{"pages":{"search":{"query":"Stats4Everyone","originalQuery":"Stats4Everyone","serpid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","parentReqid":"","serpItems":[{"id":"4269259388570368644-0-0","type":"videoSnippet","props":{"videoId":"4269259388570368644"},"curPage":0},{"id":"14565250493231100828-0-1","type":"videoSnippet","props":{"videoId":"14565250493231100828"},"curPage":0},{"id":"12033617073947293736-0-2","type":"videoSnippet","props":{"videoId":"12033617073947293736"},"curPage":0},{"id":"2666232136206035482-0-3","type":"videoSnippet","props":{"videoId":"2666232136206035482"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFN0YXRzNEV2ZXJ5b25lCg==","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","ui":"desktop","yuid":"2542718251769431698"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"7582943925625789656-0-5","type":"videoSnippet","props":{"videoId":"7582943925625789656"},"curPage":0},{"id":"9313377234476400397-0-6","type":"videoSnippet","props":{"videoId":"9313377234476400397"},"curPage":0},{"id":"2365909130686713557-0-7","type":"videoSnippet","props":{"videoId":"2365909130686713557"},"curPage":0},{"id":"9676286285658162184-0-8","type":"videoSnippet","props":{"videoId":"9676286285658162184"},"curPage":0},{"id":"8062984467582645579-0-9","type":"videoSnippet","props":{"videoId":"8062984467582645579"},"curPage":0},{"id":"8488122376060687263-0-10","type":"videoSnippet","props":{"videoId":"8488122376060687263"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFN0YXRzNEV2ZXJ5b25lCg==","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","ui":"desktop","yuid":"2542718251769431698"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"15011546641387573340-0-12","type":"videoSnippet","props":{"videoId":"15011546641387573340"},"curPage":0},{"id":"17950223480233664893-0-13","type":"videoSnippet","props":{"videoId":"17950223480233664893"},"curPage":0},{"id":"5882481282163889302-0-14","type":"videoSnippet","props":{"videoId":"5882481282163889302"},"curPage":0},{"id":"2479046948768445264-0-15","type":"videoSnippet","props":{"videoId":"2479046948768445264"},"curPage":0},{"id":"8904369859831480943-0-16","type":"videoSnippet","props":{"videoId":"8904369859831480943"},"curPage":0},{"id":"8836811271579963964-0-17","type":"videoSnippet","props":{"videoId":"8836811271579963964"},"curPage":0},{"id":"14928884400174795031-0-18","type":"videoSnippet","props":{"videoId":"14928884400174795031"},"curPage":0},{"id":"8463783969866246044-0-19","type":"videoSnippet","props":{"videoId":"8463783969866246044"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFN0YXRzNEV2ZXJ5b25lCg==","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","ui":"desktop","yuid":"2542718251769431698"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DStats4Everyone"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"1812598670504664167316","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1466867,0,39;1414493,0,70;1433082,0,39;124067,0,32;1424968,0,12;1468855,0,35;1470058,0,38;1460712,0,57;1464561,0,54;1460214,0,33;1312967,0,34;1152685,0,15;1472031,0,31;1461640,0,37;1201470,0,80;27392,0,0;1461715,0,84;1470250,0,16;1463532,0,91;1282205,0,30;1469608,0,22;1466296,0,18;1465943,0,74;1470858,0,74;1466082,0,91;1467160,0,61;1467149,0,64;1349038,0,65;1466618,0,67;1064473,0,0;89014,0,80;1472080,0,3;40254,0,29;30278,0,99;461653,0,14;1470320,0,13;912217,0,55;1396445,0,78;1470414,0,9;151171,0,97;1281084,0,7;287509,0,13;1447467,0,53;790811,0,46;1466397,0,12;1467128,0,29;681842,0,63"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DStats4Everyone","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Stats4Everyone","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Stats4Everyone","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Stats4Everyone: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Stats4Everyone\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Stats4Everyone — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y585f3b9dad3e9959ddd5011852d52d23","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466867,1414493,1433082,124067,1424968,1468855,1470058,1460712,1464561,1460214,1312967,1152685,1472031,1461640,1201470,27392,1461715,1470250,1463532,1282205,1469608,1466296,1465943,1470858,1466082,1467160,1467149,1349038,1466618,1064473,89014,1472080,40254,30278,461653,1470320,912217,1396445,1470414,151171,1281084,287509,1447467,790811,1466397,1467128,681842","queryText":"Stats4Everyone","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2542718251769431698","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769431812","tz":"America/Louisville","to_iso":"2026-01-26T07:50:12-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1466867,1414493,1433082,124067,1424968,1468855,1470058,1460712,1464561,1460214,1312967,1152685,1472031,1461640,1201470,27392,1461715,1470250,1463532,1282205,1469608,1466296,1465943,1470858,1466082,1467160,1467149,1349038,1466618,1064473,89014,1472080,40254,30278,461653,1470320,912217,1396445,1470414,151171,1281084,287509,1447467,790811,1466397,1467128,681842","queryText":"Stats4Everyone","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2542718251769431698","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"1812598670504664167316","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":148,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2542718251769431698","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1754.0__7d090cb2d4d9823803190509a95d03c049893005","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"4269259388570368644":{"videoId":"4269259388570368644","docid":"34-10-0-ZE4B131B32AA2FB39","description":"In this introduction to Probability Theory video I discuss the definition of a random experiment, space space, element/point, event, subset and supset, and the null set...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3254767/76f9a829694ba7fea136674888962c0c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hdEwtwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2F9qEjxllM0","linkTemplate":"/video/preview/4269259388570368644?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Definitions for Probability Theory: Random Experiment, Sample Space, Element, Event, and more","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2F9qEjxllM0\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM0MjY5MjU5Mzg4NTcwMzY4NjQ0WhM0MjY5MjU5Mzg4NTcwMzY4NjQ0aogXEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E44FggQkAYAEKyqLARABGniB_vYE_wAAAOgFB_gM_wEAAgwA__f__wDmDv34CP0BAAX_-uv8AAAABQ8D9wkAAAABCAH-8f4BAPwHAgDvAP8AE_4A-P8AAAAGGgUG_gEAAPkH-vn2AgABDPX7__8AAADv_ALx__8AAP4O_-8BAAAAIAD4BAEBAAAgAC0ettI7OBNACUhOUAIqhAIQABrwAX8P6P69CtsA0wXEAMD3JQGXOQT_ICrdAMYN5v-X8-QA_fH-AO3Yzf8A2Q8AswgB_0X0xf8C5hkAQubm_zP6BwDm8g0BMuIDAEMB_AD3Gsv9EgDx_xIIEv_f28r--vLZ_Qv5IwHf8_IBzhWr-xD-QwEC-AoG9vEA_eju_QPFFR8B8LPTABAW_f364Qv-6hg_AR7sGf8N6NwAzgwTA_v04vwe4P_82B7o_trL8wHf5vn15PIV_i_93AQgJhcJ0fL6BRP3IAoKB-jz9Rf28j3pEfvc5wcDALkHEzceA_cPwwwF7BD6-esBAfbRGwL97g4B_iAALQhPCDs4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm79QoPPBo25ztVPU-9PIs5vXIbCD3HgR466lGCPBE-b7wH9ci8bOxSvndkUT0DKhe9xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC9TMQ7voKcRbtWMte6al0TPEZ8J70gcw67b8ACPTjRU70KCaK8s652ves98LwggC-9teAlvj2qq7z3_BW9RgCRPWHMsb0FNge9qvQuPUdS97zUHkA8pe4vPbUlkb34uSu91jEzvY1S-Dw0P8i8RWRYPb2g6jxffI-65IM_u3wDPb0rDow8c3b8vDO4tzwPDna8NuwyPQANBT3E0ju9oG_rPQ_XhbxENgu9bazkvaYRLj2UTsE7Puq_Pei0-Dx2Co-3TzwHvQ15yj2HYOY7EsnGPCpPhbxCQ3-84N4wPd_wzDwQWD066XYAPTBiBD0bB8U7BKzVPDOimTz080s8FoTSPUV2j70nZyi8RdTpPKjR2rycYKy7DBgpvWrGvTwWpLo7NEfWPfQ2NryhZz26zxPPu7QZTDxmxH07JF6eu2L46L1TGGc7zvIGvZA4ir2cy0O8oWaYPS7tLzx-Rtg7i8ucPaQXer1feEq8eZWQvPA1P70oYGA8ALayvGgH2DtaERI8YEGFvU15_jz51Fa8ByM2vbwcmzujyjC8xJJ2O99vpD1cQMM6KXCcPZIry70o9to4m36_PRR3_Dz0iCs62AAbPQ3uHT1JvQa7r3LPOzc_NLxVrb-60ClIO5MtHL31B1I73WsXvUqqAL0eTD253WGTPbuXC76lDmg5GFWQPXiLMT1gxBI57NMbvdk7SDzWwuw2hfkhPcnQDL1qNvy1y6LwvFtCHr43BeM5BpbIPCrkKj3lkhG5Prfpum0NG7ww5Uo5kubPvXYIUrz4zQg5zM2cPTlQVj037F24K3OJPW0VCb3dKsY41zTKvGwA_Lv3a6-4_cYSPRma4bzZlXq46h4evcgXjj05yUc4Q7lDvXJNQb1zEHw3zq_BPEmTzD3fRIe4CAMvvRS2qj0_6CU3IYqOPaOjh7sAr423BpwlvIxq0b36U_c3ui48PdThEzyBZRW4uOQovtF_hbyd-Bq5mlazu53DC73d6L43OjzEvGGogzwl3fq3Sf7WPC81HzxK2YM4kl0ZPtlPUL2swj-5If9xvI82jr3KEa64MpTuvLr4u702Fya44ZmQPFWbqT29mbi3YQZ5PfM6Er5L56m4yvRwPSLhKz7xy4o4rARGvRElMD0PcrO4I2jMvQ0B-jtvBgY3fnoiPWkvbLulV542IAA4E0AJSG1QASpzEAAaYDD_AD7xDdfq6UDQ8fnWCwPrJu_73gH_C9f_7xLN7PMuzqD5EQARwiHorQAAAETyAiPsAPxz-eOqBOUXHq_N6Rn6fwIKCp7CC_inLQsiD_IhKBcVCgDy2b4xKQ7MKNoLECAALS4nJDs4E0AJSG9QAiqvBhAMGqAGAADYQQAAoMAAAKhBAABIwgAAoEAAAEBBAAC2QgAAMEEAAFzCAADwQQAAIEIAAFTCAAAEwgAAAMAAAIC_AAAgQQAAjkIAABTCAADQQQAAGMIAAILCAABQwgAAzsIAAAhCAABowgAA4MEAAEDAAACIwQAAQEEAABhCAAAYwgAAAMEAAILCAABYQgAAysIAACzCAAAsQgAAPEIAADDBAACUQgAAgEIAAEzCAAA4QgAACMIAADBBAACCwgAAAEIAAIRCAADoQQAAqEEAAEDBAAAswgAAoMEAABxCAAAsQgAALEIAAMTCAABgQQAAgD8AAOBBAAA4QgAAOMIAALDBAAA4wgAAuMEAAMDCAAAAAAAAhMIAAKDBAAAIwgAAPEIAAChCAADAwQAA4EEAAABBAAAowgAAwMEAAEBAAADAQAAANEIAALjBAADAQgAAgEEAAJDBAACAPwAAikIAAPjBAABAQAAAbEIAAOBAAAAYQgAAnkIAAIDCAAAQwQAAoMEAAIDBAADAwQAAGMIAAJhBAACYQQAARMIAABxCAABAQQAAgEAAAEDCAACIQQAALMIAAABAAABAwgAALEIAAHhCAAAAQgAAIEEAAHBBAAAQwQAAaEIAAIDBAADwwQAAQEEAAJDBAADIwQAAyMEAAABAAAAIwgAAQMAAALBBAAC4wQAA-EEAABTCAAAsQgAA-MEAAAjCAACwQQAAaEIAABBBAADwQQAAoMAAACxCAAAAQQAAhMIAAFBBAACYQQAAKEIAAETCAABgQgAACEIAAADAAAAQwQAAMMEAAFBBAABAwQAAuEEAAIBCAADQwQAAUMEAAFDBAAAkwgAA6MEAAKbCAABQwQAAeMIAANBBAACgQAAABEIAAChCAAAAAAAAmMEAAJhCAAAcQgAAgL8AAMBAAACoQQAAEEEAABzCAAAcwgAAKEIAAADBAAAQwQAAoEAAAMhCAADEwgAARMIAAODAAACAQAAABEIAAEDAAAB8wgAAgEEAANjBAAAAAAAAKEIAAABAAACAQQAAuMEAAATCAACIQgAAYMEAAMBBAACIwQAACMIgADgTQAlIdVABKo8CEAAagAIAAOg9AABUvgAADD4AAMg9AAC4vQAA-D0AAJi9AAA5vwAALL4AAPg9AADYPQAAUL0AAKY-AAB8PgAAXL4AAEA8AAAcPgAAED0AAIg9AAAJPwAAfz8AABA9AABsPgAAQLwAACS-AAA0PgAAgLsAADQ-AACgPAAAiD0AAHw-AAAcvgAAmr4AACQ-AACCPgAAlj4AAJ4-AAC6vgAARL4AAOi9AAAUvgAANL4AAJY-AAAQPQAA1j4AAJo-AADgPAAAmr4AAKA8AAAVvwAABD4AAFC9AABMPgAARD4AAKi9AAAQvQAAYT8AADS-AACAuwAA6L0AACy-AABMvgAAML0AACS-IAA4E0AJSHxQASqPAhABGoACAAA0vgAAqL0AAJg9AAApvwAAPD4AAKg9AAAQvQAAQLwAAGS-AACSPgAAML0AAIg9AAC4PQAADL4AAHA9AAC4vQAABL4AAFM_AADIPQAAyj4AAOA8AACovQAAfD4AADS-AAAwvQAADL4AAMg9AADYPQAA6D0AAAQ-AAAQPQAAED0AAKi9AAB8vgAAuD0AAJi9AACgvAAAZD4AAFS-AABMPgAAND4AACy-AABwPQAAoLwAAEC8AACIPQAAf78AAAy-AACAuwAAND4AAKA8AADYvQAAFD4AADA9AAA8PgAAgDsAAIA7AAAwvQAA6L0AAJi9AABwPQAAXD4AAMg9AAA0viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=2F9qEjxllM0","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4269259388570368644"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"872269535"},"14565250493231100828":{"videoId":"14565250493231100828","docid":"34-7-6-Z69BC3DC6DE55A341","description":"In this video I discuss the distribution of the estimators for the slope, b1, and intercept, b0, and provide an explanation of the t-test for these simple linear regression parameters. Below is...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3802209/dbe131f9769edad564e0fbde5d9701fb/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zoB4MwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdrnRNkmxn3E","linkTemplate":"/video/preview/14565250493231100828?