{"pages":{"search":{"query":"Tensor bundle","originalQuery":"Tensorbundle","serpid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","parentReqid":"","serpItems":[{"id":"8762202946764621090-0-0","type":"videoSnippet","props":{"videoId":"8762202946764621090"},"curPage":0},{"id":"16296046993660989150-0-1","type":"videoSnippet","props":{"videoId":"16296046993660989150"},"curPage":0},{"id":"13009867764253428401-0-2","type":"videoSnippet","props":{"videoId":"13009867764253428401"},"curPage":0},{"id":"13445765597002048478-0-3","type":"videoSnippet","props":{"videoId":"13445765597002048478"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFRlbnNvciBidW5kbGUK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","ui":"desktop","yuid":"2950087371769379231"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"1720590123713866184-0-5","type":"videoSnippet","props":{"videoId":"1720590123713866184"},"curPage":0},{"id":"18432236150441537691-0-6","type":"videoSnippet","props":{"videoId":"18432236150441537691"},"curPage":0},{"id":"10288858144530856715-0-7","type":"videoSnippet","props":{"videoId":"10288858144530856715"},"curPage":0},{"id":"11640970086896877245-0-8","type":"videoSnippet","props":{"videoId":"11640970086896877245"},"curPage":0},{"id":"14699814226962564882-0-9","type":"videoSnippet","props":{"videoId":"14699814226962564882"},"curPage":0},{"id":"2257417525591023728-0-10","type":"videoSnippet","props":{"videoId":"2257417525591023728"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFRlbnNvciBidW5kbGUK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","ui":"desktop","yuid":"2950087371769379231"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"9856994532268442583-0-12","type":"videoSnippet","props":{"videoId":"9856994532268442583"},"curPage":0},{"id":"12253591538338101501-0-13","type":"videoSnippet","props":{"videoId":"12253591538338101501"},"curPage":0},{"id":"12839996867003173050-0-14","type":"videoSnippet","props":{"videoId":"12839996867003173050"},"curPage":0},{"id":"14903190412506391483-0-15","type":"videoSnippet","props":{"videoId":"14903190412506391483"},"curPage":0},{"id":"8054963125669036454-0-16","type":"videoSnippet","props":{"videoId":"8054963125669036454"},"curPage":0},{"id":"1355218466143973820-0-17","type":"videoSnippet","props":{"videoId":"1355218466143973820"},"curPage":0},{"id":"5969047934941644309-0-18","type":"videoSnippet","props":{"videoId":"5969047934941644309"},"curPage":0},{"id":"8642826357474615052-0-19","type":"videoSnippet","props":{"videoId":"8642826357474615052"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"correction":{"items":[{"kind":"reask","rule":"Misspell","query":"Tensorbundle","url":"/video/search?text=Tensorbundle&noreask=1&nomisspell=1","params":{"text":"Tensorbundle","noreask":"1","nomisspell":"1"},"helpUrl":"https://yandex.com.tr/support/search/info/request-correction.xml","helpTarget":"_blank","helpAriaLabel":"Yazım