhBAACYwQAAGMIAAADBAAAcQgAAPMIAALDBAACCQgAAnEIAAARCAABAwgAAukIAAOBAAACwQQAAbEIAAJZCAADwwQAAwMEAAEDBAABEQgAAQMAAAJhBAACWQgAAAEAAAKZCAACAPwAAoEAAAOBAAACwQQAALEIAAEDAAAAgwgAAIEIAALBBAABEwgAAIMEAADzCAACYQQAAMEEAAOBAAACgwQAAAMIAABzCAADAwQAAEEIAANhBAACowQAAHMIAALhBAADowQAAAMAAAAjCAAAAAAAAmEEAAIC_AADAQAAAjMIAAExCAAAMwgAA4MEAADBBAADYQQAANEIAAKhBAAAAQQAAlkIAABDBAAAAQQAAFMIAACDCAACAQQAAMEEAAIhBAABcQgAADEIAAPjBAACAQQAAQEAgADgTQAlIdVABKo8CEAAagAIAAN6-AABAPAAAiD0AAK4-AAAwvQAA-L0AAEQ-AADCvgAAnr4AAIC7AAAMPgAAUD0AAHC9AABkPgAA4LwAAHy-AAA0PgAA4DwAAL4-AABFPwAAfz8AAJg9AADovQAAyD0AAES-AABUPgAA-L0AABS-AAD4PQAAuj4AAAw-AADYvQAAQLwAAKA8AAB8PgAAcD0AADC9AACmvgAAdL4AAAQ-AABQPQAAPL4AADC9AACgvAAAoLwAAMY-AADCPgAATL4AANi9AABMvgAADL4AAFC9AADKPgAAHD4AAOi9AADIPQAAST8AAJg9AADIPQAABL4AANa-AAA8PgAADL4AAHy-IAA4E0AJSHxQASqPAhABGoACAADevgAAqL0AAOi9AABZvwAAgj4AAOA8AADgPAAAnr4AAOA8AACovQAA2L0AADC9AAAsvgAAbL4AAEw-AAAQPQAAUD0AADk_AAAQPQAAqj4AAJi9AABwvQAABD4AAFC9AABAPAAAED0AAJa-AABAvAAAuL0AALi9AACIPQAAHD4AAHA9AAAEPgAA0j4AANi9AACOPgAANL4AAEy-AAC4vQAAiD0AAEA8AACCvgAAuD0AAGy-AABQvQAAf78AAJa-AAAMvgAAyD0AALg9AADovQAAMD0AAI4-AABkvgAAuD0AAKC8AADYvQAAPD4AAHC9AAAwPQAAED0AAMi9AAAwPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=e66vmkjVatg","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["7929896159204726305"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2892967470"},"14249923927684853359":{"videoId":"14249923927684853359","docid":"34-9-13-ZBD97BCB4CDBCB16E","description":"These are videos from the Introduction to Complexity online course hosted on Complexity Explorer. You will learn about the tools used by scientists to understand complex systems. The topics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254412/d3aed997656adcd3cbabad9c109f042b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fTg8HQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-_cAv6bTn3k","linkTemplate":"/video/preview/14249923927684853359?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Complexity: Shannon Information Part 3","related_orig_text":"Complexity Explorer","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Complexity Explorer\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-_cAv6bTn3k\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMTkwMDEzOTg5NjEyMjI3MTMyNAoSNDg0NzAxNjkwNTMxMDk0MDEwChQxMjU3NDE4ODk4MDE3NzUwNjIyMgoTMjYwMzQ4NjIyNTM5NjM2NjMwNgoTNjkxNzQ3Mzg0MTc3MzY5MDQ5OAoTMTAyNzY4NTYzMDQzMzI2MTMwOQoTMjY5OTY2MzE2ODgxMzg4ODMzNwoTNTQ5Nzg4Nzg4ODIwNTgyNzc5MAoUMTQwNzk2Njc1Mzg4MTQ5NzAwOTgKFDE0NTE4ODA1MzA3NzQ4MzM1MDIyChM2OTk1NDY4NDIwNDMwODg4NDc3ChQxNjAxNTEwNjQzNjU2MTExODYyMwoTMjYyNjYzMjY3NDgzOTg4MzcyOAoUMTEyMTU3MjA5MTA5Mzk0NDM3MDQKFDE4NDE5OTc1ODE3NDYwMTA5ODExChMzNzQ3NjI1NjkxMDg4MDQ5MTkwChM3OTI5ODk2MTU5MjA0NzI2MzA1ChQxNDI0OTkyMzkyNzY4NDg1MzM1OQoTNjYwOTIxNDg4MDE1OTI2MDMyMgoTNTM5MTQzOTQ0ODQ0MzM3OTU0MRoWChQxNDI0OTkyMzkyNzY4NDg1MzM1OVoUMTQyNDk5MjM5Mjc2ODQ4NTMzNTlqiBcSATAYACJFGjEACipoaG9tZ3pxdmJhYnBoa3djaGhVQzZzLTFUWWEtMWZCclVVSUdpanNoQ1ESAgASKhDCDw8aDz8TggKCBCQBgAQrKosBEAEaeIEEDQD9Av4ABgUPBfkJ_AICDgbz9___AOMSCAEE_QIA9e8K_P4AAAAA-_gL_gAAAO0ACvX4AAAAEfv--AMAAAAQA_7__AAAAAv8BAz_AQAA_O79DgT_AAAMD_UF_wAAAAEKDPn-_wAA_Q_zAgEAAAAN-fcGAAAAACAALW0Mzjs4E0AJSE5QAiqEAhAAGvABfwkgAd_36QHHEuMA2f_2Aa8MG_8cJeEAz-XsAawTzP4FJAoAANYDAM7qAAC5Eu7_E9q3Auzi-wAa2NkAHufvAPL_CgAS1u8CKOc3ARcT7f_fIxL_BOn0_xfY1APt-uwAH-Md_w_59P3uA8QCCtY8Aw8vJgId7hEC784aA-4E-gIJ5ur_Fx76BPTJAwEDCzD-CtL9_gAGCvrYFgME9wr_-fDd_f8ILNf-GCfr_xYUCvzECO0ADPvwCiQLBf_6EfAE2-EJ9uUH_Pj32BDzGvb3Acn94P348-wDHhPp_-4E_vv6_gXz4RwHDegPBxX3_wT4IAAt7OYZOzgTQAlIYVACKs8HEAAawAe5HAO_ob-ru5pz-LtcVww9r0mSPDU1HLzThG07ioKNu16kKzxnmjA-IJFbvEPkrTn2lmK-BXiBPHk_Dby14ZA-uhE2vRqJMD2G4wm-3yD1PKwBKr2m1AW-P0ypugVmqrz2czS9f76tvEY54rqydZo9pcvRvC3oAbyzrna96z3wvCCAL728fMY8bg4fvCINeL1nPQI8ABIZvKYHBzxsSFc9sez4vFSGlrzxeCQ9yLQ2Pey-hLuscOu98NOCPDIFqbsHtxS7TjzxPMW2-zwXy768erKwu2PCILzBZV88LdOOO3eU1DwPe4Y97LmRPTmhK72gb-s9D9eFvEQ2C71trOS9phEuPZROwTv19fw9nKIIPesrWbwdPd69vsAMPrsIC7oSycY8Kk-FvEJDf7zg3jA93_DMPBBYPTqldB-7I56RvIXBRjzVX4o9azCIPW_imjzHjnw9MC_AOybb5bw7me48aV05vTUS_DqNm5q9c5U4Pez7i7yGuok9BqTYO9fVC7whjS88qkeaPLzPcTxFXKU8c7j2veQENzx1-FW9wf4rvRcqf7wdbcE9OWkQPS4Ff7yLy5w9pBd6vV94Srw5xXS8qM45vSGz8bs1KWU9oYG4vWpQDzsI29m8kcqePKAeNrwHIza9vBybO6PKMLyzgS-9ZOsUPQaRtbtOAmW88KyIvfj1xzqbG6g9x8mzO06oFjsUyDE9HvKQPbeQ4rkF6gM9tkcPvR2EzrtWYai9X3AXveOgrbmYLqm8o4_5ujEHdTnHZxI-rqDpvZAJtLlw9yg9VAqwPCNOIznE93S9J2ZeO3P-EDnmXIo8bRuGPHt7WjnOuPq8xo4BvRJoxre8d_U7yywCvb6YAblLsX683XrNPMWpd7nTUtS8ekG6vCd-FLrM--68Vj0JO7u7lrmDE9E9IfP1uzBLEDg98Tw9o1guvdwAFLmFsYm7kvr8OzqMQriLqwg86AECPXE1TjeYtFI7P3DFvfcuYDl5JTe4VGQePZ6okjgHlsQ7Wq_xurZLsbfv5xQ97eLsPOP6mLUS0be7DP2IvVBl-jdP0aw9w40KPancibgi-wC-xl8kPReYZTjrI2u9jb64vES307f-XFk9cxaBvQIwBjjYY6K8QdsDuxllNDjUYNo9B-ORvceXT7msG0-9cABivXH6orjML568yhLCvNkhcTfwuw69xxY9Pb_SszYdlww9SQ9DvlQxTbnK9HA9IuErPvHLijjwsjW9XMzPPQxGCrnoVbO9FiTsPM24ITjAcmm9-DuvvFC4tLcgADgTQAlIbVABKnMQABpgDPsAGPsbuvEiLu_d7bk16dbr1QXcyf_iuwA2D9v2_DXOtg4MABu8HOGoAAAAG_rwKb4ADXfg5Q4yCg4JxL6-Myh_Exb9vd8XB9oOWBrrA_kL8P9PAAsHoz5VEtFKCjkbIAAtBDoZOzgTQAlIb1ACKq8GEAwaoAYAALDBAAAQQgAAIEIAABDCAAD4wQAAwMAAABhCAAAQwgAAlsIAALBBAACYQQAA-EEAAADAAADQwQAA8EEAAJpCAACwQQAAQMEAAIA_AAC4wQAAZEIAAKDBAADQQQAAQMAAALhBAABgQgAAZMIAAFxCAAAAQQAAOMIAAOhBAACcQgAAtMIAAFzCAAAUwgAACMIAAFDBAAB4QgAAOEIAAHBCAABcwgAAGEIAABDCAAAIQgAAuMEAACDBAAAAwQAAgEAAANRCAADwwQAAksIAAEBAAADgQQAAGMIAAEDAAACaQgAA1sIAAPhBAAAQQgAA0EEAABBBAACEwgAAqEEAAMBAAABwQQAAkEEAACDCAAC4wQAAIEEAAFBBAABwwgAAQEIAAJbCAABgQQAA-MEAACDBAAA4wgAAUMEAAJhBAACgwAAAjsIAABxCAABIwgAA8MEAAMDAAAAAwQAAREIAAMBAAABAQgAAmMEAAEDBAABUQgAAoEEAAJrCAAA4QgAA0MIAAITCAAA4QgAAMMEAAFDBAAAYwgAAgMAAAPBBAAAwwgAAgEAAAIRCAACgwQAAwEAAAOjBAACwQQAAcEEAALhBAAAswgAAQMEAAIA_AAB4wgAAKMIAAGDBAAC-QgAACMIAAIrCAACgwAAAuEEAAJjBAAAYwgAAEMEAACBCAAA4wgAAsMEAAIJCAACcQgAAAEIAAEDCAAC4QgAA4EAAALBBAABoQgAAlkIAAOjBAADAwQAAUMEAAEhCAABAwAAAmEEAAJZCAAAAQAAApkIAAIA_AACgQAAA4EAAALBBAAAwQgAAQMAAACTCAAAgQgAAsEEAAEjCAAAgwQAAPMIAAJhBAABAQQAA4EAAAKDBAAAEwgAAJMIAAMDBAAAQQgAA2EEAAKjBAAAgwgAAuEEAAOjBAACAvwAACMIAAAAAAACYQQAAgL8AAMBAAACMwgAATEIAAAjCAADgwQAAMEEAANBBAAA0QgAAoEEAAOBAAACWQgAAIMEAAABBAAAUwgAAIMIAAIBBAAAwQQAAiEEAAFxCAAAMQgAA-MEAAIBBAABAQCAAOBNACUh1UAEqjwIQABqAAgAAlr4AADy-AADYPQAAgj4AAOg9AAAwPQAAvj4AABu_AAAXvwAALL4AAGQ-AAAUvgAAoLwAAHw-AABAPAAARL4AADQ-AAAcPgAAFD4AAPY-AAB_PwAAoLwAAIg9AAAwPQAABL4AALg9AAAwvQAAJL4AAFA9AAA0PgAAvj4AAKC8AAAkvgAAgDsAADQ-AAA8PgAAuD0AAOa-AAD-vgAAmD0AAFC9AAAMvgAAyL0AABQ-AABMvgAA4j4AALI-AACivgAAiL0AABy-AAAUvgAAqL0AAJ4-AABEPgAAqr4AAMg9AAAxPwAAXD4AAIg9AABMPgAAUL0AAGQ-AACAOwAAzr4gADgTQAlIfFABKo8CEAEagAIAAGy-AADYvQAA4DwAAD2_AAB8PgAAoDwAADA9AAAcvgAA2L0AAHQ-AABAvAAAcD0AAIg9AAB0vgAAyD0AAKA8AABUPgAART8AAK4-AADqPgAAZL4AAKI-AACOPgAAiL0AAIK-AADovQAAHD4AALg9AACYvQAA4DwAACw-AAA0PgAAmL0AAEA8AAAMPgAAML0AAHQ-AAB0PgAAmr4AALg9AAAUPgAAyD0AALa-AAD4PQAA6L0AAIo-AAB_vwAAxr4AAKC8AAA8PgAALD4AALi9AADYPQAARD4AAGw-AAC4PQAAMD0AADS-AACgPAAAXL4AAKA8AABkPgAAPL4AADy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=-_cAv6bTn3k","parent-reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["14249923927684853359"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2804813152"}},"dups":{"11900139896122271324":{"videoId":"11900139896122271324","title":"\u0007[Complexity\u0007] \u0007[Explorer\u0007] Lecture: David Krakauer • What is \u0007[Complexity\u0007]?","cleanTitle":"Complexity Explorer Lecture: David Krakauer • What is Complexity?