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Linear Regression - t tests of parameters","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=drnRNkmxn3E\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoWChQxNDU2NTI1MDQ5MzIzMTEwMDgyOFoUMTQ1NjUyNTA0OTMyMzExMDA4MjhqiBcSATAYACJFGjEACipoaGZlamp3cW55a2Jrc2FiaGhVQ1otOHUwM045aHF4UUxxeVYwYUs5bFESAgASKhDCDw8aDz8TrAaCBCQBgAQrKosBEAEaeIHz_wML_QMA9f4KDAIG_QEBCP4I-P7-APUGAv8HAv8A8_oHAQQAAAAFAAABBAAAAPj0BgH6_gAAGgL79QMAAAAR8QH8AwAAAAkH9Pb_AQAA7v4A9gIAAAAL9gEGAAAAAAEF_Qb5_wAB9BD-_gAAAAAGAwEAAAAAACAALUKx2zs4E0AJSE5QAiqEAhAAGvABfwQJAe0C4QHP99oAxyYIALULGP_9LtcA1Bvn_8D3zQD5CxQA4QPsABQaAwC-JPn_LdrW__rVAgAex_f_KvsFAO37_QBA4vEBMiQWAB0A6P_kHij-5OHsARLI7gAMFvT-_uoT__cJ5QIaFNEBIPwpAfkBIgUnAgv_4bn9AeLy6gTu4d3-BBT-BfHh__rt8RYE-c4DABr6C_zXIgoE-An_-v7jFP37NOj76eYABuf9AvvU2vf7MfgCCBMGEQXoEeMH9PgiAtcR-_Pb8Pv8HPEF-NT78g351fUNCu4K-_rzDQT_Bvfx-uz4AAoV9RrjB_bvIAAtzR0nOzgTQAlIYVACKs8HEAAawAdK1Ou-ykBUPCWuozwKB8y9Vw8UvDSFDr3joLm9HG2LPF4FI7wUdhE-3w7evCa-gzvEl1m-jGZlvPW6Jb3LgDM-5tGIvZhiMzyHNCq-nmmoPbZyZbxEGF--1GRnO6WdPzxqXRM8RnwnvSBzDrug4tg9YTyevMVPiLxzr1088yyCPSXB5bzcahk69RFYvRN8WL1uMLk82QVIvWqhxzsuWaU9Y0JMvB8IWjxu6z09gMCcu0Sqg7x7rgW9wwd7PSPKDb0vTXY9xpWJPcLrRDzr-4W9PmhMvYc7ETwGYn69HaVcvATmvjqsYws9DQYyPFrsm7xpM_M8Hm_yvdcl0zqoyCG-AnwcPejpbTzdtBk-PRbRPANg-rtQw9e9xJJ3PWuMzjp8e5e87moovXsuU7xLFwc9_4kbPTTPWzyz-189kPBivJFw7zotDh-8VVYuPRBCGz1blZQ96g6ovTAwhrwqcX09p749vNV-Rry7fGu9g8NmPCB7nDttrIQ8HRA3PbNbcDynNRO5NvY2vLDQYjzfZsY9ObXzvYcfGDzHg229VxCOvZ23VrzdwX49vLskPYh7kbxbPpc9-KTDvajUOrsvMqI7FBT1vBj2izvr5v287U-9vBHXnDuX4iq9y90OukDU5LvYv8a8xN5VPH_xMbzEknY732-kPVxAwzopxKs7J-uhvWwGejt5E6I9JwEDu5DD3LuQg9I9RpRbPdUcFLiIJIQ9pRm2vdyZLrvtz2q91f-evOr5e7pBmhG9WTVjvTNIB7mhndM9UYGYvZedUTnNodY8eFKVPDzKlzizvyK9-pDBPOOtHznyfAY9z5uvvX0Z4DjLovC8W0IevjcF4zl_jNQ8JML1PDMfvLnrlc28zMhqPSf58Dl-Mza9pFCWvS6Do7ejRyO8PXSLPFpSSjmFcHY9UXZJPWZXhDiBvqE79Q_iPA4lKTn5py88YiCZvL2Q7bhLVqo8Q7kjPbTyHTnnItk8A8z8vVJJyDnDdyw97kigPW3tGzmjC0W8dk-TPfYtRzj2RzM9pjRxPQrtsbgVFJA8c-WCvY_pfDhtqWM9qDTiPLFFtLhYn8y9pi40PYN_LDlu1FQ8tESdvDPnADjn172734x1vAjhQ7hqXA49FndyPFO5wreSXRk-2U9QvazCP7lcSQG9yt7SvRciBLl5MxS9aiyWvUjoMLcHFKC6ySC3PcLXmrcd4ww8Z0bfvWlQErjK9HA9IuErPvHLijgYJzm9lEOlPWWUx7itbeq9FDu_PG_S4zc0KP-8hUe4usFiPjggADgTQAlIbVABKnMQABpgBPMAFQAx4AExHenmyNoH9M0fwCrK6v8IygDaE90sOi_XpCoYABTnIOioAAAAGwAkFxIAzmzy2hEa9h0m4a3jIw1_4jEK7-sxCfr6JzMG-BwzG0NAABj8uzRU1cVLGgcsIAAtutEgOzgTQAlIb1ACKq8GEAwaoAYAADhCAAAwwgAAMEIAAIDCAADAwAAAiMEAALZCAADQwQAACMIAAODAAAAQQgAABMIAAADAAACgQQAAoMAAAKDAAABgQgAAqMEAAJBBAACgwAAAOMIAABzCAACOwgAABEIAAKDCAADgwQAAQMEAAIBBAADgwAAAfEIAAI7CAAAwQQAAhsIAADhCAACowgAAyMEAAIhBAABwQgAAgL8AAHRCAADAQAAAgEAAAIBBAAAEwgAAgEEAAGjCAAAkQgAAWEIAAERCAACIQgAAiMEAAATCAADQwQAAQEIAAFBBAABAQAAAjMIAAMBBAAC4QQAAVEIAAARCAABQwQAAeMIAABDCAACowQAA3MIAANjBAABIwgAAAMEAAOjBAAAgQgAAGEIAAPDBAAB4QgAAgEAAAEzCAACowgAAUEEAAJBBAABMQgAAuMEAALhCAABwwQAAmMEAAKjBAABYQgAAcMEAABDBAAAkQgAAEEIAAIC_AADYQQAAKMIAAEBBAAAkQgAAAMAAABTCAAAAQAAAEEIAAI5CAACEwgAAiMEAAFBBAADwwQAAcMIAABhCAACAPwAAUEEAAKDAAABcQgAAqkIAANBBAABwwQAAmEEAABDBAACAQgAAGEIAANjBAAAIQgAA6MEAAEDCAAAIwgAABEIAAATCAACwwQAAwMAAAJDBAACYQQAARMIAAPhBAAAkwgAA4MAAAKDAAACOQgAA2MEAAJBBAADowQAAikIAANDBAACkwgAAgEAAAAhCAABYQgAASMIAABRCAAD4QQAA8MEAAFDBAADgwAAAoMEAAAzCAABgQQAA8EEAAKDBAACIwQAAYMEAAKDCAACIQQAAcMIAAADCAACewgAAHEIAAARCAAAUQgAAJEIAAJhBAACowQAASEIAAFRCAABQwQAAwMAAAABAAACgQQAAhMIAACzCAACAQgAA6MEAAEDBAABQwQAAsEIAAJrCAACwwQAAQMAAAKjBAAAYQgAAcEEAAEDCAAAAQAAAMMIAAMhBAACQQQAA4MAAAHBBAADowQAAQMEAAARCAADAwAAA4MAAAABAAADYwSAAOBNACUh1UAEqjwIQABqAAgAALD4AADy-AAB0PgAArj4AAEw-AAAQvQAAQDwAAMK-AACAOwAAMD0AAFS-AADoPQAAQDwAACw-AACmvgAAMD0AAPg9AAAwPQAAED0AAOo-AAB_PwAAiL0AAOC8AAA8PgAAVL4AALg9AACOPgAAiD0AALi9AACCPgAAmD0AAOC8AACGvgAAJD4AAEA8AADgvAAABD4AAJa-AACSvgAAgLsAAJ6-AADgvAAAnj4AAPi9AADYvQAAgLsAANg9AAB8vgAAPL4AAMi9AAA8PgAA2D0AABQ-AADIvQAA4DwAAES-AABHPwAANL4AAOA8AAAQPQAA2D0AAJi9AACYvQAAiL0gADgTQAlIfFABKo8CEAEagAIAAL6-AAC4PQAABL4AAFe_AABAvAAATL4AAEw-AAA0vgAAoDwAABQ-AADYPQAAuL0AAES-AACOvgAAQDwAAEC8AADgvAAAJz8AAFA9AACuPgAA2L0AAFC9AABQPQAA4LwAACS-AABAvAAA2L0AAIA7AABcPgAA4LwAAIA7AAAEPgAADL4AANa-AABwvQAAED0AAAw-AACAOwAADL4AAPg9AACIvQAA-L0AAIq-AABQPQAAED0AAIo-AAB_vwAAxr4AALi9AADIPQAAXD4AAPi9AADoPQAAcL0AAIg9AABAPAAAEL0AAIA7AABwPQAAqL0AABQ-AABQPQAAoDwAAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=drnRNkmxn3E","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14565250493231100828"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"143118086"},"12033617073947293736":{"videoId":"12033617073947293736","docid":"34-11-2-ZC689E16B7E2C9D41","description":"Show the Proof. In this video I show the math behind deriving the Least Squares Estimator, b, for the Multiple Linear Regression Model...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4609020/c729724e5a71fe3645503b9f54058e26/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/lvxV3wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfBaXhzlSO18","linkTemplate":"/video/preview/12033617073947293736?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Multiple Linear Regression Least Squares Estimator","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fBaXhzlSO18\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoWChQxMjAzMzYxNzA3Mzk0NzI5MzczNloUMTIwMzM2MTcwNzM5NDcyOTM3MzZqiBcSATAYACJFGjEACipoaGZlamp3cW55a2Jrc2FiaGhVQ1otOHUwM045aHF4UUxxeVYwYUs5bFESAgASKhDCDw8aDz8TjgOCBCQBgAQrKosBEAEaeIEIBvkMAAAABAAFBwEI_AL_E_cG9_7-APQGAv8HAv8A7PwD-gP_AAABDPr9BQAAAAH2AQT1_QEAGwL79QMAAAAH-v3_-QAAAAkI_PcJ_wEB_f4F8wIAAAAL9QEHAAAAAPkG_vf-AAAA_g8FAQAAAAAGAwEAAAAAACAALZlA1Ts4E0AJSE5QAiqEAhAAGvABfwQJAdP71P_fD-IAzx74AJ4TC__9LtcA0ff_AMD3zQD96-cA4QPsAPEE8wC3_uoBOPfQ_wvr_wA26uv_Q9D-_9YWCAD83_gBMiQWAAT38gDtCSIA8_vzAPfe1__9A-gAFQAR__P85fvXEbr8CBsuAuj6KAQbAhX888wH_-n7Afv96eL-ABr1_RbcFv_uEzQBEN_v_Q32__vfJ_UCD_gC-_Lf_f8HKdr-EOYCBgbo-v-72Qz_Atj8BQgYDwTjDfEC3PMoBcz_AfbwAg36LtXxBskJC_0I8PYHDhcG__7kAgUFC_T86wEBCPv9BvnvFvUBIAAtzR0nOzgTQAlIYVACKs8HEAAawAcv_eu-CmIFPd3U_juoVMm8mOAUPSfca71fJX-9FK8yPBmikrumDvI9lfQwvGTJZ7ps7FK-d2RRPQMqF73FVYU-VDBvvZt_Krx1dPy9LxOaPQsCEL3n_iq-Xcv_PEh0KjwI94S9Pbs3vcboEDvg2X49UnFNvc03R7wgqOi6HXURPDPcAL0iF6G9O5yKvAUrU72rR_U86kd5veHs1rz6dME9rk4Jve4y8jxu6z09gMCcu0Sqg7y31aw758wxPdk-BL366k89fp-LPRSOxbw4I3e7vmzbvVDawDp1vY69zk9RPYWQmDxBCwk9vuxIPRFKqbxKxMU9l9MUvTBjirwNUyu-XLKmO2K6Nbw-6r896LT4PHYKj7fGYaq9q1udPe7UmjufGjO7547-vAvV6LyvZ349wUIcPEJ5HTzIbWq7zJGZO64iijstDh-8VVYuPRBCGz3Zzew9gPTtvddYP7qyA3g866O4vA3PgbwMGCm9asa9PBakujuSyAI8ZYcfPM3dtjpjn1s8TNmOupgY5jzFNUM9-FENvglvLLv6WKa9y1CQvR2nrrt7DZY9ZL5tPcurxrrw-WE9FF8NvneEEbtvuzA9nkohvaMmzDkauRO92HhVvJ5K3brOJpa9-p6sPLXhMLsaVQG9i4EfPXUsJbzEknY732-kPVxAwzrTzGk9Dt3svY-KOLqhhs89pRfSO6Pqsrs7Bl89eLcSPUHGs7raxyo9IUs1vYC2uLssQla9SGP-vKFdDTt-vae9XzWZOSbIYjltA9c9taPYvQyfrzlmYVQ9t_GHPUrcsTlTb5e88ncPPfgIJDmQbfQ8suhHvW3rwLlcVAu9nBXxvdyedTmxHlI8788APYVLmTknpeC8A46OPAG3-zg1GV-9BfsPvXqeiboN0mI9UyUIO1wtsrl4npM9brjZPP2onbhMvAi9ulCRuTIZQbkCA1I9WpzxvCm8Nbkl1wO9BLS4PaonqrjCtLm8TIqfvQZgdjgezrI8tiVXPatJTLddF-G7l2yxPV2jZTjclBw9TqKUPbrAhzfz2va8CPnKvVqHe7YiDiM9OeEQO7AeU7jK4QO-ENcePJf9Tjc3Wy89MmgyvbwOADjjQtQ8P5KtPNwvwbawsjE9Nvm1uzXA8zbB4ys-3KVovAeJdLmTjJy8JrGqvfcB27h5MxS9aiyWvUjoMLfhmZA8VZupPb2ZuLfsA707fNQPvhf63LjK9HA9IuErPvHLijjnIEO9C3RyPQV1lbjD89K9jooEvYeyybYgs_O8rzhBPEH9_zcgADgTQAlIbVABKnMQABpgE_8ABTYo2gEmJeaz8fcZ7c0I3A3k-f_2twAIA-D9Pe7YsPX7AAbtN-GtAAAAO_Dy_xkAAmrH3woc-_YNk9LrNUp_DAscvBYcEO4QDu311gAAFR5lAC3v0B8sDawcChYfIAAtE_omOzgTQAlIb1ACKq8GEAwaoAYAADhCAAAAwAAA4EEAAGDBAABAwAAAQEAAAKxCAAAAwAAAisIAAABCAACAQgAAXMIAAKjBAACgQAAAiMEAAIA_AACgQgAAEMIAAFxCAAAAwQAAQMIAAMjBAADkwgAAAEIAAJTCAAAcwgAA8MEAAFBBAACAPwAA6EEAABTCAABAwAAAnMIAAGhCAAC2wgAAwMEAAMhBAAA8QgAAwMAAAJJCAAAcQgAAPMIAAABCAAA4wgAAAMEAACTCAABIQgAAgkIAAERCAADwQQAAgD8AAPjBAAC4wQAAmEEAALhBAAA8QgAAmsIAAPhBAADwQQAAIEIAAIBBAABkwgAAwMAAAMDBAABAwQAAnMIAAIA_AADIwQAAoMEAAODBAACoQQAAbEIAABDBAAAEQgAAgMAAAAjCAACIwgAAUEEAAIBAAABAQgAA4EAAAMBCAAAgwQAAoMEAAIBAAABUQgAACMIAABDBAACSQgAA4EAAABhCAACAQgAANMIAAEDBAAAAwAAAqMEAAKDAAAAkwgAAQMAAAFhCAABwwgAAHEIAALBBAACoQQAAgsIAANhBAADQwQAAcEEAAPjBAADIQQAAiEIAAChCAAAQQQAAEEEAAIBAAACGQgAAwEAAAPDBAACgQAAAqMEAADDCAAD4wQAAAEEAACzCAADYwQAAAEEAAIDAAADoQQAA2MEAAARCAACgwQAABMIAAKBBAABgQgAA4EAAABhCAACAvwAAjkIAAMhBAACOwgAAcMEAALhBAAAYQgAAjMIAAGxCAAA8QgAAyMEAAJBBAAAUwgAAwEEAABDCAADQQQAAVEIAALDBAAAAwQAA4MAAAETCAABQwQAAhMIAADDCAABMwgAA0EEAAADBAAA4QgAAMEIAAKBAAAAEwgAAYEIAAFxCAABAQAAAQEAAAIC_AACAQQAAPMIAABjCAABUQgAAgEEAAEDAAACAvwAAnEIAANzCAABYwgAAAEAAAGDBAABEQgAAIMEAAFjCAACAQQAAJMIAAOBAAAA8QgAAIEEAAIhBAABgwQAAUMEAAHRCAABwwQAAwMAAALDBAACYwSAAOBNACUh1UAEqjwIQABqAAgAAiL0AABA9AAAkPgAARD4AABC9AABQPQAAZL4AAAO_AABMvgAA6D0AAIA7AACAuwAA2D0AAJI-AAB0vgAAQDwAAJI-AAAMPgAABD4AAOI-AAB_PwAAEL0AAFS-AAAEPgAA-L0AACS-AAAUPgAAPL4AALi9AAAEPgAAED0AAOi9AAAEvgAAMD0AAAQ-AADIvQAAcL0AANi9AAAcvgAAdL4AAMi9AADIvQAA6L0AAJi9AACavgAAFL4AADw-AADYvQAA4DwAAMi9AACmPgAAED0AAEQ-AADIPQAAVL4AAJi9AAA3PwAAuD0AAFA9AABcPgAAQDwAAOA8AADgPAAAhr4gADgTQAlIfFABKo8CEAEagAIAALi9AAAkPgAAcD0AADW_AACYvQAA4LwAADw-AACIPQAAcD0AAOC8AACovQAAVL4AAKA8AAC4vQAABD4AAKA8AADgPAAAMT8AAIi9AABEPgAAmL0AAKa-AADIPQAADL4AAHC9AAA0PgAAjr4AAIi9AADoPQAAmD0AANi9AAD4PQAAiL0AAJi9AABAPAAAiD0AADA9AAAMvgAAmD0AAAS-AAA0PgAAQLwAAKi9AACoPQAALL4AAMg9AAB_vwAAFL4AAJi9AACoPQAAND4AABA9AABQPQAAbD4AAPi9AACoPQAAML0AAES-AACAuwAAoLwAADQ-AABMvgAAFL4AAMi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=fBaXhzlSO18","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12033617073947293736"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1275779967"},"2666232136206035482":{"videoId":"2666232136206035482","docid":"34-3-4-Z244510828EA3EB75","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/223629/171d07d23a9fbcebb6705f398309c1d0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/RM7aMQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtJ8cv-fFPHs","linkTemplate":"/video/preview/2666232136206035482?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Linear Regression - Prediction Interval","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tJ8cv-fFPHs\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChMyNjY2MjMyMTM2MjA2MDM1NDgyWhMyNjY2MjMyMTM2MjA2MDM1NDgyaogXEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E-8FggQkAYAEKyqLARABGniB_Qf-Df4CAPgHBQgABv0CDP77CPf__wDt_QEECQAAAPMACPz7AAAA-gr7AwIAAAD47fT9-v4AABD7_vkDAAAAFvgOCf0AAAD9Cvr3_wEAAPryAPgCAAAAEPv4BQAAAAAB-gEA__8AAPUHAfgBAAAAA_YI-wAAAAAgAC2Nj9o7OBNACUhOUAIqhAIQABrwAX_5KAHfEcMCzhf3AdIO5gGcNgP_CTLxAND65gG29sUA_fH-AN0b9AAGEOkAsyr4_x0BwgAQwvb_JtXw_jvX6QDm5-EBL-fsADopGgAf8eEBAiMt_vfd7P4E6dkAED35_Brt-P71C-AC7APAAhD-QAHQCiUFLgIN_hOzIv7s5vUECuXp__MW-gfp6f4C6RwbASDI_f4QBgn05iHnAu0AB_n-yf7yCC_T_RLiAwf4F_b-2uYMCwnq-wkALQUBBSDqB-UDFwDSPQD9vuoK9h789e_c4uH5G9D4EgT2_QP2_AYKB_fo8eIK-PQDE-wE3wj07CAALedYDzs4E0AJSGFQAirPBxAAGsAHStTrvspAVDwlrqM8HMg_vQnqjDuczC6946C5vRxtizxeBSO81IEMPlK9gL0C0sC77DPHvfpysDyIvTC9xVWFPlQwb72bfyq8dXT8vS8Tmj0LAhC981kOvjhvNz12-yy7_5U1vQ8blr1Ap3s84Nl-PVJxTb3NN0e8yVfCvOYMAD1C7gK9sZzOvJecSby27WC9ZTsbvFf0Xb2f2mM6qvQuPUdS97zUHkA8bus9PYDAnLtEqoO8e64FvcMHez0jyg29-upPPX6fiz0UjsW8ei-TvYZ2nr0_s9o8JgWRvfxnkzvYnaw7lVKGPSMxwTy7ZWK88G5gPVtVO71W2Ge8seFJvi6S9jxPCJ08RgrlPaOWIDxTze47sOLUvXU2yT08jlU8nxozu-eO_rwL1ei8C5YqPXCVJ7yqzDk8PD0lPCM9e7zqo766LQ4fvFVWLj0QQhs97PoFPdmZ4r2rq6e8_q-PPcwq7LxgqIm7oBu1vNyPijwAD1Y8LY-aPIZ7wDw9Eqs7QbltvHW227wQ1Yo8xTVDPfhRDb4Jbyy7x4NtvVcQjr2dt1a8Yy-fPSb_oz24YjW8Wz6XPfikw72o1Dq7RCCNPFdTo7wJ_jc8YxmBvYRBITuXjS27gK-SvTPwK7uUf1K82L_GvMTeVTx_8TG8nfiou-mRcD1V50W7clP_O7-C1L06i4M6aMCKPbXAgzwUJog7J_SvPV9AlD2I2xa3BeoDPbZHD70dhM677c9qvdX_nrzq-Xu6YEKAvYBfaL0Kzmg5x2cSPq6g6b2QCbS5CvcKPc8GKj32rb05ceA6vS66Sz1yFsc3icjVPH0_hb1HWoU5qz2RvRpSFb4wUQo6alBPPRN8EzyUSxK53sUgvaisYT04Ea24f35kvaOxMb1g3eM66BoBPSu9urv8g5e5WRyZPXWFaD3hTo44uYy8u6Jq7DtDTbo6HdxnPOPYRDx6mSW5E4gyPO1KpjwoIag4wrS5vEyKn70GYHY4Rj86PfTOhz1s_re46X_7uvZ61z0rdK-25lViPVOSVT0ALio4UkjPuz48q71PsuQ4Ig4jPTnhEDuwHlO4oFDPvRXvhj3C0gI42kJGPPj6Wr0o4xm4UMJMvC_pnjxbPIa4J1wZPZipgztvbNg3weMrPtylaLwHiXS5zcd6vdMV7L3mm_i4IY1Pve6CfL1GFY644ZmQPFWbqT29mbi3SfeOPK1QxL1znPK4yvRwPSLhKz7xy4o4U1N8vfDzZD0mccO3rW3qvRQ7vzxv0uM3mGdKvUEUJzzyREw3IAA4E0AJSG1QASpzEAAaYBf0ADAFGuYCHi_vxNru-Q3nAd8Pyf___NYAAQT69Sz45L4PDgAC6jXqugAAAA8S4hQKAPtezOfkNwACJM_C4BIcf_3-HMjqB_XRAB4HCNkaGE8nVwArBNgkMhDQIQAUKCAALY1SPDs4E0AJSG9QAiqvBhAMGqAGAABwQgAAAMAAAEBCAAAUwgAAAEAAABDBAAC-QgAAyEEAADDCAACQQQAAPEIAAHDCAAAwwQAAEMEAAHDBAABAQQAAlEIAAKDBAAAkQgAAEMEAAADCAADwwQAAxsIAABRCAACOwgAAcMIAAODBAACAwAAAwEAAAExCAAAUwgAAoEAAAHjCAABgQgAArsIAACzCAAAEQgAAYEIAAIhBAAB4QgAANEIAABzCAAAIQgAAOMIAAKBBAACGwgAA4EEAAOhBAAB4QgAAKEIAAMjBAAAYwgAA2MEAAOhBAAD4QQAAJEIAAMrCAABgQQAAQEAAABRCAACoQQAAeMIAABTCAACIwQAAmMEAANDCAADAwAAAZMIAAMjBAAAwwgAAZEIAABBCAAAEwgAANEIAAAAAAADgwQAAYMIAAKDAAADoQQAAbEIAANDBAAC2QgAAAMEAAIjBAAC4wQAAgkIAABDCAACYwQAAsEIAABhCAAAUQgAAPEIAAEjCAABQwQAAoEEAAATCAABgwQAA8MEAAOBAAAAcQgAAWMIAACxCAAAAAAAAAEAAAAzCAAAAQAAAmMEAABBBAADwwQAA6EEAAHBCAAAkQgAAgEAAABDBAADIwQAAikIAAOBAAADowQAAgD8AAHDBAAAcwgAAYMIAADBBAACQwQAAiMEAAKBBAAAYwgAAmEEAADzCAAAQQgAAgMAAAGTCAAAAQQAAgkIAAEDAAACQQQAAQMAAACBCAAAgQQAAisIAAPjBAADwQQAA-EEAAI7CAAAsQgAAEEIAAFDBAACAwQAAmMEAAMBAAACAwQAAYEEAADRCAACQwQAAAMEAADDBAABgwgAAsMEAAJrCAACQwQAAXMIAAPhBAACwQQAAHEIAANBBAAAAQQAA6MEAAHxCAABIQgAAQMEAAMBAAACYQQAA4MAAAAzCAAAowgAAIEIAAIjBAACAPwAAQMEAAKxCAAC4wgAATMIAAMBAAADAwQAACEIAANjBAABowgAAYEEAAEzCAABQQQAAKEIAAKDAAADQQQAAAMEAAIDBAABQQgAAQEAAAKBAAAAIwgAABMIgADgTQAlIdVABKo8CEAAagAIAAOA8AAD4vQAAkj4AAJo-AAAcPgAAuD0AAFC9AADqvgAANL4AAHw-AACYPQAAEL0AAEC8AABkPgAAir4AAEC8AABEPgAAqD0AAEQ-AACCPgAAfz8AAKC8AAAMvgAAgj4AADS-AAC4vQAARD4AAHC9AACYPQAAVD4AADA9AAC4vQAAFL4AAIA7AABAPAAAoDwAANg9AACSvgAAbL4AABC9AAD4vQAAgLsAANg9AACgvAAAmL0AAKA8AAAUPgAAFL4AANi9AADovQAAZD4AADA9AAAsPgAAoLwAADS-AACYvQAAEz8AAOC8AACIvQAABD4AAFA9AAAMPgAAUD0AAIK-IAA4E0AJSHxQASqPAhABGoACAABwvQAAUD0AAIg9AAAzvwAAiD0AABA9AABQPQAAcD0AAIi9AABMPgAAgLsAAFC9AABwvQAAUL0AALg9AABQvQAA4LwAADU_AAAQPQAArj4AALi9AAAMvgAADD4AAAy-AAC4vQAAQLwAADS-AADgvAAAbD4AABQ-AAC4vQAA2D0AABC9AAAsvgAAED0AAKA8AAAUPgAAML0AAIC7AAAwPQAAcD0AAAS-AABEvgAAUD0AAPi9AABsPgAAf78AANi9AABAPAAALD4AAOA8AABQvQAAmD0AABw-AAAQvQAAcD0AAIA7AACmvgAA-D0AABA9AAAUPgAAmL0AAHC9AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tJ8cv-fFPHs","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2666232136206035482"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2457938356"},"7582943925625789656":{"videoId":"7582943925625789656","docid":"34-4-0-Z63E4A00D681BB9DD","description":"In this video I show how the total variability can be partitioned into the regression variability plus the residual variability...