{"pages":{"search":{"query":"Silent Integrals","originalQuery":"Silent Integrals","serpid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","parentReqid":"","serpItems":[{"id":"9426951939343273182-0-0","type":"videoSnippet","props":{"videoId":"9426951939343273182"},"curPage":0},{"id":"12903893843816104561-0-1","type":"videoSnippet","props":{"videoId":"12903893843816104561"},"curPage":0},{"id":"4261879312322259159-0-2","type":"videoSnippet","props":{"videoId":"4261879312322259159"},"curPage":0},{"id":"3035074464047472380-0-3","type":"videoSnippet","props":{"videoId":"3035074464047472380"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFNpbGVudCBJbnRlZ3JhbHMK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","ui":"desktop","yuid":"1976246061769309398"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"17063852170840860005-0-5","type":"videoSnippet","props":{"videoId":"17063852170840860005"},"curPage":0},{"id":"18178338775173040573-0-6","type":"videoSnippet","props":{"videoId":"18178338775173040573"},"curPage":0},{"id":"11957405535778663849-0-7","type":"videoSnippet","props":{"videoId":"11957405535778663849"},"curPage":0},{"id":"5696658046903817896-0-8","type":"videoSnippet","props":{"videoId":"5696658046903817896"},"curPage":0},{"id":"9981417656109500125-0-9","type":"videoSnippet","props":{"videoId":"9981417656109500125"},"curPage":0},{"id":"1422308036062472370-0-10","type":"videoSnippet","props":{"videoId":"1422308036062472370"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFNpbGVudCBJbnRlZ3JhbHMK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","ui":"desktop","yuid":"1976246061769309398"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"13564869911429127299-0-12","type":"videoSnippet","props":{"videoId":"13564869911429127299"},"curPage":0},{"id":"16470296002887690627-0-13","type":"videoSnippet","props":{"videoId":"16470296002887690627"},"curPage":0},{"id":"8890037435589146173-0-14","type":"videoSnippet","props":{"videoId":"8890037435589146173"},"curPage":0},{"id":"2912016515228587215-0-15","type":"videoSnippet","props":{"videoId":"2912016515228587215"},"curPage":0},{"id":"7052760317832273570-0-16","type":"videoSnippet","props":{"videoId":"7052760317832273570"},"curPage":0},{"id":"6330795264661064053-0-17","type":"videoSnippet","props":{"videoId":"6330795264661064053"},"curPage":0},{"id":"7046008725598194132-0-18","type":"videoSnippet","props":{"videoId":"7046008725598194132"},"curPage":0},{"id":"1608191284786584537-0-19","type":"videoSnippet","props":{"videoId":"1608191284786584537"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFNpbGVudCBJbnRlZ3JhbHMK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","ui":"desktop","yuid":"1976246061769309398"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSilent%2BIntegrals"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"6674588484939414337167","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466868,0,73;151171,0,23;1281084,0,34;287509,0,65;86181,0,11;1447467,0,41;1447550,0,2;1466396,0,94;681841,0,18"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DSilent%2BIntegrals","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Silent+Integrals","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Silent+Integrals","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Silent Integrals: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Silent Integrals\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Silent Integrals — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y8ddcaf24e693604f44129af5f86eb729","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,151171,1281084,287509,86181,1447467,1447550,1466396,681841","queryText":"Silent Integrals","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1976246061769309398","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769309399","tz":"America/Louisville","to_iso":"2026-01-24T21:49:59-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466868,151171,1281084,287509,86181,1447467,1447550,1466396,681841","queryText":"Silent Integrals","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"1976246061769309398","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"6674588484939414337167","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":161,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"1976246061769309398","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"9426951939343273182":{"videoId":"9426951939343273182","docid":"34-7-0-Z7F50767FEE8CD769","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3171840/939f5fd7c64fe8f79570d6ea7cb1bfc7/564x318_1"},"target":"_self","position":"0","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIATPgGBPTnM","linkTemplate":"/video/preview/9426951939343273182?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral cos(y)/x^2+1 from (0,0) to (1, pi durch 2) | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IATPgGBPTnM\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTOTQyNjk1MTkzOTM0MzI3MzE4MloTOTQyNjk1MTkzOTM0MzI3MzE4MmquDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxNGggQkAYAEKyqLARABGniB9wwH_P4DAPT8CAf4Bf4BGPvxBPUBAQDsDv39-_8AAOrtCgAE_wAA-RD9_vsAAAADAfkF8v4BABD7_vkDAAAAB_Pz9f4AAAAMDu8C_wAAAO3yBPUCAAAAA_r9BAAAAAD7BAT9AAAAAAoAAAEAAAAA_wEKBv8AAAAgAC3EQtg7OBNACUhOUAIqcxAAGmAaCwAgDQba0wwF6_L2CvkH9-r-4dwTAO3_AAv4A9AaIunM-Aj_LNn0-ccAAADoERQjAQD7ShEDxxUCH_Iete4eJX8YCSP07eXp9t0c5Br0EeoQ6CYA2xHi_g_y-TYPLSEgAC1TumE7OBNACUhvUAIqrwYQDBqgBgAAgEAAAIC_AAB8QgAAnsIAAGhCAACAQAAAvkIAAAhCAAAkwgAA6MEAAODAAACgwQAAEMIAACBBAACYQQAAQEEAANhBAACwwQAAeEIAAJjBAAAYwgAAgD8AAI7CAAD4QQAAbMIAAFDBAACIQQAAuMEAAABAAACAPwAAIMIAAMBAAACCwgAAEEEAAKrCAABQQQAAwEAAAJxCAADYQQAAYEEAAOhBAAAwwQAAFEIAAJDBAADwQQAAqsIAAKBBAABwQgAAUEEAAFBBAACQwQAAkMEAACDCAAAAQAAAMEEAAIC_AABkwgAAAEEAAJBBAAAQQgAAeEIAAJzCAACgwQAAeMIAAIBAAAC0wgAADMIAADzCAABQwQAA6MEAAFRCAAB8QgAAOMIAAMZCAACawgAAoMEAAGDBAACwwQAAyMEAALhBAAAAQAAAlkIAACDBAAAwQQAAAMAAAFRCAADIQQAAiEEAAARCAAD4wQAAEMIAAJpCAACAwQAA4EEAAIhBAAB4wgAAAEEAAMDAAACaQgAAjEIAAKDAAACQQQAAkEEAAIDAAACewgAAqMEAAARCAACAQAAAoEAAAHxCAABgQQAACEIAAABAAAAAwgAAAEAAAIxCAABAQAAARMIAADDBAABQwQAAwMEAALDCAABQQQAAuMEAADTCAACgwQAA4MAAANjBAABQwQAAAMAAAEDBAAAUwgAA2EEAADxCAACAvwAAokIAAAhCAABcQgAAiMEAAKjCAAC4QQAA8EEAANBBAADAwQAA8EEAAIRCAABAwQAAuEEAAKjBAADQQQAAMMIAAMBAAADwQQAAAAAAAFBBAADQwQAAAMIAAJLCAACWwgAAREIAAFDCAACIQQAAgEEAAAjCAADgwAAAHEIAAMDAAADEQgAAXEIAAKDAAADoQQAAaEIAAGDBAADwwQAAUMIAAFDBAACIQQAAFMIAAIhBAABMQgAAlsIAACzCAACowQAAiMEAAADAAABQwQAAEMIAAHTCAACoQQAAqMEAAEDAAAAIwgAA2EEAAIBBAADIQQAAwkIAAHBBAAAAAAAAwEAAAODBIAA4E0AJSHVQASqPAhAAGoACAABQvQAAfL4AAIg9AABQvQAAQLwAALo-AACePgAAK78AABA9AAAwPQAAmL0AAEy-AAAQvQAAvj4AADy-AABAPAAAoj4AABA9AACoPQAABT8AAH8_AACIvQAAyD0AACw-AAB8vgAAyD0AANg9AAAMvgAAZD4AAEQ-AAAMPgAAmD0AAOi9AADoPQAA6D0AAFC9AACoPQAAgDsAAKq-AACSvgAABD4AAKi9AAD4PQAAEL0AABS-AACgPAAAqD0AAGS-AACGvgAAor4AAAQ-AADgPAAA-j4AAFw-AAA0vgAAgLsAAGE_AAAEPgAALL4AABw-AABAPAAAZD4AAKC8AACWviAAOBNACUh8UAEqjwIQARqAAgAATL4AAKg9AACIvQAAS78AAFC9AADIvQAApj4AAHS-AABMPgAAoDwAAKA8AABAvAAADL4AANi9AABcPgAA4DwAANi9AADyPgAAmL0AAJ4-AACAuwAAJL4AAEC8AACYvQAAuL0AAII-AABUvgAAED0AAOi9AAAQvQAAgLsAABQ-AAAwvQAAPL4AAIg9AAAMPgAAbD4AAPg9AAAkvgAAXL4AAAQ-AAAUPgAAED0AAKg9AACIPQAA-L0AAH-_AACIvQAABD4AAEA8AABwPQAAoLwAABA9AAA0PgAAQLwAABw-AAAwvQAAlr4AAIA7AACgvAAAJD4AALi9AACgvAAAFD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=IATPgGBPTnM","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9426951939343273182"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"12903893843816104561":{"videoId":"12903893843816104561","docid":"34-0-1-Z9434F5028486BFA0","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3324746/af9d84072bfeefbbc53673ffb1b64099/564x318_1"},"target":"_self","position":"1","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DV88IJGMUyiU","linkTemplate":"/video/preview/12903893843816104561?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral sin(y-x) from (0,0) to (y, pi) | double integrals | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=V88IJGMUyiU\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFgoUMTI5MDM4OTM4NDM4MTYxMDQ1NjFaFDEyOTAzODkzODQzODE2MTA0NTYxaq4NEgEwGAAiRBoxAAoqaGhmc2JuZGJrcmd0bWRjY2hoVUNmT3Z0Y1NIZ2sxMnlLM0JfUDc4ZkR3EgIAEioPwg8PGg8_E3iCBCQBgAQrKosBEAEaeIH8CQD9-wUA_Pf_-f0CAAH9AfUG-P39APEAAvz-AQAA8vX_AQIAAAD6CvsDAgAAAPwC-fv9_gAAEAMC9QQAAAAG-v7_-gAAAAYL-v3-AQAA9vz-7wEAAAAF_gMEAAAAAPcDC_wBAAAABPsEAwAAAAD7-gcKAAAAACAALaML4Ts4E0AJSE5QAipzEAAaYBQMABsH-t7LB_Xq7esG9QkH4_nk6hkA8-4AB_QA0xAr-80JCv8w5_n7yQAAAOATEyP1AAJHEgDCCwYd9hC55hwGfxoCJfbt6-Dp5Q_mHOv49xHvLADiDeEJB93-Ov8nIyAALdHGZjs4E0AJSG9QAiqvBhAMGqAGAACYwQAAUMEAABhCAAA4wgAAuEIAAIC_AACsQgAAAAAAAADCAAAQwgAAAMAAAFjCAAAMwgAAkMEAAEBAAACQQQAAEEEAAADAAAA0QgAAiMEAACTCAAAAQQAAFMIAAKBBAABgwgAAmMEAAADCAABEwgAAuEEAAMDAAAAcwgAAmEEAAKjBAABQwQAAjsIAACBBAAA4QgAAfEIAAHBBAABAQAAADEIAAFBBAAA4QgAADMIAABRCAACYwgAAwMAAADxCAAAoQgAAkEEAADBBAABAwQAAKMIAABDCAADwQQAAiEEAACjCAABgQQAA6EEAANBBAACWQgAAjsIAACDBAACOwgAAgD8AAADDAACgwQAAZMIAAJBBAACowQAAMEIAALhBAAAkwgAAZEIAAAjCAABwwgAA4MEAAEBAAABowgAAIEEAAADAAACCQgAAoMEAAEDAAAAgQQAAHEIAABBCAACOQgAACEIAAFTCAADgwQAAvkIAAMDBAAAkQgAAoMAAAEDCAAC4QQAAyMEAAKhCAACEQgAAAEAAAMhBAAAgQgAAAMAAAFTCAABAwgAAyEEAAOBAAADgwAAAskIAAEBAAACoQQAAIEEAAODAAACAwQAAAEIAAPhBAAAQwgAAAEEAAAAAAADIwQAA1MIAAPDBAAA8wgAA4MEAALjBAAAAwgAAAAAAAIjBAAAAQAAAoMAAAIDBAADAQQAAAEIAAJjBAACSQgAALEIAAOBAAABAQQAArsIAAIBBAAAMQgAAFEIAAKDBAAA4QgAAeEIAAPjBAAA4QgAAqMEAAEBAAAAcwgAAAAAAACxCAADAwAAA0EEAACDBAAAAwAAATMIAALLCAAB8QgAASMIAAKDBAACgwAAAEMIAAOBAAABQQgAA4EEAALpCAAAUQgAAAMAAAIZCAABEQgAAAAAAABDCAABEwgAAgL8AAIBAAADIwQAAsEEAADRCAABEwgAARMIAALDBAACAwQAAAMEAAADCAACYwQAASMIAAMBBAACIwQAA8MEAACzCAACAQgAAGEIAAIDAAACuQgAAAEEAAAjCAABAwAAAGMIgADgTQAlIdVABKo8CEAAagAIAANi9AAAsvgAAFD4AAIC7AACAuwAAgj4AAJY-AAAZvwAA6D0AAFA9AADovQAA2L0AAIC7AABsPgAAyL0AALg9AABUPgAA4LwAAKC8AADOPgAAfz8AAHC9AAC4PQAA2D0AAGy-AACoPQAAMD0AAES-AABsPgAAJD4AAKg9AAA0PgAABL4AAKg9AAAMPgAADL4AAIg9AACgPAAAdL4AAGy-AAC4PQAA4LwAAKg9AABAvAAA2L0AAKA8AAC4PQAAgr4AAJ6-AACmvgAAcD0AAOg9AACuPgAAyD0AAGy-AACAuwAAOz8AANg9AADYvQAAND4AAIC7AAAcPgAA4LwAAJ6-IAA4E0AJSHxQASqPAhABGoACAABEvgAAoDwAAKA8AABZvwAAcL0AAOi9AACmPgAAir4AACQ-AACYPQAA4LwAAKA8AABQvQAAuL0AACw-AADgPAAATL4AAPY-AABAvAAAmj4AABA9AAD4vQAA4LwAABC9AAAMvgAAPD4AAIq-AACgPAAAFL4AAHC9AABAvAAAND4AAFA9AABUvgAAiD0AAAQ-AACuPgAAmD0AABS-AABEvgAAcD0AAEQ-AABQvQAAMD0AANg9AAA0vgAAf78AAIA7AABkPgAAML0AAMg9AAAwvQAAFD4AAII-AADIvQAAND4AADC9AADGvgAAoDwAAIi9AAAcPgAAqL0AAJi9AAAcPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=V88IJGMUyiU","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12903893843816104561"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"4261879312322259159":{"videoId":"4261879312322259159","docid":"34-3-9-ZEF05C579317DE7F5","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3818691/a92e8b01359c5f4a16cc4818c50314d2/564x318_1"},"target":"_self","position":"2","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1AdRhx11O_g","linkTemplate":"/video/preview/4261879312322259159?