{"pages":{"search":{"query":"CosX","originalQuery":"CosX","serpid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","parentReqid":"","serpItems":[{"id":"5162845663731605537-0-0","type":"videoSnippet","props":{"videoId":"5162845663731605537"},"curPage":0},{"id":"8407237142884457935-0-1","type":"videoSnippet","props":{"videoId":"8407237142884457935"},"curPage":0},{"id":"17638307817965676614-0-2","type":"videoSnippet","props":{"videoId":"17638307817965676614"},"curPage":0},{"id":"10755876190564654427-0-3","type":"videoSnippet","props":{"videoId":"10755876190564654427"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dENvc1gK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","ui":"desktop","yuid":"7516640691769639727"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"102215989524557667-0-5","type":"videoSnippet","props":{"videoId":"102215989524557667"},"curPage":0},{"id":"13717768663838387873-0-6","type":"videoSnippet","props":{"videoId":"13717768663838387873"},"curPage":0},{"id":"17032497513126820464-0-7","type":"videoSnippet","props":{"videoId":"17032497513126820464"},"curPage":0},{"id":"17567248041656172890-0-8","type":"videoSnippet","props":{"videoId":"17567248041656172890"},"curPage":0},{"id":"17278115220973559945-0-9","type":"videoSnippet","props":{"videoId":"17278115220973559945"},"curPage":0},{"id":"6031551655068242742-0-10","type":"videoSnippet","props":{"videoId":"6031551655068242742"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dENvc1gK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","ui":"desktop","yuid":"7516640691769639727"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"13550232807993913874-0-12","type":"videoSnippet","props":{"videoId":"13550232807993913874"},"curPage":0},{"id":"12166667574014240005-0-13","type":"videoSnippet","props":{"videoId":"12166667574014240005"},"curPage":0},{"id":"10742302042762857256-0-14","type":"videoSnippet","props":{"videoId":"10742302042762857256"},"curPage":0},{"id":"1933153835296213671-0-15","type":"videoSnippet","props":{"videoId":"1933153835296213671"},"curPage":0},{"id":"6350868089202840205-0-16","type":"videoSnippet","props":{"videoId":"6350868089202840205"},"curPage":0},{"id":"7916282341203107484-0-17","type":"videoSnippet","props":{"videoId":"7916282341203107484"},"curPage":0},{"id":"10717191263654253003-0-18","type":"videoSnippet","props":{"videoId":"10717191263654253003"},"curPage":0},{"id":"10450009093822888055-0-19","type":"videoSnippet","props":{"videoId":"10450009093822888055"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dENvc1gK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","ui":"desktop","yuid":"7516640691769639727"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCosX"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4274904837116794627169","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466868,0,94;1336776,0,89;284409,0,89;151171,0,95;1281084,0,22;715045,0,15;287509,0,60;1447467,0,28;1231503,0,30;1473596,0,7;1466396,0,82;912287,0,51"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DCosX","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=CosX","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=CosX","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"CosX: Yandex'te 1 bin video bulundu","description":"Результаты поиска по запросу \"CosX\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"CosX — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y25faeb38126a6bad0b6ca8ea180850a0","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1336776,284409,151171,1281084,715045,287509,1447467,1231503,1473596,1466396,912287","queryText":"CosX","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7516640691769639727","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1475824,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769639834","tz":"America/Louisville","to_iso":"2026-01-28T17:37:14-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,1336776,284409,151171,1281084,715045,287509,1447467,1231503,1473596,1466396,912287","queryText":"CosX","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"7516640691769639727","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4274904837116794627169","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":167,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"7516640691769639727","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1757.0__1e42d45c824ef14ef6767326055fb713b0c3a145","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"5162845663731605537":{"videoId":"5162845663731605537","docid":"34-3-11-Z347277E6DAC608A7","description":"The sine and cosine functions, sin(x) and cos(x), are defined as the coordinates of a point moving around the circumference of a unit circle. In this video we learn how the values of sinx and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4528844/6db18edba10a8a76974c9f0fd21f75c4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/WfRKAwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzUgic_m8DjQ","linkTemplate":"/video/preview/5162845663731605537?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Defining cos(x) and sin(x) using a unit circle","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zUgic_m8DjQ\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFQoTNTE2Mjg0NTY2MzczMTYwNTUzN1oTNTE2Mjg0NTY2MzczMTYwNTUzN2qIFxIBMBgAIkUaMQAKKmhoZG9ndXhpYnhuZmdmcWJoaFVDeE8xZmNyeDVBQnQ3aEtRYV9teUNnQRICABIqEMIPDxoPPxPKBIIEJAGABCsqiwEQARp4gfL8__X-AgAE9RAE-wj8Ag_9BgL3AAAA8vv9_AcB_wD3AAX6BwAAAPoQBP4GAAAAAfL1-AD9AQAQAff8BAAAABkC_QD3AAAADgP4_v4BAAD_AfP9Av8AAPr89wD_AAAAAA358QAAAAAFA_D8AAAAAAD6_PkAAAAAIAAtHT3WOzgTQAlITlACKoQCEAAa8AF_zzr94t3aArcHAACm-qsAsGDoAftFwwDaLL0BqePUAd4RW__OHh__EroCAL4UNAAW0r4A2vYNAGupDP8S1e8AzscyAfnh4AFGJu___gfg_gYiHv0F1BEA9e_BAAUvzf0f_xr-Nu7eARod8wRNETv_EwseBv8C9wbU2wAAyAoaBPT50gDpShsCFezz-NbxPwoM5RwGKA3t-en0AQQFFR8FDgAMB_I35APbAv8IEDUGC_75-QXvm9YNC9Qa-_Ez5f_94wgJ6sgV7cKi8PgHzBfx2xfrC0ER7vwRtRPx7-_5_BJB-gvU1Ar1JtzuEA_m8_IgAC28p946OBNACUhhUAIqzwcQABrABx-8zr6xEpg7Ru3AO-YQZ70WqEC9LB-DvWpNc72pCME8tnIFvWeaMD4gkVu8Q-StOeVk4r2Cnoe98j_evEC9OT7iG6o5DKXYuQ4xDr5NBpE8R-hCvNFch72PPl47oG7iugj3hL09uze9xugQO6Di2D1hPJ68xU-IvNgnBT00g8g93XzjvNxqGTr1EVi9E3xYvWU7G7xX9F29n9pjOr-2vrz1H6M82YK1OjWYBj7Acuc7HHyhvBh9Jb5Joay8Ci9BvC_i1jzO3Kg9MMehPA2r-L069Ew9YVqKvOv2s73WviU8VdfGuw97hj3suZE9OaErvYKiQ7x1cqu90goAO6jQb73-NBo6YJmvu3CXnT0fExk-eq05Oad3Ib5Rti09r9OjOiveyDx8l_e8pMNDPA5O5D1a-gu9K3ZqO0F-dj3yHzk7nQgsvHvsiL1Ga1s9aF1EO1hwlL1oYnU9ouAUu8qExDzjAuu8e8RDPNJP_ju4E8k5-JnpPKVDTDwgGpc9hRzjO8JZgDxZi5o9DEYbPAUjpT3WAju-SeWaOr_HKjxdl6u8GTJovOYpxjzjB908CNh9PLN1Vb0gozK9O_dkO5wcWb2O1fu7-dNrPEfm0bzukIe75VSiOVACpr16H0I9BMFKuy19o73ZhyY9XqmAu2ynd721qgC9FHD4OzfqN715sns9YDbouvyFIz1sV408D2IIO61cJbqHMQk9GHKVu-WaIj3bsPk7AFSzO3khHb1Ut2m8l87BOk5_Fj2r54S9crRquTy98j1KyFG9V8GOOUTskr2Zrxy9ZM_KuF-tf70u4rA9CQI6OZBt9Dyy6Ee9bevAucO8B76pP2y92ntlN7p2mDyKKYc88FTZurYaDb0NN6A8obNPusC4r7zl_rg7y8ECOENxh73LvBe8AyGfuNXXqTqfGx89n46gt7KjzDykbDY8j1bsNw9SJrxg7s26QlgnOKGlRj1lOzo98H-_OBr4hr3PWEq9LnLFt4ro9z0_kKw9gu5mOImsWjv2fy4-vDsVuSiEST3wxOy9T6dhOJqKfj2G47m80gXUNkx1XDxEfTE56D-Ktmh1Mr5kpCg9F8pMt7zWGDwxs488ukW1OPinFD4D-k49H_TtNqjpDr0Z7x09Du6JOP7PhjzbrMW9dU4uODnFxL1ntya-1kdyOAyEo70ZPGw9ifoFuKOanT3b3m694HUNOFyooT19xJS9uKGWN20xKb1YVQ8-XgrfuIfVST1AL_w9t6oHua1t6r0UO788b9LjNzMOf71p7a660zyfNyAAOBNACUhtUAEqcxAAGmD98wAcBRXN_BtY8fvJqB-_3Pi02MEW__LV_wLw5PXQDczKFQz_DdQUA5sAAAA6FfInzgAjf7fQBir7FR-1xac8EHMA6PDatzD91OokIwHiHAclEFsArgLAEhrL6TQhJl0gAC0FyRM7OBNACUhvUAIqrwYQDBqgBgAADEIAAMjBAADQQQAAmsIAACDBAAAAAAAAfEIAALhBAADgQQAAAEIAAIC_AADWQgAAmMEAADBCAABwQgAAMEEAAGDBAAAQwgAAFEIAABjCAAAYQgAAMEEAAODAAAC4wQAAgD8AAMDAAABcQgAAPEIAAAAAAACgQgAACMIAAJhCAACowgAAIEEAAFTCAAC4wQAAOEIAAABCAAAkQgAAAEIAAFBCAAAkQgAAgMAAACBBAADYQQAALMIAABhCAACwQQAAAMAAAKDAAABswgAA4EAAAEBAAAA0wgAAMMEAAFRCAAAkwgAA2EEAAIRCAADwQQAAAMEAALjBAAAAwgAAIMEAAKDAAACmwgAAgL8AAETCAADAQAAAHMIAALhCAABAQAAAhMIAAEBBAACAPwAAyEEAALDBAAC4wQAASEIAAIA_AACAwgAAJEIAAOBAAAAMwgAA6EEAAHDBAACQQgAAbMIAAABAAADgQAAAMMEAADxCAACwwQAAkMEAAHBCAACAwgAAyEEAABjCAAAkQgAApEIAAKjCAAAcwgAAUEEAACDBAAAAQgAAqEEAAPhBAADgwQAAYEEAAJBCAADwQQAAwEAAAGTCAAD4QQAAyMEAAFBBAACYwQAAOEIAAGTCAACQwgAAssIAAIjCAABQQgAAkMEAAIA_AADgQAAAmEEAADTCAABYwgAAlkIAACTCAACwwQAADMIAAKBBAAAgQQAAbEIAAABBAABQQQAAYMIAAABBAACAwAAAYEEAAKhBAABQwgAANEIAAJ5CAAAAQQAAEEIAAHBBAADYwQAAIMIAAEDBAACAQQAAcEIAALBBAAAAQQAAaMIAAODAAACWwgAAkMEAAADBAAA8QgAAuMEAAMDAAAA0QgAATEIAAAjCAABwQQAAhEIAAJDBAABgQgAAUEEAABDBAACCwgAAmMEAABzCAAAwQQAAuMEAADzCAADIwQAAQEAAACTCAABgwQAAWEIAAIRCAAAIwgAAmsIAAMDAAABwQQAALEIAACRCAACMQgAAsEEAAIDAAAAwwgAAoMAAABBBAADYwQAAXEIAACjCIAA4E0AJSHVQASqPAhAAGoACAACoPQAAyL0AAMo-AAAEvgAA4LwAAJo-AACSPgAACb8AACS-AACYvQAAyL0AADA9AABQvQAAkj4AADy-AAAwvQAAbD4AADA9AAAkPgAAOz8AAGM_AACovQAAoDwAAHw-AAC-vgAAmD0AAGw-AABMvgAAVD4AAKI-AACYPQAAK78AAPg9AABMPgAAND4AALi9AABwvQAAE78AAN6-AAAwPQAAqD0AAK6-AAA8PgAAiL0AAHA9AAA0PgAAhj4AAEy-AACYvQAA2r4AANi9AACIPQAARD4AAJ4-AAAsvgAA4DwAAH8_AAAQPQAAXL4AAKC8AADgvAAAQLwAAKC8AADiviAAOBNACUh8UAEqjwIQARqAAgAAqL0AAIA7AACIvQAAE78AAOC8AAC4PQAAPD4AAKi9AACovQAAHD4AAIi9AACAOwAAMD0AAKi9AACgvAAAgDsAAMi9AAAjPwAAqL0AAMY-AABQPQAAmL0AALi9AADovQAAML0AAOi9AACAOwAAmL0AAIi9AAA0PgAAED0AACQ-AAC-vgAA4LwAAIC7AABQvQAABD4AAOC8AADCvgAABL4AABy-AAC4PQAAcD0AAMg9AADoPQAAmD0AAH-_AACovQAAcD0AADy-AAAQPQAAiD0AADA9AAAEPgAA4DwAALg9AADgPAAAiL0AAKA8AAA8PgAAyD0AAIi9AABwPQAAfL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zUgic_m8DjQ","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5162845663731605537"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1198741596"},"8407237142884457935":{"videoId":"8407237142884457935","docid":"34-7-1-Z1D11455528CC39BF","description":"Train your logical thinking skills and learn how to deal with complex numbers by trying out Brilliant! = D https://brilliant.org/FlammableMaths Subscribe to @RockHardWoodDaddy to see your dad...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/997038/237effc742448b077bfb43a5aa70ecf8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6ZVwRAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNHHT79MQto4","linkTemplate":"/video/preview/8407237142884457935?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(x)=x","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NHHT79MQto4\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFQoTODQwNzIzNzE0Mjg4NDQ1NzkzNVoTODQwNzIzNzE0Mjg4NDQ1NzkzNWqIFxIBMBgAIkUaMQAKKmhocnBieWJoZmJieHpndWJoaFVDdEFJczFWQ1FyeW1sQW53M21Hb25odxICABIqEMIPDxoPPxOlCIIEJAGABCsqiwEQARp4gfUEAPj8BQD9AgUC-gX-Afv8BP36_f0A_AX6_QYE_gDtBv7-A_8AAPEU_v8EAAAA_QIB9wL-AAAF9wz3BAAAAA38_Ab7AAAAC_r4Af8BAAD2__QCA_8AAAEB9gMAAAAA-Q4E8QAAAAAFB_7-AAAAAPwB-fsAAAAAIAAtK-TeOzgTQAlITlACKoQCEAAa8AF_DC8E3NrrANUC7QD-H_YBtPgh_08cBADjAgcA0xLeAPYYBwDs_gAADg7kAMUGAQDh18kB8tntAATyC_8e8wYA9RkEAS3sEAAt2A4AJewH_8AJHP_29gkAA-7hADsv9v8G2hf_B_zgAQQm3gIK9hv_GicOBAQA5wHz7AoB4_z9AsYP2fsBDfAI3u0H-egMDwYW-_kAAAL7-egCBQoE2O0FOO4TAAQs-wEH7-wH3fL4BuTv8gT_BfoJ_R4WCQkN7v_r8xT64dUI-QD6_AP3FQTy6Q7zBwfX-QEK7wn74PsI-fLm8PjsFPQE_gDsBvPq9f4gAC3RjTM7OBNACUhhUAIqzwcQABrAB7kcA7-hv6u7mnP4u6hUybyY4BQ9J9xrvTy1xDyuJjS90xRBvQ_S8z2Q7iy9oATRPDhpir7RDD087a59PMVVhT5UMG-9m38qvFkMaL0KYoU9UJqXvBH8P75_YHg9EEQSvD17wz39EEA91Q1vvKDi2D1hPJ68xU-IvPw2hLyJeRi76B3AO9iofT3XMJO9vBk0Ojf0e71cYVE73Sx7uwtVGz3kn_y7ONTWuwp91TxA_Bk8LpjTPKYQg70fACc9Mxv_vGn-KD6LXdM7RwsrPM_ZAr0JKwC7BrdaPN8JDL3PKVA5to4evGNJNL3kaA68L426vII0aD0pVce7gUj1PA1TK75csqY7Yro1vKcOzTxHFlW7y56EPNzvhb3dCfY9yJ3ruqQDqzvGeQ496UdDvFh-Lz109T48O3hcPMWDdz09Jhe9UQfDvOy_nj25dZI8GuFIPFcYDL1XGwg9W-RDvLnyI7yieeU8GqlSvCz5k71iYEI8Dy-jvN30Qjv9BRE9Y0WqO6WFS7zBN028r-EzPN9mxj05tfO9hx8YPHX4Vb3B_iu9Fyp_vNCg_DxQidA8inEAvIvLnD2kF3q9X3hKvI0LlTlFMLm9iPbOOzX6hz0O_a6845mju9hh8TtOmBC9RzfGOw-nAr0B8US9BQYgvLGW8TwxPnE88sIKPDHQVb2LmU695vj-OQwDFj19CCq8-tRSuzVsuj0uYaM8e1LJOEHFhz2gScy9eFiwO0DBJb0p1pS9iD-XOd1rF71KqgC9Hkw9uXkBqz0iwbe7KPU2Ob2iwDwEv5W7uXD6uRvqob2yW5U9LNmZOAULr7spbfu8GxXfOKaX-L3zq6m9qjR1OAaWyDwq5Co95ZIRua_TA70IFFq7bVkdOQyJxTz9-py9ksM9uapO4rwTimM984WvOBIRn7ufALo9SyoSucpsgL04LTi9k5KZOI0OpzsFQ6m70DgxuZ6WPz1U8Io85upJOJ3ipzsjSVW9S56AuH5yVL2TcSw9JpqxuAAjAz0O29Y9Pk-MN5M_cz1DuLg6NBAHuKAV-D3izYW9vFWfuOGEqD1zlfi8oEJ1uJx6c73XS9M9n42XOOFeOT3rGs09skgcOZBE1LzTZjw9vLnut4EVgb1QQh-9h4kdOB-fAD6k5JC9Feg6uQe2Srz_WAw8o1GiNm3q2TuwDUu8PZZGN4bNi70IsOg9VLOWON7oXj145YS9QVK0uMr0cD0i4Ss-8cuKOAYsWb07Uj-7eDwmuFXXxr27mVG8-Zpbt9EQlL3oGEu9RmgGuCAAOBNACUhtUAEqcxAAGmAgCwARyB3oyCRC9xPM8v3YAhXw6wEIAPjyABMFzfokCPDlCAz_5tcR4LgAAAAc-vIy7gAEV-Ea6zQI1fvomesKG3_pAhW9-h3uFfQh7Of5_SPhFyMAyCjaLjAB-ics-EsgAC33ED87OBNACUhvUAIqrwYQDBqgBgAAAEIAAOjBAACqQgAAHMIAABxCAAAgwQAAwEEAABDCAACEwgAAgMEAAJBBAACAQQAAAEEAAHzCAAAQwQAA0EEAAABAAADgQAAAMEIAAFzCAADowQAAJEIAAKDAAADAQAAALMIAAEDAAADwwQAAJMIAAERCAAAkwgAAJMIAAChCAACAvwAAQMEAAIhBAADgQQAAEEEAADRCAABAQgAAOEIAAGBBAABAQQAAZEIAADzCAAAQwQAAyMEAADRCAABAwAAApEIAAIBAAACgwQAAsMEAAGTCAAA4wgAAQEEAAABBAADwwQAAAMAAAABBAABwQQAAEMEAAKDBAADAQAAAoMEAACDBAAAAwwAAAEAAAADCAACAwAAA4MEAAKBCAACCQgAAMMIAAHRCAABIQgAAgL8AAHjCAACCQgAAMMEAAFBBAAAQwQAAhEIAAJjBAACIQQAAsEEAAAxCAAAMQgAAeEIAAGxCAAD4wQAAtsIAAEhCAACAvwAA8MEAAGRCAAAMwgAAHMIAAOBBAABIQgAAwEEAABjCAAAkQgAAgD8AADjCAADYwQAAMEEAAGBBAACMQgAAgEAAAEhCAADGQgAAgL8AAHDBAAAsQgAA2MEAAOhBAACQQQAA2MEAAJJCAACgwAAAyMEAAM7CAABgwQAAkMEAAHzCAAAQwgAAisIAAAxCAAAwwgAASMIAAIjBAAAMQgAAJMIAAGxCAABAwgAAREIAABhCAAAcwgAAYEEAAFDCAADIwQAAUEEAAEBAAAAwwQAAhEIAABRCAABUwgAAhkIAANDBAAAgQQAAgD8AABDCAABAwQAAEMIAAIA_AAAAwAAAqEEAAEBAAADwwQAAAMIAAPjBAAAYwgAAiMEAAEjCAADwwQAAKEIAABDCAADwQQAAUEEAAIDAAAAgQQAAAAAAAIBBAABEwgAAgsIAADRCAACQwQAA0MEAADDBAACUQgAAtMIAAABAAACgQQAAlsIAAIA_AAAQwgAA4MAAAFDBAACAwAAAqkIAAAAAAAA0wgAA2EIAADBCAAAMwgAAREIAAFBBAACAvwAAwMAAAJjBIAA4E0AJSHVQASqPAhAAGoACAAD4PQAAbL4AAJI-AABQvQAAVL4AAJo-AABwvQAAI78AABC9AACgvAAAfD4AAAS-AACIPQAAdD4AAIa-AAB0vgAAvj4AAJg9AACYPQAAqj4AAHM_AABwPQAA4LwAAI4-AAD4vQAAmL0AAIg9AAAsvgAA4DwAAPg9AAAsPgAAjr4AABC9AAAQPQAAHL4AADS-AADIPQAAnr4AAJK-AADgvAAAQDwAAHS-AADIPQAA-L0AAKg9AABQPQAALD4AABy-AAA0vgAAir4AALg9AAC4PQAAoj4AADA9AAAEvgAA4LwAAH8_AAAQPQAAoDwAABA9AADIPQAAQLwAAOC8AACiviAAOBNACUh8UAEqjwIQARqAAgAAMD0AAAQ-AAAMvgAAMb8AADS-AACAuwAAvj4AAPi9AADoPQAAqj4AAOg9AABQvQAAML0AAKi9AAAwvQAAML0AAHS-AAALPwAApr4AAIo-AAAsPgAAuL0AALi9AABAvAAAmL0AAOg9AAAEvgAAuD0AAEC8AADoPQAAuD0AAHA9AACCvgAANL4AALi9AABQPQAArj4AAOA8AACuvgAADL4AAAQ-AAD4PQAAcD0AANg9AAA8PgAAMD0AAH-_AABsPgAAHD4AABS-AAC4vQAAyD0AACw-AABAPAAA-D0AAAw-AABAvAAABL4AABA9AACAOwAA6D0AAKA8AACoPQAAED0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=NHHT79MQto4","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8407237142884457935"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1239065193"},"17638307817965676614":{"videoId":"17638307817965676614","docid":"34-2-2-Z7FD09984289B146E","description":"Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-c... Using the fact that the derivative of sin(x) is cos(x), we...