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/963415/f5e2b75ca97b84ebe584e8cfa9eec3da/564x318_1"},"target":"_self","position":"5","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D_BmD2cLXUQQ","linkTemplate":"/video/preview/7582943925625789656?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Linear Regression - Partitioning Total Variability","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=_BmD2cLXUQQ\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM3NTgyOTQzOTI1NjI1Nzg5NjU2WhM3NTgyOTQzOTI1NjI1Nzg5NjU2aq8NEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E_YCggQkAYAEKyqLARABGniB-wPzBwAAAOsD-Ab4AgAADgzyBPUAAADyAQYJAwL_AP34Dv_4AAAABgP8CgkAAAD-_Qv98_4BABf3-_n0AAAAEej8Bv8AAAAG_gH2CgABAfX6BvkCAAAACPz7Cv8AAAAO-wb6AAAAAO4R__QAAAAAD_4B9QAAAAAgAC2aTNQ7OBNACUhOUAIqcxAAGmAP8wAnIfft10v97sTp8P0r8TDtIOTpAODKAOofA-Yh7fDABRAAHPPvAL4AAAAX7_gB_AAXTwL22v8Y4wbg-d_wF38kDcbx6jEM1QQEDAzh9_wlK1wA6wEaCCnV8f_4-jEgAC3lzkw7OBNACUhvUAIqrwYQDBqgBgAAOEIAACTCAABEQgAANMIAAARCAACgwAAAdEIAAOBBAADAwQAAoMEAAPhBAADowQAAgMEAADBBAAAAwQAAAMAAAFBCAACiwgAAwEEAAAzCAADQwQAAHMIAAJzCAAD4QQAA6MEAADDBAADAwAAAMMEAAEDAAAAAQgAAFMIAAPBBAACcwgAAuMEAALLCAAAgQQAA-EEAACRCAABYwgAA-EEAABDBAADgQAAAAMEAANjBAACUQgAAYMIAAFBBAADgQQAA6EEAANBBAADQwQAAbMIAAKDAAAAIQgAAAEAAAJBBAABkwgAAoEAAAEBBAAAIQgAAAEEAAKDBAACQwgAAgMIAAJBBAADWwgAARMIAAJDCAACwwQAAKMIAANhBAABwQgAApsIAAJjBAAAAwQAAgL8AADzCAAAAQQAAQEEAAGBBAAA8wgAAqEIAAIhBAADgQAAAUEEAAEBBAADQQQAALMIAAJZCAABwwQAAEEEAAIhBAAC8wgAA4EEAAKBBAACUwgAAVMIAAEDAAABYQgAAMEIAALDBAACAvwAAMEEAAMDAAABAwgAA6EEAAJDBAADYQQAAiEEAAKRCAAAAQgAAEEIAAGDBAAAMQgAAMMEAACBCAADIQQAAkMEAAJbCAACIwQAAMMIAAADCAABQQQAAQMEAAAjCAACwwQAAEMEAAEDAAADowQAATEIAAKjBAACCwgAAUEEAAARCAAAwwgAAVEIAADBBAADYQQAAkMIAAEjCAACwwQAAJMIAALhBAAAUwgAAqMEAAJBCAACYwQAAQEAAAMDAAAAAQQAAIMIAAGhCAACEQgAAREIAADhCAACAwQAAxMIAAIDBAACMwgAAsEEAAHTCAAAAQgAAXEIAAKjBAAAAQQAAAMAAAGBBAADWQgAAlEIAAODAAAAAQQAAwMEAAETCAABkwgAA4MEAAKDBAAAgwgAA8EEAAFBBAABgQQAAbMIAAPDBAADAwAAAuMEAAHBCAAC4QQAAyMEAAODBAACAQAAAqMEAAADAAACwwQAACEIAAABAAAAYQgAAcEIAAIhBAABQQQAA0EEAABBBIAA4E0AJSHVQASqPAhAAGoACAAAwPQAArr4AADQ-AACSPgAA6D0AAKg9AADgvAAA3r4AAGy-AAC4PQAAuD0AAIC7AACYPQAAuD0AAAy-AADIvQAAND4AALg9AABMPgAAoj4AAH8_AACWPgAABL4AAJ4-AABMvgAAZL4AAEQ-AADovQAA2D0AAEQ-AACIPQAADD4AAI6-AAA8PgAAmD0AAFw-AAA0PgAAmL0AAPi9AAAcvgAAir4AAHA9AACovQAAiL0AAFC9AABwvQAA6L0AADy-AACYvQAApr4AAIY-AAAUPgAAND4AABy-AAA8vgAARL4AADs_AACgvAAA4LwAAMg9AACYvQAAcD0AABC9AADIvSAAOBNACUh8UAEqjwIQARqAAgAAUL0AAFA9AAAQPQAAU78AABC9AADYPQAAqD0AANg9AACovQAAcD0AAIA7AADIvQAAFL4AALi9AADYPQAAgLsAAFA9AAAzPwAAiL0AAIY-AABkvgAAJL4AALg9AAA0vgAADL4AALg9AABEvgAAqL0AACw-AAAsPgAA4LwAAJg9AACovQAAVL4AAKg9AADYPQAAcD0AAEC8AABQvQAAcL0AAIg9AACIvQAATL4AADQ-AACKvgAATD4AAH-_AAAkvgAAgLsAAGQ-AAAkPgAAEL0AAAw-AAD4PQAAUD0AAEA8AACgPAAALL4AAKg9AADovQAAbD4AAKg9AABAPAAAyL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=_BmD2cLXUQQ","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7582943925625789656"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9313377234476400397":{"videoId":"9313377234476400397","docid":"34-10-1-Z3DC5C0180A69C36B","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3294337/7fc9f9e85068902fb998da54b2b55a44/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/1wsTLwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DH4Ez79mKT04","linkTemplate":"/video/preview/9313377234476400397?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculating the Probability for At Least One","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=H4Ez79mKT04\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM5MzEzMzc3MjM0NDc2NDAwMzk3WhM5MzEzMzc3MjM0NDc2NDAwMzk3arYPEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E-wBggQkAYAEKyqLARABGniB_uv9-wL-ABX9BQkKC_0D_xP3Bvb-_gDwAf8F9gEAAPwS_Pn8AQAA_Rn8BQMAAADkBvoM_wMAAAj_AvUEAAAACvL2DPoAAAAHCgIK_gEAAAj_-AAD_wAAEAQHEAAAAADyDP_--v8AAAQBA_wAAAAADfr4-gAAAAAgAC12gs47OBNACUhOUAIqhAIQABrwAWz4Df_JCOEA7wbaALsV7ACBAAL__S7XAM4BDQDCA-QA-freAN738f8LBxT_vRHv_y7a1f_61AIAN-rq_zvjFwDsGxcABcnqAikaBQD_9OX_AR8n_wjd_P_-zOIA6fLd__7pFP_r5fj97wPIAv8EKADvCRYFKPwhAPLLB__fHBMA-PnM_gIP7gkW9hX82xgdARj7-AAABgn66R3rAgD6Dv3-0P7zBynZ_hLpEA37CgL-4gYK9gX28Ps3DQL46QoRBBD5Ggn3BP3t3hAM9iXq-AAA6wT7_eT0CRv7Af4M4fsD7w37-uEX8vTr8gX-5hP__CAALb9PJDs4E0AJSGFQAipzEAAaYCf7ADPgLQIL20buFgbwGfvJEQMW1gv_IQAAEg4H3usNv8oZBgAk2zTqrwAAAC4H6hARAApuCuEb4gAP_tTW0ScEQRQMLZPy_vfe4hMI-vkm9hUofwDQ3sr9G-zNGQX_GSAALTOpODs4E0AJSG9QAiqvBhAMGqAGAADoQQAAVEIAAJBBAAAAwAAAREIAANhBAADCQgAAQEAAAGjCAABQQQAAeEIAACjCAADgwAAAAMEAAMBAAADoQQAAKEIAAIC_AABgwQAAAMIAAODBAAAUwgAAisIAAIC_AAB0wgAAIMEAAETCAAAYwgAAIEIAAADAAAAgwQAAUMEAALzCAACOQgAAIMIAAAjCAAAkQgAAkEIAAKhBAAA8QgAAykIAAAzCAACeQgAAhMIAAIA_AADqwgAADEIAALBBAADwQQAAwEEAAJ7CAADAQAAAwMEAABDBAACgQQAAbEIAANDCAADgQAAAgMAAAGBCAABMQgAAaMIAACDBAACYwQAAiEEAAIbCAADAwAAAoMAAAAAAAAAMwgAAhkIAAKJCAABUwgAAQEEAAMjBAADgwQAAZMIAAKBAAAAcQgAATEIAAGDBAACyQgAAgMAAABDBAABAwAAAoEEAAODAAABAQAAAsEIAACBBAABwwQAAdEIAAAzCAAA8wgAAUEEAAMDBAAAwwQAAFMIAAKBBAACAvwAAfMIAAKRCAAAAQQAATEIAAPDBAAAsQgAAhsIAANhBAADYwQAAQEEAABRCAABwwQAAuEEAAIhBAAAAwAAArkIAAOBAAABQwQAAiEEAAABBAADgwQAAmsIAAEBBAACYwQAADMIAAABBAAAgwQAAAAAAALjBAABwwQAAFMIAAJDBAABoQgAAeEIAAODAAABkQgAAQEEAAEDBAACgQAAAcMEAAIhBAACAQAAAsEEAAMDBAACuQgAAQEIAABTCAADIQQAAEEIAACDBAABwwQAAmEEAANjBAAAowgAABEIAAIA_AAAIwgAAAMIAAIzCAADAQAAAQEEAAAhCAACoQQAAiEEAAIBBAACAvwAAUMIAAIZCAAAYQgAAwEAAAIC_AAA4QgAAgD8AAFDBAAAIwgAAsEEAAKBAAAA4wgAAQEEAAEhCAADSwgAA0MEAAOBAAAAAQQAAIEIAAJDBAABgwgAAQEAAAMDBAACAPwAALEIAAMDBAADgQQAAMMEAANjBAAAYQgAAYMEAALjBAADgQAAAmEEgADgTQAlIdVABKo8CEAAagAIAAIg9AAA0PgAAUD0AACw-AABkvgAAmD0AAIg9AADSvgAAqL0AABA9AABwPQAA-L0AAHA9AAAEPgAAXL4AAIC7AAA8PgAAHD4AAKg9AAC6PgAAfz8AAIi9AAAsvgAAmj4AADC9AACgPAAATL4AAOC8AAC4PQAAyD0AAIC7AADuvgAAcD0AADA9AABQPQAAUD0AAJg9AAARvwAAmr4AAIq-AADIvQAATL4AAOg9AABwvQAAQLwAAFS-AACgPAAAcL0AADC9AAAUvgAAjj4AANg9AAD4PQAARD4AAI6-AACAOwAAKz8AAKC8AAA0PgAAyD0AAHC9AABQvQAA-D0AAFS-IAA4E0AJSHxQASqPAhABGoACAAAQvQAAqL0AAKA8AABdvwAAqL0AADw-AAAMvgAApj4AAIi9AACAuwAAmL0AAAy-AADIPQAA2L0AAKC8AACgvAAAJL4AADs_AABkvgAAiL0AAOC8AADIvQAA0j4AAEy-AADYvQAA0j4AAJq-AACIPQAAjj4AANi9AABAvAAAMD0AAAS-AACSvgAAUL0AAJg9AAB0PgAA4DwAADC9AACuvgAAXD4AABA9AAD4vQAAqD0AAPi9AABwvQAAf78AABQ-AAAcPgAA0j4AAHC9AACgvAAAPD4AAAU_AAAwPQAAgLsAAIC7AAAEvgAAFL4AAKa-AABsPgAAUL0AADQ-AAB8viAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=H4Ez79mKT04","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":754,"cheight":480,"cratio":1.57083,"dups":["9313377234476400397"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3703913375"},"2365909130686713557":{"videoId":"2365909130686713557","docid":"34-8-5-ZB367B8770884DD05","description":"This video discusses model assumptions for the simple linear regression model. Why do I not discuss the Normality Assumption here? It is not necessary yet.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1021996/e4842020ae973037fc0f396f00c82246/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/e4W-1QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMgrl7rCj848","linkTemplate":"/video/preview/2365909130686713557?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Linear Regression Description Model Assumptions","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Mgrl7rCj848\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChMyMzY1OTA5MTMwNjg2NzEzNTU3WhMyMzY1OTA5MTMwNjg2NzEzNTU3aogXEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E_ECggQkAYAEKyqLARABGniB-wv-AP8BAAz9__wEBAEBEA36Agj_AADmAwT9Cf0CAAQJBQD4AQAA-wL-_P4AAAD39f39_f8AABr0__YDAAAADfYIAvsAAAAJDf7v_gEAAPX8_u4BAAAAB_sHDP8AAAD4_vj8__8AAOQJB_kAAAAAD_4B9QAAAAAgAC0IYdU7OBNACUhOUAIqhAIQABrwAX8ICAHZDt0AxRPiALMD-gCFGe4A_DTSALIXAQG49scABPLvAN0D6QAC-vsAthPt_0D1yv_5zwIAWt_qAETg-QDYERUBJtTzATgoGQDwBNn_6wonAAf4-f_22tL_9ATNAQryE_kA_-sA0hOx_AofNQP4ASYGLPslAfHFCP_uEgEF_t3B__MV-gf64wr-6xY6ARvo_gEP9f76yiDr__z1A_oP1wz8CC7V_RLjAwcG_Pv-x-b-BRjk-QIeIxUJ6Rf5BfP3JgLV-wn3-BQMADTQ7wfY-gQG-M_zDxQN9wD_6QjzBgzy_Pn_AAPqAvz94Aj07CAALY27Ezs4E0AJSGFQAirPBxAAGsAHbcjfvnP31Dz-AaA8-g3TvZB4wzxscAe9IxPwvdctJz33_UC8IJbCPQqjGb0QBp68FOgzvvvv3DxZ04a8xVWFPlQwb72bfyq8hzQqvp5pqD22cmW8Efw_vn9geD0QRBK84oH5u_S2Q73Vx-i8snWaPaXL0bwt6AG8yVfCvOYMAD1C7gK9IhehvTucirwFK1O9fQA3PftcDb11P6c6LlmlPWNCTLwfCFo8bus9PYDAnLtEqoO8e64FvcMHez0jyg29mj-GPenVQD2E2d-79GEHvcMNiL0unYU8-n0_vRqUHz3GBWQ6qMoyPX8U9TyJPG68D3avPYoDJrtGUSK6seFJvi6S9jxPCJ08Puq_Pei0-Dx2Co-3sOLUvXU2yT08jlU8e_KVPAKsIbwj4Ra9C5YqPXCVJ7yqzDk86Y3JvOfC7Tzk7pi7LQ4fvFVWLj0QQhs97PoFPdmZ4r2rq6e8RdTpPKjR2rycYKy7SRXgvM_3cDvTctq6r6b8PCDE37qYFnU85BqXujxy2jt6iZY8xTVDPfhRDb4Jbyy7-limvctQkL0dp667Yy-fPSb_oz24YjW8FZBWPb9elr3dQ8K7m1xHPaI4gb1_fZ27ALayvGgH2DtaERI8IYZnvTpoBDxdjJ672L_GvMTeVTx_8TG8Qp--PFwxjT1He5M708xpPQ7d7L2Piji6daKuPcbNnzw3Lue7kIPSPUaUWz3VHBS4UZfWPOXRbb2gGky7acw_vdBjNL3Ij526LolYvd3pM730jaa67q8OPp8Skb1-0JQ58E5ePXOyPj3BVkI569SLvJMKOT3lPJY5icjVPH0_hb1HWoU5y6LwvFtCHr43BeM5sR5SPO_PAD2FS5k5sCIevevwRjx2dJY5vbkJvRh-K720UAa5BucdPWBe27pD2ao4nlCePdjpLD2Z_HW41zTKvGwA_Lv3a6-4_cYSPRma4bzZlXq4vC-dvIuBnz3Srmw37Lmvu8XBmr0TgHY5Hs6yPLYlVz2rSUy3ksyqPCJVBD4FDR83Fx-wPEughz04M8e4UkjPuz48q71PsuQ4cHATPRFcQDzq3YA5oFDPvRXvhj3C0gI4Z9kOPc1yXr3Ahqc39bjvPBJ2AD0Sg744cU_hPLmAwLqkzK23weMrPtylaLwHiXS5If9xvI82jr3KEa64MpTuvLr4u702Fya4BxSguskgtz3C15q37AO9O3zUD74X-ty4yvRwPSLhKz7xy4o4m9hwu9WYCz2_FOG4YEanvReBELuTdNk3aewBvQxN4zw_aZM4IAA4E0AJSG1QASpzEAAaYBL2AB4T_9QHKzTi1NnSDu_2Js8F5Av_-MEA4hPxCBQN06YV9AAr7STmtAAAABwTDPPzAAdq2NrrFfELKb203SAffyQMHsbz__iw8iHx8-IXJSMhVwAe97UyJ_nGMOoaECAALZmkLTs4E0AJSG9QAiqvBhAMGqAGAAAcQgAAoEEAAGBBAACYwQAA4EAAAOhBAADIQgAAQMAAAJDCAAAsQgAAPEIAAGzCAAA4wgAAMEEAAAAAAAC4QQAAgEIAACjCAAAoQgAAkMEAAGzCAAAAwgAA3sIAAOBBAAA8wgAAMMIAAIDAAABwwQAAgEAAAKhBAAA8wgAAwEAAALDCAAAwQgAAtsIAAAzCAAAIQgAAcEIAAABBAACSQgAAgkIAACTCAADoQQAAXMIAAIBBAACswgAAIEIAAHxCAABgQgAA8EEAAKjBAACwwQAAkMEAADBCAADoQQAAXEIAANDCAABwQQAAAMAAABBCAAAEQgAAXMIAAKDBAAD4wQAAQEAAAJLCAADgwAAAAMIAAAAAAAA0wgAA0EEAAIxCAADowQAADEIAAGDBAAAowgAAYMIAAEBBAABwQQAATEIAAIDBAADGQgAAgEEAADDBAACAQAAAJEIAANDBAACgQAAAokIAAODAAACYQQAAeEIAADzCAABAwAAA4MAAAKDBAACAwAAAKMIAAABBAADYQQAAPMIAANBBAABgQQAAUEEAAJDCAAAMQgAATMIAAEBBAAAQwgAA2EEAAERCAAAQQgAAAMEAAIBBAACAwQAAqkIAAGDBAACQwQAAgD8AAKjBAACAwgAALMIAAMDAAAAYwgAAoMAAAJBBAADAQAAAgL8AAMjBAAAMQgAAKMIAAAzCAAAUQgAAZEIAAEBAAAA8QgAAgEAAAIRCAACoQQAAZMIAABDBAAAAAAAAUEIAAHTCAABwQgAAFEIAAEDBAADwQQAAYMEAAEDAAAAAwgAAAEIAAERCAADAwQAAgEAAAHDBAAAUwgAAwMEAAHzCAACowQAAJMIAABhCAABAQAAAiEEAAEhCAAAgQQAAyMEAAEBCAAAEQgAAAMAAAGBBAACwQQAAEEEAANjBAAAMwgAABEIAAOBBAADgwQAAQEAAADxCAAC4wgAAFMIAAIjBAABAwAAAaEIAADDBAACEwgAA4EEAANDBAAAQQQAAAEIAAEBAAABgQQAA4MAAACDBAABUQgAAFMIAAEBBAADAwAAAsMEgADgTQAlIdVABKo8CEAAagAIAANi9AAB8vgAAMD0AAPg9AABwvQAAoDwAABA9AAAPvwAATL4AAHA9AACIPQAALD4AADA9AADIPQAArr4AADS-AAB8PgAAuD0AABw-AAADPwAAfz8AAOA8AABUvgAADD4AAJi9AABwvQAAmD0AAJi9AACovQAAgj4AACQ-AACgPAAADL4AAPg9AACYPQAAmL0AAEw-AABAvAAADL4AAIg9AACgvAAAmD0AABC9AABAvAAAUD0AACw-AADYPQAAjr4AAIi9AACYvQAAjj4AADA9AAC-PgAAoLwAACS-AABQvQAAST8AAII-AAAEvgAA4DwAAFA9AAAMPgAAyL0AAAm_IAA4E0AJSHxQASqPAhABGoACAADgPAAAoDwAAKi9AABZvwAAcL0AAIY-AACiPgAAyD0AADC9AABQvQAAoLwAABy-AADYvQAAZL4AAKg9AAAwPQAAdD4AABU_AACAuwAA4j4AADy-AAAQvQAAdD4AACy-AABUvgAA4DwAANa-AABQvQAATD4AANi9AABAPAAAyD0AABC9AACyvgAADD4AANg9AACaPgAAcL0AABC9AACAOwAADD4AAKC8AACevgAA-D0AAGy-AAAHPwAAf78AAJ6-AACovQAAuj4AAIo-AABAvAAA4DwAAJo-AACAuwAA6D0AAFC9AADivgAATD4AANi9AAAkPgAAiD0AAEA8AADgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Mgrl7rCj848","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2365909130686713557"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2590467327"},"9676286285658162184":{"videoId":"9676286285658162184","docid":"34-11-10-Z6AD8351124D06270","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1024500/671e35f1b8af0da5f9d5a4d7fca69130/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EDC1HQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dy2EFn8BM0Wc","linkTemplate":"/video/preview/9676286285658162184?