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral e^y/x^2+1 from (0,0) to (infinity, 1) | double integral | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=1AdRhx11O_g\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTNDI2MTg3OTMxMjMyMjI1OTE1OVoTNDI2MTg3OTMxMjMyMjI1OTE1OWquDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxNoggQkAYAEKyqLARABGniB-w8CBv0EAPj-_QD5BP8BBgf4APf__wDtAvwEAAAAAOv5BQX8_wAA9Q4BCgIAAAD9BgH7-v4AAA0CBv39AAAA_Oz6-QABAAACC_gG_gEAAO7-APYCAAAA_vj3Bv8AAADx_An8_gAAAAABAQMBAAAA-_oBAwAAAAAgAC0yyNw7OBNACUhOUAIqcxAAGmALDAAjBgne4gP-6-3yAvwJ9-8B6OsQAOf0AAT--tILJPfTAgf_Nd_zA84AAADoExYj6wD9QREGzRUDJ_QUt_APDX8RChT56ffe7eIU9xv7BfUW4hcA3hPlBAbm9jkPEyAgAC3-lnY7OBNACUhvUAIqrwYQDBqgBgAAQEEAAKBAAABMQgAApsIAADRCAAAQwQAA2kIAAPBBAADYwQAAOMIAAIBAAADQwQAACMIAAIBAAACAwAAAoEAAAFxCAABgwQAAhEIAAOjBAAC4wQAAgMEAAFzCAAC4QQAAfMIAAIA_AAAQQQAAmMEAAODAAADAwAAAHMIAALBBAABUwgAA0EEAAJ7CAADAQAAAmEEAAKZCAAAIQgAAQEAAAMBBAACAvwAAJEIAAEBAAAAwQQAAlMIAAOhBAABAQgAAcEEAAKBAAAAgwQAAyMEAAGjCAADgwAAAUEEAAODAAAAAwgAAQEAAALhBAAAQQgAAnEIAAIzCAADwwQAAYMIAAKhBAACuwgAAQMIAAEjCAACgwAAAqMEAAFxCAAB4QgAAPMIAAJ5CAACqwgAAUMEAABDCAADAwQAAgMEAALBBAADAwAAAukIAAIDBAABAQQAAgD8AAFxCAAC4QQAAgEAAAERCAADowQAAGMIAALBCAADIwQAA2EEAAIA_AACawgAAAMEAAFDBAAC4QgAAdEIAAHDBAACAQAAAAEAAAIjBAACOwgAAgMAAAKBBAAAAQQAAkEEAAIRCAAAAQQAAoEEAAIDAAAAIwgAAAMEAAIJCAACoQQAAOMIAAKDAAACAQAAA2MEAAKjCAABwQQAAuMEAAHDCAAA4wgAAqMEAADDBAADgwAAAIMEAAKDBAAAgwgAAKEIAABxCAADAwQAAjEIAAJhBAABEQgAAAMEAAJDCAAAQQgAAHEIAAHBBAACAwQAAyEEAAIZCAADgwQAA-EEAAJDBAAAEQgAAAMIAABDBAACAQQAAoMEAAIBBAADQwQAADMIAAIbCAACawgAAQEIAACzCAADYQQAAQEEAAODBAACgwAAAwEEAAEDAAADKQgAAWEIAADDBAAAUQgAATEIAALDBAAAQwQAAKMIAAMDAAACgQAAACMIAAKhBAABYQgAAmsIAABDCAABAwQAAgL8AALDBAADAwAAA2MEAAHzCAAAAAAAADMIAAKBAAAAwwgAAOEIAAJBBAAAwQQAAuEIAAPBBAAAwQQAA4EAAAADBIAA4E0AJSHVQASqPAhAAGoACAACYvQAAir4AAKA8AAC4vQAAcL0AAJ4-AACuPgAAKb8AABA9AAAwPQAAEL0AAHC9AAAwvQAAij4AABy-AAAwPQAAij4AAIC7AADgPAAA8j4AAH8_AABQvQAARD4AAPg9AAD4vQAADD4AAKA8AADIvQAAXD4AADQ-AAAMPgAAJD4AADS-AAAkPgAATD4AAHC9AAAUPgAAgDsAAKK-AACyvgAABD4AAIi9AAAQPQAAqL0AAAy-AAAwvQAAcD0AAGS-AACWvgAA1r4AAKg9AABAPAAA1j4AAEw-AABMvgAAgLsAAFU_AAAQPQAAuL0AADw-AABQPQAAXD4AAEC8AACuviAAOBNACUh8UAEqjwIQARqAAgAAZL4AAKA8AADgvAAAU78AAOC8AAAEvgAAlj4AAHS-AAAkPgAAiD0AABA9AABQPQAAcL0AAMi9AAAkPgAAQDwAADS-AADqPgAAQLwAAKo-AACgPAAA-L0AAOC8AACIvQAAmL0AAAw-AAB8vgAAoDwAAMi9AABwvQAAoLwAACQ-AADgPAAARL4AALg9AABQPQAAjj4AABw-AAAcvgAABL4AALg9AAC4PQAAoLwAAKA8AAD4PQAANL4AAH-_AAAQPQAAND4AAOC8AADYPQAAiL0AALg9AAA8PgAAyL0AACQ-AABwvQAAwr4AABA9AAAwvQAA-D0AAPi9AACIvQAAND4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=1AdRhx11O_g","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4261879312322259159"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"3035074464047472380":{"videoId":"3035074464047472380","docid":"34-2-8-Z963AD3E43F9E7067","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4702550/57c0dd94d49f5d801797c60e6cb7cf5a/564x318_1"},"target":"_self","position":"3","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DBfe5qiG2Iro","linkTemplate":"/video/preview/3035074464047472380?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"indefinite integral 1/sinh(x)+cosh(x) by hyperbolic identity | integration | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Bfe5qiG2Iro\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MFoTMzAzNTA3NDQ2NDA0NzQ3MjM4MGquDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxNKggQkAYAEKyqLARABGniBABD6-_0EAPj-_QD5BP8BBgf4APf__wDo_QUC__4BAPXwCfz-AAAA-gr7AwIAAAD_8v_4-P4BAAYADP8EAAAADPn5_P4AAAAAF_YH_gAAAO7-9PkCAAAADPv0-v8AAAD6-gb8AQAAAPvxB_sAAAAA-_gJAQAAAAAgAC2Teds7OBNACUhOUAIqcxAAGmD5CgAgCPntxxMe3_7z9_IK_ATt9uwiAOXpAAgA8scGI9rC-A3_F9zxB8cAAADyEBEq0AAASvsGwAMKE_USwvEhIX_8Chbl5_ff494G4RzpCPwk_yAA2inl_xPm7UMRAhIgAC2fSV87OBNACUhvUAIqrwYQDBqgBgAAAEAAAJjBAABoQgAAWMIAANJCAACYwQAAvkIAALBBAAAAwgAAVMIAADDBAABAwgAAAEEAAAAAAADAQAAASEIAAAAAAACIwQAAXEIAAODBAAAIwgAADEIAAGDCAACAQQAAZMIAAMjBAAAAwAAAiMIAABRCAAAQQQAA4MEAAJBBAAAgwQAAoMEAAFzCAADoQQAAmEEAADBCAACQQQAAgL8AADxCAADAwAAAPEIAAJjBAAAEQgAApsIAAMDAAADYQQAAREIAAADAAABQQQAAUMEAABjCAADYwQAA-EEAAGBBAACUwgAAIEEAAMBAAAD4QQAAfEIAAETCAABgwQAAZMIAAEBAAAAAwwAAwMEAAK7CAABwQQAAAMIAAFxCAAAoQgAAgMEAAIRCAAAQwgAAXMIAAMBAAADgQAAAwMEAAKBBAAAwwQAAVEIAAJjBAADAQAAAwEEAAABCAADYQQAAhkIAAFxCAABYwgAAAMEAAKhCAACgwQAAuEEAAMDAAABYwgAAwEEAAIC_AAB4QgAATEIAAJjBAACgQQAAAEIAAAAAAAAMwgAAlMIAABRCAAAQQQAAAMEAAI5CAACQQQAADEIAAMBAAACQwQAAAMEAAGhCAACQQQAADMIAAJjBAAAQwQAAgMEAAMrCAACQwQAAHMIAACDBAABgwQAAFMIAANhBAADwwQAAgEAAAFDBAAAQwQAAIEEAAABCAACYwQAAukIAADxCAAAAwAAAgEAAAKTCAABwQQAABEIAALBBAABgwQAATEIAAIBCAABwwQAA8EEAAKjBAACAPwAAcMEAAADAAABMQgAAkEEAABRCAAAAAAAAAMEAAHjCAACkwgAAUEIAAFTCAACgwQAAUMEAAMjBAADAwQAAiEIAAJhBAACMQgAAHEIAAAAAAABkQgAA2EEAAIC_AABYwgAAhMIAAMBBAACAPwAALMIAAMBAAAAoQgAAMMIAAHTCAABQwQAABMIAABBBAABAwAAAAMIAAEjCAAAAAAAAoMAAACDCAAAowgAAJEIAAPBBAABAwAAAnEIAAABAAADYwQAAiMEAAAzCIAA4E0AJSHVQASqPAhAAGoACAAAwvQAA2L0AAJg9AADgPAAA-L0AAFw-AADYPQAAE78AALg9AACAuwAAcD0AAIA7AABcPgAA2D0AACy-AACovQAAXD4AAHA9AACIvQAA_j4AAH8_AADgPAAAmD0AADA9AAD4vQAAFD4AAEA8AAAMvgAA4DwAABQ-AAD4PQAAUD0AABy-AAAUPgAAmD0AAKC8AACYPQAAiL0AAGS-AAB0vgAAoDwAADS-AACgPAAA4LwAAOA8AAAMPgAA-D0AAIa-AACyvgAApr4AAJg9AADYPQAAyj4AAEw-AACavgAA4LwAAEM_AACovQAAEL0AAAw-AACAOwAAiL0AAIi9AADWviAAOBNACUh8UAEqjwIQARqAAgAA-L0AABQ-AADIvQAAVb8AAGy-AACAuwAA3j4AAAS-AAAwPQAAqD0AAOC8AADYvQAAJL4AAMi9AADoPQAAoDwAAPi9AAABPwAAmL0AAK4-AABAPAAAjr4AAOC8AADovQAABL4AANg9AACivgAAoLwAADS-AABwvQAAgLsAANg9AABAvAAATL4AADA9AABQPQAAHD4AAPg9AADovQAAPL4AACw-AAAkPgAAED0AAEC8AACYPQAA4DwAAH-_AAAEvgAABD4AAFC9AACKPgAAmD0AAEw-AAA8PgAA6L0AAPg9AACIvQAAHL4AADA9AACYvQAATD4AAOA8AADYvQAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Bfe5qiG2Iro","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3035074464047472380"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"17063852170840860005":{"videoId":"17063852170840860005","docid":"34-2-17-ZF32C870A2CB85FE0","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1729695/d5c6670b72a1d4cf421b91ad35b67c48/564x318_1"},"target":"_self","position":"5","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMRFgGqTK4Qc","linkTemplate":"/video/preview/17063852170840860005?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral x^3*sin(y) dxdy from (0,0) to (pi,2) | calculate double integrals | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MRFgGqTK4Qc\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFgoUMTcwNjM4NTIxNzA4NDA4NjAwMDVaFDE3MDYzODUyMTcwODQwODYwMDA1aq4NEgEwGAAiRBoxAAoqaGhmc2JuZGJrcmd0bWRjY2hoVUNmT3Z0Y1NIZ2sxMnlLM0JfUDc4ZkR3EgIAEioPwg8PGg8_E2mCBCQBgAQrKosBEAEaeIH7DwIG_QQA_Pf_-f0CAAEEAAAC-P_-AO0C_AQAAAAA8vX_AQIAAAD6D_3--wAAAPwC-fv9_gAAEPv--QMAAAAC9fUA-QAAAAIL-Ab-AQAA8gj68wIAAAD_-wP_AAAAAPcDC_wBAAAACQQIAQAAAAD7-QcKAAAAACAALTLI3Ds4E0AJSE5QAipzEAAaYAwKAC0SBd3NAfXj7vAG9wP_7Prh5xUA9u0AEPD8zhYq7NABBf8x1_b8xgAAAOYOEx37AP1MHAa-GAkc8Ay06xcMfxoNIQHm9uH42xbmHegD8BLgNADWF9wKDOL9PvsgIiAALRohXDs4E0AJSG9QAiqvBhAMGqAGAAAAwAAAAMIAAOBBAABcwgAAqkIAAABAAABsQgAAkMEAAJDBAAAQwQAAgEAAAHDCAACOwgAAwMEAAAhCAADgQAAAyEEAANDBAABQQgAA8MEAAAjCAAA0wgAAIMEAACBBAAAAwgAA4MAAABjCAAAowgAAgL8AALjBAAAQwgAAFEIAAIjBAABEwgAAJMIAAPBBAAB0QgAAyEIAAIDBAACoQQAAoMAAAAxCAADgQQAAIMIAAJhCAADYwQAAoMAAAIBCAACQQQAAAEEAANjBAAAgwQAAYMEAACDBAADgQQAAgD8AAFDCAACgQQAADEIAABRCAAAEQgAAksIAAIjBAADSwgAAYEEAANjCAADwwQAAYMIAAODAAABAwgAAuEEAAPhBAACawgAAQEAAANDBAACewgAATMIAAODAAABYwgAAAMAAAEBAAABsQgAAgD8AAJDBAABAwAAAuEEAAAxCAACcQgAAiEEAAITCAAAUwgAAykIAAATCAAAgQQAAIMEAACzCAADowQAAQMAAANBCAACEQgAA6MEAACBBAABwQQAAEEEAADTCAABQQQAAUMEAAEDBAACwQQAAuEIAALBBAABgQQAAuMEAAEDAAAAAwgAAFEIAAHhCAADgwQAAKMIAADDBAABMwgAAqMIAAJjBAACgwAAAEMEAAGzCAACYwQAAAMEAAOBAAACgQAAASMIAAMjBAABQQQAAFEIAANDBAAB0QgAAcEEAABDBAACAQAAAUMIAAHBBAABgwQAAgEIAAFDBAADoQQAAVEIAAAzCAACUQgAAAMEAAMhBAADAwQAAMEEAACBBAACAwQAAMEIAADBBAABAwQAAQMIAALzCAAD4QQAAksIAAODBAACIwQAAXMIAAIBAAABEQgAAgL8AALxCAAAoQgAAEMEAAFBCAADYQQAAIMEAAAjCAAC4wQAAqMEAAIDAAADQwQAAkEEAAEDBAACCwgAADMIAAIBAAAAAQgAAEEEAAGDCAADgwAAAXMIAABBBAABAwAAAmMEAAEjCAABwQgAAAEAAAOjBAABcQgAAkMEAABBBAADwQQAAwMEgADgTQAlIdVABKo8CEAAagAIAACy-AAAUvgAALD4AADC9AACgPAAAnj4AAJI-AAAnvwAA6D0AAKC8AAC4vQAA6L0AAKA8AABUPgAAyL0AAJg9AABsPgAAQDwAAOA8AADiPgAAfz8AAJi9AAD4PQAAHD4AADS-AAD4PQAAoDwAABy-AACGPgAADD4AALg9AAC4PQAAqL0AAMg9AAC4PQAAiL0AAIA7AACAOwAAfL4AAIq-AACoPQAAiD0AAFA9AABwvQAABL4AAIC7AAAUPgAARL4AAI6-AAB8vgAAiD0AAAQ-AACyPgAAFD4AAI6-AABAvAAAPT8AABQ-AADYvQAAND4AABC9AAA8PgAAQLwAAIa-IAA4E0AJSHxQASqPAhABGoACAABEvgAAoDwAAIA7AABjvwAADL4AANi9AACuPgAAVL4AAOg9AAAwPQAAUD0AAIC7AAC4vQAA6L0AADQ-AABwPQAALL4AAOo-AACAuwAAhj4AADA9AABwvQAAML0AAKi9AAA8vgAAXD4AAJa-AACgPAAATL4AAOi9AACAuwAAPD4AAOA8AACKvgAAMD0AABQ-AACGPgAAqD0AADS-AAB0vgAAQDwAADw-AACYvQAAMD0AAAQ-AADovQAAf78AABC9AACKPgAA-L0AAAQ-AADgvAAAmD0AAI4-AABQvQAALD4AAOC8AACevgAAmD0AAJi9AAAcPgAAJL4AAFC9AAAkPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=MRFgGqTK4Qc","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17063852170840860005"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"18178338775173040573":{"videoId":"18178338775173040573","docid":"34-11-7-Z8834E941738A7A5E","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2809982/48135c10ec4a81f8818b3f1afa414849/564x318_1"},"target":"_self","position":"6","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoA0oIV8EsiQ","linkTemplate":"/video/preview/18178338775173040573?