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/748975/49e308d71eb1cb1c3b0e9187b5a4b2c7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-A0YaQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPszFmdiMUcs","linkTemplate":"/video/preview/17638307817965676614?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof of the derivative of cos(x) | Derivative rules | AP Calculus AB | Khan Academy","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PszFmdiMUcs\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTc2MzgzMDc4MTc5NjU2NzY2MTRaFDE3NjM4MzA3ODE3OTY1Njc2NjE0aocXEgEwGAAiRBowAAopaGhkb3Zpd3hzZXZmcXJnaGhVQzRhLUdiZHc3dk9hY2NIbUZvNDBiOWcSAgARKhDCDw8aDz8TxQGCBCQBgAQrKosBEAEaeIECBQX3BvkA_AANEPcK-wIE-A4B-P79AOj3-_IC_wEA9QX18_cAAAACCw_7BQAAAP_s9An9_QAAAvb_9gQAAAAkDvz4-wAAAAEG7Q3_AQAA-QDvEAT_AAAODxD2AAAAAPsa-_gA_wAA-gD2-wAAAAAIAvAOAAAAACAALfqwwDs4E0AJSE5QAiqEAhAAGvABWhte-NHz4AKBDxQAr_vkAbw_7wEYHsH_rLPOBQwBvP-9vhUB-ET3_wUD5v-qKFr-IcfW_wWzHf8-oRAC2vXFAAr-FgHj3vkBLRpAA9zsFgAsU-b-Hvv_APXvvwAANvb-DD0Q_Q80xwHvHcsCZfg6ABTk1QMmzfUD7AoSAv797QugGcD4EUXwA-7bJgDkHk8BGv4WC95X-v_kGc_88SYv_QK7Ev47Scb_Efn8-TIFAf6t-QQBCPHn-fUZBfvuyu4T7fH-8BHpB_nzpQ_8BcEF-cgtAQt6Cu8HJ-z3EhUa-iTkBOzuINjx7_PW8QKp3_35IAAtGM_YOjgTQAlIYVACKs8HEAAawAdxIMy-1D0cvQYvVbwlm0Y9hHZDt0C2Fr2ht9G48KdGPEsoM7zNPs89SmervVdnqzx5Xf-9BW5dvKdJADxB1eg9hJUUvRs237vv5U6-EKhDPRiswLu-77m91o9NPUEWvTyVmce9otkQvUGbHDyIZXM9pWqbvXACmToukna9iaZCPRvuyLsoEzI9sF8rvbGnPb3Ohww9JTI9vMyd0ztWThY9z9cxPYVPBLz9gLw95YkWPYm3Cb3WjiK-Qx12vV6sHrwJeZM9DdbJPPyOYTz0YQe9ww2IvS6dhTzDJlc8j_t2PeeibDm_B6Q9puJwPShrALpQsQC9Z-jpvKrxEr0Ktcu8ZjftuwW9nDzshu09jPeDPXJbkTvqNJy8slywPct6lrxAK3a7qWP6vNl6BDzNHug9RQKXvGjJyDwoAus5FgarPRAWX7yBPbu9H-n8O-ECljsqhB89aY_2O3HIhrxHYji8bRuGPCcylDurJqM8VFATvCe43LsRKrI9GiAoO3pQErtX2li9lHhPvSye2TublQi9CHYMvs2l4btXezi9L4f9vSqgZjpjL589Jv-jPbhiNbxO8M09ZjPnvf9XADynPgA-t6ZvvZJenLnjgIe9fqrqvbP7ITzqWhu-aHn-PSs4MTiQ42I9lfg3vEjGBbzGUE48WvOjvSHTrDl7LS29R2OzvfC-iDkanI095McOPZ6R77svU749OPktPscVXzpND289T0UlvaooIzg0Dpq7jcDOPM0niznTvvm9UwYuvcvkWzkBo-s9EttdPDPuhzgmA1s9aXFGvPKEczsKv0-9Jh7QPYAjObnj4ui8FViLvXpLsjf8s1W9dz2yvYUbMLhrUpA9gR-KvdeAh7mH7Z09j4GGvMDQFrg-Qp296KpUvZaHTrmphGe9vio8vaYrargbOuw8Cg-aPF-CA7kLQEg8ZK-HPe3mETZWlJy96-uPvZXmxjmeAzC9D_IqPr3F37jCw488ERnWvIUEobftREk9W-z2PON8ZziSzKo8IlUEPgUNHzcwLhG8qJtaPWNm-ricDkm9yPUKvYCr8bct-Wm88grEPJIvcjdkUV29_K8OPWUPLTmaEv-8vbImvRW6x7fIXzo-3JXCPM2vSzgXiYQ9R31IPMw1AbgK74c9IdpYPRVA07jevII8tK8cvvyHZbiixxm9FMhRPbrUfDcHrZy9xoQqOo9TtjfZhOq8Ile1vdJCMLhVGKY9bQvFPYPH5zhZlnk8xQxjPRu4jritbeq9FDu_PG_S4zdf0ti8Sam6vJHqC7cgADgTQAlIbVABKnMQABpgRekAJBkK9QvMK9Xw49fx3sKwx_TNHf80zf_hQOEezfzB0gnzACz19_ecAAAADgbcNyQAAn_I9xUd7wUq_sSz_P9R6_1NkffrNssIMhj39ewvE1UsAL0mtTr5kNhBIk8XIAAtorQSOzgTQAlIb1ACKq8GEAwaoAYAAKBAAACAwAAA4MAAAFDBAACIwQAABEIAAPpCAACgQAAAGMIAANjBAAAEQgAAgEAAAMDCAADgwAAAZEIAACDBAAAswgAADMIAACBBAABAwQAAkEEAAIjBAACAwAAAjsIAAPBBAAAgQQAAgMAAAOBAAACgQAAAAMEAAEDCAAAsQgAAdMIAAIBBAAC4wgAAmMEAABBCAADAQQAAAMIAAIBAAAAoQgAASEIAACxCAABgwQAAOEIAABjCAACQwQAAcMEAAPBBAACgQQAALMIAAIDBAAAAwAAAUMIAACRCAADgQAAA1MIAAEDAAABcQgAAwEEAAJBBAACwwgAAZMIAAFzCAACAQAAAwMIAAGBBAAAYwgAA6MEAACjCAAC0QgAABEIAAHTCAAAYQgAAwEAAABBBAACQwQAAKEIAADBCAACUQgAAhMIAAERCAACYwQAAAAAAAGRCAADoQQAAHEIAANhBAABAwAAAuMEAACBBAAA4QgAAjMIAABBBAACuQgAAzMIAAOBBAABQwgAAZEIAAEhCAACYwgAA2MEAACDBAAAIQgAAXMIAAERCAACgQAAAkEEAAABBAADoQQAAUEIAABhCAADgwQAAFEIAADDBAAAAQAAAuEEAAAAAAADIwQAAkMEAAIC_AADgwQAAwEAAABjCAAC4wQAADEIAAEBCAAAQQQAAYMIAACBCAADgwAAAyMEAADjCAADIQQAAQMAAAPhBAABwQQAAkMEAAKzCAAA4wgAA8MEAAADCAADAQQAAUMEAABBBAAAwQQAAuMEAABhCAACgwAAA8EEAAATCAAAkQgAAsEIAAMDAAABYQgAAiMEAAHDBAAAowgAAFMIAANhBAABQwgAADEIAABRCAADowQAAkEEAAADAAAAQwQAA4EEAADxCAACgwQAAmMEAAJBBAACAvwAAYMIAAIbCAADAwAAAgEAAAEjCAABAwQAA-EEAABDCAAAYwgAA-MEAAAjCAACOQgAAAEAAAMDCAABgwQAAYEEAACBCAAAAQAAA-EEAACBBAAAwQgAAYEEAACxCAABQwQAA2EEAAKDAAAA4wiAAOBNACUh1UAEqjwIQABqAAgAAQDwAAEA8AACOPgAA4DwAALg9AACIPQAAbD4AAO6-AACWvgAAyL0AAKi9AAAUvgAAUL0AAKY-AAA0vgAAFL4AADQ-AACAuwAAmD0AAGw-AAB_PwAA4DwAAIi9AACGPgAAVL4AAEA8AAAMPgAArr4AAKg9AAB8PgAAmD0AAES-AAD4vQAAlr4AAKi9AADIvQAA4DwAAOK-AACuvgAADL4AAGS-AAAcvgAAqj4AAKC8AADgvAAAoLwAAJY-AACWvgAA6L0AAIa-AAAwPQAAuD0AAEC8AACYvQAAfL4AANi9AAAdPwAA4DwAANg9AACePgAAcD0AAIi9AACIPQAAgDsgADgTQAlIfFABKo8CEAEagAIAAJa-AABAvAAAcL0AADe_AABAPAAAmD0AAOA8AACYvQAAuL0AACw-AAAMvgAA-L0AAEy-AAAkvgAA6D0AADC9AACIPQAAGT8AAIg9AACyPgAAoLwAAPg9AAAQvQAA4DwAAOC8AACIPQAA-D0AAOA8AADgPAAA2D0AAHA9AADIPQAANL4AAAy-AACAOwAAoDwAAFQ-AAC4PQAAzr4AAFC9AAA0vgAATD4AAFA9AAA0PgAAUD0AAKC8AAB_vwAAED0AALg9AAAEPgAAUL0AAGy-AADgvAAAFD4AAFw-AACIPQAA6D0AAKg9AACYvQAAQDwAAOg9AADYPQAAdD4AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=PszFmdiMUcs","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17638307817965676614"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1294326620"},"10755876190564654427":{"videoId":"10755876190564654427","docid":"34-8-11-Z4588E5AF94D432D9","description":"In this video, we will learn to find the value of cosine of -x. Other titles for the video are: Value of cos(-theta) Value of cos(-x) Value of cosine of -x Identity for cos(-theta) Identity for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1001596/4c98706d2f89e4c85ccf191a9c5c398f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wZK4swAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNa2iu-D5P9w","linkTemplate":"/video/preview/10755876190564654427?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(-x) | cos(-A) | cos(-theta) | Identity for cos(-x) | value of cos(-A)","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Na2iu-D5P9w\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjdaFDEwNzU1ODc2MTkwNTY0NjU0NDI3aq4NEgEwGAAiRBowAAopaGh5bXlteGpwcnJ0dXB0aGhVQzBiTEFDaHJjY1NMUlFTalprMTQzV2cSAgARKhDCDw8aDz8TgAGCBCQBgAQrKosBEAEaeIH7_wH_-wYA9AMFAfoD_wEAA__4-f7-AP8D__z5Bf4A-QoK-f8AAAAEEQH-_wAAAAz3AQMA_gEAAAD_-wMAAAATCwAB_gAAAAYD9gH_AQAA-ff3_QP_AAAABPv-AAAAAAAN-vIAAAAA_wX2AgAAAAAA__7_AAAAACAALcSf4zs4E0AJSE5QAipzEAAaYAkaABYMEgbB8ETrI_vi6woFAfzg7RUA6PgA9_rl8wDz69zjCf8Q9xvixwAAAAP3BEP-AO9K7e2z7v0jBuDa5wUwf970CAUQ6N7_AQ3-5iAK_w0LIADb_ffvGPcZHBcaKCAALe7GZzs4E0AJSG9QAiqvBhAMGqAGAABQQgAAiMIAAPJCAADgwQAAIEEAAMBAAAB0QgAAsMEAAGjCAAAUQgAAYMEAAOBAAACwQQAA-MEAADjCAACoQQAAQEEAABzCAACQQgAAQMIAACBBAACKQgAAPMIAADDBAAA4wgAAgMEAAOjBAAAcwgAAlEIAACTCAAAQwgAAHEIAACDBAABwwgAAhsIAAIxCAADYQQAAWEIAAIC_AAAQQQAAGMIAAABCAAAQQgAAyMEAAKDBAABswgAACEIAALBBAACkQgAAuMEAAADBAACAPwAAQEAAAODBAACoQQAA6EEAALDCAABAQQAATEIAAIhBAAAAwAAAYMIAAEBBAAAQwQAAEEEAANjCAAAgwQAAiMEAAHDBAAAwwgAA4EEAAJhBAADAwQAArkIAAADBAAA0QgAAgEEAAOBBAAAwwQAAgMEAAODAAADoQQAAbMIAAODAAABQQgAAQMAAACRCAACoQQAAhEIAAPDBAAAgwgAASEIAAABCAABwQQAAskIAAMDBAAAAAAAAoEAAAFBBAACIQgAAYMIAAFDBAAC4QQAAQMAAALjBAADAwQAAAMAAAFBCAACAPwAAwEEAAKhCAAAIQgAAQMAAAGRCAACowgAAsEEAALhBAAAAQQAAQEAAAABBAAD4wQAAeMIAABzCAADYwQAAQMAAAGDCAADQwQAACEIAAADCAABAwQAAcMEAAGBBAACYwQAA6EEAAKjBAABsQgAAKEIAAODAAAAQQgAA4MEAAATCAAAMQgAAFEIAAHjCAABYQgAAGEIAAHDBAACQQQAAoEAAAABBAACIwQAATMIAALhBAAAAwQAAyEEAAKjBAAAwQQAAwMAAAABAAACkwgAAfMIAAIDAAACgwQAAqsIAABjCAABoQgAAiMEAALBBAAAMQgAAoEEAAKhBAACAwQAALEIAAJrCAABUwgAA4EEAAIhBAACAwQAAuEEAAIpCAABkwgAAOMIAAATCAABIwgAAKEIAAAjCAABgwQAALMIAAIBAAACIQgAA0EEAAABAAAA8QgAAgMAAAAjCAABIQgAAAMIAADzCAACYQQAAPMIgADgTQAlIdVABKo8CEAAagAIAABC9AACOvgAAHD4AAIq-AACIvQAA1j4AAMg9AAA1vwAAMD0AAAS-AADYPQAAPL4AAOg9AABcPgAAjr4AANi9AACiPgAAcD0AAEC8AADOPgAAfz8AAAy-AACgvAAAND4AAOi9AAA8PgAAMD0AAAy-AADgvAAAZD4AAIo-AAD6vgAAUL0AAMi9AACGvgAAVL4AAIi9AAC2vgAA3r4AAMg9AADgvAAAhr4AAIA7AADgPAAAML0AAPg9AADWPgAAur4AAIa-AAAcvgAAoLwAAEC8AADaPgAAuL0AAJi9AACgPAAAYz8AAGQ-AABAvAAAmj4AAAw-AADYvQAADL4AAJ6-IAA4E0AJSHxQASqPAhABGoACAACYvQAAmD0AANi9AABDvwAALL4AADC9AACKPgAABL4AAOA8AAAMPgAAgLsAAJi9AACKvgAAyL0AAOC8AACAuwAAmL0AAPY-AAAkvgAApj4AADQ-AACovQAALL4AAFC9AAAcvgAAFD4AAIi9AADgPAAAcL0AAIo-AADoPQAAyD0AAIK-AABEvgAABL4AACQ-AABkPgAAoLwAAKq-AADYvQAAMD0AAAQ-AADoPQAAdD4AAMg9AAAUPgAAf78AAEA8AAC4PQAAQLwAABC9AACYPQAAyD0AAFA9AADIPQAA2D0AAEA8AABAvAAAED0AAIC7AADoPQAAmD0AANg9AACAOyAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Na2iu-D5P9w","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["10755876190564654427"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3019859165"},"102215989524557667":{"videoId":"102215989524557667","docid":"34-0-3-ZC492609E2957137E","description":"We use newton's method to solve this equation approximately. #math,#algebra,#calculus,numbers,integration,differentiation,derivative,integral,math elite,mathelite,maths,mathematics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2385310/820c96a09fd0635bf0358327949ab9de/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9xvw2wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTi0vcIqwj5o","linkTemplate":"/video/preview/102215989524557667?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cos(x)=x, find approximate x","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ti0vcIqwj5o\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFAoSMTAyMjE1OTg5NTI0NTU3NjY3WhIxMDIyMTU5ODk1MjQ1NTc2NjdqiBcSATAYACJFGjEACipoaGdhcWZyamppbm1sZWJkaGhVQ24tSHJxellJbWtEM3JUdnpEbVpPV1ESAgASKhDCDw8aDz8T7AGCBCQBgAQrKosBEAEaeIHy_P_1_gIA-QcLB_gG_QIIAQf69___AO348PwFAAAA6gMHAAL_AADwFf7_BAAAAAQD-voE_QEA9f8J-gQAAAASCff99gAAAAoG9wj-AQAA_gD4BgP_AAAH__j-_wAAAP0FDfAAAAAA_QT-_QEAAAD1__rv__8AACAALR091js4E0AJSE5QAiqEAhAAGvABfw35AdsN3gDZBMsA6Rv6AaosI_8ILvIA3gMIANYG4QH96uUA3gPqACD-Av-aKf8BGwHGAA3m7QEj2PH_K80e_-sdGQAc-_gAORIr__bq9gDaCvkA5g0OAPTctwAEItv-HvES_AD_7ADuA8UCDv48Af0JEQEd7hEC5N4T_cgNCwDt39v-DhT9_gzlIP3mLyICMgf9AuwdAQLzL-P9EgL1B-vkCfUT9d4A-9f2BAUWC_3vAQgA_OP2BvLVHAHW9PsF2fIsBQDw_gTk6_fwHvAF9-gm7Qfv7vsKIAcQ9vP5_uoK-fED4Pn9-eb3_O3q_uwEIAAt9YoaOzgTQAlIYVACKs8HEAAawAdI-Pa-cLY5vem9jLyjUzy99MgbvOtNMbwaX4U8oeQkPSJhTj3tGVg9_yMzvfZ6Fz04aYq-0Qw9PO2ufTwUlEI-RkUcvXPoALx1dPy9LxOaPQsCEL38VCW-MdkuvAdz5jeazLg8vjmCvX_DHzwwDu48LxkHvJi2STwNeA-9_i1cvFsu7bmo_Gu99gu2PC6MVL1uMLk82QVIvWqhxzt3Me09jwApvXaWETz0Z-Q8TiyLvMTBL70WkmK9EV51uz7007zJIm09RYTaOyUzKDwoQm-9QtGnvaF_p7vrayK9_oOjPBb7SzuKO1490cB5PWpKlzx5KoY9RQcpvQqQF705Qra9pGaUPU-wvzy5Zrc9cxOwPb8bgTwxwgq929AePfnfRruxOBc9Kgs1PcDLzLzThuM9zHZqPdZ0vTx964M8LKuLN9o20juQJBC8EN-jPaZiAz0WhNI9RXaPvSdnKLzngVk9MhUoO7sd67wMGCm9asa9PBakujuqcxY9BJ4qPXz0xDubqIo8uiTYvBHmUTzFNUM9-FENvglvLLvEBUC9bqPBvOS_vLus0QE9R1m_u35wRzpu_Ok9TOStvStzqbuqtVW85lDQPE_QZDux90e91o4Cve1e1TssvTG9-ow1Pe0Irzr8ZYG9jqFSPN_rWrwzjea8MKCnPeCgHLzFZQY9-gwIvlUhA7ptWFM91e1HPDLn17pvgJk9BtMVvERVhrsSUME9wXhBvWHTCrosQla9SGP-vKFdDTu8Isi9MqrBvZwBUrhtA9c9taPYvQyfrzkk0MW8bSZVPUHZpTfW7Ke94Pt2PPk7JDm50mE9Lt6UvXNP3Thq9iO7752nvWJI3Lj1_W89zcavPM7gZLg8Fts9JV55PcUntbgvUPK9qFycvUOAv7f0APG7DTwSvZ4trDa3RE49qXsDuXu3KLhwvHa9YxkNPG6g6rYtcz89APhxvZyDm7hxB106L5WtPS_64rdB43i8fEftvWETqzkRHsi7kX1QPe8djDboUYy8WkByPQnlvDcqjkM94gLQPbsB9zidDkc7d58DvkPejLfP4N05-rpnPQoFh7hr8em9edYkvO4vYDYW1Yc8XgiDO3NMlDjChue8s6DLvE1_X7hPDjU9nCAgPcpSRziZSt89gHPQPFS4vrhuHmK9sSuyvRO_v7jDJv23s0OMvU2KDjcF-uS97QZ2PSp7zzi9rwU9pUkJvq2ehbjK9HA9IuErPvHLijjwsjW9XMzPPQxGCrnoVbO9FiTsPM24ITjREJS96BhLvUZoBrggADgTQAlIbVABKnMQABpgBvcAHfMivdgcQ-_75gcQ5uIH7ucM6v_t7v8YD8_SB_7d1RkgAAPQKdOyAAAAHgvvG-sA92bH-OEx8_Ee1JbrJiJ__RH-xw0eA-UBI9fz7Bwk2DgOANYIvSs1IMwtOudLIAAtArMvOzgTQAlIb1ACKq8GEAwaoAYAAIA_AAAQwgAAqkIAANjBAADIQQAABMIAANhCAAAAwAAAmMIAADBBAAAMQgAAYMEAABBBAAA0wgAAoEEAAMBBAABEQgAAMMIAAFhCAAA4wgAAUMEAAMBBAAAkwgAAQMIAABDBAAAQwgAAAMEAAODBAACcQgAANMIAAKBBAACgQAAARMIAALhBAAB0wgAAiEEAAOBBAACOQgAAEEEAANBBAAAAAAAASEIAAJxCAAAAQAAAuMEAAGDCAABoQgAAgD8AALZCAABAQQAAcEEAAABAAAAUQgAA6MEAALhBAAAgQgAA8sIAAKBAAADowQAA6EEAAAjCAABIwgAAoEEAAGDBAABwwQAAJMIAAIBAAAAIwgAAQEIAAGDBAACAQgAArEIAAOBAAAC4QgAAgMEAANjBAABgQQAAMEEAAEBBAAAwQgAANMIAAJBBAAAcwgAAGEIAABBCAABgwQAAEEIAAPBBAACCQgAAJMIAALjBAABcQgAACMIAALTCAABgQgAAUMIAANBBAADgQQAAcMEAAHBBAABUwgAASEIAAFBBAAAwQQAAaMIAAGDBAAA4wgAAMEIAACDCAACAwQAAVEIAAMBAAADYQQAAgMAAAEBAAAA8QgAAiMEAAEBAAAAMQgAAAEAAAEjCAAA4wgAA0MEAACjCAADgwAAAIEEAAILCAADwQQAAEMIAAIjBAABAQQAAIEEAAEDCAABkQgAAAEAAAGxCAACgQQAAAMEAAEBBAACGwgAAVMIAAIBBAACoQQAAAMIAAChCAADwQQAAmMEAACxCAACgwQAAcMEAABBBAACIwQAA8EEAACTCAACIQQAA0EEAAAxCAAAowgAA4MEAAKjBAACAwgAAkMEAAADCAADAwAAAeMIAALBBAACAPwAAAEIAALBBAABQQgAAMMEAAABAAAAAwgAAyMEAACDCAACAQQAAQEEAABDCAAAAwgAA1kIAAIDBAAA8wgAATMIAAIDBAACEQgAAAAAAAITCAACUQgAA-MEAAGBBAAAowgAA0MEAABBBAAAAwgAAgL8AAJJCAABAwAAAiMEAAHDCAACywiAAOBNACUh1UAEqjwIQABqAAgAAoj4AAJ6-AACWPgAAcD0AAMi9AAALPwAAqL0AADe_AAAcvgAAZD4AAHC9AABEvgAAZD4AAFQ-AADOvgAAcD0AAAs_AAC4PQAAEL0AAAk_AAB_PwAA4DwAAOA8AABkPgAAmD0AABA9AABUPgAApr4AAGQ-AABcPgAAVD4AAAm_AACoPQAAML0AABQ-AACIPQAAiD0AAJ6-AACmvgAAqr4AAIa-AAA0vgAAHD4AAHS-AAB8PgAAEL0AAFA9AAAFvwAA6L0AAI6-AAC4PQAALL4AACQ-AABQPQAAgr4AAAS-AABtPwAAQLwAAJi9AABwPQAADL4AAFC9AAAEPgAAnr4gADgTQAlIfFABKo8CEAEagAIAADy-AABUPgAAPL4AAAu_AABkvgAA2D0AAP4-AADgPAAAhj4AAAQ-AACAuwAA2L0AADS-AACYvQAA4DwAAOA8AADIvQAADz8AAOq-AAC-PgAA6D0AAJq-AAAsvgAAED0AAKg9AABQPQAAXL4AAAw-AABwvQAA-L0AAIA7AAC4PQAAJL4AAIC7AAB8PgAAmL0AALo-AAAQvQAAZL4AAIi9AABkPgAAEL0AAHA9AADYvQAAuD0AAAy-AAB_vwAAND4AAPi9AAAkvgAAiL0AAHw-AACAuwAABD4AAHA9AAAsPgAAyL0AABA9AADYPQAAZD4AAIg9AAAcvgAAFD4AAHQ-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Ti0vcIqwj5o","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":686,"cratio":1.86588,"dups":["102215989524557667"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"212940950"},"13717768663838387873":{"videoId":"13717768663838387873","docid":"34-11-11-Z8EF20E8E6267D190","description":"this short video I will explain how trigonometry identity work and hope you can really understand it. Especially recent spm kbat love to ask about it.