{"pages":{"search":{"query":"Mathoma","originalQuery":"Mathoma","serpid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","parentReqid":"","serpItems":[{"id":"2842346500266804179-0-0","type":"videoSnippet","props":{"videoId":"2842346500266804179"},"curPage":0},{"id":"2675778872906858075-0-1","type":"videoSnippet","props":{"videoId":"2675778872906858075"},"curPage":0},{"id":"7178828702018175301-0-2","type":"videoSnippet","props":{"videoId":"7178828702018175301"},"curPage":0},{"id":"8531216403622072923-0-3","type":"videoSnippet","props":{"videoId":"8531216403622072923"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dE1hdGhvbWEK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","ui":"desktop","yuid":"1443958531769268742"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"6083766890677786891-0-5","type":"videoSnippet","props":{"videoId":"6083766890677786891"},"curPage":0},{"id":"12341375485365261588-0-6","type":"videoSnippet","props":{"videoId":"12341375485365261588"},"curPage":0},{"id":"11863798752126873178-0-7","type":"videoSnippet","props":{"videoId":"11863798752126873178"},"curPage":0},{"id":"17176265180072336066-0-8","type":"videoSnippet","props":{"videoId":"17176265180072336066"},"curPage":0},{"id":"7845499974912917317-0-9","type":"videoSnippet","props":{"videoId":"7845499974912917317"},"curPage":0},{"id":"3730403377989224219-0-10","type":"videoSnippet","props":{"videoId":"3730403377989224219"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dE1hdGhvbWEK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","ui":"desktop","yuid":"1443958531769268742"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"8375364411701887247-0-12","type":"videoSnippet","props":{"videoId":"8375364411701887247"},"curPage":0},{"id":"3362146845863502690-0-13","type":"videoSnippet","props":{"videoId":"3362146845863502690"},"curPage":0},{"id":"11553637093222633831-0-14","type":"videoSnippet","props":{"videoId":"11553637093222633831"},"curPage":0},{"id":"1905892091126965676-0-15","type":"videoSnippet","props":{"videoId":"1905892091126965676"},"curPage":0},{"id":"18011976167184255327-0-16","type":"videoSnippet","props":{"videoId":"18011976167184255327"},"curPage":0},{"id":"15039526126109704750-0-17","type":"videoSnippet","props":{"videoId":"15039526126109704750"},"curPage":0},{"id":"8936546841761854206-0-18","type":"videoSnippet","props":{"videoId":"8936546841761854206"},"curPage":0},{"id":"14418476110047196683-0-19","type":"videoSnippet","props":{"videoId":"14418476110047196683"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dE1hdGhvbWEK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","ui":"desktop","yuid":"1443958531769268742"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathoma"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"2852676882226707527237","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466867,0,77;1457617,0,58;1433081,0,17;1468855,0,11;1460712,0,3;1464561,0,85;1459297,0,38;1152685,0,72;1459323,0,29;1461642,0,7;1471380,0,90;1431641,0,7;43962,0,1;127805,0,28;1464524,0,98;1470250,0,62;1470224,0,52;1469597,0,54;1466295,0,81;1465958,0,10;1470858,0,41;1463531,0,75;1467149,0,80;1452016,0,58;1349071,0,94;1466619,0,34;1470514,0,15;1467619,0,59;90500,0,64;1472080,0,75;1467158,0,13;1470317,0,88;1470415,0,37;972818,0,57;45956,0,56;1462740,0,24;151171,0,55;1281084,0,19;287509,0,57;1447467,0,73;786154,0,0;1466397,0,65"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DMathoma","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Mathoma","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Mathoma","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Mathoma: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Mathoma\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Mathoma — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yfaedfe345842a7d06940d54fa156f26b","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466867,1457617,1433081,1468855,1460712,1464561,1459297,1152685,1459323,1461642,1471380,1431641,43962,127805,1464524,1470250,1470224,1469597,1466295,1465958,1470858,1463531,1467149,1452016,1349071,1466619,1470514,1467619,90500,1472080,1467158,1470317,1470415,972818,45956,1462740,151171,1281084,287509,1447467,786154,1466397","queryText":"Mathoma","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1443958531769268742","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769268802","tz":"America/Louisville","to_iso":"2026-01-24T10:33:22-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466867,1457617,1433081,1468855,1460712,1464561,1459297,1152685,1459323,1461642,1471380,1431641,43962,127805,1464524,1470250,1470224,1469597,1466295,1465958,1470858,1463531,1467149,1452016,1349071,1466619,1470514,1467619,90500,1472080,1467158,1470317,1470415,972818,45956,1462740,151171,1281084,287509,1447467,786154,1466397","queryText":"Mathoma","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1443958531769268742","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"2852676882226707527237","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":163,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1443958531769268742","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"2842346500266804179":{"videoId":"2842346500266804179","docid":"34-7-5-ZDBE382789204D272","description":"Wherein Mathoma and I tackle a bunch of atheistic objections to belief in God and Christianity Twitter: / classicaltheis Mathoma’schannel: / @math_oma...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4697646/a471e8b4db3c539f41ea63d15759eb07/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8IqKgwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Di3GMci9aj2w","linkTemplate":"/video/preview/2842346500266804179?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Answering Common Atheist Objections, with Mathoma","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=i3GMci9aj2w\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChMyODQyMzQ2NTAwMjY2ODA0MTc5WhMyODQyMzQ2NTAwMjY2ODA0MTc5aogXEgEwGAAiRRoxAAoqaGh5YmViaHdpZXlidXdiY2hoVUMtbjdRdDhFUkVpSm50bXJuQmpiQjR3EgIAEioQwg8PGg8_E44sggQkAYAEKyqLARABGniB8BMAAAEAAAQABQcBCfwCBgf3APb__wDwAfcCCAH_AOkDBwAC_wAABwX9-wAAAADw9u8I-gAAABIIAQz1AAAAFwb98PsAAAAPA_f-_gEAAAH48gMD_wAAEAQHEAAAAAAC_gH8CfoB__oTCg0AAAAAB_4G__v0_gAgAC12UM47OBNACUhOUAIqhAIQABrwAW0QDwGBBPz4Zwb6AO0KBQHAAOP_BdDb_wX0BQDr9QwALisFAdob9P_Q_AkB8wnlAAr3AgAHBv8AHPYD___t7wAV5g4ABAj3ABwkDAELJRX_2v8IAAAK9f8b_x7_CyAM_vDt2f896xQBHev0Af7rAAPr9wAC4gvrAPIV9v8U_PcAD_cGAAHf9f_KGf4AA_H_BiII3gMRDu0B-QoHAw8TEwHW9xX_-wgY--3r2ATnBOD7AfEA-Oz_9wzq-hgBBv3nBQ7lBQL73wQBABkQAfATBv4M5xcC2wkNAwrr-PYS7xX78gz8-_gVB_0M-Pf4FQDz8iAALUacPzs4E0AJSGFQAirPBxAAGsAH2czhvia_arwZ-xa8YaQXPhGEELyJZAa8uRrZvZDY7rxTK6c8PPUIvrjoRD3EaXc8JoaZvRXeijw8xnA8LQlQPtT4YDzmZBg9ZQKpvQ2Gr71stPu7y4NUvppVqbwRmpM829s9vgDgHb2Dodk5Xo2ivDU5Rr24AYS84C0APgv35TykUBs9Vj_AvBf4Rb07eYm7Jx1bPSCI4jvnFRE8DmsavqLLQL1jbcK8_0KqPF85TD2_qX68uhGWvRk8CDy-fQc9QwR3PD9FlD0A1S681xoIPCVpuD0yb7o8cN6uvYRHqz3LUVs8Y1apveXQtz1AQqC7w3KavWjQULz3NHG8Qgouvj5fDr1sw3K8zCcrvhziabzzaNc7P6KTPECyT71Uv3s7-YTsPPaVBz2xm4C7duGXPTLHor1q_J08K7PzOxfQ8LzxVBY94ElJu7HE3rzUPA88ZD31vXmEiT3EYvG7QScpvVn2yTy1HIM87iHGPJmvHD36I7E85ZqSPcxO9Tz37zC8DSXJvLZ6OD2YFP65m5UIvQh2DL7NpeG79IkMPrdhlDw1Q-g7SLeQu9Pcyry01sY8we4KPR7cgjygGm07aqBeveJvQL0HDy48G9oAvq-_Gby6nTo6D0givfbYcTxdGCK6nSFmvJQWDr2TLR68WEk1vZNYrbzERx88IziEPYEtZb34cY86MYK-O_he8jw8SxU6AjoCPWcOqb0rjK45zKwvPcW9s726ocY6d7v-vVcrbj23FVw6SmG-PS03oDvsAh26LE3nulj5Cr2hQ2M6-iUCvutS4zwcMQq5H15cPR2RL74g09o5eF7PvFlf7rzdghg5xvuxPGTtyrznApy5TceSPMRYi7z3kKm5tQEzvJaM67vNijA6POuiu1UpQr3TOL44jT_2PPGBfT1CHtO4XCQIvbNkpzv0loK5NfBDPeTZCLy28NO4qZQNvVTuFD3LyYI4rEyCvTFnsT2r-0g42p5qvG2kET0ha4i4nTyGvfrHzD2EYWG5B2onPR9CBj2ecSa4TrYhPWTpQ73Oe5y39f9DO8d5ZL2vY7W3cBalPMqURTxXzIm4-FXZPYKuLb7Pbso5Xb8APb8ZC73JcmI4mz3QPf6Ki73aoZI4EjKQPMSDPD2KxaM3mIWbPOPuYjxd6Cy338eMvR_ZnLyESgy2eNyWPZl2W73hv8c4tL0Hvb7YG75dfAi5szEGuwivvb0cfaa39ZwEPl3nmbsA19A4h9VJPUAv_D23qge5slhUvJDWPT3xFeu32uWrPXdaaL1a8UM3IAA4E0AJSG1QASpzEAAaYDoKAC3zMyjcCy3G1eHG_eLr6fwxuNv_1Nj_8Pjj1zH6IsQGJP8Tr-LdogAAACy8GisfAPd_FtHSR_LQN9Ew3wM5bwMmuej2_9PfsdDi3So4-Pn7TADy6r0zBOP-O9o_NiAALWGqGDs4E0AJSG9QAiqvBhAMGqAGAACMwgAAGEIAAPhBAACAvwAAQEIAAITCAAAgwQAAssIAADDCAABMwgAAaEIAAAhCAAAEwgAAwEEAAKDAAAAAwgAAbMIAAADBAADYwQAAgEEAABBBAACAwAAAgMAAAKjBAABAQQAASEIAAADAAAAswgAA-EEAAOBBAADIQQAAgEAAALBCAABsQgAAxsIAAAAAAABAwgAAYEIAADBCAAAAwAAAGEIAAADCAAAgQQAAkMEAAMjCAADgQAAA8EEAAETCAABgQgAA8MEAABzCAACOQgAAIEEAAADAAAAQwQAAJMIAAILCAABwwgAA4EAAADDBAAAkQgAA2MEAAIhBAABAwAAAgMAAACBBAAAAAAAAUEEAAIA_AAAcQgAAQEEAAOjBAABYQgAAREIAAMjBAACCwgAAMEEAALBBAACYwQAAAMAAABzCAAAUQgAAHEIAALBBAAAAwQAAyEEAAIjBAADAwQAAikIAAIC_AACgwQAAQEIAACBBAADYwQAA7EIAAMTCAADCQgAAVEIAAEjCAAAQQgAA8MEAAPDBAACgwAAALEIAAIDBAABQwgAAcMEAAOhBAAAMQgAALEIAALhBAACAvwAAiMEAAHDCAAAIwgAASEIAAIDAAABAQAAAgEAAAOzCAABAwgAAFMIAAIBAAADgwAAA8MEAAJhBAADAQQAA4MEAAJjBAACgQAAAcMEAAIjBAAAAwQAAyEEAAJhBAACUQgAAQMAAALjBAABMwgAAUMEAAExCAAD4wQAAgD8AADzCAAA0QgAAHEIAAODBAAA0QgAAyMEAAHxCAAAQQQAAmMEAAAhCAACIQQAAYEEAAIRCAAAcQgAAUMIAAGBBAAA8QgAApsIAAMDBAACMwgAA0EEAADjCAACawgAAFEIAAIJCAACIQQAAUEEAAKTCAACAwAAAgD8AAIBBAABQQQAAoEEAADBBAACwQQAA6MEAAOBBAAD4QQAAksIAABjCAAAEwgAAoMEAAOBBAAAYwgAAikIAALjCAACAvwAAHMIAAKBBAABQwQAAoEAAAMhBAACAvwAAUMEAAEDBAAAwwgAASMIgADgTQAlIdVABKo8CEAAagAIAAIq-AADYvQAAPD4AABQ-AACCvgAArj4AANi9AAAvvwAAbL4AAEQ-AACKPgAA4LwAABQ-AACiPgAAMD0AAOi9AACYPQAAoDwAADw-AADqPgAAfz8AAIA7AACgPAAADD4AAOg9AAAwvQAAqL0AAPi9AACYvQAAfD4AAHA9AAA8vgAADL4AAEC8AABkPgAAyD0AAIg9AAA8vgAAlr4AAHC9AACKvgAAUL0AAHQ-AABAvAAAuL0AADC9AAAEPgAAuL0AAEC8AADWvgAAiL0AAMi9AAC2PgAAjj4AAOq-AABwPQAAOT8AAKi9AABcPgAATD4AAIC7AAAcPgAARD4AAI6-IAA4E0AJSHxQASqPAhABGoACAABEvgAAqD0AADA9AAAZvwAAoLwAADQ-AAC4PQAA2L0AAFS-AADGPgAA4DwAAIK-AACoPQAAPL4AAKC8AACgvAAAVD4AAE0_AAAUPgAAmj4AAFQ-AABAPAAAFD4AAJi9AACIPQAAcD0AAIC7AAAcPgAAUL0AAMg9AACoPQAAcL0AAMg9AACgvAAATD4AADy-AADoPQAAqD0AAFy-AAAQvQAApj4AAKg9AABUPgAAJL4AAPi9AAAUPgAAf78AAFC9AABkvgAAVD4AABQ-AACYPQAAVD4AAAQ-AACgPAAAoLwAADC9AABsPgAAiL0AAIi9AACYPQAAJD4AAKA8AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=i3GMci9aj2w","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2842346500266804179"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"774762629"},"2675778872906858075":{"videoId":"2675778872906858075","docid":"34-1-17-ZCFAB21ADAA60DEB0","description":"In this video, we will derive the law of sines and the law of cosines using the concepts of geometric algebra, namely the wedge product and geometric product. We'll also review some other facts...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1817150/8ee87be7e7e7f205c25c82a2d9d32146/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FZZdtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlkhBcWtFxKU","linkTemplate":"/video/preview/2675778872906858075?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Geometric Algebra in 2D - Some Trigonometry","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lkhBcWtFxKU\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChMyNjc1Nzc4ODcyOTA2ODU4MDc1WhMyNjc1Nzc4ODcyOTA2ODU4MDc1aogXEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E_YGggQkAYAEKyqLARABGniB7_oBAPwFAPv8_w8BCPwCAAP_-Pj-_gAACO_-AwT-APP6BwEEAAAA_wYB_wUAAAD_C_z3Af4AABH_8AcCAAAACwj6-gAAAAAS-gb1_wEAAPcEAvgCAAAACO4E__8AAAD0C_j0AAAAAAEH-PoBAAAAAvwFAAAAAAAgAC18Zd47OBNACUhOUAIqhAIQABrwAX8ECQGtDOv9DQjcAN0DJgKJIAr_GiLkALoO7ADEA-UA_evnAOX-3AAEAwYAtwQiARkBygAN8CEALvAA_zzj-gDSBBQAEPoNAED0BADl9NkA3Qr5AAn7CgD-zeIAEwHzABzyEfzz_OX7Ce3BCA3-NwH36R8EBesI_wb4FwXuKQf-Cejs_xcNBgT75gn-7hM0AQXxB_zoIvb56h3rAv0Q3QTw8gn_DBHWAAju6gcS7g_66ev-_AfQ7gAl4RoC2AcNB-nyFvnxEvUE-PkC9Sz39gXrKwcF6Prz-ioe_wvf_fH64QsB8-b0AgPfAwwI6_7uAyAALc0dJzs4E0AJSGFQAirPBxAAGsAH5svzvhPDBL1pBeE8U2AcvSRC47xvkQW9u9urvKUyID2T29s87RlYPf8jM732ehc99pZivgV4gTx5Pw28y4AzPubRiL2YYjM8cT1avucWvz2FTKi8yXLyvcFqEb0CFau7BKNXvXvIDLulpY28BcQkvETj5LyBSj26hWB1vRsWXr2Bfjq8QWaHPejhITv21VC9E1y0uzHMDr0v-sg77a-IPYPuHL0u2mu7siZcO4ZLWDv4cEm9dHvpvaUWyry7WpO80CAqPHd2BTtUO8M6EwmLvQo3VL2yto683o7TOiLBVD1rTKM8NomLPW0Atj2ES0e8aaMfPdIjIblaiVS8d_UKvqCfLj1c-VG8_c-7PXi5iD2rJoi86jScvLJcsD3Lepa8YaJGPavAOj26F3M8z3yjPbgyUj2n0FQ8UqXcPEFxNrzEfgu8JNENvJloKz1YkGY8BynYPf9Z87ygibC8U6m-PMGrhrvsQ4e7wwqcvUk1xzwkKYq7lks5PdYkcz0TNeo7IY0vPKpHmjy8z3E8xTVDPfhRDb4Jbyy73M26uyD0Z71JslS7tZEmPX-rMD27Hcy7bvzpPUzkrb0rc6m7sbwwveg5_Twc3C27Vms8vFKvsL1ixxg7cKRCvaq4EjzILUE86QthvdnOt7xk4r27Eo40PCbKOT3Qcuq7bAHnuzBH770_mqC6qrqHPHES1Dwiot67up6dPdN70zt5NYo6iCSEPaUZtr3cmS67acw_vdBjNL3Ij526fmgwvSkrob2UTri43WGTPbuXC76lDmg5DRazPAh8iT3cqfg4IxIVvhT1Fzx1uwK6eatTPJNxbL2qhgM53SqjvFc9wL2RBh45EUOhPHyInbt1NHo6qGcLPUMpkD1tYoM5PkKdveiqVL2Wh0654b6UvW3WL70mTZQ3iqIxPa5YC7zlZZ-4FE02PcS1NTzi_Z-5SKcOPVYYMb00ehS33v8nPZoTmj0Z2xS5JEbPPG5chb1JXJ84lu2ePGwbKz0THW64AFoQO9aXWzxrvCi4IYqOPaOjh7sAr423yct6Pfq2EL7dU6S4DCl1PB7mBj2DLVg3ZVPOvcLoqDz-Mug3gXvePLDEqDw5FCS3lmJivSsDvb3zTMk3lkhYPK5IzDwfR1A4weMrPtylaLwHiXS5qCanvVQ9xL0cuIO4Hip4OyUE670jv2c4IE2rvc5Ehz1nPDQ4YQZ5PfM6Er5L56m4yvRwPSLhKz7xy4o4fGKNvSED2T2BNTC5NWxKvWXflT2R1IM3wcWOu2IVr7xBcTM3IAA4E0AJSG1QASpzEAAaYEbsABHuJMQTLhHn1NXtDOy1_vssteH_3OT_9Tb2GUT50tIHRQAt5vvtogAAADXtDh4UABt6yL4uOAj8Asuhyykxfw4N0fzuDhS2vBlDJvrvGOU5JQAh-5wGTA7gEVU9OSAALUNPFDs4E0AJSG9QAiqvBhAMGqAGAAAsQgAA8MEAAHxCAAA4wgAAYEEAAOhBAACKQgAAMMEAAFjCAADQwQAAEMIAAODAAACoQQAA8MEAAJ7CAAA4QgAA4EEAAAAAAAAAwgAAkMEAAK5CAAAswgAAMMEAABBCAABwQQAAgMAAAKjBAACwwQAAiEEAALDBAAAkwgAAFMIAAKzCAACCQgAAQMEAAADCAABkQgAA4MAAAMBAAADQQQAAQEIAAIDAAACEQgAAkkIAAHBBAAAUwgAAkEIAAIC_AAA4QgAAQMAAALDBAAA4wgAAcMEAAEBAAACAwAAAgEIAAATCAABQwQAAQMEAALZCAAAgwQAAfMIAALDBAADAQAAAgEAAACDCAAA8QgAAgEAAAKhBAABAQQAAgkIAABBBAAAwwgAAvEIAAIDAAACAwQAAqEEAAPhBAAC4QQAAUEEAAKBBAACSQgAAuMEAABzCAACQQQAAAMEAADxCAAAAQAAAYEEAAAhCAAAAQgAAPEIAAFjCAADgwQAAysIAAJTCAAAYQgAAAEEAAFDBAACUQgAAhsIAACRCAACYQQAAsEEAACDBAACIQQAAlMIAADhCAACAvwAAQMEAAARCAACAQAAAAMEAAAAAAABAwQAAwEAAALpCAACIwQAAGEIAABRCAACYwQAAIMEAAEBBAAAQwgAA2EEAAOjBAACswgAAgL8AAIzCAAAAwQAA2EEAAFDBAADAQQAAYEIAAETCAABAQQAAcMEAAJDBAADIwQAAcMIAAABBAACcQgAAqEEAAIjBAADoQQAA4EEAAFDBAACQwgAAAEAAAKjBAADwQQAA4EAAAIJCAADIwQAAkEEAAKhBAAAwwgAAJMIAAEjCAABwwQAAwEAAAABBAADwQQAAHEIAAMjBAADYQQAA2EEAAKBBAAAgQQAAOEIAAIA_AADQwQAAoMEAACzCAACEwgAAOEIAAKBBAABkwgAAAMAAAMRCAABswgAAHMIAAMDBAACawgAAwEIAAIC_AACwwQAAkEEAACjCAAAAwQAAgMAAAADBAAAQQQAAUMEAAOhBAACcQgAAYMIAAODBAABcwgAA-MEgADgTQAlIdVABKo8CEAAagAIAAJg9AAAQvQAA2j4AALg9AACCvgAA_j4AABA9AAAxvwAAJb8AAJg9AAAUPgAA5r4AABU_AACePgAALL4AAIa-AACaPgAA-L0AABk_AABrPwAAfz8AAL6-AACmPgAAgLsAABS-AACSPgAAqD0AAFS-AACYvQAAFD4AAJI-AACmvgAAHL4AACQ-AACCPgAA9r4AANa-AACivgAA7r4AAKg9AACOvgAAUL0AANI-AACqvgAAEL0AADQ-AACKPgAAC78AAFA9AADIvQAAHb8AAN6-AACiPgAAZD4AAKA8AAC4PQAAfz8AAOC8AADovQAAcL0AANK-AACoPQAAqL0AAHS-IAA4E0AJSHxQASqPAhABGoACAAC4PQAA-D0AAJq-AABPvwAA0r4AAHC9AACaPgAALL4AABC9AACYPQAAgLsAAGy-AAB0vgAAuL0AANi9AAAwvQAAhr4AAAE_AABEvgAAkj4AAEQ-AACmvgAALL4AAOC8AABcvgAAgr4AAKa-AADgvAAAiD0AAKg9AAAkPgAAFD4AAJa-AABAvAAAgDsAAEC8AAAHPwAAHD4AAKK-AAB0vgAAdD4AABw-AAAsvgAA2D0AADw-AAC-PgAAf78AAEA8AACWPgAANL4AAJY-AACAOwAADD4AAOg9AAC4vQAARD4AAFC9AAAEPgAATD4AABQ-AAB0PgAAVD4AAFy-AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=lkhBcWtFxKU","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2675778872906858075"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1853046479"},"7178828702018175301":{"videoId":"7178828702018175301","docid":"34-8-13-ZDC23A611237FF2D6","description":"is to be interpreted as a directed volume element, also called the pseudoscalar in G(3). References / Further Reading: 1. Lasenby and Doran's \"Geometric Algebra for Physicists\". 