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Indefinite integral of x*sin(x) by parts | integration by parts | integration | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=oA0oIV8EsiQ\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFgoUMTgxNzgzMzg3NzUxNzMwNDA1NzNaFDE4MTc4MzM4Nzc1MTczMDQwNTczaq4NEgEwGAAiRBoxAAoqaGhmc2JuZGJrcmd0bWRjY2hoVUNmT3Z0Y1NIZ2sxMnlLM0JfUDc4ZkR3EgIAEioPwg8PGg8_E1aCBCQBgAQrKosBEAEaeIEFCgEA_AQA-P79APoE_wH1AfgA-f7-AO4HBgAB_wAA6-4KAAT_AADyBgEBCQAAAP_y__j4_gEAB_8C9QQAAAAM-vn8_gAAAAYL-v3-AQAA8gj68wIAAAABAfYDAAAAAPf4DPMAAAAABAED_AAAAAAC_AUAAAAAACAALcUk3zs4E0AJSE5QAipzEAAaYAYLACAI_t3EBhDh7OL3-A3w_u7t7hAA6-MACAn0ywYo4s4EEP8c4O0ByAAAAPAZEinSAAFGCfXABwYi8x7F9CMOfwMKD_Hm-OT41hfuH-_wAx_0IADeIewABOr7RgsOHSAALSrAZDs4E0AJSG9QAiqvBhAMGqAGAADAwAAAQMIAAABCAAAswgAAkEIAAIA_AACaQgAAIMEAAJjBAAAAwQAAgEEAAIbCAAAUwgAA0MEAAAhCAAAgQQAAwEAAAAjCAABkQgAAwMEAAAjCAAAgwgAA6MEAAOBAAAAkwgAA2MEAAPjBAADowQAAqEEAADDBAAB0wgAANEIAAMDBAABYwgAAlsIAADBCAACCQgAApkIAALjBAADYQQAAwEAAAEBCAAAQQQAAqMEAAHBCAAAYwgAAYMEAAHBCAAAMQgAAiEEAAJDBAAAwwgAAQMAAAHDBAABwQQAAYEEAALbCAACYQQAACEIAAJBBAADIQQAAbMIAAIjBAACwwgAAoEAAAADDAACYwQAAkMIAABDBAABgwgAAuEEAAAxCAAA8wgAAgEAAADDCAACQwgAACMIAAADAAABQwgAAIMEAALjBAABkQgAAsEEAAOBAAADgQAAAiEEAAEBCAACkQgAAcEEAALTCAAAgwQAAtEIAACTCAACwQQAAQEEAANjBAAAEwgAAgMAAAJpCAACeQgAAMMIAABBBAAAYQgAAAMEAACTCAABAwQAAQEEAAOBAAABAQQAA6kIAAAxCAAAYQgAAiMEAACBBAABAwQAAJEIAADBCAADAwQAAUMIAAOjBAAAswgAAsMIAAMjBAAD4wQAAAEAAABTCAACIwQAAYMEAAMDAAAAwQgAAMMIAAADAAAAAwAAALEIAAMDAAAB0QgAAmEEAAABAAACAvwAAeMIAAAAAAABAwAAALEIAAKDBAAAQQgAABEIAAPjBAAA4QgAAEEEAAABAAACgwAAA0EEAAKBBAABQwQAAKEIAAJhBAACgQAAAaMIAAJjCAACYQQAArsIAAKjBAAD4wQAAEMIAABBBAACGQgAAAEAAAJpCAABkQgAAAEAAACRCAADgQAAAAMAAADDCAABIwgAAMMEAAIA_AAAcwgAAgEEAAIhBAAAwwgAARMIAANjBAACIQQAA2EEAANjBAAAMwgAARMIAAADBAABQQQAAsMEAADzCAACwQQAAgEAAANDBAAAoQgAAEMIAAKDAAABQQQAAFMIgADgTQAlIdVABKo8CEAAagAIAADC9AAAcvgAAuD0AABA9AAD4vQAAmj4AABw-AAAlvwAAmD0AAHC9AABAPAAAqL0AAGw-AAAsPgAATL4AAOi9AAAsPgAAUD0AAMi9AAAJPwAAfz8AABC9AABQPQAAMD0AAGy-AACqPgAAcD0AAKq-AABkPgAAXD4AABw-AAAwPQAALL4AAGw-AABQPQAAUL0AAKA8AABcvgAAbL4AABS-AABQPQAAcL0AAOg9AABQPQAA4DwAAGw-AABAvAAAlr4AAMK-AACOvgAAiL0AAEw-AADiPgAAfD4AAES-AABAPAAAYT8AAOC8AACgvAAAJD4AAHC9AADIvQAAyL0AAA-_IAA4E0AJSHxQASqPAhABGoACAAAwPQAAcD0AAIi9AABjvwAAmr4AAOC8AAARPwAAjr4AAAQ-AADoPQAAiL0AAKi9AAAwvQAAyL0AABQ-AACgPAAAlr4AAAc_AABQvQAAyj4AADA9AAC6vgAAmL0AAIA7AAAUvgAAQDwAAIq-AACAuwAAXL4AAMi9AAAQvQAAFD4AAHC9AACavgAAcL0AANg9AAB8PgAAQLwAADy-AABEvgAAgDsAAKo-AACAuwAAED0AAIY-AADIvQAAf78AACy-AACSPgAALL4AAAw-AADYPQAABD4AAEQ-AAA8vgAATD4AAKi9AAAsvgAAED0AAIA7AACuPgAAHD4AAIi9AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=oA0oIV8EsiQ","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["18178338775173040573"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"11957405535778663849":{"videoId":"11957405535778663849","docid":"34-6-13-Z7352AC2F869B78A5","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/471502/d24075ce1147a203ca22dc3019c9b3c6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Lt8c3AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlRGgiYT6iec","linkTemplate":"/video/preview/11957405535778663849?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Definite Integral of ln(x)/x from 1 to e | integration by substitution | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=lRGgiYT6iec\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFgoUMTE5NTc0MDU1MzU3Nzg2NjM4NDlaFDExOTU3NDA1NTM1Nzc4NjYzODQ5aocXEgEwGAAiRBoxAAoqaGhmc2JuZGJrcmd0bWRjY2hoVUNmT3Z0Y1NIZ2sxMnlLM0JfUDc4ZkR3EgIAEioPwg8PGg8_E1uCBCQBgAQrKosBEAEaeIECDwf-_gIA-_4C_wME_gH1AfgA-f7-AO0HBwAB_wAA6u0KAAT_AADzBgoKAQAAAAL-_fbz_QEABPkF_gMAAAAR6fwG_wAAAAYM-v3-AQAA8Qj68gIAAAAF9_UB_wAAAO3vEPz_AAAABPsEAwAAAAAA__7_AAAAACAALWhX1js4E0AJSE5QAiqEAhAAGvABcfgO_9EW7ADh-O7_txbrAIEiCv79MdUAxiMNAbz3ygD3DPsA6BLW_xsIIQG6Ee7_PPbN_xHIL_9V4ewADdfjAPbp7QAj1vQBKxwFAP_z4_7sCSQACNz8__3K4ADtFM3_6wsIAe7t6wEbFc4BFgMdAQwIKQMdAhb837T9AekE7ADj8vD-BQj2ABbT5_7i9i0HDuQcACAHBf_RL-IDAPf6BwfwFvf0Edv_E-gQDhUD__zb9_8GDAwM9jP6AgX3ECEDAQst--UH_Pj15Pf9J-j3ANcP_AD--QERC-0K-_707PsN-Pz25Qn59dwDDQkCDwXvIAAt_yEdOzgTQAlIYVACKs8HEAAawAfGNLO-rDkAPbtTDzxOY_u9N-kMvXfp8Lw5ZOO9stILO4kDLb1vLh4-LeCvvGEVlLyh9SC-YUv0vFsi1zyPcRU-wC67umtpCT3ZQ0u-Q5J2Oyl_gr1EGF--1GRnO6WdPzwriCE-YxWlvGhhKryydZo9pcvRvC3oAbwgqOi6HXURPDPcAL3cahk69RFYvRN8WL1a3zY96dudvFORyjwYWh0-agdxu7SFEDzO9g09c4vUvN_RsbtrEbG9x8jIPB8R07xSkKk8v3cAPSEbrTxJdCW9CFwSvf5cerspD2G9QDX7O_d2y7sPe4Y97LmRPTmhK71i9Iw9nn7Qvb52Xbs5Qra9pGaUPU-wvzwnFxM-T9VzPRWpsDyosh69VwmWvLKENbsxW4K9bkddvLWqgDxgIRM9G9yBPU6Izjs8bjM9LRXIu95NAT3g7AC94FiGPJ052jxQU5s9tp4EvIauRLxrnkM98mK8vJezMTsLuOe9dlCJO1uEmLxPXG49kbc8PWF8B7uz8gk7gcxuPR7GfzzFNUM9-FENvglvLLvO8ga9kDiKvZzLQ7yBCLE8dxVSvAvqgLyLy5w9pBd6vV94SrxBPFy9whrCvFNPDzyl_0A82eqyvVOSN7qnFou9xW8vPDqvMTy6jIY9tO56vXHc77sgHxk92GGcPSSsFbvxnmO9XXaOvYnVxrnVvHk9m336OYLQNDveHuQ9T8THPIhXIzk04Mc9UbiDPGsb8zmNQQo8QHUgvERoKTuIpke9V2CDvXT_ZzhtA9c9taPYvQyfrzkYVZA9eIsxPWDEEjmsPOG9aUNUPZVbsjgTI5A9j7OfvQp-uDfLovC8W0IevjcF4zmfidk7MKdfPZXJ4Di0_re6HIQvPR-juLoGJEa9w1e1vQjIXTcn94u95nkLPZ8LuLZWt7o9ZS46vahCMDlkJ5c943ERvXPRSThrM4Q8m4vkPJQN5bhQefo5mFqlvL4b0DirJog9z7eavfufhzlzGAY8TpY_PdbckzduGAW9eWyVvJ3hUbdTJaU7AnLTO20kVriLFoA9RCrBvX0qIzgYyYM9a8sKPc6hMre45Ci-0X-FvJ34Grl-py69RNPjvFjvkTfC89q7Yk3lvBwFxLewsjE9Nvm1uzXA8zbB4ys-3KVovAeJdLmwVRK-rYqwPHxrx7fDJv23s0OMvU2KDjf2PMS9RpgCPWQ1EDj2dHo94A_fvT-Zm7ci_-w9NSkFPvN-W7iXuwO80tPBPVFqybi0Afi9tVhFPVHgXDgaM5m9X4TfPGMYMbcgADgTQAlIbVABKnMQABpgCwMAJ_UWzegBHuf_0fkB-OkC4P7eFQDq5wD7BADj_TLRyfoJ_y3h-fjCAAAABxURH80A_lH9_toO9h37HavUMQ5__hAh0dP7-ubfFvj54QoRF_Y0APIauwwY5uVEBAwZIAAt2FpQOzgTQAlIb1ACKq8GEAwaoAYAAEBBAADwwQAAdEIAAEzCAADCQgAAoMAAALRCAADIQQAAAMIAACjCAACgwAAAKMIAAADAAACAPwAAgEAAAAxCAACgwAAAoMAAACRCAACYwQAANMIAAKhBAABYwgAAGEIAAITCAACAwQAAQMEAABjCAADgQQAAgMAAAEjCAACAQQAAAMIAAJDBAACCwgAAyEEAABBCAACUQgAAAEEAACDBAADoQQAAwEAAABxCAADAwQAAAEIAAIrCAACwQQAAHEIAAFBCAACYQQAAoEAAALDBAADQwQAAuMEAAEBCAABgQQAAIMIAANhBAADIQQAA2EEAAHhCAACQwgAAgMEAAHTCAAAAwQAA7sIAAPDBAACGwgAAwEEAABzCAABEQgAA-EEAAAzCAAB4QgAAOMIAADzCAACYwQAAAEEAAETCAACAQQAAUMEAAGhCAABwwQAAoMAAAIDAAAA4QgAAAEIAAFxCAAAoQgAACMIAADTCAACSQgAAYMEAAOhBAAAwQQAA4MEAAARCAAAAQAAAhkIAAJpCAAAwwQAABEIAAOBBAAAAwAAAMMIAAHjCAACwQQAAEEEAAKDAAACqQgAA8EEAACxCAAAAAAAAAMIAAIDAAAA0QgAAqEEAACzCAACAPwAAIMEAAEDBAAD2wgAAuMEAALDBAAAIwgAA-MEAABDCAACAQAAA4MEAADBBAAAAwAAA0MEAAFBBAAAIQgAA0MEAAJJCAAAUQgAAsEEAAJBBAACewgAAMEEAACxCAAAwQgAAwMEAAEBCAACgQgAA4MEAACRCAADowQAAwEAAAPjBAABAwAAA4EEAAABAAACQQQAAEMEAAEDBAABowgAAtMIAAGxCAABcwgAAsMEAAODAAADYwQAAAMAAAHhCAADgQAAAtkIAAPhBAAAgQQAAOEIAAOBBAABAQAAAbMIAAFDCAADAQAAAgEAAAADBAACgQQAAUEIAAHTCAACKwgAAkMEAAPjBAABAwQAA4MAAAHDBAABIwgAAUEEAAADBAADYwQAAHMIAAExCAAD4QQAAgL8AAIxCAADgQAAAHMIAAIDAAAAMwiAAOBNACUh1UAEqjwIQABqAAgAAmL0AABy-AAAQPQAAgLsAANi9AABcPgAADD4AACm_AAC4PQAAEL0AADA9AADgvAAAmD0AABQ-AAAsvgAA2L0AAGQ-AABwPQAATL4AAAE_AAB_PwAAQLwAAOA8AACIPQAAJL4AAAw-AACAOwAAJL4AADQ-AACYPQAABD4AAIg9AAAcvgAATD4AAHA9AADovQAAmD0AAPi9AABMvgAAkr4AALg9AAAUvgAAMD0AAJi9AABAPAAAmD0AAHA9AACKvgAAur4AAMa-AAAwPQAAZD4AALI-AABkPgAAor4AABC9AABZPwAAQDwAAKA8AABEPgAAoDwAAIC7AABQvQAA1r4gADgTQAlIfFABKo8CEAEagAIAABy-AACYPQAARL4AAE-_AACuvgAAgLsAAAE_AAAMvgAAJD4AADQ-AABwvQAAgDsAALi9AABAvAAAqD0AADA9AAA8vgAA4j4AAMi9AADOPgAAUD0AAEy-AABwvQAAQDwAACy-AADoPQAAdL4AABA9AABMvgAADL4AAEC8AAAEPgAAgDsAAJq-AACgvAAAiD0AAI4-AABkPgAABL4AAFy-AAAMPgAAhj4AAFA9AACYvQAAsj4AAPi9AAB_vwAAQLwAAIo-AADYvQAAhj4AANg9AAA0PgAAhj4AAIi9AABEPgAAuL0AAFy-AAAwPQAAEL0AAI4-AACYPQAAmL0AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=lRGgiYT6iec","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11957405535778663849"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3457799959"},"5696658046903817896":{"videoId":"5696658046903817896","docid":"34-8-16-Z2809A4B91E6F22A0","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3913236/8e721dd4dab14f20c54e62578f4e1d91/564x318_1"},"target":"_self","position":"8","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-4dtzPdauOU","linkTemplate":"/video/preview/5696658046903817896?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral x/y dxdy from (1,) to (2, e) | double integrals | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=-4dtzPdauOU\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTNTY5NjY1ODA0NjkwMzgxNzg5NloTNTY5NjY1ODA0NjkwMzgxNzg5NmquDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxNYggQkAYAEKyqLARABGniB-w8CBv0EAPj-_QD5BP8BBAAAAvj__gD1CwMG_QL_AOn5AwYI_wAA9Q4BCgIAAAD8Avn7_f4AAA79_gMEAAAAAvX1APkAAAAGC_r9_gEAAO7-APYCAAAAAvYFBgAAAAD6-gb8AQAAAAT7BAMAAAAAAvgFBwAAAAAgAC0yyNw7OBNACUhOUAIqcxAAGmAUDwAeCQLh0QX56OzoAgAQ_uv_5_gTAPTvAAr3-dIRLPzS_wb_Ntb6_MoAAADgHxkp-QD_Rx4KwRkDGfkNtuQTBX8bCyLz7_Hf8-EU8Bb48vwQ6zAA3AveBvze_DcGHB8gAC0lq2Y7OBNACUhvUAIqrwYQDBqgBgAAgD8AAABAAABMQgAAjsIAAFhCAACYQQAAwkIAANhBAAAMwgAADMIAAADAAACIwQAAPMIAABDBAABwQQAAIEEAAPhBAAAAwAAAMEIAAJDBAAAEwgAAkMEAAILCAAAMQgAAdMIAAADAAADAQAAAuMEAABBBAABAQAAAGMIAAABBAAB0wgAAiEEAAMLCAACAQAAAAEIAAKZCAACoQQAAkEEAALhBAAAAwQAAoEEAAADBAABAQQAAnMIAAJBBAACGQgAAiEEAAGBBAACYwQAABMIAACjCAAAAwQAAAAAAAFBBAAA0wgAAAEEAALhBAAC4QQAAWEIAAKDCAACwwQAAisIAAABBAAC-wgAAAMIAACDCAACAvwAAEMIAAHRCAABUQgAADMIAAJxCAACqwgAABMIAAODBAAAQwQAADMIAABBBAABAwAAAtkIAAKDAAAAgQQAAAMAAAEhCAAAYQgAAEEEAALhBAACwwQAAFMIAAKJCAADAwQAAsEEAAAAAAABIwgAAQEEAANjBAACUQgAAsEIAAFDBAACIQQAACEIAAGDBAACIwgAAUMEAANhBAABgQQAAgL8AAKhCAACAQQAADEIAADBBAACwwQAAEEEAAHBCAAAAQAAAQMIAAIC_AAAQwQAAuMEAAKrCAACgwAAACMIAAFDCAABAwQAAMMEAAPDBAADgQAAAgEAAAEDAAAD4wQAAHEIAABBCAADgwAAAlEIAABBCAABwQgAAEMEAAJTCAABgQQAAJEIAAAxCAACQwQAA6EEAAKJCAACAwQAACEIAAJjBAABwQQAAFMIAAMBAAADIQQAAuMEAADBBAADYwQAA6MEAAITCAACewgAAQEIAAAjCAACgQQAAMEEAAATCAAAgQQAAFEIAAKhBAADIQgAASEIAAIBAAAAMQgAAgEIAAKDBAACowQAATMIAAODBAACwQQAAwMEAAFBBAACEQgAAmsIAADjCAADgwQAAAEAAACDBAABgwQAAEMIAAGjCAADIQQAASMIAAIC_AAAcwgAAuEEAAOhBAAAQQQAAwkIAAHBBAAAAAAAAwEEAAJjBIAA4E0AJSHVQASqPAhAAGoACAAAMvgAAPL4AAFA9AADIvQAABL4AAI4-AACGPgAAPb8AABQ-AADgPAAAEL0AAFC9AAAQvQAAZD4AAPi9AACoPQAAhj4AAFC9AAAwvQAA-j4AAH8_AABQvQAAZD4AACQ-AACovQAATD4AAKC8AAAUvgAAZD4AABA9AADoPQAAZD4AACS-AADIPQAAFD4AAPi9AADYPQAAUD0AAHS-AAC-vgAA2D0AAKC8AACgvAAAML0AAFS-AAC4vQAA-D0AAI6-AACivgAApr4AAHA9AACgvAAAxj4AAEQ-AACOvgAAgDsAAE0_AAAwPQAA2L0AACQ-AAAwvQAAfD4AAKA8AAB0viAAOBNACUh8UAEqjwIQARqAAgAARL4AAIA7AABwvQAAX78AAMi9AAA8vgAAgj4AAIK-AACYPQAA-D0AAFA9AABwPQAA6L0AAAS-AACYPQAA4DwAABy-AADqPgAAqD0AAKI-AACAuwAA4LwAAFC9AACYvQAATL4AADw-AAA0vgAAQLwAAOi9AADgvAAAQDwAACw-AABwPQAAir4AAIi9AADYPQAALD4AABw-AAAkvgAAJL4AAJg9AAA8PgAAcL0AAKA8AADYPQAAqL0AAH-_AACIvQAAjj4AADC9AABMPgAAiL0AAOg9AABEPgAAgLsAAPg9AACgvAAAhr4AADC9AAC4vQAA6D0AAMi9AADovQAA2D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=-4dtzPdauOU","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5696658046903817896"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9981417656109500125":{"videoId":"9981417656109500125","docid":"34-11-7-Z9EC95BA5534FE6D5","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3336207/2fa3b0df5dd217fcea00438beb2c2450/564x318_1"},"target":"_self","position":"9","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dy_6aZuQ1LoY","linkTemplate":"/video/preview/9981417656109500125?