{"pages":{"search":{"query":"Cos Cal","originalQuery":"Cos Cal","serpid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","parentReqid":"","serpItems":[{"id":"2069775123331992731-0-0","type":"videoSnippet","props":{"videoId":"2069775123331992731"},"curPage":0},{"id":"13550232807993913874-0-1","type":"videoSnippet","props":{"videoId":"13550232807993913874"},"curPage":0},{"id":"8194625687425353212-0-2","type":"videoSnippet","props":{"videoId":"8194625687425353212"},"curPage":0},{"id":"14163855514449122186-0-3","type":"videoSnippet","props":{"videoId":"14163855514449122186"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENvcyBDYWwK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","ui":"desktop","yuid":"8230661021769232017"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"12751429948757440940-0-5","type":"videoSnippet","props":{"videoId":"12751429948757440940"},"curPage":0},{"id":"5155015948459155876-0-6","type":"videoSnippet","props":{"videoId":"5155015948459155876"},"curPage":0},{"id":"3282021408773050314-0-7","type":"videoSnippet","props":{"videoId":"3282021408773050314"},"curPage":0},{"id":"10182030275969669354-0-8","type":"videoSnippet","props":{"videoId":"10182030275969669354"},"curPage":0},{"id":"16657697063754780496-0-9","type":"videoSnippet","props":{"videoId":"16657697063754780496"},"curPage":0},{"id":"884889255472533496-0-10","type":"videoSnippet","props":{"videoId":"884889255472533496"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENvcyBDYWwK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","ui":"desktop","yuid":"8230661021769232017"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"13213411490911720396-0-12","type":"videoSnippet","props":{"videoId":"13213411490911720396"},"curPage":0},{"id":"4712286528484751774-0-13","type":"videoSnippet","props":{"videoId":"4712286528484751774"},"curPage":0},{"id":"10938743968053233620-0-14","type":"videoSnippet","props":{"videoId":"10938743968053233620"},"curPage":0},{"id":"12688485581624540467-0-15","type":"videoSnippet","props":{"videoId":"18228844364426687741"},"curPage":0},{"id":"4301317719177108360-0-16","type":"videoSnippet","props":{"videoId":"4301317719177108360"},"curPage":0},{"id":"10324012441480957485-0-17","type":"videoSnippet","props":{"videoId":"10324012441480957485"},"curPage":0},{"id":"1514347366660731258-0-18","type":"videoSnippet","props":{"videoId":"1514347366660731258"},"curPage":0},{"id":"18308141745755270355-0-19","type":"videoSnippet","props":{"videoId":"18308141745755270355"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENvcyBDYWwK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","ui":"desktop","yuid":"8230661021769232017"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCos%2BCal"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"8213631234594935257262","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457144,0,59;151171,0,50;1459210,0,32;1281084,0,91;287509,0,30;1447467,0,17;1005534,0,50;1468028,0,46;1467128,0,58;912288,0,65"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCos%2BCal","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Cos+Cal","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Cos+Cal","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Cos Cal: Yandex'te 3 bin video bulundu","description":"Результаты поиска по запросу \"Cos Cal\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Cos Cal — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y900324af1c205e552dc7f307ff2acc08","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457144,151171,1459210,1281084,287509,1447467,1005534,1468028,1467128,912288","queryText":"Cos Cal","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8230661021769232017","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769232057","tz":"America/Louisville","to_iso":"2026-01-24T00:20:57-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457144,151171,1459210,1281084,287509,1447467,1005534,1468028,1467128,912288","queryText":"Cos Cal","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8230661021769232017","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"8213631234594935257262","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":149,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"8230661021769232017","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"2069775123331992731":{"videoId":"2069775123331992731","docid":"34-5-17-Z9156C21FFFB5F0EB","description":"02:26 sin(2pi/3) 03:12 Conclusion Get the tablet and products I use for math here: https://www.amazon.com/shop/mathceleb... Get the tablet and other products from my videos here...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/931246/9a54741d53ab16b363c57e5c19aacb04/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/aEjSBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Db5-KY-mVaqo","linkTemplate":"/video/preview/2069775123331992731?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Trigonometric Functions - Sine, Cosine, Tangent, Cosecant, Secant, Cotangent","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=b5-KY-mVaqo\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoVChMyMDY5Nzc1MTIzMzMxOTkyNzMxWhMyMDY5Nzc1MTIzMzMxOTkyNzMxarUPEgEwGAAiRBowAAopaGh6aXdjem52aXlieGxvaGhVQ1dJYTREMHpSNmkwQU5vR0ZUTmU0NmcSAgARKhDCDw8aDz8TxQGCBCQBgAQrKosBEAEaeIH7_wH_-wYA9f8KCwIG_QH9AfUG-P39APYA9fUCAv8A9AAI_PwAAAAEAAABBAAAAPz8BPv8_gAAFAT1APYAAAAIAgAA9AEAAA0L_AP-AQAA9v_8DAT_AAAH_PsJAAAAAPwMB_8CAAAA-_nu-wAAAAD7-gcKAAAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABbvXr_swk9_8IAQ8AKvDsAYH-5QAv8A8A8CYV_9ID_AHA7-QA-xcf_8fkCf_XDAgAHeUU_yYUFf8JC-v_ETYV_xX3KAAyGgUBH9_0ARsa-gAZFxn_Hw36ABMQGgD8CP3-NwTV_coA3gDJ8h0CIPwoARPLGAH73BAD5Bj-APgI9f7nA-oAAvol_wP8-Pbx7AII7f3zBR3QCP_qHOsC9-IBBvPz8QPrBO31Ihsj_xbv-gL_8wkHThINAAsAAADuAPv__uwH9en8BAATH_39EM0U9dzw-fTy6fb6KR7_CxXj-_vp5xT0BB33_t7oAgIgLwv8IAAtCZcpOzgTQAlIYVACKnMQABpgLAQAJeD2w-fcMdcByePE2N0Y6TLeGf_4AP9A7c7h_O7KvuVN_038DQmoAAAAEwgfYe8ACm4LxhMN2TIOwLf7IPx_J_QOIekP-8vbQVkExge6ACYLAC8BzvFRGQM8QBQdIAAt2lobOzgTQAlIb1ACKq8GEAwaoAYAAEDBAACgQQAAikIAABDBAAAoQgAAQMAAAPBBAAAAQAAAtMIAAMjBAABAQgAAtkIAADDCAABkwgAAkEEAAIDAAABAwQAAsEEAACBBAAAAwgAAqEEAADzCAABAQQAAAEIAAMhBAABYQgAAyMEAAIBAAAB4QgAAokIAADBCAAAAQAAAEMIAAEBAAAAwwgAAKMIAAHDBAACSQgAAAMEAAADAAABQQQAAwMAAAIBBAABgQQAAoEEAACDCAACgQQAAwMEAAIxCAABgQQAAUMEAACDBAACAQQAAQMIAAIBAAADAQAAAusIAABBBAAAAwAAAgEEAAIDAAABYwgAAmMEAACDBAADAQAAAwEAAAOhBAACAwQAAQEEAAGDBAAAYwgAAXEIAAPDBAAC0QgAAPMIAAKjBAADQwQAAgD8AAGDBAAAgwgAAoMAAAJBBAADAwQAAfMIAAEhCAABAQQAAwMEAABRCAADMQgAAAAAAAAjCAABMQgAAwEEAAAxCAABwwQAAAMMAAPhBAAAAwgAAMEEAACzCAACMwgAAEEIAAMDBAABAwQAANMIAAHRCAABwwQAAEMEAAIhBAACAwAAASEIAAMjBAABUwgAA8MEAAPBBAAAAwAAAQEAAAIrCAACowQAAiMEAAMDAAAAswgAAEMEAAGTCAADYQQAA6EEAAMDAAACUwgAAMEEAAKjBAAAwwQAAQEAAALDBAAC4QgAAqkIAAODAAABwQQAAYEEAADzCAACIwgAATEIAAIC_AABoQgAAAMAAAIpCAABAQAAAMMEAANhBAACQwQAA0MEAAKhBAAAkwgAAEMEAAJDCAAD4QQAAQMAAALjBAADKwgAAREIAAKJCAACMwgAANEIAAJBBAABowgAAQEEAAMDAAAB0QgAAiMEAAGxCAACgQAAAuMEAAJDBAADAwQAA4MAAAITCAAAkQgAAAEIAAADAAACAwAAAgkIAAFDBAADgwQAAgsIAAOhBAAAwQgAAgD8AAFjCAAAgQgAAWMIAABjCAABowgAAwEEAAJhBAADYQQAACEIAAFDBAAAUQgAAiMEAAGjCAACgwCAAOBNACUh1UAEqjwIQABqAAgAAmL0AAKA8AACGPgAAgLsAAEC8AACOPgAAgj4AAAW_AACoPQAAPL4AACy-AACgPAAAHD4AAKY-AADYvQAAgLsAADA9AABAPAAAbD4AABs_AAB_PwAAVL4AABA9AAAsPgAAZL4AAHA9AAA0PgAA6L0AAGw-AADqPgAA2D0AAGy-AAA0vgAA-D0AAKg9AABUvgAALL4AABS-AACuvgAAcD0AAJi9AACIvQAA-D0AABy-AADIPQAAiD0AALo-AACivgAAEL0AAAS-AACYPQAA6D0AAJY-AADYvQAA-D0AABA9AABPPwAAMD0AAFC9AAA0PgAAUD0AAOg9AAC4vQAAsr4gADgTQAlIfFABKo8CEAEagAIAAEA8AACoPQAAHL4AABu_AACOvgAAgLsAACw-AACIPQAAVL4AAOC8AABwvQAArr4AAIC7AAB0vgAAoDwAAIi9AACoPQAACz8AAAS-AAA0PgAA2D0AAHC9AAAQvQAAqL0AADC9AACovQAAFL4AADC9AACIPQAAED0AAPg9AADYPQAAur4AAKC8AACIvQAAED0AAEQ-AACCPgAAjr4AADy-AAAUPgAAyD0AABA9AADYPQAAuD0AAGQ-AAB_vwAAoDwAABC9AACgvAAAhj4AAIA7AAAkPgAA6D0AAFC9AAAwPQAAgDsAAI4-AAD4vQAAQLwAALg9AADYPQAA4DwAAHS-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=b5-KY-mVaqo","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2069775123331992731"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1551687280"},"13550232807993913874":{"videoId":"13550232807993913874","docid":"34-9-8-ZBF204279C84C44BC","description":"I have proved this series by using C+iS Method to prove cosx+cos2x+cos3x+...+ cos nx, which is sum of cosine when angles are in Arithmetic Progression. For proof of sine series (sinx+sin2x+sin3x+...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3052301/2b4a618af1f6c0e492a9026c4d7eb785/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mHSVogAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dfc0Icq-GW3c","linkTemplate":"/video/preview/13550232807993913874?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cosx+cos2x+cos3x+...+ cos nx || Sum of cosine when angles are in AP || Proof by C+iS Method","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fc0Icq-GW3c\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxMzU1MDIzMjgwNzk5MzkxMzg3NFoUMTM1NTAyMzI4MDc5OTM5MTM4NzRqiBcSATAYACJFGjEACipoaGloanllZHJjc2JmYnNkaGhVQ1N4R3FrdENhNUZPUU5JM3EzX2RIS2cSAgASKhDCDw8aDz8TlwSCBCQBgAQrKosBEAEaeIH2AQr2AQAABQUPBfkJ_AIP_QYC9wEAAOMC8PcD_AIA7AQJ8gAAAAD5EP3--wAAAAP7_Pv9_QEAFgn9_wQAAAATBQb5-AAAAAoG9gn-AQAA-fj9BgT_AAAECPsLAAAAAAAO-fEA_wAA_wX1AwAAAAAN-vj6AAAAACAALSODzzs4E0AJSE5QAiqEAhAAGvABfwgIAeTuzgHXBcgAySL3AMQzDQARFtIAu-nyALwD4QD3KfAB9ATe__QM_gDMLv7_E9i0AgDa9gA96Oj_DdXhAPP86wE12tkATxYQAQ0b_P7gIi39A8b6ARTB7AD9A-UA8_op_BD58_3tA8ICIBUmAQ0ILAQs-yUB3bD9Ad7w5wXs3dn9_QcCBPDd__nYBCICC9D9_hvgB_PVE_P99wr_-fL0HPn6O-X6EN7sDP_yA_zZ3QQB_AHnBBYhI_71J-v_1_IuBtIU-vENGw4AD_ACBr_e9PgJzvgBNfAADPPz-_0N9_z18Qz8_PQh9hXmGd7yIAAtjbsTOzgTQAlIYVACKs8HEAAawAdqFtC-rJQZPVMN97tTYBy9JELjvG-RBb1qTXO9qQjBPLZyBb0_c0Y-Du4zvZb5fTuL-8-9bq6QPJ1T4rv9vXQ-klRLvQOx7Dx1dPy9LxOaPQsCEL1Hjw--baSRPGg4yjy5hmm53YPrOynYNbyrTaI9VNwdvQl2Er3JV8K85gwAPULuAr3cahk69RFYvRN8WL0byVS8n_EzvLlwHjydhXg9vD6Qu4oFPry3V0s9VnTWu8anIL2mEIO9HwAnPTMb_7yEWRI9uOdZPWIgGTx6L5O9hnaevT-z2jyfTG28QvOUPLlZ1zyoyjI9fxT1PIk8brzYwgc9RMeZvfI7sryt-QG-VKWSPCHR3zss5UY9hk2uPGNQnjuu1wS-DZ8-PexFmbx8e5e87moovXsuU7w21Wk9vfzuPU85SzxCA1Y9xN3PPHloqzrDo2i9_k4JPWuU_zwHKdg9_1nzvKCJsLxQCDM9Cb8avCRQVLusFCe98qsePdjvLrwaKaU8OO4ZPZlbqbsWGA08bnNfOymveDsFI6U91gI7vknlmjoour69puy5vUOkjTt7DZY9ZL5tPcurxrrw-WE9FF8NvneEEbtp5ua7WF2ivCNTmTsXmSO8Zyx1vYu4Sjx3WcK9Lk5GvO6lOry_a6e7OsO5PNY1f7zEknY732-kPVxAwzqRoFO83yatvRbtnroMAxY9fQgqvPrUUruQg9I9RpRbPdUcFLjMrC89xb2zvbqhxjqamK687g8MPCPcgTuIpke9V2CDvXT_ZzjdYZM9u5cLvqUOaDl6oxs9nD6hPeBT4DmpKJi9_fEDPctFfTh5q1M8k3FsvaqGAzlcVAu9nBXxvdyedTl_jNQ8JML1PDMfvLkdYJy8vDuSPYgxsLdTHpK9ShvIveFzmzeTm7K856YNPbEi57jxRZA9Uq1PPJ6yvzhoRho9wcNZPaUbBDoyT3g8tPTyvGevmbi_IDO8rBvPPUkMNDXDgCU8546OvcNmcjnDdyw97kigPW3tGzlaxvy8qVBYPSraBLX2RzM9pjRxPQrtsbjz2va8CPnKvVqHe7a_8-s9rC5xvFXMUjjK4QO-ENcePJf9TjfaQkY8-PpavSjjGbi3xDs9P96QvFHfhThxT-E8uYDAuqTMrbfB4ys-3KVovAeJdLnNx3q90xXsveab-LiHZw699GUuvc3SELi7iKU8zsg7PUUchbfk1Z68eonxvWVVMLgi_-w9NSkFPvN-W7g5oQu90RCEPeXT1binJQa-zxmLu_SONDYHyae8Aj5JPTAB2LYgADgTQAlIbVABKnMQABpgKQYAG_g-_ssONPIh-AHn4uQM0efSEv_z6AALCuUD-geOvvcT_wvjINamAAAAMNrdJsMA7Xv87-kBujf2xcTXAD1_uMwyoL_r5cgc6x_uASIbDzpVAO4KszQXAOw03CMTIAAtChAbOzgTQAlIb1ACKq8GEAwaoAYAAChCAACIQQAAqkIAADjCAACGQgAAkMEAAFRCAADwwQAAlMIAAGBBAACIQQAAAAAAAODAAABkwgAAYMEAAKBBAADYQQAADMIAAAhCAAA0wgAAAEEAAIC_AABkwgAAkMEAABDBAABQwQAAQMEAAIjBAACYQQAAAMIAAPjBAACoQQAAQMIAAGxCAADYwQAAAEEAAODAAACEQgAA-EEAAERCAADYQQAAQEEAAGRCAACwQQAAYMEAACDCAABQQQAARMIAACBBAAAQQQAAaMIAAIC_AAA4wgAAQMIAADhCAAAcQgAA-MIAAABAAABMQgAAaEIAAIhBAAAkwgAA4EEAAIDBAACUQgAAysIAAIBBAAB0wgAATMIAAODAAACQQgAAnEIAAEDBAAB0QgAAQMAAACDCAAAAAAAALEIAAODAAAAwQQAA4MEAAERCAAD4wQAAwMEAABDBAABwQQAAgD8AAAxCAAAwQgAAYMEAAIC_AABIQgAAuMEAAMDBAABIQgAASMIAAIBAAAAwwQAAOEIAACDBAAAcwgAArkIAAAzCAABAQAAA-MEAAKhBAABgwQAA4EAAAFBBAAAIwgAALEIAAEDCAAAUQgAAQEAAAJDBAAAkQgAALEIAABjCAABgQgAAMEEAAADBAACiwgAAIMEAAGDCAADowQAAAEAAAABBAADQQQAAAMIAAIbCAADQwQAAYMEAAIDAAACaQgAADEIAAGhCAACcQgAA4MAAAATCAADAwQAAAEAAANBBAACwQQAAwEAAAGxCAACIQQAAuMEAAKDAAAA0QgAAhEIAAIDAAACCwgAAIEEAAHzCAAA0QgAAgEAAAKDBAAAswgAAEMIAAETCAAAMwgAAmMEAAIjBAACAPwAA8MEAAADAAAB8wgAAMEIAALhBAAAAwQAA-MEAAAhCAABQwgAAqMEAAHzCAACgQQAAAEEAAIbCAABAwQAA6EEAAKzCAAAQQQAAMEEAABzCAAC0QgAAcEEAAGjCAACAwQAAgEAAAJRCAAAAwQAALMIAAJBCAADQQQAAEMIAAFBCAACMwgAA4EAAABzCAADQwSAAOBNACUh1UAEqjwIQABqAAgAA-D0AABy-AADIPQAALL4AAMi9AAAcPgAAPD4AACu_AAAwPQAAyL0AAIC7AAAsvgAAED0AAHw-AABsvgAATL4AALg9AACIPQAAoLwAAMI-AAB_PwAAgLsAAJg9AAD4PQAAjr4AAEA8AAAEPgAA-L0AAHA9AAA0PgAARD4AAMa-AAC4vQAAdD4AACy-AADYvQAAQDwAAGS-AADCvgAA2L0AAIA7AAAEvgAAUD0AAHC9AACGvgAAQLwAAMI-AABAvAAAcL0AAJq-AACgPAAAND4AAM4-AACAOwAAgLsAABC9AABxPwAA2D0AAIC7AAAQvQAAPL4AAOA8AABAvAAAbL4gADgTQAlIfFABKo8CEAEagAIAAI6-AAAQPQAAJL4AACu_AACAOwAAiL0AAJI-AABsvgAAyL0AADQ-AADgvAAALL4AAHC9AAAkvgAAqL0AAIA7AACYPQAAGT8AAPi9AADoPQAA-D0AALg9AAAQvQAABD4AADC9AAA0PgAAoLwAAOg9AADgvAAAoDwAACQ-AADYPQAAor4AAKC8AAAkvgAAQLwAAM4-AAAwvQAAur4AALq-AABQPQAAJD4AABA9AAAUPgAARD4AADA9AAB_vwAAQDwAAOA8AACYPQAAPD4AAJg9AACIPQAADD4AAKi9AAC4PQAAoDwAAI4-AADIPQAAoDwAAPg9AACAOwAAgLsAABy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=fc0Icq-GW3c","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13550232807993913874"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2430719070"},"8194625687425353212":{"videoId":"8194625687425353212","docid":"34-1-2-ZE827D16D13C90D34","description":"Contact info: MathbyLeo@gmail.com integral of cos^6(x) If you enjoyed this lesson and would like to support math learning community and content creator, you can buy me a coffee here...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3912075/79d533d3571cdaf4937a6711d26a1860/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/Ma9GAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKurVTIcXYj0","linkTemplate":"/video/preview/8194625687425353212?