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Levels of Measurement","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=y2EFn8BM0Wc\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM5Njc2Mjg2Mjg1NjU4MTYyMTg0WhM5Njc2Mjg2Mjg1NjU4MTYyMTg0arYPEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E8cFggQkAYAEKyqLARABGniB8vz_9f4CAPP5AgD6AwABAQzu__b-_QD2_woABwL_APsM_Ab5AQAADBAJAwQAAAD4Bfr-9P8BAA4NAfoFAAAA__oLAAUAAAAODPwD_gEAAP8FBvj4AQAAEwQB_f8AAAD0EAwH_gAAAP78_v0AAAAABAb4_AAAAAAgAC0dPdY7OBNACUhOUAIqhAIQABrwAWcGBwGlHvT7QfHaAO0X-wGBFfD_KjDm_84eCwHV__ABIPzWAL773f7C8QMA2gsIABDgwgIN4AQAJAECAA4FMAANEh4AEeIUATX07wAEBdoABBUT_g_jGAAP7fwA4_js__j9_f3iA_D_7RjwAOn5HgIT8DAACwMSAfn5Gv_sKRwDEuj4AO31HgHS8wT62_AYART2Bv8W7fr8-ukSCf0P4AP84wIIBgLm-xHrDgwH5Qn9AAEE_QX38fwZ-x0F-vz3AgfxA__15gHy5wYNARryBPnd_xr56-UP_xwG_QXv1ADz6_sC-PgWB_zhBQP28wsB_yAALVH0NTs4E0AJSGFQAipzEAAaYDUGABb9R-D78k7oH9v8Ef4kNOPt7sP_BaD__Ac03w3nzrkZ_P9T2QblowAAAD0H1hgSAPR_5_Tl_9sNAsH78vAIZwoW7dfh_vWT6uUG08VV-hJANQA0vavyPO3OHElPGiAALaD_GDs4E0AJSG9QAiqvBhAMGqAGAADgwAAAiEEAAEDBAACgwQAA-EEAAIpCAACqQgAAQEAAAETCAABAQAAAdEIAADTCAADgwQAA8MEAAJRCAAAEwgAAMEIAAKDAAAAIwgAAYEEAAIC_AAC4wQAArMIAAPBBAAAQQgAAIMEAACTCAADAQQAAAAAAAGBBAAAYQgAA0EEAACTCAADAQQAAuEEAANDBAAC4QQAAqkIAABDBAAC2QgAAAEAAAMDAAABsQgAA2EEAAIDCAAAQwQAACEIAAADAAADgwAAAFEIAAK7CAACgwQAAFMIAAPDBAAAQQQAAjkIAAOjCAAAEwgAAMMEAAPhBAACwQQAAcMEAANBBAADAwQAAuMEAAJTCAACGQgAAHMIAAAhCAADQQQAAEEIAADxCAACgwQAAVEIAAIjBAAAAwgAAZMIAAAAAAABAwQAAwEEAADDCAABMQgAA4MEAAODAAAAwQgAAcEEAADzCAAAsQgAAPEIAADhCAAAQQgAAoEEAAEDCAAAkwgAAAMAAADDBAAD4wQAAksIAAPjBAABgwgAAEMIAAHBBAAAEQgAAoEEAAGDBAAAEQgAAwMAAAIDBAADQwQAAAMIAAIDAAACIwQAAQEIAABBBAAAwQgAANEIAACzCAABIwgAAuEIAAPhBAABAwAAADMIAAKhBAACqwgAAIMEAAKBBAADQwQAAgL8AACDBAAAgQQAAAMAAAJjBAABEQgAAGEIAAIC_AABMQgAAOMIAAHBBAAA0wgAAhsIAAOhBAACAPwAAZMIAAADBAAAQQgAAkEIAADBBAAAwQQAATEIAAIBBAAAAwgAAQEEAAODAAADwwQAA4MAAAIC_AACQQQAAosIAAEjCAAAgQQAAmkIAAABBAAAkwgAAGEIAAFDBAAAowgAAGEIAAIhBAAAQQQAA8EEAAExCAADwQQAAgEEAAAhCAACAQAAA0EEAAAxCAACSwgAAmEEAAMZCAABQwgAAOMIAACxCAADYwQAAsEIAAKBAAACAwgAAPEIAAFBCAAC4wQAALEIAAGjCAABAQQAADEIAAIDBAACYQQAA-MEAAPhBAAAgQQAADEIgADgTQAlIdVABKo8CEAAagAIAABC9AACAuwAAJD4AAPg9AACgPAAAQLwAABS-AAC2vgAAPL4AADw-AAAUPgAARL4AADA9AADYPQAAcL0AACQ-AAAsPgAA2D0AABw-AADYPQAAfz8AAKC8AAAwvQAAUD0AAJi9AAAsvgAALL4AANi9AABsPgAARD4AABA9AAAwPQAA-L0AADC9AABMvgAAqL0AAKA8AACWvgAApr4AAEy-AACYPQAAnr4AAEA8AACIPQAAXL4AACS-AAC4vQAA2D0AADw-AABQvQAARD4AAIg9AABsPgAAyD0AAIi9AADIPQAAJT8AALg9AACSPgAAgDsAADy-AAA0vgAAiD0AAPi9IAA4E0AJSHxQASqPAhABGoACAAAsvgAABL4AAFC9AAA3vwAA-D0AAI6-AACgPAAA-L0AAOg9AADgPAAAQDwAAOC8AAD4PQAAZL4AAJg9AABwvQAA4LwAAC0_AAA0vgAAyD0AACS-AAAQvQAAyD0AADA9AAAQPQAAyD0AALi9AADgvAAAlj4AAFA9AABAvAAAFD4AAIi9AAAUvgAA4DwAANg9AAA0PgAA-D0AAKi9AADgPAAAkj4AABy-AABsvgAA2D0AADC9AAA8vgAAf78AADA9AAD4vQAA4DwAAAw-AAAsvgAAfD4AAMi9AABQvQAAED0AAIC7AABwvQAALL4AAES-AACoPQAAEL0AACS-AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=y2EFn8BM0Wc","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9676286285658162184"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"39248374"},"8062984467582645579":{"videoId":"8062984467582645579","docid":"34-10-15-Z9DE138213A3CCD70","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/898749/4a861cc50858b8b383f11622b8375183/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/V1oXGwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVat-502xESs","linkTemplate":"/video/preview/8062984467582645579?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Common Misuses of Statistics","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Vat-502xESs\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM4MDYyOTg0NDY3NTgyNjQ1NTc5WhM4MDYyOTg0NDY3NTgyNjQ1NTc5arYPEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E-ICggQkAYAEKyqLARABGniB9wX3_P4CAAMD_f77A_8B6QX-A_v__wDz-Ab__wL_AP0C_wT_AQAA-g_w_wMAAADl_f__9gIAAAUHB_j4AAAAFgX98fsAAAAKBvcI_gEAAAMAAPwCAAAACAQCCgAAAAAC_f4J_gAAAAoK_AwAAAAA_-8HAQAAAAAgAC1aINg7OBNACUhOUAIqhAIQABrwAX_w-wOVHPj6Qu_xABgX-gCeGgj_SgT_APQHDAHPAuoAAOn7ANMUDv_zDAsA_A0L_-fh6AAOAhsA__0OAAEFHwDxCPwANv4GABUIAP8A8wIA9wr3_w_sCgALAxEA7eYL_yDuAv708eD_AxL6_hT8DAMcDfr_6R0G_wvyAgD__gUE-iP8_wf1_AAV_Or_CzEE_wIR9gQLFhL78x0OAwb1-v4gHP__JPv__vX4_wQOAP0FFQbsAQsFE_4Z3OIECwXyCwbt-f__E_z9CO8L_vwCDP779hf27gAB_xULAvcs5P0D-iD9-vj5CAbtLQL3_Pr79CAALRuoTDs4E0AJSGFQAipzEAAaYD0OABnD8_zVEFjRAMX8-wMu5-QO6uIA_iD_zDbxuPHx7L8IGP_nCQX_rAAAAEjb8kwtAL9sFNL0QgnfIdH94AnqfwU3xwIX_dzu8gcQovry_fBEMwD2ytgJCzrfQRf0FCAALSY_JTs4E0AJSG9QAiqvBhAMGqAGAADIQQAAQEIAAIBCAAAowgAAQMEAACRCAAAAwAAAiEEAAIrCAACAQAAAgD8AAJhBAADYQQAAIMIAALpCAAAkQgAAiMEAANjBAABAwgAAkMEAAJxCAAAwwQAAUMEAAHhCAACYQQAA6MEAAIDBAAAAwAAAwEEAAIDAAAAAQQAAwMEAAIC_AADiQgAAyMEAAKBAAACgwAAAdEIAAEBBAACQwQAATEIAAFjCAABgQgAA4EAAAHBCAACKwgAAyEEAAABAAAD4QQAAuMEAAKjBAAAgQQAAnMIAAAzCAABQQQAAoEIAANDCAABAwQAAoMAAAPhBAAAoQgAATMIAACBCAABAwQAAEEIAAAzCAAA4QgAAuMEAAEDAAAAAwQAAyEEAADRCAACAQAAA0EEAAKLCAAD4wQAAUMEAAKBAAAAQQQAACMIAAI7CAABQQgAAiEEAAFDBAABAwQAAQEIAAODBAABQQQAAUMEAAJhBAADIQQAAJMIAAPhBAAB0wgAA6EEAALzCAADIwQAAQMAAADBBAACIwQAATEIAAFBCAABgQgAAuMEAACzCAADwQQAAAAAAABBBAABQwQAAkMEAADDBAADKwgAAAMIAAMhBAACaQgAASEIAAGDBAAAAwwAAoMEAAOBBAAAMQgAAoMIAAFBBAABkwgAAgMEAANBBAADYwQAA2MEAAOBAAADgwQAAsEEAANjBAAA0wgAA5EIAAABCAADoQQAARMIAACDBAABAwgAAMMIAAABCAAAgQQAA2EEAADxCAACAQgAAQMAAAEDBAAAAwAAAOEIAAABCAABAQQAAgD8AALjBAACGwgAAiMEAAEDAAADowQAAVMIAAJBBAABoQgAAUEEAAEhCAADIwQAABEIAAHDBAADgwQAAVEIAAERCAAAMQgAAgD8AABTCAAA4QgAAQMIAAFTCAABgwgAAwMAAAAAAAAC4wQAAmMEAAEBCAABAwgAAyMEAADjCAAAMwgAAIEIAAEhCAAA8wgAAmEEAABxCAADowQAAoEEAACBBAAAwwQAADEIAAEDAAAAMQgAA4EAAABDBAACgwQAAXEIgADgTQAlIdVABKo8CEAAagAIAAFA9AADYvQAAuD0AADQ-AACIvQAAmL0AAGS-AACyvgAAFL4AAMg9AADIPQAAuL0AAKA8AADIPQAA2L0AAAy-AABwPQAA-D0AAHC9AACWPgAAfz8AALi9AABMvgAA2D0AALg9AAC4vQAAEL0AAPi9AAD4PQAAZD4AAOA8AACAOwAAgLsAAIg9AABQPQAALD4AAMg9AAB8vgAAmr4AAEy-AACCvgAAZL4AADC9AABQvQAAgr4AAFy-AAAsPgAAML0AAAS-AACIvQAAgDsAADQ-AACKPgAAmD0AAJq-AACAuwAA8j4AAKg9AADOPgAATD4AAFC9AACIvQAADD4AAIC7IAA4E0AJSHxQASqPAhABGoACAACYvQAAqL0AANi9AABRvwAAmL0AAJg9AAC4vQAAUL0AALi9AAB0PgAANL4AAFy-AABAvAAABL4AAAw-AADYvQAAMD0AACM_AACIPQAAlj4AAKg9AADoPQAAVD4AAOA8AACovQAAqD0AADC9AACgPAAALD4AAJg9AADgvAAAED0AACw-AACyvgAAuL0AAIA7AAAsPgAAQDwAALi9AACAOwAAgDsAAFw-AACAuwAAmD0AABC9AAAUPgAAf78AAOC8AACgPAAAtj4AALi9AAAUvgAAND4AAJo-AADgPAAA4DwAAJg9AACgPAAAEL0AADS-AABUPgAArj4AADQ-AAAMviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Vat-502xESs","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":566,"cheight":360,"cratio":1.57222,"dups":["8062984467582645579"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4095964617"},"8488122376060687263":{"videoId":"8488122376060687263","docid":"34-4-15-ZBC48AC86CF8AA269","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3436835/15bf94608944c554e710c5d69e9a2ce4/564x318_1"},"target":"_self","position":"10","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DD0hEr2zngw0","linkTemplate":"/video/preview/8488122376060687263?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Linear Regression - Confidence Interval for Mean Response","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=D0hEr2zngw0\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM4NDg4MTIyMzc2MDYwNjg3MjYzWhM4NDg4MTIyMzc2MDYwNjg3MjYzaq8NEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E_AHggQkAYAEKyqLARABGniBCQkFDgP9AO8MDQL6A_8BAQn-Cff-_gDwAQL8_gEAAPUB_AL0AAAA9_8BDv0AAADx7gH4-v8AABj3-_nzAAAAF_gPCf0AAAAHCgIK_gEAAPLy-PUCAAAADPX7__8AAAAIDf8A-f8AAfwS9PUBAAAADfr4-gAAAAAgAC3wYMw7OBNACUhOUAIqcxAAGmApEgAeE_7m4fk92eb92uQZCwft9uH_AP_kAPkF_tsV4_LVAfn_HAIa9MgAAAASGukPDADqS_rwvhcYABTJ6w8HKH8IBQsaFhHszPYNBRLjEvMYDi4AG__8BSHs3z33EDcgAC1nlWM7OBNACUhvUAIqrwYQDBqgBgAA4EEAACzCAADQQQAAYMIAAEDBAADowQAArkIAAEDBAABcwgAAsEEAAHBCAAAgwgAA0EEAAFBBAACgwQAAQMAAAHxCAACwwQAA8EEAAKDAAAAEwgAAFMIAALLCAADIQQAAvsIAABzCAACIwQAAkEEAAEDBAAB0QgAASMIAALDBAACOwgAAbEIAALDCAAAcwgAAoEEAABRCAAAAwAAAlkIAAIBBAABwwQAABEIAAIjBAACgwAAAQMIAAIBCAABAQgAAUEIAADxCAABgwQAABMIAAEDBAABIQgAAUEEAAIBBAACCwgAABEIAAIBBAABAQgAAQEEAAATCAAAUwgAAqMEAAFDCAADEwgAAgMEAAEzCAACAwQAAyMEAAEBBAAAwQgAAUMEAAGRCAACAQAAAeMIAAKbCAADAQAAAAMAAACBCAADIwQAAukIAACDBAAA4wgAAAAAAAERCAAAYwgAAcMEAAGBCAAAMQgAA2EEAAAhCAAAgwgAAYMEAAIhBAAAgQQAAUEEAAKBAAACYQQAAcEIAAFzCAADYQQAAAMEAAABAAAB0wgAAuEEAABDBAACQQQAAuMEAADBCAACgQgAAJEIAAJBBAACoQQAAMMEAAAxCAACIQQAABMIAAARCAABwwQAAyMEAAIDBAAAAQgAABMIAAKDAAAAQQQAAFMIAAMhBAACEwgAANEIAABDCAADgwAAAAAAAAI5CAACAPwAAgEAAAGDBAABoQgAA4EAAAJrCAAAAQQAAoEEAADhCAABkwgAACEIAAAxCAACgwQAAiMEAAODAAACIQQAA-MEAAMDAAAAkQgAACMIAAOjBAAC4wQAAnMIAACBBAABIwgAAKMIAALbCAACQQQAAgEEAAGBCAABMQgAAyEEAAFBBAABMQgAAOEIAAAAAAAAgwQAAgL8AALhBAACKwgAAHMIAAGxCAABAwQAAgD8AABTCAADMQgAAtsIAAAjCAABwwQAAAEEAABRCAAAAwQAAPMIAAPhBAABIwgAAgD8AADBBAACgwAAAgL8AAKDAAACgwQAANEIAAAAAAACAPwAAYMEAAGjCIAA4E0AJSHVQASqPAhAAGoACAABAPAAAZL4AALY-AAAcPgAAVD4AANi9AABEvgAA1r4AAOi9AABMPgAAFD4AAKA8AADgvAAAND4AAHS-AAAEvgAA-D0AAOA8AABQPQAAfD4AAH8_AAA8PgAAHL4AAEQ-AAA0vgAAqL0AAGw-AADgvAAA6L0AADw-AABAPAAAqD0AABy-AADgPAAAoLwAAEC8AAA0PgAAbL4AAEy-AADgvAAAZL4AACS-AAAkPgAAiD0AAKi9AACYPQAA2D0AAAy-AAAcvgAAyL0AAFw-AADIPQAAuD0AAJi9AACyvgAAFL4AAA8_AACgPAAAML0AADw-AACAOwAAgLsAAIA7AAC4vSAAOBNACUh8UAEqjwIQARqAAgAAmL0AADA9AACoPQAAN78AABQ-AACIPQAARD4AABC9AABAvAAAjj4AABw-AAAwPQAAyL0AADS-AADYPQAAQDwAAIC7AABTPwAAcD0AAK4-AADovQAAZL4AACw-AACovQAAqL0AABw-AAAEvgAA4DwAADQ-AAC4PQAA6L0AAMg9AADovQAAor4AAOA8AADIPQAA4DwAAKi9AACYvQAAML0AAHA9AADIvQAA2L0AAIA7AABAPAAAfD4AAH-_AACavgAAMD0AAMg9AACgPAAAQDwAAKg9AABQvQAAoDwAAIA7AACAuwAAnr4AAOg9AADgPAAARD4AABC9AADgvAAAgDsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=D0hEr2zngw0","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8488122376060687263"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"15011546641387573340":{"videoId":"15011546641387573340","docid":"34-9-2-Z281E936C8D865E79","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4728478/4202081a79f1397cf0ea29479d922317/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/kUGfPAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXC0usnWEiGc","linkTemplate":"/video/preview/15011546641387573340?