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3263370/62d7ccbeb9f3f4d2dc87a2e8872356d6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2TkF7QAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYUUYse59AlE","linkTemplate":"/video/preview/13717768663838387873?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Why cos(-x)= cosx?","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YUUYse59AlE\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTM3MTc3Njg2NjM4MzgzODc4NzNaFDEzNzE3NzY4NjYzODM4Mzg3ODczaogXEgEwGAAiRRoxAAoqaGhkYWt6aHFzcmtqY3NjYmhoVUMzZmhyNFlhblpYZU5rNDMxRkZnQUtnEgIAEioQwg8PGg8_E-MFggQkAYAEKyqLARABGniB-_8B__sGAAUEDgX6CPwC-voE8_r9_AD2B_z__wL_APYN__4GAAAA-g8D_gYAAAAC-gr___4BABADAvUEAAAADgP-__0AAAAOA_j__gEAAPn29QgD_wAABQf1_QAAAAAGEwX3AP8AAP8F9gIAAAAA9v_78AD_AAAgAC3En-M7OBNACUhOUAIqhAIQABrwAX8RE_7b9q4Bqx_L__Yh2gHOSCP__DXRAOgA8gHY8ewB-usNAM0k8P8SEd0Akyz_AQX33P_zudP_L7gMAhf-_ACv5woBCu7WAj8B_AD32P_-wg8MAeIQ-AX22dD-BVLd_QvyE_naBOz_7QPAAg_-QAHfFgP-C-jw_8YD_wHbHxYA7xXT_e0nDf_n1xT81wUjAg_iHwAWEwn5IhPkAgQQGAQE8u0BAPL4_wYF7vPLDhD57uYECO_c_QX7wwoA-RfY_OUDFwAF9wsJE_YD7Rz19gHZ8fAC_ODyCvr0C_wZ3vr6_wf27-3y_f8N_PQBDvXnASAALR1GEDs4E0AJSGFQAirPBxAAGsAHLCvNvsgw3Tq9SDK9vToFO9YEDL2VcNe8S9O2vZbLKz2s7ge9CJFsPranFTqChw49irm6vRAsHb0tVMg8FJRCPkZFHL1z6AC8GYGivUC1uz3hpF-9vu-5vdaPTT1BFr08AL7FvTdkTb1r50W87xEbPcHEv70IkAG9IKjouh11ETwz3AC91DqbPTRVRr0On3S9qhjdvLgJEr0NkKK7xr6pPU8qUDxJHAs8QsFWPdeEGb3VUeG7aW4FviPUET0HyGG8hFkSPbjnWT1iIBk8m41avcN3rLyzCEU8blOXvFhTeT23eeO7vwekPabicD0oawC6ZUOdPXc1tL2QdjK9JjX0vX4DLj2rugI9uWa3PXMTsD2_G4E8rvQqvm3F3j2K1Au7PptyO7AeN737kYW6z3yjPbgyUj2n0FQ8QX52PfIfOTudCCy8brYjvflYcD0JEsA8UgeLOf4pFTxyuQe884erPYhgAbwS7r45ldjQPFLSYz3726-65ZqSPcxO9Tz37zC8v8ODPTQqlTwLD6m5BSOlPdYCO75J5Zo6x4NtvVcQjr2dt1a858xRPbigiD1ZfR68ghvpPHr_372UMR88aqBeveJvQL0HDy48uJ2svLQcDb2XUyc8IY8AvtV7uj0ri6G6v2unuzrDuTzWNX-8XyBNPfvcej2Hl9Q7kaBTvN8mrb0W7Z66gdILPQNphT2TGxG6ULyvPMDNAj3tjEa79z-rPUMh3bsq-bu7YS0jvfx4IDz-a964X5SFvPC0RrxsyF-4bQPXPbWj2L0Mn685guQ9vQWyqjt6ki47mzrPvbjuQTwtJwq5KLE_OoIJ9TvDBwa3_LNVvXc9sr2FGzC4seutPQLeXbzuQgI5YQzVO3NMNj257ma4IKLHvZK-_7x1nQ-5hlYnvIpZzz2HcQ05noxbPcNiGLy1_my3Il84PfNl2DwhgiK54J-CPXgNGr2qRwe5vC-dvIuBnz3Srmw3GviGvc9YSr0ucsW3_ViXPdy3-j0dVsQ1owtFvHZPkz32LUc4_j-TPZvOaT1ltnQ34_F-vd00bL2SxL63FUcvPer7Wj2eNvS49aKxvahs_bxnsJq4PCn4vHGP5b2JHby4Cqi7PVxaoDlpqxo4YaBQPfTZRj0rmCY4H58APqTkkL0V6Dq5-UrgvQyP3b1jM0S41V2ZvBGXgr0HcQO4lrvHOzlHWD2eNgO45NWevHqJ8b1lVTC4qw_KPaX-lT3BlJo3fGKNvSED2T2BNTC5rW3qvRQ7vzxv0uM3W8rePPqE6LtJUcc3IAA4E0AJSG1QASpzEAAaYBMCAAncOvbfGUjyH_PH-8D3AALj4yD_5v3_GwHUDQTZ8fDa-gDx0TbQqAAAABHjEz7oABN2utIK_ORUHrm65SI9f-7zIK3u4gAcATIE8P87HABGMgCyEcchGfPvGR0oZCAALZkjIDs4E0AJSG9QAiqvBhAMGqAGAADIQQAADMIAAAhCAABwwgAAAAAAAOBBAADmQgAAEMEAACDCAADYwQAA6EEAAJBBAAAYwgAAoEAAAADBAAC4QQAA6EEAAIjBAABIQgAAMMEAAODAAABAQAAAGMIAAKjBAACAwQAAiEEAAIjBAAD4QQAAAMEAAHxCAAC4wQAAAEIAAJTCAAC4QQAAzsIAACTCAADQQQAAsEEAAABBAACSQgAAoEEAAHBBAACoQQAAgEAAACDBAABswgAABEIAAAxCAACAQQAAAEAAACzCAABgwQAAKMIAABDBAABAQQAAYEEAAKbCAAAAwAAAMEIAAJhBAAA0QgAAPMIAAKjCAAAwQQAAsMEAAPbCAAAwwQAARMIAAFBBAAAAwgAAoEIAAJhBAADQwQAAukIAAMDBAAAwwQAANMIAAOBBAABcQgAAhkIAAGzCAADOQgAAAMEAAADCAABAQAAA4EEAAKjBAAAIwgAAREIAAIhCAAAAwgAA4EEAADzCAADAQAAAVEIAANjBAABgwQAAgMEAAJhBAAB8QgAAgMIAADzCAAAowgAAAEEAAPjBAABkQgAADEIAAEBBAABAQAAA6EEAAJpCAACwQQAA6MEAANhBAACAQQAA2EEAAEBCAACgwQAAgMAAAIDBAAC4wQAA-MEAAHRCAACAwQAAEMIAAAAAAADAwAAAGEIAAHzCAACKQgAAwMAAAODAAAAQQQAANEIAAEDAAABAQgAAMMEAALBBAACWwgAAdMIAAADCAACAQQAAwEEAAJjBAABAwAAAQEIAADBBAADgQAAAqEEAAIDAAAAIwgAAkMEAAFhCAACwwQAAsEEAAKhBAACqwgAAAAAAAJLCAABAwQAAhsIAADhCAAD4QQAAcEEAALBBAADIQQAABMIAABhCAABkQgAA2EEAANhBAABAQQAA2EEAAPDBAABMwgAAmEEAANDBAACYwQAA8MEAANpCAAB4wgAAIMIAAKDAAACAQAAAuEEAAGBBAACQwgAADMIAAFDBAABUQgAAsEEAAIBBAACYQQAAgD8AANjBAABwQgAAHEIAABDBAACowQAAkMEgADgTQAlIdVABKo8CEAAagAIAAEQ-AAAcvgAAJD4AAEA8AABMvgAAPD4AADS-AAD6vgAAED0AAGQ-AAAsPgAAUL0AAKA8AAB8PgAAlr4AABy-AAB0PgAAcD0AAOg9AACCPgAAfz8AADA9AABwvQAALD4AAPi9AACAuwAAgLsAAGy-AADovQAAfD4AAEA8AAB8vgAAUL0AAPg9AAB0vgAARL4AAIi9AACuvgAAxr4AAKA8AABsvgAArr4AADC9AAAwPQAAFL4AAKi9AAAcPgAAiL0AACS-AABUvgAAHD4AADQ-AACyPgAAEL0AAEy-AACIvQAAVT8AADQ-AAC4PQAAgLsAAIC7AACSvgAAUL0AALK-IAA4E0AJSHxQASqPAhABGoACAACgvAAAuD0AAEy-AAAbvwAAmL0AAKC8AAAsPgAAQLwAAIg9AAA8PgAAMD0AAKC8AABwvQAA-L0AAHA9AADgvAAAmL0AAA0_AACavgAATD4AAIA7AACAuwAAgDsAAFC9AABQvQAAnj4AAEC8AACIPQAAgLsAABw-AABQPQAA6D0AAKK-AAAMvgAARL4AAOg9AAA0PgAAuD0AAGy-AABsvgAABD4AAKA8AACAOwAAZD4AAPg9AACAuwAAf78AAEC8AACgPAAAmD0AAHC9AAAwPQAAMD0AADA9AAAcPgAAiD0AAOA8AABQvQAAiL0AAIA7AAAcPgAAiD0AAOg9AAAsviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=YUUYse59AlE","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13717768663838387873"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3281838174"},"17032497513126820464":{"videoId":"17032497513126820464","docid":"34-6-12-Z4B58F927E3CA99A4","description":"calculus 2 tutorial integral of cos^5x, • Integral of cos^5x, by Edward Ezike, calcu... integral of cos^1x, integral of arccos(x), • Q33, Integral of (cos(x))^-1 vs integral o... Check out my 100...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3503216/e8a99a6b9cf1d4871f14aee8087a912d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FLisHwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DD_n_xjl9Ut0","linkTemplate":"/video/preview/17032497513126820464?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos(x) vs derivative of cos(x), with Behind THE Scenes!","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=D_n_xjl9Ut0\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTcwMzI0OTc1MTMxMjY4MjA0NjRaFDE3MDMyNDk3NTEzMTI2ODIwNDY0arUPEgEwGAAiRBoxAAoqaGhyd3BpemtjbnFuYWd4YmhoVUNfU3ZZUDBrMDVVS2lKXzJuZEIwMklBEgIAEioPwg8PGg8_E2OCBCQBgAQrKosBEAEaeIH3DAf8_gMA-QcLBvgG_QL_Bgj_-P7-AO348PwFAAAA9wAF-gcAAAD-CwcCAAAAAAP7_fv9_gEABvsC9vkAAAAZAv0A9wAAAA3_7QH_AQAA-QH5-AP_AAD1D_X5_wAAAAkKBO8AAAAA-Qn6_wAAAAAI_gQGAAAAACAALcRC2Ds4E0AJSE5QAiqEAhAAGvABf_kNA6npFvtR_uwA7Rf7AZQdCf9R--T_whIBAfD-4gD-E_YA1uz4ABAP9__nCv7_GQf5_xnVBgEbGwAAEPL_AAMC9AE65fIBCyQSANMO5v_WGhb-CPwJAA7i-QAVC-r-6vgA_PkEDPz2EeEBHO0BACXTEwMMCv0AMgsMAt4I-AH96-X-_efkAP8AEAADCSj-FvTXAg0fJwDs_uYD6vHu_AzfCv33-fH9_vwWB_niA_Xd_vD_ARQQ-fMGBQj4DRwCAQom_BD_AAD09___9_P1DBzu-QDs-_QL6wMFAgDW-gEI5RP9-gry-vvvD_rg6AEEIAAtZrM4OzgTQAlIYVACKnMQABpgFhAAGu0a3bnwM-r-29wA9_vfGOrlNv8B1QDqDubXDPvSvAUR__zZ8RyyAAAACecINu8A72Dc68YLzw_2Cr7XJA9_GwQ60-0EDfzO4_ru2OAGCBEnAMoZyDgJ6P5WFzD3IAAtua05OzgTQAlIb1ACKq8GEAwaoAYAAIzCAAB4QgAAWEIAAOjBAADwQQAAIEEAAERCAAAIwgAAhMIAAMLCAAAswgAAMEEAAJTCAACAwQAAdEIAAKDBAAAAAAAAIMIAAExCAADCwgAA6EEAAKDAAADgwAAAoEEAAMhBAAAIQgAASMIAALjBAACSQgAAPEIAAMDAAADYQQAA-MEAAABBAACewgAACEIAAMBBAAB0QgAAEEEAAFRCAADgwAAAAMEAAEDAAADoQQAAMEEAAAAAAAAAQAAAkEEAAKZCAADAwAAAuEEAAEzCAAAwwQAAIMIAAFDBAACAvwAAEMEAAPBBAABIwgAAoEEAAMjBAAA4wgAAQMEAAAjCAACgQAAAVMIAAOhBAABIwgAAwMAAAHBBAAAcQgAAEEIAALjCAACMQgAAEMEAAILCAABEwgAAqEEAAGxCAAAEwgAAjsIAAPDBAACKQgAAkEEAAFRCAACAQgAAqEEAACRCAADgQAAA-MEAAMDAAADYQQAAAMEAAKjBAAAAQgAAUMIAAEDBAACYwgAADEIAADBCAABYwgAAIEIAAEDAAACgwgAAtsIAAAhCAACEQgAAhkIAAHDCAACGQgAAsMEAAIBAAADgwAAAMEEAABBCAAA8QgAAgEAAACBBAACgwQAABMIAAAxCAAB0wgAAUMEAABhCAAD4QQAAmEEAAKDAAADowQAAJMIAAJjCAACQwgAAOMIAAIDAAACeQgAApEIAACDBAADAQAAAsEEAAPjBAAA8wgAAYEEAAFhCAABgQQAAUEEAAEDBAABgQQAA4MAAAFjCAACowQAAkEEAAGDBAABwwQAAgEAAAADAAACaQgAAAMAAAIBBAABEwgAAiMEAAJBBAAAwwgAAyEEAADDBAAAYQgAAAMEAAIC_AACwQQAABEIAALBBAAAEwgAArsIAANDBAADoQQAAMEEAABRCAABgQQAAmEEAAFDCAABEQgAAgEIAAIBAAAAAwAAAAEAAAFDBAAAYwgAAoMEAAJDCAAAQQgAAoMEAABhCAAAYwgAAMMEAAKBAAAAAQgAAgMAAAGhCAACgwQAAAMAAALjCAAAAwiAAOBNACUh1UAEqjwIQABqAAgAAMD0AAJi9AAAUPgAAJL4AAKK-AACqPgAAhj4AADO_AADgPAAAoLwAAKA8AADIvQAAQDwAAPY-AABUvgAAZL4AAL4-AAAwPQAAJL4AANY-AABtPwAABL4AAIA7AACOPgAAFL4AAMY-AACgvAAA2r4AABw-AAAMPgAAqD0AALi9AAC4PQAAyL0AAN6-AACKvgAAcD0AAMq-AAC6vgAAEL0AAMg9AAC2vgAA6D0AAFw-AACIPQAAUD0AABA9AADuvgAAxr4AAGS-AAAcPgAAcD0AAAU_AAAQPQAANL4AAJg9AAB_PwAAij4AAOi9AACaPgAAiD0AAIa-AABQvQAAZL4gADgTQAlIfFABKo8CEAEagAIAABy-AAAwvQAAyL0AAEG_AAAwvQAADL4AAJY-AACCvgAAMD0AAAw-AACAOwAAqD0AALi9AAC4vQAAMD0AAEC8AAAkvgAABT8AAPi9AACaPgAAiD0AAKi9AACovQAAEL0AAMi9AAC4PQAAmL0AAIA7AAAQPQAA6D0AAOA8AAAcPgAAgr4AALK-AADYvQAARD4AADQ-AACgPAAAfL4AACy-AAAQPQAAuD0AABA9AAAcPgAAZD4AAFC9AAB_vwAAEL0AAFQ-AAAwvQAAcD0AAIC7AAAQPQAAcD0AAEA8AADoPQAAgLsAAPi9AACgvAAAgDsAABQ-AABAPAAAuD0AALi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=D_n_xjl9Ut0","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17032497513126820464"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3692399041"},"17567248041656172890":{"videoId":"17567248041656172890","docid":"34-1-8-ZBE79A20B9D3B33F2","description":"All About Cos(x) Function | by GP SIR →6:37 - Continuity of Cos(x) Function and Inverse of C...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3933039/bcf8a7539c62204962f6d6fd1c41d44a/564x318_1"},"target":"_self","position":"8","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFQEN3SCitkU","linkTemplate":"/video/preview/17567248041656172890?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cos(x) Function and Inverse of Cos(x) Function | All About Cos(x) Function | by GP SIR","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FQEN3SCitkU\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTc1NjcyNDgwNDE2NTYxNzI4OTBaFDE3NTY3MjQ4MDQxNjU2MTcyODkwaq8NEgEwGAAiRRoxAAoqaGhwam9tdHB4and1bmlqYmhoVUNyT21GYkhnZl9rNHBrLWpZUm15aGp3EgIAEioQwg8PGg8_E5sIggQkAYAEKyqLARABGniB-_8B__sGAPQDBQH6A_8BBAAAAvn__gD3-_v9_gL_APcE__cBAAAA_wkB9wAAAAAD-_37_f4BAAAA__sDAAAAGAL9APgAAAD_B_L9_wEAAPn39_0D_wAABQEA_f8AAAAADQH6_f8AAAQE_QYAAAAA_AH5_AAAAAAgAC3En-M7OBNACUhOUAIqcxAAGmAGGgAb-Bb43QAa9BQE4_H1-AMF5PkFAPzpAAQZ8e8NAPjd9wgADvMB_doAAAALDgohBwDzLQ765vzsMfrt4gAAHX_9_Q76A_jo5AcLDwoL7_P-CPsA5_z-9hUC_CYKDxUgAC2mXps7OBNACUhvUAIqrwYQDBqgBgAAgEIAACjCAADgQgAAYMEAABjCAABwwQAA0EEAAIDBAACMwgAAMEEAAFBBAACgQgAAvMIAABTCAAAAQgAAgEAAAKBAAABgwgAA4EAAAIjCAABAQQAAQEIAAOjBAACcQgAANEIAAKBAAADQwQAANMIAAFBBAABIQgAAiEEAALBCAACgwQAAAAAAAIBBAAAgQgAAgMAAAMhCAAAUQgAAJMIAAIDBAAAgQQAAiEEAAADAAACAPwAAVMIAAJjBAADIwQAAQEIAAIhBAAAgwQAA-EEAAKBAAADAQQAAkEEAANhBAAAgQQAA2EEAAJBBAAA8QgAA0EEAAIDBAABAwgAAcEEAAJBBAAAIQgAAnkIAAFDCAAAIwgAAoEAAAMpCAABgQgAAhsIAAL5CAABsQgAAvsIAANDBAACYQQAAgEAAACBBAAAgwgAAiMEAAGBBAADEQgAAQEAAAGxCAADgwQAAiEEAAKBBAAAQwgAAKMIAAHBBAAAwwQAAuMEAAATCAABAwQAAAMAAAExCAABoQgAACMIAAAjCAADAQgAAYEEAAODBAACIwgAAgEAAAOBAAADYQQAAdMIAABRCAACMQgAA2MEAAFTCAACgQAAAjkIAAABCAADgwAAAYMEAAFBBAABswgAAPMIAAEzCAACYQQAAisIAABBCAAA0QgAA-MEAACjCAABgQQAAEMIAAFDBAACWwgAAoEAAAHBCAAAAQAAAUEEAAFBBAAAcwgAAYMEAAJDCAAAQQQAAYMEAAADCAABQQQAAwEAAABBBAACowQAAikIAABDBAAAwQQAAoEEAAIDAAABQwQAAcMEAABBBAAAAQgAAMEEAABjCAACwQQAAkkIAAADCAACIQQAAoEAAAATCAABAwQAAgMEAALhBAACwwQAAEEIAAKDBAABswgAAmEEAAIBBAAAgQQAAQEAAAPhBAADQwQAAsMEAAFxCAABQQgAASMIAAODAAAA0wgAADMIAABxCAACWwgAA2MEAAIhBAACYwQAAKEIAAABAAAA4QgAAPEIAABBCAADgwAAAqEEAACDCAACgQQAALMIAABjCIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAur4AACw-AAAQvQAAFL4AALY-AACYvQAAKb8AACy-AADgPAAAND4AAJi9AACaPgAAhj4AAGy-AADYvQAAVD4AAHA9AAC4PQAA7j4AAGk_AACAuwAAoLwAAPg9AACgPAAAmD0AAGQ-AACqvgAAuL0AAOA8AAAsPgAAqL0AAFC9AACIvQAAgDsAAI6-AAAQPQAAsr4AAMa-AAAMPgAAVL4AAKK-AABwPQAAQLwAAAQ-AAA0PgAAtj4AAJK-AAA8vgAA5r4AAKA8AACgvAAA4j4AANg9AACoPQAAoLwAAH8_AAAEPgAAdD4AAKA8AACqPgAAXL4AAIK-AACiviAAOBNACUh8UAEqjwIQARqAAgAAoLwAANg9AAAkvgAAFb8AAAy-AACYvQAApj4AAFC9AAAQvQAAij4AAHA9AADIvQAAML0AACS-AACAuwAAUL0AAAS-AAALPwAAJL4AAHw-AABUPgAAED0AABC9AAAQPQAAmL0AAMg9AACovQAA6D0AAEA8AAD4PQAAqD0AAKg9AAD6vgAAHL4AABS-AADgPAAA0j4AAMi9AADOvgAAHL4AAIi9AAA0PgAAoLwAAIY-AACePgAA2D0AAH-_AACAOwAAED0AAJi9AAAkvgAALD4AAKA8AAC4PQAA-D0AAAQ-AABAvAAAML0AADA9AAAwPQAA2D0AADw-AABcPgAAkr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=FQEN3SCitkU","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17567248041656172890"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17278115220973559945":{"videoId":"17278115220973559945","docid":"34-7-11-ZA6CBE530CD101232","description":"Using the unit circle we learn how to find values of cos(x) and sin(x), cosine and sine, of angles in the second quadrant of the unit circle, so angles between 90 and 180 degrees. For such angles...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3106479/92c64053675fab14f1fe29619edcc88f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9Q_d6gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUD1MTBrFHyw","linkTemplate":"/video/preview/17278115220973559945?