2. Recommended...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3452693/af4eb81e6e64fc88e0d3d677747fbdbd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lrAKBQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DElLl6gzNbFE","linkTemplate":"/video/preview/7178828702018175301?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Geometric Algebra in 3D - Fundamentals","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ElLl6gzNbFE\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChM3MTc4ODI4NzAyMDE4MTc1MzAxWhM3MTc4ODI4NzAyMDE4MTc1MzAxapMXEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E-ANggQkAYAEKyqLARABGniB9PT5_v0DAPgHBQgABv0CBwEH-vj__wD0Dvf1AwEAAP32BgMCAAAABAb3AQIAAAADAfkF8_4BAB0A9wsCAAAAEgD0Av8AAAAHAA73_wEAAPH8_AMDAAAAB_oC_f8AAADuCAHz__8AAP4PBQAAAAAACewJBgABAAAgAC3nmNw7OBNACUhOUAIqhAIQABrwAX73D__ACtwA1QXGANYnMAGBCi3_GArkAMYCEACw8_UABSLeAM36xP8NCBf_teoYACbr1v_Zvw4AQw4F_zzyFgH9BgUBHvv3AD8UL__N8fL-0RkB_uDv_QHz2bAAHv_Y_xMLBQDx--D6C-m1CRD-QQH4ASgGIOzxANUCCwflFhEC69vX_RMVFf_m1hX86hc9ARPfCv4TNO__2C7zAhDy6ADt7wr_BwLf-jPq7QgNCAL55Of9_Azi5wII5iwI1fbz9RPSHwzl7g787QIQ-DvqEfvLAAv5BQH8AR8xDwP-3wMG3fLrAb_r-PfS6vEG-x7w-iAALVAjDTs4E0AJSGFQAirPBxAAGsAHwarivssou7y2sLg8vToFO9YEDL2VcNe8fKGbPCLdFD2AxGU8SyIbPr1l2LzTlZk90a5Svp9kgT0urow8y4AzPubRiL2YYjM8nmKFvpG6fT0sc4S8TNyfvZvaA73J9xa83Y_lvJl4ET0Y2YS8K4eWvGcAnLsSEDg8b7EMvVZbG71SOMy8QWaHPejhITv21VC9FtA1vfDGG7u2jCs7IOsJPsVt2byqmTW8L-u0PAkAKb3bXRa93o8Lvi-_17uWmS08XhyLPC6IrbyGh9k7vsXevB6107yMx7u8T2YyvQpCfj2zl608HHL9PIWtfj3XhPw356cYPYB3vLyVf628bazkvaYRLj2UTsE7eocgPTnsgz1CRZi5McIKvdvQHj3530a7b9GuPHtQaz1QatQ8qgZmPaHoiz0b1au7PJQyPErfmjyea607w6Novf5OCT1rlP88w7oRPs6RsLx9p5O8U6m-PMGrhrvsQ4e7jZuavXOVOD3s-4u8WrXQPBuPiD3HCM085BqXujxy2jt6iZY8BSOlPdYCO75J5Zo6YnsyPRdnvL3nRgG7HW3BPTlpED0uBX-8TvDNPWYz573_VwA8m1d1vdCGMjyB5TK5Vms8vFKvsL1ixxg7WzQuvVmOq70uoMQ7CkeFvX8iJb1HZqK7CpGCvHShKDw-0ju8OjmIvVOOvr1IDhS69StdPXMRPz2wlem6sTDEPfVF57zA9lO6iCSEPaUZtr3cmS672RASvUnN6LxaQqU7zGG3vOMtXL0S8II3oZ3TPVGBmL2XnVE5EGd0Pd1ZsD18pr85mfIhvsW4Mb3CciK67m-aPKMsMr2895u4J7GYO02giL1ksGw69NIePSA197wAwl44ynoAPTmobj3cEpg6ax7BvcSuor1Z-CI4xiX9vPd8qLxvp524tySsPB-5Fb3TGg05aEYaPcHDWT2lGwQ6SKcOPVYYMb00ehS3eB9MPaWv8TyXzwI5qyaIPc-3mr37n4c5cxgGPE6WPz3W3JM3gzVOPP0UBbxrFm64IYqOPaOjh7sAr423NNzbPOZdJb4GnOe4Ig4jPTnhEDuwHlO4yXl6veKBFjxZzWU4eCOYPIJnDD2TEdE44laRvTsa5726zHS1FvPYPEq_szxlhZW3mUrfPYBz0DxUuL64-UrgvQyP3b1jM0S4Hip4OyUE670jv2c4MguzvRL-QD2ycrY3YQZ5PfM6Er5L56m4yvRwPSLhKz7xy4o4cXxjvfolAj6pgSy5UgmkvR_4Uz0JQzA4WweHPHut-rz-LHK3IAA4E0AJSG1QASpzEAAaYDf-ABoQLMgZ-Q_l48LyEc6eHQAwxMv_w8__8B3pCxIN1aXnNAA64w73pAAAABoNHh71AAF4uugJP-bL4tG33B0Efw4n9fYR_xG7ySg_GwHr6_IbSwDi-5cXXPipDjBSLCAALZ4QFDs4E0AJSG9QAiqvBhAMGqAGAABAQgAAYEEAAKJCAAAgwgAANMIAACDBAABkQgAA2MEAALDCAACCwgAAQEAAADBBAABwQQAAUEEAAKrCAACAPwAAjkIAAIDAAAA4QgAAcEEAAABAAAB8wgAAUMEAAExCAABwwQAAMEEAABDCAACAvwAAgMAAAKDAAACYwQAAmEEAAADDAAAwwQAAyMEAAJhBAACIwQAAuEEAAKBBAACAQQAAcMEAAKjBAABwQgAA6EEAAKjBAAA0wgAAxEIAAJBBAAC6QgAACEIAABTCAAAMwgAAAAAAAGBBAAD4QQAAwMAAACzCAAAAAAAA0EEAACBCAAAQQQAApMIAAMBBAADYQQAAiEEAADzCAABswgAAIEIAAExCAACQQQAAcMEAAHBBAACQwQAAZEIAAABBAABkwgAAyMEAAIC_AADQQQAAQEEAAADCAAC-QgAAUMIAAADCAACWQgAAsMEAAABBAACIQQAAuEIAAHhCAABYQgAAcEIAAHDCAABgwgAAXMIAACTCAAC4QQAAVEIAAChCAABkQgAAlsIAAGBBAABEwgAAqMEAAETCAADIQQAA2MEAANhBAACQwQAAoEEAAExCAADwQQAABMIAAOhBAADwwQAAMMEAAEBCAAB0wgAATEIAAPDBAABQwQAAIMIAABDBAACQwQAA0MEAAODBAABcwgAAgMAAAETCAABAQAAAAEEAACTCAAD4wQAAOEIAAHDBAABQQQAAAMEAAOBBAADgQQAAHMIAALhBAAAsQgAAoEEAAIrCAACwQgAA-EEAAILCAAAkwgAAVMIAAKBAAAD4wQAAEMIAAOBAAADIwQAAGEIAAFDBAAA0wgAA-EEAAOjBAAAAQAAAOMIAAGDBAAAAwQAAwEEAAKBAAAAgQQAAFMIAADBBAABQwQAAAEIAAEDAAAAYwgAAqEIAAFTCAAAgwgAAMEIAAAAAAACYwQAASMIAAIxCAABMwgAAgL8AAHDBAAC4wQAAbEIAAGBBAADgQAAAQMAAAODAAACAwQAAgEEAAJBBAAAoQgAA8MEAAGBBAAAoQgAAAAAAAAjCAACMwgAAwEAgADgTQAlIdVABKo8CEAAagAIAAHS-AAAEvgAAhj4AAN4-AAA0vgAAoj4AAOA8AAA_vwAAR78AACw-AADyPgAAAb8AAA8_AACAuwAAiL0AACy-AAAEPgAAML0AAOo-AABDPwAAdT8AAEC8AABwPQAAHL4AAOi9AACgPAAAED0AAAW_AABwvQAAHL4AAJ4-AAAEPgAA6L0AAN4-AABUPgAAhr4AAHC9AADWvgAA1r4AAHA9AAAvvwAAdD4AALY-AAAcvgAAuL0AABQ-AABwvQAAbL4AAOA8AABsvgAAAb8AAAm_AACCPgAA3j4AAIC7AABwPQAAfz8AADS-AAAcPgAAgDsAAFy-AAAsPgAAUL0AAKA8IAA4E0AJSHxQASqPAhABGoACAACIvQAAmD0AALq-AABJvwAA0r4AAIi9AADGPgAAqL0AAIC7AABUPgAAiD0AAFy-AABUvgAA6L0AAIi9AADIvQAAlr4AABM_AABEvgAAqj4AAMg9AACCvgAAuL0AADC9AAAEvgAARL4AAI6-AAD4PQAATD4AAAS-AAC4PQAAMD0AADS-AAA8vgAAFD4AALi9AAAhPwAAbD4AAFy-AACAuwAA3j4AAKi9AACCvgAAMD0AAPg9AACSPgAAf78AABC9AACYPQAAiL0AAFQ-AABwvQAAyD0AAIC7AAD4PQAALD4AAMi9AAD4PQAAZD4AAOA8AABsPgAAgj4AAEy-AADgvCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=ElLl6gzNbFE","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7178828702018175301"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3375812241"},"8531216403622072923":{"videoId":"8531216403622072923","docid":"34-4-3-ZE521DD3A7539BC28","description":"In this video, I introduce some of the concepts of geometric (Clifford) algebra, focusing on two-dimensional space (R^2). We'll talk about the wedge (exterior) product, review the dot product, and...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3151714/0138d5026329d35369eadf03ad5ee9bc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BFQFLgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPNlgMPzj-7Q","linkTemplate":"/video/preview/8531216403622072923?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Geometric Algebra in 2D - Fundamentals and Another Look at Complex Numbers","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PNlgMPzj-7Q\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChM4NTMxMjE2NDAzNjIyMDcyOTIzWhM4NTMxMjE2NDAzNjIyMDcyOTIzapMXEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E8EQggQkAYAEKyqLARABGniB6vj8-wL-APT-Cw0CB_wBCP8A7_f__wDtCvAABQAAAPkFCAT4AQAA_QcECwQAAAAA-_EN-P0AABP_7wgCAAAAIP3y-vwAAAANBhT-_gEAAPD7-wQDAAAAEOr7Af8AAADvBQX8_v8AAAYNBvwAAAAAEf0KBQAAAAAgAC2OTss7OBNACUhOUAIqhAIQABrwAXcHCAHGCeAA-RriAPcXDwGBIgr-HCTiALL-AAC49PYAC9L_AeT-2gAEBAcAqBELAfsT0f8D2SYAMe8A_z7iGADjEgQBJw4WAUACFf_x8-z-vRPv_-YNDgD33NT_DRfz_grzEvry9fYACuy9CBfnKgID7hECEu_9BO8KGf3eHRQA_Ofg_SIP9AUW3vn_4vYtBx4G_AcUEgj63EDxABPt9wnq5wAG-fbZAh0Q6gUc8QP4298EAfHf_QQH6SgH0BPt_QG_GwAABQj_6un8_QwYGf7sHfkB8RL_AAohCQoT6Qj58OLu98nWBwDoE_wD-u7tDSAALf8hHTs4E0AJSGFQAirPBxAAGsAH6X7Gvny-Ab0olCo8XNf5vO97b720BQS9P-lfvfBknD0Sj1q9Jpa6PUMfDL1eKoY9hCzrvSTmIzyMK648oOIoPlHbxrxEDjY8cT1avucWvz2FTKi8Vpy6vaO1fbys5OM8Tj8Nvc2QKrwMzgC9Qd4jOxk5m71sKma8hWB1vRsWXr2Bfjq8KBMyPbBfK72xpz29G8lUvJ_xM7y5cB48xr6pPU8qUDxJHAs8L-u0PAkAKb3bXRa9Xi4ivk2PnDxYnaY8dWYsPaaLwzz_dKg8SriLva0y07xHUAK83xiSvdm_4TwBmcY729vNPaG6qT2miMK8YvSMPZ5-0L2-dl27d_UKvqCfLj1c-VG87IbtPYz3gz1yW5E7eHSYvYUzKT0j2_m8UOqBPQUCeDyTdKg8MGOqPaGRmTwmaaM8xBCUPcRW9TzWlL-8buUgvfShDbxGv-w8TR1aPWPNbbwkin-8ql2oPUtwDzxuNWu8DBgpvWrGvTwWpLo7ud9BPfwjpz3TKTQ8waPyvFmBRj1nk6g8BSOlPdYCO75J5Zo61-o8vMIcGL3kRa476xPKPAnmQzxuQqu8TvDNPWYz573_VwA82BqwvXzX_7tMvGq7yj7-vIrzhr0SjpM7gK-SvTPwK7uUf1K8OBR-vdwNgr3S4Da8JBxEPRqYCbpb5O05mTbSvLxazr0YnC86KhwgPFjnuD1fULa7xxgOPeHgwTy7KNm7UZfWPOXRbb2gGky7Evhku-4sMLw21_Y3iKZHvVdgg710_2c4PL3yPUrIUb1XwY45gkdlvKHbKz1ywyM5IxIVvhT1Fzx1uwK6LI40vYWfM72Y45Y5y6LwvFtCHr43BeM5yuYiureU7rmjs1Y6rZtXPTQmST0t6IW4X3-9vR8YO70I1Te5KqOGvU69Cb2lVLA4bVWSPLYC2DsGeDg3RSbFPWlUAD2eM4g4oPvyPOcqZ70ZrWc4A0aSPT3N7jy2R9A4Q6ahPJoJhrxEQaW4zq_BPEmTzD3fRIe44jK4vG0Atry6gZO4x5e1PYgKerwBFIW4sRODPLaxs70Vqek4nsfyPAZuWD1slHa4yXl6veKBFjxZzWU4QWliO_BA0zxi-_w27FLAO5cEk70E6943eLfSPUctnj3alk04weMrPtylaLwHiXS5-UrgvQyP3b1jM0S4BqhfvBueDr6Zf8A3hs2LvQiw6D1Us5Y4YQZ5PfM6Er5L56m4-WTlPcjZmj21QNY2ifDPvZNRtT3tePG4zoZhvdDs-j3AEpY4MWjXPJlMgL1Z5Qq2IAA4E0AJSG1QASpzEAAaYC32ACIMOtcD6jT4wsPlCNa7FwUNve__xeT_ABr9-hYpxrn9HP8r6xjcowAAABkIEh3tAAJ2vNH2SA7oBKyn8ygbfwMV9t0KGwCuvkQwGdQH7gkbOwDk_aELWhy_Hy44MSAALeCnFzs4E0AJSG9QAiqvBhAMGqAGAABIQgAAIMIAAKxCAABwwgAAgEAAALhBAACIQgAAsMEAALzCAADowQAAUMEAAIBAAACEQgAAwMAAAJrCAAC4QQAAokIAAADAAACAQQAAAMAAAFBCAACowQAAMMIAAEBBAADQwQAABMIAAMDAAABgwgAAgMAAAKDBAACAwQAAQMEAAKDCAAC4QQAAYMEAAEBBAAAQwQAAMMEAACBBAACKQgAAbEIAABjCAAAMQgAAeEIAAMBAAAAMwgAAgkIAAIhBAAC2QgAAEEEAABjCAACIwgAAQMEAAABBAAAgwQAAYEEAADDCAAAAQgAAmEEAAKhCAADAwQAApMIAAEDBAACQQQAAEEEAAJTCAADAQQAAgD8AAKjBAAAQQQAAVEIAAIhBAAAQwgAA7kIAAABAAAAcwgAAEEEAAADBAACAvwAAYEEAACBBAABwQgAAcMEAAATCAACQQQAAqEEAACBBAAAAAAAAAEIAAJpCAABMQgAAuEEAAFzCAAAEwgAALMIAAIbCAAAIQgAAYEEAADBBAACoQgAAoMIAAMBAAABAwAAAQMEAAJjBAADAwAAAgL8AAOBBAAAwQQAAkEEAAHxCAACAPwAAUEEAAJDBAADAwQAA8EEAAGhCAABQwQAA4EEAAFDBAACAPwAAIMEAAPhBAACAvwAAQEAAAAjCAACiwgAA0EEAAFjCAABYQgAAoEAAAKjBAAAAQAAAsEIAAADBAAAUQgAAEMIAABBBAACAPwAAkMEAAOBAAAB8QgAAUEEAAADCAAAIQgAAWEIAAJjBAAB8wgAAkEEAAEBAAACgQQAAAAAAAChCAAAAwgAAuEEAAAAAAABUwgAAwEAAAEzCAAAUwgAA4MEAAABBAACAQAAAkkIAAAAAAABkQgAAAEEAAKBBAADAwAAAGEIAAMDBAADwwQAAyEEAAIjCAACEwgAAfEIAAIBAAADYwQAAmMIAAMJCAACGwgAA8MEAAIA_AAA8wgAAcEIAAABBAAAgwQAAoEEAACDBAACwQQAACEIAAADBAACQQQAAuEEAAOhBAAB0QgAAIMEAADTCAADYwQAAXMIgADgTQAlIdVABKo8CEAAagAIAACy-AACevgAA0j4AAII-AAA8vgAAwj4AAPg9AAB_vwAAqr4AAEA8AACCPgAAL78AAM4-AADWPgAAHL4AALg9AACgvAAAmL0AAAU_AABBPwAAez8AAFC9AABkPgAAQLwAAOC8AAAcPgAAgj4AAOi9AADgPAAAQLwAAIY-AAAcPgAAZL4AAMY-AAC6PgAAmD0AAKC8AABkvgAA_r4AAKA8AAAzvwAAHD4AAOo-AAAMvgAAND4AAOg9AAB0PgAAFL4AAK4-AACavgAAoLwAALK-AACYPQAAJT8AAKK-AAAwvQAAZT8AAEw-AAAUvgAAFD4AABy-AACoPQAADD4AAJi9IAA4E0AJSHxQASqPAhABGoACAAA0vgAAgDsAABQ-AABnvwAAlr4AAEy-AACePgAA2L0AAII-AADmvgAAdL4AAJK-AADIvQAAPL4AABC9AACIPQAA_r4AADs_AAAQPQAAyD0AAKo-AAANvwAAFL4AABy-AAB0vgAAlr4AAKa-AACIPQAA2D0AANi9AABwPQAAfD4AAEy-AAAEvgAAXD4AAMg9AABDPwAAmD0AAKq-AADYvQAAxj4AAMi9AACovQAAiD0AADw-AAD4PQAAf78AAHy-AAA8PgAAbL4AAGQ-AACIPQAAcD0AAOC8AAAkPgAAfD4AACy-AACIPQAAdD4AABQ-AACuPgAA-L0AAAm_AABwvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=PNlgMPzj-7Q","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8531216403622072923"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1594893687"},"6083766890677786891":{"videoId":"6083766890677786891","docid":"34-11-13-Z84BE49663E5FF00E","description":"In math, it's usually possible to view an object or concept from many different (but equivalent) angles. In this video, we will see that the quaternions may be viewed as 4x4 real-valued matrices...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3413479/acdc76d5ec9fc412317008d24c5aa6cc/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/q76hAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D3Ki14CsP_9k","linkTemplate":"/video/preview/6083766890677786891?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Quaternions as 4x4 Matrices - Connections to Linear Algebra","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=3Ki14CsP_9k\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChM2MDgzNzY2ODkwNjc3Nzg2ODkxWhM2MDgzNzY2ODkwNjc3Nzg2ODkxapMXEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E_gGggQkAYAEKyqLARABGniB_vn1Bf0DAPX-CgwCBv0B_hYFAPj__wDz-_38BwEAAPQJCgQJAAAABQz_BQMAAAD-_v7_-P4AABQE9AD2AAAACgAH_PwAAAAK__v4_wEAAO7-APYCAAAABf4DBAAAAAD2BP8A__8AAP4UDwEAAAAAA_YI-wAAAAAgAC3W8t47OBNACUhOUAIqhAIQABrwAX8RE_7M-s3_5AvrAM7w7wO8EQQACTLxAMzj6wHK_-sBERHNAef9AADbMwn-qgDMATXUz_7w7MMANN7W_y7JIP-7HBEAJCzxARUYIALl8REA3wE-_vnx-wAK2ef_IOXz_vDzCv0BDAAE1_TTAA_-QAG3BiMDH-0TAsjbFALn1gkEBMTp-ucQBfsM8RX-6AgnAfz84wcP9f763TUGAxAIDQj7rez_FkHp_xrlHP0GQgEJsNMN_xjj-QLITQb93Cfk_t38CQbtGQ319_gD8xYL8wb55PX9BQLyDfsTAQ4X_xEIFdvrAvDnDP_4_PX93wj07CAALR1GEDs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6oBRyvdu6AD3z7v68nrVbvQ9faz1H-v48GJgFPoAz6zt_s727M0irva54dD2GcLG8xVWFPlQwb72bfyq8hzQqvp5pqD22cmW8Rbz1vWfoxDysuCe89nM0vX--rbxGOeK6oDTEPabVUL0R_9Y55MPHPMPyILqDmuu8IhehvTucirwFK1O9ZTsbvFf0Xb2f2mM6UPcmPSBBhr0Gasw8zvYNPXOL1Lzf0bG7cv4BvfQSiDz2Ali8hFkSPbjnWT1iIBk8K732vaVDsb0tpDK8JRetvdtewbwLIc46fPFFPfsEPTnFh2G7SsTFPZfTFL0wY4q80CpDvphzn7wPqIg8GyqbPVidRj3fTC-73O-Fvd0J9j3Ineu6EsnGPCpPhbxCQ3-8C5YqPXCVJ7yqzDk8PJQyPErfmjyea607CWTAPM9ZdT2FY7E8YvmDPeol5r0h950796WzPWbIp7z8ZcG8slIYPAIJDz3ZvL878TyCvNBdt7wy1YI8pwdlPVuU2TzYwmI8LcoRPV8XhL2aQ_M7zvIGvZA4ir2cy0O858xRPbigiD1ZfR68Q6kdPh9q273Emqk5N9JDvVXCcrsCuky7F5kjvGcsdb2LuEo8ziaWvfqerDy14TC7_GWBvY6hUjzf61q84-BSPG--bDzzE_c728iQvBNhQ76UWZQ5Y6SdPWoGJz2Qn_A6sdWKPI2hNbtGmUu7tyuyOyMfar0WEQu7CM6kvRsRqTt87BE79FOHvUf8bTsz2BC6oZ3TPVGBmL2XnVE5ff31PKbvxT11p5k57NMbvdk7SDzWwuw2KLE_OoIJ9TvDBwa3XFQLvZwV8b3cnnU5OJ0pPfl2XDyERDG4LrrpO8x5az0cvE05ax7BvcSuor1Z-CI4_AEKPWXzgrwmpxO2BFgkPmBZqTzwLuw41q6UvbzwGjz-2aO5tLDlu9t7Ir2AHPA4g2-3O-Cfcr08y144TKgAPcfwnb3-7jA5zfIrvOMmmT3azh-4Wz1Mu7s0tDzLtZm4PLBtPSTtiz3CRq-4rWiYvG6kbL0_UzA4THVcPER9MTnoP4q2vY_jvThlzj04c5E40KINPWA8Zrpz4ie4TWsuvQ5Vp7zKOGi3bBPdPJBSJD2Ldek4L6YZPng7zDz85hu5hd5MvVSojr3qysO4BqhfvBueDr6Zf8A3jrmhvMkJrj1kbhS39nR6PeAP370_mZu3yvRwPSLhKz7xy4o4U1N8vfDzZD0mccO3pyUGvs8Zi7v0jjQ26xYGvUkyhry7hZ84IAA4E0AJSG1QASpzEAAaYCj8ABrmYaIB_UIB5-DLDvzfEdcq2P7_7uP__v3yATcSm87j_AAT5i7FmQAAABTu_v0dAOt_tegCaQ0AMKu_7hYhb8z_FublG-feLkUhPQIcGjTjWgDy-b0sFQO8Rh0xaSAALaZeETs4E0AJSG9QAiqvBhAMGqAGAABgQQAAgD8AAAxCAAAIwgAAXMIAADBBAACcQgAAYMEAAHzCAAAgQQAAFEIAAHjCAACAwAAAYEEAAJjBAABAwAAAkkIAAOBAAAAQQgAAmEEAAGzCAAAwwgAAiMIAADBCAACkwgAA-MEAAADBAAAQQgAAQMAAAOBBAADQwQAAIMEAAFDCAABEQgAAgMIAAJDBAACYQQAAYEIAAOBAAACIQgAA6EEAAODBAAD4QQAA-MEAAEBAAAAkwgAA0EEAAKZCAACwQgAAoEEAAMBAAACQwQAAgMEAAJZCAAAAwQAAAMAAAKLCAACIwQAAgD8AAGhCAACwQQAAMMIAAHDBAABAwQAA8MEAAADDAADgwAAA6MEAAKjBAADgwQAAiEEAAKBCAAAAwgAA6EEAAIjBAACcwgAAbMIAALjBAACYQQAACEIAAIDBAAD-QgAAUMEAAFDCAAAgQgAAbEIAAEBAAACQwQAAbEIAAARCAADQwQAAQEIAABjCAAC4wQAAmEEAAATCAADoQQAAYEEAAADBAACMQgAAEMEAAHDBAACAwQAAkEEAAHjCAADoQQAAQMEAABRCAABgwQAAQEIAAHhCAAB8QgAAgEAAABjCAABgQQAAjEIAAEBBAADgwQAA-EEAAEDBAAA4wgAABMIAAKBAAADgwQAAwMAAABDBAABMwgAAgMEAAODBAACIQQAADMIAABzCAACwQQAAXEIAANDBAADgQQAA8MEAACRCAACwQQAAlsIAAAAAAADgQAAAPEIAAAzCAABUQgAAnkIAAIC_AADYQQAAQMAAABDBAACgwAAAwEAAAFBBAAD4wQAAuMEAACDBAACGwgAAwMEAAGTCAABgwQAAPMIAADBBAADAwAAABEIAAKBBAAAYQgAA4EEAAFRCAAAYQgAA-MEAAIBBAAAEQgAA-EEAALjBAABwwQAAFEIAAJDBAAAgwQAAgMEAAK5CAADgwgAANMIAAHDBAADAQAAAEEEAAJ7CAABwwQAA8EEAAJjBAADowQAAYEEAACDBAADgwQAAcMEAAAjCAABsQgAAwMAAAGDBAABwQQAA4MAgADgTQAlIdVABKo8CEAAagAIAAOg9AAAQvQAALD4AAAQ-AACgPAAAtj4AAKA8AABNvwAAvr4AAEC8AAAMPgAAHL4AAAw-AACiPgAA7r4AAFS-AACWPgAAcD0AAGQ-AAA1PwAAfz8AAKg9AAD4PQAAUL0AAFC9AABAvAAAkj4AAFy-AABEvgAAyD0AAHQ-AACgvAAAjr4AAPg9AABUPgAAZL4AACw-AABEvgAAD78AANK-AACGvgAAuD0AABA9AADovQAAcD0AAI4-AACWPgAAbL4AAOg9AACGvgAAUD0AACS-AAAUPgAAwj4AAFy-AADIvQAAaz8AADC9AACAuwAA2D0AAAy-AAAcPgAAiL0AAAW_IAA4E0AJSHxQASqPAhABGoACAACIPQAATD4AAAy-AAARvwAAsr4AAOC8AACaPgAAML0AAKA8AADiPgAAZD4AAJi9AAAsvgAA-L0AAOC8AACYvQAAhr4AAE0_AAC4vQAAtj4AADQ-AADavgAAiL0AAOC8AAAMvgAAiL0AACy-AABsPgAAXD4AAJi9AAAwPQAAgLsAAHy-AADoPQAAqj4AABA9AAANPwAALD4AAJ6-AAA0vgAA3j4AAPg9AADovQAAmL0AAMg9AAC-PgAAf78AAIg9AAAEPgAApr4AABy-AADIPQAAcD0AAMg9AACoPQAAND4AAHC9AACgvAAA-D0AAAw-AACIPQAAED0AAKi9AACoPSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=3Ki14CsP_9k","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6083766890677786891"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2172758860"},"12341375485365261588":{"videoId":"12341375485365261588","docid":"34-7-6-Z6EEFB0EF7053A446","description":"In this video, we'll see how systems of linear equations can be solved through the wedge product, no matrices needed. We'll then see how the wedge product connects up with standard linear algebra...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3912787/2226e88219117fd37e1eceba29214725/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2RU6AAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdnzUgDl43rQ","linkTemplate":"/video/preview/12341375485365261588?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Geometric Algebra in 2D - Linear Algebra and Cramer's Rule","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dnzUgDl43rQ\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoWChQxMjM0MTM3NTQ4NTM2NTI2MTU4OFoUMTIzNDEzNzU0ODUzNjUyNjE1ODhqkxcSATAYACJFGjEACipoaGZmd3FtYWJldHhreWdkaGhVQ0xfbFZYQ3l6cUJiMlhjOENydlBFTmcSAgASKhDCDw8aDz8Thw6CBCQBgAQrKosBEAEaeIH--fUF_QMA9f4KDAIG_QH4AAQJ-v79APUFAv8HAf8A8_oHAQQAAAAE-AgEAAAAAAYH-fv5_gEAFQ_2BwMAAAAH__75_gAAABL6BvX_AQAA9QYCAgMAAAAD9AX3_wAAAP0O8fv_AAAA_g3_8AEAAAAD9gj7AAAAACAALdby3js4E0AJSE5QAiqEAhAAGvABf_sTAdsN3wDcEOAA3iALAowJKf_-DuMAxxEiAaoS6P8Q3ez_4_3ZAAMC7gCm_vgBM_Lm_gL9HgAe4v7_P-EYANANKwAg8AQBNQ8WAvDi3P_OHxv-9PULAP3J4AAZDeb-CvMS-u7t6wEK67wII_ssAQ0IFgQK6fH__-AK-t0dFQDl9tr9Fx76BArhDvjsFTcBGfr3ABJEBP63PO4ADvPqAOfz_PoT9d4AKf30B_EG_Prq-_f7AtX7BR36IgbhDvACCukXAtgC-f8R9xwG9RkF8OYR8QjqEPEBHCwOA-znAP3w9Pv9uv0JB-rv9_oA9_P9IAAtXDAbOzgTQAlIYVACKs8HEAAawAfBquK-yyi7vLawuDylnY-9ROTPvIVLvbwyANS9YSYgPUKl2zwP0vM9kO4svaAE0TyWk0C-osyrPOjSZDzLgDM-5tGIvZhiMzzv5U6-EKhDPRiswLum1AW-P0ypugVmqrztKPO89l2Ruwx547vAN3I7XlqevFU13DxvsQy9VlsbvVI4zLzcahk69RFYvRN8WL2lmv47lcm6vHjl4bsuWaU9Y0JMvB8IWjy_40o99gtWPZb5_bzIv8W8DkA0OhKOsLt1Ziw9povDPP90qDxEIL29tGA9vVvVRzn5KVO9BAMIPG-5ejwPe4Y97LmRPTmhK73npxg9gHe8vJV_rbyX5DC-RG8sPeyCZrzwf2w9ZqnAPeVlCTzv5LO995GbPc39uryxN8w8MnaCPIr1P7owY6o9oZGZPCZpozzGb8o8z-jIvVBnE7v9cbE8eES1PbVXejwHKdg9_1nzvKCJsLwctk09kK4IvRJpm7yAa8K9PyoPvSyLeDzwt4O7g-S4PQiZPzx7_o-8TT6XPS9iqTwFI6U91gI7vknlmjre8se8f6vrvGyaTTqKZJ49IC4UPXhmvLpIGAY-bsllve3VBbw30kO9VcJyuwK6TLvA9kK9uP5ivU31gTjAy2y9ZUq1vG8WDDw0kYi99KZiPX5m2ruzGtw8A2A8PBaLOrzzcW28lM6wuyk7ojsvsg-8Jo68PCAyfruHgG09kZSZvDzWGTqWLx49rtiPvfY_4brZEBK9Sc3ovFpCpTs3FtQ87ECsvQNX0LhtA9c9taPYvQyfrzkDDCa8SVjFPSJFrbYb6qG9sluVPSzZmTjyfAY9z5uvvX0Z4DiJD7e9t0K4vTFCujieEmu98mMnPI0fQDnQdN077CO2PRVUIbiICoq97Qq_u8o8Hjo6VaO8aNaovWI1i7i3bpQ88_WGPDhBYDi-jhM7nvggPZU7TbhtMck8KEnyvLSerDjZU3w96rMDPj5FCrnrpGM8ooyivb9SZDkHXIw9q4EhPfvHpzgajgQ7IUL3POWrPbjBSFk9pJEKvY3WJjjD0-s8Zyb4vSIkJLj06Lw8Q6MlPYwX27fK4QO-ENcePJf9Tjfy0Dc9XEIZPXlyjjiU3Yy8eIfKvC4naDhqXA49FndyPFO5wrfB4ys-3KVovAeJdLk5xcS9Z7cmvtZHcjh5MxS9aiyWvUjoMLckxEu8jqLYPMDtq7c_jsY9K94IvocitLjK9HA9IuErPvHLijgYJzm9lEOlPWWUx7ha7ca9DxQzPWjb-ze9QB-9650bvINQODcgADgTQAlIbVABKnMQABpgGPkA-glX7iYdOvPY3Nv90tsC7Rqq-P_Rw__kFAIGIw2_w_Qe_zr7DdqdAAAAFNMYDfkA4HrGwAFI_PcQ06fcMRd0CPTuyAYcIODqUewV4ivvKTRYAAnoshp_CNkHOS08IAAtLGkWOzgTQAlIb1ACKq8GEAwaoAYAAEBCAADgwAAAkEIAAGzCAAC4wQAAAAAAAIhCAABgwQAA4sIAAAAAAAAwwQAAqMEAAKhBAADAQQAAIMIAAIC_AABoQgAAoEAAAPBBAAC4QQAAgL8AAADCAACIwgAAikIAAOjBAACowQAAcMEAACBBAAAIwgAAgD8AALDBAACYwQAA_MIAAABCAABswgAAmEEAAMDBAADoQQAAAEEAAFBCAACoQQAABMIAACRCAAAgQgAA4EAAAFjCAACoQgAAikIAAK5CAABUQgAAYMEAAADCAACYwQAAkEEAAIDBAACIQQAAisIAAHBBAACQQQAAhkIAAMBAAADUwgAAsMEAAMBAAACwwQAAOMIAAJDBAAAYQgAAoEAAACDBAADgQQAAMEIAAADAAADUQgAAmMEAAIDCAAAcwgAAkMEAABxCAAAoQgAAgMAAAKhCAAAIwgAAGMIAANhBAADAQQAAgD8AAODAAABAQgAAXEIAAABCAADQQQAARMIAAHDBAADQwQAA8MEAAChCAAA8QgAAuEEAAGRCAACOwgAAAEIAANjBAAAwQQAAbMIAAEDAAABAQQAAKEIAAJjBAACQQQAAPEIAAIZCAACgwQAAFEIAAABAAAAAQQAAOEIAAJjBAAAUQgAA2MEAAEBAAAA0wgAAAEAAAIA_AAAgwgAA6MEAAIrCAACwwQAATMIAAIA_AAAAwQAAQMIAACBBAABgQgAA8MEAAEBBAAC4wQAAMEIAAEBBAAB8wgAAEMEAAEhCAABAQgAAdMIAAGRCAAAYQgAACMIAAMDBAADIwQAAQEAAAGDCAAAgQQAAYEEAAPDBAAAEQgAAQEAAAGjCAACAQQAAhMIAADDBAAA4wgAAIEEAACBBAAA0QgAAAMEAADBBAAAAAAAA8EEAAOBAAAAUQgAAoEAAAODAAACgQAAAKMIAAATCAABwQQAA4EAAADDCAABYwgAAxkIAAKjCAAC4wQAAHMIAAKjBAACoQgAACMIAAADAAADQQQAAgMEAAMBAAABAQAAAgEEAAKDAAADgwQAAcEEAAFxCAABAwQAACMIAAAjCAAAAwiAAOBNACUh1UAEqjwIQABqAAgAADL4AAIK-AACKPgAATD4AAOA8AAD6PgAAoDwAACm_AABLvwAAuL0AABS-AABdvwAAij4AAHQ-AAC2vgAAhr4AAN4-AAC4vQAABz8AAFc_AAB_PwAARL4AAJi9AAC-vgAApr4AAIA7AADqPgAAqL0AAKq-AABkPgAAyj4AADy-AAB0vgAAvj4AAFS-AADCvgAAmL0AAIa-AAD-vgAAgDsAAOK-AADWPgAA4j4AAKC8AAC4vQAAqD0AALo-AAAXvwAAiL0AAEC8AAC-vgAArr4AAOo-AADIPQAAJD4AAIi9AAB3PwAA2D0AADA9AAAkvgAAD78AADQ-AAA8vgAAor4gADgTQAlIfFABKo8CEAEagAIAAKC8AACKPgAAir4AAFu_AAAXvwAA6L0AANo-AAAEvgAATD4AAJY-AABAvAAA-L0AANa-AABQvQAAJL4AAOA8AACSvgAACT8AAJK-AACqPgAAqD0AAAW_AABkvgAAgLsAAFy-AAAcPgAA3r4AAMg9AADIPQAAUL0AAIC7AACYPQAAZL4AAES-AADgPAAAhj4AADk_AACYvQAAFL4AALa-AACGPgAAHD4AAJq-AAC4PQAAPD4AAJo-AAB_vwAAiL0AAKA8AAAMvgAA-D0AABQ-AADIPQAARD4AAFS-AABUPgAABL4AAOC8AACCPgAAmD0AAJY-AACIPQAAFL4AAKg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=dnzUgDl43rQ","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12341375485365261588"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3704124165"},"11863798752126873178":{"videoId":"11863798752126873178","docid":"34-0-10-Z08CAB2CE3355D447","description":"Mathoma ( subscribe if you wanna be better informed in theology: • A Defense of Classical Theology (Part 2): ... ) explains the distinction between capital-G God (Yahweh/El...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1526995/2a79f76a3d3679eaa010e262d20a6fe1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/SG59xwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4H1YxS6-zDU","linkTemplate":"/video/preview/11863798752126873178?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"God is not a god (Mathoma)","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4H1YxS6-zDU\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoWChQxMTg2Mzc5ODc1MjEyNjg3MzE3OFoUMTE4NjM3OTg3NTIxMjY4NzMxNzhqiBcSATAYACJFGjEACipoaGRzenZscnptZGF1a21iaGhVQ3Zlazh6X3hjN2tyejNTbjBLdjlQOHcSAgASKhDCDw8aDz8ThguCBCQBgAQrKosBEAEaeIEG_vj9_AQA8AsMAvoD_wHrA_z6-___APr98gMFBP4A9P0KCPwAAAAEEQH-_wAAAPwC-fv9_gAACP8EBAQAAAAO-vz19gAAABP-AwX-AQAACgABAAP_AAACCQQFAAAAAPsEBP0AAAAAAhABBwAAAAD2__vwAP8AACAALaaO3zs4E0AJSE5QAiqEAhAAGvABf-30Aq_--fsv_REA4gnwAbgD9wD3Bv8A5wgYALEM_f8--fIB1xIN_-nv-gDpAPQAGfj0_w3pEf85AfT_MfcEAPYCEAAM2gIAAvfxAOvs8_8BBQv_8f0AARQQIgAL7Q7-8QEB_w_2BQET9QAAJv34BN7_DQH4IgICEgX4_fj7A_4b7gL_CCH4AuH_AwD2AgsDDAnyAAkD9_zx6gkB8QnwBP8JAwIjEgUBAhDqBQvv9Prx_fn98vIF9_37EAfqCfUC9Pn-BfzkAwH-9gz7Cv0BAOT_Ffv4Ag7_DQLx_BDyEvz_-QABDQcF_t798wjvCAbzIAAt2g1fOzgTQAlIYVACKs8HEAAawAdI4RK_hYsHvPLCpzzJym890pKiPMpDFTuC1Ly95NyWPfyLID27JYG-U9DtPJoSILyhSHe-c1a6PKQ2Mb3-1Ys-IMSfPIapMTs1eTq-DquRO0p-RDxPeJG-ZxVMPanmi7oHtNS9EtYrPd4uRTw56zi9cByCPEmdQD2hN_A8E9zEui1wIjwkyFK9c_GcPBYbjrxH1ZU9M9FWvbuWtbwga507XLyZvc92-zwKIRA8mw85vXVvqLrxD3u9vhobPXTYt7qAft89AWKMvRflBDwZHbG7lcJyPKKeOjvr9rO91r4lPFXXxruMeA868OMDvduyMjyT_t49lPVAPJ9nfTyt-QG-VKWSPCHR3ztzwfQ8fMmQPGQNDzyXqZk9Y_Q3PPz1Lzv1Ugw9oA9gvPxPxDu5O4Y8IK7iOx61eDwxLou85LvEPRCxgTxNdp09M0imvN37LLr4cbS8WBwOPPFHUbxHYji8bRuGPCcylDuHBGK9N656Pf42erwtM5Y9q3gjvRKONLwNJcm8tno4PZgU_rlzigm9mAOzPF8-fryF3lE9xnzpO9RdaznOeJE9G2savfXvQDt8txk9xuDhPT_2xDqzze29GboovbQB2LuCq1w9L02RvAHDcjwZgUK9I7EOvTFSGLzGvok9j27nuz2inTsfjdg7K3QYO_a7KDut5cS9hcfjPEXBxjryB8M8GlzpvNcXB7xvgJk9BtMVvERVhrt4Kr-6_x7hvM2-wLrEuR-77Oy1vJlRgzuWj2k9UAhTvJvqBzuGI4O90v5HPcDQxTkdXUA9OU5Au8w2yLk2uCM9S9QhvWLkUrjXEME8QH30O_k5Mrh_8t47WusQPXn_v7mJirK9gFAtve1hHDliqs88VjDouqkjXDic7IC9X9cqPSwI97iY1LU89EIwPcq0zre4pxQ8D-cKPO5cn7isNh89EGmnumfebrnpwGg9QVCZvQk0hrh01kK9gFKjunNuZrV46GC8-y8mvUMWKTVJd9860yTCPAtdFjYAWhA71pdbPGu8KLiKBT682vCavUgoljjz2va8CPnKvVqHe7b9Hqs8tKRNvb0_fzj3m3-9EeQAvtRwMDl4I5g8gmcMPZMR0TjiHJo8BSK6vG47hLeLAji9n6cmvS3qeDigVMs99_HGvC2P1bjpQDu9CScYvVhoKLhR71M9bHESvfV-tTef-zc9QTtxOxVHN7jVlOQ8vjamvfOjTbj--6I9gQK1Ozv32jjkVEG9b9IZPKtcR7cX8d28X6RbOhiG87fiy0Q8KIk7vTf01bcgADgTQAlIbVABKnMQABpgI_0AUwY8HObhCrLdw_sW7zAdH_bbtQD6A__hIPjP__bm8VkqACPOCfGtAAAANPQGDPAA3XXFwsoyCakX9_PPBh1_ExbK1cAf05b73ASz_P8P3x_zAOzyrP8WH_VD7CgjIAAtt2scOzgTQAlIb1ACKq8GEAwaoAYAALDBAAAYwgAAgEAAABjCAABcwgAAhMIAANhBAADgwQAAMMIAAOBAAADIQQAAoEEAAATCAAAAwAAAYMEAANBBAACaQgAAFMIAAABAAAAYwgAACEIAANDBAADgQAAAYMEAAGRCAAAAwAAAFMIAAHDBAADAQAAAnkIAABzCAACQwQAAaMIAADBBAACQwQAACMIAAABBAAAYQgAAAEAAABhCAAAMQgAAIMEAAIBAAAD4wQAAYEEAAAjCAAB0QgAAAMAAAOhBAADgwAAAIMIAAGBBAACOwgAAIMIAAEzCAAAgQQAAqsIAAKDAAACKQgAA3kIAAMDBAADAwQAAFEIAAEDBAAB4wgAALEIAAODBAACAvwAAuMEAAMBAAAAUQgAAVEIAADDBAACAPwAApsIAAOBBAADuwgAADEIAAJDBAAAAAAAAvsIAAGxCAAAAAAAAhMIAAKBBAAAQwgAAMMEAAKhBAABcQgAAZEIAACDBAAAAQAAAIEIAAHDBAAB8QgAAAEEAAIDAAACgQAAAAMAAAFDCAACCwgAAEEIAAKDBAAAEwgAAAMIAABBCAABQwQAAAEAAAMhBAAAAQQAAUEIAANBBAACWwgAAVEIAALZCAABwwgAAYEEAAETCAAAQQgAAIMIAAABBAABAwgAA4EAAAAjCAACEwgAAyMEAAATCAACQwQAACMIAAHBCAAAQwQAAukIAAEDBAADwQQAAhkIAAABBAACAvwAAUEEAAMDBAADAwAAAQMEAAKDAAAAEwgAA-MEAAAhCAACAQQAATMIAAJTCAAAMQgAAgkIAAPBBAADgwAAArMIAAADBAAA8QgAAVEIAAIC_AACAwgAAIMIAADDBAAAEwgAAiEEAAIjBAADQQQAAkEEAAGDBAABAwQAATEIAAGBCAADgQQAAAEIAAFRCAABswgAAkMEAADDCAAAQQgAAqMEAAEBAAACgQQAAdEIAAJLCAABgQQAAFMIAAADCAAC4wQAAYEIAAIA_AACUQgAA6MEAAPBBAAAAQgAA0EEAAIZCAACowQAAQMAAAABBAACkQgAAYMEAAABAAABUwiAAOBNACUh1UAEqjwIQABqAAgAAND4AAFC9AAC2PgAAUL0AALK-AAC6PgAAPL4AAAu_AAD4vQAAhj4AAKI-AAAkvgAAmD0AABQ-AADoPQAAfL4AAHQ-AABQvQAArj4AAM4-AAB_PwAAHL4AAOg9AACaPgAAPL4AADS-AACoPQAA4DwAAMi9AACuPgAAmD0AABy-AAAwvQAAJD4AALg9AABQvQAAgLsAAEy-AACevgAAUD0AAJa-AACOvgAAcD0AANi9AABQPQAAqD0AAI4-AACgvAAA4LwAAKq-AAAMvgAAgLsAAHQ-AAAMPgAAVL4AAOg9AABLPwAA-L0AACw-AABUPgAAgLsAAEQ-AAA8PgAAyL0gADgTQAlIfFABKo8CEAEagAIAADC9AAA8vgAAML0AACe_AABcvgAAvj4AAGw-AAD4PQAADL4AALg9AAB8vgAAkr4AANg9AABAPAAAED0AAEA8AABwPQAAWz8AACy-AACePgAAgj4AALi9AADgvAAAgDsAAOC8AAC4PQAAgLsAALg9AABQPQAAqD0AAMg9AACYvQAAmD0AABS-AACCPgAAQLwAAII-AADgvAAAkr4AACS-AACOPgAAPD4AALY-AADovQAAyL0AABA9AAB_vwAA6D0AAAy-AADYvQAAEL0AAEQ-AAAcPgAAbD4AAEQ-AAD4PQAAQDwAAI4-AADoPQAAMD0AAJY-AAD4PQAAiD0AAFC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=4H1YxS6-zDU","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11863798752126873178"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"173975282"},"17176265180072336066":{"videoId":"17176265180072336066","docid":"34-10-14-Z13272A97EB4A0EA9","description":"In this video, we will observe that the composition of two reflections through two vectors is equivalent to a rotation by twice the angle separating those two vectors. It's a neat geometric fact...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2160998/0cb35d16de75ffb24d822f441910da55/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gjKHEwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHy2gbdbrJZ8","linkTemplate":"/video/preview/17176265180072336066?