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FBkFu1g5PlE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FBkFu1g5PlE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2030,"text":"33:50","a11yText":"Süre 33 dakika 50 saniye","shortText":"33 dk."},"views":{"text":"17,2bin","a11yText":"17,2 bin izleme"},"date":"5 şub 2023","modifyTime":1675555200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FBkFu1g5PlE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FBkFu1g5PlE","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":2030},"parentClipId":"11900139896122271324","href":"/preview/11900139896122271324?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/11900139896122271324?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"484701690531094010":{"videoId":"484701690531094010","title":"\u0007[Complexity\u0007] \u0007[Explorer\u0007] Lecture: David Krakauer • What is \u0007[Complexity\u0007]?","cleanTitle":"Complexity Explorer Lecture: David Krakauer • What is Complexity?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JR93X7xK05o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JR93X7xK05o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDOXJIWGdVRTlwaWt6WWNHckF1ak1YUQ==","name":"Santa Fe Institute","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Santa+Fe+Institute","origUrl":"http://www.youtube.com/@SFIScience","a11yText":"Santa Fe Institute. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2030,"text":"33:50","a11yText":"Süre 33 dakika 50 saniye","shortText":"33 dk."},"views":{"text":"37,2bin","a11yText":"37,2 bin izleme"},"date":"17 şub 2023","modifyTime":1676661356000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JR93X7xK05o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JR93X7xK05o","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":2030},"parentClipId":"484701690531094010","href":"/preview/484701690531094010?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/484701690531094010?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12574188980177506222":{"videoId":"12574188980177506222","title":"2019 How to Use \u0007[Complexity\u0007] \u0007[Explorer\u0007]","cleanTitle":"2019 How to Use Complexity Explorer","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3ifx3EOtSm8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3ifx3EOtSm8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":650,"text":"10:50","a11yText":"Süre 10 dakika 50 saniye","shortText":"10 dk."},"views":{"text":"20,6bin","a11yText":"20,6 bin izleme"},"date":"6 haz 2019","modifyTime":1559779200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3ifx3EOtSm8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3ifx3EOtSm8","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":650},"parentClipId":"12574188980177506222","href":"/preview/12574188980177506222?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/12574188980177506222?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2603486225396366306":{"videoId":"2603486225396366306","title":"\u0007[Complexity\u0007] \u0007[Explorer\u0007] Lecture: Epistemological emergence • Miguel Fuentes","cleanTitle":"Complexity Explorer Lecture: Epistemological emergence • Miguel Fuentes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_UQoYnOKWzU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_UQoYnOKWzU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1522,"text":"25:22","a11yText":"Süre 25 dakika 22 saniye","shortText":"25 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"7 mar 2023","modifyTime":1678221727000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_UQoYnOKWzU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_UQoYnOKWzU","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":1522},"parentClipId":"2603486225396366306","href":"/preview/2603486225396366306?