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding values of cos(x) and sin(x) with the unit circle - In Second Quadrant - Tutorial 2","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UD1MTBrFHyw\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTcyNzgxMTUyMjA5NzM1NTk5NDVaFDE3Mjc4MTE1MjIwOTczNTU5OTQ1aogXEgEwGAAiRRoxAAoqaGhkb2d1eGlieG5mZ2ZxYmhoVUN4TzFmY3J4NUFCdDdoS1FhX215Q2dBEgIAEioQwg8PGg8_E-EFggQkAYAEKyqLARABGniB-v_89wH_APr9DgT6B_0CBgf3APb__wDs-O_8BQAAAPUUCAP_AAAA_xQICwYAAAAJ9ff-9v4AABYE9AD1AAAAHwEJ__oAAAANAfgDCf8BAfz78vIBAAAA9_oB__8AAAD8BQ7vAAAAAPwE_vUBAAAA8_4Q9___AAAgAC3LM847OBNACUhOUAIqhAIQABrwAXHMMgLv_vYAzwLqAcD8xACBIgr-6SHWAO8Y5AHAA-MA5hEkAOYmBf8q1gwAvSkbASLt2v_x3xD_TMIIAP4I6wDl4wIACOXxASscBQAEBtQB_gsh_iDsBQD49NMA6Qrv-x31A_36Acv_LAzxAzHwHgIC-QgGAAH5BOHmAADTJgr__Ofg_QojBAP_8uz_5dkkAw8BA_sMJwf64vUB_gQPFgQB8Q0C9ifsAvMA8Qv-IhMHAwr6ANrS5gIN-Rz83yPm_gjuBP_w2A_y1L31-hHJFvXkAPgFJhT_9h_aA-722gD8-Qn6_un1E_Ub5vMMENj-_yAALf8hHTs4E0AJSGFQAirPBxAAGsAHzF3DvmTS-LpL8P47moKbvam1F7wDBV69UYf1vdeXhj2Fp2G92pAfPqYFMzvnrZk6GM0avtPCYL0ZL6e8oOIoPlHbxrxEDjY8DjEOvk0GkTxH6EK8iQsQvjZqrrrOj_k7al0TPEZ8J70gcw67oOLYPWE8nrzFT4i82CcFPTSDyD3dfOO8K4jBvMMXHL1JW-a8bjC5PNkFSL1qocc7CZXRO02RLjsRnS88DPKpPdkBfDxf6qm7dHvpvaUWyry7WpO80gyDPb1V9z3tSos8V5TyvWHMjDwF-Zu7EXaVvQ8JX7ykJFq8NuwyPQANBT3E0ju9s6IcvYl77L21c7O6DMiDvf8Zrzxe8XU7cJedPR8TGT56rTk5rtcEvg2fPj3sRZm8nNlTPNCx6LzHVZI57r2-PbnKTr1_rJY8-6REPdF_qjxNW628duEHvSoynz0ZtGs8WHCUvWhidT2i4BS7RdTpPKjR2rycYKy7ZMydvKhdgjtWieg8zBmLPd31aD1LOYQ8wlmAPFmLmj0MRhs8BSOlPdYCO75J5Zo6vjCZPMcXxDqU1oS8ZrIJPfPCBDplt6A8VU8GvRlKF73msYM7-dAPvdfep7p-Wt47ShSQPJ7a5jm6VjG8StPgvWMghD21P-k7KHJSvXQwMT0-qf67qVUPvXsUrry-B3k6N-o3vXmyez1gNui6DAMWPX0IKrz61FK7rVwluocxCT0YcpW7Br-IPTT8Ajz1Ub47m9zUvPNNJL3-XBc72ZuzPCyrf71GY5m5PL3yPUrIUb1XwY45ROySvZmvHL1kz8q4CH8VvVtErz2Ygfg4icjVPH0_hb1HWoU5ppf4vfOrqb2qNHU4_w01vM7V3jtEEIy6S7F-vN16zTzFqXe5EZMLvVuIhDwQ_8o4I4fDveyMDLvZRg04yN6BPEANST2o5lE46iq4PHXkBTpgRFO4hX-svEOYkbqUtF82tY16PcihpD0t1AE4rYprvYum87wCkLa4YDzjPfiIXT34cHc4iaxaO_Z_Lj68OxW5KIRJPfDE7L1Pp2E47m5vPRRBHL0JFbG2C7UmPJV_LTxgmSo4aHUyvmSkKD0Xyky3I9GwvHJTw7zjEDu4yF86PtyVwjzNr0s48DYvvdJF1Dw75z84AXBnPa_u2L2hUIe4OcXEvWe3Jr7WR3I4DISjvRk8bD2J-gW4o5qdPdvebr3gdQ04XKihPX3ElL24oZY3y24BvSZX8T1yj7K4cDNLPTSzyz3Z06e3I2jMvQ0B-jtvBgY3egyAvSmAPTzEWbe3IAA4E0AJSG1QASpzEAAaYCn7AC8sBKwB-Dfg3-nQE9no4MPs4un_98T_8OXk4-0IxKn3Cv8qzhvjpQAAACMN8UTyAPhwzsvvPwcNFs-yxDQBfwsc_fD2Iwjjyh0uD_IVIAEeRADoDLMaM8_jWBkpTyAALeMxHjs4E0AJSG9QAiqvBhAMGqAGAABkQgAA0MEAAKBBAABwwgAAgMEAAJBBAACgQgAA4EAAADBBAAD4QQAAgEAAAOJCAAAAQAAA0EEAAHRCAACAQQAAmMEAALjBAAAAQgAA-MEAADRCAACQQQAAgL8AALDBAACAQAAAEMIAAChCAACQQQAAkEEAAJxCAADQwQAAlkIAAKLCAAAAQAAAPMIAAIjBAAAAQgAAJEIAAChCAAAsQgAArkIAABxCAADgQAAAUEEAACBBAABEwgAA2EEAAPhBAADAQAAAwMEAAATCAACAwAAAEEEAAGzCAAAAwAAAXEIAABjCAAAQQgAAVEIAAOBBAABAwQAAOMIAAAjCAABAwQAAcEEAAL7CAACYQQAAMMIAAEDBAABYwgAArEIAADBBAABgwgAAAAAAAKDAAABAQQAAoMEAAATCAACIQgAAwEAAAJrCAABQQgAAqMEAAFDBAAA4QgAAiMEAAKRCAAA0wgAAgD8AAADBAAAAwQAACEIAAGDBAABEwgAAJEIAAKzCAAAMQgAANMIAAGBCAACGQgAAssIAABTCAACAPwAAIMEAAPhBAAAAAAAAwEEAAGDBAACQQQAAjkIAAOhBAACgQAAAiMIAAAxCAAC4QQAAAEAAAODAAACQQQAAYMIAAIzCAACMwgAAOMIAAMBBAABwwQAA2MEAACDBAAAgQQAADMIAAFzCAACQQgAAKMIAAIjBAACCwgAA4EAAAEDBAAB8QgAAIEEAAKDAAAAYwgAAgEEAAIA_AAAEQgAAUEEAAAjCAABcQgAAkkIAAADBAAAwQgAAGEIAAKjBAAAEwgAAQMAAAIBAAABoQgAAFEIAAABAAACIwgAAsEEAAHjCAABgwQAAwEAAABxCAADAwQAAcMEAABhCAAA4QgAAgD8AACDBAAB0QgAAwMEAAGRCAACgwAAAkMEAAGDCAABQwQAAEMEAAODAAADQwQAAOMIAAAjCAAAAwAAAZMIAABTCAAB4QgAAZEIAAGDBAABowgAAgMAAAABCAABsQgAAIEIAAHBCAAAIQgAAEEEAAETCAACgwAAAiEEAAOjBAABcQgAANMIgADgTQAlIdVABKo8CEAAagAIAACw-AAAkvgAArj4AAHC9AACaPgAAxj4AAII-AAB5vwAArr4AAHC9AAA8vgAADL4AABC9AABkPgAA3r4AADA9AABEPgAAFD4AABw-AABVPwAAfz8AANi9AACovQAAXD4AABS-AAB8PgAAfD4AAOa-AADyPgAATD4AAEw-AAAXvwAA-D0AAAQ-AABQPQAAoDwAADS-AAAPvwAAE78AAJ6-AADgPAAAdD4AABQ-AAAsvgAAbL4AAOg9AAD2PgAApr4AAFA9AADWvgAAUL0AAIC7AACCPgAAxj4AAFS-AADYvQAAYT8AAEQ-AACKvgAAND4AAPg9AAAwPQAAQDwAAHy-IAA4E0AJSHxQASqPAhABGoACAABcvgAAyL0AAHC9AAAzvwAAcD0AAKA8AABcPgAAoDwAALi9AABwPQAAQDwAALg9AACYvQAAuL0AAHA9AACgvAAAiL0AABU_AAAcvgAA0j4AAOi9AACovQAALL4AAAS-AACIPQAAmL0AAIC7AAC4vQAAUL0AAEQ-AACAOwAAFD4AAKa-AACIvQAA6D0AALi9AABwPQAAMD0AAKK-AACgPAAABL4AACS-AAAwvQAAND4AAKA8AAD4vQAAf78AAJi9AAAUvgAA2L0AAOA8AADIPQAAHD4AAEA8AADYvQAAMD0AAIA7AABwvQAA-D0AAOA8AAAEPgAAQDwAAFA9AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=UD1MTBrFHyw","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17278115220973559945"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3495455957"},"6031551655068242742":{"videoId":"6031551655068242742","docid":"34-3-0-ZB780AD438E7B81A9","description":"Trigonometric Functions...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2826360/7a7cc226d260f0ebbc6a107794f51741/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EyisLgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHsXSyqFNDsc","linkTemplate":"/video/preview/6031551655068242742?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cosine Function Cos (-x) = Cos x","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HsXSyqFNDsc\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFQoTNjAzMTU1MTY1NTA2ODI0Mjc0MloTNjAzMTU1MTY1NTA2ODI0Mjc0MmqHFxIBMBgAIkQaMAAKKWhoeXlvcGhwY3Fpd2xraGhoVUNfX3A0Q0QtUldMbllabkk0U1I3dlZREgIAESoQwg8PGg8_E9YCggQkAYAEKyqLARABGniB9vv7-_sFAPj9CP77A_8BBvYA-vn-_gD2APX1AgL_APgABfoHAAAA-g8D_gYAAAAE-gL8BP0BAAf_AvYEAAAAEQj4_fcAAAAGA_YB_wEAAPb_9AID_wAAAQH2AwAAAAAICgPwAAAAAAEH-PoBAAAA_AH5_AAAAAAgAC1ZkeI7OBNACUhOUAIqhAIQABrwAX_cJgDY9qgBrejqAOUOCAHcGwoALS_zAMjh6QHQD7QB4RQV_wQQAwDfFQEAxBfyAfz3x_4RvvX_LOkV_xfx7wDeFQQB_g4LAD0RGQL52uj-yzQC_ub9If4Wu-oABVja_ToOGQAeJ_P86SjRA0AOMQDS5PsB9vAA_e7lDgHQ69EA9vfA_g4uHgPu2v_56RhAAT_r8Qb_Hhf_r9ba_ub48fvx8h_4DxXMAE8N4f76DAP9vfoDASTnCQsUKf8K7vndC8oNIQHyBf4E3wP9BBXI_PPTDgERQNXw-RD-_vvnFQcY7d3q9Q3T-BIDFeoE-c3wASAALXyzBjs4E0AJSGFQAirPBxAAGsAHLCvNvsgw3Tq9SDK9U2AcvSRC47xvkQW9ak1zvakIwTy2cgW9_g5lPsZmrLwGkJC8O3GZvby4Y73HrKi8y4AzPubRiL2YYjM8dXT8vS8Tmj0LAhC9Asy2veNTHbxNBGA9WBUmvaHcMb0VGZ28_n4RPukqvb04lGu8AZzFu33-wbugkm699B8tPT-5t72ePxK9tv1hPPGiijyM_oY822_tOlyGSTz55_O8L-u0PAkAKb3bXRa9OC_uvScRQT24jCC9L-LWPM7cqD0wx6E8QiaZvcpAQTpP0Sy9-RSAvDZ0s7w9Cle86gd1Pb-ExDux1Qq9uavXvPO_pr0uqxC9Y7QevjYWe7t_YFg85Gb4PWZM4T0YI9Q7p3chvlG2LT2v06M6svHgPXpPCr3C7Zq8TdOcPeQ29bwJbI48iReaPdUCHrwhFKW6chP3uyy5ijxzMsw8Vj6VPI-24LwbDaI73YlIPWlBHr1lNeE7oBu1vNyPijwAD1Y8LY-aPIZ7wDw9Eqs72S4GvMyh-zzaM_A6BSOlPdYCO75J5Zo6dfhVvcH-K70XKn-858xRPbigiD1ZfR68ghvpPHr_372UMR8871GkvG743bw4xJE6F5kjvGcsdb2LuEo8iRXEvaZ_6T3rECy62L_GvMTeVTx_8TG8lKZ_O3ba_zx3iL07anqaPOQJTr2CxPo7FHkSPStaLz0k-xS7GzunPbox_T0I-IS5ElDBPcF4Qb1h0wq6q5PTvdyIIr1riwQ73x3Xur5bb72SnY46qoKhPRoYmb1HSqA42XBCvTF8xLskLwm6rm7rvKbwID0Llp65nQeBvVNFijt7rQu5VBv8vWK7-70T0_I59f1vPc3GrzzO4GS4FK0BPQTAnTwq8KO4FOfovXPJIr0i3kO5beLkvb7enT2HPwO5WRyZPXWFaD3hTo44sGVoPUU3ET0AQ304bZ3JPKKgL71_o6a5OtbaOzkPZz3UOd83exLYvM8Gar3xp6E4FAQPPRBdAD6Nw3G4UdnwvDnlGz2SSpQ4olPBPaUjaj1op0w4v7meuh-durx5rj03T6XAPZvHQT2yyNy4oFDPvRXvhj3C0gI480VRvTbeR72RTLy3iiLkPd5Vz7ybdlQ3D8N9PQrzPj2I9782kl0ZPtlPUL2swj-5OcXEvWe3Jr7WR3I4-83kvVpRWb1XVdO3QJCCvaa8cT2gfvW2SfeOPK1QxL1znPK4yvRwPSLhKz7xy4o4L8EpvArExjxbTJa4b70BvY-JlD00ods35DmhvVLZIzpEHd-3IAA4E0AJSG1QASpzEAAaYBoDABrlLMzkFUPnFd_xBq3rBdHuByP__f8ACwu_9hXuu87TDAD5GCDmrAAAAAAS9FvTACFqyyYB-tAwH7-09ikxf_DeLK704vjd1CQS-fYGDO4hHwDMINkSFSLiHjcPOiAALQXrKDs4E0AJSG9QAiqvBhAMGqAGAACAQgAA-MEAAOxCAAAswgAAYEEAAEBAAACcQgAAgMAAADDBAACIwQAAgEAAAJBBAACgwAAAoEAAAMjBAAAgQQAA8EEAAGjCAADAQQAAwMEAAIA_AADwwQAAksIAAMBBAABwwgAAwMEAAKDBAACgwAAAEEEAAKhCAABIwgAAWEIAAGjCAAAQwQAA3sIAAHBBAAAEQgAASEIAAEBBAACAvwAAgEAAAEBBAABAQAAAMEEAAExCAABQwgAAAMEAAJhBAAAsQgAANEIAADTCAAB4wgAAGMIAALhBAAAQQgAA2EEAAFTCAADwwQAAiEIAAIDAAACGQgAAHMIAAJLCAADgwAAA4EAAAMrCAACgwQAAMMIAAAAAAAAEwgAAmkIAAOBAAABUwgAAEEIAACDBAAAMQgAAgsIAAOBAAAAEQgAAUMEAAIjBAAAgQgAAwMEAADDBAAD4QQAAyEEAAKBAAACkwgAAzEIAAMBBAABAQgAAUEEAABDCAADAwAAAXEIAAEDBAACgwQAAPMIAAJBBAACIQgAAcMIAAPDBAACAQQAAkEEAANjBAADYQQAALMIAALBBAAAwwQAA8EEAAHhCAAAAQgAAEEEAAHRCAACYwQAAAEIAAIhBAACAQAAAgMIAAFDBAABQwQAAPMIAAAxCAADIwQAABMIAAMDAAAAYQgAAwEAAABDBAAAQQgAAMMEAAHTCAADYwQAAoEEAAIA_AABEQgAAgEEAAMBBAACOwgAAPMIAAFDBAABgwQAACEIAALDCAADwwQAAPEIAAMDAAACgQAAAIEEAAADCAABMwgAA4EAAAFxCAAAwQgAAAEIAAAhCAACMwgAAmMEAAAzCAAAwwgAAeMIAAFBCAACoQQAAJEIAAODAAAAwQQAAyMEAALBCAACyQgAAcEEAAIA_AAAAwAAAcMEAAKTCAADwwQAAQEEAAMBAAADgQQAA4MAAAKBBAABYwgAA-MEAAIDAAAAcwgAAaEIAAMhBAABAwQAAAMIAADBBAAAgQgAAWEIAAIBBAACAQQAA0MEAAEDBAAA8QgAAUEIAAATCAACAQAAAIEEgADgTQAlIdVABKo8CEAAagAIAAFw-AAAUvgAAuj4AABA9AAA0vgAAfD4AAIi9AADWvgAAQLwAAOA8AAAEPgAA2L0AACw-AACKPgAAfL4AAKC8AAB0PgAAcD0AAOg9AACGPgAAfz8AAIi9AABsvgAAmj4AAOi9AACAuwAA6D0AAIq-AACYPQAAbD4AAEC8AABUvgAAqL0AAIg9AACovQAAhr4AABC9AADOvgAAwr4AAEC8AAD4vQAAjr4AAIi9AACgPAAAmD0AAMi9AACCPgAALL4AAOi9AABEvgAAZD4AACQ-AACWPgAAiL0AAIi9AABAvAAART8AABQ-AADoPQAAHD4AACw-AABcvgAA2L0AALq-IAA4E0AJSHxQASqPAhABGoACAAAwPQAA4DwAAFy-AAAZvwAALL4AAFA9AAB0PgAAoDwAAOC8AAAkPgAAgDsAAOi9AABAvAAAuL0AADA9AABwvQAABL4AAAU_AACCvgAATD4AAKA8AACIvQAAUL0AAEA8AAAQvQAAQLwAABA9AACAuwAABD4AALg9AABQPQAAyD0AAPK-AACovQAANL4AADA9AACSPgAAqD0AAKa-AABUvgAAoLwAAAQ-AACgPAAAZD4AAGQ-AACIPQAAf78AAAw-AABMPgAAEL0AAHC9AADgvAAAQDwAABA9AAD4PQAA2D0AAFA9AAAwPQAAoLwAAMg9AAAkPgAAmD0AANg9AAB8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=HsXSyqFNDsc","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1278,"cheight":720,"cratio":1.775,"dups":["6031551655068242742"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2557449907"},"13550232807993913874":{"videoId":"13550232807993913874","docid":"34-9-8-ZBF204279C84C44BC","description":"I have proved this series by using C+iS Method to prove cosx+cos2x+cos3x+...+ cos nx, which is sum of cosine when angles are in Arithmetic Progression. For proof of sine series (sinx+sin2x+sin3x+...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3052301/2b4a618af1f6c0e492a9026c4d7eb785/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mHSVogAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dfc0Icq-GW3c","linkTemplate":"/video/preview/13550232807993913874?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cosx+cos2x+cos3x+...+ cos nx || Sum of cosine when angles are in AP || Proof by C+iS Method","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fc0Icq-GW3c\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTM1NTAyMzI4MDc5OTM5MTM4NzRaFDEzNTUwMjMyODA3OTkzOTEzODc0aogXEgEwGAAiRRoxAAoqaGhpaGp5ZWRyY3NiZmJzZGhoVUNTeEdxa3RDYTVGT1FOSTNxM19kSEtnEgIAEioQwg8PGg8_E5cEggQkAYAEKyqLARABGniB9gEK9gEAAAUFDwX5CfwCD_0GAvcBAADjAvD3A_wCAOwECfIAAAAA-RD9_vsAAAAD-_z7_f0BABYJ_f8EAAAAEwUG-fgAAAAKBvYJ_gEAAPn4_QYE_wAABAj7CwAAAAAADvnxAP8AAP8F9QMAAAAADfr4-gAAAAAgAC0jg887OBNACUhOUAIqhAIQABrwAX8ICAHk7s4B1wXIAMki9wDEMw0AERbSALvp8gC8A-EA9ynwAfQE3v_0DP4AzC7-_xPYtAIA2vYAPejo_w3V4QDz_OsBNdrZAE8WEAENG_z-4CIt_QPG-gEUwewA_QPlAPP6KfwQ-fP97QPCAiAVJgENCCwELPslAd2w_QHe8OcF7N3Z_f0HAgTw3f_52AQiAgvQ_f4b4Afz1RPz_fcK__ny9Bz5-jvl-hDe7Az_8gP82d0EAfwB5wQWISP-9Sfr_9fyLgbSFPrxDRsOAA_wAga_3vT4Cc74ATXwAAzz8_v9Dff89fEM_Pz0IfYV5hne8iAALY27Ezs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7U2AcvSRC47xvkQW9ak1zvakIwTy2cgW9P3NGPg7uM72W-X07i_vPvW6ukDydU-K7_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC9R48Pvm2kkTxoOMo8uYZpud2D6zsp2DW8q02iPVTcHb0JdhK9yVfCvOYMAD1C7gK93GoZOvURWL0TfFi9G8lUvJ_xM7y5cB48nYV4Pbw-kLuKBT68t1dLPVZ01rvGpyC9phCDvR8AJz0zG_-8hFkSPbjnWT1iIBk8ei-TvYZ2nr0_s9o8n0xtvELzlDy5Wdc8qMoyPX8U9TyJPG682MIHPUTHmb3yO7K8rfkBvlSlkjwh0d87LOVGPYZNrjxjUJ47rtcEvg2fPj3sRZm8fHuXvO5qKL17LlO8NtVpPb387j1POUs8QgNWPcTdzzx5aKs6w6Novf5OCT1rlP88BynYPf9Z87ygibC8UAgzPQm_GrwkUFS7rBQnvfKrHj3Y7y68GimlPDjuGT2ZW6m7FhgNPG5zXzspr3g7BSOlPdYCO75J5Zo6KLq-vabsub1DpI07ew2WPWS-bT3Lq8a68PlhPRRfDb53hBG7aebmu1hdorwjU5k7F5kjvGcsdb2LuEo8d1nCvS5ORrzupTq8v2unuzrDuTzWNX-8xJJ2O99vpD1cQMM6kaBTvN8mrb0W7Z66DAMWPX0IKrz61FK7kIPSPUaUWz3VHBS4zKwvPcW9s726ocY6mpiuvO4PDDwj3IE7iKZHvVdgg710_2c43WGTPbuXC76lDmg5eqMbPZw-oT3gU-A5qSiYvf3xAz3LRX04eatTPJNxbL2qhgM5XFQLvZwV8b3cnnU5f4zUPCTC9TwzH7y5HWCcvLw7kj2IMbC3Ux6SvUobyL3hc5s3k5uyvOemDT2xIue48UWQPVKtTzyesr84aEYaPcHDWT2lGwQ6Mk94PLT08rxnr5m4vyAzvKwbzz1JDDQ1w4AlPOeOjr3DZnI5w3csPe5IoD1t7Rs5Wsb8vKlQWD0q2gS19kczPaY0cT0K7bG489r2vAj5yr1ah3u2v_PrPawucbxVzFI4yuEDvhDXHjyX_U432kJGPPj6Wr0o4xm4t8Q7PT_ekLxR34U4cU_hPLmAwLqkzK23weMrPtylaLwHiXS5zcd6vdMV7L3mm_i4h2cOvfRlLr3N0hC4u4ilPM7IOz1FHIW35NWevHqJ8b1lVTC4Iv_sPTUpBT7zflu4OaELvdEQhD3l09W4pyUGvs8Zi7v0jjQ2B8mnvAI-ST0wAdi2IAA4E0AJSG1QASpzEAAaYCkGABv4Pv7LDjTyIfgB5-LkDNHn0hL_8-gACwrlA_oHjr73E_8L4yDWpgAAADDa3SbDAO17_O_pAbo39sXE1wA9f7jMMqC_6-XIHOsf7gEiGw86VQDuCrM0FwDsNNwjEyAALQoQGzs4E0AJSG9QAiqvBhAMGqAGAAAoQgAAiEEAAKpCAAA4wgAAhkIAAJDBAABUQgAA8MEAAJTCAABgQQAAiEEAAAAAAADgwAAAZMIAAGDBAACgQQAA2EEAAAzCAAAIQgAANMIAAABBAACAvwAAZMIAAJDBAAAQwQAAUMEAAEDBAACIwQAAmEEAAADCAAD4wQAAqEEAAEDCAABsQgAA2MEAAABBAADgwAAAhEIAAPhBAABEQgAA2EEAAEBBAABkQgAAsEEAAGDBAAAgwgAAUEEAAETCAAAgQQAAEEEAAGjCAACAvwAAOMIAAEDCAAA4QgAAHEIAAPjCAAAAQAAATEIAAGhCAACIQQAAJMIAAOBBAACAwQAAlEIAAMrCAACAQQAAdMIAAEzCAADgwAAAkEIAAJxCAABAwQAAdEIAAEDAAAAgwgAAAAAAACxCAADgwAAAMEEAAODBAABEQgAA-MEAAMDBAAAQwQAAcEEAAIA_AAAMQgAAMEIAAGDBAACAvwAASEIAALjBAADAwQAASEIAAEjCAACAQAAAMMEAADhCAAAgwQAAHMIAAK5CAAAMwgAAQEAAAPjBAACoQQAAYMEAAOBAAABQQQAACMIAACxCAABAwgAAFEIAAEBAAACQwQAAJEIAACxCAAAYwgAAYEIAADBBAAAAwQAAosIAACDBAABgwgAA6MEAAABAAAAAQQAA0EEAAADCAACGwgAA0MEAAGDBAACAwAAAmkIAAAxCAABoQgAAnEIAAODAAAAEwgAAwMEAAABAAADQQQAAsEEAAMBAAABsQgAAiEEAALjBAACgwAAANEIAAIRCAACAwAAAgsIAACBBAAB8wgAANEIAAIBAAACgwQAALMIAABDCAABEwgAADMIAAJjBAACIwQAAgD8AAPDBAAAAwAAAfMIAADBCAAC4QQAAAMEAAPjBAAAIQgAAUMIAAKjBAAB8wgAAoEEAAABBAACGwgAAQMEAAOhBAACswgAAEEEAADBBAAAcwgAAtEIAAHBBAABowgAAgMEAAIBAAACUQgAAAMEAACzCAACQQgAA0EEAABDCAABQQgAAjMIAAOBAAAAcwgAA0MEgADgTQAlIdVABKo8CEAAagAIAAPg9AAAcvgAAyD0AACy-AADIvQAAHD4AADw-AAArvwAAMD0AAMi9AACAuwAALL4AABA9AAB8PgAAbL4AAEy-AAC4PQAAiD0AAKC8AADCPgAAfz8AAIC7AACYPQAA-D0AAI6-AABAPAAABD4AAPi9AABwPQAAND4AAEQ-AADGvgAAuL0AAHQ-AAAsvgAA2L0AAEA8AABkvgAAwr4AANi9AACAOwAABL4AAFA9AABwvQAAhr4AAEC8AADCPgAAQLwAAHC9AACavgAAoDwAADQ-AADOPgAAgDsAAIC7AAAQvQAAcT8AANg9AACAuwAAEL0AADy-AADgPAAAQLwAAGy-IAA4E0AJSHxQASqPAhABGoACAACOvgAAED0AACS-AAArvwAAgDsAAIi9AACSPgAAbL4AAMi9AAA0PgAA4LwAACy-AABwvQAAJL4AAKi9AACAOwAAmD0AABk_AAD4vQAA6D0AAPg9AAC4PQAAEL0AAAQ-AAAwvQAAND4AAKC8AADoPQAA4LwAAKA8AAAkPgAA2D0AAKK-AACgvAAAJL4AAEC8AADOPgAAML0AALq-AAC6vgAAUD0AACQ-AAAQPQAAFD4AAEQ-AAAwPQAAf78AAEA8AADgPAAAmD0AADw-AACYPQAAiD0AAAw-AACovQAAuD0AAKA8AACOPgAAyD0AAKA8AAD4PQAAgDsAAIC7AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=fc0Icq-GW3c","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13550232807993913874"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2430719070"},"12166667574014240005":{"videoId":"12166667574014240005","docid":"34-4-13-Z357276C35E5A23CE","description":"Description: In this video, we will learn to integrate cos -x. Here I have applied cos(-x) = cos(x) identity to find the value of cosine of -30 degree. The URL of the video explaining step by...