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Geometric Algebra in 2D - Two Reflections is a Rotation","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Hy2gbdbrJZ8\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoWChQxNzE3NjI2NTE4MDA3MjMzNjA2NloUMTcxNzYyNjUxODAwNzIzMzYwNjZqiBcSATAYACJFGjEACipoaGZmd3FtYWJldHhreWdkaGhVQ0xfbFZYQ3l6cUJiMlhjOENydlBFTmcSAgASKhDCDw8aDz8T3AmCBCQBgAQrKosBEAEaeIH09Pn-_QMA7wMGBgAD_wED-Q0B-f7-AAD-AwMHBf4A-_kK-gEAAAD6BQoDCQAAAPwC-fv9_gAABALuBgIAAAAQAPL3_QAAABMEDfP-AQAA7_sN-gIAAAAH-gL9_wAAAPQJ-v8CAAAA9wsJ_QAAAAAOBQIDAAAAACAALeeY3Ds4E0AJSE5QAiqEAhAAGvABffsTAcYJ4ADPAuoB2zQXAoEiCv79MdUAwQX9AKsR6P_96uUA7_DmABbwEAG_9AEAGAXY_wPZJgAuD_YAPuIYAM8FFQAa7hABQvEc__AC8__mE-v_Bx4V__3K4AD2-_T6CvMS-tTc9fruA8UC_wQqAPkBJAUF6gj_7woZ_f4u-Pv85-D9BQj2AP3XFgDtFDcBGPQH_w0F8_rmBPIBEgL1B_Xa9PobGuP-HeDiABbbCQXk9gL4BL_y-h36IQXSJwT4_tcU9tkC-f_vAg75Iv0E_u4CBPfsDQsJJTMB-fT0-_3h7vr3zvUY_-P0_Q35CvfyIAAt_yEdOzgTQAlIYVACKs8HEAAawAftmti-VnZLvY8S4DxUNky9mTwvvRG2jroU2pi9J095PQsRibv90qc9CbIUvUv9oTw0TSi-WS7AO_QJjzwUlEI-RkUcvXPoALx6Fy--CDwwPSmf1LyjBQi-4-H9vETJvzwI94S9Pbs3vcboEDsFxCS8ROPkvIFKPborV8O9nWxevfqUCL28fMY8bg4fvCINeL2tf-E8s8W_vMRPLbz4RGg9vcNtvN7bvjv1JUA8h7-mvKBsirzq1bu9osc5PJBMR73JIm09RYTaOyUzKDxT0O29HzJAvZHXnrz6fT-9GpQfPcYFZDrb2809obqpPaaIwrzwbmA9W1U7vVbYZ7x39Qq-oJ8uPVz5UbwbKps9WJ1GPd9ML7v4WDW9kkVVPQCuBL2R-pE9giXyPJA2hjtkk9w9bv1PPGcxzDwryjs9gbawvNCiUrwIm_C8_2McPRcNmTxNHVo9Y81tvCSKf7yEjgw9H4IqvJaVprz4nya9R9H2OQNkQzxPXG49kbc8PWF8B7uBxEC9ASeVPc49vTsFI6U91gI7vknlmjpA-xG9VlOjNYWycDznzFE9uKCIPVl9Hrxu_Ok9TOStvStzqbssSPO8ukawPN4W0Tu4nay8tBwNvZdTJzzOJpa9-p6sPLXhMLv1xXS9s1-YuxNPLLygzPU8cMrBPG-4j7tsAee7MEfvvT-aoLoNmoy8F5llParaSbuLEJg9EZ_FPP5M8rlas1o9PXaRveqG2LpSi_e8EmP8u6LhXjuIpke9V2CDvXT_ZzhtA9c9taPYvQyfrzmtgKe8VmOJPek1mTkt0Qm-liEuPZ64YLjj4ui8FViLvXpLsjerPZG9GlIVvjBRCjqeEcC8IaiBOzpJKbouJ1c9I-a4PWdUmbjljJK9k7kDveN9nrkqo4a9Tr0JvaVUsDjdnEU9rZ44PTZ1qTgxf2A9xiuaPNgK_Tig-_I85ypnvRmtZzgaAMU8jYljPZF9Ojd7Zu68eIKYvJCgNbhGPzo99M6HPWz-t7giCfG8WN-CO_boDrhyKYg9Zv5svYtypjaaBxA93jjJvQg0-zYjNvE7O_82PddclrjCS7W9jU0CPA26Tzbx_Bq8P_mgPApelTjyDNM5jq5yvQjgujg75IY9OHCCPUFSATiCVUU-dMg3PcnchLn5SuC9DI_dvWMzRLh19fS8Wd3qvQ0j8TXabKG9jeayPSF0CTg_jsY9K94IvocitLgi_-w9NSkFPvN-W7iu75O9OuPAPR4C6biX9EG9vLy_PekOEjh1CDm7FJ2AvTeXorYgADgTQAlIbVABKnMQABpgG_MAK_on4AQbIurl-8Ui2s___gnH4P-73AAFKesKCA_31_Q0ADrYE_KzAAAAJfL-N_QA_WfN2g8m9hn-1bzGGBp_7QsM3_IW_cDeTTAQEAz07SVOAOvwqgcpAM0GLTkoIAAtR0EuOzgTQAlIb1ACKq8GEAwaoAYAABhCAADowQAAzEIAACjCAAAAAAAAQMEAAFRCAACYwQAAPMIAAKBAAAAgwgAAEEEAADBBAAAswgAAgMIAAAxCAACgQgAAYEEAAIDAAACQQQAAoEEAAGDCAACAwgAA4EEAAMjBAADgQAAAOMIAAMDBAAA0QgAA2MEAAGDBAADQwQAAAMMAAFRCAADAwQAAgEEAAAxCAAAAwQAAYEEAAAxCAACQQQAAcEEAAHxCAADgQQAAUEEAAJjBAABoQgAAwEEAAERCAACAPwAA4MEAACzCAAA0wgAAGMIAAABBAACmQgAAgMIAAPjBAADgQQAAgkIAAJDBAACuwgAA6MEAACDBAAAAwgAAdMIAAOBAAACAwAAAgEEAAJhBAABsQgAA6EEAADzCAADOQgAA6MEAAKDAAAAwwQAAPEIAAJBBAABAQQAAgMEAAKpCAAAIwgAAWMIAAEBAAACAwQAAYMEAAJjBAABAQgAAdEIAAGhCAAAAQgAAZMIAAKjBAAAIwgAAXMIAANhBAACIwQAAgD8AAJZCAABIwgAAoEAAAEBAAADQQQAARMIAAEBBAACQwQAAKEIAAIBBAADgQAAAGEIAACBCAAAwwQAAqEEAAPjBAAAgwQAAqkIAAIDBAADgQAAAMMEAAAAAAABEwgAAAAAAAKhBAABowgAAIMIAADDCAACAQAAAeMIAAMhBAAAMQgAAqMEAAABBAAA0QgAA4EAAAKhBAACAvwAAgEEAAHDBAADYwQAA6MEAAAhCAACAPwAAFMIAAJBBAABcQgAAAEAAAPDBAACAQAAAiMEAAIBAAAAAQQAAPEIAABzCAACCQgAAAEIAADDCAACgwAAAssIAAPDBAAAQwQAAAAAAAOBAAAA0QgAAQMIAAIhBAACIQQAAskIAAABAAAB0QgAA4EAAAKjBAAAkwgAA6MEAAJDCAAC4QQAAgEAAAIC_AABcwgAA5EIAAKjCAAAwwgAAiMEAAHjCAACGQgAAYEEAAABAAACAwAAAwMEAAFDBAADQQQAAAMEAAAAAAACAwQAAoEEAAHhCAAAQwQAAuMEAAPjBAAAMwiAAOBNACUh1UAEqjwIQABqAAgAA2D0AADA9AACAuwAAmD0AAMi9AACOPgAAiD0AAF-_AAAPvwAARD4AADQ-AACivgAAij4AAIo-AABcvgAA6D0AABE_AAAwPQAA-j4AAEM_AABpPwAA6L0AAAM_AAAwvQAA0r4AAHQ-AABEPgAAjr4AAEC8AADIPQAAxj4AADA9AACWvgAA2D0AAJi9AAA0PgAADL4AAOC8AACWvgAAAb8AAFS-AACoPQAApj4AAEC8AAAcvgAAgj4AAKC8AAC-vgAAlj4AAHS-AABQvQAAir4AAIo-AADSPgAAmj4AABC9AAB_PwAAoDwAABy-AADIvQAA1r4AAJg9AACoPQAAUD0gADgTQAlIfFABKo8CEAEagAIAAFC9AABAPAAATL4AAHO_AACSvgAA-L0AALo-AACevgAAMD0AAFw-AABMPgAAPL4AADy-AAB0vgAAmL0AADC9AACGvgAADT8AALi9AAB8PgAAQDwAADS-AAAMvgAAmL0AABS-AACovQAApr4AAOC8AADYPQAAUL0AANg9AAD4PQAARL4AAES-AAAsPgAAoLwAAAs_AADoPQAAyr4AABS-AAA8PgAALD4AAGy-AADYPQAAoDwAAGw-AAB_vwAAoDwAAFQ-AABMvgAAfD4AABS-AAB0PgAAoLwAAOA8AADIPQAA4LwAADC9AAC4PQAAyL0AAFQ-AADoPQAATL4AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Hy2gbdbrJZ8","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17176265180072336066"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1697232225"},"7845499974912917317":{"videoId":"7845499974912917317","docid":"34-11-7-Z25A2F9DC0D87FF4A","description":"In part 7, I will present the argument from composition, reasoning from the reality of things with parts (composite being) to that which has no parts whatsoever (simple being). We will first...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4866497/640a77fb762cbe2aff2e5ac67647134d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GfY-wQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFt7J1Mv-0fI","linkTemplate":"/video/preview/7845499974912917317?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"A Defense of Classical Theology (Part 7): The Argument from Composition","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ft7J1Mv-0fI\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChM3ODQ1NDk5OTc0OTEyOTE3MzE3WhM3ODQ1NDk5OTc0OTEyOTE3MzE3aogXEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E5oJggQkAYAEKyqLARABGniB9QQA-PwFAOv8__8TAP8ABwEH-vj__wDxAf8F9gEAAPcE9voEAAAABQT-Cv8AAAD2AQP89P8BAAn2AQQDAAAAEQQG-fgAAAABCAUE_gEAAPj9CQH1AgABCAQCCgAAAAD__wn5AgAAAO0C7wIAAAAA_AH5-wAAAAAgAC0r5N47OBNACUhOUAIqhAIQABrwAX_pEwO9CwT9DSPmAPH19QHxBdIA1vD1AO0fAwClDvz_Rg3tAeMREgDg-w0A_BjhAAUE9_4k-QsANff6AAkc3v_74fsA8QIaAPwcCgDxAAT_9AoR_-f1DP8PAS8AJgAeAu8B5f4D4xb_99ILARkC5gPKBBoC2f_1_xf32f8EARUCEuYN_QwJ8f7nFAECEhP3BBUY-wjhJQL_DygIA-4w8_4L-xMBCQwQBuz46QAG-RMH_hfxA_MUAAUnFB8HBBjwBgAO8vs63fMCGyAI-f77-wDp-wsN_N4CBC3p8wP5IAf4BiP8-B4BAvncEgkN7QkG8SAALbMBQjs4E0AJSGFQAirPBxAAGsAHY0Pvvg_Bp7zTgIM7eHvAPWlRn7uMgbe7njl1vYfJL7yxapA8i8U_vqmrlrx0X249EmJTvWgRQDy-wl29nUaCPn8WS7y-Esi8NXk6vg6rkTtKfkQ8T3iRvmcVTD2p5ou6kJ89vmkQMDxySuU8zSG5vdbcuLrJREU9lqN2PRfYYzzlQkU9bCU0vlXtQ7sDsgY6IYaXPXjJCT1EAgG90sYRvYxyy7jUcBs9_YC8PeWJFj2Jtwm9axGxvcfIyDwfEdO8tYgovAX1Er2Urs-8SUcevK5-sLhZuPY8soL_vVRBQD3aTiE8UjehvFbeJ7vK3cY6sb-BvaZwjjyD3t27FHtYvlm3C70lSBu84OXIvaYiurxzXsg8zB-oPSwu6bztD5Q81edqvAnRSTrJRIA8wgegvcs8KDskgsw8oxe9OwUz6DsQtcg8z0XoPBrBRjxEjDK8Af05vfMjmT1lWYu8uDx3u-xTCb2nPaW8hwRivTeuej3-Nnq8PjK3PbmdxzzKZac4Po2gPOYJgDt-9Je7sdsHvk3Dy7zOKXE7E_y1PXSQPD0BK4-7rNEBPUdZv7t-cEc6pRNJPcgyoz3uC8e7qqWPvWB5a7yz7Em8ZLIYvW1UCrywqXM8naF4vTzJbL2w_aY7Iwd2PTBGSb35NhY8knTNvSeMQTw70s86kDNIPcjWTr1hnKa6Y0w1PVBfJrt0wjq83F_CPRlfb710B3i5QIqVve1QiL15Tkg4pFuqvadDAj02psI3lo9pPVAIU7yb6gc726GmvdViDTtDO_g4c_-Hvbnmiru8U-M4YZntPOlDvL0CAak2HaKbPHm5ALv73Qo5uaebPaLeYr3cgMw4_w01vM7V3jtEEIy6ylOWPJOHqjwSrwA6vFV8PQwZ1buEvGG5OJagOgL-3zzgxUi3rq__POpCrDpzwt23sqPMPKRsNjyPVuw3AgNSPVqc8bwpvDW5QEW6vXN-bbt5eRU4Sw3jPOqMlLx23eq3WT8Mva7vKD0zk0244lW7vEVhjL11hA64L2uku3uqeb15UDq34s-bvTNQ-b1Gyg243kB8PZQeXL29-E84zZXcPP8jI77mnHE5k55xO9uZE72LC9o4iiLkPd5Vz7ybdlQ3XETKu33Fwzt9XZM3CyxbPab4LryS0Je4uZ-tvcMzvLyGhhC3O_5LPYiBrjyCE8o2M90LPXdaSLzBzLK4XKihPX3ElL24oZY3_IS4PajPhjvAbsI48LI1vVzMzz0MRgq5cP2FPHqSTzydf_W33_ivPZMp8LxSIrk3IAA4E0AJSG1QASpzEAAaYB_wAC8GMR3KGz3H6MzRJ-XVCPEk2O7_0_D_xg4M1_0a8d8MKf8czcn0rwAAAAToyFHzAANt6_CiMQnXLwX3wPMXf_MPzvD4-PayBcMA7QUWCAwIFwAJ4rwYDOalFAJZLCAALVAuJTs4E0AJSG9QAiqvBhAMGqAGAADgwQAAPEIAAARCAADAwAAAwEEAABDBAAAgwQAAgMIAACDBAABwwgAAgEEAAKBBAABkwgAAQEEAANDBAABwQQAAqMEAANjBAAAsQgAAwEAAAIBBAAAAwQAALMIAAIBAAAAgQQAApkIAAEDAAACYQQAAAEAAAOBAAAA8QgAAHEIAAGBCAABsQgAANMIAAEDAAACAQQAAkEEAADhCAADAwQAAiMEAAJjBAAC4QgAA6MEAAJzCAACAQAAAUEIAAGDCAAAAwQAAMEEAAKDCAABwQQAAOEIAABRCAACwQQAA6MEAAGDCAACAwAAA0EEAAKBCAACowQAAPMIAABRCAAAQwQAA6MEAANjBAAA4QgAASEIAALhCAAAAQgAAXMIAAJBCAABwQQAAXEIAAOjBAADQwQAAgL8AADRCAADQwQAA4EEAAKzCAADgQQAAPEIAADBBAAC4QQAAgL8AANDBAAAswgAATEIAABhCAABwQQAA4EAAALBCAAB4wgAAOEIAAHDCAADQQQAAKEIAADzCAADQwQAAFMIAALDBAADgQQAAuEEAADjCAAAQwQAAcMEAAMBAAAAAwQAAzEIAAJBBAAAkwgAAMMEAADzCAAAgwQAAEEIAAHDBAAAcwgAAQMEAAHDCAAAAQAAA-MEAABxCAAAYwgAAuMEAAOBBAABAQAAAnMIAAILCAABwwQAAZMIAAFDBAADgQAAAIEIAADDCAABAQQAAmMIAAOjBAABswgAAmMIAAIDAAABQwQAAgL8AAMBBAACYQgAAdEIAAKDBAAAkwgAA0MEAAAxCAABQQQAAVEIAAGBBAAAgQgAACEIAAOBCAAAgwQAAZMIAALjBAACowQAAFMIAADBBAAB0wgAA8MEAAGDBAAAMwgAAcEEAACjCAADgQAAAgMAAAJjCAACQwQAAuMEAAOBAAAAgwgAADMIAACTCAAAwQQAAIMIAAKxCAABkwgAAAMIAAAzCAADYwQAAQEIAAIDAAAAAwQAAoEEAAHDBAAAUQgAATMIAABBCAABAwAAAwMAAAKhBAACYQQAAksIAAGDBAABgwQAAusIgADgTQAlIdVABKo8CEAAagAIAADC9AAD4PQAAkj4AAOC8AAB0vgAAjj4AAIo-AAC-vgAABL4AAIC7AACoPQAA4LwAAEw-AACiPgAANL4AAOi9AACIvQAAmL0AAK4-AAD6PgAAfz8AADS-AACKPgAAyD0AADS-AAAEPgAA4DwAACS-AACGPgAAgj4AAHC9AABAvAAA6D0AAM4-AACePgAAMD0AAHQ-AAADvwAA0r4AANi9AAA0vgAA4LwAADw-AACIPQAAZL4AALg9AACAOwAAQDwAAGy-AACivgAABL4AAKA8AACePgAAnj4AAFS-AADoPQAA9j4AACS-AADYPQAAyD0AAFy-AACgvAAAqD0AAKi9IAA4E0AJSHxQASqPAhABGoACAABMvgAA4LwAANi9AABFvwAADL4AAHA9AACWPgAAEL0AAMg9AACYPQAAUD0AAPi9AAAMPgAA6L0AAKC8AACAOwAAkj4AAA8_AACAOwAA-j4AAGy-AACgvAAA2D0AAES-AACIvQAAUD0AAGQ-AACgvAAA4LwAAOg9AADYPQAAyD0AAKq-AADovQAA4LwAABC9AABwvQAAij4AAGS-AACoPQAA2D0AABC9AAC4PQAADD4AACS-AAAsPgAAf78AAAS-AACmvgAAZD4AAFQ-AACoPQAAuD0AAAw-AACoPQAAED0AAKC8AAAUPgAAcL0AAFy-AAD4PQAAiL0AAOC8AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Ft7J1Mv-0fI","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7845499974912917317"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4147958917"},"3730403377989224219":{"videoId":"3730403377989224219","docid":"34-4-11-Z3014DF5123C13BA5","description":"Please feel free to leave comments/questions on the video and practice problems below! In this video series, we'll explore the basics of set theory. I assume no experience with set theory in the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1618388/b85f199207adc37b541e076415b86434/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/T3K40AAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqgizzlTVxxs","linkTemplate":"/video/preview/3730403377989224219?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Set Theory (Part 1): Notation and Operations","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qgizzlTVxxs\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChMzNzMwNDAzMzc3OTg5MjI0MjE5WhMzNzMwNDAzMzc3OTg5MjI0MjE5aogXEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E6ALggQkAYAEKyqLARABGniB9AMC_v8BAO_-AAX4A_8BDQb_AvYAAADtBwcAAf8AAPUB_AH1AAAA_f_7BvUAAAAGDgj6-P0BAAn9_vwDAAAAGvb1CP0AAAAOGfoC_gEAAPT3BwIDAAAABQEA_f8AAAAJDv0FAQEAAPoSCg0AAAAAB_cA_gAAAAAgAC3YMtQ7OBNACUhOUAIqhAIQABrwAXkO-QDODPz_HP3QANAK-_-BFfD_GB_mALD39AC5ENT_8iXaAObX8P8B-_wAxgYBAB7v4P8Y-BQANAsE_x8GDQD59RUALdMNATQRA_8EBdoA8AQIABL9_wAO4vkA7Any_Pz9EADn9vUBDP_cAvzwJgAT8DAAC_YNBuH1BAD1IRID9vvx_xLzDf7lBPb57QYfAfDtAvr1-fv66AIFCQz17QAM3gr8Cw_ZAAcIAwz_3_H88QEHAP0B6wMZ-x0F9QHq-vztFP7hC-z95BMa_zvqDQnNCAr--ucQCAML9QIE4RQB-_4E9fsFCPfpFgwH9wP4ACAALVH0NTs4E0AJSGFQAirPBxAAGsAHuRwDv6G_q7uac_i79vOBPMPKWDkaVHa8zKWXvXGq9Tw9PJU8FPPHPPPAkTxa2oQ8mYCnvmX70Dyf-hE9xVWFPlQwb72bfyq8nmKFvpG6fT0sc4S89aFrvoTTBz10NcO7K0t0vLO-97zHJEg7dgk9PY5jWryLUh-8AZzFu33-wbugkm69839dvYGGDb0dkYy6BcP5PTGLWr0LiB89uyYEPq2Hn71Ad_i8UUzeu_Y5yDwp3Dy8I36avU1wZT1vMC-8cwixPUC92byFw5w8iQMtvQdAYb2elv67T2YyvQpCfj2zl608jX-fO6GOfT3_CS68nFqsPKMexzt8SPi8QLexvT0pEz2a3Bw8qPwLPqWDlT0kjoa8IpStvHRLoT3OwbM8xSIBPTO54rzTRru7uYnaPQnrFT2uC4U74BSxvBFP27xyC6c8qh5GuoCBgD1U02Q8x4s7PeCV7jy0gL-8U6m-PMGrhrvsQ4e7VY-6vb45NzwXmSW8bY4zPVX6PTqki827pwdlPVuU2TzYwmI8L058PB8kNb0FyMw7CSJBPN5cN73LCeK7imSePSAuFD14Zry6djQOPWmHBL2yMli7N9JDvVXCcrsCuky7uphQPR8bV71iaqY8m8iMPBRxnzyrhlk6xnxtO9VvsLwNUcw5lxnbvHoe9zz35wO85wfkvGiXj72ZtRi7GpyNPeTHDj2eke-7zC5zPVAZvzxdvho7lY2NPeo3mL2FVW86acw_vdBjNL3Ij526aM_lvHYwhzx-nxq7qoKhPRoYmb1HSqA4NyUPPeu4gD0d1bs5jgqXvVrxETup0I04kG30PLLoR71t68C5avYju--dp71iSNy4d6ZLvX1wo7zWGoe59pxvPb21wjymrmo4_uYPPWMwmjxibca5umVqu9fdvLzuAcq4iqIxPa5YC7zlZZ-4Gq1ePRHJ67xtHgI5JjfMOpH-qLyJCN45fr_9POQfTD0Hayg5wJWJukRjd71e3BW4EnAjPQKeNDyk4WU44okqPXNWej1k2ak3hPIAPKB62jxO72m3nQ5HO3efA75D3oy3GMmDPWvLCj3OoTK3a_HpvXnWJLzuL2A2axGsu4uA8bsFPYU48gzTOY6ucr0I4Lo4rZqxu6KyYb3dCLQ3raf2PbPqmLx7Ozq5uZ-tvcMzvLyGhhC3DZ-6O89cUb2hRa62V7_IvPkVxjyuaau3YQZ5PfM6Er5L56m4Iv_sPTUpBT7zflu4cXxjvfolAj6pgSy56FWzvRYk7DzNuCE4dnoUPG8nFr3Re822IAA4E0AJSG1QASpzEAAaYEfzACDoLOwB6VXv3wrBIuTaBvhF6vP_9PH_1D_TChAIseMQDv82xBLnpgAAACvt8Cy9ANp87e7xG-wlAN3S1BMaZAAbCsGBCga_zQk--wofHP8kLQDk548QFOO6MgIeBCAALWh3HTs4E0AJSG9QAiqvBhAMGqAGAAAcwgAAIEEAALxCAADgQAAAqMIAAGDBAAAQQgAATMIAAILCAACewgAAgD8AAAjCAAA8QgAAqMEAAJjBAACgQQAABEIAAHBCAABUQgAAIMEAALhBAAAAwQAAwEAAADRCAAB8QgAA2MEAANhBAAAQwgAAAEAAABhCAACgwQAA4EEAAJjBAAAUQgAAsMEAAEzCAAAcQgAA0EEAACDBAADoQQAAkMEAAABBAACUQgAAEMIAAABAAAAQQQAAUEEAAPjBAADYQQAAPMIAADzCAABwQQAAqMEAALhBAACwwgAABMIAAPLCAADAQAAAbEIAAJRCAAAAwQAALMIAAFhCAABwQQAArMIAAOhBAACQwgAAMMIAACRCAAAkQgAAiEEAABDBAADgwAAABEIAAJjBAADAwQAAiMIAAHDBAACgQAAA4EAAANDBAABwQgAAMMIAABDBAABQQgAAEMEAABTCAACGQgAAsEEAADxCAAAAwAAAhEIAAEhCAADowQAAXEIAADDBAABgQQAA-EEAAERCAACawgAAgMIAABDBAABUwgAAmMIAAIjBAABAwAAAuEEAAEBCAACgwAAAqMEAANJCAADowQAA-MEAACDBAABYQgAAoMAAAOBBAAAgwgAAsEEAABjCAADQQQAAEMEAADBBAADgwQAATMIAAEBCAAAwwQAAkMEAACTCAACAwAAAAAAAAKhBAABAwAAAgEEAAIRCAAAgwQAAQEEAACBBAAAIwgAAAMAAADzCAABkwgAAuMEAAKjBAACAvwAAuMEAACRCAAAAAAAAsMIAADBCAAD4wQAA2MEAAN7CAACAQAAACEIAANDBAACWwgAAmMIAAKDAAACYQQAAiMEAAOhBAADwwQAAgsIAAAxCAAAcwgAAIEEAAABAAABQQgAAiEIAABhCAACQQQAAQEAAACTCAAAIwgAAEMIAAExCAAAsQgAAQMEAAERCAACAPwAAGMIAAPDBAAAAwAAAgL8AACRCAABAQAAAqEIAACDCAACwQQAAwEEAAAxCAACgwAAA6MEAAOBAAABAQgAAoMAAAFjCAAD4wQAAFMIgADgTQAlIdVABKo8CEAAagAIAAJK-AACWvgAAqL0AAM4-AACYPQAAqD0AAIi9AAApvwAAyr4AALg9AACoPQAAQLwAAIC7AADIPQAAur4AAEA8AAB8PgAA6D0AACQ-AAD6PgAAfz8AAOC8AACoPQAAgLsAAI6-AAAQvQAARD4AAOg9AACovQAA4DwAALY-AAD4PQAA-r4AAIg9AADgPAAAND4AAMg9AACavgAAhr4AALa-AAAUvgAAZL4AAFw-AADYvQAAyL0AAIC7AADYPQAANL4AAPi9AACmvgAAcD0AAGS-AAAUPgAALD4AAKC8AADovQAAeT8AAMg9AADgvAAA-L0AAIA7AAAUPgAAcL0AAIq-IAA4E0AJSHxQASqPAhABGoACAADIvQAAuL0AAFC9AABFvwAAED0AABw-AACiPgAADL4AAMi9AAAMPgAAyD0AAFC9AABwPQAALL4AALg9AAAQvQAAQDwAADE_AACYPQAA3j4AAIg9AABQvQAAXD4AAEy-AAAQvQAAyL0AAFA9AADoPQAAMD0AAKA8AADYPQAAcD0AAES-AACOvgAA2D0AAPi9AABAvAAAbD4AAJq-AADgPAAAmj4AADA9AAAsPgAA4DwAAIA7AAA0PgAAf78AAAS-AAA0PgAARD4AAPg9AABAPAAA4LwAAMg9AAB8PgAAiD0AAIC7AACAuwAAEL0AANi9AAAsPgAAPD4AALg9AAD4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=qgizzlTVxxs","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3730403377989224219"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"89943967"},"8375364411701887247":{"videoId":"8375364411701887247","docid":"34-1-5-Z4C13F90C726BC97C","description":"In part 3 of this series, I'd like to talk a bit about scientism and naturalism, which are two ideas that often surface when talking about natural theology. Usually they are brought in to...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3399322/aa2ac0efed75551fa777cf75e3423cda/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1zP1OgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYhR77luOETU","linkTemplate":"/video/preview/8375364411701887247?