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Linear Regression - Discussion of the Normality Assumption","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XC0usnWEiGc\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoWChQxNTAxMTU0NjY0MTM4NzU3MzM0MFoUMTUwMTE1NDY2NDEzODc1NzMzNDBqiBcSATAYACJFGjEACipoaGZlamp3cW55a2Jrc2FiaGhVQ1otOHUwM045aHF4UUxxeVYwYUs5bFESAgASKhDCDw8aDz8T-gWCBCQBgAQrKosBEAEaeIH7BAEC_gMA9gj9BPgF_wH3CvsE-P39APULAwb9Av8A9gH8AfUAAAAJB_3_CwAAAPLvAfn6_wAAEPYJ-_QAAAAR9QMHAgAAAAgABfD_AQAA9vz-7gEAAAAIBAIKAAAAAPv9Av39_gAA5QkG-gAAAAAM-vn7AAAAACAALZ112zs4E0AJSE5QAiqEAhAAGvABfwcNAPjjvQPVFNkAkCLl_5E8BP8PIfkAsebw_8QE-gEABOsA4xbN_vYhAgCqL_f_O8_J_gS_GP8nt_X-QtLmANHwCwA14AMAJhY2AgX07gAXEjf_GMrrARvQywMeHtgAJRAa_wb1D_7oKs8EKvs1AeUROwEj6xUCA5YBCNju4wb2-tgA8Rj6CAPP_vjRHiUCDMn8_hQb-v3jJeUC1_sDAv7aGvwJNc79_9IHDPMF3_bKxBD-DvntDBcj_fX4FOwE-uYc_dYUCvnp7hbvDA3099Xw7gIKx_cBJwn8BxUJAg7rEfr4_uwB_fQR9g_bCfPpIAAtXNEAOzgTQAlIYVACKs8HEAAawAe77tW-2xkmvILxQjup9xS8RCXDu3cuzLz4Mzy8h0szPcTBlLvUgQw-Ur2AvQLSwLts7FK-d2RRPQMqF73FVYU-VDBvvZt_Krx1dPy9LxOaPQsCEL1Hjw--baSRPGg4yjxYFSa9odwxvRUZnbxvmyk9cbtBvc7QLjwrV8O9nWxevfqUCL0oEzI9sF8rvbGnPb1xsRy8tDmevcZp7bz4RGg9vcNtvN7bvjs2lis97O6LPBIpUr1dHka8EAaePGGZLb0vTXY9xpWJPcLrRDz0YQe9ww2IvS6dhTxDbuu8OSy4PZ3JiDxjXmw8Ow4NPS1O67wtHVg9mXHJPEd_3Dut-QG-VKWSPCHR3zsaQo899vDAPGcxqTqw4tS9dTbJPTyOVTwjbHS7EN-yOlA6kbylS689ANuWPZlho7qyp5M8wFMSvYOOMbxtXgs9iU16PRBiITsrA_08zbcZvbZvCbzOz8O7gdxUvQ6zH7uSKsC8oKdhPaV9UbmGuok9BqTYO9fVC7zPE8-7tBlMPGbEfTvFNUM9-FENvglvLLvO8ga9kDiKvZzLQ7ySVrE9uTXpPbpMj7pbPpc9-KTDvajUOruIm1g9vJLkvPDdCTwC3yM8fuwEPTPLVDxaari9mzTyPBWrBry_a6e7OsO5PNY1f7x9O667taXOPT5q4bqF6FU9NXCxvSLHGTpOEMA96N8pvcoiWLqYMgA-Fn9APS0_tbcSUME9wXhBvWHTCrpUYaK8nP0BvczhxbqorCa8Jt9MvXS5qrl9ldw9Fm4pvnw88rk_lx88pl_HPSgh7jgqYoe98OuRPA7EvThu3JI9O7IovSNOI7kUnYu9iXrhvcYncDn1_W89zcavPM7gZLgdYJy8vDuSPYgxsLfzqmW66kRdvYspQzpUoUu8xFYVPewmSrfqdgY-Ut5dPTc4-DXUdMm7Biz5PB4bLDkCA1I9WpzxvCm8NbmsTIK9MWexPav7SDjH0ze9GwKxvezCcznRJac9ztlnPf6PJDkXhXg9J7zkPeiOMrdAmCW84yKSPCv1W7mvPZi8F_Qevv2Kqri0WmA9RBgfvXSSbThKUai9Y27tPPsFPjiA2-48oLaXvTmXezhYPHW8lqWpu2DnyLZcRMq7fcXDO31dkzeCVUU-dMg3PcnchLkKXAi94sORvTylWLh5MxS9aiyWvUjoMLeWu8c7OUdYPZ42A7jsA707fNQPvhf63LjK9HA9IuErPvHLijjFv5m9czhJPV1O47g4T1C9ONYKPRB2pjaNkfQ6HscLPFrwlzggADgTQAlIbVABKnMQABpgEvsAMB4N3QEbGOfh4ugOCAoQxAPV5gAGwQDpHO8kDArjwBH4_xv7Ft-9AAAAIAr8BfsA7lrP7OEcHPAawszWFxV_AQYG5OcP9ML0DRYA3A0TJixdAArwxjYe6NEp2h0eIAAtTjFCOzgTQAlIb1ACKq8GEAwaoAYAAJjBAAAQwgAA6EEAAAzCAAAAQgAAGEIAAP5CAAAAAAAAWMIAAGTCAACcQgAANMIAAMBAAABAQAAADMIAAIBCAAAEQgAAiMEAAIA_AABgQQAAAEAAAMBAAADwwQAAoMEAAIjBAACAPwAAZMIAAEDBAADIQQAAEEEAAJLCAAAAAAAAgMIAAABBAAAwwgAAEEEAANhBAAC4QQAAEMEAAOBBAACQQQAAAMEAAIhBAABowgAA0EEAAATCAABAwQAAHEIAAJJCAAAkQgAAgL8AAATCAACAQQAAoEAAAKDBAABgQQAApsIAAADBAAAwwQAAgL8AAADBAAAkwgAAEMEAABTCAAAkwgAAwsIAABTCAABgwgAAMMIAADzCAACmQgAAUEIAADzCAABIQgAAoEEAAHzCAACowQAAJEIAABDBAACKQgAAHMIAAKBCAAAAwAAA4MEAAEDBAACGQgAABEIAACBBAADAQAAAkEEAAFDBAAAAQgAAZMIAACBBAADIQQAAOMIAAGBBAAAQwQAAwMAAAJ5CAABwwgAAMEEAACBBAABAwQAAYMIAAKjBAAAIQgAAwEEAALhBAAAgQgAASEIAANBBAAD4wQAAuEEAAKDAAABAQQAAKEIAAFDCAABQwQAAsMEAANjBAACQwQAAgEAAACBBAAAEwgAA8EEAACTCAAAQwQAApsIAAIhCAADAQQAAQMEAAATCAAC2QgAAiMEAAOBBAABgQQAAqsIAADTCAAA8wgAABMIAADxCAAAMQgAAcEEAAIA_AAAwQgAAIEEAAIDAAACAQAAAiEEAAEBAAACAQQAAUEIAAPjBAAA4QgAA4EAAAJDCAABgwQAAXMIAAMhBAABowgAAIMEAAHBCAADQQQAAoMAAAHBCAAA8QgAA4EEAADxCAABwwQAA8MEAADBBAABQQQAAZMIAADTCAAA8QgAAUEEAACjCAAAQwgAAtkIAAKbCAADAwAAAEMEAABzCAAC4QQAAAMIAACjCAAAUQgAAMMEAAABBAAAQQQAASMIAAEBAAAC4QQAAoMAAAMpCAAA4QgAAsEEAAPjBAAAwwiAAOBNACUh1UAEqjwIQABqAAgAAgDsAAEy-AABMPgAA6D0AAEA8AADIPQAAQLwAAAm_AAB8vgAAFD4AAMg9AABQPQAAND4AALg9AACOvgAA4DwAAFw-AABwPQAAUD0AAJo-AAB_PwAAHD4AADy-AADKPgAA6L0AAKC8AACYPQAA-L0AAMg9AABAvAAAUD0AAOC8AAA0vgAA2L0AAOg9AABwvQAAqD0AACy-AAA0vgAAuL0AAKi9AACoPQAAyD0AABA9AAA8vgAA6D0AAMg9AABcvgAAgDsAAFS-AACWPgAAEL0AAK4-AAAUPgAApr4AALi9AAApPwAAqD0AABS-AACAOwAAiD0AAAw-AACgPAAA2r4gADgTQAlIfFABKo8CEAEagAIAAAy-AAAcvgAAqD0AAF-_AACAOwAAqD0AAKA8AABAPAAAcL0AADA9AABwvQAAmL0AAIC7AAAwvQAAmD0AAEC8AAA8PgAAKz8AAHA9AADCPgAAJL4AABC9AABkPgAADL4AAAy-AADYPQAADL4AAOC8AACmPgAA2D0AAOC8AADoPQAA4DwAALq-AAAQPQAAVD4AAIg9AABwPQAAiD0AAEA8AADoPQAAUL0AAHS-AACIPQAAbL4AAGw-AAB_vwAA-L0AAEC8AACqPgAAFD4AAAy-AACIPQAAqj4AAIi9AACIPQAAQDwAAGS-AAAwPQAAVL4AACw-AAAwvQAAiD0AAEC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=XC0usnWEiGc","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15011546641387573340"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3261255056"},"17950223480233664893":{"videoId":"17950223480233664893","docid":"34-4-13-Z809A3D5A94C6C97B","description":"Here is the link to the data used in this video: https://drive.google.com/file/d/1dU_4...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3659831/e4952fd8a33e18fc5db411b667e621be/564x318_1"},"target":"_self","position":"13","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dt7kw1_Az9Gc","linkTemplate":"/video/preview/17950223480233664893?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Linear Regression - CI for parameters","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t7kw1_Az9Gc\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoWChQxNzk1MDIyMzQ4MDIzMzY2NDg5M1oUMTc5NTAyMjM0ODAyMzM2NjQ4OTNqrw0SATAYACJFGjEACipoaGZlamp3cW55a2Jrc2FiaGhVQ1otOHUwM045aHF4UUxxeVYwYUs5bFESAgASKhDCDw8aDz8TnwaCBCQBgAQrKosBEAEaeIH9_P0O_gIA-Pz6BwEG_QEQCAML9gEBAPYH_P7_Av8A9QMBAgcAAAABAwb9_wAAAPf1_f79_wAAGQXw_gMAAAAV8Pf3_QAAAAkH_PcJ_wEB9wQC-AIAAAAL9gEGAAAAAAUA-P79_wAA7hD_9AAAAAAH-AD-AAAAACAALdOk2js4E0AJSE5QAipzEAAaYAkFABr9CvjzGxD_2ODdBQ7bHtsJ5AIADtsA1Q_y_DAHEsgYDwAhBRL_xgAAABoFCQwWAPo98d7oAfQJJub2C_n7fwMb6xMPIv_pDSEJHPMYECgQEAAO_h_7OeHmJxARFSAALWnZdjs4E0AJSG9QAiqvBhAMGqAGAADQQQAAUMIAAChCAACcwgAAyMEAACDBAACqQgAAQMEAAFjCAACgwAAACEIAAKDAAADAQQAAwEAAABjCAACwQQAAmEIAAIDAAACgQQAAoMAAAPjBAABwwgAAKMIAAFBBAACSwgAAmMEAAABAAAAQQQAAAMEAACBCAAA0wgAAoEAAAFjCAABEQgAAvMIAACjCAADQQQAAKEIAAIA_AAAoQgAAuEEAAEDAAADAQQAAUMEAAGBBAACCwgAAHEIAAIJCAABYQgAAOEIAAJDBAAAQwgAA8MEAANBBAABAwAAA4EAAAILCAACQQQAANEIAAFxCAADAQQAALMIAADjCAABgwQAARMIAAADDAABQwQAAHMIAAEDBAABAwQAASEIAANBBAACwwQAAnEIAAPjBAAAowgAAXMIAAABBAAC4QQAAFEIAAKjBAAC-QgAAUMEAABzCAABQwQAASEIAAIDBAABQwQAAIEIAAGBCAAAQwQAA8EEAAFjCAACAwAAAQEIAACDBAABgwQAAQEAAAKBBAAC-QgAAgsIAALDBAABAQAAAoMEAACDCAAAcQgAAgEEAAOBBAACAQAAAVEIAANpCAADYQQAAYEEAAIBAAAAAQAAAaEIAAFRCAAAwwgAAIEIAAMDBAADwwQAAFMIAAFxCAAAAwQAAyMEAAABAAABcwgAAmEEAADTCAAAQQgAA4MEAAODAAACAvwAAjkIAAIC_AABgQQAAgMEAADBCAABwwQAAlsIAAKDAAAAwQgAAWEIAAODBAAAQQgAAPEIAADDBAADYwQAAgEEAANDBAACIwQAAAEAAAGBBAADAwAAAgD8AAODAAACawgAAoEAAACTCAAC4wQAAnsIAABxCAAAcQgAACEIAADRCAAA8QgAAwEAAAEBCAACOQgAAoMAAAHDBAABQQQAAHEIAAILCAABUwgAAYEIAAOjBAACAvwAA-MEAAMBCAACMwgAAEMEAAMDAAAC4wQAAqEEAAABAAAA8wgAAAMAAAPDBAACgQQAAWEIAAABBAAAAwQAAmMEAAJjBAABkQgAAgEEAAJjBAADIwQAA4MEgADgTQAlIdVABKo8CEAAagAIAAFC9AACivgAAVD4AAEQ-AABcPgAAED0AAKA8AADKvgAAcL0AAAw-AABwvQAAUD0AADA9AAB0PgAALL4AADA9AABkPgAAiD0AAHA9AACGPgAAfz8AADA9AADovQAAfD4AAAS-AACIPQAAVD4AAEC8AADIvQAAbD4AAKg9AAC4vQAAQDwAAJg9AAAQPQAAED0AAHA9AAAUvgAAmr4AAFA9AAD4vQAAQLwAAPg9AAD4vQAA4LwAAIC7AAAsPgAAgr4AAAy-AAA8vgAAvj4AAHA9AACyPgAAVL4AACS-AAAUvgAAFz8AAOC8AADgPAAAqj4AAMg9AADgvAAAEL0AAIi9IAA4E0AJSHxQASqPAhABGoACAAA0vgAARD4AABS-AABHvwAAQDwAABA9AAAwPQAAED0AAHA9AACiPgAAED0AAOg9AAAUvgAA2L0AABA9AAAQvQAANL4AAEU_AACIvQAAsj4AAGy-AABUvgAADD4AAKi9AACCvgAAJD4AAMi9AACgvAAATD4AAHA9AABwvQAAgLsAAIi9AACCvgAAEL0AAHA9AAAQPQAAiL0AAKi9AACgvAAA2L0AADC9AAAEvgAAmD0AAFC9AACCPgAAf78AADy-AAAwPQAAuD0AAIC7AACIvQAAPD4AANg9AAAUPgAAgDsAAOA8AACWvgAA-D0AAHC9AAAUPgAAMD0AAKA8AADYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=t7kw1_Az9Gc","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["17950223480233664893"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5882481282163889302":{"videoId":"5882481282163889302","docid":"34-7-16-ZD5CA64F8FFC9798B","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3174072/1a3cc549388133941a4cc117591a06b9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0HezQwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DE1v1K04gU_Q","linkTemplate":"/video/preview/5882481282163889302?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"linear combinations of independent random variables","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=E1v1K04gU_Q\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM1ODgyNDgxMjgyMTYzODg5MzAyWhM1ODgyNDgxMjgyMTYzODg5MzAyarYPEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E9AGggQkAYAEKyqLARABGniBAgr6BvwFAPH4AggDBP4B9goGAvn9_QDuBPz4BQAAAPICDvoHAAAABQz_BQMAAAD4Bfr-9P8BAA8B-PwEAAAAE_oJ_QEAAAAJB_z3Cf8BAf8AAQL7AgAB_vcADP8AAAD6FAf9_v8AAPcJEQMAAAAA-_oBAwAAAAAgAC3BWuA7OBNACUhOUAIqhAIQABrwAX8ICAHWKtEA4xa7AdQn4gGrDOsACDDxALnxCwGf4gb_EBDOAc_6x_8T-gf_yhXzABkF1f_v0OkAPxDtAC_dQALyHgUBGun1ATgQFwLvAvL_4CIt_en7AQL489EA6ey5_wryE_kA_-sACuq4CfDwRgP4ASYGGegH_8nuEgLgIP8CCvDXAPgA8gQDAgb65DEjAg7v-voAA_r36yX-BRvSFwL74gT6MhLlATDr7ggSA-r94_YC-PwB5wQDCRsD6Rj19PLcFArj4e8J3BT8ADjrEPvY-gQG5t8T_hME6vkk5Q77BBTzC9v_Aejo-O8C-Av28SAALY27Ezs4E0AJSGFQAipzEAAaYB_zAAjKBu7nEjLoyePiBw8L5AUX4vL_2JX_2CHuIy8NwKDl-v815CjrqgAAAA_1Ax7-APBu7gvqQhEeELTqxh4ufxQrDK7yDvGz9wYGAPswH0scNgAc6rzvSNm-JRDvMyAALS5AITs4E0AJSG9QAiqvBhAMGqAGAABgQgAAgD8AABhCAAAowgAAwMEAAIDAAABsQgAAAEAAAGTCAACIQQAAaEIAABjCAABAwAAAuEEAAMjBAACAQQAAlkIAADDCAAA8QgAAQMAAAIrCAABkwgAAosIAACxCAAAYwgAAiMEAAKDBAACgQQAAFMIAADhCAACMwgAAQEAAACzCAAAUQgAAosIAAKjBAAAwQQAAKEIAAADAAACQQgAAPEIAABjCAAAcQgAAuMEAADDBAACAwgAAOEIAAOhBAABUQgAAWEIAABzCAADYwQAAUMEAAABCAACYQQAAgEEAAKLCAADwQQAAuEEAADhCAABIQgAAQMIAAMjBAABAwQAAMMEAALrCAACYwQAAMMIAAFDBAABMwgAADEIAAIJCAADgwQAAoEEAACDBAAB0wgAAosIAAKBBAABQQQAAIEIAABjCAAB8QgAAIMEAAIjBAACAvwAAlEIAAGDBAAAQwQAAFEIAABDBAAAAwQAAnEIAAAjCAADwwQAAEMEAAIDBAAAAwgAAEMEAALBBAADwQQAAoMIAAOhBAACQwQAAiMEAADTCAAAwQgAAmMEAALjBAACYwQAAGEIAAMBCAAAoQgAAIEEAANhBAACgwQAALEIAAMDAAACQwQAAuEEAAADCAAAQwgAAaMIAAMhBAAAQwgAAgL8AAEBBAAAMwgAAsEEAAITCAADQQQAAcMEAAODBAAC4QQAAkkIAAIC_AADQQQAAGMIAABBCAACQQQAAkMIAAMhBAACAQAAAQMEAACzCAACYQgAAEEIAABDBAACYwQAAoMAAAOBBAAAgwQAAMEEAAPhBAACwwQAAkMEAAMjBAABcwgAASMIAAJjCAACIQQAAQMIAAPhBAACwQQAA-EEAALBBAABgQQAABMIAAKJCAACwQQAAoMAAAEDAAACgwAAAiEEAADjCAADQwQAAeEIAAADBAACAvwAAgEAAAMxCAADcwgAAyMEAACBBAAAAAAAAUEIAABTCAABswgAAAEAAAEzCAAAAQAAAFEIAAGDBAAAcQgAAiMEAAIC_AAAwQgAACMIAACBBAAAYwgAAGMIgADgTQAlIdVABKo8CEAAagAIAAO4-AAAkvgAA4DwAAFQ-AADIPQAALD4AAMi9AADmvgAAVL4AADQ-AADIPQAAML0AAOC8AABEPgAA3r4AABC9AADSPgAA6D0AAEC8AABsPgAAfz8AAOC8AAAQvQAAJD4AAAy-AAC4vQAAUD0AADS-AABQPQAAVD4AAFQ-AACIPQAAcL0AAIg9AAAwvQAABD4AAPg9AACOvgAA4r4AAGy-AABQvQAAFL4AAFC9AABQvQAAuL0AAJg9AAAwPQAAVL4AAOi9AABUvgAAjj4AAHC9AACqPgAAiL0AAAy-AADYvQAAKz8AAEC8AACYvQAAQDwAAKi9AAAcvgAAgDsAACS-IAA4E0AJSHxQASqPAhABGoACAADIvQAAHL4AAES-AAA3vwAABL4AAKC8AACoPQAA-D0AAJi9AABEPgAAmL0AAMi9AACAOwAAiL0AAAQ-AAD4vQAANL4AABM_AAAkvgAAqj4AALi9AABAPAAAuL0AAEC8AACoPQAAuL0AABA9AACYvQAAXD4AADA9AAC4vQAAED0AAEA8AACqvgAAcL0AABC9AADYPQAAPD4AALi9AABkPgAAgDsAABy-AABQvQAAuD0AAHA9AABEvgAAf78AALg9AABQvQAAMD0AAIi9AABEvgAAfD4AAKi9AAAQPQAAoDwAAIA7AACAOwAAUL0AADC9AAA0PgAALD4AAOA8AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=E1v1K04gU_Q","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5882481282163889302"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"2479046948768445264":{"videoId":"2479046948768445264","docid":"34-8-0-Z0848D7A71708C71C","description":"In this video I show the proof that the total sum of squares equals the regression sum of squares plus the residual sum of squares...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2340052/73e987a090a0efa220fba3a9ce978312/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/GY0H7AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKzQU3xIYw7M","linkTemplate":"/video/preview/2479046948768445264?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Simple Linear Regression - Partitioning Total Variability Proof","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KzQU3xIYw7M\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChMyNDc5MDQ2OTQ4NzY4NDQ1MjY0WhMyNDc5MDQ2OTQ4NzY4NDQ1MjY0aogXEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E90IggQkAYAEKyqLARABGniB-vr6CwP9APAI_QoABf4BDf76Cfb__wDxAQcKAwL_APIACPz7AAAABgP8CgoAAAAB9gEF9f0BABj3-_nzAAAAHu8CAfoAAAD9BfHw_wEAAPnxAPcCAAAAC_UBB_8AAAAJAQz0__8AAO0R__MAAAAAD_4B9QAAAAAgAC1gxss7OBNACUhOUAIqhAIQABrwAX8ICAHq5uQC7Az_ALMD-gCfNAP__DTSAMv2_wDKFvwB-AAkAMwO9v8HHRMBtSn4_xPYtALr4PsALroMAiXT7gHm7fcAN-gUADgQFwL5EfQA__49_gPG-gEe5uUA_QPlAAr6IAEI-9kBBR3kADTvIALoDzMBHwIY-92w_QHn1wkE9erv--sd9v364wr-4PUwB-_T-AEBFgL6xDsGAwrkBQMI7xf2BUz2_QX-CQkIF-8G0OLn_Avj6AIdJgr60R_4BxH4HQrLCQYFC9QIBR_vBffo9e72Cc74AQ3c-QbxCwYELgH49wEPAPgM9e4P2fL1-SAALY27Ezs4E0AJSGFQAirPBxAAGsAHzF3DvmTS-LpL8P47pZ2PvUTkz7yFS728FNqYvSdPeT0LEYm7mSktPlpVtb1TbQG9aDePvSZ-1jxA_Je8y4AzPubRiL2YYjM8hzQqvp5pqD22cmW85_4qvl3L_zxIdCo851kEvemiPL3YbEA8wX6-PfL3wb0XrW28ZgOvvWj8DD2GuTO9IhehvTucirwFK1O9E1y0uzHMDr0v-sg7agSBPZOQk70PWCQ7r8epPSgmELus0Ba9XR5GvBAGnjxhmS29kFEZPXqEPz38Ziw96_uFvT5oTL2HOxE83wkMvc8pUDm2jh68anNXPWCU4LwNFjE7YpOpO3EqyL3Iaqm8L4byvXSQfLz9Iaw8LOVGPYZNrjxjUJ47xmGqvatbnT3u1Jo7UocPPFATorygbIq8SxcHPf-JGz00z1s8QX52PfIfOTudCCy8MS1FvSRgtjv0sIY8W5WUPeoOqL0wMIa8oJuHPQj4fzxrvoi7gxT-O-cYgD1qXG68K-oAvHNuSTyoUo05ZgkcveDODbwiu5w8xTVDPfhRDb4Jbyy77EO4vY9QA75_QBC76xPKPAnmQzxuQqu8SBgGPm7JZb3t1QW8vz3ZPE4ddbw5W2W7MKtTue7Omrxtk4a73gLpvZiThjzp5Ji6GlUBvYuBHz11LCW8M43mvDCgpz3goBy8uNIGPQhW1b0-uhK6VoaMPdW0Jr3O_v67rvIEPgnF9j2hwOI2VPqePZroOL14Wk840dWRvfU2rLwiJ-E6iKZHvVdgg710_2c4bQPXPbWj2L0Mn685t6lLPS1aBT254mI5ujsBvTcfUj2kw3K5PZrKPcTYiL3om1K4rS-3Ov0S8b28I4k5QkPaPEbZkTxpN_o5NplsvRLzUT3PR245zCDDvdQNBL4IU4U5N_viOrxUET1ccLm2BwzSPV9pz7zV39W0ThbtvOgIKjxFW2I3QxWTve4csTvSQ9w5x8o5vXkTzTzZoRW4I6yMPfRsBr7PcKU5s0aYvaornz2p-jq4joopPW0fsjzmZFk3rBNhPAKE7z2oGp42qvkFPR8OMr3B4b83O3pSPTinbTyrpT24tJAQvtiMoj2ZewS37h3aPBwZtbyflGy3