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1049765/9a50d49ad5c4842703978fad4884e41b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RBMy1gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1VKwhOfuPHk","linkTemplate":"/video/preview/12166667574014240005?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of cos -x| Integration of cos -x | Antiderivative of cos -x | Integral of cos(-x)","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1VKwhOfuPHk\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTIxNjY2Njc1NzQwMTQyNDAwMDVaFDEyMTY2NjY3NTc0MDE0MjQwMDA1aoYXEgEwGAAiQxowAAopaGh5bXlteGpwcnJ0dXB0aGhVQzBiTEFDaHJjY1NMUlFTalprMTQzV2cSAgARKg_CDw8aDz8TYoIEJAGABCsqiwEQARp4gfwJAP37BQD9AgUC-gX-AfD_Afv7__8AAgj7_v8E_gDt_AP6A_8AAPoPA_4GAAAA__P_-Pj-AQAG-wL3-QAAABgC_QD4AAAABgP2Af8BAADv_vT5AgAAAAAE-_4AAAAA_QQM8AAAAAD-_f79AAAAAAD__v8AAAAAIAAtowvhOzgTQAlITlACKoQCEAAa8AF_9w__rgzt_esN_gD49xMBvCM2__w30ADBEyYByf_rAe3z5QDt2c__vSzs_-kCCQAbBdP_9egoASjy2_7U7OH_FQziAfO99gFK7yD__vHN_t4jMP3Kz_cBAOXvAAkMzv7pAxn8B-Du_gvptAkKIDgDGew-APr8OAMDvxMA7AT5At3Q_PkE98sCFefq_bvYKAI4yf4A3SkR_vE04PwWF_0B6wAH9hj57fst_fIHFesS-db2_gfI-hIELvQX-LMNF_4dBiQA9gX86vjnBfYs5vYA5x7U-v74ARPz4vYG_fLp-wf35_DcG_Dyuv4JEBIr8f0gAC1O_As7OBNACUhhUAIqzwcQABrAB8VXw77SskQ9rIKCPVQ2TL2ZPC-9EbaOuuOgub0cbYs8XgUjvNSBDD5SvYC9AtLAu3-DFr6iC2o7IVAHPcuAMz7m0Yi9mGIzPHE9Wr7nFr89hUyovOf-Kr5dy_88SHQqPECKOj0sE1k8LngMvUfOnT3Yv4Y8dCMsvLOudr3rPfC8IIAvvTKlGj1VtIO7TJkKve8a9LxmxjK7m-oDPCAHuj2CkTe9iLKcvMUA6Dvf5qi8398ePGsRsb3HyMg8HxHTvHDQXj2zJeu8hmDLPP1avb2CA1Y7155-vFWnXrxoKyU9-JlEvEcsGDy2LYq8RBwEvJxarDyjHsc7fEj4vK35Ab5UpZI8IdHfO_sFOz7aN9c9RHXKO-rFer1OaRQ852h6PEArdrupY_q82XoEPDbVaT29_O49TzlLPBdc_byUPC09X-HuO1zrxr0-tM88IX3uPLQ4xjtFHSy9XlSBvLg8d7vsUwm9pz2lvOnw0L1sejA96fORvKpzFj0Enio9fPTEO8zJpT3Xfpc8hf6yO8U1Qz34UQ2-CW8su2MqfbyjRcy9hypGvPW5Gj4rNBA9SymiuyKK6T39-ye9wf5rvN6sAT0s0pm9pvSKu22kkTxeyHm9H6w1O3dU67xvwhO9joWVurP-IjxzdVG9VweAvJ34qLvpkXA9VedFu7IS872WMXS9-lmrOZt-vz0Ud_w89IgrOkBr3j0KQ4m88m3luZcjnz37xny9A6wSOoR1Db2L2Ay9vyNwu_mn7zwzd-O8829Zu8o0-j0Te828WYZhOPK_mz00BIO5RogDOZSJ270J3Zo9773oOPJ8Bj3Pm6-9fRngON0qo7xXPcC9kQYeOV_cvL3V4ri8tCVct537xjx14Q08ZBKYudYjqLwHsG29Q2ycuaNHI7w9dIs8WlJKOUDj3Ty1npu9Fq-4tlmiiD0Egq07jlb3OKfBfjwyXHy7-HvPOMgoqrzlohA9DKeQOOKSAz6Ow6W9gjGhOSa_aj0aQ0o83aDQtld9CT2kaXU87TQHuKwTYTwChO89qBqeNvPa9rwI-cq9Wod7tuexYT3tX349CEMguMSIg72vcm09GWuqOI6ItTrZynC9_wlnN4aqeD21IgC92i8DOJIS8TwbDUC99GZjOK2n9j2z6pi8ezs6ubhdk73Pq5C92nVEuCtMHz2dJKK9v2vlNzWsvr3YEWI8JNtoOB2XDD1JD0O-VDFNuSL_7D01KQU-835buCcRIT1eOGY9tuOruAEtQr0kOjU9KNkdt7hLkbx-7yW8aZOSNyAAOBNACUhtUAEqcxAAGmALBwAs7hLgvegj1xbZ-e75-tf14u4Z_9vaAPwF7sYYA97j4RT_GPEB6b4AAAAP9vMszAAEVer8z_QAIwMHxNcmLH_iDki_1gv4-MwE9eXk5hICEBUA0SLSCBL7AFUbCBkgAC3w7UQ7OBNACUhvUAIqrwYQDBqgBgAAiEEAAJrCAACwQgAABMIAAAxCAACYQQAAREIAABjCAABQwgAA-EEAAAzCAABQwQAAQEEAAPjBAACwwQAAAEIAANBBAAAAwgAAAEIAABjCAACAwAAAAEAAAATCAABAwAAAIMIAAADAAABIwgAAEMEAAKRCAAAAwgAAhMIAAMhBAADQwQAACMIAAIjCAAAYQgAAcEEAAIpCAACAwAAAAAAAAODAAACAPwAAAAAAALDBAAAsQgAA2MEAAGBBAADAQQAAREIAAEDBAACAwQAAsMEAAMDAAACwwQAAAAAAAIJCAAC4wgAA-EEAAFxCAAAUQgAAAEIAAFjCAADYwQAAtsIAAODAAAAAwwAAiEEAAGDBAACwwQAAZMIAAKhBAADgwQAAsMIAAAhCAADAwQAAgEAAALDBAAAQQQAAGMIAACDCAACoQQAAVEIAAFTCAADAwQAAMEEAAOBAAACEQgAAYEIAAMBBAAAswgAAuMEAAFxCAAD4wQAA8EEAABxCAACAwQAAkMEAAIDBAADwQQAAkkIAAKbCAACYwQAAwEEAAAxCAACwwQAAQEAAAHDBAAAYQgAAEMEAAEBCAABEQgAAkEEAAABBAAAkQgAAsMIAAABCAAA4QgAAkEEAAPjBAADYwQAAQMIAAJTCAADwwQAAgEEAAIBAAAA4wgAAYEEAAOBAAABAwAAAwMEAAIjBAAAAQAAAQEAAAEhCAACAPwAAikIAAIRCAAAAwAAAmEEAAMjBAADIwQAAgD8AAFxCAAB0wgAAGEIAAKBBAADowQAAgEEAAIA_AADgwQAAMMEAAGDBAAAkQgAAgMAAAFRCAACAwAAAAMAAAODAAABEwgAAfMIAAFDCAADAQAAAgMIAAGzCAACowQAAeEIAALDBAABQQgAAEEIAAHBBAACAvwAAAMIAADxCAACCwgAAjsIAAMBBAADIwQAAIMEAADxCAAAMQgAA2MEAAIDBAACowQAAssIAADRCAAAEwgAAFMIAACjCAAAAQAAAjEIAADhCAACAwQAANEIAACDBAACwwQAAlEIAAFDCAABgwgAA4EEAAEzCIAA4E0AJSHVQASqPAhAAGoACAADYvQAApr4AAOg9AACCvgAAJL4AAMY-AAAwPQAAJ78AANg9AAAcvgAAMD0AADC9AADYPQAATD4AAJ6-AAAsvgAA3j4AAIC7AAA0vgAAuj4AAHc_AADovQAAQLwAAPg9AAA8vgAAND4AAOA8AAC-vgAAiD0AADQ-AABcPgAATL4AAMi9AADIvQAAbL4AAKq-AABAvAAAvr4AAKa-AABwPQAA2D0AAHS-AABQPQAAuD0AAMg9AAAsPgAADD4AAPK-AADuvgAAdL4AAIi9AACAOwAA8j4AADS-AACYvQAAoLwAAH8_AAAkPgAAmL0AACQ-AABAPAAArr4AAJK-AACqviAAOBNACUh8UAEqjwIQARqAAgAAiL0AAMg9AAAsvgAATb8AAI6-AABkvgAA9j4AAHS-AAD4PQAAPD4AAIA7AACgvAAAXL4AAPi9AAAwvQAAgDsAAHy-AADGPgAAJL4AAJ4-AAB0PgAAFL4AAGS-AACIPQAATL4AAEQ-AAA8vgAAUD0AAKi9AADYPQAAcD0AAAw-AACSvgAAlr4AAIa-AABsPgAA2j4AAFC9AACSvgAAVL4AAIC7AABkPgAAMD0AAGQ-AADWPgAAiD0AAH-_AABQvQAAHD4AAAy-AACAOwAALD4AAGw-AAAwPQAABL4AADQ-AABwvQAAFL4AAOg9AACgvAAARD4AAAQ-AACAOwAAML0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1VKwhOfuPHk","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["12166667574014240005"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2063768845"},"10742302042762857256":{"videoId":"10742302042762857256","docid":"34-7-10-ZAF9E5C585E586E70","description":"View more at http://www.MathAndScience.com. In this lesson, we will learn fundamentally what the sine function and cosine function represent. We will learn that the sine function, also written...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3468180/740a07473f27132444b76d17237736c0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LangGQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvuoNyvMvDtA","linkTemplate":"/video/preview/10742302042762857256?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & Cos(x) ?","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vuoNyvMvDtA\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTA3NDIzMDIwNDI3NjI4NTcyNTZaFDEwNzQyMzAyMDQyNzYyODU3MjU2aocXEgEwGAAiRBowAAopaGhta2xsZ2p4aWZna2RzaGhVQ1lnTDgxbGM3RE9MTmhuZWwxX0o2VmcSAgARKhDCDw8aDz8TxRaCBCQBgAQrKosBEAEaeIHtBPv3A_wABgUQBfkJ_ALv_P8E-v__APQA9PMDAv8A6_sD-gP_AAAEEwH9_wAAAP_5_u7__QEAEgQC9AUAAAAbAv0A9wAAABkH9fn-AQAAA_b4-AP_AAABAfQEAAAAAAkLBO0AAAAA_RDzAgEAAAD8Afj7AAAAACAALZzVxjs4E0AJSE5QAiqEAhAAGvABbPgN_4Hv_fkt8QEAN_z3ALQLGf9V9w8AmOX2A9kMwgEtAfgBHeX7_wAe9P_ABwH_9Bjt_vgQJgDeAgb_ERcJAPgN7gAd8-QAMiQXAPUBGwHhIRD_9RMLAOT3AwAr7swA9Pol_Q4G7QEA2eAEAO0U_wUXCQDdDegA2wIJBgUM6AHxEtn-Nej5A-T4Cf_bI-UBJR_3AOrv1f_tIf4ECecFA_gG9QEYAxH9AxbiBioQ8fgaB-gCEAHhAflBAQMfF_QB3eMJ9wn59v0TKvYGGggPBfn2-v3p4AUP8C_yA-kC9gncAgMI8dMBCvr0_Q361vMBIAAtMookOzgTQAlIYVACKs8HEAAawAeM9vi-XgImPPEN6rxUqgQ-WvACvUGfSDy5pfU9OSeGPRrKX73P29g9yOSJvdYvYr2Xx6q-E8fsO74Rnbz9vXQ-klRLvQOx7Dw1eTq-DquRO0p-RDz1oWu-hNMHPXQ1w7ser3Y9fbsbPQ54qryphAq83USIvPMQ17xGlMY9WPE8vU9ZLb0P4CM9oBNnvbnkEz3XVge9g-VjvanDZbwgB7o9gpE3vYiynLz1JUA8h7-mvKBsirx6tqi9ruLDuymL6zvjNU8-edrrvINdwzwhlNc96-J2PQKZHzwMIx09OD25vG85jbw2iYs9bQC2PYRLR7w4oZA8zFiZPESL7Lsyfaq994mIPXF8Zbv19fw9nKIIPesrWbwIjsu9Qk0hvGZ-GrxmZR48CQKeu1YWgbsPr5A8Hfp2OwUCuLz5psQ9zohSPXfkvrwwbAi99KEwvRm-cDmAgDU83PEGPSUHqrs8Yrm9UWwFPQiAnrlQBgI9alukuxNAtTtpV8w9phMkPW0rCzzBi-M80uxwPOcZr7m2FAs9kVSAveVrhbzRj6u75DQfvbKRNbwRS2-8dq7DPP2loDxqEMk7TJOtPHPIvDmbXEc9ojiBvX99nbvDPps9E481vSUkEjxy-e892Gw7PS0eRTqRCw49IdO1PM6cAbyuiQC9ix9-PeyReTrIgIe8nfKovDyY-zu5wyY9IM9OvVPUlbvJXY-9kzfhu7PiJzvsfaQ9WMudPb7OuLqmltI8k8f0u96WQDvsqTA95y4yOx7mDjrEWAu9O-Y3vSC3WzvwTl49c7I-PcFWQjlJfkk9rMVHPWQKXrjuc-O70qGIvcMjPDl2WjK9-xUdvC_ftDcc1g89WmKlPHBd5bl7i-I7DLLAvXq66bf5wOm7-aRuvA4vkLjVcIY91ussPUukVLkSEZ-7nwC6PUsqErkUTTY9xLU1POL9n7n9xhI9GZrhvNmVergdKbE9_E2tPQLbA7hB43i8fEftvWETqzmV4cs65wGHPTIxizcYPFE9Cx7wPAuDAbdTM7W8DiByPSSYIrmIJKO79aYdvUh2RDiUX0e6DWcGPB4xZTc8Xz29HKwkPZIT5jic25k9c24OPSeQvzegzms9zSa4u66rvTf2pEK9MCUXPYPDyDdPiMo8i8AYvLi2trhmgpG9epULvVTUhLdjM1Y9dlG0vT-bnThBSZG9kiWzvBO-Nrdy-KQ7qPmPvOOnxLeIhM89a7JLPYm3hThOsY-8poAUvV9Mu7joVbO9FiTsPM24ITigzos87aZqPX8GLzggADgTQAlIbVABKnMQABpgIv8AKuss7N4LNAb16On33wgO6PLuCP_0AAD999fkAgjdxAQI_xLdAum6AAAAJuf5E9gACVbd9e8e9QoNzaz49gR_KOcJ5tcB49nXAwz_9S8k9CQwANU7vicu8d8NJBM2IAAtVE9JOzgTQAlIb1ACKq8GEAwaoAYAABhCAAAMwgAA4kIAAEjCAACwQQAA8EEAAJZCAACIQQAA6MEAACDCAACgQAAAYEIAAFjCAADgQAAAQMEAAEDBAABUQgAAcMEAAADBAADwwQAAFEIAAPjBAABgwQAAhkIAAEBBAAAQQgAAQMIAAIDBAACOQgAABEIAACjCAAC-QgAAdMIAANBBAABwwgAAcEEAAOBBAACIQgAAmEEAADTCAAAgwQAAHEIAAABBAAAAQQAANEIAAADCAACQQQAAAEEAABxCAACgQAAAAMIAALjBAADgwQAAKEIAAMDAAABIwgAAEMEAAARCAABwQgAAREIAAFRCAAD4wQAAlMIAAITCAACAwAAAZMIAAIDAAACswgAAIMEAACDBAAAAQgAAGEIAAJLCAAAkQgAAgL8AAFjCAACgwgAAQMIAAKDAAABQwQAAKMIAAGBBAAAIwgAAQEEAAEBCAAAwQgAARMIAADDBAAAEQgAAEMIAAIDBAACMQgAAEEEAAABCAACgQQAAcMIAAATCAADAwAAAqEIAABxCAABUwgAANEIAAPhBAACgwQAAksIAAMhBAAAAwQAAfEIAAIBBAACOQgAAhEIAAEDAAADAwQAAEEEAAGDBAAAYQgAAOEIAAGDBAAB0wgAAksIAAGBBAAC4wQAAmEEAAFjCAAAAwAAAUMEAAEBBAAAowgAABMIAAIC_AAAAQQAAAMIAAADBAABUQgAABEIAADBBAAC4wQAAwMEAAOjBAACewgAA0EEAADxCAABAQAAAgMAAAEBBAACgwAAAgMEAAFTCAAAwwQAA4MEAAFDBAACAQQAABEIAAEzCAABQQQAAsMEAALDCAAAQwgAAnMIAAAhCAACIwgAAXEIAABBCAABgwQAAUMEAAOBBAACgwAAAdEIAADRCAACQwQAAWMIAAKBAAAB8QgAAAEEAADjCAABgwQAAkEEAAOBBAACYQQAA-EEAALrCAACYwQAAGMIAAIA_AABwQgAAIMIAAGDBAAAAQQAAEMIAAJhBAAC4QQAAoEAAAEBBAACAwQAAgEEAAEBBAAAQQQAAyEEAADDCAABQwSAAOBNACUh1UAEqjwIQABqAAgAAmL0AACy-AACKPgAA4DwAANi9AABsPgAATD4AAJa-AADovQAAfL4AACy-AACgPAAALD4AAMg9AABEvgAAgDsAAFA9AAAwvQAAfD4AAOY-AAB_PwAA-L0AADA9AACCPgAAvr4AALg9AACSPgAAiL0AAFQ-AACyPgAAHD4AAHy-AACCvgAALL4AABC9AAD4vQAAoDwAALa-AACCvgAAFD4AAOA8AADSvgAAsj4AAKA8AAAUPgAAbD4AAKY-AADCvgAADL4AAIa-AAAsvgAAuD0AAEQ-AAA8vgAAhj4AAHA9AABFPwAAQLwAABA9AABAvAAAoDwAAKC8AAAMvgAAwr4gADgTQAlIfFABKo8CEAEagAIAAAy-AADIvQAAjr4AABm_AAA0vgAAMD0AAKo-AADYvQAAML0AAKA8AABkvgAAmL0AAIC7AAAQvQAAEL0AAKC8AABQPQAA7j4AABC9AAC2PgAAdD4AABA9AADIvQAA-D0AAKC8AACCvgAAEL0AADC9AACgPAAAMD0AAIg9AABEPgAA3r4AADA9AADgvAAAmL0AAAU_AADovQAA0r4AAIa-AADYvQAAjj4AAOA8AAA8PgAA8j4AAOg9AAB_vwAAuD0AAPg9AADIvQAABD4AACw-AABQvQAAnj4AAES-AAB0PgAAoDwAAHA9AABUPgAAHD4AAEw-AACoPQAAQLwAALK-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=vuoNyvMvDtA","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":3840,"cheight":2160,"cratio":1.77777,"dups":["10742302042762857256"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1732153009"},"1933153835296213671":{"videoId":"1933153835296213671","docid":"34-8-15-Z98C92B5D811BE3BF","description":"Trigonometry tutorial on solving the trig equation cos(pi*x)=cos(x). You will learn that the cosine function is not one-to-one, so we cannot simply cancel them out at the beginning. Also, we will...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3119847/446eeeb489f124b8b4ad281a6a68dcf8/564x318_1"},"target":"_self","position":"15","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpXOQ2Nm6dU0","linkTemplate":"/video/preview/1933153835296213671?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Solving cos(pi*x)=cos(x)","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pXOQ2Nm6dU0\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFQoTMTkzMzE1MzgzNTI5NjIxMzY3MVoTMTkzMzE1MzgzNTI5NjIxMzY3MWqvDRIBMBgAIkUaMQAKKmhoeXJra3RxYWd2ZnZxY2JoaFVDejVLS29xM3dfNTBIUnMwbzhwUmRTQRICABIqEMIPDxoPPxOUAoIEJAGABCsqiwEQARp4gff5BPv8BAD4_Qj--wP_AQb2APr5_v4A9vr7_f4C_wD4AAX6BwAAAPEV_v8EAAAAA_v9-_3-AQAH_wL1BAAAAA8G_gj3AAAADf_uAf8BAAD8-_PzAQAAAPz__fr_AAAAAA0B-v3_AAD9DvQCAAAAAPkEAAEAAAAAIAAtluDdOzgTQAlITlACKnMQABpgHhwAHv0q3sj4TM8N_vbs4CfQ6NDwN_8C2gAb__a8CP-r2AcJ_znLA_unAAAAGMX5NeMABWnmHwQNCO8P_NDxQyJlA_QT7RcL7SVSKPH-GkAD_yEVAIEtJRr02vo_EwBQIAAtqhMoOzgTQAlIb1ACKq8GEAwaoAYAAABCAAAUwgAAskIAACDCAAAwwQAAREIAAFRCAACQQQAAiMIAAADBAABQQQAAuEIAAOjBAAAgQQAA-EEAANhBAAAQQQAAiMEAAEBBAACCQgAAgkIAADRCAABAwgAAbEIAANhBAAAAwAAAwMAAAPjBAACAwAAAyEEAAEBBAADAwAAAAEEAAIC_AAAQwgAApEIAADDBAAD-QgAAMMEAAIA_AAAAwQAAAMEAAEBAAACKwgAAIMEAAATCAABQQQAAUEIAADxCAABgQQAAgL8AAMDAAABwQQAAIEIAAODBAADgwAAAHMIAAOBAAAB4QgAA8EEAABDCAACAwQAAPMIAAGDBAAAkwgAAIEEAAEDBAAAMwgAA0MEAANDBAACIQQAAgL8AAMDBAACuQgAAmMEAAKTCAADYwgAA6EEAANjBAAAgwQAA4EAAAJhBAAAAQAAAEEEAAABCAACeQgAAwEAAAGBBAAAwQQAALMIAAMDAAAAQQQAA6EEAAJhBAAAAwQAAoMAAALjBAACgQAAAZEIAAGhCAABwwQAA8EEAAKJCAABAQAAArMIAAIBBAAA0QgAAokIAABjCAABcQgAAYEEAADxCAADAwgAAmEEAADxCAADAQQAAgEIAABDCAABQwQAAaMIAAJBBAADAwQAAYEEAAFzCAAAwwQAAcMIAAMBAAACmwgAAhkIAAFDBAACgQAAAmEEAAChCAAA8QgAA0MEAAJBBAABAwAAAmMEAAPDBAABkwgAA8MEAAFBBAAAwQgAAFMIAAFBBAAA0QgAAgD8AAPhBAACgwAAAcMEAAIjCAABwQQAAgD8AAEDCAAAoQgAA0MEAAMDBAADgQQAAgMEAANhBAACAvwAAgL8AAPhBAABQQQAAOEIAAIA_AAAAQQAAiMEAAMDAAAAYwgAAmMEAAAhCAADgQAAAuEEAANBBAABgwQAATEIAAJjCAACAQQAAbEIAAMjCAABwwQAATMIAAGDBAABoQgAA5sIAAADAAABIQgAAUMEAAEDBAAC4QQAA6EEAAKhBAACgQAAAYMEAAFhCAABwwQAAIEIAADRCAACgwSAAOBNACUh1UAEqjwIQABqAAgAAQLwAAHA9AADWPgAAoLwAADA9AACOPgAAcD0AABO_AACovQAALL4AALg9AAA0vgAAoDwAAGQ-AACivgAALL4AAA0_AABUPgAAqD0AALY-AABxPwAAgDsAALq-AAB0PgAAFL4AALK-AACGPgAAnr4AAJa-AACqPgAAPD4AANa-AAA0PgAA2L0AAGS-AABwvQAAgLsAAO6-AAD2vgAAML0AAIA7AAB8vgAAUD0AALg9AABMPgAAFD4AABw-AAAsvgAABL4AAIA7AACePgAA4DwAAKo-AAAUvgAA2L0AAKi9AAB_PwAA1j4AAAy-AAC4vQAAQDwAADy-AAA8vgAAuL0gADgTQAlIfFABKo8CEAEagAIAAHA9AABMPgAAcL0AADu_AAAUvgAAED0AAI4-AAC4vQAA-D0AAJo-AACAuwAAUL0AAFS-AAA0vgAAgLsAAEC8AABEvgAAET8AAJ6-AACSPgAAcD0AACS-AAAUvgAAUD0AAAS-AABMPgAAXL4AAFA9AABAvAAAHD4AAKA8AACYPQAAZL4AAHS-AADovQAAPD4AAK4-AABUvgAAmr4AAPi9AADovQAAPD4AAHC9AAA8PgAAyD0AAIg9AAB_vwAAcD0AAFA9AACIvQAAVL4AAKg9AAAEPgAAmD0AAIg9AADoPQAAgLsAAEy-AACAOwAAiD0AAPg9AADYPQAAfD4AAIA7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=pXOQ2Nm6dU0","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1933153835296213671"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6350868089202840205":{"videoId":"6350868089202840205","docid":"34-8-13-Z9CF61D9C5ED9B09A","description":"In this video we verify the trigonometric identity cos(x - pi) = -cos(x). To do this we use the difference identity for the cosine function. Algebra Books https://amzn.to/3FzLZEr Real...