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral cos(x) sin(y) from (0,0) to (pi, pi) | solving double integrals | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=y_6aZuQ1LoY\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTOTk4MTQxNzY1NjEwOTUwMDEyNVoTOTk4MTQxNzY1NjEwOTUwMDEyNWquDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxM4ggQkAYAEKyqLARABGniB_AkA_fsFAPj-_QD6BP8BDP77CPf__wDxAAL8_gEAAPj2BAALAAAA8g74BvwAAAD8Avn7_f4AAA0CBv39AAAADvv89fYAAAACC_gG_gEAAPb8_u8BAAAABf4DBAAAAAD3Agb2__8AAAQBA_wAAAAA-_oHCgAAAAAgAC2jC-E7OBNACUhOUAIqcxAAGmAPDAAdCv7iyv_74u3sBfEGCOH15OAeAPLmAAX1As0ZJfLQBQX_NeD6_ccAAADjCBcj7gABSRIEwQkQHPUOv-0lEH8SAyb35O7d8O4T5RjrAfcS6zAA1hTrBgzb_ED6HCMgAC003GE7OBNACUhvUAIqrwYQDBqgBgAAAMAAAIBAAAAYQgAARMIAAMJCAACAvwAAiEIAAEDAAABIwgAAOMIAAIA_AACCwgAAOMIAAKjBAADgQAAAkEEAADBBAAAAQAAANEIAABDCAAAswgAAUEEAAFDBAADAQQAAdMIAAFDBAAAgwgAAiMIAAIhBAABQwQAAKMIAAAxCAACAwAAAQMEAAEzCAACAQQAAJEIAAJJCAACYQQAAYEEAACRCAACAPwAAXEIAAKjBAACgQAAAiMIAAOBAAAAkQgAANEIAANBBAAAAwAAAEMEAAAzCAAAMwgAAPEIAAIA_AAB8wgAAgEEAAMBAAACYQQAAnkIAAFDCAABgQQAAgMIAAKhBAAD4wgAAwMEAAHjCAACoQQAAAMEAADRCAAAwQgAAAMEAABxCAADgwQAAVMIAALDBAADgwAAAMMIAANBBAACgQAAAZEIAAMDBAAAwwQAAUEEAADBCAABEQgAAhkIAAFBCAABwwgAAQMEAAMZCAADQwQAAcEEAAJDBAACCwgAABEIAADDBAACMQgAAWEIAAMDAAAAUQgAAKEIAAIDAAAAkwgAACMIAACDBAAAAQQAA6MEAAJRCAABAwAAAiEEAALBBAACwwQAAgMAAAAxCAACIQQAABMIAAMBBAABAQAAAyMEAANjCAADQwQAAVMIAAODBAACYwQAAPMIAABBBAABAwQAAiMEAAMDAAACAwQAAMEEAALhBAABwwQAAlkIAACxCAAAAAAAAkEEAALjCAADQQQAACEIAANhBAAAgwQAAeEIAAJhCAAAEwgAAdEIAAPjBAADIQQAACMIAAOBAAAAYQgAAwMAAAKhBAACAPwAAoMAAAGzCAACUwgAAZEIAAETCAADowQAAwMAAALDBAAAwwQAAXEIAAIBBAAC4QgAA-EEAAADBAACMQgAACEIAAMDAAAAcwgAAMMIAAKBAAAAwQQAAUMEAAHBBAABgQgAARMIAAIzCAACIwQAAoMAAAMDAAADIwQAAoMEAADDCAABwQQAADMIAAFjCAABQwgAAikIAAPBBAACgwAAAoEIAAIBAAAAYwgAAQEEAALjBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAABL4AAGQ-AAC4vQAAMD0AAI4-AACGPgAAH78AAKg9AACAuwAAyL0AAJi9AACAOwAAZD4AANi9AABQPQAAfD4AAOA8AACgPAAAwj4AAH8_AAAQvQAAuD0AADQ-AABsvgAAcD0AAIg9AAAkvgAAPD4AADQ-AACYPQAAmD0AAKi9AAC4PQAA6D0AABC9AAAwPQAAoLwAAHS-AACOvgAAuD0AAKC8AABAPAAAoLwAAMi9AABAvAAAyD0AAES-AACWvgAAir4AAAw-AADYPQAAvj4AAMg9AACGvgAA4LwAAD0_AAA8PgAALL4AAAw-AABAvAAAJD4AAOC8AABsviAAOBNACUh8UAEqjwIQARqAAgAA6L0AALg9AABAPAAAVb8AAOi9AAC4vQAAvj4AAIa-AAAMPgAAqD0AABC9AABQvQAADL4AABS-AAAkPgAA4DwAACS-AADmPgAAcL0AAJI-AACYPQAA-L0AAHC9AACgvAAAJL4AAFQ-AACuvgAAoDwAADS-AAAwvQAAgLsAACw-AACAuwAAdL4AAEA8AABEPgAAuj4AAIC7AAA0vgAAVL4AAKA8AAB8PgAAcL0AALg9AAD4PQAAqL0AAH-_AAAwvQAATD4AAFC9AACYPQAAgLsAAPg9AAB0PgAAuL0AACw-AAAwvQAAtr4AAEA8AADgvAAAFD4AAEC8AACAOwAADD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=y_6aZuQ1LoY","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9981417656109500125"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1422308036062472370":{"videoId":"1422308036062472370","docid":"34-10-6-ZA527D66FEFA83E1E","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3845796/4f103973a7b60ef9160cc91069dc44e9/564x318_1"},"target":"_self","position":"10","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D6ORYDRtCmps","linkTemplate":"/video/preview/1422308036062472370?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral xy*sin(x^2y) from (0,0) to (1, pi) | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=6ORYDRtCmps\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTMTQyMjMwODAzNjA2MjQ3MjM3MFoTMTQyMjMwODAzNjA2MjQ3MjM3MGquDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxN2ggQkAYAEKyqLARABGniB-w8CBv0EAAv9BQP6Bv4BE_39APYBAQDo_QUC__4BAPL1_wECAAAA-gr7AwIAAAADAPQA_f4BAA0CBv39AAAAA_P-9foAAAACC_gG_gEAAPb8_u4BAAAAB_z7CgAAAAD3Awv8AQAAAAkECAEAAAAA-_kHCgAAAAAgAC0yyNw7OBNACUhOUAIqcxAAGmAPDAAcAAXlyAf26fDwCfsGAPD64d4PAPfsAAT7AtUNJfPOCAX_Kef3-swAAADuCBQa8gD2RBD8wxAMF_IevPQdEH8NChn46PPh5-IJ4CDmBgEZ7iMA6BHhAhPg-TgFHCMgAC1yZnE7OBNACUhvUAIqrwYQDBqgBgAAQMAAAIC_AAAIQgAAOMIAAKBCAAAAAAAAtkIAAEBBAAAcwgAAAMIAAEBAAABswgAALMIAAFDBAADAQAAAuEEAAFBBAAAAQAAAQEIAAMjBAAAswgAAgD8AAEjCAADYQQAAisIAAJDBAADYwQAAWMIAABBBAAAgwQAAGMIAANhBAADIwQAAIMEAAJjCAAAgQQAAMEIAAHhCAAAwQQAAoEAAABhCAABAQAAAMEIAADDCAAAQQgAAmMIAAEDAAABIQgAA6EEAAOBBAACAQAAAAMIAAPjBAACIwQAAGEIAAIhBAABUwgAAkEEAAMBBAABwQQAAnkIAAIbCAABQwQAAiMIAAIBAAADywgAAoMEAAHDCAACYQQAAgMEAAExCAAAcQgAA6MEAACxCAAAcwgAAMMIAALDBAAAAwQAAUMIAAKBBAACgQAAAhkIAAJjBAAAAQAAAoEAAAExCAAAcQgAASEIAAPhBAABMwgAAMMEAAMZCAAAQwgAA4EEAAIDBAABMwgAAmEEAANDBAACgQgAAhkIAAODAAAAQQgAAMEIAABBBAAAwwgAANMIAAIBAAABAwAAAgMEAAL5CAAAQQQAAGEIAAJhBAABQwQAAIMEAAEBCAACwQQAA4MEAAEBAAABAwAAAsMEAANTCAADwwQAAQMIAAMDBAADAwAAABMIAAEDAAABQwQAAIEEAADDBAADgwQAAoEEAAARCAACowQAAlEIAABhCAACQQQAAcEEAAKzCAABQQQAADEIAABBCAAD4wQAAUEIAAIhCAADgwQAASEIAAPjBAAAgQQAAEMIAAIBBAAAkQgAAAMAAAKhBAAAgwQAAoMAAAGDCAACkwgAAfEIAAEzCAABQwQAAgMAAALjBAAAAwAAAWEIAAFBBAADAQgAASEIAAEDAAABcQgAAQEIAAAAAAAAkwgAASMIAAEBAAABgQQAAmMEAAJhBAABUQgAAWMIAAILCAADQwQAA4MAAAKDAAAAQwgAA2MEAABzCAAAQQQAA6MEAAJDBAAAMwgAAZEIAAOhBAABAwAAAqEIAAABAAAAEwgAAIEEAAADCIAA4E0AJSHVQASqPAhAAGoACAAA0vgAAqL0AABQ-AAAQvQAAgLsAAIo-AACOPgAAHb8AAEA8AAAQvQAA-L0AALi9AACgvAAAdD4AABC9AABQPQAAjj4AADA9AABQPQAA8j4AAH8_AACAuwAA2D0AABw-AACKvgAAJD4AADA9AAD4vQAAZD4AAEQ-AACoPQAAoDwAAPi9AADIPQAADD4AAIC7AACYPQAAEL0AADy-AACmvgAAHD4AANi9AADoPQAAED0AABC9AADYPQAAMD0AAFS-AACGvgAAnr4AABw-AADoPQAAvj4AABw-AABUvgAAQDwAAFs_AADIPQAAiL0AAFA9AADgvAAAJD4AAKC8AACyviAAOBNACUh8UAEqjwIQARqAAgAAgr4AAEC8AABAvAAAUb8AAFC9AACovQAAtj4AAJa-AAD4PQAAgDsAABC9AACAOwAAuL0AAMi9AABcPgAAMD0AAPi9AAABPwAAoLwAAK4-AAAwPQAAmL0AABC9AAAwvQAAFL4AAMg9AACWvgAAQDwAABS-AAC4vQAAQLwAAFQ-AABAPAAAbL4AACQ-AAAcPgAArj4AADA9AAAsvgAANL4AADA9AAAUPgAA2L0AADA9AADYPQAAyL0AAH-_AAAMvgAALD4AAMi9AAAMPgAA4LwAAHA9AACGPgAAqL0AADw-AAAwvQAApr4AAKg9AABAPAAAJD4AALi9AAAQvQAADD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=6ORYDRtCmps","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1422308036062472370"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false},"13564869911429127299":{"videoId":"13564869911429127299","docid":"34-5-17-Z59030C2246123986","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4084449/6f8c380f866ec06cea7835e4c80a5add/564x318_1"},"target":"_self","position":"12","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DpKuDC1VBGww","linkTemplate":"/video/preview/13564869911429127299?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"indefinite integrals sin(x) cos(cos(x)) sin(cos(x)) by substitution | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=pKuDC1VBGww\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFgoUMTM1NjQ4Njk5MTE0MjkxMjcyOTlaFDEzNTY0ODY5OTExNDI5MTI3Mjk5aq4NEgEwGAAiRBoxAAoqaGhmc2JuZGJrcmd0bWRjY2hoVUNmT3Z0Y1NIZ2sxMnlLM0JfUDc4ZkR3EgIAEioPwg8PGg8_E06CBCQBgAQrKosBEAEaeIH8CQD9-wUA_QIFAvoF_gH1AfgA-f7-APYH_P__Av8A8_oHAQQAAAD6DwP-BgAAAP_z__j4_gEABvsC9_kAAAAYAv0A-AAAAAsN8AL_AAAA9gbw-QIAAAAF9_UB_wAAAAgKA_AAAAAABAf-_gAAAAAGAgEAAAAAACAALaML4Ts4E0AJSE5QAipzEAAaYAALABf999rADxzd_fDt9Pz_B-jf5hwA7eoA-wDu1QEl6tP9DP8a5PwGyQAAAP8XDSbUAAVH9v-8AQgF-BC_8BsbfwT_DOrp4t7w5hTlGeoSAwb7KQDbG_EFE-HxPgIJIyAALT-qaDs4E0AJSG9QAiqvBhAMGqAGAACoQQAA2EEAAExCAADAwQAAzkIAAGDBAACMQgAAQMEAAJLCAAAswgAAIEEAAIDCAACwwQAAEMEAAPBBAAAQQgAAEMEAABDBAAAAQgAABMIAACjCAACwQQAAEMEAAABBAABswgAAcMEAALjBAAC8wgAABEIAAFDBAAAMwgAAikIAAADAAAAAAAAAUMIAANhBAACYQQAAfEIAAIhBAAAwQQAAZEIAAODAAABIQgAAQMEAAOjBAAAMwgAAIEEAAIA_AAAQQgAA4EEAALDBAAAAwQAAkMEAABzCAABcQgAA4EAAAODCAADYQQAAwEAAAIA_AABYQgAAUMEAAIhBAAAYwgAAHEIAAADDAAD4wQAAcMIAAJhBAABAwAAAiEIAAIxCAAAQQgAAoEEAAOjBAAAwwgAAUMEAAAAAAACQwQAATEIAAJDBAAAMQgAASMIAAKDAAACwQQAANEIAADxCAABoQgAATEIAAEDCAAAAAAAApkIAAPDBAACAQAAAIEEAAFTCAABAQgAAgMAAAOhBAAC4QQAA-MEAAERCAABMQgAAIEEAAABBAAC4wQAAwMEAAKBBAABcwgAAJEIAAEBBAADgQAAAGEIAANjBAAAwwQAAVEIAAODAAACAwQAAoEEAAADAAACIwQAAtsIAAGDBAABQwgAAEMEAACDBAAD4wQAAoEEAACDBAAAwwgAAoMAAAKjBAACgQAAAcEEAAABAAADAQgAAREIAAIDBAADAQQAArsIAAMhBAAAgQgAAgEEAAADBAACIQgAAgkIAAGjCAACQQgAAgD8AALhBAACIwQAAAEEAADBCAAAAwAAAwEAAAIBBAADAQAAAbMIAADTCAAAUQgAAdMIAAAzCAAA8wgAAwMAAACTCAABMQgAAMMEAAIRCAAAQQgAAQEAAABRCAACgQQAAQEAAAHzCAABUwgAANEIAAMBBAAAwwQAAiEEAAERCAAAMwgAApMIAANDBAAAEwgAAuEEAAIhBAAAkwgAAoMEAAIC_AADAwAAAkMIAABjCAABIQgAAEEIAABDBAACcQgAAwMEAAEjCAADgwAAAFMIgADgTQAlIdVABKo8CEAAagAIAAOC8AABUvgAAyD0AAOC8AACYvQAAtj4AAFw-AAAhvwAADD4AAHC9AABAPAAAQLwAAAw-AABcPgAANL4AAOC8AACCPgAAUD0AAHC9AAAXPwAAfz8AAHC9AACAuwAAZD4AAIK-AAA8PgAAED0AAI6-AAA0PgAALD4AAPg9AABMvgAA2L0AANg9AACIvQAAyL0AADC9AAA8vgAApr4AAKi9AAAwPQAANL4AAIi9AACgvAAAgLsAAPg9AACOPgAAur4AALa-AADivgAAmL0AABQ-AAADPwAADD4AAKK-AACAuwAAbz8AAKg9AACYvQAAJD4AAOC8AADgvAAALL4AANq-IAA4E0AJSHxQASqPAhABGoACAACAOwAAJD4AABy-AABJvwAAlr4AAOi9AAC2PgAAPL4AALg9AAAEPgAAML0AAFC9AADYvQAAmL0AAKg9AACgvAAAVL4AANI-AAAEvgAAoj4AANg9AAAkvgAA2L0AAKi9AADIvQAAcD0AAGy-AACgPAAAVL4AADA9AACgPAAALD4AABS-AAA0vgAA6L0AAKg9AACWPgAA6D0AAES-AABkvgAAuD0AAEw-AADIvQAAHD4AAIY-AADovQAAf78AAIA7AABkPgAAoLwAADQ-AACIPQAAED0AAFQ-AACYvQAAND4AAIi9AAAMvgAAoLwAAEC8AABUPgAADD4AADA9AADIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=pKuDC1VBGww","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13564869911429127299"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16470296002887690627":{"videoId":"16470296002887690627","docid":"34-5-9-ZF6501CF4EE4A653A","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4240522/14b9dd27dc78c71cba20b177d786985d/564x318_1"},"target":"_self","position":"13","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DYm2zGYBg-DI","linkTemplate":"/video/preview/16470296002887690627?