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"integral of cos^6(x)","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KurVTIcXYj0\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoVChM4MTk0NjI1Njg3NDI1MzUzMjEyWhM4MTk0NjI1Njg3NDI1MzUzMjEyapMXEgEwGAAiRRoxAAoqaGh5Y2t5cWlmZGtrbGJ2Y2hoVUM1VVFkYzhxT1QxSDY3UzdSTTB6UG9BEgIAEioQwg8PGg8_E8IGggQkAYAEKyqLARABGniB9gn-9f8BAPkIDfz7BP8BAfz2_Pj9_QD8FPoC-gT-AOj5AwcJ_wAA8Bb-_wQAAAAG-gf1-_0BAA33BPADAAAADfD9__kAAAACBPj_CP8BAO3-9PkCAAAABf4DBAAAAAD3DBL7_wAAAAEI-PkBAAAA_PgG9gAAAAAgAC1Lo9I7OBNACUhOUAIqhAIQABrwAX8N3gDY6-b_2gTMAMUoCQCDIQr-_g7jAL0nKAPD7OIB8QfMANP7y_8C9goA0g4kADDY1P8Pyff_MO8A_xLw_wDyAxYAN9v9ADLwCADyEef__gsh_gXnLgAc6OcA7vvtAPkFCfzdBO7_7gPGAhfnKQIC7Cb9FfUfAuXfEv3oEw8C-PvgAAv4BgPT9vP_sf4aBwH6EAIO9v761-EA_w_j6_8H8Bb3JQLnAhDlAgbk6fr2CuQM-_3j7fsc-iEF3hYD_grqFgLa9fsA-gUIABnh_gHSAAr6-eQSCSUWDQEM8QDv-fP38f8VGPTj9P0N6v7tBCAALeSKHzs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7oBRyvdu6AD3z7v68vMravUAYwz0iT7O7vD-OPd2TKDuJ4Cm9xJdZvoxmZbz1uiW9y4AzPubRiL2YYjM8cT1avucWvz2FTKi8TMQ7voKcRbtWMte6rpjGPasynbu79Om7ch5pPTtqcb28tDy9zvoUPamVE72UOVG9XamyvcGcKr09HkS8_tVDPWA-eb181rU8bM_MPUI6H7x3gVQ7CiEQPJsPOb11b6i6FpJivRFedbs-9NO8HejBPYb8frnqSY88GR2xu5XCcjyinjo7VlCMvdDBCb1aFJG8cbW5PfonOLxP6gu9u7upPZIkiL1yKFm6JjX0vX4DLj2rugI93WA4PimmXD3jGz46A3NZvQ3mmj0vYy-8YUnDPB0XPDuwEh48APKEPYkrAj34Ky48Q6OBO4abkj3hkDI8IaQYvUUtzbygsWU8UFObPbaeBLyGrkS85CfZO2xpBL2U2zS7dRetvRkXMzzXcy08NEfWPfQ2NryhZz26c8aGPcD4gz04rvO7xTVDPfhRDb4Jbyy7x4NtvVcQjr2dt1a86xPKPAnmQzxuQqu8hlqePSdQRLpdN4C8N9JDvVXCcrsCuky7muMBPffnIr3LZLg7LL0xvfqMNT3tCK86_GVBvIXs2buHQjq8Qp--PFwxjT1He5M7pz3lvOuMD74l3r23ngnNPYf0kD27dpK6o22BPZLjkz3DiRy49z-rPUMh3bsq-bu7X7kZPcrAZr1QCog7H_TsvFgKljuVkWW7MlcmPbjkmL2gavK3XS-iPUSidTys0Ic469SLvJMKOT3lPJY5K-nXPLYhED2pZ1S2y6LwvFtCHr43BeM5TceSPMRYi7z3kKm5luI0PfOKzLx3g465X3-9vR8YO70I1Te5011jvbvnCj0uuo84yESKPSfYP73qhfw3YsCSPJci9TsUx185ZNiXvbk_Tb2Fvns5yeE4vSLYPT1odDG4WdPGPFAcYL0g0hc41O5XvKQ5Ej7F_VW5-1H5vIv65rvON064QJglvOMikjwr9Vu5r9gZPPPalr1JWh-3zF2LPJwOrjx13wa4yuEDvhDXHjyX_U430-MSvfErhr3Xfw65Yi-UPa1pHrw_ddy1YA2GPOUZKDuXIR04kl0ZPtlPUL2swj-5bh5ivbErsr0Tv7-4fOzTPKHyL72J3mo49jzEvUaYAj1kNRA4JtyQvBYwMb5BoFq5yvRwPSLhKz7xy4o4SK0LPQN3JT2G9ni4mA-Nvd0fhD2Mw9E3cJmuvHD66bwPZ7g3IAA4E0AJSG1QASpzEAAaYCMKADHaPMbyBEjt8a0OE_riwtv35Bz__r7_-_ry0_4QtMfsJQD40O7RnwAAAPwB0zyzAAR_4fHUHs04GBqB_BYhau4FV6ezDfcC3Sj938PzFh7_EwDf-5ATAu_kSjMl9CAALYESFTs4E0AJSG9QAiqvBhAMGqAGAAAIQgAAhsIAACBCAABgwQAAYMIAADBBAAAMQgAAUMEAAADCAABAwAAAuEEAAFDCAACAwgAAZMIAALDBAAAEQgAA4EAAAKbCAAAMQgAABMIAAIA_AAAMQgAAMEIAAJBBAABQwgAACEIAAILCAAAwwQAAOEIAAEBBAABAQQAANEIAAEDAAACCwgAA-MEAAHBBAAAAQgAAnEIAALDBAAAQQQAA0MEAAABBAABQQgAAyEEAACDBAABgQQAA0EEAANBBAAA0QgAAmEEAAHDBAABgwQAAwMEAABTCAAAAAAAAoEAAAKBAAAAAwQAAAMEAAKBBAAAAwQAA2MEAALjBAAA0wgAAJMIAABjCAAAUQgAAUMEAAKjBAACowQAAAEIAANBCAAD4wQAAVEIAAGBCAADAwQAAgMIAAAAAAAAEQgAA4EAAAMjBAAD4QQAAmMEAAKhBAAC4QQAAmMEAAEhCAAAgQQAACEIAALTCAACwwgAAlkIAAIjBAADwwQAAoEEAAGDBAADgwQAAbEIAAIBCAAAQQQAAAMIAABBCAAD4QQAAoMAAAGjCAAAAQgAA8MEAAOhCAACYQQAAgkIAAOZCAAC4QQAAQMAAADhCAACgQAAAgMEAAMjBAAAgwQAAIEIAAADBAACAvwAA9MIAALDBAAAwwgAAgD8AABDBAABowgAAIEIAALDBAABowgAA4MEAAMBAAAAQQQAA-EEAAKDAAAAwQgAAwEEAAETCAABMQgAAksIAAEjCAACgwAAAeMIAAIDAAAC4QQAAoEAAAODBAACaQgAA-MEAAHDBAACAvwAAkEEAAIpCAACAwQAAnEIAADBBAAAQQgAAZMIAADhCAABQQQAAaMIAAHDBAADgwAAAeMIAAKjBAACGQgAA2EEAAFBCAAAwQQAAAEAAAIC_AACgwAAAUEEAAIBBAAAAwgAAhkIAAKhBAAA0wgAAGEIAALBCAAAIwgAAwMAAAAAAAAAAAAAAaEIAAHzCAAAcwgAAsEEAAFDBAABwQQAADMIAAETCAAAUQgAA8EEAAETCAABwQgAAEEEAAJhBAABgwQAAlsIgADgTQAlIdVABKo8CEAAagAIAAIA7AACevgAAQLwAABS-AAAMvgAAZD4AAFw-AAD6vgAAZD4AABC9AADYvQAALL4AAIg9AAC-PgAALL4AAJi9AAAfPwAAuD0AABA9AAADPwAAUz8AAOC8AAC4PQAAgj4AAGy-AAAMPgAAhj4AAA-_AAAUvgAAyD0AAAw-AABQvQAAcD0AAOA8AADovQAAHL4AAKC8AACYvQAAFb8AAIq-AACIPQAAZL4AAIA7AABsPgAAgDsAABC9AACOvgAA_r4AALK-AABAvAAANL4AAKC8AAAZPwAADD4AAIq-AAAQPQAAfz8AALI-AACuvgAAgj4AAJi9AADgvAAAbL4AAPK-IAA4E0AJSHxQASqPAhABGoACAABAPAAAUD0AALi9AABjvwAA-L0AALi9AADuPgAAnr4AANg9AACSPgAAUD0AAIA7AAAsvgAAuL0AAHC9AACAuwAAjr4AAAc_AADYvQAAlj4AAIC7AAAsvgAALL4AAFA9AAAkvgAAiD0AACS-AACAOwAAgDsAAIg9AABAPAAALD4AAFy-AACavgAATL4AAKg9AADePgAAuL0AAJq-AACGvgAA4LwAAGQ-AADovQAADD4AAGw-AACIPQAAf78AABC9AAC2PgAAML0AAFA9AADgPAAAyD0AABA9AACIvQAAHD4AAEC8AABMvgAA6D0AAIg9AACePgAAgLsAALi9AAAQvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=KurVTIcXYj0","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1134,"cheight":720,"cratio":1.575,"dups":["8194625687425353212"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3375520991"},"14163855514449122186":{"videoId":"14163855514449122186","docid":"34-9-8-ZEC65AA0EB8C0206B","description":"Find the exact value of cos(19π/6) quickly and accurately using the S.A.R.C. Method! #1: Sketch angle #2: A.S.T.C. +/- #3: Reference triangle - coordinates #4: Calculate value Exact Value Method...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2131676/4b118c231ed8d3f9368217d83561767b/564x318_1"},"target":"_self","position":"3","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlrgONWG8BQU","linkTemplate":"/video/preview/14163855514449122186?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Exact Value of cos(19pi/6) - Unit Circle Survival Guide","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lrgONWG8BQU\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxNDE2Mzg1NTUxNDQ0OTEyMjE4NloUMTQxNjM4NTU1MTQ0NDkxMjIxODZqrw0SATAYACJFGjEACipoaGp3eGtraGt3aGx3ZXRiaGhVQ3hxaGdHT2tXTFp5WVlwMUJhQlJLaXcSAgASKhDCDw8aDz8ToQKCBCQBgAQrKosBEAEaeIEB_Af5AAAA6vsT_PwAAQAd9v0H9QICAPEDCPIDAQAA8wAI_PsAAAD9GfwFAwAAAPjs9P35_gAABgb9-vsAAAAIBA4L_wAAAAoH8_X_AQAA-Pf3_QP_AAAD8wD__wAAAAUKBf8AAAAAEwXz-AEAAAD-B_0H_wAAACAALafi0zs4E0AJSE5QAipzEAAaYC8aABkOBwbcGUPxAtoBCOrp7dnK3hj__eoAIwQc1OMlwuT47_8g8ybwtgAAABQAySL4AAlXBNTEFOwg29AQyAMnf-YTAdfy7v_c-O4fBPMR7CMWSQDd0Q4CNd7fE_QjDyAALYr3RDs4E0AJSG9QAiqvBhAMGqAGAACAQAAALMIAAAxCAABowgAAIEIAAJBBAAC2QgAAQMAAAHDCAACYwQAAEEIAAHjCAAAswgAAHMIAAFhCAABQwQAAYMEAACBBAAAAQAAAUMIAAKjBAACAQAAAPMIAANhBAABIwgAAEMEAAJbCAADAwAAAeEIAAIDAAABcwgAAFEIAABTCAACAPwAAjMIAABDCAACYQQAATEIAAKjBAAAoQgAAAEAAACRCAACsQgAAyEEAABhCAABwwgAA8EEAAKBBAADiQgAAgEAAAIA_AADAQAAAmEEAAEBBAAAoQgAA8MEAALjCAADgQQAAmEEAAAxCAAAkQgAAjsIAAKjBAACMwgAAiEEAAKTCAABwwQAAgsIAADBBAAAkwgAAUEIAACBCAAA0wgAAskIAAMDAAACEwgAAPMIAAHBBAACIQQAAqEEAAOjBAADgQQAAoEAAADBBAACgwQAAJEIAABxCAAB0QgAATEIAAFzCAAAcwgAApEIAAJDBAAA0wgAAQEIAANDBAACoQQAAsEEAAEhCAAAkQgAANMIAABBCAAAAQgAAmMEAAIDCAADQwQAAAMAAANhBAAAAQAAAgEIAAJZCAAD4QQAA-MEAADTCAADgQAAAEMEAAODAAABMwgAACEIAAMDBAAC4wQAAVMIAAADCAABAwAAAkEEAAAAAAABowgAAMEEAAGzCAACgQAAAwMAAAKDAAAD4wQAAPEIAAEDCAADYQQAAAEEAAABAAAAwwQAA3sIAANjBAACMQgAALEIAAEDCAAD4QQAAwEEAAGjCAABIQgAAoMEAAAAAAACYwQAAIMEAAJhBAAAcwgAAQMEAALjBAACIwQAAFMIAAKDCAADAQQAAlsIAAJjBAACAQAAAcMEAABTCAAAQQQAAAEEAAJJCAADgQAAAsEEAAKDAAADIQQAA2MEAANDBAACgwQAAMEEAAMDBAABAwQAAiEEAAPBBAAB8wgAAPMIAABDCAADwwQAA6EEAADjCAADIwQAA4EEAABDBAACwQQAAEMEAAEjCAAAoQgAA6EEAACBBAABkQgAAwEAAAIDAAABcwgAAlMIgADgTQAlIdVABKo8CEAAagAIAAKi9AAD4PQAAZD4AAKi9AACyPgAA7j4AAL4-AABNvwAAhr4AADA9AACyvgAAmr4AAAy-AACgPAAAuL0AAEA8AACuPgAA-D0AACw-AAA5PwAAfz8AAHC9AABEPgAABD4AAK6-AACIPQAAbD4AAAQ-AAAEPgAAqD0AAEw-AAAXvwAAJD4AAI4-AACavgAA6L0AACS-AADOvgAA_r4AAES-AABcvgAAmL0AALg9AACoPQAAdL4AAKA8AAAkPgAA8r4AAHC9AACIvQAAyD0AAEw-AAAEPgAAlj4AAJa-AACIvQAAYT8AAKY-AAA8vgAAdD4AAJg9AAD4PQAAuD0AAGS-IAA4E0AJSHxQASqPAhABGoACAACAuwAA2D0AAAS-AAAdvwAAiL0AABA9AAAQPQAAyD0AAFA9AADgPAAAHL4AAHC9AABEvgAA6L0AAOA8AABAPAAAEL0AAAk_AAC6vgAAuj4AAEA8AAAUvgAAfL4AAJi9AACovQAA2D0AABC9AABwvQAAyL0AAJ4-AABwPQAABD4AAIa-AADoPQAAcL0AAMg9AAAsPgAA4LwAAJa-AADovQAAqL0AAEC8AADgPAAAND4AABS-AAAkPgAAf78AADC9AACWvgAAXL4AADS-AAC4PQAALD4AAFA9AACgvAAA6D0AADA9AABAvAAA6D0AACw-AADgvAAAqL0AAOC8AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=lrgONWG8BQU","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14163855514449122186"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12751429948757440940":{"videoId":"12751429948757440940","docid":"34-5-2-Z20852DBB40EE1070","description":"Math: • Solution of Linear Inequalities in Two Var... 👉Permutations and Combinations | Class 11 Math: • Basics of Permutation and Combination-1|NC... 👉Binomial Theorem| Class 11 Math: • Binomial...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3370390/b42b24e8df2a7a725b7e08b19e55cdc7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cflRYwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhvTfKs3DABk","linkTemplate":"/video/preview/12751429948757440940?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos 10 cos 30 cos 50 cos 70=3/16 | Trigonometry | class 11","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hvTfKs3DABk\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxMjc1MTQyOTk0ODc1NzQ0MDk0MFoUMTI3NTE0Mjk5NDg3NTc0NDA5NDBqkxcSATAYACJFGjEACipoaGZvc3RmbHFoamhlZ2JjaGhVQ2trbVpNZ0F6T3ZQUWJNdkhjOHBXbmcSAgASKhDCDw8aDz8TjweCBCQBgAQrKosBEAEaeIH3-QT7_AQA9PwIB_gF_gELAPv69wAAAAAJ-fX4BP4A_P8HAwEAAAD9E_r0BAAAAAT6AvwE_QEABAH2_gMAAAATCwAB_gAAAAr_-_j_AQAA8fz8AwMAAAAF9_UB_wAAAAgKA-8AAAAABQrvCQAAAAD_B_7__wAAACAALZbg3Ts4E0AJSE5QAiqEAhAAGvABf-whAbfs1P_NAuoB2izDAdFEIQD9MtQAverzAMsW2ADO-fsA9QTf_xUcBACvAM8BBsXW_9XQ6QAp2A3_Lun4APEEFwE029oARdgh_hX39wHhICz99PQLAPbb0_8JK-4AHOAE_vkByf__5swAOAwrAPgBJQYICfEEzMf6B-32Dgb3-Mj-AhDtCv3WFwDrCgEEAtsICBrhB_TUBeUC-NoE_fvjA_oFM_oBC_X7DPf-8gTm2_ML_OL2BgQ0Ff_zAub42fIsBcfoBP7hzwP5AhgF_ecn7Qgd6QQI9gERDQ0VFAX_6-0A-Azv-f4A6Qf15_HpIAAtVOkYOzgTQAlIYVACKs8HEAAawAfZzwK_sI2dvF5RJT3Jd4S61TXkPPvxzbzg4te8eLQQPNiTBrsglsI9CqMZvRAGnrxuige-v2rAPOZddbzFVYU-VDBvvZt_Krx1dPy9LxOaPQsCEL1FvPW9Z-jEPKy4J7z05SC9RbJsPJG92jug4tg9YTyevMVPiLyRVkY8tI6qvJSAHb3cmwQ81JPevPztAb0Lpxa9VVe0PJgKO7ydhXg9vD6Qu4oFPrzEwXQ9_By8ug6xi7s4L-69JxFBPbiMIL2CQsg92hPuPCLY3TyJAy29B0BhvZ6W_rvr9rO91r4lPFXXxrtoo8Q8XCjwu51FFL3q8VY8MB7UvDN3VLllF1y-eKeMPCgEvLss5UY9hk2uPGNQnjsdPd69vsAMPrsIC7qkbqc8_dJHPBa6t7xgIRM9G9yBPU6IzjuXsxI94V0OvfCeBzsSDwu8JBS2PO4orTtQU5s9tp4EvIauRLxF1Ok8qNHavJxgrLsnB629F1ZgvPT7frwa36c9McBUPU8gy7qZOlk8OaGrvF4pbDvNpHc9h2SyvW0Iabz6WKa9y1CQvR2nrrvdwX49vLskPYh7kbxIGAY-bsllve3VBbwmiYo8AdR5vdaPybsa4rM8K8q6u8jzmrnHOQC9uhq0vD95M7ytgTK9t1bFPP4w_LufKhU9sABmPQNmtrt7LS29R2OzvfC-iDmbfr89FHf8PPSIKzq6np0903vTO3k1ijq4IlE9FFvhvVstybrR1ZG99TasvCIn4TpflIW88LRGvGzIX7jurw4-nxKRvX7QlDmzeIE9y34CPFEcvzbr4-G9dYgJvCS2Fbmih9A8k86bPCrQtrhcVAu9nBXxvdyedTnN45U8AO4JPGYbUblyE7m7Eo4PPSa3SrrzqmW66kRdvYspQzp72qG8WUAVPFBv2bia-io9HjK6PWbdeLc8zfi8xjfvvGac3zgu4j-7koERvMH42Th4fUY9ueanOwY1ADdB8QM9cU_Bvdc4ezmW7Z48bBsrPRMdbriSzKo8IlUEPgUNHzfBWJ89CxmePb0ZIziv2Bk889qWvUlaH7fLXps9Lg-IPAK0A7YTz_68OtdmPWhh7Dh4I5g8gmcMPZMR0TidcKU82ZcMvSMJd7iBFYG9UEIfvYeJHTiSXRk-2U9QvazCP7mPFPi7W9_BvS3vdbh9DPE8EXOEvU2-lTeGzYu9CLDoPVSzljjk1Z68eonxvWVVMLgi_-w9NSkFPvN-W7hmXAK9dBZMPYB4mLgGoXy9YByBPGF8tTfAcmm9-DuvvFC4tLcgADgTQAlIbVABKnMQABpgJ_IAKw023gAaS-kByw0GyMootCuoE__6_f8RMd3-NBzavREb_xflE8afAAAAHQf0Hs8ADXmlBy8D_TYVxZT4AUt_4gUEzbn2-fvfODHuFSv57jAzAK0KoxhLFMIzRBUdIAAtpNIROzgTQAlIb1ACKq8GEAwaoAYAAJJCAABwQQAAOEIAADDBAACmQgAAAEEAAABCAAA4wgAADMIAAIC_AACgQAAAMMEAAHDBAABAwgAAQEAAABBBAAA8QgAAksIAAPhCAADYwQAA6MEAACDBAAAMwgAAFEIAAMDBAADgQAAAAEAAAATCAACAvwAAQMAAAKDBAABAQQAAUMEAAChCAADgwQAAuEEAACDBAACWQgAAAEAAAExCAAAQQQAANMIAADBBAACIQQAAJMIAABDCAADgwAAAoMAAAMBBAABgQQAAYMIAAMDBAAAEwgAA4MEAALBBAAAQQgAAhsIAAGBBAAAMQgAAvkIAAIC_AACIwgAAgL8AABzCAACGQgAAosIAAEBAAABcwgAAkMIAACjCAAAMQgAAeEIAAKDBAADoQQAAsEEAAIbCAACwwQAAQEAAAHTCAADAQAAAQEIAAEhCAABMwgAAoMEAAKhBAAAEQgAAkMEAAHRCAAC4QQAAqMEAADDCAACyQgAABMIAAODAAADgQAAAlsIAAFDBAAAgQQAA-EEAABDBAADIwQAAiEEAAIC_AAAkwgAAJMIAAFRCAADAQAAAIEEAAPDBAACAPwAA-EEAAODAAACgQAAAgEAAAKDAAACQQgAAkMEAAMjBAABAwAAAQEAAAKTCAABowgAAAMEAAAjCAAAAwgAAwEAAADxCAABAwQAAQMEAAPDBAABMwgAAJMIAAMBBAAAYQgAAqEEAAORCAAAkQgAAyEEAAGBBAAB0wgAA4EEAAGDCAABAQAAA6MEAAGRCAAAAQgAAgsIAAExCAAAEQgAAuEIAAJDBAAAQwQAAFEIAALjBAAAAwQAAgMAAAETCAAB8wgAAaMIAAFTCAAAAwQAAYMEAALjCAAAAwAAAgMEAAOBBAABswgAAEEIAAChCAAAcwgAAoMAAAEBAAAAAwQAA6EEAAPDBAAAoQgAA2EEAADTCAADAQQAAgD8AAEzCAACgwAAAwEEAAEBAAAAYQgAAwMEAADTCAACAwgAAcEEAAARCAADAwAAAwMEAAJxCAADAQAAA8EEAADRCAACMwgAASEIAAFDBAAAQQSAAOBNACUh1UAEqjwIQABqAAgAADL4AAOi9AAB0PgAAmL0AAOg9AAAcPgAAED0AAEG_AACIPQAAQLwAAKi9AABEvgAA-D0AAOI-AAD4vQAAUL0AAIo-AABAPAAADD4AABU_AAB_PwAAQLwAABC9AABEPgAAUD0AAJi9AAAMPgAATL4AAEw-AACGPgAA2D0AACS-AADYvQAAir4AAGy-AACKvgAARL4AAFC9AACivgAAML0AAHC9AAAwvQAALD4AAOi9AADYvQAAgDsAAPY-AACGvgAAPL4AAJK-AADgPAAAuL0AANY-AAAQvQAANL4AAIC7AAB_PwAAHD4AAAy-AADIPQAABD4AAPg9AACovQAAZL4gADgTQAlIfFABKo8CEAEagAIAAKC8AADgPAAARL4AAE2_AADYvQAADL4AAGw-AAB8vgAAmL0AAHA9AABQPQAAcL0AAJ6-AAB0vgAA4DwAAIA7AABkvgAA_j4AABC9AACSPgAABD4AAOC8AAAMvgAA2L0AAFS-AADgvAAAiL0AAIA7AABQvQAA6D0AADQ-AAD4PQAAkr4AAHy-AAAsvgAA-D0AAOg9AADYPQAAzr4AAAy-AAD4PQAAgj4AABA9AAAkPgAAyD0AAAw-AAB_vwAALL4AANo-AAD4vQAAoDwAALi9AACgvAAAoLwAAJY-AAC4PQAA4DwAAHA9AAAUvgAAQDwAADA9AAD4PQAAcD0AAOi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=hvTfKs3DABk","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["12751429948757440940"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3133011716"},"5155015948459155876":{"videoId":"5155015948459155876","docid":"34-8-12-Z64079FF7196734CA","description":"In this video, I work through the steps to solving the integral of cos^3(x) or [cos(x)]^3. Note that because cos(x) is a function of x, not a mere polynomial, we can't just use the power formula...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3843484/fed4289da1d711ec50027392ee903bf2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/IzGPAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dp2e6zi30Ld4","linkTemplate":"/video/preview/5155015948459155876?