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/2603486225396366306?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6917473841773690498":{"videoId":"6917473841773690498","title":"\u0007[Complexity\u0007] \u0007[Explorer\u0007] Journal Club: Marco Buongiorno Nardelli • \u0007[Complexity\u0007] of Music","cleanTitle":"Complexity Explorer Journal Club: Marco Buongiorno Nardelli • Complexity of Music","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7JTG5OPcp0U","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7JTG5OPcp0U?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1641,"text":"27:21","a11yText":"Süre 27 dakika 21 saniye","shortText":"27 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"12 nis 2023","modifyTime":1681257600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7JTG5OPcp0U?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7JTG5OPcp0U","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":1641},"parentClipId":"6917473841773690498","href":"/preview/6917473841773690498?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/6917473841773690498?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1027685630433261309":{"videoId":"1027685630433261309","title":"Introduction to \u0007[Complexity\u0007]: Definitions of \u0007[Complexity\u0007]","cleanTitle":"Introduction to Complexity: Definitions of Complexity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bNbbbrB_aUk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bNbbbrB_aUk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":393,"text":"6:33","a11yText":"Süre 6 dakika 33 saniye","shortText":"6 dk."},"views":{"text":"34,7bin","a11yText":"34,7 bin izleme"},"date":"13 eyl 2018","modifyTime":1536796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bNbbbrB_aUk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bNbbbrB_aUk","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":393},"parentClipId":"1027685630433261309","href":"/preview/1027685630433261309?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/1027685630433261309?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2699663168813888337":{"videoId":"2699663168813888337","title":"\u0007[Complexity\u0007] \u0007[Explorer\u0007] Nonlinear Dynamics Teaser","cleanTitle":"Complexity Explorer Nonlinear Dynamics Teaser","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VA29THVdNz0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VA29THVdNz0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":222,"text":"3:42","a11yText":"Süre 3 dakika 42 saniye","shortText":"3 dk."},"views":{"text":"2,6bin","a11yText":"2,6 bin izleme"},"date":"22 tem 2016","modifyTime":1469145600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VA29THVdNz0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VA29THVdNz0","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":222},"parentClipId":"2699663168813888337","href":"/preview/2699663168813888337?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/2699663168813888337?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5497887888205827790":{"videoId":"5497887888205827790","title":"Introduction to \u0007[Complexity\u0007]: The Koch Curve Part 2","cleanTitle":"Introduction to Complexity: The Koch Curve Part 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Yx-U80-9WeQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Yx-U80-9WeQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":68,"text":"1:08","a11yText":"Süre 1 dakika 8 saniye","shortText":"1 dk."