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral e^y/sqrt(1-x^2) from (0,0) to (1, ln(2)) | double integrals | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ym2zGYBg-DI\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFgoUMTY0NzAyOTYwMDI4ODc2OTA2MjdaFDE2NDcwMjk2MDAyODg3NjkwNjI3aq4NEgEwGAAiRBoxAAoqaGhmc2JuZGJrcmd0bWRjY2hoVUNmT3Z0Y1NIZ2sxMnlLM0JfUDc4ZkR3EgIAEioPwg8PGg8_E1iCBCQBgAQrKosBEAEaeIH7DwIG_QQA-P79APkE_wEGB_gA9___APIBBgkDAv8A8vX_AQIAAAD_DQAJ-wAAAAEE-wP9_gEADQD9A_sAAAD87Pr5AAEAAAYL-v3-AQAA7fIE9QIAAAAF_gMEAAAAAPr6BvwBAAAABPsEAwAAAAD7-gEDAAAAACAALTLI3Ds4E0AJSE5QAipzEAAaYBkPAB8NBODTA_zn8O4H_Q387gHl7Q8A8_IADPoC1hYn-NL9A_8z2_X9zAAAAOEWEiX-AABFHQTGFgQe7xa46BIMfxUJIvbo7uLw4xruH_n59hDpKgDiCuQBAeT-NwcdHyAALeJobTs4E0AJSG9QAiqvBhAMGqAGAAAwwQAA4MEAACRCAACGwgAAwkIAAADBAADGQgAACEIAAOjBAAAEwgAAIEEAABTCAACQwQAAMEEAAIDBAACIQQAA6EEAADBBAAD4QQAAAMAAAIDBAABAwQAAGMIAAFBBAAA0wgAAQMAAABDBAAAMwgAA4EAAAODAAABYwgAAgEAAAPDBAABgwQAAjsIAACBBAABIQgAAjkIAAAAAAAAwwQAAYEEAAABBAABAQgAACMIAADxCAACQwgAA8EEAAGxCAAAUQgAAEEEAAOBAAADQwQAADMIAAIA_AAAYQgAAEEEAAIjBAAAAQgAADEIAABhCAABsQgAAlMIAACzCAACawgAAwEAAANTCAAAIwgAAZMIAANBBAACIwQAA8EEAAGBBAACAwgAAREIAAEzCAAAswgAAAMIAAMDAAABgwgAAYEEAAADAAACuQgAAYMEAAFDBAABAwAAAGEIAABxCAAAwQgAAREIAAEDCAADIwQAAdEIAAMjBAAA8QgAA4MAAADTCAADAQAAAEMEAAJ5CAACWQgAAgEAAAJBBAACAQQAAwEEAAEjCAAA0wgAAMEEAAMBAAADQQQAAykIAAJBBAAAYQgAAgL8AALDBAABgwQAAREIAAAxCAAAswgAAoMEAABDBAACIwQAA1sIAANDBAACAwQAAGMIAAEjCAAAkwgAAMMEAADDBAAAQQQAAgMAAAKjBAADoQQAAQEIAAFjCAAB8QgAAUEEAAHBBAAAAwQAAlsIAANBBAADwQQAAkEEAADDBAAAUQgAAoEIAABDCAAD4QQAA8MEAAMDAAABMwgAAoMAAALBBAAAwQQAA2EEAAJjBAAC4wQAATMIAALbCAACIQgAAaMIAAKDAAACAPwAA8MEAAJhBAABoQgAAcEEAALhCAAAQQgAAIEEAADhCAAAkQgAAiMEAACjCAAAQwgAAAEEAAMDBAACQwQAAGEIAAOhBAAB8wgAADMIAADDBAADAwQAAAMEAAIjBAAAAQAAAXMIAAJBBAACgwQAAmMEAABTCAABsQgAAHEIAAKBAAACoQgAAqEEAACDCAABwQQAAqMEgADgTQAlIdVABKo8CEAAagAIAACS-AAAsvgAAQLwAANi9AACovQAAij4AAKI-AAA7vwAAcD0AAIg9AABwPQAAiL0AAIi9AAB0PgAA6L0AADA9AACePgAAQLwAAIg9AAABPwAAfz8AAIi9AAAsPgAA2D0AAAS-AAAsPgAAEL0AACS-AABcPgAAuD0AAAw-AABUPgAAJL4AAJg9AAAcPgAA2L0AAMg9AADIPQAAfL4AALq-AAAcPgAAoLwAAEA8AABwvQAABL4AAEC8AADYPQAAhr4AAGy-AAC6vgAAmD0AAEA8AADiPgAARD4AAGS-AACgPAAASz8AABA9AADIvQAAND4AAKA8AABsPgAAQLwAAI6-IAA4E0AJSHxQASqPAhABGoACAAA8vgAAMD0AAFC9AABXvwAAuL0AANi9AAC6PgAAZL4AAAQ-AACoPQAAcD0AABA9AACovQAA-L0AAAw-AADgPAAAHL4AAOo-AABAvAAAmj4AADA9AADIvQAAoLwAAFC9AAAcvgAAXD4AAHy-AAAQPQAA-L0AALi9AACAuwAAHD4AAEA8AACGvgAAgDsAAMg9AAB0PgAAFD4AABy-AABMvgAABD4AACw-AABAPAAAQDwAABQ-AADYvQAAf78AABC9AACCPgAA4LwAACQ-AACAuwAAyD0AAEw-AADgvAAAFD4AAFC9AACivgAAQDwAAIi9AAAUPgAAuL0AAIi9AAAMPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Ym2zGYBg-DI","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16470296002887690627"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8890037435589146173":{"videoId":"8890037435589146173","docid":"34-2-1-Z6CB23577CBFC4031","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1997898/cc6794c240cfa2af75d421d336da709e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KQ_SwAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDwwTqcUUkWo","linkTemplate":"/video/preview/8890037435589146173?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Indefinite integral of sqrt(x)/1+x by substitution | integral sqrt(x)/1+x | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DwwTqcUUkWo\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTODg5MDAzNzQzNTU4OTE0NjE3M1oTODg5MDAzNzQzNTU4OTE0NjE3M2qIFxIBMBgAIkUaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqEMIPDxoPPxOpAYIEJAGABCsqiwEQARp4gfsPAgb9BAD4_v0A-QT_AfoD_wH5_f0A7gcHAAH_AADr7goABP8AAP4GBAoEAAAA9_3-9fr_AAADAwQC_AAAAAL19QD5AAAA-w_6__4BAADu_vT5AgAAAAf_-P7_AAAA9_wS_f8AAAABAgkAAAAAAPz9A_wAAAAAIAAtMsjcOzgTQAlITlACKoQCEAAa8AFs-PP-2w3fAOcK7QCrNfn_gSIK_v0x1QDGIw0BvPfKAAoq-gDk_toAGwghAckc2gAw2NP_A8sU_0jkCQAj1u8B7Pv9ACvp7gAjDQwAERHcAef6IfwI3Pz__Nb6AAIW6QP3_fz88vX2APQU2wEa-hAEDAgpAxIQDv8CqQEG1vnv_ePy8P4CD-0K8d__-sr-HQEL0RH-Ivv8_-ge6gL2-vf9GPspAfQR2___2wUKHvv1-PH4_gUSD_35M_oCBeQVDA7z9yQC3A3o_Orp_P00AwD81w_8APvpBQgUAhgDCfP5CQTu__XuAQH3zAUBAPkK9_IgAC3_IR07OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawO7Hfw708qF-9cL4HveCg_b0uDKY7BZEevBiYBT6AM-s7f7O9u9BHGb5vi-i8l6NPu49xFT7ALru6a2kJPYc0Kr6eaag9tnJlvEQYX77UZGc7pZ0_PPvM2T3PcI69PjwQvatNoj1U3B29CXYSvWGCYLtvFgo9GLptvNxqGTr1EVi9E3xYvVrfNj3p2528U5HKPOMgzD3gPvw8XpHrOs9Jnz2FmZG8LqqHu08kc7y4ghw9Wg2JvFKQqTy_dwA9IRutPEQgvb20YD29W9VHOWiAQb1rmbG8_pyju9_8xj3sG_M8h1k-vZGohru_RvK96SMVPCY19L1-Ay49q7oCPScXEz5P1XM9FamwPO-SWL2TyQ05CCp8uxV1BbyfxIy8MZQ4vCz-pTznQMU9qWisPKcqiD2_wpe72-Z8PDEtRb0kYLY79LCGPP4f8Tx8_mq9XBjOvCpxfT2nvj281X5GvB4lJb2_2UG82mvquwrq5bzXBEc9xSEXPGOfWzxM2Y66mBjmPAUjpT3WAju-SeWaOuC82L13YYC9Pn0CvC1LiTshHYE72Hh6vIvLnD2kF3q9X3hKvEUb9jxPtho7PSwvPFZrPLxSr7C9YscYO0lwWb10LsG7K5DRO2j27zyzKh29-jRdvCAfGT3YYZw9JKwVuynEqzsn66G9bAZ6O4a93LvMZJO8TVGqO5kP6D0MA5Y9_F1Vugfu4D163B679qUOulC1TLwOHty8Icgku8UTS734jcq9P-1HuW0D1z21o9i9DJ-vOYEKQj0P1RA8Yc0zuCeI-r3apwQ8dfB4uSMhsD0de7G9nUhmOMui8LxbQh6-NwXjOfltIz2yp7M9XnbgOdGcq7y5YUU9BdqhunfXHbz6H5q9RPFKOTvhFb5_vFc9jC8NOIMT0T0h8_W7MEsQOODYcz3vgnK9fdkkODoNxzxedAM8HaINubuPq7q1Bbo8Y_gFORGgUD26SZy9qLB5Oalm-zy0cYk9YM_ruABaEDvWl1s8a7wouITyADygeto8Tu9ptzm0mD2mj4q9zB3aN2UZoj3mu0q8RB5zOMrhA74Q1x48l_1ONyPRsLxyU8O84xA7uMLz2rtiTeW8HAXEt_0ZWT2n28g8O5DmN_cBKD5wYd298We_uffM0r3U0XG8B20NtrvtgryX5qG9-jj_tyBNq73ORIc9Zzw0OEn3jjytUMS9c5zyuCL_7D01KQU-835buO2WRjp16KQ9Cm7juEuRDL6X4po9rk2fOElep71GrKo9VDKIOCAAOBNACUhtUAEqcxAAGmAU_gAy9RDO2fsf5ALB-_r4-_zW-uEW_-3bAAAN79f6LsrB-hX_HM_s9boAAAAHEAonzwD0XvgP0h33EfwentgyFH__EibH0wLx3eIV-AfjEAwQ_DcA6hWsEiXa6E4CDQggAC2ndjw7OBNACUhvUAIqrwYQDBqgBgAAQEEAAEzCAABQQgAALMIAAIpCAACgwAAAxEIAADhCAAAAwgAAyMEAAADAAAAAwgAAgEEAAEBBAADAwAAA4EEAADBBAACgwAAA6EEAABBBAABwwQAAgEAAAJLCAAAYQgAAaMIAACDBAADAwAAAIMEAAMBBAAAAQQAAHMIAAIBAAAAYwgAAoMEAAKzCAAAYQgAAQEIAAI5CAACgwAAA6MEAAJBBAACgQAAA6EEAAHDBAACwQQAAlsIAANhBAABYQgAAEEIAAJhBAABAQQAACMIAABTCAACIwQAAMEEAABxCAADwwQAA0EEAAPBBAAAgQgAAZEIAAKLCAAAMwgAAfMIAAJjBAADqwgAA4MEAAHTCAADwQQAAuMEAAPBBAACIQQAAEMIAAGRCAABswgAARMIAAADCAABAQQAAaMIAAJhBAABQwQAAokIAAFDBAABAQAAA4MAAAEBCAAD4QQAAyEEAAEBCAACwwQAA-MEAAFBCAAAAwAAAGEIAAEDAAADQwQAAsEEAABDBAABkQgAA0EIAAIC_AAD4QQAABEIAANhBAABAwgAAisIAAOhBAABwQQAAAEAAALBCAAAYQgAAVEIAAIC_AAAQwQAAwMAAADhCAAAcQgAAbMIAAJDBAAAAwQAAQMAAAPLCAADAwQAAoMEAAPDBAAAwwgAA-MEAAADAAAAEwgAAIEIAAIC_AADowQAA2EEAABBCAAAUwgAAikIAAAhCAAAIQgAAAAAAAJjCAACAvwAAaEIAABBCAAAYwgAAJEIAAJ5CAACYwQAA2EEAAMjBAACAwAAAMMIAADDBAACYQQAAQEEAAGBBAADYwQAAwMEAADzCAACowgAAWEIAAFzCAACQwQAAEMEAAOjBAABwQQAAdEIAAAhCAACKQgAAEEIAAIBBAAAAQgAAGEIAADDBAAA0wgAAXMIAADDBAAAAAAAAIMEAANhBAABUQgAAmMIAADjCAAAAwgAAcMEAAIBAAAAAQAAA4MAAAEDCAAAAQQAAEMEAAFDBAADQwQAAGEIAAMBBAAAAAAAAmEIAAMhBAAAwwgAAQEAAANDBIAA4E0AJSHVQASqPAhAAGoACAABwvQAABL4AAKA8AACgPAAABL4AAI4-AABMPgAAFb8AANg9AABAvAAAcD0AAJi9AAAEPgAAED0AADS-AACgvAAAij4AAOA8AAAQvQAA9j4AAH8_AAC4PQAAED0AAFA9AAAEvgAAHD4AAIC7AABsvgAAiD0AAFA9AAD4PQAAQDwAAAy-AAA0PgAAMD0AAIi9AACoPQAAmL0AAIK-AACavgAAyD0AAAS-AAAwPQAAgDsAALg9AADoPQAAcD0AAGS-AACmvgAA0r4AAOC8AAAMPgAAzj4AAFQ-AACSvgAA4LwAAEU_AAAMvgAAML0AABQ-AACAuwAAUD0AANi9AADGviAAOBNACUh8UAEqjwIQARqAAgAAED0AABQ-AADYvQAAQ78AAK6-AABQPQAAGT8AAIi9AACIPQAAbD4AAOC8AAAwvQAAuL0AAMi9AABQPQAAMD0AAEy-AADWPgAAPL4AAK4-AABQvQAAbL4AABy-AACgPAAA6L0AADA9AACOvgAAoDwAAES-AABUvgAAiL0AAPg9AAC4vQAApr4AABS-AACIPQAAqj4AAAQ-AADYvQAAfL4AAOA8AABkPgAAUL0AAOC8AACqPgAAHL4AAH-_AACIvQAAjj4AAIC7AAB0PgAAPD4AABw-AAAUPgAALL4AABw-AAD4vQAAPL4AAOA8AACYPQAAij4AANg9AADgvAAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DwwTqcUUkWo","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8890037435589146173"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":false,"contentTypeId":null,"censored":false,"videoContentId":"3930109160"},"2912016515228587215":{"videoId":"2912016515228587215","docid":"34-11-9-ZCD7CC1795B004CD8","description":"advanced integration techniquesintegration by substitutionintegration by partsintegration by trigonometric substitutionintegration by partial fraction decomp...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/917757/9fde365bface55a912d4e7940ca7fb1b/564x318_1"},"target":"_self","position":"15","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dx-hqFheTyuw","linkTemplate":"/video/preview/2912016515228587215?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral e^x/x^2+1 dxdy | solving double integrals | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=x-hqFheTyuw\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTMjkxMjAxNjUxNTIyODU4NzIxNVoTMjkxMjAxNjUxNTIyODU4NzIxNWquDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxNeggQkAYAEKyqLARABGniB-w8CBv0EAAMD_f77A_8BBAAAAvj__gD1CwMG_QL_AOn5AwYI_wAA9Q4BCgIAAAD8Avn7_f4AABD7_vkDAAAAAvX1APkAAAAEDvwECgABAe7-APYCAAAAAvYFBgAAAAD3_BL9_wAAAAT7BAMAAAAAAvgFBwAAAAAgAC0yyNw7OBNACUhOUAIqcxAAGmApDQAcFfzX1gEB2ufpEfoMCOD14PUdAPDuABD0Ar0aMfPIAQb_Os30_8EAAADcGhgv-QD_UyUSxR4HFPoWsOEaDH8eCC766e3j_-8r9BXq9vwV7zAAwxPjDPza-kz4BR0gAC3J8Eo7OBNACUhvUAIqrwYQDBqgBgAAgD8AAMBAAABQQgAAmMIAAGBCAAAAwAAA2EIAAKBBAADowQAAwMEAAIDAAAAgwgAAPMIAABBBAAAAQQAAwEAAAERCAAAwwQAAjkIAANjBAAAwwgAAgMEAAHDCAAC4QQAAXMIAACDBAACAQQAAkMEAAKDAAACAPwAAGMIAAABBAAB0wgAAQEEAAKjCAAAQQQAAoEEAAJpCAABgQQAA4EAAAIBBAAAAwQAAHEIAALDBAAAAQgAAnsIAADBBAAB4QgAAoEEAAEBBAABAwAAAgMEAADzCAABAQAAAoEEAAABBAAA8wgAAiEEAALBBAAAsQgAAkEIAAJrCAADgwQAAcMIAABBBAAC2wgAASMIAAGDCAAAgwQAA4MEAAEBCAABcQgAAWMIAAHxCAACcwgAA6MEAAODBAACgwQAA4MEAAIBBAAAAwQAAukIAAIC_AACAQQAAIEEAAEhCAADIQQAAyEEAAChCAAAMwgAAJMIAALJCAACwwQAAGEIAAMBAAACGwgAAgD8AAKjBAACuQgAAjEIAAKDAAAAQQQAAgEAAAFDBAACqwgAAgMAAAKhBAAAAQAAAgEAAAJBCAAAAQAAA2EEAAMDAAAAUwgAAQMAAAJZCAABAQQAAHMIAAMDBAACAPwAABMIAALTCAADAQAAAoMEAAEDCAAAAwgAAYMEAAFDBAACAwAAA4EAAALDBAAAIwgAAEEIAACxCAAC4wQAAlkIAANBBAABUQgAAMMEAAJDCAADYQQAA6EEAAPBBAADAwQAAIEIAAHhCAAC4wQAABEIAAGDBAACoQQAA2MEAAKBAAACYQQAAgMAAAFBBAADIwQAAAMIAAITCAACSwgAATEIAAEzCAACQQQAAgD8AAADCAAAAQQAAGEIAAAAAAADCQgAAbEIAAFDBAAAUQgAAfEIAAIjBAACQwQAAHMIAAADBAAAAQQAA8MEAAIhBAAA0QgAApsIAAOjBAABQwQAAgL8AAEDBAAAgwQAAwMEAAFzCAAAgQQAA6MEAAKDAAAAgwgAACEIAAEBAAAAQQQAAukIAAMhBAAAAAAAAUEEAAFDBIAA4E0AJSHVQASqPAhAAGoACAAAwPQAAFL4AAPg9AABwvQAANL4AAFw-AAA8PgAAJ78AAKg9AAAcPgAAED0AAIC7AACgvAAAcD0AAGS-AACYPQAAkj4AAEC8AACoPQAA4j4AAH8_AACgvAAAFD4AAHw-AACAOwAATD4AAHC9AAC4vQAAFD4AAOA8AACgPAAAuj4AABy-AAAcPgAAJD4AAFC9AACIPQAA4LwAAIK-AADuvgAADD4AAIA7AACAOwAAuL0AAGy-AAAsvgAA2L0AAOi9AAA0vgAAir4AADw-AABEPgAAtj4AAIY-AACKvgAAUL0AAEE_AACYPQAAML0AAIg9AADgPAAAiD0AAEA8AAAUviAAOBNACUh8UAEqjwIQARqAAgAAJL4AAFC9AACIPQAAWb8AAOC8AAA0vgAAdD4AAES-AADYPQAAPD4AAJg9AAAwPQAAoDwAACy-AADgPAAAMD0AABS-AAALPwAA4DwAAFw-AADgvAAAcL0AAOA8AADgvAAAuL0AAGw-AABUvgAA4DwAAHC9AAAwvQAAEL0AADw-AABQPQAAkr4AAFC9AACYPQAARD4AABQ-AAAEvgAADL4AAAw-AAAEPgAA2L0AABC9AAAEPgAAVL4AAH-_AAAwPQAAfD4AAOC8AAA8PgAAqL0AAFQ-AAD4PQAAML0AAKg9AAAQvQAAlr4AAPi9AAAcvgAA6D0AAAy-AAD4vQAA6D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=x-hqFheTyuw","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2912016515228587215"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7052760317832273570":{"videoId":"7052760317832273570","docid":"34-7-12-Z157124792C9A985C","description":"advanced integration techniquesintegration by substitutionintegration by partsintegration by trigonometric substitutionintegration by partial fraction decomp...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/930478/2c906793b5a24fbbff97190e89501a5f/564x318_1"},"target":"_self","position":"16","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSDHJ30Nzhn4","linkTemplate":"/video/preview/7052760317832273570?