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos^3(x) dx","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=p2e6zi30Ld4\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoVChM1MTU1MDE1OTQ4NDU5MTU1ODc2WhM1MTU1MDE1OTQ4NDU5MTU1ODc2aogXEgEwGAAiRRoxAAoqaGh5dGViYmNjcnlsbGd6Y2hoVUNZaDI1MTBlMEFKNUJFY29wcnRtd2JnEgIAEioQwg8PGg8_E_ABggQkAYAEKyqLARABGniB9QQA-PwFAAUEDgX6CPwCAAP_-Pj-_gD6Bv_1AgT-AOr5AwYI_wAA8RT-_wQAAAD8BAjz-_4BAAwE-e4DAAAAEPr2AfUAAAAODf0DEf4BAfb_9AID_wAAB__4_v8AAAD3CxH7_wAAAAUM-QMAAAAA-_oBAwAAAAAgAC0r5N47OBNACUhOUAIqhAIQABrwAX_x1_7m4d8C0AW_ANJBHQK0Jzz_ABb4ANEaFwDaudsBGf_vAOvUyf8H7iIA3BMQAFT13AD4xwIAMc8Q___k5gDi6fUAZgbi_RgbCgL-A_b--f0P_xPm__8cz8oD_ATh_-0ZHP_2BhH61Q7NAl7kFwDizwoABPL-B9qeKwDRCMsAx679_QYcEAXbv_X7_hMkAxXbC_427PH7DgIP-fjm9gEEHCX88RbS_tG_Cv_J1eUE4vEW_gYYB_4iLQz5tBsC9vD1LQIU5un2-DIE-T8fGP3FAAz4_vH4AQAkGfsP0QcR-cf-_B3f6AjXPP8D-yLu-SAALYjM-zo4E0AJSGFQAirPBxAAGsAHcSDMvtQ9HL0GL1W89wvRvHrZQDx4bPq8_YUevgFqajzh0Fu8uBmDPZQ5Ub1_5gK9M0irva54dD2GcLG8pkI8PmVhOb08fEM9huMJvt8g9TysASq9o3XUvbdP_bz9Lxc9NhxbPdow1LwMtNa8oDTEPabVUL0R_9Y5b7EMvVZbG71SOMy8Ad-dvpiCuTqlCuu8BcN5PTDNvr2754o8mK27PdkbITzZvOA8pe4vPbUlkb34uSu9e64FvcMHez0jyg29uy-yPRY8-zylBRq7fxXgvW47I73xnZg8IKbzvBqI5bzPZeo7dM86PbacMD0IhbE7eSqGPUUHKb0KkBe9rfkBvlSlkjwh0d87Puq_Pei0-Dx2Co-3q6EDvEZHDTykG6G8d4oQPQJnhL2_HAu8vLYvu3EbMjxqy288pyqIPb_Cl7vb5nw8Qo89PRnnirzsQGc8W5WUPeoOqL0wMIa89DCZPfLDEj21gYU8oBu1vNyPijwAD1Y8LY-aPIZ7wDw9Eqs7-HU7PZwOCT2WXCS7JF6eu2L46L1TGGc74LzYvXdhgL0-fQK8S6wQvGdc3bv-6CO7SBgGPm7JZb3t1QW8bVO8vL2rHr23voI66-b9vO1PvbwR15w7ctxOPFI3Rr2HSum7vtv8vSvOYjzOaCE6hWbyvMlOKT11T3s6LxG0PUqaD76KV-K5ZW7-PQlCmD34BKI6z35JPN1cXD2CV8Y5M49XvdrkcL09kRw6B5BGPYfYhb3l7z27LolYvd3pM730jaa61Td1PSsWj73usMs5LTitPZSkCz0NCoo5ceA6vS66Sz1yFsc37m-aPKMsMr2895u46Q9NPKg4Pr5yn1053qFyvMyQvz2TEqs6r9MDvQgUWrttWR05L1DyvahcnL1DgL-3e9qhvFlAFTxQb9m48pUgPfDodb3Xd_e3ThbtvOgIKjxFW2I3SmHeu2y3eL1TY8M5aXsKPZMVaDwbkKk4neKnOyNJVb1LnoC4KfSwvHrQkj3ROUq3xtCLvQX0qTr7zoO45TIEPcIagrwg0JU4eAxWujP0dDyeOwA42Jg8PbQlxjzOH4C4bcX-vaLUPr0aL_S42kJGPPj6Wr0o4xm46g-DvbtNbjzh06C4jKOiPdKxuTy2RDK4427wPQ5M7r3JZZe5XEkBvcre0r0XIgS5FW9JvSnsEr603kw3lrgIPPOvBT6pyT2zMu6sPVwmvr3sakM3Iv_sPTUpBT7zflu4DgqPvdA6ArrFAii46Qshvit8Bz3utlk4ijMQPQGASL0QNBK2IAA4E0AJSG1QASpzEAAaYCn-ADkFQtm_-wzYEcPwFx_R0uzl5gr_7dP_AhXo3vfyo7rzI__wx__4owAAABvt-jjcAO14CAa5K9EcBvqB7yANa_cOUdrJFAcX_AsQEuEYFhj9HgCwJ8I7-dDwUAw_HiAALfsOHzs4E0AJSG9QAiqvBhAMGqAGAADYQQAAmMEAAHxCAACCwgAAkEEAAEDAAABsQgAAAEEAAKjBAADQQQAAgEEAABTCAACAwAAAwEAAABRCAABAQQAAQEEAAIjBAAB0QgAAAMIAABzCAAAgwgAAMMIAAHBBAAB4wgAAiMEAAEBAAAAAwAAAEEEAALBBAABgwgAAMEEAAJjBAACQQQAAdMIAAOBBAACoQQAAAEIAAEBAAABIQgAAwEAAAEDAAADoQQAAIMIAAFBBAAC4wQAAIMEAAFRCAAAoQgAAUEEAADRCAAB4wgAA-MEAAABCAABgQQAAgMAAAIrCAAAAwQAAoMAAAIRCAADgQQAADMIAAATCAACEwgAAwMAAANTCAACoQQAAhsIAAADCAABAwQAAPEIAAIpCAAAgwQAAIEIAACzCAACWwgAAgMAAAHDBAADgwQAAoEEAAODAAACOQgAAgMAAAIDAAADgwAAAZEIAAEBBAABgQgAAQEAAAFDCAADQwQAAiEIAAFzCAABAwQAAQMEAADzCAABUwgAAPEIAAGhCAADCQgAAUMIAAMBBAADAQQAAhsIAADDCAACAvwAAYMEAAMBBAADAwAAA2EIAAKhBAAC4QQAAQMEAAMDAAAAQQQAASEIAABjCAACCwgAAoMAAADDCAADIwQAANMIAAADCAAAwwgAAUMEAAJBBAABkwgAAoMAAAFzCAACoQQAAAMAAALhBAACYwQAAmkIAAIDBAAA8QgAA0EEAAGRCAABgQQAAzMIAAJBBAAB0QgAA4EEAAFTCAABIQgAAHEIAAPjBAAAAQgAALMIAAFBBAAAAQQAAcEEAAKBBAAAkwgAAgMAAADBBAAA4wgAAAMEAAFjCAADgQAAAnsIAAKBAAAC4wQAAUEEAAIjBAABQQgAADEIAADRCAAAUQgAAQMAAAMjBAACAwQAAgD8AAEzCAACMwgAAKEIAAKDBAACwwQAAQEAAAPRCAACUwgAAgMIAAPDBAADIQQAAoEEAABTCAAAEwgAAAMAAAAjCAAAAwAAAwMAAABDCAACAQQAAFMIAACDCAACiQgAAJMIAABxCAABQQQAAgsIgADgTQAlIdVABKo8CEAAagAIAAJ6-AABsvgAARD4AADC9AAAQPQAAlj4AAOC8AAAjvwAAcL0AAAw-AADIvQAAJL4AAKg9AACGPgAAmD0AAJq-AADCPgAAuD0AAIi9AADaPgAARz8AAAS-AAAEPgAAcD0AAKC8AAAsPgAALD4AAFS-AAD4vQAAPD4AAFQ-AAA0vgAATD4AAAw-AAA8vgAAlr4AADy-AACavgAAur4AADC9AAAEPgAATL4AAEA8AAAkvgAAiL0AAAw-AAAkPgAArr4AAPq-AABsvgAADL4AAIi9AADmPgAABD4AAKq-AAAwPQAAfz8AAM4-AAAMvgAAhj4AAGQ-AAA8vgAAuL0AABe_IAA4E0AJSHxQASqPAhABGoACAACGvgAA4DwAAPi9AABnvwAAgLsAAOi9AADKPgAAzr4AAAw-AAAcPgAA4DwAAEA8AABsvgAA6L0AAKC8AABAPAAAZL4AAPY-AAAsvgAAgj4AAEw-AABQvQAAyL0AAAw-AACKvgAAoDwAALi9AACgvAAAgLsAAMg9AAAMPgAAVD4AAKq-AACSvgAAbL4AAHQ-AADSPgAA2L0AANa-AABkvgAANL4AAHQ-AACoPQAAbD4AAMo-AACKPgAAf78AAIA7AACuPgAABL4AABA9AADgvAAAmj4AAOg9AADYvQAALD4AAKg9AADIvQAARD4AADC9AABEPgAA4LwAABC9AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=p2e6zi30Ld4","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5155015948459155876"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1703956078"},"3282021408773050314":{"videoId":"3282021408773050314","docid":"34-2-6-Z25A5AE68480EF84E","description":"✍🏼 https://integralsforyou.com - Integral of cos(ln(x)) - How to integrate it step by step using integration by parts! ✅ 𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐭𝐡𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 Derivative of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2885983/fb77e6e7ebdcec76311d1cfd11877732/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/De_QHQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkHTpZFncmU8","linkTemplate":"/video/preview/3282021408773050314?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos(ln(x)) (by parts)","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kHTpZFncmU8\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoVChMzMjgyMDIxNDA4NzczMDUwMzE0WhMzMjgyMDIxNDA4NzczMDUwMzE0aogXEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E4oCggQkAYAEKyqLARABGniB8BMAAAEAAAYFDwX5CfwC7P4B8Pr-_gDxEAX5BAEAAOj4AwcJ_wAA4g3__wYAAAAK_AP-9_4BAP3-_-4DAAAAF-_29v0AAAAPDvwDEv4BAev09v8DAAAADAT4BgAAAAD29w3yAAAAAAUGAfUBAAAABvUA9QAAAAAgAC12UM47OBNACUhOUAIqhAIQABrwAX8HDQDm4uAC3hmxAcEo9gCZNCr_IizbALrJLAC33_IA6gfmAAL70AAL7uv_lP32ARbTqQMS0gYARL_h_yntCQDSFsgANOTqABz0FwL_EAD-Aw78_gjrHgAb77z-6BjC_g_3A_oS-PH86CrPBD3UFQLE8isGH_kN_tugKgDY-_sD9fe9_hVADgDl-fr54DgpAg3GFf0SIhz5xAcE_NgI9fjm3wvz8hXT_g_M7wEBAQ73y-sO-R_y9-8UCxXzrQ4Z_vQTJAO59e8F_e8V9ysE8fjpD-n4JQrmCVMo7gv-3AMHB-AL8hT9DvT-6fLz4h3Z8CAALVzRADs4E0AJSGFQAirPBxAAGsAHY0Pvvg_Bp7zTgIM7qfcUvEQlw7t3Lsy8qgVbPR1rED0chsW8Hk_rPdqfhb1zM7e8HEIVvlDwgzybSB-9y4AzPubRiL2YYjM8huMJvt8g9TysASq9xWqtvQscWr0waLw8gkSJvHUrir38K1i77xEbPcHEv70IkAG9IZWivIZEkLxO3ra8vlKxvOGLArx9Qcu8HJ2fOft157zVgs284yItPP11fb3iiaq8r8epPSgmELus0Ba91jEzvY1S-Dw0P8i8Wjf3Oszra7va3ag8Lz_Duy-xiTtygpu8bob7vbzSzzuyXIC7D3uGPey5kT05oSu9eSqGPUUHKb0KkBe90CpDvphzn7wPqIg83WA4PimmXD3jGz46HT3evb7ADD67CAu6MvWUPVNH6rmujhK9lP8EPQkxXL2EI447_p6YvGL4Bryrg1U7CM1JPX5tojzq_8U7t099PUBs6bwoToe7oJuHPQj4fzxrvoi7fJ10vTbCDD2ifdc5qnMWPQSeKj189MQ7lqHgvAvssTzcZio8xTVDPfhRDb4Jbyy7qNkoPFhIT70TsS080KD8PFCJ0DyKcQC8WYfDPQrPVb30glM7fyNrPcG-5zxw2Vc8xMI6vf73m72TNhU87MmCvd4oKD2hwDc7NhqlvVvKnjzrKg-8ofwYPdF8ST12Kio8vH1RPRhBM76xnJG59StdPXMRPz2wlem6O2JDPR2GwD1B4my55lsAPESQnrwlIVO77ECnvCFKqLvPtwk78I7HvXSIj7t6Ime3bQPXPbWj2L0Mn685tyn9On-6Rj01-k45nV6evUMBW7zBBhq5gm1pvO7C4DyYpJo5qz2RvRpSFb4wUQo6WpOoPXJGvj2trwA6xiZjPUvWl7z2b845iTKqvdnuPj2DT7-4TqixPAUgJLx7Y6O5vZjcPCrxSj0CryI4KtV0vFbtvzyzH3E3hbGJu5L6_Ds6jEK4HzQWPfGv7zyaA4k4mLRSOz9wxb33LmA5mnW7vX_Eyj38AC65TEqmvM5lNDxjo5648Vh9PHQXFz3FMOG3ixaAPUQqwb19KiM4VP7WO87i5T1PVVo4mv-cvdCQmz0C2y44ibbjvKyPh7wU2v04CREVPSync70bCTg4cU_hPLmAwLqkzK23427wPQ5M7r3JZZe5WwWWvHAINb08Rai3Hip4OyUE670jv2c4kb8KvYMelT2LQ5E3oW9BuwuLkL1ihgm4Iv_sPTUpBT7zflu4gV74vCXvFz082aa4cMrBvTMX-D263KY4wPhYvRe4jL19Lbm3IAA4E0AJSG1QASpzEAAaYDL-ADv1UejK9Tba-cMJDxXL0tz82w7_96__EyrD4Q4ItucCH_8jwAHgnAAAAPUS6VG6AOl__e_VJfFZGP6T7DIfc-b_ZLG1GfgA4yf38ufWKxHgQgDVEso05OINWjwsGyAALZnyEDs4E0AJSG9QAiqvBhAMGqAGAADAwAAARMIAAHhCAACYwQAAQEAAAGBBAABgQgAAVMIAAGjCAACAwAAAsMEAAIrCAADgQAAANMIAAAjCAADYQQAAAEIAADDBAABcQgAAOMIAAKDBAADoQQAAiMEAAEDBAAB0wgAATMIAAIDCAADgwQAAwkIAAOjBAACIwgAABEIAABTCAAAIwgAAbMIAAChCAAAkQgAA6EEAAIDAAACwQQAAwMAAAIjBAACIwQAAcMIAACRCAAAAQAAAAMAAAIBBAABMQgAAUMEAAABBAACYwQAAUEEAACBBAACAPwAAwEAAALbCAADgwAAAMEEAAIBBAABAQQAAXMIAAMBAAACowgAAAMEAAPbCAABAwAAACMIAAAzCAAAEwgAAVEIAAKBAAADCwgAA4EAAABDBAADAwQAAyMEAADDBAABAQAAA0MEAAEBBAACUQgAANMIAAAzCAAAQQgAAQMAAAHBCAABMQgAAkEEAAHzCAABAQQAAgEIAAKjCAABwQgAAAEIAACTCAAAAAAAAEMEAAJBBAABgQgAAcMIAAOjBAABAQAAAgEEAACDCAAAAQAAAAEAAAKBBAABAQQAAjEIAAKBAAAD4QQAAoMAAAADAAAAgwgAAGEIAALhBAACAwAAANMIAAMjBAAAswgAApsIAAMjBAAAQwQAAMEEAANDBAACgQAAAYMEAACjCAAAQQQAA-MEAAIC_AACAvwAASEIAACDBAABEQgAAHEIAAMjBAACoQQAANMIAALDBAACIwQAAPEIAAMDBAAAMQgAAsEEAALjBAADYQQAAgD8AAKDBAACIQQAAgMAAAIpCAABQQQAAEEIAAARCAACQwQAA2MEAADTCAACgwAAApMIAAKDAAACGwgAA6MEAAAzCAACiQgAAQMAAALZCAABkQgAAoMAAAHBCAABAwQAAgkIAACTCAACQwgAA8EEAAFDCAAAAwgAAiEEAAGBCAACwwQAAhsIAALDBAAAgwgAAJEIAAIDBAABgwgAAAEEAAIDAAAAwQgAAuEEAAJjBAAAgQgAAQMEAAGTCAACYQgAAiMEAAGTCAADYQQAAoMEgADgTQAlIdVABKo8CEAAagAIAAAS-AACGvgAAiL0AADA9AADCvgAATD4AAKC8AAAlvwAA2D0AABA9AACIPQAAgDsAAOC8AACqPgAADL4AAIq-AACmPgAADD4AAES-AAAfPwAAbz8AAHC9AAAsvgAAQLwAACS-AACGPgAAML0AAPK-AADoPQAAfD4AAJg9AABEPgAAED0AAFA9AACKvgAAgr4AAFA9AACIvQAAkr4AADS-AABsPgAAgr4AAIg9AABEPgAA4LwAAHA9AAAkvgAA6r4AANq-AADovQAAyD0AAK4-AAAFPwAARD4AAIK-AADoPQAAfz8AALI-AADIPQAAwj4AAKg9AAA8vgAAcL0AADO_IAA4E0AJSHxQASqPAhABGoACAACIPQAAQDwAADy-AABbvwAALL4AAFC9AADOPgAAnr4AABQ-AACCPgAA4LwAAEC8AADovQAAmL0AAFA9AAAQvQAAfL4AAPY-AABMvgAAuj4AAEA8AACCvgAA2L0AAKg9AABwvQAABD4AAOi9AAAQvQAAQDwAAAw-AACgvAAAyD0AABy-AADWvgAAjr4AADQ-AAAkPgAAcL0AABS-AAAUvgAAMD0AAHw-AACoPQAADD4AAHw-AABQvQAAf78AAFC9AABkPgAAQLwAABC9AACgPAAA2D0AAOA8AAAUvgAAFD4AADC9AAAEvgAAmL0AAEA8AACaPgAAJD4AABA9AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=kHTpZFncmU8","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["3282021408773050314"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2956034595"},"10182030275969669354":{"videoId":"10182030275969669354","docid":"34-10-14-ZC4D7D50250B1FFCC","description":"How to integrate cos^2 x using the addition formula for cos(2x) and a trigonometric identity.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2154528/2388b5b66d703bc34b2c0a7256edc730/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/vW3qAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D21z6gkvhlbQ","linkTemplate":"/video/preview/10182030275969669354?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos^2 x","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=21z6gkvhlbQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxMDE4MjAzMDI3NTk2OTY2OTM1NFoUMTAxODIwMzAyNzU5Njk2NjkzNTRqhxcSATAYACJEGjAACiloaHB6YmlqZWR2d2pubnJoaFVDeVFLWTZJVzdOZmpCVHB3Z2pyZ2FjQRICABEqEMIPDxoPPxOqAYIEJAGABCsqiwEQARp4geoFAvr-AgD5CA38-wT_AfUB-AD5_v0A9gf7_v8C_wDp-QMGCf8AAPAV_v8EAAAABfoH9fv9AQAH_wL1BAAAABD69QH1AAAADv_tAf8BAADu_vT5AgAAAAAE-v4AAAAA9wMM_AEAAAAJAfv5AAAAAAL8BQAAAAAAIAAtuojVOzgTQAlITlACKoQCEAAa8AF_Bvv-9ur2A9EFwQDNEOQBoA4f_yIs3ACmEuYAzwfbAeoc2QDI_AAAJNAr_9wP_f9kAtj-_-AI_zSxDgIL-QQAwv3vAQrg7gI1-xsB7ALw_-gLLAAX4RD_8tWpAAUo1f4PHgYB6uwC_wYh4ABE5gH_E_UVBS3fLv7vvgn_2e7jBunY1P0MKgUD7dj_-c84EQAF_vv6NPATBQw6-vMJ1vj4E9wq_A8VygD8pw0AH-oJB-4WFPr7Kwr_ISsL-ccDCvsW9CTx8PH9_OcOBAIk7Qb2Bvrs_ArY5gFF_xP-AMT3AtTf_egJDAEG7_cICOod8gEgAC0sqgI7OBNACUhhUAIqzwcQABrAB7fs2L5dd6k8sdTEvKoLnb3Lgb87wP6QvDyLOb1yGwg9x4EeOiqxJj32zFe9D9YhuVnAVL4EjIw5Ks_XPJjdIz6BSZC9Q_T1vNlDS75DknY7KX-CvV4OC77W1TO9GPpxPeG2Bj4e4Em9mDoCPHIeaT07anG9vLQ8vUc-mr0DGvQ7tOQUPCAl9r3mMAg78k9fvNuZUz2SC5m9vOvsu-vgsD1_eIy8fBVPvGWxwzyo_6w8aeTzvGV7k737lqQ9_3WuvLsvsj0WPPs8pQUau_1avb2CA1Y7155-vN8Ykr3Zv-E8AZnGOxBmCb0ZYks9JSL8vHkqhj1FBym9CpAXvXf1Cr6gny49XPlRvKj8Cz6lg5U9JI6GvC5wubwExoo9X0Yxuirh6T0fTjs8Ja2dvH0TmT0PcBS7Sj-jO5_1vrsSQQY9T8k5PI1KJT3WIyg9LPOWPFPKoD0sd1C94rEbvKjsqjyhXhU9_R3Au1XJhr0CicG8vEYmvLvU6D3VeVQ8nKX3OYQcCDzDtio9ggocPJuVCL0Idgy-zaXhuw_d4jx1dBy-GGL6ubWRJj1_qzA9ux3Mu7QgBD4YCAK92CA3ujHGMLsSpPK9WCvJuheZI7xnLHW9i7hKPI-sF71HcW49qlAVvOkLYb3Zzre8ZOK9u18gTT373Ho9h5fUOz9BnDtXJBa-IpoKuvyFIz1sV408D2IIO5Ol-zzo-Gg9HucRu1GX1jzl0W29oBpMu88ElDw0eo-9J5kIus28y72nz069zEqpt-6vDj6fEpG9ftCUOZDC0DzJu1k9njYeOcT3dL0nZl47c_4QOfb4Uz36gxy9ATZCucui8LxbQh6-NwXjOd6hcrzMkL89kxKrOt_1_jz49jM9MTZpOeWMkr2TuQO9432euTdTobyzrxU5_TI1OSZAYz0zKvw7KM2DOOoquDx15AU6YERTuAipwLwEqdS869lHOcN4kj0UVIk9sfw1OCOsjD30bAa-z3ClOZEfu7yj7l49NHvjtqiE8Ty5nYe8_seCNc_GBT3cTKA8h_YnuMPT6zxnJvi9IiQkuFP4Ar3pzqg9b-fwOOPnGr2_lvw8OTL5OP4bqrx9ezK9qD7PNwd3LD34GTe9numrONhjorxB2wO7GWU0OKXTvz3vrH29oCwOue99sL1kikO9FC5BuHX19LxZ3eq9DSPxNZdRkb2Hch09UziLtuwDvTt81A--F_rcuIqWVz0QWPk9jRdAOJe7A7zS08E9UWrJuG4Djb0naa49v_cWN-Pxvr1zk0K9NsewtyAAOBNACUhtUAEqcxAAGmAsAgBF6y_Qx_ko7xrACfoayM_s5xEn__DU_-se7M8DA8Dj4BX_A88E8agAAAAF7go76AD8cOwU1zvmLegOn-0sDH_oEGbPtxAgF_AWAPzuCxsF1ScAzw_DF__bCV88PCwgAC341CE7OBNACUhvUAIqrwYQDBqgBgAAoEAAACzCAACQQgAANMIAANhBAAAgQgAAaEIAAHDBAAB0wgAAyMEAABDBAACIwgAAgL8AABzCAACQwQAAYEEAAPhBAAAEwgAAQEIAABDCAAAEQgAAQEAAALjBAAA8QgAANMIAAIBAAACawgAAgD8AADRCAAAAwQAARMIAADBBAACAPwAAAEEAACDCAAAAQgAAuEEAAGhCAACAwQAACMIAAAAAAADQQQAAqEEAABDBAABQQgAAoMAAACBBAACQwQAAcEIAAPDBAADAwAAAIMIAAGBBAABAwAAAAAAAAOhBAAAswgAAsEEAABBCAABMQgAAMEIAAILCAAAAwgAApsIAADBBAADgwgAA0EEAAADCAAAMwgAAPMIAABBCAACAQQAAssIAAAAAAADAQAAALMIAAFTCAACAwAAAIMEAAHDBAADwQQAAikIAABTCAAAAwAAAgMEAAPhBAAAoQgAAuEIAANBBAAC2wgAAgL8AAARCAACQwgAABEIAAOjBAAAwwgAAgD8AAMDAAADIQQAAgEIAAHzCAABQQQAAVEIAAAhCAAB0wgAARMIAAADBAABMQgAAUMEAAMRCAABwQQAAoEEAAPjBAAAgwQAAgD8AAFhCAAAoQgAAMMIAAJjBAAAQwgAA8MEAAMrCAABIwgAAiEEAAOBAAABAwgAAJMIAABDCAABMwgAAoEAAALjBAAAgwQAADEIAAHBCAAD4wQAAXEIAAEBCAAAMwgAA8EEAAFjCAACwwQAAoEAAAMBAAABMwgAACEIAAADAAAAEwgAAOEIAAMhBAADYwQAAgL8AAAjCAAAcQgAAAAAAABxCAAAAAAAAMMIAAEDCAACAwgAAsEEAABjCAABgwQAA-MEAADjCAAAQQQAAbEIAAKBAAABAQgAA4EEAAHDBAACAQQAAgEAAAEBAAAAEwgAAisIAAOhBAAAYwgAAFMIAAFhCAABgQQAAPMIAAOjBAAAgwQAA4MEAALhBAACCwgAA6MEAABTCAAAAQAAAOEIAAAhCAAC4wQAAlkIAAABAAAAowgAAtEIAAGDBAAAQwgAAIEIAADzCIAA4E0AJSHVQASqPAhAAGoACAACoPQAAnr4AACw-AACIvQAA2L0AALo-AABMvgAAFb8AAIC7AADYPQAAUD0AAGS-AAC4vQAAmj4AAHy-AAAsvgAAEz8AADA9AAD4PQAA0j4AAH8_AABAPAAAkr4AAFQ-AABMvgAAmD0AALi9AACqvgAAcD0AAJY-AACoPQAANL4AAIC7AACIvQAAUL0AADy-AADgvAAAUL0AAJ6-AAA8vgAAbD4AAOi9AADYPQAA2D0AAES-AAAQPQAAQDwAAFS-AAB0vgAAyL0AANg9AACgPAAA1j4AAAQ-AACKvgAAED0AAGE_AACGPgAAHL4AAJo-AACYPQAAVL4AABC9AAC2viAAOBNACUh8UAEqjwIQARqAAgAAcL0AAOC8AACovQAAW78AAKi9AADovQAAmj4AAFy-AAAcPgAARD4AAIg9AADYPQAAFL4AAEA8AAAwvQAA4LwAAJa-AAD6PgAAkr4AAEw-AABQPQAABL4AAMi9AACgvAAAJL4AALg9AACYvQAA4DwAANg9AABMPgAAMD0AAEw-AADCvgAAhr4AACy-AABUPgAAwj4AADA9AACGvgAAhr4AAJg9AAAQPQAA2L0AAIo-AABsPgAAoDwAAH-_AADIPQAAmj4AABA9AAAwvQAAiD0AADQ-AACYPQAAcL0AACQ-AACgPAAANL4AAOg9AACovQAAhj4AAIA7AACAuwAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=21z6gkvhlbQ","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10182030275969669354"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"552589843"},"16657697063754780496":{"videoId":"16657697063754780496","docid":"34-4-16-Z9AE5AA4566589B11","description":"integralsforyou 👍 Facebook: / integralsforyou 𝐃𝐨𝐧𝐚𝐭𝐞 🙋♂️ Patreon: / integralsforyou #integralsforyou #integrals #integration...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3508675/2f6c76bae6a4d6bea3da6b31a311caab/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/33ChQwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBrbGMpF9HPQ","linkTemplate":"/video/preview/16657697063754780496?