hatası düzeltme servisi"}],"id":"397233502060"},"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFRlbnNvciBidW5kbGUK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","ui":"desktop","yuid":"2950087371769379231"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTensorbundle"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"6811725147604628927122","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1405820,0,77;1414493,0,73;1468855,0,16;1460717,0,96;1464561,0,90;1460214,0,23;1312967,0,25;1472031,0,54;1461640,0,34;1469893,0,51;43961,0,97;182558,0,69;1461715,0,27;1470249,0,27;1470225,0,60;1466296,0,92;1467160,0,1;1466618,0,92;1470513,0,11;133992,0,33;1467621,0,0;1471176,0,19;45961,0,87;1470316,0,60;961010,0,23;1470414,0,35;151171,0,92;1281084,0,81;287509,0,55;1447467,0,57;1005539,0,11;1473596,0,25;1466396,0,82"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTensorbundle","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=Tensorbundle","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=Tensorbundle","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"Tensor bundle: Yandex'te 2 bin video bulundu","description":"Результаты поиска по запросу \"Tensor bundle\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"Tensor bundle — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yf4d1657c1dbbb93ed29bf6e00fe51174","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1405820,1414493,1468855,1460717,1464561,1460214,1312967,1472031,1461640,1469893,43961,182558,1461715,1470249,1470225,1466296,1467160,1466618,1470513,133992,1467621,1471176,45961,1470316,961010,1470414,151171,1281084,287509,1447467,1005539,1473596,1466396","queryText":"Tensorbundle","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2950087371769379231","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769379396","tz":"America/Louisville","to_iso":"2026-01-25T17:16:36-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1405820,1414493,1468855,1460717,1464561,1460214,1312967,1472031,1461640,1469893,43961,182558,1461715,1470249,1470225,1466296,1467160,1466618,1470513,133992,1467621,1471176,45961,1470316,961010,1470414,151171,1281084,287509,1447467,1005539,1473596,1466396","queryText":"Tensorbundle","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2950087371769379231","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"6811725147604628927122","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":156,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2950087371769379231","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"8762202946764621090":{"videoId":"8762202946764621090","docid":"34-1-0-ZB8AF4B05BACE04CC","description":"In this video we define vector bundles in full abstraction, of which tangent bundles are a special case.