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"double integral xy*sin(x^2)/cos(y) from (sqrt(pi/2),0) to (sqrt(y), pi) | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SDHJ30Nzhn4\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTNzA1Mjc2MDMxNzgzMjI3MzU3MFoTNzA1Mjc2MDMxNzgzMjI3MzU3MGqvDRIBMBgAIkUaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqEMIPDxoPPxODAYIEJAGABCsqiwEQARp4gfcMB_z-AwAA-wUJ-Aj8Agz--wj3__8A8QEC_P4BAAD49gQADAAAAPoL-wMCAAAAAwD0AP3-AQAG-wL2-QAAAAPy_vX5AAAA_wjx_f8BAAD1_P7uAQAAAAf_-P7_AAAA-QYBBgQBAAAFB_7-AAAAAP0GBQ3_AAAAIAAtxELYOzgTQAlITlACKnMQABpgHwsAGQQG4sEGAeL1_QXu9wHy-9PdDAD68QAW8gXJDRvxzgMA_yLi-fXIAAAA7woZJ_gA7koNBckWAxLtIbP1HBt_EQom-Ojn4P3vEOkc8Qj5CuQsANgN3wQL6AM6-ycrIAAteFtjOzgTQAlIb1ACKq8GEAwaoAYAAABAAABgwQAAdEIAAIrCAADKQgAAgEAAALJCAADoQQAAHMIAAEDCAADAwQAAJMIAALjBAADgQAAAoMAAAIBAAADQQQAA4EAAANhBAABQwQAAEMEAAMBAAABcwgAAiEEAAHzCAACIwQAACMIAAETCAACQQQAAgMEAACTCAACgQQAAGMIAAIC_AAB4wgAAYEEAACRCAACIQgAAEEEAAMBAAAAAQgAAEMEAADBCAADQwQAAZEIAAI7CAABAQQAAdEIAAMhBAACwQQAAYMEAAJDBAADYwQAAQMAAABRCAAAAQAAARMIAAABCAADoQQAAyEEAAKJCAACWwgAAEMIAAJ7CAAAAQQAA3MIAAEDBAABowgAAcEEAAFDBAABMQgAAUEEAAFDCAABsQgAAKMIAACjCAADYwQAAkMEAABzCAACgQQAAMEEAAHhCAAAcwgAAUMEAAKDBAAAAQgAACEIAABBCAAAEQgAAFMIAAIA_AACiQgAA6MEAABBCAACQwQAAQMIAANBBAACgwQAAmkIAAHBCAABAQAAAFEIAACBCAACYQQAASMIAAITCAABgQQAAEEEAAEDAAACkQgAAmEEAACBCAACQQQAA6MEAAIDBAABEQgAAGEIAAOjBAACgwQAAMMEAABDBAAC-wgAAYMEAAEDBAACwwQAAsMEAANDBAAAAwAAAUMEAAIC_AACAvwAA8MEAANhBAAA4QgAAqMEAAJhCAADIQQAAgD8AAGDBAACywgAAYEEAAChCAABQQQAAQMEAAPBBAACKQgAADMIAAKhBAACowQAAcEEAABjCAACAPwAAMEIAABBBAACwQQAAEMEAAODBAAA0wgAA0sIAAJJCAABkwgAAiMEAAFBBAADIwQAAUMEAAERCAACgQQAAtEIAAARCAAAAwAAATEIAABRCAAAAwAAAPMIAAADCAACgwAAAIMEAABDBAAD4QQAAEEIAAFjCAABMwgAAQMEAAADCAADAwAAAmMEAALDBAABYwgAAcEEAABDBAAC4wQAA8MEAAFhCAAAsQgAAIEEAAMZCAACAQAAANMIAAKDBAABYwiAAOBNACUh1UAEqjwIQABqAAgAAEL0AAKC8AABUPgAA4LwAAEA8AAAcPgAAJD4AAAe_AAAUPgAAMD0AAOA8AAD4vQAAQLwAAHw-AADIvQAAoDwAAEw-AACYPQAAqD0AAMo-AAB_PwAAmD0AAKi9AACGPgAAfL4AAIg9AABQPQAAVL4AAGQ-AAAcPgAA4LwAANg9AADIvQAAgDsAAIA7AACgvAAA4DwAABC9AABsvgAAlr4AAIC7AACIvQAA4LwAADA9AADIvQAABL4AALg9AACIvQAAHL4AACS-AABsPgAATD4AAK4-AABEPgAAjr4AAKC8AAAvPwAA2D0AAHC9AAC4PQAAUL0AALg9AADgPAAAPL4gADgTQAlIfFABKo8CEAEagAIAABS-AACIvQAAUD0AAFG_AAAQvQAAML0AAFQ-AAAMvgAAED0AANg9AAAQvQAAUL0AAIi9AADIvQAA2D0AAOA8AACIvQAABz8AAIi9AABsPgAAML0AAKi9AACgvAAAUL0AALi9AAB8PgAAPL4AAKC8AABQvQAAMD0AABC9AAAkPgAAoLwAAIK-AABQvQAAND4AAGQ-AABQPQAA-L0AABy-AADgPAAAcD0AADC9AAC4PQAAgLsAAMi9AAB_vwAAoLwAANg9AAAwPQAAqD0AAKi9AAAMPgAAHD4AAKi9AACYPQAAgDsAAFS-AACAOwAAEL0AABw-AAAEvgAAcL0AAOg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=SDHJ30Nzhn4","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7052760317832273570"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"6330795264661064053":{"videoId":"6330795264661064053","docid":"34-0-13-Z439D7418E9818DBE","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3472629/084dbf2482feeee471995336e4bded28/564x318_1"},"target":"_self","position":"17","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DGJIPur55Lv8","linkTemplate":"/video/preview/6330795264661064053?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MIT Integration Bee 2013 Problem #19 | qualifying round 2013 | Problem 19 | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=GJIPur55Lv8\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTNjMzMDc5NTI2NDY2MTA2NDA1M1oTNjMzMDc5NTI2NDY2MTA2NDA1M2quDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxNJggQkAYAEKyqLARABGniBBQoBAPwEAPb1-wL6BP8BBgb4APf__wD2_wkABgL_APTu__UB_wAA9AP7BgEAAADzA_4B-gAAAA79_gMEAAAAB_EBBAEAAAAGBAAD9_v-A-_7DfoCAAAAG_H4A_8AAAD5_QoFAQAAAAABAQMBAAAACP4EBgAAAAAgAC3FJN87OBNACUhOUAIqcxAAGmD6BQAp_fjcxf8O6P3__QMQ7gj75-ULAAjuABYhDd4VLdrMEQD_KOD3A8YAAAAAIQck1wDzR__-vw7-FOUD5gEdG38ACAbk8-3069D-3yXVDg8vGSsA4R37_Tf64TUNABUgAC1sA2M7OBNACUhvUAIqrwYQDBqgBgAAoEAAAMjBAABYQgAAfMIAALZCAACAwQAAxkIAAFRCAADowQAAmMEAAABAAAAMwgAAQMAAACBBAADAQAAALEIAABBBAACQwQAAHEIAAJDBAACwwQAAEEEAAHTCAABgQQAAJMIAADDBAADgwAAAXMIAALBBAABAwAAA4MEAAJBBAAAUwgAAAMAAAEjCAACQQQAAYEEAAK5CAACAQAAAMMEAAFhCAAAAQQAAeEIAABTCAABUQgAAysIAAEBBAAAwQQAAWEIAAAAAAABAQAAAAMAAAEDBAABAwQAAOEIAANBBAACSwgAAIEIAAABBAAAoQgAAnEIAAJTCAABwwQAAeMIAAEBBAADgwgAAQMIAALTCAABQQQAAAMIAAEhCAAB8QgAAYMIAAFhCAAAcwgAATMIAAJjBAACgwAAAoMEAAAxCAACAwAAAiEIAAKDAAAAAQQAAAAAAABxCAADoQQAAYEIAAJBCAACIwgAAuMEAAIBCAADQwQAAMEEAAODAAABswgAAAAAAAIBAAACKQgAAREIAAEDBAAB8QgAAgD8AAKhBAABEwgAASMIAAMDBAACAQAAAcMEAAIZCAAAQQgAADEIAABDBAADIwQAAAMEAAHhCAAC4QQAACMIAACTCAACAwAAAIMIAANLCAADgwQAAAEAAAEDBAABwwQAAqMEAAFDBAABYwgAAgL8AAMjBAADYwQAAoEEAADRCAAAIwgAAkEIAABhCAABgwQAAIMEAAKDCAABwQQAAyEEAALBBAADwwQAACEIAABxCAAAgwgAAgEEAAMDAAAAAAAAAUMEAAODAAACoQQAAkEEAALhBAADQwQAAmMEAAJjCAACwwgAAdEIAACjCAABwwQAAwMAAAPjBAADwwQAATEIAAHDBAACGQgAAuEEAAABBAACgQQAA8EEAAODBAAAgwgAASMIAAAxCAACQwQAACMIAADBCAAAAQAAAjMIAAMDBAACAwQAAkMEAALBBAADYwQAA-MEAABTCAABgwQAAgL8AAIjBAABAwgAAQEIAADBBAACIQQAAiEIAAAAAAADIwQAAmMEAAKDBIAA4E0AJSHVQASqPAhAAGoACAACAuwAAFL4AABw-AABQPQAA-L0AAEw-AABAPAAAA78AAIi9AADYvQAA4LwAAEC8AADYPQAAnj4AAIi9AABAvAAAZD4AAOC8AACAOwAAsj4AAH8_AADgvAAAjj4AAJg9AAAUvgAAyD0AAHC9AAAsvgAADD4AADA9AAC4PQAAHD4AAKi9AAC4PQAAqD0AAHC9AACYvQAAHL4AAKK-AAA8vgAAUL0AAKA8AAAEPgAA4LwAACS-AADYvQAAHD4AAES-AACCvgAAmr4AAIi9AADIPQAAbD4AAEw-AACCvgAAQLwAABk_AAAEPgAAML0AABQ-AADgPAAAyD0AAHA9AACSviAAOBNACUh8UAEqjwIQARqAAgAA6L0AACy-AAA0vgAAVb8AABC9AACIPQAAuj4AALi9AAAQPQAAZD4AACQ-AABwPQAAFL4AAJi9AABMPgAAQLwAAMg9AADqPgAAML0AAAE_AACSvgAAoDwAABC9AACgvAAAML0AALg9AAC4PQAAEL0AAIA7AACgvAAAMD0AAKg9AAD4vQAAHL4AAKg9AADYPQAAoLwAAJ4-AABMvgAAgDsAAAw-AAAkPgAAQLwAADA9AACovQAAcL0AAH-_AACIPQAAJD4AAKi9AAAQvQAA-L0AAHA9AACoPQAAmD0AAPg9AAAwPQAALL4AABC9AAA8vgAA4DwAAKi9AAAQvQAAND4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=GJIPur55Lv8","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6330795264661064053"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7046008725598194132":{"videoId":"7046008725598194132","docid":"34-2-0-Z1EBFDED7393FB4CA","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1593087/e0f51a7b1d617445b7cecafd4f2949b5/564x318_1"},"target":"_self","position":"18","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DSfB8lRhQdWQ","linkTemplate":"/video/preview/7046008725598194132?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MIT Integration Bee 2014 Problem #2 | qualifying round 2014 | Problem 2 | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=SfB8lRhQdWQ\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTNzA0NjAwODcyNTU5ODE5NDEzMloTNzA0NjAwODcyNTU5ODE5NDEzMmquDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxNYggQkAYAEKyqLARABGniBAgr6BvwFAAMD_f77A_8BBgb4APf__wDt_QEECQAAAPL1_wECAAAA9Q4BCQIAAAD9-PgC-_4AAAoFAAgEAAAABuwE-f4BAAAGBAAD9_v-A-_7DfoCAAAAG_L4A_8AAADx_An8_gAAAAECCQAAAAAABgIBAAAAAAAgAC3BWuA7OBNACUhOUAIqcxAAGmAGCwApA_TVyfUG4gIA9wEM9fkD2ugGAALrABYiDtQQK9zMBvf_IefuBckAAAD1FwYn5wD-Rg_0wQ7-HNMM1_kgFn8SCBnZ8-T58d4L6SfZ_wwcDzIA6Rb9_yf67jgIAhYgAC3m4GY7OBNACUhvUAIqrwYQDBqgBgAAwEAAAABBAADYQQAANMIAAMRCAACAPwAAjEIAAKBAAAAwwgAACMIAACDBAACGwgAADMIAAIjBAAAAQgAAQEEAAODAAAAAAAAAuEEAAPjBAADgwQAAAEAAANjBAACwQQAAJMIAAADAAAA8wgAAYMIAAABCAACgQQAA6MEAABxCAACYwQAAkEEAAJrCAADgQAAABEIAAMpCAAAwQQAAAEAAAFxCAAAQQQAAgkIAABDBAAAAQgAAhsIAAKBAAABAQAAAfEIAAJhBAAAAwAAAQMAAAABBAADAwQAAfEIAACBBAACmwgAAQEIAAIA_AADgQAAAgkIAAHzCAAAAQQAAtsIAAFBBAAC-wgAAAMIAAJDCAADYQQAA0MEAAHRCAAB8QgAAFMIAAABCAABQwQAAmsIAAPDBAAAAAAAAcMEAABBCAAAgwQAA-EEAAJjBAACAQQAA4EAAADBCAABEQgAAdEIAAERCAACowgAA4MAAAKJCAACIwQAAIMEAAIDBAABQwgAAKEIAAIDBAABgQgAA8EEAAKDBAACmQgAA-EEAAODAAAAcwgAAHMIAADzCAADgQQAAVMIAAIhCAAAwQQAAUEEAAEBBAAAcwgAAgD8AAFBBAACAPwAANMIAAEBAAACAPwAA0MEAAMbCAAAowgAAQMEAAHDBAABAwAAAyMEAAEDBAAA8wgAAyMEAAEDAAAAcwgAAwEAAAERCAAAQwQAAaEIAAExCAABgwQAA4EAAALTCAADAwAAATEIAAGRCAACIwQAAqEEAAPhBAABgwgAABEIAAAAAAACAQQAAqMEAAAAAAADwQQAAwEAAACDBAADgwAAAAAAAAKjCAACmwgAAfEIAAGTCAABQwgAA4MEAAGDBAAA0wgAAHEIAAAAAAACwQgAAiEEAAKhBAABgQQAAEEIAALjBAADwwQAAFMIAAGBBAACgQAAAQMAAABhCAADYQQAA-MEAAHDCAAAIwgAABMIAAIhBAACowQAALMIAAIA_AACAPwAAsMEAAEDCAABswgAAUEIAAKhBAADAQQAAokIAAJDBAAA8wgAAHMIAACDCIAA4E0AJSHVQASqPAhAAGoACAAC4vQAAFL4AAEC8AADYPQAABL4AAFw-AACgPAAAH78AAOC8AABwPQAAQDwAAFC9AACoPQAARD4AAFS-AABMvgAAND4AAEA8AACoPQAACT8AAH8_AAAQvQAAiD0AACw-AAD4vQAAmD0AAIA7AAAsvgAADD4AALg9AADYPQAARD4AAHS-AABQPQAAcL0AAAS-AABwPQAAgDsAAK6-AAB0vgAAFL4AAJg9AADYPQAAoDwAADy-AAAUvgAAbD4AAGS-AABEvgAAyL0AAFC9AACAOwAAjj4AAMY-AABEvgAAgLsAACk_AABcPgAAHL4AAIY-AADIPQAAqD0AAIg9AACSviAAOBNACUh8UAEqjwIQARqAAgAAUL0AAOC8AACKvgAATb8AAMi9AABQvQAAlj4AAAy-AACYPQAAPD4AAFQ-AAAQPQAABL4AAAS-AABMPgAAEL0AAEC8AADqPgAAyL0AANI-AAAcvgAA2L0AAHA9AADYvQAAcL0AADQ-AACAuwAAED0AABA9AABwvQAAED0AAHA9AAAcvgAANL4AAOC8AAAMPgAAUL0AAL4-AAAMvgAA6L0AAJY-AACYPQAAoDwAABA9AABAvAAAUD0AAH-_AABAvAAAFD4AAFC9AABAvAAADL4AAIC7AAAQPQAAMD0AAOg9AACAOwAADL4AAFC9AAAsvgAAQDwAALi9AABwvQAABD4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=SfB8lRhQdWQ","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7046008725598194132"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1608191284786584537":{"videoId":"1608191284786584537","docid":"34-7-3-ZAA2C12FC43A645C3","description":"euler newton...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2846795/e436be991132573ef2a12b03fbeff1b5/564x318_1"},"target":"_self","position":"19","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DssSDJiKzS7w","linkTemplate":"/video/preview/1608191284786584537?