},"views":{"text":"7,7bin","a11yText":"7,7 bin izleme"},"date":"13 eyl 2018","modifyTime":1536796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Yx-U80-9WeQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Yx-U80-9WeQ","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":68},"parentClipId":"5497887888205827790","href":"/preview/5497887888205827790?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/5497887888205827790?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14079667538814970098":{"videoId":"14079667538814970098","title":"Introduction to \u0007[Complexity\u0007]: Evolving Virtual Creatures Part 1","cleanTitle":"Introduction to Complexity: Evolving Virtual Creatures Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aPkGo76wX-g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aPkGo76wX-g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":100,"text":"1:40","a11yText":"Süre 1 dakika 40 saniye","shortText":"1 dk."},"views":{"text":"7,1bin","a11yText":"7,1 bin izleme"},"date":"13 eyl 2018","modifyTime":1536796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aPkGo76wX-g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aPkGo76wX-g","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":100},"parentClipId":"14079667538814970098","href":"/preview/14079667538814970098?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/14079667538814970098?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14518805307748335022":{"videoId":"14518805307748335022","title":"Introduction to \u0007[Complexity\u0007]: Network Terminology Part 1","cleanTitle":"Introduction to Complexity: Network Terminology Part 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Tk3SHBp5rSc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Tk3SHBp5rSc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":275,"text":"4:35","a11yText":"Süre 4 dakika 35 saniye","shortText":"4 dk."},"views":{"text":"7bin","a11yText":"7 bin izleme"},"date":"19 eyl 2018","modifyTime":1537315200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Tk3SHBp5rSc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Tk3SHBp5rSc","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":275},"parentClipId":"14518805307748335022","href":"/preview/14518805307748335022?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/14518805307748335022?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6995468420430888477":{"videoId":"6995468420430888477","title":"Introduction to \u0007[Complexity\u0007]: Core Goals, Disciplines, and Methodologies of the Sciences of \u0007[Comp...","cleanTitle":"Introduction to Complexity: Core Goals, Disciplines, and Methodologies of the Sciences of Complexity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-S0wNYVnims","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-S0wNYVnims?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":181,"text":"3:01","a11yText":"Süre 3 dakika 1 saniye","shortText":"3 dk."},"views":{"text":"29,9bin","a11yText":"29,9 bin izleme"},"date":"13 eyl 2018","modifyTime":1536796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-S0wNYVnims?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-S0wNYVnims","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":181},"parentClipId":"6995468420430888477","href":"/preview/6995468420430888477?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/6995468420430888477?