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/223629/28d2fd8ba8da799889f9d0773b194ffc/564x318_1"},"target":"_self","position":"0","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRqQ-Jm2wtAI","linkTemplate":"/video/preview/8762202946764621090?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Truth about Tensors, Part 9: Vector Bundles","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RqQ-Jm2wtAI\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFQoTODc2MjIwMjk0Njc2NDYyMTA5MFoTODc2MjIwMjk0Njc2NDYyMTA5MGqvDRIBMBgAIkUaMQAKKmhoZXBrcHVxcW1oZXFoZGNoaFVDUlhDNk02NXFpRmxIYVhHRE5DLS1WQRICABIqEMIPDxoPPxPIBYIEJAGABCsqiwEQARp4gfMJBwj_AgD0-AgBAgT-ARAN-gII_wAAAwYD-QUE_gDzAAAH_gAAAA0NDfUBAAAA9QED_PP_AQAX9_v59AAAAAkCAAD0AQAADf_tAf8BAADy8_j1AgAAAAPw_Ab_AAAA_u4GC_8AAAD-FBABAAAAAAH86wQA_wAAIAAt2X3WOzgTQAlITlACKnMQABpgIBMASRzq1eAbD-Tzwdn_BdcUEsTgAf8KyAAZALsSBiTusxApADDNGvqxAAAAGfUEDRIA_GoCv8oaEhnv4NfGBiN_7g8FySES8MvqIDfz-e_3_RE3ANcR3TwStODNIGUQIAAtFokqOzgTQAlIb1ACKq8GEAwaoAYAAFzCAADgQAAAAEIAANDBAAAAQQAAUEEAAGBBAABMwgAAoMIAAMhBAACIQQAAwMAAAMDBAAAIwgAAEEEAAPDBAACIQQAAwMEAABTCAACQwgAAlkIAAChCAACgwAAA-EEAAOBCAAAAQgAAsMIAAFDBAACKQgAALEIAAADAAAD4wQAAOMIAABxCAACOwgAAyEEAAIDAAABsQgAA2MEAADBCAAAsQgAA8EEAAHhCAABwQQAAkEEAADBBAADAwQAAQEAAALBBAACIwgAAQMIAADhCAACAPwAA4MAAAIjBAABAwAAA6MIAAJBCAAAYQgAA2kIAAARCAABwQQAAgMEAAMjBAAAAwQAAkEEAAFDBAABwwgAAiEEAAJDBAACAQgAA-EEAACTCAAAwQQAAAAAAAAjCAABAwgAAYEEAAEDAAADwwQAAmMIAAEBBAABgQgAANEIAAIBAAABgQQAAOMIAAAhCAAA4QgAAMEEAAIC_AACQQQAA8EEAAJjCAAAAQAAAIMEAAIA_AADAwAAAwEEAAMjBAAC4wgAAOEIAAFBCAABswgAAssIAAGRCAAAowgAAMEIAAHTCAACKQgAAAEEAAIA_AAAQwQAAVMIAADxCAABAQgAAIMEAAHTCAACAwAAA2MEAAGDBAADAwAAADMIAAABBAADgwAAAgEEAALBBAAAAwQAAtsIAAIpCAACYQQAAsEEAAHzCAAAEQgAAKEIAAFxCAAAwwQAA0MEAAODBAABAQQAAgMIAAEDAAADwQQAAoEAAAJBBAABwwQAAgL8AACDBAACgwQAAIMIAACxCAABAQQAAqMEAAKhBAAAAwAAANEIAAIBBAACgwgAAHMIAAABCAABgwQAA4EAAAHDBAABkQgAAuEEAAABCAABAQgAAEEEAAEDAAABIQgAAoMAAAGBCAACSwgAAiMEAAMBBAABAwAAAsEEAADjCAACAQQAArEIAAODBAAAUwgAAQMIAAIA_AADgwAAAkMEAAADCAAAYQgAALEIAAJpCAAAwwQAAyMEAAMBAAAA4wgAA4EAAAJZCAAAQwgAAEMIAAJjBAACgwSAAOBNACUh1UAEqjwIQABqAAgAALL4AAJi9AADIPQAAFD4AAHC9AACWPgAAiL0AADG_AACqvgAAiD0AAMi9AAAQvQAAmL0AALY-AABkvgAAir4AAIC7AAAwPQAAED0AAM4-AAB_PwAAzr4AAFQ-AAAwvQAAqr4AAFC9AAAEPgAAcL0AAKi9AACyPgAAuj4AAIC7AACCvgAAij4AAHC9AAC4vQAAgLsAAIq-AAABvwAAgLsAAGS-AAAMvgAAHL4AANq-AAC6vgAAUL0AALY-AACovQAA2L0AADS-AABAvAAA-r4AAFw-AACoPQAAUD0AAIC7AABhPwAAcL0AAI6-AAAPPwAAqD0AALi9AAAsPgAAgLsgADgTQAlIfFABKo8CEAEagAIAAHy-AAA8PgAAoDwAAP6-AADgPAAAML0AAOA8AABAPAAAyD0AAKg9AACGvgAAfL4AAIg9AAAsvgAADL4AAFC9AAC4vQAAIT8AAKi9AACKPgAAfD4AABy-AADoPQAA2L0AADA9AAAEvgAA4LwAAKg9AADgPAAAUD0AAFA9AAAkPgAAFL4AAJg9AABwvQAALL4AAKo-AAA8PgAAPL4AAOg9AABkPgAAPL4AACw-AADYvQAAuD0AAHA9AAB_vwAAUD0AAGy-AABUPgAA-D0AAKA8AAA8PgAAqD0AALg9AAAwPQAAiL0AAMg9AADovQAAFD4AAOC8AAAMvgAA6L0AAIA7IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=RqQ-Jm2wtAI","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8762202946764621090"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"16296046993660989150":{"videoId":"16296046993660989150","docid":"34-7-0-ZDA088FCE7EA71D08","description":"In this video, we discuss the definition of the tangent bundle of a manifold, which in turns inspires the more general definition of vector bundles, to be discussed in the next video. The notion...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1729695/ac8a2bec8e78687bab1d6f075d1ea373/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fZJXPQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DKxH37F43Bqo","linkTemplate":"/video/preview/16296046993660989150?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Truth about Tensors, Part 8: Tangent bundles & vector fields","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=KxH37F43Bqo\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTYyOTYwNDY5OTM2NjA5ODkxNTBaFDE2Mjk2MDQ2OTkzNjYwOTg5MTUwaogXEgEwGAAiRRoxAAoqaGhlcGtwdXFxbWhlcWhkY2hoVUNSWEM2TTY1cWlGbEhhWEdETkMtLVZBEgIAEioQwg8PGg8_E9YEggQkAYAEKyqLARABGniB8P0KAP4CAPUBAwUIBf0B_gj2_Qn9_gD0BgL_BwL_APMAAAf-AAAADQQJ-gkAAAD3CwUB-f8AAAj89f34AAAADAEMBPUAAAAXBvX5_gEAAPLz-PUCAAAAA_D8Bv8AAAD-7gYL_wAAAPwICAUAAAAABgntAgAAAAAgAC3oDdc7OBNACUhOUAIqhAIQABrwAX8Ex_2yDNQAEwvMAAAW1AGqBib_Rhm2ALEvEgHZ1QAB9_fQ_-cE6f-vNef_wBMyAOAf0P71BBUAS9L7AC0G-wEPQfoBMMjwATkBOwH7N_j-5kUU_e0OT_0e7bX-8xnY_hjiM_wSD84B6ASxAg4cLgBM-RQDFzY-AM4VPATvJAz-Jgy0-rECIQbmxeUA_RUnA-wNx_gxRu_9s0sHBBPv4gDuyi3_ERjDADf88AkjBRLyzh8OA9Tk0wQFCTn-wv3pBczuOgfn2e320BcR8jAdBwbLEAETDOnyCvsr8Qr37hMGBdb29wv-Af_TEfL8HRXoDCAALbST5zo4E0AJSGFQAirPBxAAGsAH6rDqvtrSPLv4lxM9XFcMPa9Jkjw1NRy8P-lfvfBknD0Sj1q9290jPZSl8bxWKf289pZivgV4gTx5Pw28xVWFPlQwb72bfyq82UNLvkOSdjspf4K9iQsQvjZqrrrOj_k7I2XwPMzU_zwrvVu8qcHUPeqoNDztSqa8bhsjPKomjb0-8fe8IhehvTucirwFK1O9UOYaPZgTNDxcWmw7t59nPEUxlLyQAQ-89SVAPIe_prygbIq8dHvpvaUWyry7WpO8cwixPUC92byFw5w8GR2xu5XCcjyinjo7-RSAvDZ0s7w9Cle8naJ-PJdBeTrpp268GrWcPTHwt7ww4Sc7d_UKvqCfLj1c-VG88H9sPWapwD3lZQk80lebvd1IVD0a9C27odxxPVsULDyBaLm7ZJPcPW79TzxnMcw8meJgPDXpOz05nxM8mtKFPTcvEz1BCwk8UIQau432g71FwpK8zz6QPVz6_DwqH8K8GxRoveaszzzWXIm8PjK3PbmdxzzKZac4yCjPPb77PjzCkIu832bGPTm1872HHxg8Yyp9vKNFzL2HKka8dH7KPGokcz2FxKi7IorpPf37J73B_mu8OcV0vKjOOb0hs_G7fp-bPe-WP7z8CBU8UAKmvXofQj0EwUq72y56uy__ujsGuU27rokAvYsffj3skXk6tb7tPKiTJ71