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"MIT Integration Bee 2014 Problem #6 | qualifying round 2014 | Problem 6 | silent integrals","related_orig_text":"Silent Integrals","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Silent Integrals\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ssSDJiKzS7w\",\"src\":\"serp\",\"rvb\":\"EqwDChM5NDI2OTUxOTM5MzQzMjczMTgyChQxMjkwMzg5Mzg0MzgxNjEwNDU2MQoTNDI2MTg3OTMxMjMyMjI1OTE1OQoTMzAzNTA3NDQ2NDA0NzQ3MjM4MAoUMTcwNjM4NTIxNzA4NDA4NjAwMDUKFDE4MTc4MzM4Nzc1MTczMDQwNTczChQxMTk1NzQwNTUzNTc3ODY2Mzg0OQoTNTY5NjY1ODA0NjkwMzgxNzg5NgoTOTk4MTQxNzY1NjEwOTUwMDEyNQoTMTQyMjMwODAzNjA2MjQ3MjM3MAoUMTM1NjQ4Njk5MTE0MjkxMjcyOTkKFDE2NDcwMjk2MDAyODg3NjkwNjI3ChM4ODkwMDM3NDM1NTg5MTQ2MTczChMyOTEyMDE2NTE1MjI4NTg3MjE1ChM3MDUyNzYwMzE3ODMyMjczNTcwChM2MzMwNzk1MjY0NjYxMDY0MDUzChM3MDQ2MDA4NzI1NTk4MTk0MTMyChMxNjA4MTkxMjg0Nzg2NTg0NTM3ChQxODQzMzU1NzI1Njc4MDA3MDczNwoUMTI2NzA2MDc5NDE5ODEyMjc4NjIaFQoTMTYwODE5MTI4NDc4NjU4NDUzN1oTMTYwODE5MTI4NDc4NjU4NDUzN2quDRIBMBgAIkQaMQAKKmhoZnNibmRia3JndG1kY2NoaFVDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdxICABIqD8IPDxoPPxNqggQkAYAEKyqLARABGniBAgr6BvwFAP0CBQL6Bf4BDAX_AvcAAAD2_wkABgL_APL1_wECAAAA9Q4BCQIAAAD-_v7_-P4AAAj_BAQEAAAABuwE-f4BAAAGBAAD9_v-A_LuCf0CAAAAEfUCAQAAAADy_wgF-_8AAAMDCvgAAAAABf0C-QAAAAAgAC3BWuA7OBNACUhOUAIqcxAAGmABCgArAfnTxPUH5QT8-wIR9Pz-2-QO_wftABAkB9oLLtjHCgL_JuTxBcUAAADzIP4p0wADSwv5ugX8HdkB4_soD38MBQjL8-D17-P_6CjWBBEpGTQA4Rr6_Cv46TcIABIgAC26Wlw7OBNACUhvUAIqrwYQDBqgBgAAoEAAAHBBAAAQQgAAuMEAAMxCAABQwQAAjEIAAIhBAACAwgAAKMIAAIA_AACIwgAA6MEAAMDAAAAkQgAAmEEAAMBAAADAwAAAAEIAAOjBAADAwQAAMEEAAIjBAAAAAAAADMIAAHDBAAAEwgAAfMIAADBCAABQQQAA-MEAAGRCAAAQwQAAcEEAAETCAACIQQAA2EEAALpCAAD4QQAAgL8AAGRCAAAQQQAAREIAAPjBAADwQQAAgMIAACDBAADYwQAAcEIAAHBBAAAQwQAAQEAAAIjBAADgwQAATEIAAGBBAACuwgAAMEIAAEBAAABAQQAAdEIAADjCAADgQAAAlsIAAJBBAADewgAAgMEAAJbCAABQQQAAgMEAAJRCAACYQgAADMIAAKBBAABAQQAAlMIAABjCAABAQQAAcMEAAPhBAAAAQAAA2EEAAPjBAADIQQAAMEEAADBCAAAMQgAArEIAAGBCAAC0wgAAgL8AAJBCAAAQwgAAwEAAAKDAAABMwgAAMEEAAEDBAAAUQgAAgL8AAOjBAACcQgAA4EEAABBBAADgwQAA2MEAADTCAAC4QQAAisIAAERCAAAgQQAAgD8AAMBAAAD4wQAAYMEAAPhBAACgwAAA-MEAAADAAACAwAAASMIAAL7CAAAswgAAyMEAAGDBAAAgQQAADMIAADDBAABMwgAAKMIAAODAAACYwQAAgL8AAHRCAABAQAAApEIAAGBCAADwwQAAcEEAAMbCAAAwwQAAsEEAAARCAABwwQAAHEIAALBBAACOwgAAPEIAAEDAAACoQQAAUMEAAKDAAAD4QQAAAMAAAIA_AACgQAAAwEAAAJ7CAACEwgAALEIAAGDCAABgwgAAMMIAAEDBAABIwgAAEEIAAJjBAABkQgAAoEEAAABAAABAQQAAJEIAAHDBAADQwQAAQMIAAPhBAABwwQAAmMEAABhCAABAQQAAoMEAAGDCAADAwQAAFMIAAOhBAAAgwQAAQMIAAIBAAAAgwQAAkEEAADzCAAA0wgAAlkIAAMhBAAAAQQAArEIAALDBAAAYwgAAZMIAABzCIAA4E0AJSHVQASqPAhAAGoACAABwvQAAFL4AAOA8AAC4PQAABL4AAOg9AABAvAAAB78AAHA9AADgvAAAgDsAADC9AAAEPgAAND4AADS-AAAUvgAALD4AAIA7AADgPAAA7j4AAH8_AABAvAAAND4AAAQ-AAAMvgAAQLwAAKg9AAA8vgAAmD0AAIC7AACoPQAAXD4AAIa-AADYPQAAFL4AABS-AACIPQAAmL0AANa-AACCvgAAfL4AADC9AABQPQAAqD0AAMi9AADIvQAAVD4AAIq-AABcvgAABL4AABS-AACYPQAAfD4AAKI-AACevgAAEL0AACk_AABEPgAADL4AAI4-AADIPQAAcD0AAKC8AACqviAAOBNACUh8UAEqjwIQARqAAgAAqD0AAMi9AACKvgAAQ78AAKi9AACAOwAAdD4AAJi9AACgvAAALD4AAAQ-AADgvAAAyL0AAFy-AABkPgAAML0AAIA7AAD2PgAAmL0AAOY-AABMvgAAuL0AAKA8AADovQAAgDsAAOg9AAAQPQAAEL0AAEA8AACIvQAAoDwAABA9AADIvQAAHL4AABC9AADIPQAAFL4AAKY-AAAkvgAAcL0AAHQ-AAAUPgAAcD0AAOC8AAD4vQAA4DwAAH-_AABQvQAA-D0AAPi9AADYvQAANL4AABC9AABAPAAAcD0AAJg9AACgPAAAmL0AACS-AADYvQAAUL0AAJi9AAAwvQAA2D0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ssSDJiKzS7w","parent-reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1608191284786584537"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"9426951939343273182":{"videoId":"9426951939343273182","title":"double \u0007[integral\u0007] cos(y)/x^2+1 from (0,0) to (1, pi durch 2) | \u0007[silent\u0007] \u0007[integrals\u0007]","cleanTitle":"double integral cos(y)/x^2+1 from (0,0) to (1, pi durch 2) | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IATPgGBPTnM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IATPgGBPTnM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":70,"text":"1:10","a11yText":"Süre 1 dakika 10 saniye","shortText":"1 dk."},"date":"4 mayıs 2022","modifyTime":1651622400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IATPgGBPTnM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IATPgGBPTnM","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":70},"parentClipId":"9426951939343273182","href":"/preview/9426951939343273182?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/9426951939343273182?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12903893843816104561":{"videoId":"12903893843816104561","title":"double \u0007[integral\u0007] sin(y-x) from (0,0) to (y, pi) | double \u0007[integrals\u0007] | \u0007[silent\u0007] \u0007[integrals\u0007]","cleanTitle":"double integral sin(y-x) from (0,0) to (y, pi) | double integrals | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=V88IJGMUyiU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/V88IJGMUyiU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":120,"text":"2:00","a11yText":"Süre 2 dakika","shortText":"2 dk."},"date":"21 mar 2022","modifyTime":1647820800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/V88IJGMUyiU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=V88IJGMUyiU","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":120},"parentClipId":"12903893843816104561","href":"/preview/12903893843816104561?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/12903893843816104561?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4261879312322259159":{"videoId":"4261879312322259159","title":"double \u0007[integral\u0007] e^y/x^2+1 from (0,0) to (infinity, 1) | double \u0007[integral\u0007] | \u0007[silent\u0007] \u0007[integ...","cleanTitle":"double integral e^y/x^2+1 from (0,0) to (infinity, 1) | double integral | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=1AdRhx11O_g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/1AdRhx11O_g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":104,"text":"1:44","a11yText":"Süre 1 dakika 44 saniye","shortText":"1 dk."},"date":"9 nis 2022","modifyTime":1649462400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/1AdRhx11O_g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=1AdRhx11O_g","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":104},"parentClipId":"4261879312322259159","href":"/preview/4261879312322259159?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/4261879312322259159?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3035074464047472380":{"videoId":"3035074464047472380","title":"indefinite \u0007[integral\u0007] 1/sinh(x)+cosh(x) by hyperbolic identity | \u0007[integration\u0007] | \u0007[silent\u0007] \u0007[in...","cleanTitle":"indefinite integral 1/sinh(x)+cosh(x) by hyperbolic identity | integration | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Bfe5qiG2Iro","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Bfe5qiG2Iro?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":74,"text":"1:14","a11yText":"Süre 1 dakika 14 saniye","shortText":"1 dk."},"views":{"text":"2,3bin","a11yText":"2,3 bin izleme"},"date":"10 oca 2022","modifyTime":1641772800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Bfe5qiG2Iro?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Bfe5qiG2Iro","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":74},"parentClipId":"3035074464047472380","href":"/preview/3035074464047472380?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/3035074464047472380?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17063852170840860005":{"videoId":"17063852170840860005","title":"double \u0007[integral\u0007] x^3*sin(y) dxdy from (0,0) to (pi,2) | calculate double \u0007[integrals\u0007] | \u0007[silent...","cleanTitle":"double integral x^3*sin(y) dxdy from (0,0) to (pi,2) | calculate double integrals | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MRFgGqTK4Qc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MRFgGqTK4Qc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":105,"text":"1:45","a11yText":"Süre 1 dakika 45 saniye","shortText":"1 dk."},"date":"19 eki 2022","modifyTime":1666137600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MRFgGqTK4Qc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MRFgGqTK4Qc","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":105},"parentClipId":"17063852170840860005","href":"/preview/17063852170840860005?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/17063852170840860005?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18178338775173040573":{"videoId":"18178338775173040573","title":"Indefinite \u0007[integral\u0007] of x*sin(x) by parts | \u0007[integration\u0007] by parts | \u0007[integration\u0007] | \u0007[silent...","cleanTitle":"Indefinite integral of x*sin(x) by parts | integration by parts | integration | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=oA0oIV8EsiQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/oA0oIV8EsiQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":86,"text":"1:26","a11yText":"Süre 1 dakika 26 saniye","shortText":"1 dk."},"date":"30 eki 2022","modifyTime":1667088000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/oA0oIV8EsiQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=oA0oIV8EsiQ","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":86},"parentClipId":"18178338775173040573","href":"/preview/18178338775173040573?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/18178338775173040573?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11957405535778663849":{"videoId":"11957405535778663849","title":"Definite \u0007[Integral\u0007] of ln(x)/x from 1 to e | \u0007[integration\u0007] by substitution | \u0007[silent\u0007] \u0007[integr...","cleanTitle":"Definite Integral of ln(x)/x from 1 to e | integration by substitution | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=lRGgiYT6iec","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/lRGgiYT6iec?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":91,"text":"1:31","a11yText":"Süre 1 dakika 31 saniye","shortText":"1 dk."},"date":"29 kas 2021","modifyTime":1638144000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/lRGgiYT6iec?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=lRGgiYT6iec","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":91},"parentClipId":"11957405535778663849","href":"/preview/11957405535778663849?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/11957405535778663849?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5696658046903817896":{"videoId":"5696658046903817896","title":"double \u0007[integral\u0007] x/y dxdy from (1,) to (2, e) | double \u0007[integrals\u0007] | \u0007[silent\u0007] \u0007[integrals\u0007]","cleanTitle":"double integral x/y dxdy from (1,) to (2, e) | double integrals | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=-4dtzPdauOU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/-4dtzPdauOU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":88,"text":"1:28","a11yText":"Süre 1 dakika 28 saniye","shortText":"1 dk."},"date":"19 oca 2022","modifyTime":1642550400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/-4dtzPdauOU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=-4dtzPdauOU","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":88},"parentClipId":"5696658046903817896","href":"/preview/5696658046903817896?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/5696658046903817896?