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(arcsin(x))","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=BrbGMpF9HPQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxNjY1NzY5NzA2Mzc1NDc4MDQ5NloUMTY2NTc2OTcwNjM3NTQ3ODA0OTZqiBcSATAYACJFGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKhDCDw8aDz8TtAGCBCQBgAQrKosBEAEaeIHy_P_1_gIA-QcLB_gG_QL1A_z4-f39APUA9fQDAv8A6fkDBgn_AADwFf7_BAAAAAUDA_z-_gEADQT57gMAAAAZAv0A9wAAAAwB-QMI_wEB7v70-QIAAAD7APwDAAAAAAkKBO8AAAAABxHw_AEAAAD78_v5AAAAACAALR091js4E0AJSE5QAiqEAhAAGvABf_44AeTuzgGtHsz__iX0AaYuJP8KH-b_y_b_APn2wAHiCPMAEBjoAAAh8_-pJNQAEd7OAATK4gA07gD_99sZAMn-8QAXEd4CLR0FAAT5G_7O5wcB2wQC__TatAAFUN79A9cF_wUl8AH0FdkBJfsuAfgBJgYX9CICAqQBB8Xi7AECEeT-3hwDCPrjCv7XGyACK_IS-QMwGwH__c_8EfYC-v7fF_wOE9AAEs0D_-QZGADZ9_4G9AYRBBYhI_7g8eoBAQwv-7Xa-gUL6A_9_fr5AOco7Agb9PQMDOsL-uXj7P7wxfjuAQ8A-P7s9PXp_usEIAAtpO8TOzgTQAlIYVACKs8HEAAawAfLhLe-j3sIOxawc72x38O9PKhfvXC-B71L07a9lssrPazuB72Cykg-xJSIvFVKkbuvCN69htRlu4nEzrsW-8s9dOGRveFMp7yG4wm-3yD1PKwBKr1P5dS9-vePPLrsIT2k-4m9dhjTvQyH7zxyHmk9O2pxvby0PL3KLn29SeeuO-CXH730Hy09P7m3vZ4_Er3XVge9g-VjvanDZbydhXg9vD6Qu4oFPrz9gLw95YkWPYm3Cb2_tYO9eYqBPFppDLs451a9hhswvTIuZjx4ADW9V6fzOsWC77uyAp29H2E9vJJY0jx-_gs-zbGcPcYOj7z0bGm5YKskvoAygLuzfei9Ukx8OjWK9rvdtBk-PRbRPANg-rtPPVK-twiBPX_tS7t3ihA9AmeEvb8cC7wBmbc91qIqvFchijz5psQ9zohSPXfkvrwFKi08RkEQPd3zVzwA01i8D1yKPIO2Br1WR249f-h4PasTxrzIPQQ8hhNiPWmebTyJMxW9kKuXPYXy-Dv06We8-pw2PT6_HDwFI6U91gI7vknlmjomlHm9sQlavZGCfTnr56i8wPSMPZ6dZ7xZh8M9Cs9VvfSCUzv31na8d44XPXaWLLvfrhE8TKnrvb3d1DspW-S9G_chPV6rkLuyy4G89wy8PXHyDbv-2bo9KxIDPsuxW7lmo1M9fFMHvW8g0bugkQQ8Ey6_vLvAPLujbYE9kuOTPcOJHLjjxQI-2Z0JPbDlxblpzD-90GM0vciPnboHyPy808wpvYOlW7qqgqE9GhiZvUdKoDgFbp29jC9avbOvFTkb6qG9sluVPSzZmTg_GaO8svZXvUP1C7gUnYu9iXrhvcYncDnwJPM85aCPPaId0rhCvMQ96Yqlu_jqMLlff729Hxg7vQjVN7kpuiS9DeU_PVmx2bgW0is9vDBjPUviwDaO_ry8FEbOPDWHxreFf6y8Q5iRupS0Xzasuru6UMiOPWTM-jeYtFI7P3DFvfcuYDl5-am7pyXGPcSu_7iM0Jk80mvYPE1K7bcPkk892FK2vD8rQ7jzzMY95dODvWMJjzfVNo-8bM0WPrIhQDn49369W8UsPRgpvjiwrZ-8z7SOPGLQvrfzAqw9gxddvRIqwDhoglm7unyQPcLWZzj3ASg-cGHdvfFnv7msG0-9cABivXH6orgNn7o7z1xRvaFFrra1PRC9L2fbPPDhALh3YVC9nQZWvcEWorgi_-w9NSkFPvN-W7gbd9Q80ydjPaU0oLi0FsC9VDS7PTxfsjiYZ0q9QRQnPPJETDcgADgTQAlIbVABKnMQABpgFPwAJOA53-4gFfYXugUbr8_W1NLtJv_90_8L9r_eIMjS5Oj3AMjzFOyWAAAARNT0HcYA9X_V6_lI6BUe95MFLOpqtwEr0NwNLiHdKbkBxCRF-jdQALA0wWf--qco_gEoIAAtDIoQOzgTQAlIb1ACKq8GEAwaoAYAABRCAAA0wgAApEIAANDBAABQQQAAIMEAAEhCAABAwgAAUMIAAADBAABAQQAACMIAANBBAABgwgAAMMIAABBCAAAkQgAAgMAAAExCAAAMwgAAAEAAADBCAAD4wQAAFMIAAGDCAAA0wgAA8MEAAFzCAADyQgAAcMIAAADCAADIQQAAJMIAAIjBAABMwgAAfEIAAMBBAABEQgAAoMAAACRCAABgwQAAmMEAAEDAAACAwgAAQEEAAKDAAADAQAAAcEEAAGRCAACwwQAAoMAAAABBAADwQQAAwEAAAFBBAACQQQAA7MIAAIjBAACwQQAAMEEAAOBAAAAAwgAAIEEAAJjCAACAQAAAAMMAAGDBAABAwAAABMIAAEBAAABMQgAAIEIAAFzCAACQQQAA4MEAAHBBAACgwQAAAMAAAFBBAABAwAAAUEEAAJ5CAACQwgAAcMEAAOBBAAAQQQAAgkIAACRCAADIQQAA4MEAAIBBAABQQgAAlsIAABRCAACKQgAAbMIAALjBAAAQQQAAAMAAABxCAACAwgAAcMIAAADAAABAwAAAMMEAAAhCAACAvwAAQEEAAABBAACYQQAAsEEAAOhBAABAQAAAYEEAAHTCAABQQgAAGEIAADDBAADgwQAALMIAADzCAABowgAAkMEAAIDBAACgQQAADMIAACBBAACIQQAADMIAAIA_AADQwQAAoEAAAPDBAADQQQAAAAAAAJBCAAAMQgAA4MEAAABBAACgwQAAsMEAAEDBAAAUQgAAoMEAACxCAABEQgAA8MEAAJhBAADgQAAAJMIAAJhBAACgwQAAQEIAAJBBAADwQQAAoEEAAIjBAACAwQAAyMEAAFzCAACiwgAAoEAAAFjCAABEwgAADMIAAJ5CAAAIwgAATEIAAHBCAACAvwAAIEIAAKDBAACOQgAAaMIAAHTCAAA0QgAAaMIAAATCAADAQQAAGEIAAHDBAACkwgAA0MEAAHDCAAAEQgAADMIAAFzCAAAAwQAAQMAAAGxCAAC4QQAA4MAAANhBAACAQAAACMIAAGRCAADQwQAAdMIAALBBAABAQCAAOBNACUh1UAEqjwIQABqAAgAAMD0AAES-AADYPQAAiD0AAI6-AAAcPgAAiD0AAMa-AAAkPgAAHL4AACw-AADgvAAATD4AAJ4-AABUvgAAcL0AABQ-AADoPQAAyD0AAKI-AAB_PwAAHL4AAHy-AACWPgAAiL0AAPg9AAC4vQAAjr4AADQ-AABsPgAAED0AADy-AAAcvgAAcL0AAAy-AAAwvQAAoDwAAJK-AADWvgAA-L0AAEA8AAAMvgAAQLwAALg9AAAwPQAADL4AADQ-AAAMvgAAdL4AALi9AACgvAAADD4AAAs_AAAkvgAALL4AAPg9AABFPwAATD4AAIY-AADIPQAAgDsAANi9AAAUvgAAlr4gADgTQAlIfFABKo8CEAEagAIAAKg9AACIPQAA6L0AAEG_AAC2vgAAcD0AAOI-AADIvQAA4DwAAIo-AAC4PQAA2L0AAKA8AAC4PQAA4DwAAEC8AADgvAAAAz8AAES-AACePgAAgDsAAMi9AAA0vgAAoDwAAJi9AACgPAAAcL0AAKC8AACIPQAA-D0AAEC8AABwPQAANL4AAIq-AADIvQAA2D0AAEQ-AADgvAAAPL4AAIq-AABAPAAAbD4AAKC8AADYPQAADD4AADA9AAB_vwAAND4AAGw-AABwvQAA2D0AABw-AADgvAAARD4AAKi9AABEPgAAQLwAAEA8AADYPQAAUD0AAJ4-AAAwvQAAuD0AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=BrbGMpF9HPQ","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["16657697063754780496"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"808971437"},"884889255472533496":{"videoId":"884889255472533496","docid":"34-11-10-ZC9ED6C5BD2DF8BB5","description":"In this video, we learn to find the value of cos(-120). Here I have applied cos(-x) = cos(x) identity to find the value of cos -120. The URL of the video explaining step by step ‘How to prove...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3099667/76913559900aa148a382de1b731aa560/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OrfhzgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMamjquM2IeM","linkTemplate":"/video/preview/884889255472533496?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(-120) | cos -120 | cos-120 | cosine of -120 degree | Second Method","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MamjquM2IeM\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoUChI4ODQ4ODkyNTU0NzI1MzM0OTZaEjg4NDg4OTI1NTQ3MjUzMzQ5NmqSFxIBMBgAIkQaMAAKKWhoeW15bXhqcHJydHVwdGhoVUMwYkxBQ2hyY2NTTFJRU2paazE0M1dnEgIAESoQwg8PGg8_E5ABggQkAYAEKyqLARABGniB__n8-_wFAPT5AgD6AwABBAAAAvj__gD_A__8-QX-APMA_v7_AAAAAg0I-PoAAAAD-_37_f4BAAQB9v4DAAAABgT-B_0AAAABAfn6_wEAAP8F-_8D_wAAB__4_v8AAAAADQH6_f8AAAUD8fwAAAAAAQQG_v8AAAAgAC1bBuE7OBNACUhOUAIqhAIQABrwAX_mAv-49vD-6BwJAOAM8wG5JTn__DnNALr7JADEGdIA8yAKAPMF2v_JHQcAzf_9_xXUrAME0i0AROXl_xns3AIj8O8AFdDtAkIVMv8QAeD_6AsrAPLJ7P8WuuoAIhy_ABAQEv0J-tUB6wO7AgsiOgP7HCr_Fw4pBO-_CP_S6fr7DwXd_QIS6gvu2f_53fQ1CPm17gEBGAL50BvUABP1A_rx8h_49C7pAzDuBQg6BhP818f5B8X6EwUhJxgJsA4Y_h4GJgDhChru4d8L90Lh7P3RCOAK_N7xCyYI_AcAEfQBD_b89MMY8PPW9gD94xzb8CAALWrNBTs4E0AJSGFQAirPBxAAGsAH6WLTvorwBT2QeMM8NW7AvdFS3rxFM4m77X7VvTvqg7znlFu8MzIYPhA0cL18PcQ8VPwfvifMKj1387k8_b10PpJUS70Dsew8ehcvvgg8MD0pn9S8R48Pvm2kkTxoOMo8uYZpud2D6zsp2DW8aYTIPa1yHD0kk7i8ArVdvV96Gz3TsC69Wq9TPcghx7xjJea8jjazPBmPUjyhui86yNQYPWzLRb2IXJm7gN4KPdSZ_7uE1G07axGxvcfIyDwfEdO80CAqPHd2BTtUO8M6PTyVvS-f0Txy7DC7KQ9hvUA1-zv3dsu7rGMLPQ0GMjxa7Ju82MIHPUTHmb3yO7K8-aAHvvQamz0vgYA7qPwLPqWDlT0kjoa82UKQvTa9ujxI7Go7A7rKPFRgV70Zd148odsGPQvoqj3nkX27RdXQu-uvMruNmFm8w6Novf5OCT1rlP88pNQSPM5Csbzej9u8phNEPdVOXr35jae7B0QIvh2IFj1_04W8XadRPVWXnTxNg6I8wlmAPFmLmj0MRhs8RVylPHO49r3kBDc8Yyp9vKNFzL2HKka8C-smPjxAkT1n2Vy2i8ucPaQXer1feEq871GkvG743bw4xJE68ydgvD_G3L0pysa7QzSfvAoDAD0JFSC7D6cCvQHxRL0FBiC8XpoHvJVsqzypVIW7i28YvotAa73TnDI6MIMRPkBEFD02jFu6OwZfPXi3Ej1BxrO62scqPSFLNb2Atri7H9XVvEqcsLxkZpe6H_TsvFgKljuVkWW77q8OPp8Skb1-0JQ5s3iBPct-AjxRHL82Jmy0vWRA1j1cJhA4dfmAPetn-7xROY242AKMPINozb0uJMK48WuPvTK_pL3Vow860HTdO-wjtj0VVCG4F4W4vVqssrx_Iu65zPvuvFY9CTu7u5a5eJ6TPW642Tz9qJ24NfBDPeTZCLy28NO4hX-svEOYkbqUtF82FZXovDfh3jvlKi-4EaBQPbpJnL2osHk5Jr9qPRpDSjzdoNC2Q9OYPctgsTzUf3U3h1ORPfRfxj2quSQ3EtG3uwz9iL1QZfo3EIG5PWFcgD0tJPi4oFDPvRXvhj3C0gI4SYxUvO9KjL15K9c2EKxPPDewa72vG7g2zEouPZtSQ71atku4raf2PbPqmLx7Ozq5zcd6vdMV7L3mm_i4DZ-6O89cUb2hRa629jzEvUaYAj1kNRA4YQZ5PfM6Er5L56m4Iv_sPTUpBT7zflu4uhOsvHLcuT10MBi5OE9QvTjWCj0QdqY2zWdvvSH0Ir2jUNK3IAA4E0AJSG1QASpzEAAaYBrwACIYMO3O6iDjEuQD-uTkEdX3wx7_2sr_2hHt7Q7x4N39BP8SGwi4rwAAACHk4grgACtovA6z-fMv-fPC4wsxf_7yRNfI7hwD8CkBwcIgFRtBNgAC6cAOWRIKDAM8GSAALQ2WKzs4E0AJSG9QAiqvBhAMGqAGAAAMQgAAMMIAAMZCAAAcwgAA6EEAAODAAADgQQAAOMIAAFzCAACYQQAAGMIAAADBAADQQQAACMIAACTCAADoQQAAkEEAAAjCAAB8QgAAdMIAAIjBAAA4QgAAmMEAAABBAABAwgAAqMEAANjBAAAwwgAAlkIAADjCAABMwgAAIEIAAMBAAAAcwgAAGMIAAAxCAAAQwQAAHEIAACBBAACgQAAAIMEAAIDAAAAIQgAACMIAAMBAAADgwQAAwEEAAGDBAAB0QgAACMIAACTCAAAAAAAA4MAAAMjBAADwQQAAqEEAANTCAAAQQQAAUEIAAPhBAABwQQAAGMIAAEDAAAAkwgAA2EEAAADDAABwQQAAgMAAACDCAAAkwgAAVEIAAEDAAACCwgAAZEIAAFBBAAAkQgAAAEAAAIhBAAAQwQAAUMEAAABCAAAEQgAAdMIAADTCAABIQgAAUEEAABRCAAAwQgAAVEIAACTCAABcwgAAfEIAALjBAABAQQAAcEIAACTCAADAwAAAoEEAALBBAAAkQgAAiMIAAIDBAABgQQAAAMEAAFBBAACoQQAA8MEAADBCAACAwQAAAMAAAHhCAADAQAAAEMEAAOBBAAC6wgAAFEIAABRCAAAAQgAAEEEAAADAAAAcwgAAisIAACDCAAAAwQAAgD8AAEzCAAAAQAAAEEIAAMjBAAB4wgAAmMEAADBBAACwwQAA4EEAACBBAAB0QgAAYEIAAIjBAABAQgAAsMEAAIDAAACAwAAAKEIAAGDCAABAQgAABEIAAOjBAADYQQAAIEEAAABAAACAwQAAHMIAAABCAAAQwQAA0EEAAADBAAAwQQAAAMEAALDBAACEwgAARMIAALjBAABcwgAAfMIAAEzCAACAQgAAQMIAABRCAACQQQAAwEAAAFBBAADQwQAAMEIAAIzCAACAwgAAbEIAAJjBAAD4wQAAFEIAADhCAAAMwgAAKMIAAIA_AADIwgAANEIAAAzCAADQwQAAuMEAAABBAACmQgAA0EEAADDBAACIQgAAQMAAAPjBAACYQgAAgsIAABTCAACAQQAAZMIgADgTQAlIdVABKo8CEAAagAIAAES-AAAMvgAAPD4AALa-AAB8PgAAFD4AAFQ-AAAbvwAAML0AAEC8AACAuwAAsr4AADC9AAA8PgAAoDwAAPg9AAC6PgAAgDsAABA9AACKPgAAfz8AANi9AABQvQAADD4AAIq-AAC4PQAAmL0AAPi9AABcPgAAZD4AAGw-AACivgAAUL0AADy-AACqvgAAgr4AAIi9AABsvgAArr4AAEC8AAAsPgAAoLwAAEA8AAAQvQAAEL0AANg9AACyPgAATL4AAEA8AAC4vQAAQLwAAFy-AADyPgAAQDwAAKC8AAC4PQAATT8AAOA8AAD4vQAAsj4AABS-AAAMPgAAML0AAKi9IAA4E0AJSHxQASqPAhABGoACAABwvQAADD4AAMi9AAAfvwAAkr4AAI6-AADePgAAyL0AALg9AADovQAAoLwAACS-AADIvQAAdL4AAIA7AAAQPQAAFL4AAN4-AACivgAAND4AADw-AAD4vQAAxr4AAEA8AAAcvgAAEL0AAPi9AABwvQAA4LwAAAQ-AADoPQAADD4AAM6-AAAMvgAA-L0AAJI-AACGPgAAmL0AAMK-AABwvQAAiL0AAIC7AAAwPQAAgj4AAEQ-AACoPQAAf78AABC9AAD4vQAAzr4AAHA9AAAUPgAARD4AABS-AACgvAAAFD4AAHC9AADYPQAAoDwAAPg9AACgPAAAcL0AAOC8AACIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=MamjquM2IeM","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["884889255472533496"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1881992772"},"13213411490911720396":{"videoId":"13213411490911720396","docid":"34-4-4-Z4E27D6921B8026C7","description":"𝐫𝐚𝐥𝐬 𝐅𝐨𝐫𝐘𝐨𝐮 ▶️ Youtube: https://www.youtube.com/integralsfory... 📸 Instagram: / integralsforyou...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/758877/5955442f19e54bb4cf4044be4e005abf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/e3M0GgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMMwmxfw_hK0","linkTemplate":"/video/preview/13213411490911720396?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of x*cos(x) (by parts)","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MMwmxfw_hK0\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxMzIxMzQxMTQ5MDkxMTcyMDM5NloUMTMyMTM0MTE0OTA5MTE3MjAzOTZqhxcSATAYACJEGjEACipoaHF0YmFpendjaHZ2aGhiaGhVQ05MUndpUVNQbEFuX2hpRU0yeVdJd2cSAgASKg_CDw8aDz8TXIIEJAGABCsqiwEQARp4gfATAAABAAD8AwUC-Qb-Au8K9_H5_f0A7AL7BAAAAADtAAX_DgAAAPAW_v8EAAAABvoH9Pv9AQAI_wL1BAAAABH69QH0AAAAGAb1-f4BAADr9Pb_AwAAAAAT9P3_AAAA_AUO7wAAAAD_BwX8AAAAAAb1APUAAAAAIAAtdlDOOzgTQAlITlACKoQCEAAa8AF_I_b_3-vFAc8FvgDRNrUCmiEMAPw9ygDU2_wA3ADnAQAF6wD3C7n_CBsGAJ_94gI9zsj-E9EGAEbW-wAo2xIA0wL8ASbv2wARASEB_RgP_74WQgHq5twA_bzYAPE44f8B-vD_7_LzACIawQIbAyQB9wEtBwvzKvwDkwEI1dz_BPX61wDTAvYEBAIH-dAfJgIz3igDKiEV_Mwd0QD88wP5_tkb_PEW0f4ptQ__GTQL-ccMEwH1Gg7_OhkQAtr3CAzQ7zYHzfoL9c3Y_wgU_u363QD1BhsQ-xUoCRT0D9f6BAnF6u4H-urx9tX8FNoK8ukgAC24C_o6OBNACUhhUAIqzwcQABrAB3TsuL51JBK9SNoRvAoHzL1XDxS8NIUOvUleJ73jVVY9pr_NvBCAbj3ZVW28OXuIuuwzx736crA8iL0wvSb_8z3xBbe9oGUnPM_AeL6TgU28iLYIvXlK-7sEh_y8LV_2O3Mv0L2uDK-9XjbwvODZfj1ScU29zTdHvOiZgzwkVPo8mykjvdybBDzUk968_O0BvXEeTjz84Lw88m52vJSUBT3nON25GbsQPNFjyj3Ofi49mpfDu2sRsb3HyMg8HxHTvMMd-bypNei8R5PLPJYa6zuqmbW7HyyEuzfd0r1rpIC8k2XSO6zCaz2df2A910V2vPII7j17FM69x4CsvCKMD751OWq9cUaDvOSG_z05dvU8jG-ePCYMdL1dRrs9TCy6PLfR4D2KQiY9E0EevGrDPD2lOpO9e08EPDRT9bwPtCc8RTQTPE12nT0zSKa83fssunWXX71EhU-9qSwvvPelsz1myKe8_GXBvA32Cz1ypgk95jwlO6VDTDwgGpc9hRzjO3K_Az0RXxw9Em94vJuVCL0Idgy-zaXhu2J7Mj0XZ7y950YBu5yiCDz6hog9dmU8vGByqD1HPg48oH8Ku129Lz2zzEc9sWOtPPMnYLw_xty9KcrGu9TxOL2JGIW9Bvrdu9i_xrzE3lU8f_ExvINt5D3Cppk9S6JlOYXoVT01cLG9IscZOlrftjwlbh89p1qsOyf0rz1fQJQ9iNsWt500CD2jsTY91InkN3khHb1Ut2m8l87BOo480L3VZWc8_wJFOe6vDj6fEpG9ftCUOSTQxbxtJlU9QdmlNzikwb2KFgq9qf8kuap-5bwhErQ84KaDOR4RqL3O_Eq-AcsOOZLpcD0NYhE9FfY4uLckyTvnKDG9G9HGubLtib002qo8A4uWuELkmTy-ieE8Va0oOev4FD1plTQ9oRWyOCrVdLxW7b88sx9xNwfIIbxFqwk99aDyNz7qzz0-p-o7PcTUOERrlb1p46i9guRBNxTO7r38lxo9WmeWNuhPNj0SLxE8kwUyuD_Ko7yd-IW8yG6QuJGbET4I77G9MKXVuCvZgb37B_E9vPAcOQCLIb1Y5u09nS7cOITyXr1fgLc7qiUYOAd3LD34GTe9numrOPcoszt6MRk92XrcOPcBKD5wYd298We_uY8U-Ltb38G9Le91uMMRgzlQVSG9hKErt7jD7LvzBS09d_7_tDxGnjwlOQW9OM-8tWpPGT6pbpk9CAIyt2U7uryx2Kq72CxkuGogDLxTzxI-X88FN9EQlL3oGEu9RmgGuCAAOBNACUhtUAEqcxAAGmAbCgAtAj7U0P0l8grP-wX84unf8ukZ__vBABcQ2twUBdrmCRX_B9L58LYAAAAOCwA4ygABWgIJ4BQCMgIalvcqG3_1CkfD7gYAC9oo9Aj55xwS5i4A3xDMIf_pF1AkFRsgAC0-Hzw7OBNACUhvUAIqrwYQDBqgBgAA4EAAADjCAACUQgAAuMEAAEBAAABwQQAAMEIAADzCAACEwgAAAMEAAIjBAABwwgAAAMAAAAjCAAAIwgAAsEEAACBCAAD4wQAAUEIAAFDCAADwwQAAMEEAAJjBAAAwQQAAVMIAACjCAACGwgAAMMEAAKJCAAAAwgAAqMIAABhCAAAgwgAA2MEAABzCAAAgQgAAGEIAABxCAABgwQAAIEEAAKDAAABAwQAAgMEAAFTCAAA4QgAAEMEAAHBBAAAwQQAAXEIAAJDBAACgQAAA2MEAAIhBAACgQAAAmEEAAHBBAACSwgAAoEAAACBBAAC4QQAAcEEAAEjCAABAwQAApsIAAKBAAAAAwwAA4MAAAADCAAAIwgAAGMIAAEBCAABAQAAAwsIAAIC_AABAwAAAEMEAAMjBAABAQAAA4EAAAMDBAABwQQAAkEIAAAzCAAAgwgAAOEIAAMBAAACCQgAAQEIAAMhBAABEwgAAgD8AAHhCAACkwgAAXEIAAOhBAAAkwgAAQMEAAKDAAADwQQAAYEIAAJTCAADIwQAAgEAAAJhBAADQwQAAgD8AACDBAAD4QQAAUEEAAJBCAABwQQAACEIAAADAAACQQQAAgMIAADhCAAAcQgAAQEAAABTCAADIwQAAhsIAALLCAADwwQAAwEAAAKDAAAAEwgAAgL8AAKDAAAAEwgAAgD8AACDCAACAwQAA4EAAAGxCAADIwQAASEIAAChCAADgwAAA6EEAADzCAACwwQAAcMEAADBCAAAYwgAAOEIAAOBBAADYwQAAIEIAAJjBAABAwQAAQEEAAADAAACCQgAAUEEAABhCAADoQQAAyMEAALjBAABMwgAAcMEAAI7CAADgwAAAbMIAAODBAAAEwgAAnEIAALjBAACkQgAAIEIAAADBAAAoQgAA2MEAAEhCAABAwgAAjsIAAAhCAABEwgAAQMEAAMhBAABMQgAAFMIAAGDCAABQwQAAbMIAAABCAAAwwQAAYMIAAADAAABwwQAAPEIAANBBAAAwwQAAXEIAADDBAABowgAAlEIAANjBAAAcwgAABEIAAHDBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAfL4AADw-AADIPQAAnr4AAHQ-AAAwvQAAB78AAAQ-AAAwvQAAyD0AAOC8AADYPQAALD4AAKa-AAAMvgAAnj4AALg9AADIvQAAyj4AAH8_AABwPQAAFL4AACQ-AAAcvgAAND4AAEA8AADuvgAAuD0AACw-AABQPQAAUD0AABC9AAAEPgAATL4AABS-AACYPQAApr4AALK-AAAMvgAAqD0AADy-AABQPQAA-D0AAHA9AAAkPgAAqL0AAIK-AACuvgAA-L0AAJg9AACOPgAA4j4AAMg9AACKvgAAQLwAAGU_AADIPQAAUD0AAHw-AAAQvQAAZL4AABS-AADeviAAOBNACUh8UAEqjwIQARqAAgAAMD0AAEC8AABUvgAASb8AAKi9AAAQvQAAyj4AAJq-AAD4PQAAsj4AAKA8AACoPQAA2L0AAAS-AACYPQAAQLwAAJK-AAAFPwAAfL4AAKY-AACYPQAATL4AAHC9AAAcPgAAML0AACw-AADovQAAMD0AAEC8AAAQPQAA4LwAAKg9AAAkvgAA4r4AAIK-AABEPgAAij4AAMi9AABkvgAAPL4AAKC8AABkPgAAcD0AAMg9AADWPgAAmL0AAH-_AACIvQAAfD4AAKi9AAAMvgAAgLsAAMg9AACgvAAAFL4AABw-AAAQvQAAPL4AAKC8AAC4PQAAgj4AADw-AACIPQAAiL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=MMwmxfw_hK0","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":800,"cheight":480,"cratio":1.66666,"dups":["13213411490911720396"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"2329896700"},"4712286528484751774":{"videoId":"4712286528484751774","docid":"34-6-2-ZDCC3A5F2E3E42CA6","description":"help subscribe to my channel. Thank you! Mathcambo channels for research math students include: 1. Limit Exercises link video: • 2 calculate of limit 2. Integrals link video: • Integral function...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4303762/7054060ba427b01ba90d47aff17d0123/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ipIeNgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1aJ9ktestx8","linkTemplate":"/video/preview/4712286528484751774?