o6rO7oYbPPaUX0juj6rK7kIPSPUaUWz3VHBS4ElDBPcF4Qb1h0wq6xUCyPA-byLyyVoe5N020vTQE0TzCCvw4H6LRPVj4H7150Yo4gQpCPQ_VEDxhzTO4CH8VvVtErz2Ygfg4EnP_vOtSCD0EMjC5XFQLvZwV8b3cnnU5THs5PQdNQb0owp-5nfvGPHXhDTxkEpi5L1DyvahcnL1DgL-3jERsO2HMcb3qBJi4DISzPY8vBj1Idea41OMIPV89M73xa8u4na8DvY4IhLu_FiU5JdcDvQS0uD2qJ6q4vIYqvakTkL0Ayqg4xFZ1vMSwKD3DFZM4Go4EOyFC9zzlqz24TytbPTsnrD08TIS4sRODPLaxs70Vqek4oNx7PQGZtz1YADa4IvsAvsZfJD0XmGU4xUIovT9gNL1q2JU2hXq6PTompjzH6Gg4GYMYvTaKkbzOh6g31GDaPQfjkb3Hl0-5ORzIuZ89171uKD-3d0iGvez4L71Aaj-4BxSguskgtz3C15q3szEGuwivvb0cfaa3Iv_sPTUpBT7zflu44hiuPG-loj1MJ1K4bgONvSdprj2_9xY37K5CvTrxq72o3ks1IAA4E0AJSG1QASpzEAAaYC38ADQPAc8DEAPm86r39-nbE_f60_T_7OQAFw3NBRod6LgULAArxgj5tQAAACHjGhnzAPZk_tzxBfoq59nPxxgXf_URKNTxF_mw4x81xucOAvUjRwDn_bYtNNHJ9CI1CCAALVN8MTs4E0AJSG9QAiqvBhAMGqAGAAAgQQAAcEIAACBCAAAwQgAAwEEAANjBAACEQgAAFMIAABDCAAAQwgAAOEIAAJrCAACOwgAAFEIAABxCAACoQQAAcMEAAIbCAAA8wgAAgEAAAJhBAAAgwQAANMIAAOBBAADQwQAAFEIAAIDAAACIwQAAAEEAAIA_AAAgQQAAgEAAADTCAAD4QQAAYMEAAGhCAAAQQQAAhkIAAADBAAB0QgAAHEIAAEDCAADAQAAAQMEAABRCAAAgQgAA4EEAACBBAADIQgAA4MEAACjCAAC4QQAAgL8AAKxCAABwQQAATMIAAEBBAAD4QQAAYMEAAEBCAABswgAAQMEAAADBAABAQAAAIMEAAFTCAAAAQQAAbMIAAM7CAACYwQAAHMIAAJJCAAAAwQAAAEEAAMhBAACQwgAANMIAAEjCAADCQgAA2EEAAGBBAAAsQgAAQMEAAGxCAADIQQAAAEIAALDBAACAQAAAgEIAAMhBAAAcQgAATEIAAAhCAACWwgAAgL8AAIhBAADYQQAABEIAABzCAABgwQAALMIAAFRCAACUQgAACMIAALbCAAA0wgAAeMIAAEBBAABAQAAAAAAAAKhBAACMQgAA4MAAAEzCAABAQQAA-EEAADBBAACGwgAAAEAAADDCAACIwQAACMIAAIA_AACawgAA2MEAAGBBAACAQAAAAMIAAMjBAABAwgAAWEIAAIC_AABgwgAAlEIAAJDCAACQQQAAqMEAALjBAAC6wgAA4MAAAPDBAABQQQAAgEAAABBBAABcQgAAsEEAAKDBAACAwAAA0MEAAKhBAACgwQAAoMEAAFBCAABgwQAAkMEAAOhBAACowQAAFMIAAFjCAAAAQAAA6MEAANjBAAAswgAACEIAAMDAAACAQAAAOEIAALBBAAAAwAAAwEAAAGjCAAAMQgAAgMIAAKBBAACgQQAAEMIAAFDBAAAAwQAAeMIAALBBAAAEwgAAzMIAAIBBAAAQwgAANEIAAMBBAABYwgAAfEIAAABBAACAwAAAcMIAAIDAAABcwgAAAMEAAFDBAAAsQgAA6MEAAEDAAACWwgAAgMEgADgTQAlIdVABKo8CEAAagAIAADS-AAD4vQAAJD4AAFA9AADYvQAAqj4AAKA8AAA5vwAAor4AAKg9AAAUvgAAQLwAAJg9AACWPgAANL4AAPi9AABAPAAAoDwAAEw-AACOPgAAfz8AAJK-AACmPgAAiL0AAIK-AABwPQAA-D0AALi9AAAUvgAAij4AAI4-AAAQvQAApr4AABQ-AAAwPQAAQDwAANg9AAAEvgAAur4AAPi9AAAQvQAAED0AAHC9AABkvgAALL4AAKA8AAC-PgAAoLwAAFA9AAC2vgAAgDsAAHS-AABEPgAAiD0AACQ-AACgPAAAMz8AAKC8AADovQAA0j4AAIC7AACIvQAA-D0AAKi9IAA4E0AJSHxQASqPAhABGoACAACOvgAAVD4AAMg9AAAHvwAA2D0AAMi9AACIPQAAFL4AAPg9AADgPAAAHL4AACy-AADIPQAALL4AANi9AACgvAAA2L0AAC0_AACAuwAAhj4AAIY-AABcvgAALD4AADS-AABQPQAA-L0AAIA7AAAsPgAAgLsAAHA9AAC4PQAAND4AAFS-AACoPQAAgDsAACS-AACSPgAAPD4AAFy-AABAPAAApj4AADS-AAAUPgAAiL0AAHA9AACAOwAAf78AABC9AAAMvgAAhj4AACw-AACIPQAAoDwAAKg9AADIPQAAmD0AAMi9AADYPQAA6L0AAMg9AABAvAAAHL4AAJi9AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=KxH37F43Bqo","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":682,"cratio":1.87683,"dups":["