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9981417656109500125":{"videoId":"9981417656109500125","title":"double \u0007[integral\u0007] cos(x) sin(y) from (0,0) to (pi, pi) | solving double \u0007[integrals\u0007] | \u0007[silent\u0007]...","cleanTitle":"double integral cos(x) sin(y) from (0,0) to (pi, pi) | solving double integrals | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=y_6aZuQ1LoY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/y_6aZuQ1LoY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":56,"text":"00:56","a11yText":"Süre 56 saniye","shortText":""},"date":"24 şub 2022","modifyTime":1645660800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/y_6aZuQ1LoY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=y_6aZuQ1LoY","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":56},"parentClipId":"9981417656109500125","href":"/preview/9981417656109500125?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/9981417656109500125?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1422308036062472370":{"videoId":"1422308036062472370","title":"double \u0007[integral\u0007] xy*sin(x^2y) from (0,0) to (1, pi) | \u0007[silent\u0007] \u0007[integrals\u0007]","cleanTitle":"double integral xy*sin(x^2y) from (0,0) to (1, pi) | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=6ORYDRtCmps","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/6ORYDRtCmps?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":118,"text":"1:58","a11yText":"Süre 1 dakika 58 saniye","shortText":"1 dk."},"date":"12 nis 2022","modifyTime":1649721600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/6ORYDRtCmps?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=6ORYDRtCmps","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":118},"parentClipId":"1422308036062472370","href":"/preview/1422308036062472370?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/1422308036062472370?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13564869911429127299":{"videoId":"13564869911429127299","title":"indefinite \u0007[integrals\u0007] sin(x) cos(cos(x)) sin(cos(x)) by substitution | \u0007[silent\u0007] \u0007[integrals\u0007]","cleanTitle":"indefinite integrals sin(x) cos(cos(x)) sin(cos(x)) by substitution | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=pKuDC1VBGww","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/pKuDC1VBGww?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":78,"text":"1:18","a11yText":"Süre 1 dakika 18 saniye","shortText":"1 dk."},"date":"15 şub 2022","modifyTime":1644883200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/pKuDC1VBGww?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=pKuDC1VBGww","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":78},"parentClipId":"13564869911429127299","href":"/preview/13564869911429127299?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/13564869911429127299?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16470296002887690627":{"videoId":"16470296002887690627","title":"double \u0007[integral\u0007] e^y/sqrt(1-x^2) from (0,0) to (1, ln(2)) | double \u0007[integrals\u0007] | \u0007[silent\u0007] \u0007[i...","cleanTitle":"double integral e^y/sqrt(1-x^2) from (0,0) to (1, ln(2)) | double integrals | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Ym2zGYBg-DI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ym2zGYBg-DI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":88,"text":"1:28","a11yText":"Süre 1 dakika 28 saniye","shortText":"1 dk."},"date":"25 şub 2022","modifyTime":1645747200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ym2zGYBg-DI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ym2zGYBg-DI","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":88},"parentClipId":"16470296002887690627","href":"/preview/16470296002887690627?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/16470296002887690627?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8890037435589146173":{"videoId":"8890037435589146173","title":"Indefinite \u0007[integral\u0007] of sqrt(x)/1+x by substitution | \u0007[integral\u0007] sqrt(x)/1+x | \u0007[silent\u0007] \u0007[int...","cleanTitle":"Indefinite integral of sqrt(x)/1+x by substitution | integral sqrt(x)/1+x | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DwwTqcUUkWo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DwwTqcUUkWo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":169,"text":"2:49","a11yText":"Süre 2 dakika 49 saniye","shortText":"2 dk."},"date":"12 tem 2021","modifyTime":1626048000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DwwTqcUUkWo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DwwTqcUUkWo","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":169},"parentClipId":"8890037435589146173","href":"/preview/8890037435589146173?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/8890037435589146173?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2912016515228587215":{"videoId":"2912016515228587215","title":"double \u0007[integral\u0007] e^x/x^2+1 dxdy | solving double \u0007[integrals\u0007] | \u0007[silent\u0007] \u0007[integrals\u0007]","cleanTitle":"double integral e^x/x^2+1 dxdy | solving double integrals | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=x-hqFheTyuw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/x-hqFheTyuw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":94,"text":"1:34","a11yText":"Süre 1 dakika 34 saniye","shortText":"1 dk."},"date":"16 oca 2022","modifyTime":1642291200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/x-hqFheTyuw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=x-hqFheTyuw","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":94},"parentClipId":"2912016515228587215","href":"/preview/2912016515228587215?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/2912016515228587215?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7052760317832273570":{"videoId":"7052760317832273570","title":"double \u0007[integral\u0007] xy*sin(x^2)/cos(y) from (sqrt(pi/2),0) to (sqrt(y), pi) | \u0007[silent\u0007] \u0007[integrals...","cleanTitle":"double integral xy*sin(x^2)/cos(y) from (sqrt(pi/2),0) to (sqrt(y), pi) | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SDHJ30Nzhn4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SDHJ30Nzhn4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":131,"text":"2:11","a11yText":"Süre 2 dakika 11 saniye","shortText":"2 dk."},"date":"19 nis 2022","modifyTime":1650326400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SDHJ30Nzhn4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SDHJ30Nzhn4","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":131},"parentClipId":"7052760317832273570","href":"/preview/7052760317832273570?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/7052760317832273570?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6330795264661064053":{"videoId":"6330795264661064053","title":"MIT \u0007[Integration\u0007] Bee 2013 Problem #19 | qualifying round 2013 | Problem 19 | \u0007[silent\u0007] \u0007[integra...","cleanTitle":"MIT Integration Bee 2013 Problem #19 | qualifying round 2013 | Problem 19 | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=GJIPur55Lv8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/GJIPur55Lv8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":73,"text":"1:13","a11yText":"Süre 1 dakika 13 saniye","shortText":"1 dk."},"date":"22 oca 2022","modifyTime":1642809600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/GJIPur55Lv8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=GJIPur55Lv8","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":73},"parentClipId":"6330795264661064053","href":"/preview/6330795264661064053?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/6330795264661064053?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7046008725598194132":{"videoId":"7046008725598194132","title":"MIT \u0007[Integration\u0007] Bee 2014 Problem #2 | qualifying round 2014 | Problem 2 | \u0007[silent\u0007] \u0007[integrals...","cleanTitle":"MIT Integration Bee 2014 Problem #2 | qualifying round 2014 | Problem 2 | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=SfB8lRhQdWQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/SfB8lRhQdWQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":88,"text":"1:28","a11yText":"Süre 1 dakika 28 saniye","shortText":"1 dk."},"date":"26 oca 2022","modifyTime":1643155200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/SfB8lRhQdWQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=SfB8lRhQdWQ","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":88},"parentClipId":"7046008725598194132","href":"/preview/7046008725598194132?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/7046008725598194132?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1608191284786584537":{"videoId":"1608191284786584537","title":"MIT \u0007[Integration\u0007] Bee 2014 Problem #6 | qualifying round 2014 | Problem 6 | \u0007[silent\u0007] \u0007[integrals...","cleanTitle":"MIT Integration Bee 2014 Problem #6 | qualifying round 2014 | Problem 6 | silent integrals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ssSDJiKzS7w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ssSDJiKzS7w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDZk92dGNTSGdrMTJ5SzNCX1A3OGZEdw==","name":"Silent Integrals","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Silent+Integrals","origUrl":"http://www.youtube.com/@silentintegrals9104","a11yText":"Silent Integrals. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":106,"text":"1:46","a11yText":"Süre 1 dakika 46 saniye","shortText":"1 dk."},"date":"7 şub 2022","modifyTime":1644192000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ssSDJiKzS7w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ssSDJiKzS7w","reqid":"1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL","duration":106},"parentClipId":"1608191284786584537","href":"/preview/1608191284786584537?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","rawHref":"/video/preview/1608191284786584537?parent-reqid=1769309399698327-3667458848493941433-balancer-l7leveler-kubr-yp-vla-167-BAL&text=Silent+Integrals","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"6674588484939414337167","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Silent Integrals","queryUriEscaped":"Silent%20Integrals","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}