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Geometry : calculate of cos(pi/7) cos(4pi/7) cos(5pi/7)","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1aJ9ktestx8\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoVChM0NzEyMjg2NTI4NDg0NzUxNzc0WhM0NzEyMjg2NTI4NDg0NzUxNzc0aocXEgEwGAAiRBowAAopaGhvY3BqZ2d2dWV1Ym5zaGhVQ3pEX3BVMWxjbjlRV0d2ZlJ6RkIzTlESAgARKhDCDw8aDz8T_QKCBCQBgAQrKosBEAEaeIH7_wH_-wYA9v4DBf4F_gH7_AT9-v39APYH_P__Av8AAvsE_AMBAAAEEQH-_wAAAP3__AED_gAA_f8E_PwAAAARAxAA_gAAAAr_-_j_AQAA-ff3_QP_AAAD-_0DAAAAAP0N8fv_AAAA_RD19gEAAAD_AQkG_wAAACAALcSf4zs4E0AJSE5QAiqEAhAAGvABfwX7ArIE1f1G8NcA7_TzAaASCwAtNOT_qA_5AeXjAAH-FfUA0wz4_-4DCADdKioAGQHLAN_Z_QEg2_L_H_IHAPDZCQEg3goAP_QEAOb02QDkHSf-6_4a_xgE8gDa8P3-4u8t_RYCEQDs3twAD9wV_ysAIwEZ3_kC_-MJ-9kTAgH-4sn_Bvzo_w7z9_rH3yEBCv3cABAV-_73JvQEFwb9-_DyCf8MENcAJf31BhQSCfzwAQgA_eXv-wMGJ__4GwH_7fAIANwC-v8TCvAJ8s_w_gsD_vwF8eQD_BABDAT6E_r5CPv--wYI99P87wr6A_wNIAAt4OEpOzgTQAlIYVACKs8HEAAawAe5xLm-7XhYvc29kTyjUzy99MgbvOtNMbw2Ndg7m3yuPRvrJz3NPs89SmervVdnqzz2lmK-BXiBPHk_DbyY3SM-gUmQvUP09bx6Fy--CDwwPSmf1LyzI9W9g5cKPfUd8rxAijo9LBNZPC54DL2ydZo9pcvRvC3oAbxC7Ay-1L40vUCr57yJR_28k52ovWtwEb2t5SS9fIEZvQmlrzuGHnE9T5snvdWCLb2pFbY9Or1jOb0f9TvXfqe9C_1dvHdLcryT6Zs9SuoKPM3-5buCkKy8IgS_O8HIa70UvYI9IVGyPeverzyWCmq9rpSKPal_NbyXmnO9JVhcvd6x9Tt0o_68q2SbPNDukLxmMGY9C8qZPfOBk7zc74W93Qn2Pcid67q30eA9ikImPRNBHrxkk9w9bv1PPGcxzDxrc627XOM4PQOdJLyUBk29P4zQPcZPozxTeds91vEOPQ1GNry-W-o8ls6XPY82jrlmJAw9zzjDvGy7Abw-Mrc9uZ3HPMplpzj06We8-pw2PT6_HDwFI6U91gI7vknlmjpOpAo9GJ-dvS9pjDz7eU49KDAXvM1cYDzw-WE9FF8NvneEEbs_nfU5u3tAvcmw6TtEFT49ig8iPeROJ7sPSCK99thxPF0YIro2GqW9W8qePOsqD7wzjea8MKCnPeCgHLyfprs8UfyzvZcGmzsvsg-8Jo68PCAyfruxMMQ99UXnvMD2U7o2rr88C8KbvcM9xrib3NS8800kvf5cFzu8Isi9MqrBvZwBUrgVs3Q9QGCvvY1ifjjhJI08zeA0PUkssrnVdy6-ieE0vBh7prlkbLI8XAPbveCkFLly4uk7c0EHvRKYbrmvayW9k31GvH-lNrp9BUk9C3-ju6sIo7jn_qq8H8qGvPR0gDlLRBO93JVnvfJHAbng6T-98AAvOoTXFriYOqM8grEZPS66ujkPUia8YO7NukJYJzhBIx09SS_qPeRC7bhB8QM9cU_Bvdc4ezkHXIw9q4EhPfvHpziw6Zy8djYEPtfzXbdyb949L1iwPa3xqDh4jZc99W9yvE8yaje6Ljw91OETPIFlFbg5i828yNxrPHyo3Dhg52Y9TpMdO2hqlDhSMYk933JQvXNSWDcn2qW9dJb5PQobYzixFQQ-xv_4OzLZU7j3zNK91NFxvAdtDbYrTB89nSSivb9r5TcF-uS97QZ2PSp7zzizMQa7CK-9vRx9prfK9HA9IuErPvHLijgkppo9O-EVPqRcbrhDzAA9ukJlu5vx97fiH9a9nKy8PbSx57QgADgTQAlIbVABKnMQABpgLA4AGQpD3tsMQ-Yl3QEl2MP84Pqw__8F2AD4BNITLQi1x-UZ_wv1CdKgAAAAPuLrEr4A-H_c2Q4q9QUhuMrDGUBY9CEXqaci4OPJ9Cfy0yox-QBAAMP6rf1AGeoZOCETIAAtzL4bOzgTQAlIb1ACKq8GEAwaoAYAAJhCAABQwQAAaEIAAHDCAACAPwAA8EEAAPBBAADAwAAAcMEAALhBAACAQgAAAEIAANBBAABQQQAAQEEAAKBAAADAwQAAEMIAACxCAACAPwAASEIAAKJCAAB0wgAAAAAAANjBAABMQgAAyMEAAODBAAAIQgAAjsIAAAxCAACQQQAANMIAABjCAAAUwgAAVEIAAHDBAACoQgAAdEIAAFBCAADwwQAAkEEAAHBCAAAIwgAAkEEAAJLCAABQQgAA4EEAAKBCAABQQQAADMIAAIpCAACgwQAAQEAAAHDBAACowQAAgMEAAIA_AACAQgAAVEIAAGBBAACwwQAAVMIAANjBAABwwQAAgMEAAODBAADgQQAACMIAAPDBAAAwQgAAaEIAAETCAACaQgAAQMAAABDBAABIwgAAAMAAAJBBAADAQQAAMEEAAHRCAAAAwgAAQMEAAJjBAADYQQAAmEEAANBBAABMQgAAAAAAAKrCAABcQgAAAEEAAOBAAAB0QgAAoMAAAJzCAACYQQAAtEIAAIDAAABQQQAAQEAAADBCAACQwQAAsMEAAODAAACoQQAAokIAAAhCAAC4QQAAiEIAAIDAAADCwgAAQEAAAMDAAAAkQgAA2EEAAADCAACGQgAAkEEAAKjBAABowgAAQMAAANDBAABgQQAAOMIAAODBAADQwQAAAMIAAADCAAAQwgAAIEIAAIhBAAAsQgAAhsIAAERCAAAAQAAASMIAACzCAAAMwgAAAMEAAABCAAD4QQAAIMEAAFhCAADYQQAAYEEAACBBAADAQAAAAAAAADjCAAAwQQAAIMIAAAAAAAA0QgAAFMIAAPjBAABMQgAAwMAAADjCAAAUwgAAcMEAAIhBAACkwgAAyEEAAFxCAAAgQQAAQEAAABRCAABAQAAAUEEAALhBAABgQQAAsMEAAKjBAADgQQAAEMIAAHjCAACGQgAAgL8AALLCAACAwQAAgEAAAMDBAACIQgAA5MIAADRCAAAgwQAAkEEAAEhCAADgQAAAyEEAAARCAABIQgAAoMAAACRCAADYwQAAsMEAAJBBAABQwSAAOBNACUh1UAEqjwIQABqAAgAAjr4AAHA9AAC4PQAAqD0AAAy-AADGPgAAXD4AAP6-AACYvQAARL4AAMi9AACYvQAAoDwAAJo-AAB8vgAAZL4AAEw-AACIPQAARD4AAAU_AAB_PwAAyL0AAKA8AAB8PgAAyL0AAKi9AADovQAAFL4AALg9AAB0PgAAuD0AADy-AADIvQAAgLsAAGS-AAB0vgAAJD4AAK6-AADuvgAA2L0AACw-AACIvQAAEL0AAKg9AACivgAAML0AALo-AABUvgAAmr4AABS-AADgPAAAcD0AAMY-AACYPQAAED0AAIg9AAA9PwAAij4AABA9AACCPgAAuL0AABA9AAD4vQAAqL0gADgTQAlIfFABKo8CEAEagAIAAFC9AAAcPgAAbL4AADe_AAB0vgAAQDwAADQ-AADgPAAA4LwAAAQ-AADgvAAAyL0AAKq-AACYvQAAQDwAAEA8AAAQvQAA-j4AAJK-AACmPgAAFD4AANi9AAAUvgAAyL0AAAS-AAD4PQAADL4AAIC7AAAQvQAAXD4AAKg9AABQPQAAXL4AAJK-AAAMvgAAJD4AAOA8AACAuwAAZL4AAMi9AACAOwAAED0AAKg9AAAMPgAAqD0AABQ-AAB_vwAAgLsAAFA9AAAwvQAAgLsAAJg9AABAvAAA2D0AAPg9AADIPQAAgLsAAKg9AAAwPQAAqD0AAKg9AAAwPQAAbD4AADC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=1aJ9ktestx8","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4712286528484751774"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2054501160"},"10938743968053233620":{"videoId":"10938743968053233620","docid":"34-1-10-ZF85634BD4FB0DC67","description":"This video shows you how to easily graph a trigonometric function that has a couple twists included: in this case, an amplitude greater than 1 and a reflection over the x-axis.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1674474/e0fd7684bf60bd4297d61dea748aaabf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kccaGgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuWcDK1A_sjs","linkTemplate":"/video/preview/10938743968053233620?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Graphing y = -3 cos(x)","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uWcDK1A_sjs\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxMDkzODc0Mzk2ODA1MzIzMzYyMFoUMTA5Mzg3NDM5NjgwNTMyMzM2MjBqkxcSATAYACJFGjEACipoaHhod2tya25obGZxb3hiaGhVQ1UweXNlQmlLM2YyRzczTlNuVEc3OGcSAgASKhDCDw8aDz8T8wGCBCQBgAQrKosBEAEaeIHy_P_1_gIA-QgN_PsE_wEB_Pb8-P39AOv4-_MC_wEA8vcK8wgAAADwDwwDBgAAAA7_AvgC_gIABv739QQAAAASCff99gAAABP48_j_AQAA-fX1CAP_AAD7APwDAAAAAPkPBPH__wAA_gn_AwAAAAAEBvj8AAAAACAALR091js4E0AJSE5QAiqEAhAAGvABf8IfAtb1ogHB4OAAvk_mAbskFwDxFMcAwvX-AOYY5wHV5y__2B7yABUF-QDROTkA-Ank__Oi9QBI4-T_890JAMMGGwAPEAcCOgIJABXJDf_8SuX-2e8S_jLb0QLkZ_8BJgUE-g07APzuBtoBK_o3AePf9QElHx8B1gkgBOoWAQbD1sL6BhkpAyUA8PfoGkUBMxgE_OgjAQPw_fP08yEp_v7ZG_wEHt8GUPfy_wIbAe-lzA__8u7xCPDqIQHH_esF4u0d9-H7Bv_tGQvtLATw97EOAw1LHvgCEf79-wcOCw7t7ArtBNcQAvf88_z5ye8BIAAtnlH7OjgTQAlIYVACKs8HEAAawAfXhee-RLw6vQqhpDu9OgU71gQMvZVw17yqBVs9HWsQPRyGxby4GYM9lDlRvX_mAr2WXVC-kOzbvIkopjwUlEI-RkUcvXPoALx6Fy--CDwwPSmf1LwTkGC9c0l2O3QlQj3igfm79LZDvdXH6LxvwAI9ONFTvQoJorxiUSy9ZFKoPKiWY7ys-gE9qJulvWVB-jtnPQI8ABIZvKYHBzyFAju9gnOGPcEnjLwKIRA8mw85vXVvqLrvjhy-O2pRvXifPr3HTAI-SAwsPV4cCz14ADW9V6fzOsWC77tJC_w8mQdVPUm6qDtjXmw8Ow4NPS1O67yIh027fkwQvf-mQTydILu8TzOOvXuJzDzshu09jPeDPXJbkTv4WDW9kkVVPQCuBL0ziSo-vbUCPYzgubulaCU-2PinvE5Iljn7pEQ90X-qPE1brbxyE_e7LLmKPHMyzDxzB_e7woMLvaM8Mbu-aNG7kN5LPawjIrwN9gs9cqYJPeY8JTuXgh48Dg8EvHca3zwNJcm8tno4PZgU_rkFI6U91gI7vknlmjou8h28by6Zvc3Lfrt7DZY9ZL5tPcurxrrfe648RhwcvV4MKzuPumc852cvvcM_srvKPv68ivOGvRKOkzuR3JW9UdwhPj6UDjqz_iI8c3VRvVcHgLw0DwA9nRgKu-g_NTy8fVE9GEEzvrGckblFMbe7jxjdPU2fdzpdf2o6tke0PaNekrkGv4g9NPwCPPVRvjv36iO91inFPLz6R7rymte9k5wdPcI0wDjKNPo9E3vNvFmGYTjh2Ym9LHh7PRW5RjmUidu9Cd2aPe-96Dgqxvm8iDsovVZ2TLeJD7e9t0K4vTFCujhPPQI-sbP0O22TarkXqJs9jLIduncZbLkXhbi9WqyyvH8i7rmjiHa9R4hXPdYwOLiDE9E9IfP1uzBLEDjs2wu8tuyYux9FL7rR4jG97ja5vb6gHDm8L528i4GfPdKubDeM-r-94kHxO10nBrn9WJc93Lf6PR1WxDUsDre9fyZMPUqsxDgjYYQ8ume9PSVfd7eB7Ys9CMpNveesoDgt-Wm88grEPJIvcjci-wC-xl8kPReYZTg2i_y8-9vvvJL7h7jIXzo-3JXCPM2vSziDh4k9Tny1Paoo6Tc3N5Y9g4oKPXmGkrj5SuC9DI_dvWMzRLi77YK8l-ahvfo4_7dNNyS9jbvMPazuDjdTZU48e1yVvV51vLeH01M9_1EFPblQ0zh0p4U8V5fTPPGVVbiYD4293R-EPYzD0TcupJi9fbtbvJDlJ7ggADgTQAlIbVABKnMQABpgAe4AKeId3g8rKf_T388PtPrZAfXXKv__rv8UGL_2C-HJ7vf_ACXo-OefAAAAGOjUIrkA8n7S-Fz35fkg67XcLiNh-Bg8xeIWJAXrKx7Y9SH7CRgSAIEiyCwaxQEWPD1NIAAtuiMdOzgTQAlIb1ACKq8GEAwaoAYAAKBBAABwQQAAUEEAADDCAACAwAAAaEIAALBCAAAgQQAA-MEAAGDBAADwQQAAdEIAAFjCAACgQAAAKEIAAOBAAABAQAAADMIAAGxCAABwwQAAsMEAAIhBAADQwQAAwMAAAKhBAACCQgAAKMIAAAAAAACgwAAACEIAALjBAAC4QgAAkMIAACBBAACuwgAAgD8AAGRCAAD4QQAAIMEAALhBAACgwAAATEIAAGBBAAAQwgAAREIAACzCAACQQQAAAEEAAIJCAACAwAAAUMIAAMDBAAAAwgAAAMIAAJDBAABgQQAAUMIAAODBAADgQQAAmMEAAIhCAABkwgAAfMIAAPBBAAAgwgAACMIAAAzCAACEwgAA-MEAAGTCAADoQQAAsEEAABDCAADgwAAAUMEAACBCAAD4wQAAQEAAAFxCAACwQQAAtsIAAIxCAACQwQAAiEEAAHBCAAAQQQAAIMEAAADAAAA8QgAAQEEAAKDBAABIQgAAgD8AAKBBAACSQgAAOMIAAODBAAA8wgAA4EEAAKRCAACEwgAAHMIAAIDAAACIQQAAUMIAAJJCAADgQQAAMEEAAIBBAACAwAAALEIAACRCAAC4wQAAgEIAAHDBAAAUQgAACEIAAATCAAAIwgAAsMEAADzCAAA4wgAAYMEAAMjBAAAQwgAAoEAAAMhBAACAvwAAGMIAAMxCAAA4QgAAiMEAAMDBAADgQQAAYMEAAGBCAAAwQgAA6MEAAJ7CAAAswgAATMIAACDBAAAUwgAAkMEAAMDAAAAYQgAAPEIAACRCAADwQQAAgEEAANDBAACYQQAAYEIAAPjBAAB0QgAAAEAAAFDCAADIwQAAeMIAALhBAAAwwgAA-EEAAOBBAAAAAAAACMIAAOBBAACwwQAA6EEAAKRCAACYwQAAcMEAAIDAAADgwAAAoMIAACzCAAAAwgAAkEEAACDBAAAMwgAAeEIAALbCAAB4wgAAgMAAAEBBAACgQgAAwEAAAODBAACowQAAIEEAANhBAABAQAAAeEIAALBBAACAwAAAwEAAAHBCAAB0QgAAyEEAAEDBAADAwSAAOBNACUh1UAEqjwIQABqAAgAAuL0AAIK-AADiPgAA4DwAAKg9AAAQPQAAhj4AAO6-AAB0vgAAUD0AAOA8AABwvQAADD4AAII-AACgPAAADL4AAOY-AAAEPgAAcD0AAMY-AAB_PwAAfD4AABC9AAAcPgAAcL0AAIK-AAB0PgAADL4AAEA8AABQPQAA4DwAABC9AACgvAAAFL4AAAy-AACevgAAMD0AAIq-AABsvgAAuD0AAHy-AACoPQAA4DwAADC9AACgvAAA2L0AAMi9AAC2vgAARL4AAKi9AADIPQAAoj4AAFw-AADYPQAAnr4AAMi9AABlPwAAUD0AAKA8AAAQvQAA-D0AAOC8AACgvAAA9r4gADgTQAlIfFABKo8CEAEagAIAAIA7AAAUPgAARL4AABm_AAAsvgAAUD0AAII-AACIvQAAQLwAACw-AABQvQAAmr4AAEC8AABsvgAAyD0AAIi9AACgvAAA-j4AAJK-AAB8PgAAUD0AAKi9AACgvAAAEL0AAEA8AACIPQAA2L0AABC9AACAuwAAgDsAADA9AAAMPgAAdL4AACS-AAAUvgAAgDsAAGQ-AABcPgAAdL4AABy-AACoPQAAJD4AAPg9AAAQPQAAiD0AABw-AAB_vwAAoDwAAKC8AACgPAAA2D0AALi9AABEPgAA4DwAAJg9AADgPAAAMD0AANg9AAAkvgAAuD0AAJg9AADYPQAAmD0AADC9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=uWcDK1A_sjs","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["10938743968053233620"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1418403643"},"12688485581624540467":{"videoId":"12688485581624540467","docid":"34-11-13-Z023A3577E44CFA8A","description":"trig, trigonometry...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3447160/bfa4251f32cfc3584a6c4b840f81a311/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/WowMAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkgpRj7Z-oiQ","linkTemplate":"/video/preview/12688485581624540467?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos 7pi/12 find the exact value of the trig function","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kgpRj7Z-oiQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxMjY4ODQ4NTU4MTYyNDU0MDQ2N1oUMTI2ODg0ODU1ODE2MjQ1NDA0NjdqkhcSATAYACJEGjEACipoaHZubGN6YmJrY3Bub2ZjaGhVQ0dROWJNTEk5UzBJcVplRHVUMUVIZWcSAgASKg_CDw8aDz8TaYIEJAGABCsqiwEQARp4gQD-AAAB_wDz_AgH9wX-ASn8EgH0BQUB-gf_9AIE_gDqAwcAAv8AAPAW_v8EAAAAAwDzAP39AQAD-_wCBAAAAAkCAADzAQAADv_sAf8BAADw-_wDAwAAAAPv-wb_AAAAAwEG__3_AAAUBfP4AQAAAPf__wsA_wAAIAAt9JjQOzgTQAlITlACKoQCEAAa8AF_IwoD4-3MAdADIv741u8B6x1J_woh5P_bAwkA1_0FAQUnCwDmFgIA1QvzANcg-wD7Fcz_Fdsa_z7F5P8Q9Mj_-9sKAPO99gE7KhoA__Lg_iToDQAGtuH98AztAxwO5P3o3SL_NOfSAAUx1QMYAyAB4_kvBO_3DgMCnwEHwuHrARnJHPrJDs8BAwIG-tK4FwUc-vcBMysI_PMV9wAP8woH3gcgA_MT1_8u7wUHPvLZ_6cC_AP0yCQIR-0N-8kaGgIHDxr58S0a9ejiBQoS_u_6IPLh_OwJ2QAF2wEU7vcJ_yD5_u7cG_Dz4_b86xwA7u0gAC229ww7OBNACUhhUAIqzwcQABrAB8xdw75k0vi6S_D-OzVuwL3RUt68RTOJu004mr3QpGK7SMETvdSBDD5SvYC9AtLAu_N8XL3ipeU7kFEZPaZCPD5lYTm9PHxDPXoXL74IPDA9KZ_UvBd-AL7qYDg9-a63PLjt1rzAQ6w84FksvREXxT06wxk9sN-4PH4d-LycTUc9i0ArvPQfLT0_ube9nj8SvWc9AjwAEhm8pgcHPOvgsD1_eIy8fBVPvMrngD2G17-8j2wuPHcIvb34Em89veMUvQQPwj0iJoc9EEpOPFPQ7b0fMkC9kdeevMmzRr22Goi86HK5PKxjCz0NBjI8WuybvLmr17zzv6a9LqsQvQx3Dr5N2hY7lmEXPdwEqT2Dv989HDGpvNQotL1qGq-8tjv7O3x7l7zuaii9ey5TvPEJHr2hL_09k3zbu6gTdbyuega7YKnTPEWQxL2WsNY9LXGuPH97aLyg_ei9NldNvEFZYj3tGw49F5Vcu3PpSb0DbTw7UTsyvLa1ar16r1U9v9YlPIAzpzzoWNQ8ksE8O8U1Qz34UQ2-CW8su-xDuL2PUAO-f0AQu9Qq-j0rG7G8_3dXuovLnD2kF3q9X3hKvCaJijwB1Hm91o_Ju8HNPbwze6q8vpEQPBmBQr0jsQ69MVIYvPXFdL2zX5i7E08svP9YSL3cNoI8b8HOujdExr2ah6K9HPlaOTEERT0vZx27euxtOmjMFD41PIO7cSgaulGX1jzl0W29oBpMuyzx4L0ucP27ICcYOi_p3ryN8Na9fY1OOTy98j1KyFG9V8GOOTZqz7t7PpQ8os9xOSZstL1kQNY9XCYQOEGYQD2Kk_u9TGt2OGr2I7vvnae9YkjcuM4Pbbyt3wc9qMXbuXIxlr3FHho9LCCWObPFILtRQMS9bz3sODtMQTtzAgc8acsiuZ34hTziBCa8OHy1uJPY3jsDTE-9Rl8FuN3P6bx35H68vza1uHSSMj2VxRS8ewAfOBgIEj6SIgK-FGsQOq790zyliZK89QcxOLvPVj17JZo91swTONZNTjxKJRw-QLs9OaAVPbxhyIW83Ts_OM3nXD1HM5s91S0lucf2mjxcrwk-byb4t4NmHD35w6o8kqDwOIBxGzyhcde8tHkfuBWDUTxvVs68JSYQOJ3Z7j2flZO6o2oOuflK4L0Mj929YzNEuImf-7tmgVu9TGXwt4jnV7vJVAY9PFgYuAPsRDvkzSu9MqqZuCL_7D01KQU-835buL8WCj2hb8E9_y-ct-hVs70WJOw8zbghOG0Olr0uhGY9BO-3NyAAOBNACUhtUAEqcxAAGmBNBQBHJD3tCQwx5RfJ_RTf3h3-87Iu_9QD_yUP6twJCOe7Ghv__NJF9KMAAAAIEuIiuAAAfwTz2h0ARvngyZsfKHIR_jbPyhvmurw6OB22J_Hk9isA8AusIj3b4AsabuogAC2kPhU7OBNACUhvUAIqrwYQDBqgBgAAgEAAAKDCAACcQgAAHMIAAAhCAADAQAAAAEIAAIDAAAAowgAAsEEAAMjBAACwQQAAIEIAAAAAAAC4wQAA-EEAAOhBAAAwwgAAMEIAADjCAADgQAAAUEEAAITCAABMQgAAAMEAANhBAACQwgAAQMAAAFRCAADgwQAADMIAAOjBAABAwAAADMIAACzCAABgQQAAUEEAADxCAACAQAAAQMEAABTCAAAAQQAAyEEAAADCAADQQQAAsMEAACRCAAAAAAAAqEEAAIBAAAC4wQAAgMAAAADBAACQwQAAYEEAAJZCAAAowgAASEIAAFxCAACAQgAACEIAAJTCAAAAwAAAfMIAAIBBAACYwgAAmMEAAIBBAAAAwQAABMIAADBBAAA4wgAAosIAAIJCAABQwQAABEIAAODBAAAAAAAABMIAAAjCAADYQQAAikIAAFTCAADwwQAA4EAAAMBAAAA0QgAAUEIAAPBBAAA0wgAAmsIAAFRCAABQwQAAQEEAAEBAAAAkwgAAQEAAAMhBAADQQQAAwEIAAJDCAAAAQQAAPEIAADhCAAAkwgAA4EAAACzCAAAQQgAAqMEAAAxCAAAkQgAAgMEAAKjBAAAwQQAAnsIAACBCAABgQgAAcMEAAEBAAADAQAAAMMIAAKrCAADQwQAAmEEAAFDBAAB4wgAAAEAAAMDBAADYwQAARMIAAAAAAABwwQAAQEEAAMhBAAAgwgAApEIAAIJCAAAgwQAAYEEAAMDBAACYwQAADMIAAJJCAABswgAAFEIAAOhBAAAQwQAAMEEAAADBAAC4wQAAbMIAAAAAAAAAQgAAQMAAAMDAAAAQwgAAoMEAADDBAABIwgAAsMEAAAzCAAAgwQAAmMEAAJLCAABAQQAAGEIAAKDAAABUQgAAgEAAAJBBAADAQAAAkMEAAABBAACcwgAAcMIAAAAAAADgwQAA2MEAALZCAAAkQgAAjMIAAMjBAACgQAAA0sIAAFxCAAC4wQAAmMEAAHDCAAAwwQAASEIAAEBCAACIwQAAfEIAAODAAADgwAAAtEIAAOjBAAAEwgAATEIAADDCIAA4E0AJSHVQASqPAhAAGoACAACCPgAADD4AANI-AADgvAAAgLsAAK4-AACAuwAANb8AAJK-AAC4PQAAbL4AAJ6-AABsPgAAbD4AAFA9AADgPAAARD4AANg9AAAwPQAA8j4AAH8_AACAOwAAVD4AAGw-AADovQAABD4AAGQ-AABwvQAAuD0AABQ-AADYPQAAkr4AAMg9AACgPAAAgDsAADy-AAB0vgAAzr4AAKK-AACqvgAA-L0AAHC9AAAMPgAAdL4AACy-AACIvQAAPD4AAMa-AAAcvgAAir4AAFQ-AAAkPgAAHD4AAFw-AADIvQAAML0AAFM_AACIPQAAqD0AAGw-AABUPgAA2D0AADQ-AAC6viAAOBNACUh8UAEqjwIQARqAAgAA2L0AAIg9AACAOwAAVb8AAI6-AADIvQAAEL0AAHw-AABQvQAAUD0AAAS-AABEvgAADL4AALi9AABwvQAAEL0AAHA9AAALPwAABL4AADQ-AABcvgAAML0AAOi9AADYvQAALL4AAOA8AABwvQAA6L0AAIA7AABcPgAAED0AAGw-AADKvgAAyD0AAMi9AABwPQAApj4AAGQ-AACSvgAAPL4AADS-AACAOwAAtr4AAI4-AACgvAAABD4AAH-_AADYPQAAFL4AABC9AAAcPgAAQDwAAJ4-AAB8PgAABL4AAFA9AADIPQAA-D0AAMg9AAAEvgAAXD4AAKC8AACovQAAdL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=kgpRj7Z-oiQ","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18228844364426687741","12688485581624540467"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3909307051"},"4301317719177108360":{"videoId":"4301317719177108360","docid":"34-5-6-ZA49B9D73116D9CF2","description":"Solving for Cos^2x+cosx=0 with a reference graph...