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1771062/c35348d010006dae265d64e658fe5fdd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ytmmHwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DLdx67VtZP5k","linkTemplate":"/video/preview/6350868089202840205?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Verify the Trigonometric Identity cos(x - pi) = -cos(x)","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ldx67VtZP5k\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFQoTNjM1MDg2ODA4OTIwMjg0MDIwNVoTNjM1MDg2ODA4OTIwMjg0MDIwNWqIFxIBMBgAIkUaMQAKKmhoenpsYmpub211Z2hidmJoaFVDcjdsbXpJazYzUFpuQnczYmV6bC1NZxICABIqEMIPDxoPPxPAAYIEJAGABCsqiwEQARp4ge_6AQD8BQD5BwsG-Qb9AgD89v34_v0A7gT8-AUAAADzAAj8-wAAAP8JAfcAAAAA_QIB9wL-AAAJBvv5BAAAABEI-P33AAAADf_uAf8BAAD59_f9A_8AAAH7_P0AAAAAAA368gAAAAAFA_H8AAAAAP8H_v8AAAAAIAAtfGXeOzgTQAlITlACKoQCEAAa8AF_8df-zubf_-AN6ACzCRABjj0E_xAKsf-lGwEBsATcAAXv7QD3C7n__9zh_-YCCv8eBs3_BL4Z_0j9x_4lxQMA6A36AQa54wJCEhsD7QXT_wMO_P7yGQ4ABObUAOQN6_oQFSj_E-X4AsoWpPsS_kkBDwkzBAzfG_3rwyAD2ib_A--s0ADxGfkI_c0cAOgaRAEc6e37HvXu_vck__kJ__P7_e0H8_EW0v4K6OMJKtgP-_TvCvkc3_gDMQIWAsM9IALQ7zYH3u_68dozEfRZ--0UxOkK-grG9wEj-QL-D9f6BPj-BvDuDvv76QoNB90r-O4gAC2IzPs6OBNACUhhUAIqzwcQABrAB-qw6r7a0jy7-JcTPan3FLxEJcO7dy7MvF8lf70UrzI8GaKSu_a2ST6SUoq9UVcNPVT8H74nzCo9d_O5PMuAMz7m0Yi9mGIzPNlDS75DknY7KX-CvUW89b1n6MQ8rLgnvF8_6Tw355q7I6y8vDAO7jwvGQe8mLZJPLKCX730CKS8eXyWvLGczryXnEm8tu1gvbd_hb3n09m80I_QOvp0wT2uTgm97jLyPLdXSz1WdNa7xqcgvWsRsb3HyMg8HxHTvM_htTpYSiA92l8RvOv7hb0-aEy9hzsRPIjwFL0V3xU9SgQPPSZAqD2QqCs9b9GuvKBv6z0P14W8RDYLvSY19L1-Ay49q7oCPS03wj25RlU9-K6cPMZhqr2rW5097tSaOwATIr2dL7a8CVq3vPRsEzopMFM8uvIePTRT9bwPtCc8RTQTPAib8Lz_Yxw9Fw2ZPFuVlD3qDqi9MDCGvBy2TT2Qrgi9EmmbvCcHrb0XVmC89Pt-vGlXzD2mEyQ9bSsLPOHhBz3ZRey8kXEWPAUjpT3WAju-SeWaOmMqfbyjRcy9hypGvN3Bfj28uyQ9iHuRvE7wzT1mM-e9_1cAPEh8m7oxWze96CM6vCN0Rr2cPYa8kkwYuk0FRr1hqtk8R1dpu8WnBb1qz_q67gyNu69meLwtN5I9nlUPO2wB57swR--9P5qgupt-vz0Ud_w89IgrOpgyAD4Wf0A9LT-1t1GX1jzl0W29oBpMu8naUL0g33S9SNkhuTGXhL2oiSO948SmOO6vDj6fEpG9ftCUObepSz0tWgU9ueJiOYs8tL19NVE9OB8YOInI1Tx9P4W9R1qFOb7F4DusUxW-pozJOU3HkjzEWIu895CpuUV9N7yd9lQ94jJ_Ol9_vb0fGDu9CNU3ubplarvX3by87gHKuDf_Dz0Y2zq9bGDEtaw2Hz0Qaae6Z95uuTJk6zzV1Rm7mTfLuKy6u7pQyI49ZMz6N0HxAz1xT8G91zh7OVdCFjyG6oE8RAOyOKMLRbx2T5M99i1HOOvQPz2z3TM9y4-TuJWjO71FmwO-DdozNwfxXLsQAYw9g51duCL7AL7GXyQ9F5hlOAEHI70frmu9Vr5ytg_bET0hVM48Yp1Ot49bgj3M8q-6QHIBuK2n9j2z6pi8ezs6uc3Her3TFey95pv4uHkzFL1qLJa9SOgwt-Y7OL2oLX89yhDIsr2vBT2lSQm-rZ6FuCL_7D01KQU-835buFKksbyEImc9nekTuKclBr7PGYu79I40Ns88D71ASSa9jE_INyAAOBNACUhtUAEqcxAAGmAd-QAq9xjI8SBQ7ALS-BjwvjH6-9L-_wPm_xYgxwkqDMmvHxb_N9wB9aUAAAA0-wwzAwD-dskD9hnyGRu0rMYnWH_28STozQj-v7scDff4BwbbSTQA5QazGEggCSBCHw8gAC2FBh47OBNACUhvUAIqrwYQDBqgBgAAgkIAAGDBAACaQgAAOMIAAERCAACgQAAAZEIAABBBAACAvwAA8EEAAGBBAABAQAAABEIAANjBAACAPwAAmEEAAMBAAACgwQAAqEEAAADCAABUQgAAbEIAAHDCAAAgwQAACMIAAIC_AABwQQAAwMEAANxCAAAEwgAAAMAAAABAAACEwgAAmMEAAJDCAABIQgAAgL8AAFBCAABwQQAAYEEAAIDAAABgQQAA8EEAAOjBAACMQgAAjMIAAABAAACAQAAAcEIAAEBAAAD4wQAAIEEAAAzCAADgQAAAsEEAACBCAAAAwwAAYMEAAJpCAABIQgAAQEAAAMDBAAAEwgAAOMIAADBBAADOwgAAUMEAACDBAADYwQAABMIAAEhCAABwQQAApsIAABxCAAAowgAA4EAAAMDAAABAQQAAgD8AAMDBAACAQQAAYEIAAAjCAACAQAAA2MEAAABBAADAQAAAJEIAAABCAACowQAAQMAAAJpCAAAkwgAAgEAAALpCAADQwQAAjMIAABBBAAAAQAAAQEAAACzCAACYwQAAZEIAAAhCAABAwgAA4EAAAOBBAAAAwAAAAEAAAPhBAAAsQgAAYMEAAMDBAACAwQAAhsIAAFRCAAAMQgAAEMEAACTCAACgwQAAcMEAABTCAAAcwgAAgMEAAEBBAACYwQAAkEEAAJBBAADgwAAAAMEAAGDBAABAQQAAYMEAAJBCAAAAwQAA7kIAAFhCAAAAQAAAiMEAAMDBAAAAQAAAsEEAADhCAAAowgAA6EEAAJBBAACAwQAAwEAAAHBBAABgQQAAoMEAAKjBAAAQwQAAgMAAAFRCAADgwQAAEMIAALDBAACAwQAArMIAAKbCAACAQQAAUMEAAKLCAABgQQAAAEIAADjCAACAwAAAdEIAABDBAACowQAAgMAAAMDBAACUwgAAfMIAAABCAAD4wQAA4MEAACRCAAAwwQAANMIAABjCAABQwQAAsMIAAMBBAABwwgAAgMEAABzCAACAQAAAmkIAAFhCAACAvwAAYEEAAAxCAACgwAAAMEIAADDBAABQwgAAoMEAAFzCIAA4E0AJSHVQASqPAhAAGoACAACIPQAANL4AAM4-AABcvgAAgr4AAKI-AACAOwAAIb8AAKA8AABcvgAA4DwAADA9AACGPgAArj4AAMK-AAA0vgAAzj4AAEA8AAA8vgAA7j4AAH8_AACWvgAATL4AAHQ-AABwvQAAFD4AAIo-AABkvgAAED0AAAQ-AAAMPgAAzr4AAHA9AACYPQAAHD4AAM6-AACYvQAAlr4AAI6-AACAOwAAFL4AAGS-AABwPQAABL4AABw-AADIPQAA0j4AALq-AAAsvgAAUD0AADw-AABAPAAADD4AAHS-AAB8vgAAML0AAGU_AACSPgAAgLsAAII-AABQPQAAdL4AAFC9AACCviAAOBNACUh8UAEqjwIQARqAAgAA4DwAAI4-AACAuwAARb8AAI6-AACoPQAAbD4AAEA8AACAOwAAjj4AAOC8AAAEvgAAPL4AAHC9AABQvQAA4LwAAAy-AAAvPwAABL4AALI-AACgPAAA0r4AAHC9AACovQAATL4AAOC8AAC4vQAAoLwAABA9AABcPgAAED0AAEC8AACavgAAqL0AAIA7AADIPQAARD4AANi9AACWvgAA6L0AAAy-AAB0PgAAuD0AAAw-AACgvAAArj4AAH-_AADgvAAAoDwAAMi9AAAwvQAAHD4AAIY-AAAEPgAAQDwAAKg9AACAOwAAQDwAAMg9AACAOwAALD4AAAQ-AAC4PQAAHL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Ldx67VtZP5k","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6350868089202840205"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4091923719"},"7916282341203107484":{"videoId":"7916282341203107484","docid":"34-10-0-Z55C48CED58A69AEF","description":"to improve your performance and Clear your concepts from basic for Class 6-12 School and Competitive exams (JEE/NEET) - https://doubtnut.app.link/POyZDvv5Lyb Contact Us: 👉 Have Any Query?","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1670867/cc6812049511eb4b9c563386c6c1731c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Vxez5AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAoTG158ipCI","linkTemplate":"/video/preview/7916282341203107484?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"cosx + cos2x + cos3x=0 | 12 | General Solutions OF Trignometric Equations | Maths | Chhaya PUBL...","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AoTG158ipCI\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFQoTNzkxNjI4MjM0MTIwMzEwNzQ4NFoTNzkxNjI4MjM0MTIwMzEwNzQ4NGqIFxIBMBgAIkUaMQAKKmhoeGNscGhrYnl4bHJ5bWRoaFVDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQRICABIqEMIPDxoPPxPjAYIEJAGABCsqiwEQARp4gfb6Av4BAAD4BwwH-Af9AhAIAwv1AQEA-v4B-QQD_wDs-BH8_f8AAAEN-v0FAAAA-vz0-fX-AQAY9_v58wAAAAkNBvv5AAAAGAb1-f4BAADi-vz3AgAAAAv1AQcAAAAACQoE7gAAAAD-CvkLAAAAABP7AAH89P4AIAAtrT7ROzgTQAlITlACKoQCEAAa8AF_Gtb_0-ni__cIEwHDDPn_jBYN_x8p3wC9-yMA2wz3Ac0L-ADZ9e__4hMmAcskFAA2087-DPgBADC3DQL_5-kACiUgASSyHwBcLwUABNTUAf_9QP78_gIA_NH6ABwO5P3-4yoA_NvdAQwP4wI37iECGVALA_8EHwXu1QAB3Pv8Avb73AAFGP0GGdr4_-HUKAP8_OIH_Dvp_uYi5wIjuBH_6eIK9A8o7gU6_AIEIBL-Cs7g5fz83-v6SQcDCbwYAvf69REB8wT-BBUOBPLk4_38DOfzBifm9ggEDvID7RgI9wQTAv_mMQoB7OYMEvQWDfcgAC0Y8Aw7OBNACUhhUAIqzwcQABrAByGsrr64Hb86scOYPKKY3L0hg0s7fZDIu_iDRr1WwYO87cT6u80-zz1KZ6u9V2erPPjBgb5_6Pi8RGlPPcuAMz7m0Yi9mGIzPO_lTr4QqEM9GKzAuxUcTr6sTcg8NZcfO0VmXj6eYH-8OL8BvUG2HD7BMKo8jUl7O2CtSr7BPtU8CkONOz7ynb0ZgBw92FvvvOWAeD1HIUS9GwsOuxhaHT5qB3G7tIUQPC5kH71UOtg9vZOqvOrVu72ixzk8kExHvVcE3z0-fgq9M5MePfElmb2H1P689VHhPMkaSjoKMac90zuNOzvlrL16foc8IolePC5qYT1m52M96a2NOzJ9qr33iYg9cXxluxsqmz1YnUY930wvu71AxD3iIJE9oWzlPNGwmLy5hr48vu-EPHmDXLugKhG8lZuoPLXMiL1F0D08uhwIPAlkwDzPWXU9hWOxPN1rNz2MnKo9BH6DvPvP9TqyBc48stS6PGTMnbyoXYI7VonoPF7bGz6a_rI7wq8FPMLW0TwFSIk9mR3YPPA2jz3snMu8wpvaPPnj7rtbYfq9hQK-O3446D1CQIA7fH0QvIZanj0nUES6XTeAvPFum73Jy5q9Xm0BvNLuxjzvQs48-aouu88ZrLxbqaE9LFV1u7XFsTsUWCW8LjnRu8Ub2byaFX67IK9uOyjMlb2A-SC8y0OuOw2ajLwXmWU9qtpJu-s3Mz0xZ1E9xnH5Ot4c0zz0U9y9g-GWOjm0SDzX3Ry-LNtGujS1ET2Fx4i8ch-xunkBqz0iwbe7KPU2OYJHZbyh2ys9csMjOeYpozp-7a897o7BOJkunztMf8C9hpRWOHvmiz0HKfi96PmyOezeKr14Rqu9eBXduD636bptDRu8MOVKObPFILtRQMS9bz3sOPzex7snxi09w5dguMKSAjxZUQO9cjH3tqMeJ71GHLy8hI-pt3Fmpb1yYpk8Quj-OYK_hD0-iE49DmtHODUHyD3icjy8RV6fOPJgUjpXKw-8VXGEtxeFeD0nvOQ96I4yt0cGlLxxch8-_cNmOJ0ORzt3nwO-Q96Mt83nXD1HM5s91S0luZst7rvTW808GcECOTdbLz0yaDK9vA4AOOxKsD2M1tE9ZqeUOK7H8zzNNKu8C16PNZlK3z2Ac9A8VLi-uBZOAr4wq2a9VSpWOFG5Dr3pctS8OP7vNiBNq73ORIc9Zzw0OINXJr11giy9StwbtxQ9NT2uI1g99NCcOLbKnTzc1Ss9X9lwuFLbn7s0_169UGTWN-sWBr1JMoa8u4WfOCAAOBNACUhtUAEqcxAAGmA1-gA4_EbO_esj9wXcPhHt0QLfRMEI_-j__x9A9O_2QeXLDQwALvAN3aMAAAA36uby-QDlf7DkKAnyO_7TluQHF1jhIyPTohjp1-UtLwYBDjjqHBMA0PalQz3a0D1CHjQgAC3GBxo7OBNACUhvUAIqrwYQDBqgBgAAcEIAAIhBAACGQgAAFMIAADhCAAA4QgAAhkIAAIhBAACAwgAAEMEAABxCAADgQAAAoMEAACDBAAAAwQAAUEIAADDBAAC-wgAASEIAAHDCAAAAwAAAEEEAAJjCAADYQQAAgMEAAPDBAAC4wQAAMMIAAMBAAAAQwgAAQEAAAAxCAABEwgAAQEAAAPDBAACgQQAAgMEAAKhBAADAQAAAsEEAAADAAACAwQAAIEEAADzCAABAQgAAgMEAADhCAAAgwQAAQEIAAIA_AABAwgAAGMIAACxCAABsQgAAJEIAABBBAACKwgAAGMIAALBBAACgQgAAkEEAAEDBAABIwgAAhMIAAGxCAACUwgAA4MAAAAAAAACywgAAPMIAAChCAACSQgAAeMIAABBBAACgQQAAoEAAAHzCAABAQAAAAEIAABxCAAAEQgAAyEEAAATCAACYwQAAHMIAABxCAADgQAAAcEEAAJpCAACwwQAAUMEAAAxCAACqwgAAiEEAAAxCAAAswgAAQMIAAABCAABAQgAABMIAAODBAACYQQAAAMEAAABCAABgwQAAqMEAAIDCAACoQQAAAMAAABBCAABoQgAAAMEAAIDAAADwQQAAjsIAAJBCAAAwQgAAkMEAADDBAACwwQAAPMIAAKDBAAD4QQAA4EAAANDBAADAwQAAEEIAAKhBAAB8wgAABMIAAEjCAAC6wgAAQMEAAEBBAAAgwgAAIEIAADhCAADAwAAAAEEAACzCAACYQQAA2MEAAHBBAAAcwgAAYEEAACBCAAAUwgAAdEIAAIC_AAAgQgAAPMIAAODAAAC4QQAAEEIAAFRCAAAAAAAAyMIAAGDBAABgwgAA4MEAACjCAADAwAAA2EEAAAjCAACgwAAAMMEAACDCAADwQQAAUEEAAAjCAACgQAAATMIAAHBBAAAUwgAARMIAAIBBAAAgQQAAUMEAABxCAAC4wQAAkMIAANhBAAAMQgAAEMIAAJBBAAA8wgAAgsIAAMhBAACAwAAAukIAACBBAAAAQQAAgkIAAKhBAADoQQAAlkIAAJDBAAAwQQAAoEEAAMBAIAA4E0AJSHVQASqPAhAAGoACAACYPQAAyL0AALg9AACYvQAAgDsAAN4-AADgvAAAQ78AAES-AAD4vQAAgLsAAAS-AAAwvQAAnj4AACS-AAC-vgAAlj4AAOA8AADYPQAACz8AAH8_AAAsPgAAFD4AAJg9AAAQvQAAFL4AAIA7AABAvAAATD4AAAQ-AABUPgAA3r4AABA9AADoPQAAoLwAAEA8AADgPAAAML0AAL6-AACCvgAA4LwAACS-AADgPAAAqL0AAHC9AACovQAAjj4AAHy-AAAwvQAA0r4AAHC9AACIPQAAhj4AAHA9AADSvgAA4LwAAGM_AACYPQAAUL0AAKC8AABkvgAAyD0AANg9AACKviAAOBNACUh8UAEqjwIQARqAAgAAhr4AAKg9AABQPQAANb8AAOC8AACOvgAA-D0AAAS-AABQPQAAuD0AAAQ-AACovQAAUL0AAFy-AACoPQAAUD0AAIg9AAARPwAAcD0AAHQ-AAAwvQAAyD0AAPi9AADovQAAcL0AAII-AABwvQAAoDwAAKi9AACYPQAAUD0AAEQ-AAC4vQAAML0AADA9AACYPQAAJD4AABQ-AAB8vgAA-L0AAKg9AACIPQAAXL4AAPg9AABQvQAA-L0AAH-_AACovQAAiL0AAAS-AAA0PgAAuL0AAFA9AABwPQAAmD0AAMg9AACAuwAAyL0AAOi9AADYvQAAQLwAAGS-AACIvQAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=AoTG158ipCI","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7916282341203107484"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1336115072"},"10717191263654253003":{"videoId":"10717191263654253003","docid":"34-8-3-ZE41943A72DF2C1E9","description":"in terms of x 03:28 Rewrite expression 03:31 Add integration constant +C 03:37 Final answer! 03:44 See more!","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3674877/38dda0dd662c1bdcdf60906e4f0e39da/564x318_1"},"target":"_self","position":"18","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DgcA2oeSE1yg","linkTemplate":"/video/preview/10717191263654253003?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Integral of (cos(x)-1)/(cos(x)+1)","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=gcA2oeSE1yg\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTA3MTcxOTEyNjM2NTQyNTMwMDNaFDEwNzE3MTkxMjYzNjU0MjUzMDAzaq8NEgEwGAAiRRoxAAoqaGhxdGJhaXp3Y2h2dmhoYmhoVUNOTFJ3aVFTUGxBbl9oaUVNMnlXSXdnEgIAEioQwg8PGg8_E_YBggQkAYAEKyqLARABGniB9QQA-PwFAPYI_QT4BP8B9gP9-Pn9_QD2B_z__wL_AOsDBgAC_wAA8RT-_wQAAAAF-wf1-_0BAAf_AvUEAAAAEQj4_fcAAAAGA_YB_wEAAPj47P4C_wAA_gb9Bf8AAAD5DgTxAAAAAAUH_v4AAAAA_P0D_AAAAAAgAC0r5N47OBNACUhOUAIqcxAAGmAOHwAbABvtvhIy6Anu8woX-_vz3f4bAPnrAA4M9dYF9O7t7gr_9-ME88wAAAACDf400gD1QhAMw_P-GAUbwv3_Gn_qGx745_vnAPMW4AUH8RkJ7AMA0RXv_vH5IC0fDCYgAC2Dq3A7OBNACUhvUAIqrwYQDBqgBgAACEIAADTCAADMQgAAwMEAAPBBAACQwQAAWEIAAABBAAA0wgAAUEEAAADBAADowQAAJEIAAPBBAADgwQAAAEIAABxCAACCwgAAfEIAABjCAAAcwgAASEIAABzCAACAvwAAFMIAAITCAAAkwgAAgMAAAM5CAAAkwgAAGMIAAMBAAAB8wgAAHMIAADTCAABkQgAANEIAAEBCAAAAwgAANEIAABTCAADgwAAAMEEAAFTCAACQQQAAcMIAADBBAAAAQgAA2EEAAJjBAAAAAAAAgEAAACBBAAAgQQAAgEEAAOBBAACqwgAAUMEAAKBAAACwQQAAKEIAADTCAABAwgAAgMIAAGDBAADwwgAAsMEAAEzCAABAwAAAKMIAABBCAACwwQAAjMIAAARCAABQwgAAQEEAAMBAAAAgwQAAoMAAANDBAAAwwQAAikIAACjCAAAAwgAA4EAAACBBAAAoQgAAAEEAAAxCAACYQQAAoMEAAGRCAAAMwgAAKEIAAJpCAAAUwgAADMIAAEBAAAAQwQAAgEIAACDCAABswgAAAMEAANBBAABwwQAAIEEAAKhBAAAAQAAAQEEAACRCAADIQQAAOEIAADDBAADoQQAApsIAAMpCAACgQQAAwMAAADjCAAAowgAAWMIAAJTCAAAAwAAAuEEAAADBAABgwgAAAEEAAKBAAADIwQAAgL8AACDCAACIwQAAgEEAAGBCAAAwwgAAzkIAAPBBAAAAQQAAcMEAACzCAABQwQAAsMEAAMBBAAAAwgAACEIAAExCAABwQQAA-EEAAIA_AAAQwgAA4MEAAGDBAAA0QgAA4EEAANBBAACAQQAAyMEAAEDBAAAkwgAAiMEAAGjCAADIQQAAUMIAABzCAAAwwQAAlkIAACjCAABoQgAADEIAAIBAAADAQQAAgEAAAPhBAACAwgAA8MEAACxCAAB8wgAAgMEAABRCAABQQgAAHMIAAAzCAACIwQAAmMIAAIhBAADgQAAANMIAAFDCAAAAQAAAiEIAAGBBAACgQAAAwEEAAADAAAAswgAAaEIAACDBAAAUwgAAuEEAAIDAIAA4E0AJSHVQASqPAhAAGoACAADgPAAAnr4AAOC8AAC4vQAAHL4AAJY-AABkPgAAF78AADQ-AACYPQAA4LwAAIi9AACIPQAA2D0AAIa-AAAcvgAAkj4AADA9AACAuwAAFT8AAGk_AACYPQAAEL0AAFA9AADIPQAAmD0AABw-AACavgAAdL4AAIo-AAAcPgAAoLwAAOC8AAAUPgAAdL4AAEy-AADIPQAAfL4AAM6-AAAMvgAA2D0AAOK-AAA8PgAAUD0AAFQ-AAD4vQAAoLwAAHS-AAANvwAArr4AAFC9AACgPAAAAT8AAIC7AADovQAA4DwAAH8_AACAOwAAML0AAOC8AAD4PQAAUD0AAEy-AAADvyAAOBNACUh8UAEqjwIQARqAAgAAmD0AAIg9AABsvgAAQ78AAAy-AADIvQAAwj4AAHS-AACIPQAARD4AAKC8AAAQPQAAJL4AACS-AADgPAAAEL0AAFy-AADKPgAAhr4AAJo-AACIvQAA-L0AADy-AADoPQAADL4AAOA8AACIvQAA4LwAAJg9AADgPAAAgDsAAAQ-AACevgAAir4AALa-AABsPgAAdD4AAKC8AABMvgAAXL4AALi9AABUPgAAqL0AAGQ-AACCPgAA4DwAAH-_AAAwvQAAjj4AAIC7AACYvQAAQDwAAKg9AACAOwAAHL4AABQ-AACgvAAAuL0AAKC8AAAwPQAADD4AAAQ-AACYPQAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=gcA2oeSE1yg","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10717191263654253003"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"10450009093822888055":{"videoId":"10450009093822888055","docid":"34-9-5-Z541D07136F6B6E6F","description":"To ask Unlimited Maths doubts download Doubtnut from - https://goo.gl/9WZjCW The graph of the function, `cos x cos (x +2) -cos? (x+1)` is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2407804/d3939b3d12a769da16ce0b9bed35a18f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/sjFjlwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGMV26RcepZA","linkTemplate":"/video/preview/10450009093822888055?