qSpZPdAUgD18rpQ4qdEVPbP_S7zl31G3sRUEPsb_-Dsy2VO4ClwIveLDkb08pVi42MlKvQxQRL1awKq4pNAIvSRECT6bFsE2tQsbPN7cab1Ngx24yvRwPSLhKz7xy4o4KZ5pvHjNkD2h5pq4VdfGvbuZUbz5mlu3EL8svedaLz0tpmQ4IAA4E0AJSG1QASpzEAAaYBj2ACwaA_j4EAj23b_lCBTcDs4ayt8A7c4A2yL_By_7x8cOEwAz9QDoswAAAD4C8QQJAABhAuf5Kh_7JMO32PkJfyEGAqbuQeDeDOom_Nb8HyEUbADw9OwuH-XdGQQOOCAALVEpMjs4E0AJSG9QAiqvBhAMGqAGAAA4QgAAcMEAAGRCAABQwgAAuMEAANDBAAA8QgAAUEEAALDBAABgwQAAbEIAAODAAACgQAAA4EEAAADAAAAAwAAAKEIAAJrCAAA4QgAAwMAAABzCAACgwQAA1MIAACRCAACMwgAAcMEAAEDAAADgQQAAAMIAACRCAAA0wgAAUEEAAEzCAAAQwQAAxsIAAMDAAABAQAAABEIAAFDCAACcQgAAsMEAAFDBAABQwQAAKMIAAOhBAAAAwgAA8EEAABxCAAAQQQAABEIAADTCAAA8wgAAIMEAAGxCAACgwAAAmEEAAIjCAABQwQAAOEIAAPhBAACQQQAAoMEAAHDCAAAEwgAAMEEAALTCAABEwgAALMIAAADCAAB0wgAAMEEAAIpCAADQwQAAmMEAAMDBAAAQwQAAjsIAAEDAAACIQQAAAEEAAOjBAABMQgAAAEEAAMDBAAAcwgAAdEIAAMBAAACCwgAAZEIAAIBBAADowQAA0EEAAEjCAAAcQgAA8EEAAMDBAAAcwgAAYEEAAKhBAABcQgAAAMIAAIDBAABgQQAAsMEAAATCAAB0QgAAQEEAAIC_AABwQQAApEIAAKBCAAD4QQAAQMEAAIBBAACYwQAAIEIAAIBBAAAcwgAAoMEAAADCAADAwQAAHMIAAExCAAAUwgAAQMEAAJDBAADAwQAAMEEAAITCAADYQQAA-MEAANjBAAAcQgAAGEIAABTCAABEQgAA4MAAAEhCAACowQAAMMIAAABAAABQwQAAIMEAAIzCAAAQQQAAJEIAAKBAAADoQQAAsMEAAEBBAAAYwgAA-EEAABRCAACAQgAA6EEAADDCAACWwgAAiMEAAADCAACAwQAAZMIAABxCAABkQgAA0EEAAKBCAABQQQAAmMEAALJCAABwQgAAMMIAABDBAACowQAAgL8AAL7CAABwwQAASEIAAPjBAACAPwAAUEIAAFxCAAC0wgAAmMEAAJhBAADQwQAAIEIAAODAAADIwQAA-MEAAFBBAACgwQAAkEEAAAAAAAAQQQAAYEEAAEBBAACYQgAADMIAAIjBAADwQQAAsMEgADgTQAlIdVABKo8CEAAagAIAAJg9AACmvgAAqD0AAFw-AAAkPgAAmD0AAFC9AADSvgAAdL4AAOg9AADoPQAAqD0AAKA8AAC4PQAAFL4AANi9AAC4PQAAcD0AAGw-AACyPgAAfz8AAKI-AAD4vQAAoj4AAK6-AAAUvgAARD4AAMi9AABwPQAAfD4AALg9AABwPQAAkr4AAIY-AAC4PQAAdD4AAPg9AACIvQAAJL4AAOi9AACCvgAAyD0AAFC9AAC4vQAAQLwAABC9AAD4vQAALL4AAFA9AACqvgAAdD4AADw-AAAkPgAAJL4AAHS-AABMvgAAOz8AAHC9AADgvAAADD4AAES-AAC4PQAAoLwAACS-IAA4E0AJSHxQASqPAhABGoACAAAwvQAA4LwAAFC9AABVvwAAUL0AAHA9AACIPQAAMD0AAOi9AAAQPQAAED0AAPi9AAAUvgAAFL4AAAw-AAAQvQAAMD0AACE_AAAQvQAAlj4AAFy-AACovQAAyD0AAFS-AACYvQAAyD0AAFy-AAC4vQAAPD4AAMg9AACgvAAAyD0AAIi9AACGvgAAmD0AAKg9AADYPQAAqD0AAIi9AAAwvQAA6D0AAHC9AACCvgAALD4AAIK-AAAcPgAAf78AADS-AACgPAAAfD4AACQ-AAAcvgAAmD0AANg9AABQPQAAQDwAAEA8AAA0vgAAoDwAAOi9AABUPgAAyD0AADA9AACIvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=KzQU3xIYw7M","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2479046948768445264"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"110356309"},"8904369859831480943":{"videoId":"8904369859831480943","docid":"34-2-11-Z241623CBE48E5440","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3931196/2f5969b0444398f10d291c6edb7269a6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YlZ9hgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbQDj7m-w6Rs","linkTemplate":"/video/preview/8904369859831480943?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confidence Intervals for Population Proportion","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bQDj7m-w6Rs\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM4OTA0MzY5ODU5ODMxNDgwOTQzWhM4OTA0MzY5ODU5ODMxNDgwOTQzaogXEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E7QHggQkAYAEKyqLARABGniBD_77_P8CAPT5C_b-AQABCwz2-PYAAADyDwX5BAEAAPUB_AH1AAAA_gYECgQAAADoCPwB-AIAAAn89wUDAAAAFvkADPkAAAD9EQEP_gEAAPLzAQH2AgABA_r9BAAAAAD2DwEDAQAAAP78_v0AAAAAA_n-AwAAAAAgAC3SDNk7OBNACUhOUAIqhAIQABrwAX_79AG9HOL_7O_NAcwg-ACCIgr-HCTiAMwBDgC898oACQr3ANL7y_8U6iQA0Cv-_zUK2_8PyPf_N9_8AAsQFQDG8xUARODwASoJ9wAEBtQB7gUJAAjc_P8A6PEA_QPnAOXsEvzD_ekC2vXXACL8KwEe7SMCC_I5AeTeEv3BMhACDNPZ_uvs-gXr6_4C2hkeAgjtFAUNBQMCAvwXABUF6v3-4Rb99BHb_xb-9AL7CgL-6PQS_hr36PguFA0C1wz9BQr8CQkGCu8G3REM9Rj0DQfg9gr3-eMTCRL98wji3gn3zxTw9_oGCfbfAf4I_AYS9yAALWPLHTs4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm7yXeEutU15Dz78c28NjXYO5t8rj0b6yc92Is6Oxv3gTxTQxa9n-SWvhvYaj1KDU29_b10PpJUS70Dsew8ehcvvgg8MD0pn9S8Meoqvrpw1jpBEhG9ulaxvMNUaTz2rma8msGpOxP5ibt9AeI7b4sIvUNHB7oj2Bi9qb--vdbxa7u9Aea8XS-iPUil2LxHSZm8dzHtPY8AKb12lhE8DPKpPdkBfDxf6qm7dHvpvaUWyry7WpO8SwDePbiWAzwMELu85IM_u3wDPb0rDow8yRpKOgoxpz3TO407Y15sPDsODT0tTuu8jz-MPRBl3jz4x5Y8QLexvT0pEz2a3Bw8ZjBmPQvKmT3zgZO83O-Fvd0J9j3Ineu6zWEyPWVRWDz7Tl28LuciPsGquj2qvkC621d5veOfIz2og8a8qh5GuoCBgD1U02Q8S6KoPZaNs7wlXpo7a4OuvMlILDzexou8JS-hvKO5hDznlFu8LTOWPat4I70SjjS8iFcoPaWNmTx8Z826RVylPHO49r3kBDc8Yd6jPIY84r1ZSXG7GLAkPTEd3zxVhcg7rU-Yu-5KwbzJd-e6k64UvSieLr0QYt-7jOgIPbs8QryWQda7NtPIvXyUNjwucxu8ByM2vbwcmzujyjC8Qp--PFwxjT1He5M75tKTPDeGBb0PH2A7eROiPScBA7uQw9y7b4CZPQbTFbxEVYa7WrNaPT12kb3qhti6xLkfu-zstbyZUYM7TvNpvHu2g70cm9u6PmFEPecDfb0nlr24wJCbOjwUhT035rQ4U2-XvPJ3Dz34CCQ59d1IPdtWaDl4mAS5JTIdvZUQjL3SI6k4uEPgO4qMM7xNJDy5chO5uxKODz0mt0q6UNBcvRLk1rzezyo6zM2cPTlQVj037F24bVWSPLYC2DsGeDg3vNRDvUFYFbu5SOa3oPvyPOcqZ70ZrWc44xaYvNeufz3XUzg4CilkvOtDbb2kWfM2lu2ePGwbKz0THW64ksyqPCJVBD4FDR83H0dzPL8S4TvsFi-4NNzbPOZdJb4GnOe4qBedOyIV6zwHq362yuEDvhDXHjyX_U43L8hRPc9V6bz5UjM4Yp3qvGG27jw5P363lW2GvQqG7zs4u443glVFPnTINz3J3IS5WwWWvHAINb08Rai3OOeWvEbAN71q4gO4kEKjPCN3ojyTNOS3JtyQvBYwMb5BoFq5yvRwPSLhKz7xy4o4YJqYPFua-z2Erf24Mkl2vaQj77wKWy24jZH0Oh7HCzxa8Jc4IAA4E0AJSG1QASpzEAAaYED8AED6Kf_q1kzmI_fyD_jf8tMn3Ab_9cj_7SDm2_EG19MB7_8-yRPrpAAAADFAzjAZAAl__ADJ_eI6GMKn7SUZYCUmUs4LCfHa8_4vALcn4eQDTQD77K0sRfXINg83EiAALQA-Hjs4E0AJSG9QAiqvBhAMGqAGAACgQQAAIEIAAMhBAACQwgAAPEIAANBBAADQQgAAgEEAAGDCAADAQAAA4EEAAFDBAAD4wQAAAEIAAOBBAACoQQAAuEIAADDBAAAgQQAAwEAAAJDBAAAowgAAuMIAAARCAABQwgAAAEIAAAAAAAD4wQAAQMEAABhCAAAAQAAAEMEAABzCAACEQgAApsIAAIC_AADQQQAA-EIAAIBAAAAEQgAAoEIAAJjBAAAgQgAAuMEAAHBBAAD8wgAAUEIAAJ5CAADwQQAAEEIAAHzCAADAQAAA4MEAAKBBAAAgwQAAIEIAALzCAACgQAAAgMAAANhBAABEQgAAmMIAAATCAAD4wQAAAMEAAFDCAAC4wQAAYEEAAMBAAACIwQAAKEIAAKpCAABUwgAAPEIAAADCAAAgwQAAkMIAALjBAAAYQgAAgEIAAFDBAADEQgAAoEAAAEBBAABgQQAA6EEAAIDBAAAYwgAAfEIAAIA_AACgQAAAeEIAABDBAABAQAAA6MEAAODAAACAwQAAkMEAAAxCAAAoQgAAWMIAAIhCAABgQQAAsEEAADTCAACIQQAAoMAAABRCAAAIwgAAuEEAAIBBAABIQgAAAEAAAMhBAAAAQAAAVEIAAMBAAAAIwgAAmEEAADDBAADgwQAAIMIAAJDBAACwwQAADMIAAMDAAAAgwgAABMIAAODAAADoQQAAiMEAACDBAAAgQgAAMEIAAATCAACgQQAAEEEAAADBAAAUwgAA6MEAAEDBAACgQQAAkEEAADjCAAAkQgAAcEIAAIjBAACgQAAAEEEAAJjBAAAowgAAREIAAIBBAABAwQAA2EEAALjBAACCwgAAWMIAAJbCAAAQQgAAoEAAABhCAABMQgAAQEEAAKDAAAAwQQAAwEEAAHxCAABEQgAAqEEAAGBBAACQQQAAIEEAAPDBAADowQAA4MAAALBBAADwwQAAMMEAAJZCAADUwgAAOMIAAADBAAAAQQAAXEIAAEjCAAAMwgAAUMEAABDCAAAwwgAAmEEAADzCAABAQQAAKMIAACDBAABwQgAAoMAAAIA_AADgwAAAIEEgADgTQAlIdVABKo8CEAAagAIAAOA8AAAUvgAAqL0AAHA9AABwPQAA6D0AAOC8AAAnvwAA4LwAAFQ-AAD-PgAAMD0AAFC9AAAwPQAAqL0AADA9AACIPQAAQDwAANi9AACOPgAAfz8AALI-AAD4vQAAdD4AAAS-AAAkPgAANL4AAEy-AAC4vQAA4LwAAEw-AACgvAAAvr4AAJi9AABAvAAAqL0AAOA8AADYvQAA0r4AAJ6-AAB0vgAA6L0AAKg9AADgPAAA6L0AANi9AAAQPQAAVL4AABQ-AACevgAAQLwAAKA8AABQPQAA6D0AAIa-AACIvQAAGz8AAKA8AADIPQAAEz8AAGQ-AACAOwAABD4AAKg9IAA4E0AJSHxQASqPAhABGoACAACgvAAAoDwAAOi9AAAZvwAAUD0AAPi9AADYvQAAoLwAAIi9AAC6PgAA6D0AAFC9AACIPQAAhr4AAFA9AADIvQAAQLwAACc_AABQPQAAnj4AAIC7AABwPQAAhj4AAOi9AAAQPQAAFD4AAHC9AADYPQAA2D0AAIA7AABAPAAAmD0AADA9AACIvQAAgLsAANi9AACIPQAAmj4AAHC9AACoPQAAxj4AAEC8AAAsvgAAuL0AALi9AADgPAAAf78AABC9AABQvQAAJD4AAFC9AAAUvgAAHD4AAMg9AADoPQAAgLsAAOC8AADovQAAhr4AACy-AADIvQAA6D0AAIC7AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bQDj7m-w6Rs","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8904369859831480943"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3427456858"},"8836811271579963964":{"videoId":"8836811271579963964","docid":"34-0-4-ZF0F7CEE5831DD71A","description":"Transcript: In this video I want to discuss permutations. The number of permutations of n distinct objects taken r at a time is n factorial divided by n minus r factorial. Let’s start with an...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4256615/f101f8afd2483331d3b18886eeaa09a6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Fh_GWQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQ0UWh6tV8-E","linkTemplate":"/video/preview/8836811271579963964?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Permutations","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Q0UWh6tV8-E\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM4ODM2ODExMjcxNTc5OTYzOTY0WhM4ODM2ODExMjcxNTc5OTYzOTY0arYPEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E7kCggQkAYAEKyqLARABGniB-ff8A_sFAAUEDgX6CPwC-v338_n9_QAIAAQLBwP_AP0BCgAJAQAABgX9-wAAAAD8Cf4ABP4AABD8_vkDAAAABewE-f4BAAAODP0DEP4BAf4HAwAC_wAADwMHDwAAAAD6FAf9_v8AAP4PBQAAAAAABf4C-QAAAAAgAC3Od-M7OBNACUhOUAIqhAIQABrwAX_T_ACrDO39JPT-ASUDCgC6JDj_RSLeAKP6HgGzIuwADMv_AQskzADv2vIAuyBI_9bs2P_u2RP_Rf_l_jUpDAAIOR8AHOf0ATDaBAD-Avb-Dgog__f5LAFA7gECKPr--v8MHfzhDvgEGCbmASDmGQNP-x4BwAAEBAoQDAT7DhX9MSbD__PiLQIDAgb6udcpAg3m_AnlDe723_Qb_PoAEwgOxdkAFvTaACLb3QBE7vsB8doC-iXd4gI4HSwK7iwHCx4GJQDs_fH4Fg4E8h7c6_P0AOgD2eDwCwcS9_MFDOfwv-UM9_vwE-no4fMP5ub4GiAALai2Bzs4E0AJSGFQAipzEAAaYBwBAEDSQuzlCgb2-u3TA_H-JfI1wfX_5sb_DDURDRw8xOjyKwBG-x3wqwAAADHsDTzmAPls7QrfHOvxM9Er8erzexsjN8jSHOrupuNB_f0zJNckAgAL-LP_NtCBETQI5SAALaHJIDs4E0AJSG9QAiqvBhAMGqAGAABoQgAAwMAAABhCAAAgQgAArMIAADRCAAB8QgAAkMEAAEBAAACowQAAFMIAADBBAADAQAAAUEIAAGxCAAAQQgAAQEIAADTCAADAQQAAOMIAAADBAAA0wgAAJMIAAPhBAADAQQAAgEAAAEjCAADIwQAAUEIAABxCAACGwgAAEMEAACDBAADwQQAAyMIAAAAAAABsQgAAgkIAAADBAACAwQAAoMEAAMDBAAAwQQAAMEEAANhBAAAEQgAAwMAAAKjBAAC4QQAAQMAAAIjBAAAgwQAAsEEAAJhBAAAwwQAAKMIAAIhBAAAQwgAAbEIAAMhBAACAvwAAYMEAAJzCAABgwgAAAMEAAJjBAACIwQAA4MIAAKBAAAAgQQAA0EEAAFhCAAAAwgAAmMEAAODAAADMwgAAjsIAAFDBAACgwAAAgMEAAGDCAACAvwAALMIAAAjCAAAgQQAAQEIAALDBAABgwQAAAEIAAJDBAAA0wgAANEIAALBBAABEwgAAFEIAAFjCAAAEQgAAgMAAAKBAAABsQgAAmMEAAMhBAACUQgAAhsIAAIzCAADwwQAAyMEAAJBBAAAQwgAA6kIAAEhCAAAUQgAAMMEAAIBBAAAIQgAA-EEAALhBAAAgwQAAPEIAAK7CAACwQQAAAEEAALjBAAC0wgAAYEEAAKjBAADYwQAAiMEAANjBAACYwgAABEIAAABAAACgQAAAikIAAKDAAAAwQQAAoEAAAMDAAACAvwAAmMIAAEBCAABAQQAA8EEAAJhBAABgQQAAqMEAAJjBAAAQQgAAQEEAAFjCAABAQQAAqEEAABBBAADYwQAANMIAAPDBAADowgAAwEEAAMDBAADYQQAA4MEAAMBBAAAQwQAAQEEAAKhBAAAEQgAA-EEAAMBBAACAQgAAEMIAAPDBAACowQAAyEEAAIDAAAAgQgAAREIAABBBAACgwAAAMMEAAMpCAABgwQAA7MIAAPBBAAAQwgAAiEIAAATCAADYQQAAhEIAAIC_AAAUwgAAgEEAAOBAAAAgwgAAEEIAAHDBAACIQQAA-MEAADDCAACIwQAAFMIgADgTQAlIdVABKo8CEAAagAIAAJi9AACAOwAAQLwAAIY-AAAwPQAAUL0AAGy-AAC-vgAA-L0AAGw-AACoPQAA2D0AAIC7AAA0PgAA2L0AAIi9AAAMPgAAED0AAEC8AACaPgAAfz8AAIg9AACAOwAAuD0AAAy-AABwvQAA2L0AAOA8AAB8PgAAHD4AALg9AADYPQAATL4AAPi9AACoPQAAUL0AANg9AABAvAAAHL4AAFy-AACAuwAAJL4AAAw-AADYvQAAoLwAABw-AABQPQAA2L0AABC9AAAcvgAAyD0AAOC8AABUPgAAoDwAABy-AACAOwAAJT8AABA9AACoPQAAoDwAAMi9AACAOwAAUD0AAPi9IAA4E0AJSHxQASqPAhABGoACAACYvQAAuD0AAIC7AAAbvwAA4LwAAKA8AACKPgAARL4AANg9AABEPgAAuL0AAGy-AAAsPgAALL4AABA9AAAwvQAAPD4AABk_AABQvQAAnj4AAKg9AADIPQAAMD0AAEA8AACgPAAALD4AAOA8AADoPQAALD4AAIA7AACAOwAA2D0AAIg9AACmvgAAHL4AANg9AABUPgAA-D0AAFC9AAAQvQAArj4AAJg9AADoPQAAML0AAIA7AABQPQAAf78AAKA8AAC4vQAAtj4AACw-AACIvQAAgLsAAKg9AAD4PQAAuD0AAEC8AABAvAAAbL4AAIC7AAC4PQAAqL0AAFA9AAC4PSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Q0UWh6tV8-E","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8836811271579963964"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"797126571"},"14928884400174795031":{"videoId":"14928884400174795031","docid":"34-9-13-Z182B0469F41B0BE6","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3844374/40e141e16eafa2c0f71c4f6cb156f19d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AJ94cQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXElZn9bYHg4","linkTemplate":"/video/preview/14928884400174795031?