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"A Defense of Classical Theology (Part 3): A Critique of Scientism and Naturalism","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=YhR77luOETU\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChM4Mzc1MzY0NDExNzAxODg3MjQ3WhM4Mzc1MzY0NDExNzAxODg3MjQ3arYPEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E50NggQkAYAEKyqLARABGniB8vz_9f4CAAP_BQENBv4B-vwE_fn9_QDz-Ab__wL_APr8Af__AAAAAgj_Av0AAAD2-P__8_8BAA_7CQQEAAAAGAT8Cv8AAAAPAPsG_gEAAPX_AP35AQAAAggB_P8AAAD9BQ3wAAAAAOwC7wIAAAAAAAT1BAAAAAAgAC0dPdY7OBNACUhOUAIqhAIQABrwAX_s_wPEGwr-DiXlAOj66QDN88wB5O31AOwhBACgD_z_TPjwAe4AGwAIBS0A8wnkAB738f8m-AwAMQ0TACEc6AEH_gAA4eISAAcu9QAO6gr_-hAF_-jz_gAL_iAAKAAgAvn_7P304_8ECOYUBCwI5__YDQwE7QTlAfr62QMN7hwDCd34_PcJ9f_vBvcBJRIAARcPBwHrH_f6CBL7Cegs_wES-AYBDgcc_tn_3P4J9vIG6PgC-dka-wUpFiEIBifk-fPq5AUc8uwDKAgM-BT7EffVAQ8K8c4HARnm8Ar4FxT19TD-BA7-CvjkKQAC6_cB9SAALdhuNzs4E0AJSGFQAipzEAAaYCPuADcSEyLBLkfY0-vm8db4_g4h0eH_zOb_zREP7fEs3NEnOv8Jz9vurQAAAA_l7T0DAPNy8-6iMCXeEPTovvMhf_b02Nj--hSu66rw4_MW0BMeLgDr9LUdHvOuDQdZNiAALTltIDs4E0AJSG9QAiqvBhAMGqAGAACAwQAAGEIAANBBAABAwAAABEIAAKBAAACAwQAAKMIAAEDBAAB8wgAA4EEAAOBAAABYwgAAAEAAAIBAAACQQQAAiMEAAOjBAAA0QgAAiMEAAAAAAACwwQAAkMIAAOBBAADAQAAAikIAACDCAABgQQAAAEAAAODAAABEQgAA4EEAACBCAACcQgAAWMIAAEDBAADwQQAAJEIAABRCAACgwQAA8MEAAMDAAACQQgAAgL8AAETCAACgQQAAREIAAFDCAACAQAAAYEEAAJzCAACgQAAAEEIAADBCAABgQQAA0MEAAIbCAACgQAAAIEEAAMZCAAAgwQAACMIAADBCAACgwAAAuMEAAKjBAABoQgAAmkIAAJhCAADIQQAAGMIAAKhCAABAQAAAjEIAAGDCAAAAwQAAQMAAAMBBAAAgwQAA8EEAAI7CAABgQQAALEIAACBBAADYQQAAiEEAAFzCAACWwgAAIEIAACBCAADAQAAAMEEAAJhCAABMwgAAwEEAAEjCAABAQAAANEIAACjCAACYwQAAIMIAAAAAAACgQQAA6EEAAADCAACAwAAAEEEAAKBAAACowQAAqEIAALhBAABUwgAAoMEAAHjCAACIwQAADEIAAADCAAA0wgAAAMEAAFjCAADAwAAAHMIAABBCAACwwQAALMIAAAxCAACgQAAAYMIAAGzCAADgwQAAcMIAAHDBAAAQQQAAQEIAABDCAACAQAAAlMIAAHDBAACEwgAAsMIAAJjBAAAAwAAAQEEAAPhBAABEQgAAiEIAAAjCAABwwQAAkMEAACBCAADAQQAAZEIAAJhBAAA0QgAACEIAANJCAAAAwQAAeMIAACzCAADIwQAAmMEAABBBAAAwwgAAsMEAAFDBAABgwgAA6EEAAATCAACAQQAAQEEAAKzCAACIwQAACMIAAMBAAAC4wQAA8MEAADjCAACYQQAAGMIAALhCAACMwgAAcMIAACTCAAAgwgAASEIAADDBAABwwQAAIEEAADBBAAD4QQAA6MEAAERCAAAAAAAAwMAAAKDAAAAAQgAAusIAAFDBAADYwQAAXMIgADgTQAlIdVABKo8CEAAagAIAAIi9AABwPQAA7j4AACy-AABEvgAApj4AAPg9AAAPvwAAoLwAADA9AABwPQAAyL0AAO4-AABkPgAABD4AAOC8AAAsPgAAUL0AAJY-AADWPgAAfz8AABy-AADCPgAAmD0AAES-AAD4PQAAED0AAHy-AAAQvQAApj4AAIg9AABcvgAAcD0AALg9AACIPQAAED0AAAy-AACKvgAAhr4AAKi9AAB8vgAAgLsAABw-AACAuwAAmr4AAI4-AAAsPgAAJL4AAI6-AACqvgAAhr4AAIA7AABsPgAAMD0AAI6-AADIPQAAOz8AADy-AADYPQAA0j4AAEC8AABsvgAAUD0AAEA8IAA4E0AJSHxQASqPAhABGoACAABUvgAAcD0AAAw-AABNvwAAnr4AAIC7AADoPQAAUD0AADC9AAAUPgAA2D0AAKK-AAAEPgAAmL0AAJg9AABAPAAArj4AACs_AAAMPgAAnj4AAIA7AAAMPgAA4DwAAES-AACYvQAA4DwAAKg9AABQPQAAqL0AACQ-AADIPQAAyD0AAEy-AAAEvgAAND4AAIA7AACIPQAAmj4AAKK-AADYvQAAgLsAALg9AACYvQAAyD0AAMi9AAA0PgAAf78AAHA9AAB8vgAAQLwAAFw-AACoPQAAuD0AAIo-AACIPQAA2D0AADA9AACCPgAAyD0AAIq-AAA8PgAAuL0AAKg9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=YhR77luOETU","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8375364411701887247"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"405185936"},"3362146845863502690":{"videoId":"3362146845863502690","docid":"34-5-0-ZDB91FFAF7BC2C7AB","description":"Fadugu - Sierra Leone Northern Province. The Limba tribe is the first indigenous African people who inhabited Sierra Leone at least 2,500 years age.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4011613/a64043b1d4257baeea7fdef5faae7b39/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Nom3agEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfWB665pz3F0","linkTemplate":"/video/preview/3362146845863502690?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Mathoma Limba Tribal Dance in Fadugu - Sierra Leone Northern Province.","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fWB665pz3F0\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChMzMzYyMTQ2ODQ1ODYzNTAyNjkwWhMzMzYyMTQ2ODQ1ODYzNTAyNjkwarUPEgEwGAAiRBoxAAoqaGhlcHNqeG52ZnhveG9yYmhoVUNfSGFRRi1rMF9saloxUW9BN1VKVHBnEgIAEioPwg8PGg8_E1WCBCQBgAQrKosBEAEaeIH4Evb2C_H_AQ4ECPYJ_AL4_fTv9_z8AOkM7QAFAAAABwMIBQIBAAD-CfEJ-wAAAPX8_vL4_gAAHwfs_QQAAAD8-wH_7QIAAP0H_Qz-AQAA7fr7BAP_AAAGCvH9_wAAAOoFEPMAAAAA6gwD_gAAAADr_fwG__8AACAALfwcrzs4E0AJSE5QAiqEAhAAGvABfyEMAtsaBAD94Q8Ayv3uAQMMDv_69v4A8CcW_wfhBQAYEREAvu8c__UP8AEDD_r_LBIj_xEG9P_sNfYAK-v4ALQTAQAlDhUB5CQM_9ci2QDwHBsAOvnv_wDp8gDs9P_86-z7_PMJ-f4YMgcBEucAAdrp_AAQJisASAUOARX7FgAMBOP9reLtABAaAQMQ7_sDEBX5_CwlB_3l4-X_zBD6BArh-_q2_An6_fwZCAYF9gjsTgEFAhYT-O4Y8gQW-CX_9Pb-9Uj89wMhAgIBLff2BSXp-O8RHPMK9AEQ-wwJ__78FAwH1QAB_NEPEfsy5fT_IAAtdkgkOzgTQAlIYVACKnMQABpgTAMABSAXG9Uc6fTHI96-COzsHEiQ_v8fzP_o0N_tQ9iEvggKAAYEFSucAAAAKQv3BPgAEX-i-NAPv_rPHdr5EeB3CwTl8lTZC-bituk-2ijl_-nuAOfS4B9bBE8700dEIAAt_bwQOzgTQAlIb1ACKq8GEAwaoAYAALTCAABIQgAAMEEAAIzCAABIwgAAwEEAAARCAADgwQAAgMAAAIjBAAAQQQAAJMIAAEBAAAAkQgAAoEEAAFBBAADgQAAAaMIAAJBCAABswgAAmkIAAFzCAAB8wgAAwEEAAPhBAAB4QgAAaMIAAGDCAACAwQAAAMAAAIC_AAAAAAAACMIAAEBCAAAAwQAACMIAADhCAACAQAAAmMEAALhBAAAAQgAA-MEAAKDBAACOwgAA2EEAAITCAAAcwgAATEIAANBBAAAMQgAAUEIAAGDBAAAUwgAAnMIAAADAAABAwAAAoMEAAEBCAADIwQAAMEEAAPjBAACoQQAAIMIAALhBAADgwAAAQMAAAFBBAAAQwQAAsEEAABBCAACqwgAAQMAAAMDBAADAwQAAksIAALDBAADwwQAAIMEAAAxCAACIQQAALMIAAABAAADYQQAAgMEAALhBAACKQgAAYMEAAJhBAACAwAAAQMEAAGDBAAA0wgAAsMEAACDCAABQwQAACMIAABBBAACAwQAAKMIAABzCAAAowgAAQEIAAOBBAAA0wgAAAMIAABDBAAAgQgAADEIAAMLCAACYQQAAgMEAADxCAAA4QgAAkMEAAIDBAADwwQAAqEEAAKDAAADgwQAAEMIAAKpCAADIwQAAgL8AAFBCAABgQgAAwMIAAKBAAABwwgAAmMEAAADDAABAwQAAmMEAAHjCAADQQQAAmEEAAMDAAAAQQgAAkEEAAHTCAABAQAAAFEIAAAhCAADgwQAAEMEAAKhBAACAwQAAMEEAAKDAAABYQgAAREIAAGDBAAC4QQAAYMIAANBBAACEQgAAEEEAANDBAABQQQAAwMEAACBCAAAcwgAAuMEAALDBAACYwQAAmMEAANjBAABkQgAAyEEAALBBAAAQQQAALMIAAAzCAABkQgAAiMEAAIpCAACoQgAAmMEAADzCAAAgwQAA0EEAAJJCAAAAQQAAXEIAACTCAAAQQQAAMMEAAADDAACcQgAAgL8AANhBAAAsQgAAoMAAAFxCAAAgQQAAbMIAAIBBAABQwgAAAMEAAI7CAABgwSAAOBNACUh1UAEqjwIQABqAAgAAmD0AALi9AAC-PgAAcL0AABy-AADIPQAAQLwAANa-AACAOwAAuD0AAFQ-AAAwPQAA1j4AAJi9AACgPAAAir4AAIg9AABQPQAAuD0AAPo-AAB_PwAAgj4AAJ6-AADGPgAAzj4AAEA8AADoPQAAor4AAHQ-AAC6PgAAHL4AABw-AAAkvgAAqD0AAIg9AACovQAAcL0AAEy-AACavgAAfL4AAFy-AACIvQAAQDwAAJg9AACYPQAAkr4AAAS-AADgPAAADL4AAEA8AABAPAAAPD4AAIY-AABMPgAAUL0AAIg9AAAHPwAAUD0AAOg9AACyPgAAbD4AAFC9AACIPQAAEL0gADgTQAlIfFABKo8CEAEagAIAADC9AAAcvgAABD4AADu_AACgvAAAUD0AAMg9AABQvQAAkr4AAAw-AABcvgAAkr4AAKg9AABQvQAAiL0AAFC9AABAPAAATz8AABQ-AAA0PgAA4DwAANi9AAAQPQAAoDwAAEA8AACovQAAML0AAKA8AAC2PgAAPD4AAOC8AABQPQAAuL0AAI6-AADIvQAA4LwAAEw-AAAMvgAAcL0AAKi9AAA0PgAA2D0AAIi9AACgPAAA-L0AAHA9AAB_vwAAqL0AABQ-AAB8PgAAHD4AALi9AACYvQAAFD4AAKA8AACIPQAAoLwAADw-AADYvQAAMD0AAJY-AACoPQAA4LwAAKq-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=fWB665pz3F0","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3362146845863502690"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1920543704"},"11553637093222633831":{"videoId":"11553637093222633831","docid":"34-11-1-ZC1696008B6041666","description":"Please feel free to leave comments/questions on the video and practice problems below! In this video, we begin to delve into topics involving the size, or cardinality of sets. First, we will set...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2162315/01b93d743e11ea2e0e6226289979ae97/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/mTNmtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5rbSbaHbCv0","linkTemplate":"/video/preview/11553637093222633831?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Set Theory (Part 17): Equinumerosity and \"Sizes\" of Sets","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5rbSbaHbCv0\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoWChQxMTU1MzYzNzA5MzIyMjYzMzgzMVoUMTE1NTM2MzcwOTMyMjI2MzM4MzFqiBcSATAYACJFGjEACipoaGZmd3FtYWJldHhreWdkaGhVQ0xfbFZYQ3l6cUJiMlhjOENydlBFTmcSAgASKhDCDw8aDz8TqBGCBCQBgAQrKosBEAEaeIH0CPsH_QMA8gEPBPoE_wELAPv69wAAAPIPBfkEAQAA-_kK-gEAAAAJ-AH4CgAAAAH-AwP-_gEAEAQB8vMAAAADAgsB_gAAAAIU9Pj_AQAA7PzzCQP_AAAFCvwB_wAAAPsEBP0AAAAA-Br3_gAAAAAH_gb_-_X_ACAALSM_3Ds4E0AJSE5QAiqEAhAAGvABf_oEA68f-v733doA1g_EAIMhCv4wN-P_ohD5Aa0R6f8PHvEB3_MEAfgcFgCkKB4AFPTm_gT5DgBH5AkAIfEHANEMKgAr5gIAHhn6ART3-ADtMg7-EAcP_w_17ADqCvD7FgAS_t4BAPwO_9cDDv46AQT5GgIp_CIB6fkJA-gTDwL0--__GvwLCAskAPnE3SMC9gUAAxwg8fwAGgwEAPj6B_vfAwkHAuL6HBDqBPP3DPfw6AMH5_n1_w35G_z6EPAE6AMUANr1-wDvAg75MwMA_en1FwXi6wcGAfDyC_bbAPz8FQwH9xkI_OP0_Q0O5AUBIAAtrqAfOzgTQAlIYVACKs8HEAAawAfBpwW_1JUVPHLD77xcVww9r0mSPDU1HLx8oZs8It0UPYDEZTwWof28pl1xParCuDv8jLu-WlMPvMbqxbudRoI-fxZLvL4SyLxxPVq-5xa_PYVMqLz1oYO-PHfxOy7Flzu6VrG8w1RpPPauZrwnwHA99M4ZvE-x6rwgqOi6HXURPDPcAL18zpK9Ji2mvHGNdLzEW-c96p0AvV8pS7vGvqk9TypQPEkcCzyhlHo9ZGirvMGquryZKe291SkLPPKhujwr2fE9PX0EvS8BUzxbM2g8fO4kvahkqTvrayK9_oOjPBb7SzvSxaY8eDsnPbZqNrtdTi49MQP6vK13rDunLWS8ARaaOzsk6zvcBKk9g7_fPRwxqbwilK28dEuhPc7Bszyc2VM80LHovMdVkjkBmbc91qIqvFchijzpdgA9MGIEPRsHxTvt7gM8Fy8UPHijhTz9H3Y9IvhEPcvydbyo7Ko8oV4VPf0dwLvfiM69khk5vLahT7o7dMU9BwEeva4UG7wfVWM9KsmKPQ80lTzZiJa7S55hvZIFDrwxBYA9QXj-ukPiIrxgFXk9jjzQPEGvKjtqEMk7TJOtPHPIvDnYGrC9fNf_u0y8arsDwS097LxyvZe4QbjOKwi9oAaEO9RCrDtqczU7r3kVvSD107sNNJ88rXewu-ykXzuVjXi9666HvAwiTjs6nJ892jq4PFx8QDssuas7111qPHapkbvIMpM9CrQgPTA1nTnONQo7v42OvbZB1Lr00ZS7jlFoPI8SHbj1fog9M98BvUB8bDm7zu07U4UVPYJvv7dG7y-8e7SjOjZ7LzmOT5K7aLApvV3eh7fOuPq8xo4BvRJoxrdDCIO9Q5agvF-nAbqH7Z09j4GGvMDQFriOq_a8LVB_O42-FrqO53G7EG5XPSBy3LmX_LQ81e1auoaKZ7gTsng9yEonveeCsTeChog8bXMhvEeU1bofNBY98a_vPJoDiTi8hiq9qROQvQDKqDinvRc9aE5oPYZgOjmWdmo8T0dWPU3MPriRKoo8zAfEvC-g_jiaBxA93jjJvQg0-zb80pE8w45wPXLYODhFy4u9d2ESvOjUO7Zmyv28fnGJPcWcATmgzms9zSa4u66rvTebaCG86RyNvc1rhDjCpNg9NiomvXu0LbmUbBC9ukmxvIPjc7cq_SW742bdvKAZyTZXt7S7pthMvc0xuDcdlww9SQ9DvlQxTbmgFw49FyW9PSh_ADkHC6e8vfzuPYO0Hrl9iYK9tN40PUVhPTjspQa8i6devSSuuDcgADgTQAlIbVABKnMQABpgIQAAE98pxyUSO-3v6OQw59si2SnD8v8Ay__pFKoAJerI9CL0ADbOFt6nAAAAPwTx_LUAynjrtxVBBQcL1srYJwx_Bi7xvbsA9c3l3h0BByI1IiA3AOz9kiVVAucPCkMjIAAtRPsaOzgTQAlIb1ACKq8GEAwaoAYAABzCAABAQQAAwEIAACBBAACowgAAUMEAABBCAABIwgAAgsIAAJ7CAABAQAAAEMIAAEBCAAC4wQAAmMEAAKhBAAAMQgAAeEIAAFhCAAAgwQAAwEEAABDBAACgQAAANEIAAHxCAADIwQAA-EEAABjCAABAQAAAGEIAAKDBAADYQQAAmMEAABRCAACowQAATMIAACRCAADgQQAAwMAAAOBBAACIwQAAEEEAAJZCAAAUwgAAQEAAACBBAABgQQAA8MEAAMBBAABAwgAARMIAADBBAACwwQAAuEEAALTCAAAAwgAA9MIAAEBAAAB0QgAAkkIAABDBAAAcwgAAVEIAAHBBAACowgAA4EEAAJDCAAA0wgAAMEIAACxCAACIQQAAAMEAAODAAAAIQgAAiMEAAMDBAACCwgAAgMEAAKBAAAAAQQAAqMEAAHBCAAA4wgAAAMEAAFRCAAAgwQAAGMIAAIRCAAC4QQAAPEIAAEDAAACEQgAAQEIAAODBAABcQgAAIMEAAGBBAADoQQAATEIAAJrCAAB8wgAAMMEAAFjCAACWwgAAkMEAAADAAADAQQAANEIAAMDAAACIwQAA0kIAANDBAAAAwgAAQMEAAFhCAACAwAAA4EEAACDCAAC4QQAAIMIAAMBBAAAgwQAAMEEAAOjBAABMwgAAQEIAACDBAACowQAAKMIAAADAAAAAAAAAsEEAAIC_AACYQQAAgkIAAFDBAABAQQAAEEEAABTCAAAAwAAANMIAAFzCAADAwQAAoMEAAIA_AAC4wQAALEIAAADAAACwwgAAKEIAAADCAADwwQAA3MIAAABAAAAEQgAAwMEAAJbCAACawgAAoMAAAHBBAACAwQAA8EEAAPDBAAB8wgAAAEIAABTCAABQQQAAgL8AAEhCAACGQgAAFEIAAJBBAABAQAAAJMIAABDCAAAIwgAATEIAACRCAAAwwQAAPEIAAABAAAAcwgAA8MEAAIDAAAAAAAAAIEIAAABAAACsQgAAJMIAALhBAAC4QQAAEEIAACDBAADowQAAEEEAAEBCAACgwAAAVMIAAPjBAAAUwiAAOBNACUh1UAEqjwIQABqAAgAADL4AAEA8AADYPQAAmD0AAAw-AABMPgAAmD0AAA2_AADovQAA2D0AABy-AADYvQAALD4AAFQ-AADYvQAAoLwAAHw-AAC4PQAAQLwAAAE_AAB_PwAAcD0AAIg9AACgPAAAPL4AAPg9AABcPgAAmD0AANi9AABcPgAAyD0AABS-AACOvgAAiD0AAEC8AAAEPgAAMD0AAMi9AABUvgAAur4AADy-AAA0vgAAHD4AABw-AACIvQAAmL0AAKg9AAAkvgAAFL4AACS-AADoPQAAgDsAAFQ-AACOPgAARL4AADC9AAAXPwAA4LwAAKi9AABkPgAAHL4AAIg9AAAMPgAAFL4gADgTQAlIfFABKo8CEAEagAIAAJK-AAAUvgAAED0AAGG_AADgPAAAyL0AABw-AABEvgAALL4AABC9AADgPAAA2L0AAMi9AAA8vgAATD4AAFC9AABAvAAATz8AAJI-AADePgAAiD0AAAy-AADoPQAABL4AAKC8AACGvgAA-D0AAIg9AAAcPgAA4DwAABA9AAD4PQAAFL4AAIK-AAA0PgAAiL0AAKA8AADYPQAAnr4AADA9AACoPQAAQLwAAFC9AACYPQAAQDwAADw-AAB_vwAAsr4AAIg9AABwPQAAcD0AAFC9AAAEvgAAmD0AAOA8AAC4PQAAED0AAJI-AADoPQAAcL0AAJI-AAAMPgAAED0AAFy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5rbSbaHbCv0","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11553637093222633831"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1542248788"},"1905892091126965676":{"videoId":"1905892091126965676","docid":"34-5-2-Z495A664CFEAC4C22","description":"No background in sets required for this video. In this video, we will learn how the quaternions can be thought of as pairings of complex numbers. We also will show how the quaternions can be...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2162315/01b93d743e11ea2e0e6226289979ae97/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/K_fEKQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfTtxD2Xu2Kw","linkTemplate":"/video/preview/1905892091126965676?