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/754438/989ef1f1694e5aae5267d665cc30abaf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Y7cXfQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_VyBiQtvTSQ","linkTemplate":"/video/preview/4301317719177108360?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve cos^2x+cosx=0 Using Algebra!!","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_VyBiQtvTSQ\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoVChM0MzAxMzE3NzE5MTc3MTA4MzYwWhM0MzAxMzE3NzE5MTc3MTA4MzYwapMXEgEwGAAiRRoxAAoqaGhweXF3dXBiYXdoZXFjYmhoVUNwNlVrSUhlNjhZdU51VnM1Sjd2OG53EgIAEioQwg8PGg8_E5UCggQkAYAEKyqLARABGniBBfX9-P8CAPv-DQT6B_0CHPb9BvYCAgDy-_38BwEAAPcABfoHAAAA9Qr8-QQAAAAM__wB_v8BAAjz9_MCAAAAEgj3_fYAAAAS-fP5_wEAAO7-9PkCAAAAA_r9BAAAAAAGFAb3AP8AAAUH_v4AAAAAAQAI9_8AAAAgAC1Pidg7OBNACUhOUAIqhAIQABrwAX_zGP7OEdMA4P0YAPbN7ALXAgUAQkzX_7_c5gHO68sAySUHAP033_6xIR4Avjv9__v2vf7qw-MATuHh_-TR-AD65MoBQfQFAWUcFQER59IA1ys6_fbdFgAA3-wAEx8V_uLk-Ptl9tj_6ASwAi_6OwFF3DEB6_4wAv3B-PrNzuICwqf9_fzq6QYPzAMFxeYmAh_n6_vzI_L2yB_NAAoO9_4W1zD80CTE_Hzr9gJt5gcIt9_9B_Dj2wskUxoI2hwQE_MGHO30Bvzm8CLlCP368u7nEef3IvHxDzHN5_YYCgIQ6tjn8-sPDgDrPAAODQPp9yAALR0G5zo4E0AJSGFQAirPBxAAGsAHYoQAv_1zB73CMAE8XFcMPa9Jkjw1NRy8lyy4PLcN_jwxdXy8FHYRPt8O3rwmvoM7FOgzvvvv3DxZ04a8_b10PpJUS70Dsew8huMJvt8g9TysASq9_Qeyvb-txzt7DhO8jCKVvfa6QL0WlxS9-tXcPTd-cjyroBY8b4sIvUNHB7oj2Bi93GoZOvURWL0TfFi9FtA1vfDGG7u2jCs7o9DPO7lVDryJwt28s81yPUH7hzwK98q8aW4FviPUET0HyGG8OAInPFOSFjxN1xg9BbOovUe1Q712Yyu9pEScvLJDoTw7Do87rGMLPQ0GMjxa7Ju856cYPYB3vLyVf628rfkBvlSlkjwh0d87eocgPTnsgz1CRZi57-SzvfeRmz3N_bq8vG1QPZAl_7spabS8TxTyPMQtuDtdmqo7feuDPCyrizfaNtI7kCQQvBDfoz2mYgM91MqOPEnTZb3x-LC75kDPPe9IqzxRwLa82XgwvIXtI7tLnTa88LeDu4PkuD0ImT88O38kvM8627r8QIs7RPO1PdjU2b06cSC8JpR5vbEJWr2Rgn05Yy-fPSb_oz24YjW8TvDNPWYz573_VwA8K7Q9PF8BFryjxJU6sSkBPStyo7y2Ins8-CAfvYOMGz28-kK85sKivSnhoz20Kvi7UhvLvHGWbTyrF0-7_kHJPFsMjr0d32Y7GpyNPeTHDj2eke-7LYuTPZ6vHj2gog86iCSEPaUZtr3cmS67Ls6DvWEIL72oqMq5G8MWvJhyGb2860c7H6LRPVj4H7150Yo4aeZkvZ27-jkYVlO5X61_vS7isD0JAjo5VTqzvFzBm7yuKba5rS-3Ov0S8b28I4k5IJiTPTaDDbviGvM5chO5uxKODz0mt0q6zCDDvdQNBL4IU4U5OlWjvGjWqL1iNYu4yN6BPEANST2o5lE4YFnpvEiZnrzTRSC5rh17PNx5LL0XQgY3aXsKPZMVaDwbkKk45yLZPAPM_L1SScg5_X3rPC0zlTtxEFw45x84PQ_vuT20aLk4cjPcPSJUCT4bC6o52AUtPX6hEb32QFI3D1Q3PfGC6D3pQYI3opOqvVenxD29NqA4Ie9QvfGOAj3PtaM4yEpnPdwnrDyzofg1alwOPRZ3cjxTucK3mXJvPeejMb2AAB64tlF4PHMS6r0u6_a4Qq-0vXrOTL1yy4i3hs2LvQiw6D1Us5Y41ZTkPL42pr3zo024yvRwPSLhKz7xy4o4bSfAPOvD-jyaD7i4TJ4cvRbKurok3si3R9uSvT9vDTxlX6o3IAA4E0AJSG1QASpzEAAaYB0GABrYWf0iCx3lBukg5On857ES3Fr_Adn_GAHpDg4Rn8rn9_8jFfm0ngAAADH7-kGhAA5_vhju_eQf2cjH7jBEcsUGQbXCygjzCGU3_9MNCBUObQDWLrj6MyLtESntKyAALUQXETs4E0AJSG9QAiqvBhAMGqAGAABkQgAAuEEAAKpCAAAEwgAAIMEAAGhCAAB0QgAAsEEAAHTCAAAQwgAA0EEAAEjCAAAEwgAAAMEAAIBAAADgwQAADEIAAMrCAACOQgAA-MEAAADCAADQwQAAQMIAAARCAADAwQAAkMEAAEDCAABAQQAAKEIAANhBAACEwgAAqEEAAILCAAAEQgAAyMIAAABAAADgQQAAIEIAAIDAAAAgQgAAEEEAABRCAADIwQAAwMAAANjBAACowQAAwEEAAIC_AABEQgAADEIAAGDCAAAMwgAAkEEAAFBBAABYQgAA-EEAAKbCAABQQQAA6EEAAERCAACgwAAAVMIAACDCAAAUwgAAREIAAITCAADwwQAAgMEAAJjCAAB8wgAAnEIAAGBCAACowQAAPEIAAATCAACgwAAAtsIAAODAAACAQgAA4EAAABDBAACqQgAAoMEAAABCAAAAQAAApkIAAMBAAAAQwgAAMEIAAFDBAABgQQAAZEIAAEjCAACYwQAAcEEAAI7CAAAQwQAAcMEAAOBAAADQQQAAksIAAOBAAAAIQgAAiMEAAILCAADAQQAAAMEAADRCAACowQAALEIAAChCAAAwQQAAoMEAAHBBAAAAQQAApEIAAJhBAABwwQAAgMAAABDBAAAUwgAAQEAAAIhBAAAIwgAAXMIAALDBAABQQQAAAMAAAABAAAAAQAAA4MAAAHTCAAAAQAAAuEEAAJDBAACEQgAAAMAAAHhCAADIQQAAcMIAAFBBAACgQAAAmMEAAILCAADAQQAAyEEAAAjCAABEQgAAkEEAAIC_AACgwQAAmEEAACBCAACwQQAA4MAAAJjBAABwwgAAAMAAAGDBAADowQAAyMEAAGhCAAAQQQAAoEAAAIBAAADgwAAAHMIAAIxCAABAQgAA8MEAADDBAACYQQAAwMAAANjBAAAEwgAAIEEAAKhBAAAQQQAAwMAAAJpCAACqwgAAmMIAACDBAADAQAAAbEIAAMhBAACewgAAyMEAAMBAAAAEQgAAVEIAAEDAAADIQQAAoEEAANDBAACMQgAAoEEAAABCAAAIQgAAkMEgADgTQAlIdVABKo8CEAAagAIAAAy-AAD4vQAAfD4AAOC8AADgvAAAhj4AANg9AAAtvwAAlr4AADQ-AAC-PgAAkr4AAEw-AACaPgAAvr4AALK-AADiPgAA6D0AAPo-AAAZPwAAaz8AANg9AAD4vQAABD4AAKa-AAA8vgAAFD4AAJi9AACSvgAAJD4AAEQ-AAAfvwAAND4AAMo-AADovQAARL4AAKA8AACOvgAAA78AABw-AABkvgAA4DwAAMg9AACgvAAAcL0AAFQ-AAAkPgAAjr4AAKg9AADgvAAAbD4AAGy-AAAVPwAAJD4AAEy-AAC4vQAAfz8AAFQ-AADCvgAAuL0AAGy-AACYvQAABL4AAGy-IAA4E0AJSHxQASqPAhABGoACAABQvQAABD4AADy-AAA1vwAAoLwAAIg9AACCPgAANL4AAIC7AABMPgAAMD0AAIA7AAA8vgAADL4AAJg9AAAwvQAAbL4AAAU_AACuvgAAND4AAJg9AABEvgAAoLwAAIC7AACYvQAAHD4AAGS-AAAQPQAAEL0AAKg9AAC4PQAAED0AAJa-AAAwvQAAgLsAAPg9AACCPgAAML0AAJK-AABsvgAAcD0AANg9AADIPQAAXD4AAIg9AACgPAAAf78AAMg9AAAUPgAAoLwAAIi9AACAOwAAND4AAJg9AABQvQAA2D0AAIC7AAAMvgAAQDwAAEA8AACYPQAA-D0AANg9AAAQvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=_VyBiQtvTSQ","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1152,"cheight":720,"cratio":1.6,"dups":["4301317719177108360"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3076212782"},"10324012441480957485":{"videoId":"10324012441480957485","docid":"34-6-9-Z943C835F2BFFE452","description":"Sketch the cosine graph y=cos(x/2) in 3 easy steps! Step #1: Find the Essentials Step #2: Plot Key Points Step #3: Sketch and Repeat! Use this easy method to graph any basic (unshifted) cosine...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4480760/d779318ee3bc2405617f5c643c3b80a6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ewjzQAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DffLYwgZctDc","linkTemplate":"/video/preview/10324012441480957485?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"3 Steps to Sketch - Graph y=cos(x/2)","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ffLYwgZctDc\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxMDMyNDAxMjQ0MTQ4MDk1NzQ4NVoUMTAzMjQwMTI0NDE0ODA5NTc0ODVqiBcSATAYACJFGjEACipoaGp3eGtraGt3aGx3ZXRiaGhVQ3hxaGdHT2tXTFp5WVlwMUJhQlJLaXcSAgASKhDCDw8aDz8TpAOCBCQBgAQrKosBEAEaeIHqBQL6_gIA8AgGCvcF_gEHAADv9___AO348PwFAAAAAvEH9gQAAAD6EAT-BgAAAAn29_72_gAABgT9AQQAAAAW8Pf3_QAAABcG9fn-AQAA7fP9DAT_AAD0Av_-_wAAAAAO-fEAAAAABQ35AwAAAAAZ-vj2AAAAACAALbqI1Ts4E0AJSE5QAiqEAhAAGvABfdA6_fTv3gG488gAik_R_4FEBP_lFt8Ao-wPAbkdyQDS_h0A0gr6__rj-f-eNvb_Q8jC_urRFv9N0fsAKb4DAMIhDAEx-CMBOyYHABHS-__dHgj9COsMAjHf8AAmShH8HCkZ_Aoc3QPcEOEHKhsyAegOIQdA8AwD6LwjBPUf6QbJHN3_DjAFBA4k7_7lHEwBCgfm_PMj8fa97tP9AhEGDv3VHvv4Tdz4ThP-D_Yd8_7B2N_7OfzVBQA5BwHrUQb13-sg9tYq__T4Bwz_Nt_0ANIH8_FC7v8RI9kAA-L4Dxfu9w3-3RUEChUB-xP59fbqIAAtPtjhOjgTQAlIYVACKs8HEAAawAcsK82-yDDdOr1IMr0cyD-9CeqMO5zMLr0jE_C91y0nPff9QLyf1qM9IfD2PEX2nLzY1Hm-BQRJvfOGBb1AvTk-4huqOQyl2Lnv5U6-EKhDPRiswLtEGF--1GRnO6WdPzzJMzQ9OOhcvVCQM7zBfr498vfBvRetbbzomYM8JFT6PJspI70YHCq9vk6KvQYOC7wFw_k9MYtavQuIHz0aQRk9FEGcPMj1Rrs0PMc8cAOTvfVdNrxyta-9Ylk6vedt0bzHTAI-SAwsPV4cCz1KuIu9rTLTvEdQArxLgDM7QA0lu0ZKSb09Cjc9pkZovJPGqLzLqvy7s9FZvVBovjzoH3O9LnqCvdcm3zz7BTs-2jfXPUR1yjs1U2s89U-LvNJvALuR-pE9giXyPJA2hjt0Da49HnohvcrKhrv7pEQ90X-qPE1brbzRhYc8Go-MOidXCLtQhBq7jfaDvUXCkrzz5xu9sXmLuyAkMLyqGWc7heomvSPABjyvpvw8IMTfupgWdTxtXSU9SJU3PYF8ZDwFI6U91gI7vknlmjo_wlU8qlN0vRoFd7zmKcY84wfdPAjYfTxWIhW98_Fgu3KTZjtHLU86QBYBPNaVR7srrmC8JmMmvVu0nbojK4S9B_SdPXLAA7pwwYg8B5WdvPBwGrweMmU9xzX0PLZi5jtdFQ29S92fvEE78TuXH5i9EWyxPR-vE7tMEZo9SH1jPTqFXrmgjSw-y64FvSACDbkqWSm8m1RUvW8d0jvQ8VE878u0Pa4ZgzihndM9UYGYvZedUTmq8Eq79H7tO5lkorpbDxo9-0uBPXPcZzkosT86ggn1O8MHBrfaAjK-xYM3ve8yijfFGlM8qC8RPIz0TbpWUp28Q8pPvLcDxTYXj8G8G9QDvdeR9Tlt4uS9vt6dPYc_A7lGmtg9sjMAPdYLkDhSZl48_q6pvXXoXTipyQa85wapvVCANra_IDO8rBvPPUkMNDXMJhC-bvPrPDWhkrkKgLG8JxfjPWJgkrkAIwM9DtvWPT5PjDc8sG09JO2LPcJGr7iYGqw91_CpvQLoXrgLDbQ9juYIPEGvXzbK4QO-ENcePJf9TjfT4xK98SuGvdd_DrkNEZw9erAgPTx4wzcQlrG7R7AMPbrSejid2e49n5WTuqNqDrmqnse9ep2OvZJN1Td3SIa97PgvvUBqP7jeSI-8thGPPG7p0ba9rwU9pUkJvq2ehbigFw49FyW9PSh_ADniGK48b6WiPUwnUrg1bEq9Zd-VPZHUgzc7w1S9jwCJPR3nhzggADgTQAlIbVABKnMQABpgCQoAPc0Qw98YHOcexeQk4vrWxhXRLv8l3P8-D6T18gfi1RoC_znCEfyeAAAADQe9JEgA93_v_EAc6gMLn6fSPzFVxfFE0wv9DgX4Lw4QQh0a0fYkAJo2sT0c0OkAJCE5IAAtqFgVOzgTQAlIb1ACKq8GEAwaoAYAAADCAADgQAAAUMEAACTCAACwQQAAGEIAAMpCAABgQQAAMMEAAKBAAABAQQAAAMAAAI7CAACgQAAAQEIAADBCAAAUwgAAMMEAAHBCAACgQAAAsMEAACxCAAC4wQAAmMEAAOhBAACAwAAAwMEAADBBAAAAQQAAwEEAAOjBAADEQgAAoMIAAMBAAAC4wgAAuEEAANBBAABgQQAAoEAAAJBBAACoQQAAhkIAAFBCAADAwQAA-EEAAODBAAAAwAAAMEEAAAxCAADgwAAAUMEAADBBAACgwAAAfMIAAOhBAAAAQAAAjMIAALjBAAAIQgAAkMEAAKBCAACewgAAYMIAALjBAABwwQAApsIAADjCAACYwgAAYEEAAFDCAADwQQAABEIAACzCAADgwAAAMMIAABBBAACowQAAJEIAAJxCAABQQgAAzMIAAHRCAAAAQAAAgEEAAERCAADAQAAAAMAAABBBAADAQQAAGMIAABTCAABQQgAAJMIAAEBAAABcQgAAOMIAALDBAAAgwgAAHEIAAKZCAAAkwgAALMIAALjBAACgQQAAAMEAALhBAAA8QgAAAEEAAAAAAAAgQgAAqEEAAFhCAABIwgAATEIAAAAAAACAvwAAaEIAAEDBAACYwgAAiMEAAMjBAADwwQAAuMEAAADAAACYwQAAwMAAAJxCAAAwQQAAJMIAAK5CAAAAwQAA4MAAABTCAAAYQgAAgMEAAFhCAABYQgAA4MAAAJ7CAABQwQAAEMEAAADBAADAwAAAgD8AABhCAADgQQAAJEIAAM5CAACoQQAA-EEAALDBAACgQAAAXEIAAIDAAACeQgAAoMAAAI7CAACAwAAAXMIAADBCAAB0wgAAQMAAABhCAACYwgAAkMEAAJhBAAAIQgAAUEEAANhBAAAEwgAA2MEAAJhBAADgQAAAuMEAADjCAAAYwgAAiEEAACjCAACIwQAA4EEAAFzCAABAwQAADMIAANBBAAB0QgAAwMAAAEjCAAAkwgAAkEEAAOhBAAAswgAALEIAACBCAAAAQAAAMMIAACxCAAAgQgAAIEIAAADAAACwwSAAOBNACUh1UAEqjwIQABqAAgAAPL4AAI6-AABEPgAAgLsAAI4-AACiPgAA3j4AACe_AABEvgAAgDsAAIg9AAAMvgAAyL0AAOo-AABwPQAA0r4AABM_AADoPQAATL4AAMo-AAB_PwAAiD0AADC9AAAQPQAAPL4AAKa-AACOPgAA3r4AABC9AACYPQAAPD4AALg9AADYPQAAEL0AAIA7AAAsvgAATD4AAAy-AADmvgAATD4AAI6-AAAQPQAA4LwAAMI-AAAUvgAAFL4AADC9AAAEvgAADL4AAPg9AADYvQAAQDwAAII-AAC6PgAATL4AAIg9AABBPwAARD4AAES-AAC4PQAABL4AACw-AAAkPgAAZL4gADgTQAlIfFABKo8CEAEagAIAAJi9AADYPQAADL4AACm_AAAQvQAAcD0AAIY-AAAEvgAAUD0AAMg9AAAwPQAAML0AANi9AAAkvgAAFD4AAEC8AABwvQAA-j4AAKa-AADKPgAAiD0AALi9AAD4vQAA6L0AABA9AABwPQAA6L0AAKA8AAA8vgAA-D0AAFA9AADIPQAA2L0AABy-AAAQPQAAUD0AAJg9AACoPQAAXL4AADC9AACoPQAA6L0AALg9AAC4PQAA4LwAAFC9AAB_vwAAmL0AACS-AABQPQAAQDwAAAQ-AAAEPgAAoLwAAFC9AABQPQAAiL0AAIC7AABQPQAAiD0AALg9AAAEPgAAJD4AAKg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ffLYwgZctDc","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10324012441480957485"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"84716988"},"1514347366660731258":{"videoId":"1514347366660731258","docid":"34-2-6-Z61205BC8FB8E141F","description":"cos(3x) in terms of cos(x), write cos(3x) in terms of cos(x), using the angle sum formula and the double angle formulas, prove trig identities, verify trig identities, simplify trig expressions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3452086/f50b83927f6265a202ccefaf7a3ba013/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9C3EFA918188B3EFAE377EF2E1ADF93FF88FAA562C93DDBB2FA2AC4A57A4D75BAF6D99D8F4A7CFB6544CD2B12FD959EFA1790CB2CC4858C8D3396A043E64675A.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DONKPlyN1hpo","linkTemplate":"/video/preview/1514347366660731258?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(3x) in terms of cos(x)","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ONKPlyN1hpo\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoVChMxNTE0MzQ3MzY2NjYwNzMxMjU4WhMxNTE0MzQ3MzY2NjYwNzMxMjU4apMXEgEwGAAiRRoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioQwg8PGg8_E50CggQkAYAEKyqLARABGniB7_oBAPwFAP0CBQL6Bf4BAAP_-Pj-_gD6Bv_0AgT-AP0CCgAJAQAA_RP69AQAAAAD-_37_f4BAAz3A_ADAAAAGQL9APgAAAAJB_T2_wEAAPgB_AED_wAABAL9BAAAAAD5DgTxAAAAAAEH-PoBAAAA_AH5-wAAAAAgAC18Zd47OBNACUhOUAIqhAIQABrwAX_bAP2X7uP99yPYAPzt4wKvKkH_Nv_LAJ4dAQHJCNcB6VDjANr9zQAHFOQB2zgIABjOoAPRyPwBLsvs_hnq_wHg4toBVQD0AljXCv8dEa0B3vct-9wE7P412M0CDDjpABHZFP5UMAIC8RvPAvHqKQMRCjcFGxAuBRTnAwDH4RMD7qbMALDZ-AEt9A8EuP4oATgNyQXECCAB5S79BgDZ4PUFpAX_ABXp9Sjv1wcUBRgInskR_woN7_fTGhES8ALe9t8gK_2zKwQEGREF7xXp9fU2Gvn-9sLwEyb5Av4UHQQI9Tj79hkOCvzh9uoCBArkGCAALRb76To4E0AJSGFQAirPBxAAGsAH2EX5viisP7uCnOY8v41-PR6uED00MM28fKGbPCLdFD2AxGU8FHYRPt8O3rwmvoM7xJdZvoxmZbz1uiW9y4AzPubRiL2YYjM8hzQqvp5pqD22cmW881kOvjhvNz12-yy7wVjfPaIurbyDX1S97xEbPcHEv70IkAG9CcypvVTDA71owyu8sZzOvJecSby27WC9bp4PvWDXBb2pARm9t59nPEUxlLyQAQ-8tLCyPUwlMr3p5SC7pG0MvmUetD2Yyxy9k-mbPUrqCjzN_uW7JT28va2ZxrzZFpS8VadevGgrJT34mUS8wNMBPB_DPrxmjkA8yU90PLtlorxPB7K8Dwq6va9eJb2U0vm77IbtPYz3gz1yW5E77-SzvfeRmz3N_bq8KuHpPR9OOzwlrZ28JqNPvXYA_rsH2Wg8QgNWPcTdzzx5aKs6CJvwvP9jHD0XDZk83qpwvTHUPDwo9aO7dQzjvA2nDDwQy-o6JbkRu5KG5LwaZFy89oY2OmTdmT0Ao3C8FOeNPMazGr0nFCC8RPO1PdjU2b06cSC8Yyp9vKNFzL2HKka8dH7KPGokcz2FxKi7OpzvvB-zmL0xRbk7xHvOPYU1r72HFY87lm2zO8ACHb3-N0C8N-mRvFvkg7yJGtg6z0zAvVXx6zxJdfC6efNKPVwtBTyzmi48MdBVvYuZTr3m-P45uiXBO8AAZzwr4Ue7-5trPfYLVj0OKye6ElDBPcF4Qb1h0wq6zjUKO7-Njr22QdS6YYKkPI4XHL1exZi6oZ3TPVGBmL2XnVE5FcpCPMqxaz2bzOo5c_QIvnGpr7xNUMi5BnYmPerbiL0CzWY4ZDtfvTdb77x3Iso4uE6tPDGVXj2cRo44xcSLPGxU8bxV9oO5rXSMu9V2Mz1C_xq62aRxPb_IVT0NFtC3yHSNPMebPL3EoJC4JYgkPRZdjTzYNeU4jQ6nOwVDqbvQODG5GgDFPI2JYz2RfTo3p-kzPg1sWr2Egxc6V6AMvU92kz3qSGe4QupWvc9DN7tOCWI1dMQOPPl0Sz0yFeC4P4ZzPQdEiDz2KBE3EUyavKPSgz0jHww4ZVPOvcLoqDz-Mug39dpsvDpZ6r1g-rg3v5iSPEd0j70GxLm3JSQOPGwokLyJTsU3OGUOPQHeor1gdXg2IHJkvZ7ZKb0EK3-4O_tqPdH5nbsyPG84kszqvYYhcjwUg5A4YQZ5PfM6Er5L56m4Iv_sPTUpBT7zflu4wYCPPaP6uD2nbYi49WJ9Ou1hlLzduue2cuy_vcireD0X2Y04IAA4E0AJSG1QASpzEAAaYB0SACHnSNjO4DAED9i5z_nTAO790DP_Es7_A_nTCSf6tOEFCf8M8irOnwAAAA7h6wDnAMZ_yOXdGuko8Min1fY_d_sTLdfZHNoC6Pop5RzlbQsOOwDRA7w7U-L-OFboIyAALbhBGTs4E0AJSG9QAiqvBhAMGqAGAAAYQgAAOMIAANRCAACQwQAAgEEAAMDAAACgQQAA8MEAAKzCAAAgwQAAQMEAADDBAACYQQAAEMIAAOjBAABQQQAAMEEAAHzCAAC4QgAAoMEAAIBAAACAQQAAoMAAAFBBAABgwgAAGEIAAJDBAABwQQAA8EEAAILCAAAUwgAAgEAAAIjBAABwwQAAwMAAAHBCAABwQQAAcEIAABDCAACgQAAAEEEAACBBAAAQQgAAgEAAANjBAACAQAAAREIAAJDBAADIQQAA4MEAAMjBAACYwQAAyMEAAKjBAAD4QQAASEIAAPjBAABQwQAAgkIAACxCAACwQQAAuMIAADDBAAAAwgAA2EEAAEDCAACIQQAA2MEAAIrCAAAgwQAAOEIAAMpCAAAcwgAADEIAACBBAADAwQAAsMEAABRCAABwwQAAIEEAAEDBAAAAQgAAGMIAAEBBAACAQAAATEIAANhBAACCQgAA4MAAAKrCAACkwgAAOEIAAIjBAAAAwQAAAMEAAPDBAAAgwQAAUEIAAFBBAACGQgAACMIAAABBAACgQAAAfMIAADDCAAAwQQAAMMEAAKhCAAAwQQAALEIAAHxCAABwQQAAQMEAAEBCAACgQQAAFEIAACBBAACCwgAAVEIAAAjCAAC4wQAAsMIAACDBAAAowgAAoMEAADTCAAAwwgAAYMEAAJbCAAAcwgAA4MAAABDBAABgQQAAcEIAAMDAAABIQgAAgkIAAMBAAADIQQAAvMIAAIBAAADAQQAAUMEAAODBAABEQgAADEIAAFzCAABoQgAAAEEAAOBAAAAgQQAAJMIAAHRCAABgwQAAYMEAAAxCAACgwQAAbMIAAOjBAAAgQQAAIMIAAPjBAAD4wQAAsMEAAOjBAACQQQAARMIAAMBBAABAwAAAkEEAAMjBAAC4wQAAoEEAAAjCAAA4wgAAgkIAAGzCAAAswgAAREIAALxCAACKwgAAiMEAAIDAAAAcwgAASEIAAFTCAABQwQAAyMEAADBBAAA4QgAAgEEAAHDBAADEQgAAMMEAANDBAAC0QgAAksIAAAAAAAAAwQAAOMIgADgTQAlIdVABKo8CEAAagAIAABS-AABcvgAAMD0AAIq-AABQPQAAtj4AAOg9AAD-vgAAmL0AAHC9AAAUvgAAmD0AAIA7AABwPQAAmL0AADS-AAABPwAAQLwAAFC9AACyPgAAQz8AAMi9AAAQPQAAPD4AAGS-AAAkPgAA2D0AAJ6-AADgvAAAmD0AAFw-AAAxvwAAzj4AAHC9AACivgAA-L0AAKC8AADavgAAgr4AABA9AADYPQAAur4AAEA8AAC4PQAAhj4AAHA9AACSPgAAir4AABS-AAD4vQAAyL0AAJq-AAB8PgAAgr4AAHC9AAC4PQAAfz8AAEC8AAC4vQAAiL0AAJa-AADYvQAAyL0AAFy-IAA4E0AJSHxQASqPAhABGoACAABMvgAAuD0AAIK-AAAjvwAAqL0AAKK-AACCPgAAdL4AACw-AACYPQAAED0AAJg9AACqvgAA-L0AAIi9AABAvAAAXL4AAM4-AACSvgAAPD4AAI4-AACAOwAAdL4AALg9AABUvgAA6D0AAOi9AABQPQAA6D0AAFw-AAAkPgAALD4AALq-AACovQAABL4AAII-AADqPgAAoLwAALK-AAAkvgAAJD4AAAw-AABAvAAAkj4AAJY-AADYPQAAf78AAJg9AABMPgAAJL4AALi9AADIPQAATD4AAEC8AAAEPgAAND4AAIA7AADIvQAAgDsAAEC8AACgvAAAiD0AAEA8AACIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ONKPlyN1hpo","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1514347366660731258"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3184399923"},"18308141745755270355":{"videoId":"18308141745755270355","docid":"34-1-9-Z29C6759D3D9DB66A","description":"In this video, we will learn to find the principal and general solutions to the equation “cos x = sqrt(3)/2”. The link of the video given below contains the proof of the trigonometry identity cos...