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16015106436561118623":{"videoId":"16015106436561118623","title":"Introduction to \u0007[Complexity\u0007]: The Koch Curve Part 3","cleanTitle":"Introduction to Complexity: The Koch Curve Part 3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Yj-KI3Z9pCM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Yj-KI3Z9pCM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":183,"text":"3:03","a11yText":"Süre 3 dakika 3 saniye","shortText":"3 dk."},"views":{"text":"7,9bin","a11yText":"7,9 bin izleme"},"date":"13 eyl 2018","modifyTime":1536796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Yj-KI3Z9pCM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Yj-KI3Z9pCM","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":183},"parentClipId":"16015106436561118623","href":"/preview/16015106436561118623?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/16015106436561118623?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2626632674839883728":{"videoId":"2626632674839883728","title":"\u0007[Complexity\u0007] \u0007[Explorer\u0007] 2019 Fall Fundraiser","cleanTitle":"Complexity Explorer 2019 Fall Fundraiser","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CJ1x3igorMg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CJ1x3igorMg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":130,"text":"2:10","a11yText":"Süre 2 dakika 10 saniye","shortText":"2 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"4 kas 2019","modifyTime":1572825600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CJ1x3igorMg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CJ1x3igorMg","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":130},"parentClipId":"2626632674839883728","href":"/preview/2626632674839883728?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/2626632674839883728?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11215720910939443704":{"videoId":"11215720910939443704","title":"Introduction to \u0007[Complexity\u0007]: What is Scaling Part 2","cleanTitle":"Introduction to Complexity: What is Scaling Part 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=sCclweQ7vRc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/sCclweQ7vRc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":294,"text":"4:54","a11yText":"Süre 4 dakika 54 saniye","shortText":"4 dk."},"views":{"text":"6,2bin","a11yText":"6,2 bin izleme"},"date":"19 eyl 2018","modifyTime":1537315200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/sCclweQ7vRc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=sCclweQ7vRc","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":294},"parentClipId":"11215720910939443704","href":"/preview/11215720910939443704?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/11215720910939443704?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18419975817460109811":{"videoId":"18419975817460109811","title":"Introduction to \u0007[Complexity\u0007]: Network Terminology Quiz 2 Solutions","cleanTitle":"Introduction to Complexity: Network Terminology Quiz 2 Solutions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ff-Ib8C4Tpw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ff-Ib8C4Tpw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":24,"text":"00:24","a11yText":"Süre 24 saniye","shortText":""},"views":{"text":"3bin","a11yText":"3 bin izleme"},"date":"19 eyl 2018","modifyTime":1537315200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ff-Ib8C4Tpw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ff-Ib8C4Tpw","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":24},"parentClipId":"18419975817460109811","href":"/preview/18419975817460109811?