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Set Theory (Part 14c): More on the Quaternions","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fTtxD2Xu2Kw\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChMxOTA1ODkyMDkxMTI2OTY1Njc2WhMxOTA1ODkyMDkxMTI2OTY1Njc2aogXEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E5AOggQkAYAEKyqLARABGniB8vr7B_8CAPQEBQH5A_8BCAMJCfj__wD4-RD3AgP-AO_8APT5AAAAAwj5-_gAAAABCAH-8v4BABgBA__6AAAADPH9__oAAAAGA_YB_wEAAPz4Av8C_wAAEvP69v8AAAD5_QoFAQAAAP4UEAEAAAAADAT9-wAAAAAgAC0jf9g7OBNACUhOUAIqhAIQABrwAX8ECQHKCOIAH_3MAMv97gGC7Rz__S7XAKMDDADS_-4BAA3jAOTr9QDTBun_w_QBABHdvQIg5w__OP_q_yr7BQAF7wcBNd39ACn8FQH4FtX-Eg4r_wbwFwAQ7PwA6wrw_AcCDP7tAvAD7wPJAg3-NwED_zsAJOYk_9___f3pEg4CDf3yA_0GAgP69Pv75PYqBvzm6QH-HfsG3yf1AhUT7wPt3w4ABgLk-zUN_goF-u_63eEEAesG6__rCyADCg7t__kFDgHa-wj48BAWBy7V8QbyAhD38e_7CfL3-g0MzgoE6fsC99YAAfz1EQYCGwz6-SAALc0dJzs4E0AJSGFQAirPBxAAGsAHwacFv9SVFTxyw--8ycpvPdKSojzKQxU7guEcPU9x3jsMgCe8ibLXvQ2XizxbrmG6si_hvo6IczyCwNK6_b10PpJUS70Dsew8ehcvvgg8MD0pn9S89aFrvoTTBz10NcO7jw6JvapTVDvJOTE8FxJLPVmQ3Dwk-Dq8MzilvIAl2ztbAGS8839dvYGGDb0dkYy6lX8NPqKkVr2xVV08007tPXVADb2daR29_0KqPF85TD2_qX68rHDrvfDTgjwyBam7OMBMPe1OUr0tYUg80acaPagHW70mpxc7FL2CPSFRsj3r3q88lgpqva6Uij2pfzW8tTUCPUzUHD3ceyS53rDtvJvVMT3Z9iw8RG-xPNwDfj2bZ7a8PghhPahCoj0oKfA8uypQPfqNQLy_774604bjPcx2aj3WdL085ww7vR_kqzzQptk68jO_PKpr4zx0Yg89OeCpPfX7mT3gaAW8_g-LvN6XDj2hJsA7B0QIvh2IFj1_04W8W-VOPeMqTbkPuC48Y9S1PE6iOT3sPVm5hY38vHwkDLzuxZ87JAlnPRsmv7yXTFu66clmPYGwMz2cdT479yDGO42RkbrUAkW8qqWPvWB5a7yz7Em8uphQPR8bV71iaqY8VCU9OvBVxjwpE-m6LbrQu5GEWL2eB3u79VMxO1OtKjzw2BO8NP4TvTjiRL1LvgY7mxuoPcfJsztOqBY7sdWKPI2hNbtGmUu78WhjPfZuYr3Btym6lQwAvVdfWL0zU3M42YTqvC_UK7zd_Uk60JB7PaKvhbzja8-5CvcKPc8GKj32rb05_T1nvICeBr17m8c4HaKbPHm5ALv73Qo5cErUPMhRSr3NhYq5iYqyvYBQLb3tYRw5mbj2ux6U5jyjHxE7ZabZPEERizysHeu4kj6tPHEbzbyxv2Y4rq__POpCrDpzwt23BKEmPUqqgLwv8zg5hbGJu5L6_Ds6jEK4dZq7PKTf_jwaNti3exLYvM8Gar3xp6E4B23mO7PJJr14RQy4fEPhPCAvGj2sh6S4DEw4PIOtiDzhLEK5BpwlvIxq0b36U_c3rS8XPVtElDy_Bh25AxpWvRcj97wztza3_PGsO7UKEbyjdpq459e9u9-MdbwI4UO4P9advFhrbb2O_Mw3raf2PbPqmLx7Ozq50ZLHvHvngjt6Bzk3KusQPH-e67waMYU3mpAAucDEabyoAYe4YQZ5PfM6Er5L56m4yvRwPSLhKz7xy4o4uhOsvHLcuT10MBi5AS1CvSQ6NT0o2R23cJmuvHD66bwPZ7g3IAA4E0AJSG1QASpzEAAaYEYPACz1J7cz40ju4PXoSO_R_OcQzdr_Igz_6i_tGyMaqMUi4gAbtxTYngAAADrP8PavAN5_4coYTxklHNfX3gZPavQq_crKLBzrzP7--vgqXwMgIAAF8JUnNgvnEuUpGiAALYzdFTs4E0AJSG9QAiqvBhAMGqAGAAAcwgAAQEEAAMBCAAAgQQAAqMIAAFDBAAAQQgAASMIAAILCAACewgAAQEAAABDCAABAQgAAuMEAAJjBAACoQQAADEIAAHhCAABYQgAAIMEAAMBBAAAQwQAAoEAAADRCAAB8QgAAyMEAAPhBAAAYwgAAQEAAABhCAACgwQAA2EEAAJjBAAAUQgAAqMEAAEzCAAAkQgAA4EEAAMDAAADgQQAAiMEAABBBAACWQgAAFMIAAEBAAAAgQQAAYEEAAPDBAADAQQAAQMIAAETCAAAwQQAAsMEAALhBAAC0wgAAAMIAAPTCAABAQAAAdEIAAJJCAAAQwQAAHMIAAFRCAABwQQAAqMIAAOBBAACQwgAANMIAADBCAAAsQgAAiEEAAADBAADgwAAACEIAAIjBAADAwQAAgsIAAIDBAACgQAAAAEEAAKjBAABwQgAAOMIAAADBAABUQgAAIMEAABjCAACEQgAAuEEAADxCAABAwAAAhEIAAEBCAADgwQAAXEIAACDBAABgQQAA6EEAAExCAACawgAAfMIAADDBAABYwgAAlsIAAJDBAAAAwAAAwEEAADRCAADAwAAAiMEAANJCAADQwQAAAMIAAEDBAABYQgAAgMAAAOBBAAAgwgAAuEEAACDCAADAQQAAIMEAADBBAADowQAATMIAAEBCAAAgwQAAqMEAACjCAAAAwAAAAAAAALBBAACAvwAAmEEAAIJCAABQwQAAQEEAABBBAAAUwgAAAMAAADTCAABcwgAAwMEAAKDBAACAPwAAuMEAACxCAAAAwAAAsMIAAChCAAAAwgAA8MEAANzCAAAAQAAABEIAAMDBAACWwgAAmsIAAKDAAABwQQAAgMEAAPBBAADwwQAAfMIAAABCAAAUwgAAUEEAAIC_AABIQgAAhkIAABRCAACQQQAAQEAAACTCAAAQwgAACMIAAExCAAAkQgAAMMEAADxCAAAAQAAAHMIAAPDBAACAwAAAAAAAACBCAAAAQAAArEIAACTCAAC4QQAAuEEAABBCAAAgwQAA6MEAABBBAABAQgAAoMAAAFTCAAD4wQAAFMIgADgTQAlIdVABKo8CEAAagAIAAOA8AADYvQAAuD0AALg9AACgPAAAHD4AAOA8AABlvwAA8r4AADQ-AABsPgAAQDwAAPi9AAC-PgAAPL4AAFy-AACgPAAAUD0AAIg9AAADPwAAfz8AAI4-AADoPQAAmL0AABy-AACovQAAXD4AAES-AABQvQAAFD4AAHw-AABMvgAArr4AADQ-AACIPQAAuL0AAEQ-AADKvgAAvr4AAMi9AACOvgAA6L0AAKC8AACoPQAA6L0AAFA9AACSPgAA-L0AAKg9AADuvgAAED0AAKi9AAAwPQAAfD4AABS-AAAQvQAAbT8AACS-AAAQPQAAED0AAOA8AABsPgAALD4AAOa-IAA4E0AJSHxQASqPAhABGoACAAAEvgAAgLsAAMi9AAAnvwAA2D0AADA9AADIPQAAcL0AAFy-AABcPgAALD4AADC9AADovQAAir4AAOC8AACAuwAAED0AAEs_AACYPQAAwj4AADC9AABAPAAA-D0AAGy-AADovQAA4LwAABw-AAAEPgAA-D0AAIA7AAAsPgAAQDwAAHS-AABQvQAAyD0AANi9AABAPAAATD4AAMK-AADgvAAAdD4AAFC9AABAPAAAQDwAAFy-AACmPgAAf78AAJK-AADgPAAAHD4AAEC8AABAPAAAQLwAAEA8AACaPgAAEL0AAKA8AAA8PgAAgLsAAIA7AADgvAAAcD0AAIg9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=fTtxD2Xu2Kw","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1905892091126965676"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1726951442"},"18011976167184255327":{"videoId":"18011976167184255327","docid":"34-10-3-ZB2C143B816B3AFE9","description":"Courtesy of the Kamakwie White House Hotel / Kamakwie Resorts and Tourism This is the Majestic Mathoma society. An elite and sacred culrural secret society dance group only a few priviledge can...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1679359/e8b0a549cc0c69851af4a2c3687e56b8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zsYUfgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6uP3dPlC54c","linkTemplate":"/video/preview/18011976167184255327?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Kamakwie Mathoma","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6uP3dPlC54c\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoWChQxODAxMTk3NjE2NzE4NDI1NTMyN1oUMTgwMTE5NzYxNjcxODQyNTUzMjdqiBcSATAYACJFGjEACipoaGJ1cnBtam9qamtxbnJiaGhVQ2lNS1RUS1hSSExWWTVxZTJieWFXTFESAgASKhDCDw8aDz8TwAaCBCQBgAQrKosBEAEaeIH1BAD4_AUA-QcLBvkG_QL6_fby-f39AAQD-gQHBP4A8vf8DQUAAAACAA7_-wAAAPEL_gYDAAAAEwP7BgQAAAAFAAPu-wAAAAcH_wL-AQAAAwIHAQP_AAAIBA78_wAAAPUKA_oCAAAACgr8DAAAAAD68g77AAAAACAALSvk3js4E0AJSE5QAiqEAhAAGvABfxMEA9oaBAAc3BoAzfkEAQMMDv_x-w0A6SUEAOThAAFRDxUB0dsAAPb07gAgCwoAMAIEAB4lDAAGIQwAHdICAKr4CwAhFO0B5CQM__op0P_xCxT_MQvaARPz3__h8Qv-0-zzAN4BAP0OJf8AFdTxAc3f7wEdGBgBQOX0AgTY9f4Y7-D93cb5_u4kBwIU3A0DBwXu_VUh7P315uwF0v8EAe_yCf_RAf350hQE__ok9Pj1OvwGAyv5-hEj6AUh-_wB_Pvw-Db7-wQmCxAIIf0E_iPhBPoDCQkO9AEQ-hT_DwfzGwAM9xkI_AAMFPYPx_kLIAAtBLoiOzgTQAlIYVACKs8HEAAawAfxLeS-M8U3PfVHHLx6k5q9mipTvVLI3zwuqZ-9Awu7vFPwb7wRBpm9IY81uvXBjbzhrFI9n_cQPTnXyzwfshK9QHs_vHT2ZD37f1C9oWs6PSi2gjxEGF--1GRnO6WdPzyxouY9UfqCvA4wszyXeLu9fHkGvSxs_Lx4tkc-wrYPPSpmzjzdQ5q-FcC5vHrUKTycFDY-iIAiPEz1iby_Dvw92tAIPSutFb0KfdU8QPwZPC6Y0zw9G5M9FOyeOhu7xDyaP4Y96dVAPYTZ37td3vw9wPwfvf5OzbpLLI89W4p1vHMXm7syH9C8FkuxPdN2gjyg_hM-UMMWO6ulCLv5oAe-9BqbPS-BgDtJaGu96fWivbck7LwYJF29LP5FvWuzc7pShw88UBOivKBsirw0uTg9l2YEPU5Bvrw82ti91CEVuv0h7LyyEN09OAsgveLjuLpcExy9CPDMuxyfpLxrMp69yjPPvaGGDjwkmAo-bMlPvfObGTyWSzk91iRzPRM16juk7e87kYBRPRwlL7yqL2Y91kzjvN7qFrw6jA49J7ZsPb1luToK6qW7H0CAPcfMVjVQW_q6ZISmvD9sjjwMWgi-ruHYPMNkSzucR888EtWAvc6CdbxntaA9bDFuvWNS8LraakC9sX8JvFSLqTk7hYU6r1d9vbpPCjwdgx89L3QdPI_EbLueiR89ZsnCPe_m3jiAY7K7lGD7PKDHpDsJUCM-V9iCPUPM47klPyI99ioNvDraP7rTvvm9UwYuvcvkWzmjIg69JtzAvQCUirgWdgc9kbTAvFVwhzllXGe9uHw_vVAulTmD4Vc9htyxvEyyFLl1AKk9oK8vPYrlFrtdVaG9ANxRPPQ8yThMpZ86po6fvHJwcTcuFLq8ozKPPNRPSLotPR48OUlOvCHoc7jEvvA62S3dPIXnG7kliCQ9Fl2NPNg15TgoWpO9C3H2vG4mrjl0orO9c2UwvbdUbbhRGYo9StQGvWqMozgodlm98BNHvYX8yzjljkg8CY4mPOlbhLjj49M8xoUDPc3hMrjaaTW8HZw-PcfSHDiUFNi988wLPgrDjzk62HG9sWi-uwZAIDgqWPe4rAk4vbZyazfyDNM5jq5yvQjgujh8tUM9gm_avTbwlrhIoYG9C7P1PP26hLd09kk968oiPWPHFzhKetg9TS6GvA4tbzcrrAq9-wJavcsOmLf82bk9KdBnPR5DIbi5wXU8LewJPoYn5zikw5M9c9SmvcQOFLgj8dc8EdN0PCujlrh0raQ7BooOPVntSjcgADgTQAlIbVABKnMQABpg5AYABScINqj68vzFKMYXzhYN3DG40v8e6P8MG8buIeDM8RFKAP_GKfGiAAAALtQ6Dw8A8n_s2qMr1AshyB0H5AlxERTLCSXk-MDrw9nrzRJF49UZAB_OxhYrJ1g5xEFJIAAtjSEWOzgTQAlIb1ACKq8GEAwaoAYAAGjCAACAQQAAsEEAAI7CAACKwgAAqEEAAJhBAAAAwQAAwMAAAATCAABwQQAAgMEAABDCAABgwQAATEIAAMDBAAAAwAAA2MEAAJpCAABQwgAA4EEAAMjBAAC6wgAAYEEAAOhBAADQQQAAVMIAAJjCAACIQQAAMEEAANBBAAAswgAAgEEAAAxCAACAvwAAgMEAAIBBAADAQQAA-EEAAIjBAAAMQgAAhsIAAKjBAAAwwQAA0EEAAIDBAAAYwgAAAEAAAAxCAAAgQgAAqEEAAIC_AABowgAAoMEAADDBAACAwAAAYMEAAKZCAAAgwgAA0EEAABDCAACAQAAAZMIAALBBAADgwAAAQEEAAAxCAABwwQAAjsIAAHBBAAAAAAAAQEAAAEBAAACgwQAAtsIAAHBBAABAwQAA2MEAAIC_AAAoQgAAhMIAAKjBAADgQAAAnEIAAOBAAABgQgAAoMAAAJhBAADIwQAA8MEAAJTCAADgQAAAPEIAAFzCAACAQAAAgMEAAKBAAAA8QgAAwEEAALBBAACewgAA4EEAAHBBAAAgwgAAgMEAAGBBAAA0wgAAwEAAAO7CAABAQAAAgEAAALhBAADwQQAAJMIAANDBAABAwAAAEMEAAHDBAAA8wgAADMIAACBBAACgwAAALEIAADzCAAAIQgAAaMIAAOBBAAAwwQAAAMEAAIzCAAAwwQAAMMEAAGDCAACYQQAAgEEAAIA_AAB8QgAAHEIAAITCAACcwgAAHEIAADBCAADIwQAAQMAAAMBAAAAQQQAAiMEAAMDAAACwQQAAJEIAAGBCAAAoQgAAAEEAACjCAADwQQAAGEIAAIbCAACgwAAA8MEAAMDAAAAsQgAA2EEAADzCAADAwQAAwMEAALDBAACaQgAAoEIAALhBAAA8QgAAoMAAADDBAABcwgAAwMEAABBBAABYQgAABMIAALDBAACIwQAAYEEAAKhBAABwwQAAgMEAAJDCAACYQgAAAMIAANTCAACgQgAAKEIAAIBBAAAAQgAAGEIAAPhBAAAAQQAAcEEAAGRCAAAowgAAmMEAAGDCAACAPyAAOBNACUh1UAEqjwIQABqAAgAAdL4AAJi9AADGPgAAMD0AAHC9AABkPgAAHD4AAAe_AADovQAAFD4AABw-AABAvAAAHD4AAOA8AAAsPgAAoLwAADw-AADgvAAAbD4AACQ-AAB_PwAAiD0AAFC9AACGPgAAqD0AAKi9AADovQAAoLwAAKi9AAAEPgAAUL0AAKg9AABMvgAAmD0AADQ-AAB0vgAAQLwAAES-AABcvgAAUL0AAOg9AABQvQAABD4AABw-AAAcvgAA-L0AAHC9AAB0PgAA6L0AADy-AABQPQAAcD0AAPg9AACIPQAAXL4AABQ-AAAjPwAAuD0AAIg9AAAMPgAAND4AAPg9AAAQPQAAyL0gADgTQAlIfFABKo8CEAEagAIAAKC8AADgPAAAQLwAAAO_AAAMvgAA-D0AAOA8AABQPQAAuL0AADw-AACGvgAAgr4AAAQ-AAAMvgAA4LwAAKC8AACYPQAALT8AAEA8AACaPgAALD4AAEA8AACIPQAAoLwAAEC8AAAwvQAAFL4AALg9AAC4PQAAoDwAAIA7AAD4PQAAcD0AACy-AACAuwAAiL0AAMI-AABwPQAALL4AAIC7AAAsPgAAcD0AAKC8AADovQAAyD0AAKg9AAB_vwAAcD0AAEA8AAAsPgAARD4AAAy-AAC4vQAAhj4AAOg9AADoPQAAoLwAAEC8AAD4vQAAgj4AAAQ-AAAQvQAAoDwAAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=6uP3dPlC54c","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":854,"cheight":480,"cratio":1.77916,"dups":["18011976167184255327"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1335798672"},"15039526126109704750":{"videoId":"15039526126109704750","docid":"34-10-10-Z1C7C67CF75CBF24E","description":"Here is one of many applications of the Lambert W function in calculating the value of converging tetrations (hyper-4 operator), or \"power towers\". Tetration is also explained here, so don't...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4775749/3f3eb5fd440ae11bc3e4f4a026c17a72/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/SipEtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DTNeJyVzDU20","linkTemplate":"/video/preview/15039526126109704750?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cool Math: The Lambert W Function and Infinite Tetration","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=TNeJyVzDU20\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoWChQxNTAzOTUyNjEyNjEwOTcwNDc1MFoUMTUwMzk1MjYxMjYxMDk3MDQ3NTBqkxcSATAYACJFGjEACipoaGZmd3FtYWJldHhreWdkaGhVQ0xfbFZYQ3l6cUJiMlhjOENydlBFTmcSAgASKhDCDw8aDz8TmgeCBCQBgAQrKosBEAEaeIHuBfwFAf8A8fME-fwBAQENBv8C9gAAANn08QMH-QMA9wAF-QcAAADyCP32-QAAAPr9_gf9_gAACwUACQQAAAATBQb5-AAAAAAY9Qf-AAAA-fj9BgT_AAAI-QL8_wAAAPT__wb6_wAA_gr4CwAAAAD3AQjw_wAAACAALWoszzs4E0AJSE5QAiqEAhAAGvABf_n_Acr59P8MB94AvhUBAIruGv8PEtkAxfMJALcQ0__wFvgA4fjy_-cZD_-yDwoBEN_BAhn4FQA0_-z_KO35AAEXEAEu7BEANRID_xL4-QDhDRf_EekMACDa9wH9EvwAEwAQ_-b29QEJ7sQHDf40AQsHJAMW-wn-7fL-A_UXCP_96uT-DBH-_hL1A_ja7xkB_ejqAfgX9_rBNPAAHvn5CefxE__2D9__Mgz_CvT1-fjf-P8F9vP1BgMGJf_3IO___PcNAej0_PbxDxQHENX99vABBPgP_wYMEP31BwHyBAb1-gn_3hsM_PAHCQXyCwH_IAAtnH8xOzgTQAlIYVACKs8HEAAawAfBpwW_1JUVPHLD77wcyD-9CeqMO5zMLr3g4te8eLQQPNiTBrtU15s9z5KRPK-49juZgKe-ZfvQPJ_6ET3FVYU-VDBvvZt_Krzv5U6-EKhDPRiswLv1oWu-hNMHPXQ1w7tAXCg8uG5vvP0EhrtphMg9rXIcPSSTuLzJV8K85gwAPULuAr0R-ZM80yOXvNw2ArxCoLk9230YvbgE_TvTTu09dUANvZ1pHb31Yi09WVSfPHG74TumEIO9HwAnPTMb_7z-bpA9x-xyO6FzDT3u0DC9WHqIvIsqz7vejtM6IsFUPWtMozyNf587oY59Pf8JLrxxyMY8cYQWvccpn7wmNfS9fgMuPau6Aj3dtBk-PRbRPANg-rsirnc8gGZLPbvebDx3ihA9AmeEvb8cC7wA8oQ9iSsCPfgrLjz-npi8YvgGvKuDVTstDh-8VVYuPRBCGz2eV4E9wF-nPIqGFrxF1Ok8qNHavJxgrLsLuOe9dlCJO1uEmLxb5U494ypNuQ-4LjzbYX09f9ZBPd64uTvJU1s9AICNvagwWzyD6tU6UZAQvBq4ybsisJg9FsZxPCO7d7z2Bak9wbzRvG988buIJB-9Q1XMPOXhc7w3qu48KplSvQtHazybyIw8FHGfPKuGWTqdIWa8lBYOvZMtHrx4kbK7T0EZPaJE7LvxnmO9XXaOvYnVxrlo_q09eahyPc0YCzvRfdQ8RzGKO-YUsjuXI589-8Z8vQOsEjrJ2lC9IN90vUjZIbkPKcS7GusxPWol6TmUQLQ94M1kveKHajnhJI08zeA0PUkssrkRJhu9ARiKPVg1kbmQbfQ8suhHvW3rwLmtL7c6_RLxvbwjiTnUG5S93drbu8GBcDid-8Y8deENPGQSmLn5wOm7-aRuvA4vkLi6ZWq71928vO4ByripYg89GwELvPEYyzgcBtg828cFvTZXaTndz-m8d-R-vL82tbhLVqo8Q7kjPbTyHTmd4qc7I0lVvUuegLhEQR89qk-NPL81ETllRR49MoExPTRclbY8sG09JO2LPcJGr7gGnCW8jGrRvfpT9zdtqWM9qDTiPLFFtLh3PYe9pMPDPICvwjjWH7w8JTZEvMJCCDidcKU82ZcMvSMJd7iSEvE8Gw1AvfRmYzitp_Y9s-qYvHs7OrmF3ky9VKiOverKw7h9DPE8EXOEvU2-lTcRg2q9q-VzvNMf4De9rwU9pUkJvq2ehbjK9HA9IuErPvHLijgHC6e8vfzuPYO0Hrk1bEq9Zd-VPZHUgzc0KP-8hUe4usFiPjggADgTQAlIbVABKnMQABpg-wIAQQFA5Sv1GugH98sGzN40xDzJ5f_Vy_8EDdQBDBrPsOoC_0XaCOWmAAAAKecODwMA73fX3_BDFynqv7Ty7zV_CjMC2MsrGMIUFwvs-Ucj7NBHACDiijFGErkUOQE1IAAt8-gWOzgTQAlIb1ACKq8GEAwaoAYAANBBAAAAAAAAIEEAABzCAADgwAAAgMEAACBCAABMwgAAqMIAADTCAAAsQgAAQEAAAIA_AACowQAAIEEAAIC_AAAcQgAAYMEAAERCAACQwQAAJEIAADBBAABEQgAAqEEAAJpCAAAwwQAAAMIAAHDBAACQQQAAGEIAACDCAABUQgAAOMIAABhCAABAwgAAuMEAALhBAADgQQAAsMEAAPhBAAAYwgAAgEEAAFxCAABgwgAAgMEAALDBAADIQQAAgL8AAKhBAACgwAAAKMIAAFBBAABkwgAAqMEAANDBAAAYwgAAiMIAABDBAABgQQAApkIAAEhCAAAEwgAAiEEAACRCAABEwgAAIEIAAADBAAAAQAAAAMEAAMBBAACYQQAAqEEAAMjBAACwQQAANEIAAIC_AABQwgAAbEIAAIDAAABAQQAAfMIAABRCAAAAQAAAJMIAAIA_AACYQQAAoMAAAMDBAADAwAAAREIAALBBAACsQgAAGEIAAJTCAAC4QQAAgMAAADDBAAAwQQAAkMEAALBBAABUwgAAuEEAABzCAACCwgAAAMEAALBBAAAwwQAA0EEAAEjCAACYwQAAXEIAAMjBAADQQQAAPEIAANhBAACAwQAAOEIAAITCAAD4QQAA2MEAABBCAAB8wgAA-MEAAIDBAACYwgAAOMIAANjBAAAsQgAAkMIAAMBCAACYQQAAOEIAADDCAAC4QQAASEIAAHBCAACAvwAAgMEAAADBAABMwgAALMIAAIBAAABUwgAAgL8AAIpCAACYwQAAsEEAAPjBAAAsQgAAcEIAADDBAAAowgAAwMEAALDBAAAIQgAA0EEAAAzCAAB4wgAAcMEAABjCAAA4wgAAPMIAAFjCAACCwgAA0EEAAFDBAADAwQAAREIAAIA_AABkQgAAmEEAAHhCAABIQgAAfMIAAPDBAAAUwgAAEEIAABBCAABAwgAA3EIAADDCAACKwgAAsMIAAJhBAACAQAAADEIAAI7CAAD4QQAAoMEAAEBBAADoQQAAHEIAAJxCAAAYwgAAKMIAAJRCAACgQQAAiEEAAJTCAABgwSAAOBNACUh1UAEqjwIQABqAAgAAcL0AADA9AACePgAAqL0AAIg9AACCPgAA-D0AAE2_AACuvgAAmD0AALg9AABkvgAAED0AAAw-AADIvQAABL4AAIo-AABwPQAApj4AABE_AABzPwAAoLwAABw-AACePgAAUD0AALa-AACWPgAAFL4AAIo-AACKPgAA-D0AAGS-AACgvAAA6L0AAPg9AACYvQAAgLsAAMa-AACuvgAAdL4AAM6-AAAcvgAAfD4AAMi9AAA8vgAAoLwAAGw-AABMvgAAJL4AAL6-AABAPAAA2L0AAIA7AADOPgAA2L0AAOC8AAB_PwAAUD0AAKC8AABQvQAAqj4AAHQ-AAD4PQAApr4gADgTQAlIfFABKo8CEAEagAIAAIi9AACIvQAAgLsAABe_AAA0vgAAQDwAACQ-AAAMPgAANL4AACQ-AACgvAAAZL4AAOA8AAAMvgAAEL0AAIi9AAAsPgAAMz8AACw-AADWPgAAmD0AAMg9AACAuwAAuL0AAEA8AACCvgAAyD0AANg9AAAMPgAAUD0AABA9AADIPQAALL4AAIi9AADoPQAANL4AAHw-AAB0PgAAqr4AAPg9AAA8PgAAqL0AAKi9AACgvAAAcD0AAEw-AAB_vwAAcD0AAIi9AABQPQAAyD0AAHA9AADovQAA2D0AADQ-AAC4PQAAQDwAAEw-AAC4PQAAqD0AAAw-AACAuwAAQDwAAMi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=TNeJyVzDU20","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15039526126109704750"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4001277757"},"8936546841761854206":{"videoId":"8936546841761854206","docid":"34-5-12-Z5619CA7169E90D9F","description":"This function comes up as a solution to equations ranging from pure math to quantum physics to biology. In this video, I introduce the concepts behind the function and give some sample calculations.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2109878/8613be505be185e35380c20642400962/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/e_AbnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcMZ_blqKKZU","linkTemplate":"/video/preview/8936546841761854206?