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Transformations","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XElZn9bYHg4\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoWChQxNDkyODg4NDQwMDE3NDc5NTAzMVoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzFqrw0SATAYACJFGjEACipoaGZlamp3cW55a2Jrc2FiaGhVQ1otOHUwM045aHF4UUxxeVYwYUs5bFESAgASKhDCDw8aDz8TwgiCBCQBgAQrKosBEAEaeIH59_wD-wUA-gcM_fwE_wH2A_34-v39APP7_fwGAQAA-PwJCgkAAAD7AvvxAQAAAPcDB_z8_wAA__z_A_oAAAAE-QIHBv8AAA8Q-vn-AQAA9voG-QIAAAAIBA78_wAAAPUKA_oCAAAA8wYJDQAAAAAH-_4JAAAAACAALc534zs4E0AJSE5QAipzEAAaYAQSABrwFd7wEvD6AvDJDhwgG_Uf5OMA2ecAGyH-5SwJ_uXs_gAyAAYAyQAAAOX5DyILAPxAANbyHQUBG9T7Ef_vfx0XBvDx5A_nIhMJCxITDAoLBQDx4hf76BDmPxkxMCAALZXabzs4E0AJSG9QAiqvBhAMGqAGAABAwgAA-EEAAJhBAADIQQAAQEAAACxCAACQQgAAgMAAAETCAACAwgAAAMAAALbCAACcwgAAuMEAAJrCAAA4wgAA2EEAABDCAAAgwgAAEMEAAI5CAAAkwgAAQEEAAADAAADgwAAAmMEAABDCAACAPwAAikIAAKjBAABUwgAAuEEAALjCAABQQgAAwMEAAFjCAAA8QgAAQEAAAJjBAABQQQAAHMIAAABCAABQwQAAkEEAAGTCAACowQAAoEAAANDBAAAwQQAAMMEAABjCAAA0wgAAAMAAABDCAABwQQAAwEAAAITCAAA4wgAAgL8AAABAAACwwQAAAEEAAEjCAACAwgAABEIAAL7CAABAwAAAsMEAAEzCAACYwQAAaEIAAADBAADwwQAAYEIAACRCAAAwQQAANMIAAABAAAAoQgAA2EEAACDBAACWQgAAVMIAAKhBAAAgQQAA4EEAAMBBAAAAwQAA0EEAAKjBAADAQQAAgEEAAKDCAACAwAAAUMIAANzCAADAwAAAUEEAAERCAAAEQgAAOMIAAGBBAAA8QgAAkEEAAKDCAACoQQAAqMEAAIhCAAAMQgAAkEIAAGBBAAAgQgAAGMIAABhCAAAAAAAAAMEAAJhCAAAgQgAAUMEAAOhBAADgwAAAoEAAAOhBAAAUwgAA2MEAAJhBAACAwAAAoMAAALLCAAAMQgAAuMEAAJDBAACgQAAAqEEAAOBAAAAAAAAAcEIAANjBAADYwQAALMIAAFDBAACYwQAA8MEAAGjCAAAYQgAAwMAAAHjCAAD4QQAAXEIAAMhCAAAAwAAAAEAAAIRCAABYwgAAqMEAABDCAACAwgAACMIAACxCAAA8QgAAoMEAAIhCAACAvwAAwMEAABDBAAAcQgAAoEAAAGRCAABMQgAA2MEAAOBBAAAIQgAAyMEAAKbCAABQwQAAyEEAAEDBAAAAQAAAIMEAAJBCAADAwAAAAMEAAFDCAADgwAAALEIAABRCAABwwgAAGMIAAFhCAAAEwgAA4EAAAOhBAADQwQAAkMEAADBBAADAQQAAqEEAAOhBAAAgwgAA8MEgADgTQAlIdVABKo8CEAAagAIAAPg9AADIvQAA-D0AAEw-AAAkvgAAoLwAAKi9AAD2vgAAoLwAAHw-AABsPgAAUL0AALg9AADoPQAAqL0AADA9AACKPgAAoDwAAAS-AACSPgAAfz8AAFA9AABAvAAAcD0AAOC8AACgvAAA2L0AAFC9AAAwPQAAqL0AAKg9AAAcPgAARL4AAOA8AABwvQAALL4AAEQ-AACYvQAAjr4AAAy-AABEvgAAqr4AAFA9AAD4PQAANL4AAHC9AAAQPQAAoLwAAFA9AABQPQAA6D0AAOi9AAAcPgAAJD4AAGy-AACIPQAARz8AAPi9AAD4PQAA2D0AAOC8AAAsvgAABD4AAMg9IAA4E0AJSHxQASqPAhABGoACAAAkPgAAHL4AAIi9AAAPvwAAoDwAABA9AABwPQAAyD0AAIi9AACKPgAAiD0AAOC8AAA8PgAADL4AAOC8AACovQAAED0AADs_AADovQAAmj4AAKi9AABAvAAADD4AAJi9AACgPAAAqD0AAHA9AADgPAAAXD4AACQ-AACgPAAAoDwAAFC9AADIvQAA4LwAAOC8AADgPAAA-D0AAPi9AAAEPgAAvj4AALi9AABAvAAAgDsAABy-AABAPAAAf78AANg9AACIvQAAiD0AAHC9AABAvAAA6D0AADC9AAA8PgAAoDwAAEA8AABwvQAAHL4AAHC9AACgPAAAQDwAAKi9AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=XElZn9bYHg4","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14928884400174795031"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8463783969866246044":{"videoId":"8463783969866246044","docid":"34-0-4-Z92AD5B762EAC7654","description":"Made with Explain Everything...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4566853/499b7ceb2f6cbce41d01e0f5ccc5e123/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5AhG-wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOwnrGrU-n4M","linkTemplate":"/video/preview/8463783969866246044?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"4 - Geometry problem","related_orig_text":"Stats4Everyone","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Stats4Everyone\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OwnrGrU-n4M\",\"src\":\"serp\",\"rvb\":\"EqsDChM0MjY5MjU5Mzg4NTcwMzY4NjQ0ChQxNDU2NTI1MDQ5MzIzMTEwMDgyOAoUMTIwMzM2MTcwNzM5NDcyOTM3MzYKEzI2NjYyMzIxMzYyMDYwMzU0ODIKEzc1ODI5NDM5MjU2MjU3ODk2NTYKEzkzMTMzNzcyMzQ0NzY0MDAzOTcKEzIzNjU5MDkxMzA2ODY3MTM1NTcKEzk2NzYyODYyODU2NTgxNjIxODQKEzgwNjI5ODQ0Njc1ODI2NDU1NzkKEzg0ODgxMjIzNzYwNjA2ODcyNjMKFDE1MDExNTQ2NjQxMzg3NTczMzQwChQxNzk1MDIyMzQ4MDIzMzY2NDg5MwoTNTg4MjQ4MTI4MjE2Mzg4OTMwMgoTMjQ3OTA0Njk0ODc2ODQ0NTI2NAoTODkwNDM2OTg1OTgzMTQ4MDk0MwoTODgzNjgxMTI3MTU3OTk2Mzk2NAoUMTQ5Mjg4ODQ0MDAxNzQ3OTUwMzEKEzg0NjM3ODM5Njk4NjYyNDYwNDQKFDExMjM0Njg5MzcyNjcwMTg0MzM2ChQxMzQ4Mjk4MTg1MjkyMjIyOTc3NhoVChM4NDYzNzgzOTY5ODY2MjQ2MDQ0WhM4NDYzNzgzOTY5ODY2MjQ2MDQ0aogXEgEwGAAiRRoxAAoqaGhmZWpqd3FueWtia3NhYmhoVUNaLTh1MDNOOWhxeFFMcXlWMGFLOWxREgIAEioQwg8PGg8_E4oDggQkAYAEKyqLARABGniB-_8B__sGAO8E_AIIAv8ABwEG-vj__wDlAff_CfwCAAD4_gwIAAAA-AUCAgAAAAD8Cf4ABP4AAPkN-vwEAAAABPkFAP4AAAAR-gb1_wEAAP37_fcCAAAAA_QA__8AAAD1Cfr_AgAAAP0MAPoAAAAACv8F_gAAAAAgAC3En-M7OBNACUhOUAIqhAIQABrwAXcHCAHdBvQBzPfXAOob-gGBIgr-NhjyAMgRIgHAA-MA8QfLAOT-2gDy9yX_qBELASLt2v_60gIAERn_AC8QGwDvDCQAI9sKACTtEQHj5O3-4CIR_wn7CgD9yuAA9xLi_w0OEP7FANsA7gPFAhfnKgIMCCkDJO4AAf_gCfrzBSQD_Ofg_fkQA_za6gj42hkeAgcF7v3xGw340PPf_v0B7QPx3f3_N_Xr-wv1_AzxBvz6_Ovr-BAB3wH8IxkKAigK9Pv2DwHx-AUK-PkC9Brg_gHz4QMB5-ER_iTv8gDszgDx3fkO8doT_vvc5gMC6v7tBCAALf8hHTs4E0AJSGFQAirPBxAAGsAHt-zYvl13qTyx1MS8pZ2PvUTkz7yFS728PIs5vXIbCD3HgR46_g3aPV8tUjyc9OO8_Iy7vlpTD7zG6sW7mN0jPoFJkL1D9PW8dXT8vS8Tmj0LAhC99aFrvoTTBz10NcO7bLDwPAproTsO2aO6oDTEPabVUL0R_9Y5b7EMvVZbG71SOMy8iUf9vJOdqL1rcBG9_tVDPWA-eb181rU8YOcmPg3TDb3xHvG8v-NKPfYLVj2W-f281jEzvY1S-Dw0P8i8_m6QPcfscjuhcw09vgq6POUUeLy4uHy8Go2XvAR3ez2riwU9PSgIveO7Hj1nyyC82MIHPUTHmb3yO7K8hneEvUdULT3fmbu7_c-7PXi5iD2rJoi8Jgx0vV1Guz1MLLo8FXUFvJ_EjLwxlDi8uYnaPQnrFT2uC4U76XYAPTBiBD0bB8U7Y2A9PQ8uyD19-e48dxEGPvTeWD2IHme7VkduPX_oeD2rE8a8qj58ve8QoD1LjyY8uTEiPUk9Fb2ZLqO7P7z4PHlFizwOs2E854U_u2GBqb3rCBa8XE2ovLlyUb1vVrO80KD8PFCJ0DyKcQC8QZSJPW0lL707SPw6pj-QvXzgurvAnic7N6ruPCqZUr0LR2s8_DGyvctBqj0DH0C5VK7su-RZeD2WFRa8Qp--PFwxjT1He5M7hjAIPVWnXr3sQr06R7maPWNWObxeBow7sIWqPXa2Mb1RPjs61ZUPPtTsRr3lRxm5ZKuwvJbnhr2I5Ni6X5SFvPC0RrxsyF-43rmmPTtoG73aGcc5HHoLPeLGEjxNLyi65AaNPIHwrD3Geio5PxmjvLL2V71D9Qu4gIKmPFtQKbx5lZG4GU10u1RrhjxQyLy5h-2dPY-BhrzA0Ba4PkKdveiqVL2Wh065uFTru6i7nTuoiCO5bVWSPLYC2DsGeDg3SFl6vSQmKLz1Fw652VcBvL3aVr18t5W4yC9yPJeonj2EkAe4I6yMPfRsBr7PcKU5WQ2DPfENxTzdu-84Bs5jPQ0rJj3L1Uu2wVifPQsZnj29GSM4uD6svGwG-L15_yC457FhPe1ffj0IQyC4OthxvbFovrsGQCA4FiCAPAhUwbsl5Hq2cdsoPRIF6bzJQ7g47QirO-VtmzxHylg4sRUEPsb_-Dsy2VO47CNhvb8nmLtdw-W3epcBvasDZb21Yua30CUBvdBEuzvlMNC3szEGuwivvb0cfaa3yvRwPSLhKz7xy4o4UqSxvIQiZz2d6RO4MQdBvVYeDTzX3602aewBvQxN4zw_aZM4IAA4E0AJSG1QASpzEAAaYBf-ABvsKZQtAiv5-8XlMhql6BYPv_b_EO7_8jPEHTP7yub8LgAwv_sAnQAAAD4LHhrlAP1_7Lk_KfXh7KLgBuMefAES_aXh9SGxvRRlM9bPHvcwIwAlBKMlOvqp02_18SAALbjZCzs4E0AJSG9QAiqvBhAMGqAGAAB4QgAAcMEAANxCAACKwgAAoMAAAChCAACyQgAAoEEAAGzCAADIQQAAuEEAAMBAAACwwQAAQEEAAEBBAAC4QQAAREIAAHzCAADQQQAA-MEAAHDBAABwwgAAmMIAADBCAADYwQAAgEAAAFDBAABYwgAAAMEAAADBAABwwQAA0EEAABzCAABwQQAA3MIAAAxCAAAAQAAAVEIAAKDBAABEQgAAIEIAAABBAACYQQAA6EEAAEBCAACSwgAAAMAAAERCAAAEQgAAEMEAAILCAABEwgAAmMEAAGhCAABAwAAAcEEAAJTCAACwQQAACEIAACxCAAAwQgAAnsIAAHzCAAAUwgAALEIAAKTCAADAwAAAEMIAAIDCAABQwgAApEIAAIhCAACCwgAAHEIAALjBAADowQAAiMEAAGDCAACYQQAAQEAAABjCAACsQgAAKMIAAHRCAAAAwQAArEIAABzCAABMwgAADEIAAODAAABQQQAANEIAAEDCAADAwAAA4EEAAIrCAAAIwgAAgMEAAGBCAACIQQAAbMIAAPhBAACoQQAAUMEAAJLCAADoQQAA8MEAABhCAAAgwQAADEIAAHRCAADIQQAA4MAAAIjBAAAgwQAA8EEAAJDBAACowQAAkMEAAADBAABgwQAA4EAAAEBAAABgQQAAAMIAAGBBAAAIwgAAyMEAAIBAAAAgQQAAgD8AAIrCAACgQAAAjkIAALjBAAAMQgAA4MAAABBBAAAEwgAA8MEAAFBBAACgQQAA6EEAAIjCAACAvwAAyEEAAHBBAAAowgAAuEEAABBBAADIwQAAoEEAANBBAACIQQAAoEAAAMjBAAAswgAAHMIAAILCAAAQwgAA0MEAAFBBAAAAQgAAIEEAAKDBAAAowgAABMIAAHhCAABQQgAAEMEAACBBAACgQQAAFMIAACDCAACowQAAUEEAAOBAAACwwQAAMEEAAIBCAADSwgAATMIAAAAAAABwQQAAFEIAAHDCAAA4wgAAZMIAALhBAAAQwQAAXEIAAOjBAAD4QQAAgMEAAIhBAAA8QgAAcMEAAPBBAACwQQAAgEEgADgTQAlIdVABKo8CEAAagAIAAJ4-AADYPQAAED0AAMo-AAA0vgAA6D0AAEy-AAAPvwAAcL0AALg9AABsPgAAQLwAAHA9AABkPgAAhr4AAPi9AACGPgAAMD0AAHC9AACyPgAAfz8AAAy-AABwPQAADD4AAFA9AADgPAAA-L0AAOi9AAAsPgAAED0AACw-AABAPAAAFL4AAHw-AAC4PQAA4LwAAEA8AADyvgAA7r4AAJK-AAA8vgAARL4AAOg9AABQvQAAJL4AAHy-AACgvAAAgLsAADC9AACgvAAAMD0AAMi9AAAwPQAA6D0AAEA8AADgPAAATz8AACS-AAA8PgAAgLsAAFC9AAAsvgAAHD4AAOg9IAA4E0AJSHxQASqPAhABGoACAADgvAAAHL4AANi9AAA3vwAAyL0AAEA8AADgvAAAoLwAADA9AABcPgAAQDwAAFC9AAAsPgAAEL0AAAw-AADovQAA2L0AADM_AACgvAAArj4AABC9AAA0vgAAHD4AAHA9AACAuwAAUL0AADQ-AADgPAAARD4AAHA9AADgPAAAML0AAIg9AAAwPQAAqD0AAOC8AABwvQAAij4AACS-AAAkPgAAXD4AAHA9AAAcPgAAcL0AADC9AAD4vQAAf78AAKI-AACIPQAA2L0AABy-AABMvgAAZD4AAKg9AADgPAAAyD0AAFA9AADYPQAA6L0AACy-AACIPQAAgDsAAMi9AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=OwnrGrU-n4M","parent-reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":960,"cheight":720,"cratio":1.33333,"dups":["8463783969866246044"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1733028221"}},"dups":{"4269259388570368644":{"videoId":"4269259388570368644","title":"Definitions for Probability Theory: Random Experiment, Sample Space, Element, Event, and more","cleanTitle":"Definitions for Probability Theory: Random Experiment, Sample Space, Element, Event, and more","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2F9qEjxllM0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2F9qEjxllM0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":654,"text":"10:54","a11yText":"Süre 10 dakika 54 saniye","shortText":"10 dk."},"views":{"text":"7,6bin","a11yText":"7,6 bin izleme"},"date":"1 tem 2021","modifyTime":1625097600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2F9qEjxllM0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2F9qEjxllM0","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":654},"parentClipId":"4269259388570368644","href":"/preview/4269259388570368644?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/4269259388570368644?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14565250493231100828":{"videoId":"14565250493231100828","title":"Simple Linear Regression - t tests of parameters","cleanTitle":"Simple Linear Regression - t tests of parameters","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=drnRNkmxn3E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/drnRNkmxn3E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":812,"text":"13:32","a11yText":"Süre 13 dakika 32 saniye","shortText":"13 dk."},"views":{"text":"11,4bin","a11yText":"11,4 bin izleme"},"date":"12 oca 2021","modifyTime":1610409600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/drnRNkmxn3E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=drnRNkmxn3E","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":812},"parentClipId":"14565250493231100828","href":"/preview/14565250493231100828?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/14565250493231100828?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12033617073947293736":{"videoId":"12033617073947293736","title":"Multiple Linear Regression Least Squares Estimator","cleanTitle":"Multiple Linear Regression Least Squares Estimator","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fBaXhzlSO18","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fBaXhzlSO18?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":398,"text":"6:38","a11yText":"Süre 6 dakika 38 saniye","shortText":"6 dk."},"views":{"text":"42,9bin","a11yText":"42,9 bin izleme"},"date":"2 şub 2021","modifyTime":1612224000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fBaXhzlSO18?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fBaXhzlSO18","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":398},"parentClipId":"12033617073947293736","href":"/preview/12033617073947293736?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/12033617073947293736?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2666232136206035482":{"videoId":"2666232136206035482","title":"Simple Linear Regression - Prediction Interval","cleanTitle":"Simple Linear Regression - Prediction Interval","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tJ8cv-fFPHs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tJ8cv-fFPHs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":751,"text":"12:31","a11yText":"Süre 12 dakika 31 saniye","shortText":"12 dk."},"views":{"text":"9,5bin","a11yText":"9,5 bin izleme"},"date":"14 oca 2021","modifyTime":1610582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tJ8cv-fFPHs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tJ8cv-fFPHs","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":751},"parentClipId":"2666232136206035482","href":"/preview/2666232136206035482?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/2666232136206035482?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7582943925625789656":{"videoId":"7582943925625789656","title":"Simple Linear Regression - Partitioning Total Variability","cleanTitle":"Simple Linear Regression - Partitioning Total Variability","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=_BmD2cLXUQQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/_BmD2cLXUQQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":374,"text":"6:14","a11yText":"Süre 6 dakika 14 saniye","shortText":"6 dk."},"views":{"text":"4bin","a11yText":"4 bin izleme"},"date":"7 oca 2021","modifyTime":1609977600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/_BmD2cLXUQQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=_BmD2cLXUQQ","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":374},"parentClipId":"7582943925625789656","href":"/preview/7582943925625789656?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/7582943925625789656?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9313377234476400397":{"videoId":"9313377234476400397","title":"Calculating the Probability for At Least One","cleanTitle":"Calculating the Probability for At Least One","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=H4Ez79mKT04","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/H4Ez79mKT04?