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4478373/de142d4ab51ab5f4d947dd9ace8bc113/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CBPqSgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDFNcZGQQ9Bg","linkTemplate":"/video/preview/18308141745755270355?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solve cos x = sqrt(3)/2","related_orig_text":"Cos Cal","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Cos Cal\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DFNcZGQQ9Bg\",\"src\":\"serp\",\"rvb\":\"Eq4DChMyMDY5Nzc1MTIzMzMxOTkyNzMxChQxMzU1MDIzMjgwNzk5MzkxMzg3NAoTODE5NDYyNTY4NzQyNTM1MzIxMgoUMTQxNjM4NTU1MTQ0NDkxMjIxODYKFDEyNzUxNDI5OTQ4NzU3NDQwOTQwChM1MTU1MDE1OTQ4NDU5MTU1ODc2ChMzMjgyMDIxNDA4NzczMDUwMzE0ChQxMDE4MjAzMDI3NTk2OTY2OTM1NAoUMTY2NTc2OTcwNjM3NTQ3ODA0OTYKEjg4NDg4OTI1NTQ3MjUzMzQ5NgoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQ3MTIyODY1Mjg0ODQ3NTE3NzQKFDEwOTM4NzQzOTY4MDUzMjMzNjIwChQxMjY4ODQ4NTU4MTYyNDU0MDQ2NwoTNDMwMTMxNzcxOTE3NzEwODM2MAoUMTAzMjQwMTI0NDE0ODA5NTc0ODUKEzE1MTQzNDczNjY2NjA3MzEyNTgKFDE4MzA4MTQxNzQ1NzU1MjcwMzU1ChQxNjE5NDkzMDAzNzA3NjY0NjIzMQoTNDgwMDQwOTA1MDI2MzkzNDU4NhoWChQxODMwODE0MTc0NTc1NTI3MDM1NVoUMTgzMDgxNDE3NDU3NTUyNzAzNTVqhxcSATAYACJEGjAACiloaHlteW14anBycnR1cHRoaFVDMGJMQUNocmNjU0xSUVNqWmsxNDNXZxICABEqEMIPDxoPPxPDAYIEJAGABCsqiwEQARp4gfL8__X-AgD5BwsH-Ab9AhUC_PL1AgIA8QH3AgcB_wD3AAX6BwAAAP0Z_AUDAAAAA_v8-_3-AQAI8_fzAgAAABAG_gj2AAAAC__7-P8BAAAB-fIDA_8AAAD_8_r_AAAABhUG9wD_AAAIG_kAAAAAAPgABgT__wAAIAAtHT3WOzgTQAlITlACKoQCEAAa8AF_Bw0Awvvh_9wp7gDjDwgBmTQq__w7ywDAAhEAsgTcAOke9QD5D-oBxx4HANwP_f8dBs__BL8Y_0bk5P_7zOoBCOHzAAa65AJQ7iP_BfTuANURIP7xx-v_9qb5ASMdvAAM8BX4-AG__-oEuQIR_kcBKhRCACMDG_sEuRQA3hLdAPH56__3APAFCMQOAbXVLAL8pQcBEAYDAs8W8fwi8BIECe0b9Ak1zv0rDggQH-oJB98D6wji__MSLwIWAsYDCvsW9CXx3_D68vb3A_Ik7Ab2v_3Z_Pzc8Qsh7_gP6BP3_CP5_u2qBPzrxfvpDtsJ8-kgAC1c0QA7OBNACUhhUAIqzwcQABrAB23I375z99Q8_gGgPLHfw708qF-9cL4HveOgub0cbYs8XgUjvBR2ET7fDt68Jr6DO1nAVL4EjIw5Ks_XPMuAMz7m0Yi9mGIzPNlDS75DknY7KX-CveC7bb5eipY9FrlMvDYcWz3aMNS8DLTWvL8-rz0X65-7tRUAveiZgzwkVPo8mykjvU8IfDty0kW934pEvCcdWz0giOI75xURPC9R_T2xBWC6n6utvIDeCj3Umf-7hNRtO3cIvb34Em89veMUvXVmLD2mi8M8_3SoPJYa6zuqmbW7HyyEu98Ykr3Zv-E8AZnGO2gIprrnMIQ8QCajvAmuTbxvuVq9cD8FvXf1Cr6gny49XPlRvCcXEz5P1XM9FamwPJ2FmLzeEHS7pQ1lOpdHSLyFwzy9jK1WPOc6KD0XNjk9H4LLu33rgzwsq4s32jbSO5n7j72bRY49Z23JPCBLqj2oFva8XHaIvLg8d7vsUwm9pz2lvAdECL4diBY9f9OFvFvlTj3jKk25D7guPMLW0TwFSIk9mR3YPEVcpTxzuPa95AQ3PJXcPL088cG9Q-nmu3R6Hj429yG7JcusukGUiT1tJS-9O0j8Oky6V71R54C8-TIsvG2kkTxeyHm9H6w1O3CkQr2quBI8yC1BPLXFsTsUWCW8LjnRuzd1-TzVQik94B-Au1G91b2Pcza9XMf6OusB0z2o0Zo8eTjkO7qenT3Te9M7eTWKOoFb9z0IS5a9-F_uOJvc1LzzTSS9_lwXOwcuBzyhwgy9xMmBu5RAtD3gzWS94odqObiFeD3o68O8KzanOCZstL1kQNY9XCYQOAZ2Jj3q24i9As1mOFxUC72cFfG93J51Oel_-b02ujm8lvRFOSbZjzyytg49lxSUORQcg73HJK29GlEVOOpZ9bwReeY8C-zbOMKi4jwGuKC8HrEkuCKaCj3ibAK8kBb_OQBWJ71YuaG82o2hOfVV6LyPiVk91jFBON0VoD3ZwCe9DdB_OdrYdj04mie7S1kOuOhPNj0SLxE8kwUyuOg_NT1kHwQ-Z7EbOOXiubxxaJu95a0INnhE5T2KvHY9jNItuVifzL2mLjQ9g38sOdpCRjz4-lq9KOMZuJUREj1jeLK6G4OBOHQprjxOUHm9rtGoNZJdGT7ZT1C9rMI_uVTF1L3_e0u9GFFXtnzs0zyh8i-9id5qOBkTjL0nUEQ8FfhVuNmE6rwiV7W90kIwuCL_7D01KQU-835buL8WCj2hb8E9_y-ct1IJpL0f-FM9CUMwONjrAr0qozY9mPJtNCAAOBNACUhtUAEqcxAAGmAREAAe9VTeEPw-9iDyCvLM-8Dn59sc__HeAAsP5AkkC8PT2BP_EfEA3KwAAAAxz_lCvgAfZOomGyH39Pn41-w3LH_uCCWLxwcOBPk3HMwhOAToDhEAqxrP9yb76Dn_BSsgAC07jik7OBNACUhvUAIqrwYQDBqgBgAAuEEAANDBAACWQgAA1sIAADRCAABgQQAAnEIAAKBAAAAAQQAAqEEAAABBAABAQAAAsMEAABDBAAC4QQAAoEEAABBBAAAswgAABEIAAJjBAABAQAAACMIAADTCAAAsQgAAYEEAAKBAAAAAQAAAhMIAAOhBAACgwAAAjsIAAKjBAACkwgAAMMEAAHTCAACoQQAAwMAAAL5CAAAEwgAA0EEAAMhBAABsQgAAAEIAAMBAAACaQgAAksIAAJhBAACwQQAAIEIAAABBAABYwgAA2MEAANhBAAAwQQAA4EEAAABCAACswgAAIEIAACBBAACoQgAAyEEAALrCAACowQAAnMIAAAxCAABwwgAADMIAAATCAADQwQAAaMIAAERCAABYQgAAsMIAAEhCAAA8wgAAoMEAAEDCAAAMwgAAQEEAABDBAAD4wQAAQEIAALjBAADoQQAAwMAAABDBAAAYQgAAyEEAAABCAAAQwgAA8MEAANhBAACowQAAQMEAALhBAAAgwgAAEMEAAEBAAABgQgAAZEIAAIjCAACYQQAAgEAAAADCAACYwgAAQEEAAADAAAD4QQAAAEAAAGRCAABIQgAAwEEAAMBAAACAQQAACMIAAEhCAAAgQQAARMIAAILCAACIwQAAGMIAAHDCAADYwQAAIEIAAJjBAACowQAAsEEAADDCAADAwQAAqMEAAPjBAAAEwgAA8EEAAIhCAAAwwQAAHEIAAHBBAAAMQgAAPMIAAKDBAADYQQAAYMEAAOBBAAD4wQAACEIAAIhBAAB0wgAA0MEAANBBAABgwQAAWMIAAABBAADQQQAAgEEAAOhBAABMwgAANMIAAILCAABAwgAAIMEAACTCAACQQQAAQMAAAJzCAADAwAAAAEAAABzCAABkQgAAQMAAAKhBAADYwQAAgD8AABDBAAA4wgAAWMIAAKDAAADgwQAAQMAAAEhCAAAEwgAAKMIAAEDAAACYwQAA2MEAAJRCAABIwgAAeMIAALjCAADQQQAAsEEAANhBAAAYwgAAPEIAAODAAACCQgAAoEEAABjCAAAQQgAAgD8AAJDBIAA4E0AJSHVQASqPAhAAGoACAADYPQAAoLwAADQ-AAAwPQAAgDsAAOg9AADYPQAAEb8AAKi9AACIPQAAcD0AAGS-AACSPgAAVD4AALg9AADKvgAA2j4AAGw-AADoPQAA6j4AAGM_AACYvQAAHL4AABA9AAD4vQAAor4AABw-AAAUvgAAHD4AAMg9AAA0PgAAC78AALg9AAAMvgAAgr4AADS-AACKvgAAQDwAAA-_AABUvgAAMD0AADw-AABAPAAARL4AAEC8AADYvQAApj4AAES-AAD4PQAA6L0AACS-AADoPQAAAz8AAOA8AACqvgAAcD0AAH8_AAC4PQAAiD0AAHy-AAC4vQAAA78AAIA7AACyviAAOBNACUh8UAEqjwIQARqAAgAA6L0AAFw-AACAuwAAN78AAFC9AABwPQAAhj4AAOC8AAAQPQAAzj4AAI4-AAA8PgAAfL4AANi9AACovQAAiD0AADy-AAA5PwAAVL4AALI-AAC4vQAAHL4AANi9AAC4vQAAir4AAJg9AABAPAAAyD0AAEA8AAAQPQAAcD0AAAw-AACmvgAAbL4AABC9AAAMPgAAuD0AABw-AACyvgAAbL4AAJi9AAAQvQAAyL0AADC9AAAkPgAAVD4AAH-_AAC4vQAAgj4AAAS-AACgvAAAND4AADQ-AADgPAAABD4AAFA9AADgPAAAiL0AAAw-AACoPQAADD4AABy-AAAMPgAAiD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DFNcZGQQ9Bg","parent-reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["18308141745755270355"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4175600468"}},"dups":{"2069775123331992731":{"videoId":"2069775123331992731","title":"Trigonometric Functions - Sine, Cosine, Tangent, Cosecant, Secant, Cotangent","cleanTitle":"Trigonometric Functions - Sine, Cosine, Tangent, Cosecant, Secant, Cotangent","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=b5-KY-mVaqo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/b5-KY-mVaqo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDV0lhNEQwelI2aTBBTm9HRlROZTQ2Zw==","name":"MathCelebrity","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MathCelebrity","origUrl":"http://www.youtube.com/@Mathcelebrity","a11yText":"MathCelebrity. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":197,"text":"3:17","a11yText":"Süre 3 dakika 17 saniye","shortText":"3 dk."},"views":{"text":"13,8bin","a11yText":"13,8 bin izleme"},"date":"19 eki 2011","modifyTime":1318982400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/b5-KY-mVaqo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=b5-KY-mVaqo","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":197},"parentClipId":"2069775123331992731","href":"/preview/2069775123331992731?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/2069775123331992731?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13550232807993913874":{"videoId":"13550232807993913874","title":"cosx+\u0007[cos\u0007]2x+\u0007[cos\u0007]3x+...+ \u0007[cos\u0007] nx || Sum of cosine when angles are in AP || Proof by C+iS Met...","cleanTitle":"cosx+cos2x+cos3x+...+ cos nx || Sum of cosine when angles are in AP || Proof by C+iS Method","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fc0Icq-GW3c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fc0Icq-GW3c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU3hHcWt0Q2E1Rk9RTkkzcTNfZEhLZw==","name":"NumberX","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NumberX","origUrl":"http://www.youtube.com/@NumberX","a11yText":"NumberX. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":535,"text":"8:55","a11yText":"Süre 8 dakika 55 saniye","shortText":"8 dk."},"views":{"text":"20bin","a11yText":"20 bin izleme"},"date":"26 nis 2019","modifyTime":1556236800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fc0Icq-GW3c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fc0Icq-GW3c","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":535},"parentClipId":"13550232807993913874","href":"/preview/13550232807993913874?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/13550232807993913874?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8194625687425353212":{"videoId":"8194625687425353212","title":"integral of \u0007[cos\u0007]^6(x)","cleanTitle":"integral of cos^6(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KurVTIcXYj0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KurVTIcXYj0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNVVRZGM4cU9UMUg2N1M3Uk0welBvQQ==","name":"Math by LEO","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+by+LEO","origUrl":"http://www.youtube.com/channel/UC5UQdc8qOT1H67S7RM0zPoA","a11yText":"Math by LEO. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":834,"text":"13:54","a11yText":"Süre 13 dakika 54 saniye","shortText":"13 dk."},"views":{"text":"69bin","a11yText":"69 bin izleme"},"date":"17 mar 2018","modifyTime":1521244800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KurVTIcXYj0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KurVTIcXYj0","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":834},"parentClipId":"8194625687425353212","href":"/preview/8194625687425353212?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/8194625687425353212?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14163855514449122186":{"videoId":"14163855514449122186","title":"Exact Value of \u0007[cos\u0007](19pi/6) - Unit Circle Survival Guide","cleanTitle":"Exact Value of cos(19pi/6) - Unit Circle Survival Guide","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lrgONWG8BQU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lrgONWG8BQU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeHFoZ0dPa1dMWnlZWXAxQmFCUktpdw==","name":"Math Wilderness","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Wilderness","origUrl":"http://www.youtube.com/@mathwilderness","a11yText":"Math Wilderness. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":289,"text":"4:49","a11yText":"Süre 4 dakika 49 saniye","shortText":"4 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"20 şub 2023","modifyTime":1676851200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lrgONWG8BQU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lrgONWG8BQU","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":289},"parentClipId":"14163855514449122186","href":"/preview/14163855514449122186?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/14163855514449122186?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12751429948757440940":{"videoId":"12751429948757440940","title":"\u0007[cos\u0007] 10 \u0007[cos\u0007] 30 \u0007[cos\u0007] 50 \u0007[cos\u0007] 70=3/16 | Trigonometry | class 11","cleanTitle":"cos 10 cos 30 cos 50 cos 70=3/16 | Trigonometry | class 11","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hvTfKs3DABk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hvTfKs3DABk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDa2ttWk1nQXpPdlBRYk12SGM4cFduZw==","name":"Dr Rakesh Kumar Tripathi","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Dr+Rakesh+Kumar+Tripathi","origUrl":"http://www.youtube.com/@DrRakeshKumarTripathi","a11yText":"Dr Rakesh Kumar Tripathi. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":911,"text":"15:11","a11yText":"Süre 15 dakika 11 saniye","shortText":"15 dk."},"views":{"text":"20,3bin","a11yText":"20,3 bin izleme"},"date":"16 nis 2020","modifyTime":1586995200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hvTfKs3DABk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hvTfKs3DABk","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":911},"parentClipId":"12751429948757440940","href":"/preview/12751429948757440940?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/12751429948757440940?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5155015948459155876":{"videoId":"5155015948459155876","title":"Integral of \u0007[cos\u0007]^3(x) dx","cleanTitle":"Integral of cos^3(x) dx","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=p2e6zi30Ld4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/p2e6zi30Ld4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWgyNTEwZTBBSjVCRWNvcHJ0bXdiZw==","name":"MasterWuMathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MasterWuMathematics","origUrl":"http://www.youtube.com/@MasterWuMathematics","a11yText":"MasterWuMathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":240,"text":"4:00","a11yText":"Süre 4 dakika","shortText":"4 dk."},"views":{"text":"82bin","a11yText":"82 bin izleme"},"date":"9 eyl 2017","modifyTime":1504970600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/p2e6zi30Ld4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=p2e6zi30Ld4","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":240},"parentClipId":"5155015948459155876","href":"/preview/5155015948459155876?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/5155015948459155876?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3282021408773050314":{"videoId":"3282021408773050314","title":"Integral of \u0007[cos\u0007](ln(x)) (by parts)","cleanTitle":"Integral of cos(ln(x)) (by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kHTpZFncmU8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kHTpZFncmU8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":266,"text":"4:26","a11yText":"Süre 4 dakika 26 saniye","shortText":"4 dk."