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cool Math: The Lambert W Function Introduction","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cMZ_blqKKZU\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoVChM4OTM2NTQ2ODQxNzYxODU0MjA2WhM4OTM2NTQ2ODQxNzYxODU0MjA2apMXEgEwGAAiRRoxAAoqaGhmZndxbWFiZXR4a3lnZGhoVUNMX2xWWEN5enFCYjJYYzhDcnZQRU5nEgIAEioQwg8PGg8_E80FggQkAYAEKyqLARABGniB7gX8BQH_APL9Cv4NA_4BDv35AQr-_gDUA_MFB_cEAPb4APYBAAAA9gT4AvgAAAD4-foQ__8AAAYE_QEEAAAAEP0J8v0AAAACDPcG_gEAAO3z_QwE_wAAFQQTAgAAAAD8_fsC-f4AABAOCgIBAAAABPYJ-wAAAAAgAC1qLM87OBNACUhOUAIqhAIQABrwAX8ECQHY-_r_DQjcAMcmCACVCSb_GiLkALDq_gDA980A-CTyAdrp5QHXCBUAwwQUABHdvQIC6xQAOAwE_yr7BQAMBxUARuUMAScJ-ADzEOj_7QkiACDvF_4D7d8A_RP7AAcCDP7GE-f_Df_ZAwnZOAIV7zQAFfYeAvLqCwH0GQj_D_bp-yAO9QTx6PH76wchAeLu-Pz3GPb5yRL7Aw306wDl8BT__QLpBzUN_gr43wP08eoDB-j69f8DBif_6xX6BAnrFQLc6AD5-RILACPRAP3nCQEACPUCBfoB-AT_7Af03-QC_NAQAwHfAwwI-P8E-SAALc0dJzs4E0AJSGFQAirPBxAAGsAH_RYBv1jR1TxUt4a7nAGJvOPUmLw47W69-DM8vIdLMz3EwZS7FPPHPPPAkTxa2oQ8nE2Xvuo9XLlkjxa8xVWFPlQwb72bfyq87-VOvhCoQz0YrMC79aFrvoTTBz10NcO7bLDwPAproTsO2aO6vz6vPRfrn7u1FQC9yi59vUnnrjvglx-9MuPxu7FX87zJlv66QqC5Pdt9GL24BP07IAe6PYKRN72Ispy89WItPVlUnzxxu-E7fc-ovfbaBzz0QBi8cNBePbMl67yGYMs8cDruvDpauDtY3-W8f-7VPIDgAD3KoWo8uQC0vGVNkT1MrGe8ccjGPHGEFr3HKZ-8OUK2vaRmlD1PsL88qPwLPqWDlT0kjoa8_Ouuu-4eZT2IA7I8YYg8PSHJLL1h3Z07uYnaPQnrFT2uC4U7yG1qu8yRmTuuIoo7JNENvJloKz1YkGY8_R92PSL4RD3L8nW8BPAFPSVr_btBEzw8B0QIvh2IFj1_04W8W-VOPeMqTbkPuC48UXc0PXvBRz3A8CW7LcoRPV8XhL2aQ_M7JOMCPdgvM71JGx68HW3BPTlpED0uBX-8IorpPf37J73B_mu8SeNmvYoS_jxmtvG6A8EtPey8cr2XuEG4hSziugLMwjsoyu-6nSFmvJQWDr2TLR68hSe0vCxG3Ty5kGQ7zKq5vTi0cr1D_7g5Y6SdPWoGJz2Qn_A6ozwWPCPdzzynPQQ8ElDBPcF4Qb1h0wq6lQwAvVdfWL0zU3M4f06BvCl7pjxXSqW47nScPazizb0q_705NyUPPeu4gD0d1bs5_uuRvWeHUz2cSPG4PSzvPLh-MLzY1cS3XFQLvZwV8b3cnnU5QwiDvUOWoLxfpwG6JtmPPLK2Dj2XFJQ54k0Gu6eZCb10N2U5umVqu9fdvLzuAcq4SdV7PSH_cbxNlFE3Za1cPQUhj7xRxJk5DxYEvVx4GjzMrl24tRCJO4jgMz0asLS4QfEDPXFPwb3XOHs5bkz0PMK1BD3rECY3KDMUPbpvkDtI0uC39kczPaY0cT0K7bG4BpwlvIxq0b36U_c34WpzPWc9QT1l9um4SlGovWNu7Tz7BT44F9U6uvlQMTrQWNw3pVJHPGCBPr2_5tI3M_xXOnaKFb295DA4kl0ZPtlPUL2swj-5jHEUvdt7Qr3F_Ge4K0wfPZ0kor2_a-U3lfpovTh4rrtXZQ24YQZ5PfM6Er5L56m4yvRwPSLhKz7xy4o4BwunvL387j2DtB65b70BvY-JlD00ods3zmYavQ_uzryQJD-3IAA4E0AJSG1QASpzEAAaYBEEAC0HPOQbEhfqAuzmEMrgNLo21PT__tEAIhL2DRkk0pzw6QAkzQHdqwAAAAPsFvz6AAVz5OXQQwgi3rfCAAMifx5ELsfx_hHGIyfw9foYMPbdSAAezosXMxW6_i0bBiAALVjCHzs4E0AJSG9QAiqvBhAMGqAGAACgwAAAQEEAAADBAABwwQAACMIAAABBAABYQgAAkMIAAIbCAABQwQAAhkIAANjBAADQwQAAQEEAABhCAADgwAAACEIAACDBAAAwQQAAaMIAAMRCAADYQQAAIEIAADRCAABIQgAA2MEAALjBAACIwQAA4EAAAIhBAAAAwgAAFEIAAEDBAAAIQgAAuMEAACzCAACoQQAAGEIAAIC_AADAwAAAwMAAACRCAAAIQgAAuEEAAKDAAACAwQAAyEEAACDCAADgQQAAWMIAAJrCAACAwAAAMMEAABjCAACowgAAEMEAAI7CAACAwAAAiEEAAFxCAAAAwAAA4MAAAKxCAAAgQgAA8MEAAKBAAACIwQAAIMEAAGDCAACwwQAAGEIAAJBBAAAUwgAA4EAAADhCAABAwQAAqMEAAJZCAACIQQAANMIAALjBAAAQwQAA2MEAAAzCAACgwAAAsEEAADBCAAAwwQAAIMEAAGBBAAAQQgAApEIAAIhBAABAwgAAGEIAAGDBAACQwQAAYMEAAJDBAAAAwQAAVMIAAADAAADgwAAAysIAAFTCAAAoQgAAEEIAAHRCAACAQAAA2MEAAPBBAACwwQAAAEEAAADAAAAQQgAAAEEAAOBBAADgwQAA0EEAAMDAAACoQQAABMIAACTCAACAwAAAiMIAAMDBAABYwgAAgMEAAIDCAAD-QgAAEMEAAJhBAACQwQAA2EEAAEhCAACgQgAAgEEAAKDBAACQwQAAuMEAAKDBAADAQAAAcMIAAMDAAAAsQgAAAMAAAIhCAACIwQAApEIAAKpCAAAAAAAAAMIAACTCAAAAwQAAkMEAAOBAAAB4wgAArMIAAEBAAADgwQAA4MEAAIDAAACUwgAAyMEAAEBAAAAAQAAAKMIAAJpCAABAQAAAyMEAADDBAACKQgAAUEEAALbCAAC4QQAAisIAAEBBAAAwwQAA8MEAANhCAABIwgAAoMIAAITCAAAoQgAAgMAAAADAAAAUwgAAtkIAAAAAAABQwQAAoEAAAKBAAABQQgAAUMEAAEDCAACYQgAAQEAAAEDAAADgwQAAwMEgADgTQAlIdVABKo8CEAAagAIAAAQ-AABQPQAAnj4AAJg9AACIPQAALD4AAJg9AAApvwAA1r4AAEQ-AAC4PQAA-L0AALi9AACWPgAAED0AAAS-AACePgAAED0AAGQ-AADmPgAAfz8AAIg9AAD4PQAAHD4AADy-AACevgAAhj4AAIK-AAAUPgAAXD4AAFA9AAAQvQAAcL0AAHC9AAAcPgAAFL4AAIA7AACavgAAfL4AANi9AAB8vgAA2L0AAOg9AACYvQAAqL0AAIi9AAAUPgAAJL4AANi9AAD6vgAAQDwAAAw-AAAwPQAAtj4AAKC8AAAQvQAATT8AABy-AACIPQAAgLsAAEw-AABUPgAAHD4AAGy-IAA4E0AJSHxQASqPAhABGoACAACIvQAA6L0AAKA8AAAbvwAAmL0AAKA8AAAkPgAAuD0AAJi9AACgPAAAuL0AAFy-AABwvQAANL4AAKA8AADgvAAAHD4AACM_AADoPQAAxj4AAEC8AADYPQAAuL0AAHC9AACAuwAAfL4AAPg9AADgPAAAPD4AAPg9AABQPQAAJD4AAGS-AACovQAAqD0AAJi9AACmPgAAdD4AAMK-AAAMPgAADD4AAHC9AACYvQAAqD0AAOA8AAAcPgAAf78AAIA7AABAvAAAcD0AAIg9AACIvQAAqL0AAHC9AACOPgAAyD0AADA9AAC4PQAAMD0AAAQ-AAAUPgAAgDsAAIi9AACIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=cMZ_blqKKZU","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8936546841761854206"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3356474524"},"14418476110047196683":{"videoId":"14418476110047196683","docid":"34-1-9-Z818C341A82659510","description":"Chhams (sacred mask dances) performed by resident lamas of Matho monastery during Nagrang festival.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/229011/8e6c6c8e41857da54315c0591bd46dde/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/l5kSmwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DrRCJwnMxe10","linkTemplate":"/video/preview/14418476110047196683?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Matho Monastery","related_orig_text":"Mathoma","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Mathoma\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=rRCJwnMxe10\",\"src\":\"serp\",\"rvb\":\"EqsDChMyODQyMzQ2NTAwMjY2ODA0MTc5ChMyNjc1Nzc4ODcyOTA2ODU4MDc1ChM3MTc4ODI4NzAyMDE4MTc1MzAxChM4NTMxMjE2NDAzNjIyMDcyOTIzChM2MDgzNzY2ODkwNjc3Nzg2ODkxChQxMjM0MTM3NTQ4NTM2NTI2MTU4OAoUMTE4NjM3OTg3NTIxMjY4NzMxNzgKFDE3MTc2MjY1MTgwMDcyMzM2MDY2ChM3ODQ1NDk5OTc0OTEyOTE3MzE3ChMzNzMwNDAzMzc3OTg5MjI0MjE5ChM4Mzc1MzY0NDExNzAxODg3MjQ3ChMzMzYyMTQ2ODQ1ODYzNTAyNjkwChQxMTU1MzYzNzA5MzIyMjYzMzgzMQoTMTkwNTg5MjA5MTEyNjk2NTY3NgoUMTgwMTE5NzYxNjcxODQyNTUzMjcKFDE1MDM5NTI2MTI2MTA5NzA0NzUwChM4OTM2NTQ2ODQxNzYxODU0MjA2ChQxNDQxODQ3NjExMDA0NzE5NjY4MwoTOTg0MjgwOTk1NDgxNzI3MDA1NwoTOTk1MTE3NzgzNTc5Nzg4NjE4NxoWChQxNDQxODQ3NjExMDA0NzE5NjY4M1oUMTQ0MTg0NzYxMTAwNDcxOTY2ODNqtQ8SATAYACJEGjEACipoaHB0amx1cW5zbnhhamJiaGhVQ1F0R0lxNktqdkZ3Ulp2bTdBN0FwQXcSAgASKg_CDw8aDz8TfIIEJAGABCsqiwEQARp4gfv6AQT-AgAFBA8F-gj8AvEK-fv5_v0AAAnv_gME_gDz-_UECwAAAAME7QAGAAAA-Q4IBQH_AAAWAAP_BQAAABII9_33AAAADAkH9_8BAAAH_wHzAgAAAAMCCAcAAAAA9An6_wIAAAD6EgoNAAAAAPnyAgYAAAAAIAAtwqTaOzgTQAlITlACKoQCEAAa8AF_CSAB3Qb0AfPgMgCz6uz_FgEbAN_q8wD46hMA0d3sABkSEgCw7wj_IgzwAAcB-v9BAQX_FCPzABwOBv9H8wb_vQkjAAgGFwAMHfkA5Afo__0e-f8yBev_GwXxAN736P_C5AD-0g3xAAEs-AH20BIE19sQBArlFv4rAvUARtb_AwUa0ACDyAD4C-r_AwrwGgcHBe39FRII-gvb9gQh4AkCEOEk_eT8-QvOCRL82xjwBDIo-fsOAAsB9RrUABIKGwLtAQb6KA7l-gPdAPw1Hu4ILAUB9PvoBQgHPBgAF_XsAgMSAv_0Kfv47eYcBPrT8gEgAC3s5hk7OBNACUhhUAIqcxAAGmD9EQAbDQgszBIN6an8phX8FwD2IsfP_yIC__n5_u0XvMPFB2AAxso68KAAAABA5TjgQADjf90B0DTeFEjrLfwV72km_bgcOQcCsjjE7McPIQfN3vQA8-_MGDEhIEnkAXYgAC0-jBQ7OBNACUhvUAIqrwYQDBqgBgAAUMIAAOhBAAAgQQAAAMAAAHzCAADAwAAAFMIAAGzCAACWwgAAgMEAAARCAACIwQAAoMAAAIDAAACAPwAAAMAAAIC_AAAQQgAAAAAAAPBBAADQQQAAzEIAAMjBAABAQAAAVEIAANBCAAAAAAAAUMEAABBCAACAwQAAWEIAAIDBAACAQAAAqMEAAJBBAAAQQQAA6EEAAIA_AABwwQAAEMIAAIJCAACMwgAAwEAAAIhBAADQQQAAcMEAANBBAAAgQQAAgD8AAHBBAACwQQAA2EEAAEDCAAAwwQAA6MEAAAjCAAAAQAAAkEIAABTCAAAgQQAAfMIAAExCAACowQAA8EEAACDCAADAwAAAgMEAAIBAAAAQQQAA8MEAAMBAAAD4wQAAyEEAAFhCAAD4wgAANMIAAKBBAAAgQQAA8EEAAFBCAACCwgAAoEAAADDCAAAgwQAAIMEAAOhBAABgQQAAAEAAAEDAAAAQwQAAgD8AAEDCAACCQgAAoEAAABzCAABAQAAAisIAAMhBAAAAQAAA-MEAACTCAAAwQgAAEEEAABDCAADgQAAAGMIAAAzCAACQQgAASMIAABxCAACgQQAAuEEAAABBAACAwAAAUEEAAHzCAAA4QgAAEMIAAADCAAAQwQAACEIAAGDCAACoQQAAIEEAAOBAAADowQAAgL8AAOBAAAAMwgAApsIAABDBAAAcwgAAcMEAAADAAACIwgAAIEIAAEDBAAAwwQAAVMIAAObCAADaQgAAwMEAAMjBAABAQAAAJEIAAAxCAAAMwgAAoEEAAKhBAAAMwgAAAMAAACBCAACOQgAA6EEAAIxCAAAwQQAApMIAAIhBAAAcQgAAAMEAADDBAAAcwgAAEMIAACxCAACAPwAAwMEAAEBAAABMQgAA-EEAAJxCAABAwQAAgEIAAHjCAADowQAA1kIAAPhBAAAIQgAAjMIAAAzCAAAcQgAAMMEAAILCAAAgwgAAwEAAAOBBAAA4wgAAuMEAAMhCAABAwQAA6EIAAKBAAACoQQAAKEIAAMDAAAAQQQAA0EEAAABCAAAwQgAANMIAABzCIAA4E0AJSHVQASqPAhAAGoACAADIPQAAlr4AAHQ-AACYvQAAmD0AAMg9AACAOwAAEb8AAIa-AACKPgAAmD0AACy-AACePgAA4DwAAIA7AAAEvgAADD4AAMg9AAAUPgAAqj4AAH8_AABUvgAAiL0AAEC8AABsPgAAJL4AAHA9AABwPQAA6L0AANY-AACYPQAAoLwAAHy-AABsPgAABL4AAAQ-AACIPQAApr4AAJq-AAAEvgAAUL0AANi9AAD4vQAAoDwAADy-AAD6vgAAmL0AAI4-AABMvgAAir4AAFS-AACAuwAAsj4AALg9AAAcvgAALD4AADs_AAAwvQAAoj4AAOC8AACKvgAAEL0AAIg9AAC4vSAAOBNACUh8UAEqjwIQARqAAgAA-L0AAJg9AACAuwAAFb8AAOA8AACIvQAAgDsAAPi9AABAvAAAdD4AAIA7AABEvgAAFD4AALi9AACYPQAAuL0AAAw-AABBPwAA4DwAAKY-AABQvQAAgDsAABw-AACovQAA4DwAAHA9AAAwPQAAmD0AAHw-AAAEPgAAQDwAANg9AAAEvgAAUL0AAEA8AACgvAAABD4AABQ-AADovQAAiL0AADw-AABAPAAAFL4AAIA7AAAUvgAABD4AAH-_AAAwvQAABL4AACw-AABQPQAAuL0AAKC8AAAsPgAAED0AAIg9AAAQPQAAED0AALi9AACAOwAAyD0AALi9AACYPQAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=rRCJwnMxe10","parent-reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14418476110047196683","8725280063276369941"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3430407969"}},"dups":{"2842346500266804179":{"videoId":"2842346500266804179","title":"Answering Common Atheist Objections, with \u0007[Mathoma\u0007]","cleanTitle":"Answering Common Atheist Objections, with Mathoma","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=i3GMci9aj2w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/i3GMci9aj2w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLW43UXQ4RVJFaUpudG1ybkJqYkI0dw==","name":"Classical Theist","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Classical+Theist","origUrl":"http://www.youtube.com/@ClassicalTheist","a11yText":"Classical Theist. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":5646,"text":"1:34:06","a11yText":"Süre 1 saat 34 dakika 6 saniye","shortText":"1 sa. 34 dk."},"views":{"text":"10,1bin","a11yText":"10,1 bin izleme"},"date":"17 oca 2018","modifyTime":1516147200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/i3GMci9aj2w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=i3GMci9aj2w","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":5646},"parentClipId":"2842346500266804179","href":"/preview/2842346500266804179?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/2842346500266804179?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2675778872906858075":{"videoId":"2675778872906858075","title":"Geometric Algebra in 2D - Some Trigonometry","cleanTitle":"Geometric Algebra in 2D - Some Trigonometry","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lkhBcWtFxKU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lkhBcWtFxKU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":886,"text":"14:46","a11yText":"Süre 14 dakika 46 saniye","shortText":"14 dk."},"views":{"text":"16,9bin","a11yText":"16,9 bin izleme"},"date":"9 eki 2016","modifyTime":1475971200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lkhBcWtFxKU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lkhBcWtFxKU","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":886},"parentClipId":"2675778872906858075","href":"/preview/2675778872906858075?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/2675778872906858075?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7178828702018175301":{"videoId":"7178828702018175301","title":"Geometric Algebra in 3D - Fundamentals","cleanTitle":"Geometric Algebra in 3D - Fundamentals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ElLl6gzNbFE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ElLl6gzNbFE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1760,"text":"29:20","a11yText":"Süre 29 dakika 20 saniye","shortText":"29 dk."},"views":{"text":"28,4bin","a11yText":"28,4 bin izleme"},"date":"27 ara 2016","modifyTime":1482796800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ElLl6gzNbFE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ElLl6gzNbFE","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":1760},"parentClipId":"7178828702018175301","href":"/preview/7178828702018175301?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/7178828702018175301?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8531216403622072923":{"videoId":"8531216403622072923","title":"Geometric Algebra in 2D - Fundamentals and Another Look at Complex Numbers","cleanTitle":"Geometric Algebra in 2D - Fundamentals and Another Look at Complex Numbers","host":{"title":"YouTube","href":"http://www.youtube.com/live/PNlgMPzj-7Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PNlgMPzj-7Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2113,"text":"35:13","a11yText":"Süre 35 dakika 13 saniye","shortText":"35 dk."},"views":{"text":"120,2bin","a11yText":"120,2 bin izleme"},"date":"26 eyl 2016","modifyTime":1474848000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PNlgMPzj-7Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PNlgMPzj-7Q","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":2113},"parentClipId":"8531216403622072923","href":"/preview/8531216403622072923?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/8531216403622072923?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6083766890677786891":{"videoId":"6083766890677786891","title":"Quaternions as 4x4 Matrices - Connections to Linear Algebra","cleanTitle":"Quaternions as 4x4 Matrices - Connections to Linear Algebra","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=3Ki14CsP_9k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/3Ki14CsP_9k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":888,"text":"14:48","a11yText":"Süre 14 dakika 48 saniye","shortText":"14 dk."},"views":{"text":"56,8bin","a11yText":"56,8 bin izleme"},"date":"2 tem 2016","modifyTime":1467417600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/3Ki14CsP_9k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=3Ki14CsP_9k","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":888},"parentClipId":"6083766890677786891","href":"/preview/6083766890677786891?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/6083766890677786891?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12341375485365261588":{"videoId":"12341375485365261588","title":"Geometric Algebra in 2D - Linear Algebra and Cramer's Rule","cleanTitle":"Geometric Algebra in 2D - Linear Algebra and Cramer's Rule","host":{"title":"YouTube","href":"http://www.youtube.com/live/dnzUgDl43rQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dnzUgDl43rQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1799,"text":"29:59","a11yText":"Süre 29 dakika 59 saniye","shortText":"29 dk."},"views":{"text":"20,7bin","a11yText":"20,7 bin izleme"},"date":"20 eki 2016","modifyTime":1476921600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dnzUgDl43rQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dnzUgDl43rQ","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":1799},"parentClipId":"12341375485365261588","href":"/preview/12341375485365261588?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/12341375485365261588?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11863798752126873178":{"videoId":"11863798752126873178","title":"God is not a god (\u0007[Mathoma\u0007])","cleanTitle":"God is not a god (Mathoma)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4H1YxS6-zDU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4H1YxS6-zDU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdmVrOHpfeGM3a3J6M1NuMEt2OVA4dw==","name":"Purple Pill Philosophy","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Purple+Pill+Philosophy","origUrl":"http://www.youtube.com/@paradisecityX0","a11yText":"Purple Pill Philosophy. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1414,"text":"23:34","a11yText":"Süre 23 dakika 34 saniye","shortText":"23 dk."},"date":"30 ağu 2019","modifyTime":1567123200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4H1YxS6-zDU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4H1YxS6-zDU","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":1414},"parentClipId":"11863798752126873178","href":"/preview/11863798752126873178?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/11863798752126873178?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17176265180072336066":{"videoId":"17176265180072336066","title":"Geometric Algebra in 2D - Two Reflections is a Rotation","cleanTitle":"Geometric Algebra in 2D - Two Reflections is a Rotation","host":{"title":"YouTube","href":"http://www.youtube.com/live/Hy2gbdbrJZ8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Hy2gbdbrJZ8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1244,"text":"20:44","a11yText":"Süre 20 dakika 44 saniye","shortText":"20 dk."},"views":{"text":"19,4bin","a11yText":"19,4 bin izleme"},"date":"4 kas 2016","modifyTime":1478217600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Hy2gbdbrJZ8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Hy2gbdbrJZ8","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":1244},"parentClipId":"17176265180072336066","href":"/preview/17176265180072336066?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/17176265180072336066?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7845499974912917317":{"videoId":"7845499974912917317","title":"A Defense of Classical Theology (Part 7): The Argument from Composition","cleanTitle":"A Defense of Classical Theology (Part 7): The Argument from Composition","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ft7J1Mv-0fI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ft7J1Mv-0fI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1178,"text":"19:38","a11yText":"Süre 19 dakika 38 saniye","shortText":"19 dk."},"views":{"text":"11,2bin","a11yText":"11,2 bin izleme"},"date":"20 ağu 2019","modifyTime":1566273609000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ft7J1Mv-0fI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ft7J1Mv-0fI","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":1178},"parentClipId":"7845499974912917317","href":"/preview/7845499974912917317?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/7845499974912917317?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3730403377989224219":{"videoId":"3730403377989224219","title":"Set Theory (Part 1): Notation and Operations","cleanTitle":"Set Theory (Part 1): Notation and Operations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qgizzlTVxxs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qgizzlTVxxs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/channel/UCL_lVXCyzqBb2Xc8CrvPENg","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1440,"text":"24:00","a11yText":"Süre 24 dakika","shortText":"24 dk."},"views":{"text":"36,5bin","a11yText":"36,5 bin izleme"},"date":"14 mar 2015","modifyTime":1426291200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qgizzlTVxxs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qgizzlTVxxs","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":1440},"parentClipId":"3730403377989224219","href":"/preview/3730403377989224219?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/3730403377989224219?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8375364411701887247":{"videoId":"8375364411701887247","title":"A Defense of Classical Theology (Part 3): A Critique of Scientism and Naturalism","cleanTitle":"A Defense of Classical Theology (Part 3): A Critique of Scientism and Naturalism","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=YhR77luOETU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/YhR77luOETU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1693,"text":"28:13","a11yText":"Süre 28 dakika 13 saniye","shortText":"28 dk."},"views":{"text":"18,5bin","a11yText":"18,5 bin izleme"},"date":"9 haz 2018","modifyTime":1528502400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/YhR77luOETU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=YhR77luOETU","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":1693},"parentClipId":"8375364411701887247","href":"/preview/8375364411701887247?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/8375364411701887247?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3362146845863502690":{"videoId":"3362146845863502690","title":"\u0007[Mathoma\u0007] Limba Tribal Dance in Fadugu - Sierra Leone Northern Province.","cleanTitle":"Mathoma Limba Tribal Dance in Fadugu - Sierra Leone Northern Province.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fWB665pz3F0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fWB665pz3F0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDX0hhUUYtazBfbGpaMVFvQTdVSlRwZw==","name":"Alfred Sesay","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Alfred+Sesay","origUrl":"http://www.youtube.com/@alfredsesay3144","a11yText":"Alfred Sesay. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":85,"text":"1:25","a11yText":"Süre 1 dakika 25 saniye","shortText":"1 dk."},"views":{"text":"13,2bin","a11yText":"13,2 bin izleme"},"date":"2 tem 2020","modifyTime":1593655253000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fWB665pz3F0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fWB665pz3F0","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":85},"parentClipId":"3362146845863502690","href":"/preview/3362146845863502690?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/3362146845863502690?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11553637093222633831":{"videoId":"11553637093222633831","title":"Set Theory (Part 17): Equinumerosity and "Sizes" of Sets","cleanTitle":"Set Theory (Part 17): Equinumerosity and "Sizes" of Sets","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5rbSbaHbCv0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5rbSbaHbCv0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2216,"text":"36:56","a11yText":"Süre 36 dakika 56 saniye","shortText":"36 dk."},"views":{"text":"3,7bin","a11yText":"3,7 bin izleme"},"date":"19 tem 2015","modifyTime":1437264000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5rbSbaHbCv0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5rbSbaHbCv0","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":2216},"parentClipId":"11553637093222633831","href":"/preview/11553637093222633831?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/11553637093222633831?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1905892091126965676":{"videoId":"1905892091126965676","title":"Set Theory (Part 14c): More on the Quaternions","cleanTitle":"Set Theory (Part 14c): More on the Quaternions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fTtxD2Xu2Kw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fTtxD2Xu2Kw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1808,"text":"30:08","a11yText":"Süre 30 dakika 8 saniye","shortText":"30 dk."},"views":{"text":"2bin","a11yText":"2 bin izleme"},"date":"18 eyl 2015","modifyTime":1442534400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fTtxD2Xu2Kw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fTtxD2Xu2Kw","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":1808},"parentClipId":"1905892091126965676","href":"/preview/1905892091126965676?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/1905892091126965676?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18011976167184255327":{"videoId":"18011976167184255327","title":"Kamakwie \u0007[Mathoma\u0007]","cleanTitle":"Kamakwie Mathoma","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6uP3dPlC54c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6uP3dPlC54c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaU1LVFRLWFJITFZZNXFlMmJ5YVdMUQ==","name":"MrBamboo130","isVerified":false,"subscribersCount":0,"url":"/video/search?text=MrBamboo130","origUrl":"http://www.youtube.com/@MrBamboo130","a11yText":"MrBamboo130. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":832,"text":"13:52","a11yText":"Süre 13 dakika 52 saniye","shortText":"13 dk."},"views":{"text":"41,5bin","a11yText":"41,5 bin izleme"},"date":"17 oca 2013","modifyTime":1358380800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6uP3dPlC54c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6uP3dPlC54c","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":832},"parentClipId":"18011976167184255327","href":"/preview/18011976167184255327?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/18011976167184255327?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15039526126109704750":{"videoId":"15039526126109704750","title":"Cool \u0007[Math\u0007]: The Lambert W Function and Infinite Tetration","cleanTitle":"Cool Math: The Lambert W Function and Infinite Tetration","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=TNeJyVzDU20","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/TNeJyVzDU20?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":922,"text":"15:22","a11yText":"Süre 15 dakika 22 saniye","shortText":"15 dk."},"views":{"text":"29,2bin","a11yText":"29,2 bin izleme"},"date":"16 şub 2015","modifyTime":1424044800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/TNeJyVzDU20?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=TNeJyVzDU20","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":922},"parentClipId":"15039526126109704750","href":"/preview/15039526126109704750?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/15039526126109704750?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8936546841761854206":{"videoId":"8936546841761854206","title":"Cool \u0007[Math\u0007]: The Lambert W Function Introduction","cleanTitle":"Cool Math: The Lambert W Function Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/live/cMZ_blqKKZU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cMZ_blqKKZU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTF9sVlhDeXpxQmIyWGM4Q3J2UEVOZw==","name":"Mathoma","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mathoma","origUrl":"http://www.youtube.com/@Math_oma","a11yText":"Mathoma. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":717,"text":"11:57","a11yText":"Süre 11 dakika 57 saniye","shortText":"11 dk."},"views":{"text":"89,4bin","a11yText":"89,4 bin izleme"},"date":"12 şub 2015","modifyTime":1423699200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cMZ_blqKKZU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cMZ_blqKKZU","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":717},"parentClipId":"8936546841761854206","href":"/preview/8936546841761854206?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/8936546841761854206?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14418476110047196683":{"videoId":"14418476110047196683","title":"Matho Monastery","cleanTitle":"Matho Monastery","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=rRCJwnMxe10","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/rRCJwnMxe10?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUXRHSXE2S2p2RndSWnZtN0E3QXBBdw==","name":"warmeye","isVerified":false,"subscribersCount":0,"url":"/video/search?text=warmeye","origUrl":"http://www.youtube.com/@warmeye","a11yText":"warmeye. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":124,"text":"2:04","a11yText":"Süre 2 dakika 4 saniye","shortText":"2 dk."},"views":{"text":"74,3bin","a11yText":"74,3 bin izleme"},"date":"29 eki 2010","modifyTime":1288310400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/rRCJwnMxe10?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=rRCJwnMxe10","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":124},"parentClipId":"14418476110047196683","href":"/preview/14418476110047196683?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/14418476110047196683?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8725280063276369941":{"videoId":"8725280063276369941","title":"MATHO MONASTERY in FILM GROUP","cleanTitle":"MATHO MONASTERY in FILM GROUP","host":{"title":"vimeo.com","href":"http://vimeo.com/16215240","playerUri":"\u003ciframe src=\"//player.vimeo.com/video/16215240?api=1&byline=1&fullscreen=1&portrait=0&title=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"vimeo","providerName":"vimeo.com","sourceHost":"vimeo.com","name":"vimeo.com","secondPart":{"type":"CHANNEL","isVerified":false,"subscribersCount":0,"a11yText":""},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fvimeo.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":124,"text":"2:04","a11yText":"Süre 2 dakika 4 saniye","shortText":"2 dk."},"views":{"text":"3,6bin","a11yText":"3,6 bin izleme"},"date":"26 eki 2010","modifyTime":1288085511000,"isExternal":false,"player":{"embedUrl":"https://player.vimeo.com/video/16215240?api=1&autoplay=1&byline=1&fullscreen=1&portrait=0&title=1&wmode=opaque","playerId":"vimeo","videoUrl":"http://vimeo.com/16215240","reqid":"1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL","duration":124},"parentClipId":"14418476110047196683","href":"/preview/8725280063276369941?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","rawHref":"/video/preview/8725280063276369941?parent-reqid=1769268802120604-8285267688222670752-balancer-l7leveler-kubr-yp-vla-237-BAL&text=Mathoma","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"2852676882226707527237","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Mathoma","queryUriEscaped":"Mathoma","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}