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":236,"text":"3:56","a11yText":"Süre 3 dakika 56 saniye","shortText":"3 dk."},"views":{"text":"20,5bin","a11yText":"20,5 bin izleme"},"date":"16 ara 2015","modifyTime":1450224000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/H4Ez79mKT04?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=H4Ez79mKT04","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":236},"parentClipId":"9313377234476400397","href":"/preview/9313377234476400397?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/9313377234476400397?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2365909130686713557":{"videoId":"2365909130686713557","title":"Simple Linear Regression Description Model Assumptions","cleanTitle":"Simple Linear Regression Description Model Assumptions","host":{"title":"YouTube","href":"http://www.youtube.com/live/Mgrl7rCj848","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Mgrl7rCj848?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":369,"text":"6:09","a11yText":"Süre 6 dakika 9 saniye","shortText":"6 dk."},"views":{"text":"8,6bin","a11yText":"8,6 bin izleme"},"date":"5 oca 2021","modifyTime":1609804800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Mgrl7rCj848?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Mgrl7rCj848","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":369},"parentClipId":"2365909130686713557","href":"/preview/2365909130686713557?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/2365909130686713557?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9676286285658162184":{"videoId":"9676286285658162184","title":"Levels of Measurement","cleanTitle":"Levels of Measurement","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=y2EFn8BM0Wc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/y2EFn8BM0Wc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":711,"text":"11:51","a11yText":"Süre 11 dakika 51 saniye","shortText":"11 dk."},"date":"14 ara 2015","modifyTime":1450051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/y2EFn8BM0Wc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=y2EFn8BM0Wc","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":711},"parentClipId":"9676286285658162184","href":"/preview/9676286285658162184?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/9676286285658162184?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8062984467582645579":{"videoId":"8062984467582645579","title":"Common Misuses of Statistics","cleanTitle":"Common Misuses of Statistics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Vat-502xESs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Vat-502xESs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":354,"text":"5:54","a11yText":"Süre 5 dakika 54 saniye","shortText":"5 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"14 ara 2015","modifyTime":1450051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Vat-502xESs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Vat-502xESs","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":354},"parentClipId":"8062984467582645579","href":"/preview/8062984467582645579?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/8062984467582645579?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8488122376060687263":{"videoId":"8488122376060687263","title":"Simple Linear Regression - Confidence Interval for Mean Response","cleanTitle":"Simple Linear Regression - Confidence Interval for Mean Response","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=D0hEr2zngw0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/D0hEr2zngw0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1008,"text":"16:48","a11yText":"Süre 16 dakika 48 saniye","shortText":"16 dk."},"views":{"text":"7,5bin","a11yText":"7,5 bin izleme"},"date":"14 oca 2021","modifyTime":1610582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/D0hEr2zngw0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=D0hEr2zngw0","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":1008},"parentClipId":"8488122376060687263","href":"/preview/8488122376060687263?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/8488122376060687263?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15011546641387573340":{"videoId":"15011546641387573340","title":"Simple Linear Regression - Discussion of the Normality Assumption","cleanTitle":"Simple Linear Regression - Discussion of the Normality Assumption","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XC0usnWEiGc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XC0usnWEiGc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":762,"text":"12:42","a11yText":"Süre 12 dakika 42 saniye","shortText":"12 dk."},"views":{"text":"10bin","a11yText":"10 bin izleme"},"date":"11 oca 2021","modifyTime":1610323200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XC0usnWEiGc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XC0usnWEiGc","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":762},"parentClipId":"15011546641387573340","href":"/preview/15011546641387573340?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/15011546641387573340?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17950223480233664893":{"videoId":"17950223480233664893","title":"Simple Linear Regression - CI for parameters","cleanTitle":"Simple Linear Regression - CI for parameters","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t7kw1_Az9Gc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t7kw1_Az9Gc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":799,"text":"13:19","a11yText":"Süre 13 dakika 19 saniye","shortText":"13 dk."},"views":{"text":"3bin","a11yText":"3 bin izleme"},"date":"12 oca 2021","modifyTime":1610409600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t7kw1_Az9Gc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t7kw1_Az9Gc","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":799},"parentClipId":"17950223480233664893","href":"/preview/17950223480233664893?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/17950223480233664893?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5882481282163889302":{"videoId":"5882481282163889302","title":"linear combinations of independent random variables","cleanTitle":"linear combinations of independent random variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=E1v1K04gU_Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/E1v1K04gU_Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":848,"text":"14:08","a11yText":"Süre 14 dakika 8 saniye","shortText":"14 dk."},"views":{"text":"3,9bin","a11yText":"3,9 bin izleme"},"date":"27 ağu 2020","modifyTime":1598486400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/E1v1K04gU_Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=E1v1K04gU_Q","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":848},"parentClipId":"5882481282163889302","href":"/preview/5882481282163889302?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/5882481282163889302?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2479046948768445264":{"videoId":"2479046948768445264","title":"Simple Linear Regression - Partitioning Total Variability Proof","cleanTitle":"Simple Linear Regression - Partitioning Total Variability Proof","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KzQU3xIYw7M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KzQU3xIYw7M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1117,"text":"18:37","a11yText":"Süre 18 dakika 37 saniye","shortText":"18 dk."},"views":{"text":"7,5bin","a11yText":"7,5 bin izleme"},"date":"7 oca 2021","modifyTime":1609977600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KzQU3xIYw7M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KzQU3xIYw7M","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":1117},"parentClipId":"2479046948768445264","href":"/preview/2479046948768445264?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/2479046948768445264?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8904369859831480943":{"videoId":"8904369859831480943","title":"Confidence Intervals for Population Proportion","cleanTitle":"Confidence Intervals for Population Proportion","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bQDj7m-w6Rs","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bQDj7m-w6Rs?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":948,"text":"15:48","a11yText":"Süre 15 dakika 48 saniye","shortText":"15 dk."},"date":"20 ara 2015","modifyTime":1450569600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bQDj7m-w6Rs?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bQDj7m-w6Rs","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":948},"parentClipId":"8904369859831480943","href":"/preview/8904369859831480943?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/8904369859831480943?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8836811271579963964":{"videoId":"8836811271579963964","title":"Permutations","cleanTitle":"Permutations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Q0UWh6tV8-E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Q0UWh6tV8-E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":313,"text":"5:13","a11yText":"Süre 5 dakika 13 saniye","shortText":"5 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"19 oca 2017","modifyTime":1484784000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Q0UWh6tV8-E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Q0UWh6tV8-E","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":313},"parentClipId":"8836811271579963964","href":"/preview/8836811271579963964?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/8836811271579963964?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14928884400174795031":{"videoId":"14928884400174795031","title":"Transformations","cleanTitle":"Transformations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XElZn9bYHg4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XElZn9bYHg4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1090,"text":"18:10","a11yText":"Süre 18 dakika 10 saniye","shortText":"18 dk."},"date":"22 oca 2021","modifyTime":1611273600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XElZn9bYHg4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XElZn9bYHg4","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":1090},"parentClipId":"14928884400174795031","href":"/preview/14928884400174795031?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/14928884400174795031?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8463783969866246044":{"videoId":"8463783969866246044","title":"4 - Geometry problem","cleanTitle":"4 - Geometry problem","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OwnrGrU-n4M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OwnrGrU-n4M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWi04dTAzTjlocXhRTHF5VjBhSzlsUQ==","name":"Stats4Everyone","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Stats4Everyone","origUrl":"http://www.youtube.com/@Stats4Everyone","a11yText":"Stats4Everyone. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":394,"text":"6:34","a11yText":"Süre 6 dakika 34 saniye","shortText":"6 dk."},"date":"2 tem 2015","modifyTime":1435795200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OwnrGrU-n4M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OwnrGrU-n4M","reqid":"1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL","duration":394},"parentClipId":"8463783969866246044","href":"/preview/8463783969866246044?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","rawHref":"/video/preview/8463783969866246044?parent-reqid=1769431812794546-1181259867050466416-balancer-l7leveler-kubr-yp-klg-316-BAL&text=Stats4Everyone","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"1812598670504664167316","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Stats4Everyone","queryUriEscaped":"Stats4Everyone","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}