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The graph of the function, `cos x cos (x +2) -cos? (x+1)` is","related_orig_text":"CosX","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"CosX\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GMV26RcepZA\",\"src\":\"serp\",\"rvb\":\"Eq8DChM1MTYyODQ1NjYzNzMxNjA1NTM3ChM4NDA3MjM3MTQyODg0NDU3OTM1ChQxNzYzODMwNzgxNzk2NTY3NjYxNAoUMTA3NTU4NzYxOTA1NjQ2NTQ0MjcKEjEwMjIxNTk4OTUyNDU1NzY2NwoUMTM3MTc3Njg2NjM4MzgzODc4NzMKFDE3MDMyNDk3NTEzMTI2ODIwNDY0ChQxNzU2NzI0ODA0MTY1NjE3Mjg5MAoUMTcyNzgxMTUyMjA5NzM1NTk5NDUKEzYwMzE1NTE2NTUwNjgyNDI3NDIKFDEzNTUwMjMyODA3OTkzOTEzODc0ChQxMjE2NjY2NzU3NDAxNDI0MDAwNQoUMTA3NDIzMDIwNDI3NjI4NTcyNTYKEzE5MzMxNTM4MzUyOTYyMTM2NzEKEzYzNTA4NjgwODkyMDI4NDAyMDUKEzc5MTYyODIzNDEyMDMxMDc0ODQKFDEwNzE3MTkxMjYzNjU0MjUzMDAzChQxMDQ1MDAwOTA5MzgyMjg4ODA1NQoUMTMyMTM0MTE0OTA5MTE3MjAzOTYKEzQyNjY4MzgyMDI2MDQwNDg2NDAaFgoUMTA0NTAwMDkwOTM4MjI4ODgwNTVaFDEwNDUwMDA5MDkzODIyODg4MDU1arYPEgEwGAAiRRoxAAoqaGh4Y2xwaGtieXhscnltZGhoVUNjdjdwc3BHSG1NN0FPeXd1TE0xdWZBEgIAEioQwg8PGg8_E6ABggQkAYAEKyqLARABGniB9QQA-PwFAPQEBQH5A_8B9vn7_Pr-_QD2-_v9_gL_APgABfoHAAAA-hAD_gYAAAAL__wB_v8BAAAA__sDAAAAEQj4_fcAAAANAO4B_wEAAPn39_0D_wAAAAT7_gAAAAAICgPvAAAAAAUM-QMAAAAA_AP_-P8AAAAgAC0r5N47OBNACUhOUAIqhAIQABrwAX8HDQDC--H_vBbeAOo_5ACZNCr_CjjvAOLIAAHBGtAAxfj6AeT9AAAE_yz_whjyATvPyf7t1xT_MNEQ_w3UDQDo-vwB6OP6AWUzBQAF9O4AzBsB_fba6f79vtkACg3K_hHe-fzv-935IRrDAhzhMwMXIwkBDOAb_dik_QHM5BEDqerS_gwqBQPt2P_4vQ4TAwrpGAYOMAj4zgL9Bv3mDAfB8x_-6RPuAwb9CgojDvED3gT-BfsO_P1GEAP1wuQVCgcRHPj4EhP3IdIJBTXJFALR6_fwJtPlAhb88AoSwfjvG9H58d8L9_P58fwR3xj_-yAALVzRADs4E0AJSGFQAipzEAAaYA4OADLTK8Tu-EHbPdzY59XlCO7x9AP_D9wAIQzm-_gJytLsD_8b2wn1sAAAACDr-S7jAPlm5g_2Evca3xS-5RI3fwwIN5XU5v7e9C0jCgAU_uIMIgCdL90JK-jtOicuRiAALbUsLTs4E0AJSG9QAiqvBhAMGqAGAADgQQAAqMEAAHRCAAAQwQAA4EEAABxCAAB0QgAAAAAAAMjBAACowQAAPEIAADjCAAAAQAAAkMEAAADAAAAQwQAAuEEAAMTCAABAQgAATMIAAATCAADwwQAAkMIAAIBBAACKwgAAwEAAABTCAACAvwAADEIAADxCAAAAwgAAOEIAANDBAABgwQAAnsIAAABBAADAQAAA0EEAAHzCAABYQgAAKMIAAMDBAACAvwAASMIAAADAAACIQQAAYEEAAKhBAABYQgAAUEEAAHDBAACAwgAAoEAAAAhCAAA8QgAAgMAAAFTCAACAPwAA4EEAABBBAABgwQAAEMEAAHjCAABcwgAA8EEAAOzCAABAwgAAOMIAAJTCAABYwgAA2EEAAAxCAADgwQAAjMIAAJhBAAAQQQAAhMIAANDBAAAwQQAAyEEAAKDBAACGQgAAoMAAAAAAAABgwQAAPEIAAAxCAADIwQAAXEIAAAhCAAAAQAAAEEIAALTCAADwQQAA0EEAAITCAADAwQAA4EAAAGBBAABQQgAAmMIAAAjCAAAAwAAABMIAAMBAAABAwAAACMIAANBBAAAgwQAAokIAAFhCAACowQAAgD8AAFBBAADYwQAAYEIAAEBCAAAQwgAAgMAAAEDBAAB8wgAAOMIAABBCAAA0wgAAMMIAAEDCAAAgwQAAGEIAAMjBAACIQQAAqMEAAIDCAADAwAAAEMEAAIzCAAAEQgAAAEIAAPBBAACAQQAAAMIAAIC_AAAgQQAAcEEAAJDBAADAQAAAgEIAAEDAAACeQgAAgEAAALBBAACYQQAAgEEAAJBCAAAsQgAAikIAAABBAACcwgAAgMAAANDBAAAEwgAAfMIAAJhBAACwQQAAwEEAAChCAABAQAAAAMAAALpCAACoQgAAAMIAAJBBAADgwQAAQEEAACTCAAAIwgAAAEAAAPjBAADoQQAAOEIAADhCAABEwgAAIMEAAADAAADYwQAAMEEAAIBAAAAYwgAA-EEAAODAAAAAQAAAwEEAAHDBAACIQgAA0EEAAKDBAABoQgAAEMEAAABBAAB8QgAAIEEgADgTQAlIdVABKo8CEAAagAIAAHA9AACmvgAADD4AANi9AAA0vgAAjj4AALg9AAAVvwAAyL0AABC9AACIPQAAFL4AAIC7AACCPgAAwr4AAAy-AADGPgAAgLsAABA9AABsPgAAfz8AAKA8AAD4vQAARD4AAKg9AAAwPQAA6D0AAJq-AAAwPQAAED0AABQ-AAD4vQAA4DwAAMi9AACovQAANL4AAHw-AADKvgAA4r4AAOA8AAAQvQAAZL4AALg9AABcPgAARD4AAMi9AAA8PgAA6L0AAOi9AAB0vgAAyD0AABy-AADePgAAyD0AAKg9AAAQPQAAST8AAGQ-AAAEvgAAHL4AACQ-AACIvQAAiL0AANK-IAA4E0AJSHxQASqPAhABGoACAACgvAAAPD4AADS-AAAzvwAAHL4AAOC8AACqPgAAEL0AAPg9AAB0PgAAiD0AAFA9AABEvgAABL4AAEA8AABAvAAAFL4AAOI-AACKvgAArj4AAIA7AABwvQAARL4AAEC8AAAEvgAAND4AAFA9AACYPQAAcL0AADw-AABQPQAAiD0AANK-AAAMvgAAdL4AACQ-AACCPgAA4LwAALa-AAAUvgAA6L0AAFA9AACgPAAAuj4AAEQ-AAC4PQAAf78AAEA8AACAuwAAED0AAEy-AAA0PgAAyD0AAOC8AACYPQAA-D0AAEC8AADovQAABD4AAKC8AADoPQAABD4AACw-AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=GMV26RcepZA","parent-reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10450009093822888055"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"680226973"}},"dups":{"5162845663731605537":{"videoId":"5162845663731605537","title":"Defining \u0007[cos\u0007](\u0007[x\u0007]) and sin(x) using a unit circle","cleanTitle":"Defining cos(x) and sin(x) using a unit circle","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zUgic_m8DjQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zUgic_m8DjQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeE8xZmNyeDVBQnQ3aEtRYV9teUNnQQ==","name":"Radford Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Radford+Mathematics","origUrl":"http://www.youtube.com/@RadfordMathematics","a11yText":"Radford Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":586,"text":"9:46","a11yText":"Süre 9 dakika 46 saniye","shortText":"9 dk."},"views":{"text":"8,2bin","a11yText":"8,2 bin izleme"},"date":"13 mar 2018","modifyTime":1520891208000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zUgic_m8DjQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zUgic_m8DjQ","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":586},"parentClipId":"5162845663731605537","href":"/preview/5162845663731605537?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/5162845663731605537?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8407237142884457935":{"videoId":"8407237142884457935","title":"\u0007[cos\u0007](\u0007[x\u0007])=x","cleanTitle":"cos(x)=x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NHHT79MQto4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NHHT79MQto4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdEFJczFWQ1FyeW1sQW53M21Hb25odw==","name":"Flammable Maths","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Flammable+Maths","origUrl":"http://www.youtube.com/@PapaFlammy69","a11yText":"Flammable Maths. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1061,"text":"17:41","a11yText":"Süre 17 dakika 41 saniye","shortText":"17 dk."},"views":{"text":"70,8bin","a11yText":"70,8 bin izleme"},"date":"9 eyl 2021","modifyTime":1631188835000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NHHT79MQto4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NHHT79MQto4","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":1061},"parentClipId":"8407237142884457935","href":"/preview/8407237142884457935?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/8407237142884457935?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17638307817965676614":{"videoId":"17638307817965676614","title":"Proof of the derivative of \u0007[cos\u0007](\u0007[x\u0007]) | Derivative rules | AP Calculus AB | Khan Academy","cleanTitle":"Proof of the derivative of cos(x) | Derivative rules | AP Calculus AB | Khan Academy","host":{"title":"YouTube","href":"http://www.youtube.com/v/PszFmdiMUcs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PszFmdiMUcs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNGEtR2Jkdzd2T2FjY0htRm80MGI5Zw==","name":"Khan Academy","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Khan+Academy","origUrl":"http://www.youtube.com/@khanacademy","a11yText":"Khan Academy. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":197,"text":"3:17","a11yText":"Süre 3 dakika 17 saniye","shortText":"3 dk."},"views":{"text":"17,9bin","a11yText":"17,9 bin izleme"},"date":"25 tem 2017","modifyTime":1501008557000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PszFmdiMUcs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PszFmdiMUcs","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":197},"parentClipId":"17638307817965676614","href":"/preview/17638307817965676614?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/17638307817965676614?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10755876190564654427":{"videoId":"10755876190564654427","title":"\u0007[cos\u0007](-\u0007[x\u0007]) | cos(-A) | cos(-theta) | Identity for \u0007[cos\u0007](-\u0007[x\u0007]) | value of cos(-A)","cleanTitle":"cos(-x) | cos(-A) | cos(-theta) | Identity for cos(-x) | value of cos(-A)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Na2iu-D5P9w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Na2iu-D5P9w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":128,"text":"2:08","a11yText":"Süre 2 dakika 8 saniye","shortText":"2 dk."},"views":{"text":"12,1bin","a11yText":"12,1 bin izleme"},"date":"5 şub 2019","modifyTime":1549324800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Na2iu-D5P9w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Na2iu-D5P9w","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":128},"parentClipId":"10755876190564654427","href":"/preview/10755876190564654427?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/10755876190564654427?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"102215989524557667":{"videoId":"102215989524557667","title":"\u0007[cos\u0007](\u0007[x\u0007])=x, find approximate x","cleanTitle":"cos(x)=x, find approximate x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ti0vcIqwj5o","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ti0vcIqwj5o?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbi1IcnF6WUlta0QzclR2ekRtWk9XUQ==","name":"Math Elite","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Elite","origUrl":"http://www.youtube.com/@MathElite","a11yText":"Math Elite. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":236,"text":"3:56","a11yText":"Süre 3 dakika 56 saniye","shortText":"3 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"13 haz 2021","modifyTime":1623542400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ti0vcIqwj5o?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ti0vcIqwj5o","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":236},"parentClipId":"102215989524557667","href":"/preview/102215989524557667?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/102215989524557667?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13717768663838387873":{"videoId":"13717768663838387873","title":"Why \u0007[cos\u0007](-\u0007[x\u0007])= \u0007[cosx\u0007]?","cleanTitle":"Why cos(-x)= cosx?","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YUUYse59AlE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YUUYse59AlE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM2ZocjRZYW5aWGVOazQzMUZGZ0FLZw==","name":"Y=mx+c","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Y%3Dmx+c","origUrl":"http://www.youtube.com/@mathew_pang","a11yText":"Y=mx+c. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":739,"text":"12:19","a11yText":"Süre 12 dakika 19 saniye","shortText":"12 dk."},"views":{"text":"22,7bin","a11yText":"22,7 bin izleme"},"date":"30 eki 2019","modifyTime":1572393600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YUUYse59AlE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YUUYse59AlE","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":739},"parentClipId":"13717768663838387873","href":"/preview/13717768663838387873?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/13717768663838387873?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17032497513126820464":{"videoId":"17032497513126820464","title":"Integral of \u0007[cos\u0007](\u0007[x\u0007]) vs derivative of \u0007[cos\u0007](\u0007[x\u0007]), with Behind THE Scenes!","cleanTitle":"Integral of cos(x) vs derivative of cos(x), with Behind THE Scenes!","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=D_n_xjl9Ut0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/D_n_xjl9Ut0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX1N2WVAwazA1VUtpSl8ybmRCMDJJQQ==","name":"blackpenredpen","isVerified":true,"subscribersCount":0,"url":"/video/search?text=blackpenredpen","origUrl":"http://www.youtube.com/@blackpenredpen","a11yText":"blackpenredpen. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":99,"text":"1:39","a11yText":"Süre 1 dakika 39 saniye","shortText":"1 dk."},"views":{"text":"37,7bin","a11yText":"37,7 bin izleme"},"date":"12 kas 2016","modifyTime":1478981927000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/D_n_xjl9Ut0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=D_n_xjl9Ut0","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":99},"parentClipId":"17032497513126820464","href":"/preview/17032497513126820464?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/17032497513126820464?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17567248041656172890":{"videoId":"17567248041656172890","title":"\u0007[Cos\u0007](\u0007[x\u0007]) Function and Inverse of \u0007[Cos\u0007](\u0007[x\u0007]) Function | All About \u0007[Cos\u0007](\u0007[x\u0007]) Function |...","cleanTitle":"Cos(x) Function and Inverse of Cos(x) Function | All About Cos(x) Function | by GP SIR","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=FQEN3SCitkU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FQEN3SCitkU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDck9tRmJIZ2ZfazRway1qWVJteWhqdw==","name":"Dr.Gajendra Purohit - GATE / IIT JAM / CSIR NET","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Dr.Gajendra+Purohit+-+GATE+%2F+IIT+JAM+%2F+CSIR+NET","origUrl":"http://www.youtube.com/@gajendrapurohit-GATE-NET-JAM","a11yText":"Dr.Gajendra Purohit - GATE / IIT JAM / CSIR NET. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1051,"text":"17:31","a11yText":"Süre 17 dakika 31 saniye","shortText":"17 dk."},"views":{"text":"3,9bin","a11yText":"3,9 bin izleme"},"date":"13 kas 2022","modifyTime":1668297600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FQEN3SCitkU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FQEN3SCitkU","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":1051},"parentClipId":"17567248041656172890","href":"/preview/17567248041656172890?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/17567248041656172890?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17278115220973559945":{"videoId":"17278115220973559945","title":"Finding values of \u0007[cos\u0007](\u0007[x\u0007]) and sin(x) with the unit circle - In Second Quadrant - Tutorial 2","cleanTitle":"Finding values of cos(x) and sin(x) with the unit circle - In Second Quadrant - Tutorial 2","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UD1MTBrFHyw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UD1MTBrFHyw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDeE8xZmNyeDVBQnQ3aEtRYV9teUNnQQ==","name":"Radford Mathematics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Radford+Mathematics","origUrl":"http://www.youtube.com/@RadfordMathematics","a11yText":"Radford Mathematics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":737,"text":"12:17","a11yText":"Süre 12 dakika 17 saniye","shortText":"12 dk."},"date":"16 mar 2018","modifyTime":1521158400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UD1MTBrFHyw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UD1MTBrFHyw","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":737},"parentClipId":"17278115220973559945","href":"/preview/17278115220973559945?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/17278115220973559945?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6031551655068242742":{"videoId":"6031551655068242742","title":"cosine Function \u0007[Cos\u0007] (-\u0007[x\u0007]) = \u0007[Cos\u0007] \u0007[x\u0007]","cleanTitle":"cosine Function Cos (-x) = Cos x","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HsXSyqFNDsc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HsXSyqFNDsc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX19wNENELVJXTG5ZWm5JNFNSN3ZWUQ==","name":"ProTeacher","isVerified":false,"subscribersCount":0,"url":"/video/search?text=ProTeacher","origUrl":"http://www.youtube.com/@anshumaninstitute","a11yText":"ProTeacher. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":342,"text":"5:42","a11yText":"Süre 5 dakika 42 saniye","shortText":"5 dk."},"date":"2 haz 2015","modifyTime":1433203200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HsXSyqFNDsc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HsXSyqFNDsc","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":342},"parentClipId":"6031551655068242742","href":"/preview/6031551655068242742?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/6031551655068242742?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13550232807993913874":{"videoId":"13550232807993913874","title":"\u0007[cosx\u0007]+\u0007[cos\u0007]2\u0007[x\u0007]+\u0007[cos\u0007]3\u0007[x\u0007]+...+ \u0007[cos\u0007] nx || Sum of cosine when angles are in AP || Proof...","cleanTitle":"cosx+cos2x+cos3x+...+ cos nx || Sum of cosine when angles are in AP || Proof by C+iS Method","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fc0Icq-GW3c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fc0Icq-GW3c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDU3hHcWt0Q2E1Rk9RTkkzcTNfZEhLZw==","name":"NumberX","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NumberX","origUrl":"http://www.youtube.com/@NumberX","a11yText":"NumberX. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":535,"text":"8:55","a11yText":"Süre 8 dakika 55 saniye","shortText":"8 dk."},"views":{"text":"20bin","a11yText":"20 bin izleme"},"date":"26 nis 2019","modifyTime":1556236800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fc0Icq-GW3c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fc0Icq-GW3c","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":535},"parentClipId":"13550232807993913874","href":"/preview/13550232807993913874?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/13550232807993913874?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12166667574014240005":{"videoId":"12166667574014240005","title":"Integral of \u0007[cos\u0007] -\u0007[x\u0007]| Integration of \u0007[cos\u0007] -\u0007[x\u0007] | Antiderivative of \u0007[cos\u0007] -\u0007[x\u0007] | Integ...","cleanTitle":"Integral of cos -x| Integration of cos -x | Antiderivative of cos -x | Integral of cos(-x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1VKwhOfuPHk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1VKwhOfuPHk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDMGJMQUNocmNjU0xSUVNqWmsxNDNXZw==","name":"Ravi Ranjan Kumar Singh","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Ravi+Ranjan+Kumar+Singh","origUrl":"http://www.youtube.com/@RaviRanjanKumarSingh","a11yText":"Ravi Ranjan Kumar Singh. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":98,"text":"1:38","a11yText":"Süre 1 dakika 38 saniye","shortText":"1 dk."},"date":"17 eki 2019","modifyTime":1571270400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1VKwhOfuPHk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1VKwhOfuPHk","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":98},"parentClipId":"12166667574014240005","href":"/preview/12166667574014240005?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/12166667574014240005?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10742302042762857256":{"videoId":"10742302042762857256","title":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & \u0007[Cos\u0007](\u0007[x\u0007]) ?","cleanTitle":"05 - Sine and Cosine - Definition & Meaning - Part 1 - What is Sin(x) & Cos(x) ?","host":{"title":"YouTube","href":"http://www.youtube.com/live/vuoNyvMvDtA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vuoNyvMvDtA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWdMODFsYzdET0xOaG5lbDFfSjZWZw==","name":"Math and Science","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+and+Science","origUrl":"http://www.youtube.com/@MathAndScience","a11yText":"Math and Science. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2885,"text":"48:05","a11yText":"Süre 48 dakika 5 saniye","shortText":"48 dk."},"views":{"text":"1,9milyon","a11yText":"1,9 milyon izleme"},"date":"23 haz 2020","modifyTime":1592916349000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vuoNyvMvDtA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vuoNyvMvDtA","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":2885},"parentClipId":"10742302042762857256","href":"/preview/10742302042762857256?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/10742302042762857256?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1933153835296213671":{"videoId":"1933153835296213671","title":"Solving cos(pi*x)=\u0007[cos\u0007](\u0007[x\u0007])","cleanTitle":"Solving cos(pi*x)=cos(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pXOQ2Nm6dU0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pXOQ2Nm6dU0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDejVLS29xM3dfNTBIUnMwbzhwUmRTQQ==","name":"bprp math basics","isVerified":true,"subscribersCount":0,"url":"/video/search?text=bprp+math+basics","origUrl":"http://www.youtube.com/@bprpmathbasics","a11yText":"bprp math basics. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":276,"text":"4:36","a11yText":"Süre 4 dakika 36 saniye","shortText":"4 dk."},"views":{"text":"19,2bin","a11yText":"19,2 bin izleme"},"date":"6 tem 2025","modifyTime":1751812329000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pXOQ2Nm6dU0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pXOQ2Nm6dU0","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":276},"parentClipId":"1933153835296213671","href":"/preview/1933153835296213671?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/1933153835296213671?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6350868089202840205":{"videoId":"6350868089202840205","title":"Verify the Trigonometric Identity \u0007[cos\u0007](\u0007[x\u0007] - pi) = -\u0007[cos\u0007](\u0007[x\u0007])","cleanTitle":"Verify the Trigonometric Identity cos(x - pi) = -cos(x)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ldx67VtZP5k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ldx67VtZP5k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcjdsbXpJazYzUFpuQnczYmV6bC1NZw==","name":"The Math Sorcerer","isVerified":true,"subscribersCount":0,"url":"/video/search?text=The+Math+Sorcerer","origUrl":"http://www.youtube.com/@TheMathSorcerer","a11yText":"The Math Sorcerer. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":192,"text":"3:12","a11yText":"Süre 3 dakika 12 saniye","shortText":"3 dk."},"views":{"text":"3,3bin","a11yText":"3,3 bin izleme"},"date":"10 oca 2023","modifyTime":1673302105000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ldx67VtZP5k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ldx67VtZP5k","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":192},"parentClipId":"6350868089202840205","href":"/preview/6350868089202840205?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/6350868089202840205?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7916282341203107484":{"videoId":"7916282341203107484","title":"\u0007[cosx\u0007] + \u0007[cos\u0007]2\u0007[x\u0007] + \u0007[cos\u0007]3\u0007[x\u0007]=0 | 12 | General Solutions OF Trignometric Equations | Math...","cleanTitle":"cosx + cos2x + cos3x=0 | 12 | General Solutions OF Trignometric Equations | Maths | Chhaya PUBL...","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AoTG158ipCI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AoTG158ipCI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":227,"text":"3:47","a11yText":"Süre 3 dakika 47 saniye","shortText":"3 dk."},"views":{"text":"5,3bin","a11yText":"5,3 bin izleme"},"date":"1 kas 2021","modifyTime":1635724800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AoTG158ipCI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AoTG158ipCI","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":227},"parentClipId":"7916282341203107484","href":"/preview/7916282341203107484?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/7916282341203107484?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10717191263654253003":{"videoId":"10717191263654253003","title":"Integral of (\u0007[cos\u0007](\u0007[x\u0007])-1)/(\u0007[cos\u0007](\u0007[x\u0007])+1)","cleanTitle":"Integral of (cos(x)-1)/(cos(x)+1)","host":{"title":"YouTube","href":"http://www.youtube.com/live/gcA2oeSE1yg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/gcA2oeSE1yg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTkxSd2lRU1BsQW5faGlFTTJ5V0l3Zw==","name":"Integrals ForYou","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Integrals+ForYou","origUrl":"http://www.youtube.com/@IntegralsForYou","a11yText":"Integrals ForYou. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":246,"text":"4:06","a11yText":"Süre 4 dakika 6 saniye","shortText":"4 dk."},"views":{"text":"1,5bin","a11yText":"1,5 bin izleme"},"date":"6 eki 2024","modifyTime":1728172800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/gcA2oeSE1yg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=gcA2oeSE1yg","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":246},"parentClipId":"10717191263654253003","href":"/preview/10717191263654253003?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/10717191263654253003?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10450009093822888055":{"videoId":"10450009093822888055","title":"The graph of the function, `\u0007[cos\u0007] \u0007[x\u0007] \u0007[cos\u0007] (\u0007[x\u0007] +2) -\u0007[cos\u0007]? (\u0007[x\u0007]+1)` is","cleanTitle":"The graph of the function, `cos x cos (x +2) -cos? (x+1)` is","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GMV26RcepZA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GMV26RcepZA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDY3Y3cHNwR0htTTdBT3l3dUxNMXVmQQ==","name":"Doubtnut","isVerified":true,"subscribersCount":0,"url":"/video/search?text=Doubtnut","origUrl":"http://www.youtube.com/@Doubtnut","a11yText":"Doubtnut. Kanal onaylı"},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":160,"text":"2:40","a11yText":"Süre 2 dakika 40 saniye","shortText":"2 dk."},"views":{"text":"1,4bin","a11yText":"1,4 bin izleme"},"date":"12 eki 2018","modifyTime":1539302400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GMV26RcepZA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GMV26RcepZA","reqid":"1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL","duration":160},"parentClipId":"10450009093822888055","href":"/preview/10450009093822888055?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","rawHref":"/video/preview/10450009093822888055?parent-reqid=1769639834360910-5427490483711679462-balancer-l7leveler-kubr-yp-klg-169-BAL&text=CosX","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4274904837116794627169","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"CosX","queryUriEscaped":"CosX","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}