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/18419975817460109811?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3747625691088049190":{"videoId":"3747625691088049190","title":"Introduction to \u0007[Complexity\u0007]: Small-World Networks Quiz Solution","cleanTitle":"Introduction to Complexity: Small-World Networks Quiz Solution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2_8cFBvumQU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2_8cFBvumQU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":92,"text":"1:32","a11yText":"Süre 1 dakika 32 saniye","shortText":"1 dk."},"views":{"text":"4bin","a11yText":"4 bin izleme"},"date":"19 eyl 2018","modifyTime":1537315200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2_8cFBvumQU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2_8cFBvumQU","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":92},"parentClipId":"3747625691088049190","href":"/preview/3747625691088049190?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/3747625691088049190?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7929896159204726305":{"videoId":"7929896159204726305","title":"Introduction to \u0007[Complexity\u0007]: Small-World Networks Part 2","cleanTitle":"Introduction to Complexity: Small-World Networks Part 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=e66vmkjVatg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/e66vmkjVatg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":396,"text":"6:36","a11yText":"Süre 6 dakika 36 saniye","shortText":"6 dk."},"views":{"text":"21,7bin","a11yText":"21,7 bin izleme"},"date":"19 eyl 2018","modifyTime":1537315200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/e66vmkjVatg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=e66vmkjVatg","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":396},"parentClipId":"7929896159204726305","href":"/preview/7929896159204726305?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/7929896159204726305?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14249923927684853359":{"videoId":"14249923927684853359","title":"Introduction to \u0007[Complexity\u0007]: Shannon Information Part 3","cleanTitle":"Introduction to Complexity: Shannon Information Part 3","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-_cAv6bTn3k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-_cAv6bTn3k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNnMtMVRZYS0xZkJyVVVJR2lqc2hDUQ==","name":"Complexity Explorer","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Complexity+Explorer","origUrl":"http://www.youtube.com/@ComplexityExplorer","a11yText":"Complexity Explorer. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":258,"text":"4:18","a11yText":"Süre 4 dakika 18 saniye","shortText":"4 dk."},"views":{"text":"9,8bin","a11yText":"9,8 bin izleme"},"date":"21 mar 2022","modifyTime":1647820800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-_cAv6bTn3k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-_cAv6bTn3k","reqid":"1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL","duration":258},"parentClipId":"14249923927684853359","href":"/preview/14249923927684853359?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","rawHref":"/video/preview/14249923927684853359?parent-reqid=1769287881202564-8856216404790036455-balancer-l7leveler-kubr-yp-vla-203-BAL&text=Complexity+Explorer","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"8562164047900364557203","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Complexity Explorer","queryUriEscaped":"Complexity%20Explorer","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}