},"views":{"text":"102,3bin","a11yText":"102,3 bin izleme"},"date":"17 şub 2016","modifyTime":1455667200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kHTpZFncmU8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kHTpZFncmU8","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":266},"parentClipId":"3282021408773050314","href":"/preview/3282021408773050314?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/3282021408773050314?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10182030275969669354":{"videoId":"10182030275969669354","title":"Integral of \u0007[cos\u0007]^2 x","cleanTitle":"Integral of cos^2 x","host":{"title":"YouTube","href":"http://www.youtube.com/live/21z6gkvhlbQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/21z6gkvhlbQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeVFLWTZJVzdOZmpCVHB3Z2pyZ2FjQQ==","name":"Whiteboard Maths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Whiteboard+Maths","origUrl":"http://www.youtube.com/@WhiteboardMaths","a11yText":"Whiteboard Maths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":170,"text":"2:50","a11yText":"Süre 2 dakika 50 saniye","shortText":"2 dk."},"views":{"text":"1,2milyon","a11yText":"1,2 milyon izleme"},"date":"27 eyl 2017","modifyTime":1506470400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/21z6gkvhlbQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=21z6gkvhlbQ","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":170},"parentClipId":"10182030275969669354","href":"/preview/10182030275969669354?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/10182030275969669354?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16657697063754780496":{"videoId":"16657697063754780496","title":"\u0007[cos\u0007](arcsin(x))","cleanTitle":"cos(arcsin(x))","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=BrbGMpF9HPQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/BrbGMpF9HPQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":180,"text":"3:00","a11yText":"Süre 3 dakika","shortText":"3 dk."},"views":{"text":"108,5bin","a11yText":"108,5 bin izleme"},"date":"12 şub 2017","modifyTime":1486857600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/BrbGMpF9HPQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=BrbGMpF9HPQ","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":180},"parentClipId":"16657697063754780496","href":"/preview/16657697063754780496?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/16657697063754780496?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"884889255472533496":{"videoId":"884889255472533496","title":"\u0007[cos\u0007](-120) | \u0007[cos\u0007] -120 | \u0007[cos\u0007]-120 | cosine of -120 degree | Second Method","cleanTitle":"cos(-120) | cos -120 | cos-120 | cosine of -120 degree | Second Method","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MamjquM2IeM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MamjquM2IeM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":144,"text":"2:24","a11yText":"Süre 2 dakika 24 saniye","shortText":"2 dk."},"views":{"text":"2,2bin","a11yText":"2,2 bin izleme"},"date":"7 kas 2019","modifyTime":1573084800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MamjquM2IeM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MamjquM2IeM","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":144},"parentClipId":"884889255472533496","href":"/preview/884889255472533496?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/884889255472533496?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13213411490911720396":{"videoId":"13213411490911720396","title":"Integral of x*\u0007[cos\u0007](x) (by parts)","cleanTitle":"Integral of x*cos(x) (by parts)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MMwmxfw_hK0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MMwmxfw_hK0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":92,"text":"1:32","a11yText":"Süre 1 dakika 32 saniye","shortText":"1 dk."},"views":{"text":"109,4bin","a11yText":"109,4 bin izleme"},"date":"17 oca 2016","modifyTime":1452988800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MMwmxfw_hK0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MMwmxfw_hK0","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":92},"parentClipId":"13213411490911720396","href":"/preview/13213411490911720396?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/13213411490911720396?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4712286528484751774":{"videoId":"4712286528484751774","title":"Geometry : calculate of \u0007[cos\u0007](pi/7) \u0007[cos\u0007](4pi/7) \u0007[cos\u0007](5pi/7)","cleanTitle":"Geometry : calculate of cos(pi/7) cos(4pi/7) cos(5pi/7)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1aJ9ktestx8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1aJ9ktestx8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDekRfcFUxbGNuOVFXR3ZmUnpGQjNOUQ==","name":"ស្រ៊ុយរ៉ាវីត-Sruy Ravit","isVerified":false,"subscribersCount":0,"url":"/video/search?text=%E1%9E%9F%E1%9F%92%E1%9E%9A%E1%9F%8A%E1%9E%BB%E1%9E%99%E1%9E%9A%E1%9F%89%E1%9E%B6%E1%9E%9C%E1%9E%B8%E1%9E%8F-Sruy+Ravit","origUrl":"http://www.youtube.com/@Mathcambo","a11yText":"ស្រ៊ុយរ៉ាវីត-Sruy Ravit. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":381,"text":"6:21","a11yText":"Süre 6 dakika 21 saniye","shortText":"6 dk."},"views":{"text":"3bin","a11yText":"3 bin izleme"},"date":"12 mayıs 2021","modifyTime":1620820817000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1aJ9ktestx8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1aJ9ktestx8","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":381},"parentClipId":"4712286528484751774","href":"/preview/4712286528484751774?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/4712286528484751774?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10938743968053233620":{"videoId":"10938743968053233620","title":"Graphing y = -3 \u0007[cos\u0007](x)","cleanTitle":"Graphing y = -3 cos(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uWcDK1A_sjs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uWcDK1A_sjs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDVTB5c2VCaUszZjJHNzNOU25URzc4Zw==","name":"SEO Scholars Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=SEO+Scholars+Math","origUrl":"http://www.youtube.com/@SEOmathematics","a11yText":"SEO Scholars Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":243,"text":"4:03","a11yText":"Süre 4 dakika 3 saniye","shortText":"4 dk."},"views":{"text":"14,3bin","a11yText":"14,3 bin izleme"},"date":"3 mayıs 2013","modifyTime":1367539200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uWcDK1A_sjs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uWcDK1A_sjs","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":243},"parentClipId":"10938743968053233620","href":"/preview/10938743968053233620?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/10938743968053233620?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18228844364426687741":{"videoId":"18228844364426687741","title":"2018","cleanTitle":"2018","host":{"title":"VK Video","href":"http://vk.com/video3138160_456239072","playerUri":"\u003ciframe src=\"//vk.com/video_ext.php?hash=38eb14a51aa99071&id=456239072&loop=0&oid=3138160\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"vk","providerName":"vk.com","sourceHost":"vk.com","name":"vk.com","secondPart":{"type":"CHANNEL","isVerified":false,"subscribersCount":0,"a11yText":""},"faviconUrl":"//favicon.yandex.net/favicon/v2/https%3A%2F%2Fvk.com%2Fvideo?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":109,"text":"1:49","a11yText":"Süre 1 dakika 49 saniye","shortText":"1 dk."},"date":"24 nis 2018","modifyTime":1524599743000,"isExternal":false,"player":{"embedUrl":"https://vk.com/video_ext.php?autoplay=1&hash=38eb14a51aa99071&id=456239072&loop=0&oid=3138160","playerId":"vk","videoUrl":"http://vk.com/video3138160_456239072","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":109},"parentClipId":"12688485581624540467","href":"/preview/18228844364426687741?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/18228844364426687741?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12688485581624540467":{"videoId":"12688485581624540467","title":"\u0007[cos\u0007] 7pi/12 find the exact value of the trig function","cleanTitle":"cos 7pi/12 find the exact value of the trig function","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kgpRj7Z-oiQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kgpRj7Z-oiQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR1E5Yk1MSTlTMElxWmVEdVQxRUhlZw==","name":"MSolved Tutoring","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MSolved+Tutoring","origUrl":"http://www.youtube.com/@mathematicssolved","a11yText":"MSolved Tutoring. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":105,"text":"1:45","a11yText":"Süre 1 dakika 45 saniye","shortText":"1 dk."},"views":{"text":"87,7bin","a11yText":"87,7 bin izleme"},"date":"5 şub 2013","modifyTime":1360022400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kgpRj7Z-oiQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kgpRj7Z-oiQ","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":105},"parentClipId":"12688485581624540467","href":"/preview/12688485581624540467?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/12688485581624540467?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4301317719177108360":{"videoId":"4301317719177108360","title":"Solve \u0007[cos\u0007]^2x+cosx=0 Using Algebra!!","cleanTitle":"Solve cos^2x+cosx=0 Using Algebra!!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_VyBiQtvTSQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_VyBiQtvTSQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcDZVa0lIZTY4WXVOdVZzNUo3djhudw==","name":"FIRE By 40","isVerified":false,"subscribersCount":0,"url":"/video/search?text=FIRE+By+40","origUrl":"http://www.youtube.com/@SEAFireby40","a11yText":"FIRE By 40. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":277,"text":"4:37","a11yText":"Süre 4 dakika 37 saniye","shortText":"4 dk."},"views":{"text":"7,7bin","a11yText":"7,7 bin izleme"},"date":"25 eki 2018","modifyTime":1540425600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_VyBiQtvTSQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_VyBiQtvTSQ","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":277},"parentClipId":"4301317719177108360","href":"/preview/4301317719177108360?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/4301317719177108360?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10324012441480957485":{"videoId":"10324012441480957485","title":"3 Steps to Sketch - Graph y=\u0007[cos\u0007](x/2)","cleanTitle":"3 Steps to Sketch - Graph y=cos(x/2)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ffLYwgZctDc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ffLYwgZctDc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeHFoZ0dPa1dMWnlZWXAxQmFCUktpdw==","name":"Math Wilderness","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Wilderness","origUrl":"http://www.youtube.com/@mathwilderness","a11yText":"Math Wilderness. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":420,"text":"7:00","a11yText":"Süre 7 dakika","shortText":"7 dk."},"views":{"text":"5bin","a11yText":"5 bin izleme"},"date":"19 eki 2022","modifyTime":1666137600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ffLYwgZctDc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ffLYwgZctDc","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":420},"parentClipId":"10324012441480957485","href":"/preview/10324012441480957485?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/10324012441480957485?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1514347366660731258":{"videoId":"1514347366660731258","title":"\u0007[cos\u0007](3x) in terms of \u0007[cos\u0007](x)","cleanTitle":"cos(3x) in terms of cos(x)","host":{"title":"YouTube","href":"http://www.youtube.com/v/ONKPlyN1hpo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ONKPlyN1hpo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":285,"text":"4:45","a11yText":"Süre 4 dakika 45 saniye","shortText":"4 dk."},"views":{"text":"172bin","a11yText":"172 bin izleme"},"date":"21 nis 2017","modifyTime":1492732800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ONKPlyN1hpo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ONKPlyN1hpo","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":285},"parentClipId":"1514347366660731258","href":"/preview/1514347366660731258?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/1514347366660731258?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18308141745755270355":{"videoId":"18308141745755270355","title":"Solve \u0007[cos\u0007] x = sqrt(3)/2","cleanTitle":"Solve cos x = sqrt(3)/2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DFNcZGQQ9Bg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DFNcZGQQ9Bg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":195,"text":"3:15","a11yText":"Süre 3 dakika 15 saniye","shortText":"3 dk."},"views":{"text":"18,8bin","a11yText":"18,8 bin izleme"},"date":"22 kas 2020","modifyTime":1606003200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DFNcZGQQ9Bg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DFNcZGQQ9Bg","reqid":"1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL","duration":195},"parentClipId":"18308141745755270355","href":"/preview/18308141745755270355?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","rawHref":"/video/preview/18308141745755270355?parent-reqid=1769232057331530-2821363123459493525-balancer-l7leveler-kubr-yp-sas-262-BAL&text=Cos+Cal","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"8213631234594935257262","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Cos Cal","queryUriEscaped":"Cos%20Cal","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}