16296046993660989150"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1108500484"},"13009867764253428401":{"videoId":"13009867764253428401","docid":"34-4-17-ZBF43D17FE7A6188C","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1599979/ec0d8fcf3435288c6ae68e1b87a2d130/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/PpeRzQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVNdyYbFYLag","linkTemplate":"/video/preview/13009867764253428401?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor product of R-modules","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VNdyYbFYLag\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTMwMDk4Njc3NjQyNTM0Mjg0MDFaFDEzMDA5ODY3NzY0MjUzNDI4NDAxaogXEgEwGAAiRRoxAAoqaGhlZXN1YnJ1a2dkeXRsYmhoVUNZYTFXdEktdmJfYngtYW5IZG1wTmZBEgIAEioQwg8PGg8_E8IQggQkAYAEKyqLARABGniB6gUC-v4CAPH6EgUGBP4BFAr8_PUCAgD-DwABBQX-AOz4EPz9_wAA-P8BDf0AAADtBgMF8QEBABT68_QDAAAABgcB__4AAAAIB_8C_gEAAPAP-P0DAAAAAwIIBwAAAADzAQMKAQAAAAX7BAMAAAAA7vfzAQD_AAAgAC26iNU7OBNACUhOUAIqhAIQABrwAX_79AHZ8gUBE-PEAMQpCQCOCSj_HCTiAK0PKQLC6-EB4BvtAMHw6f_6ABP_yfcv_0Xf7_4T3xf_SOQJACIS9AHq9AsAONv9ADQPFgL64Oz-BPMP_iDsBQAK3On_D_Ld_wcCDf76Acv_7gPGAhzqFQIPLiUC4A4OBQHvEf_0JxUD9Pvv_wgHEAf58_v7wx8XA-7qA_ka6vn76P7hBOoM6gbx3f3_CgD7-Q_g7Qvy8_j35-r-_P0H6PL3EhEHxgP3-gX8E_rvBg8F8PQUBBrU8gTv7gz7_-b6-Bg26v4E-RX5-Qn6_vYSA-jc5gMC5AT_AyAALWPLHTs4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm79wvRvHrZQDx4bPq8-DM8vIdLMz3EwZS76lGCPBE-b7wH9ci8mYCnvmX70Dyf-hE9PSlzPpTA5rv1cg49Wi5bvuqPlTxuYpK89aFrvoTTBz10NcO7CWsjPqwpHz2jecA86QvhPa0ei7wj1DE8hWB1vRsWXr2Bfjq8Nspavmoab7yHp4C31-rBPTfwlL0J6R88IAe6PYKRN72Ispy8t1dLPVZ01rvGpyC97LOUvGvV7ryL6PK8af4oPotd0ztHCys8YCqsPMVOQjwpKrQ7KQ9hvUA1-zv3dsu74hMfvOj_8Dzozh29FK7nPaQYgL1THn67QLexvT0pEz2a3Bw8c8H0PHzJkDxkDQ88TzwHvQ15yj2HYOY7wUwAvX-0ST1TfYK8y8dkPUOXi7zesp47PJQyPErfmjyea607BSotPEZBED3d81c8x4s7PeCV7jy0gL-8M-t7PP2AC7uEU5U8kirAvKCnYT2lfVG5ESqyPRogKDt6UBK7pwdlPVuU2TzYwmI8cArrPEXvub32R-W5Yyp9vKNFzL2HKka8ZF5iPc761LzHHhA8NM6wPMQLYj17sFY8N9JDvVXCcrsCuky7-LlLPTgPTDyZOe47zisIvaAGhDvUQqw7VK7su-RZeD2WFRa8cuyPvImTQD1NsCw7kDNIPcjWTr1hnKa6ngntPV0bxTy7e226lNTwu5YgxLtn7--6euSqPSNfrrxvSIK5QaabPWoko70MRAm7P_orvUJiNj3dwrg5B9FaPQ9MCb2zhYC6YxvCPXrQgTs4aiu5-5tLvfuoCz1q9MM5hfkhPcnQDL1qNvy1rhlPvOw2Q70aTrU5eilmvXN7Dr1Rw-I4kxd-PTasKT1lEw45s8Ugu1FAxL1vPew4BucdPWBe27pD2ao4JoqVPW6Ge70ra-c4TLwIvbpQkbkyGUG5hX-svEOYkbqUtF82yC9yPJeonj2EkAe43wMPPcCwPL3QoBO4xFZ1vMSwKD3DFZM4m87pPNbyVD1Uyx64Oo7EvPy3nDzdGVi5gQTlPXzVCr6Xx0C5s0C7vABAKT2TtjU4P5INvSsUCDx1x8Q4359XPdHHYb3ud6o4t8Q7PT_ekLxR34U4FvPYPEq_szxlhZW3weMrPtylaLwHiXS5bh5ivbErsr0Tv7-4u-2CvJfmob36OP-31wUyPQh4TT3vxxy4HeMMPGdG371pUBK4ipZXPRBY-T2NF0A4OaELvdEQhD3l09W4SNSVvCKe9ry0-AC4vUAfveudG7yDUDg3IAA4E0AJSG1QASpzEAAaYFb9AEkUEOn1ISTaOa_nB-zhD6Ds2_n_F-H_4BSyDOLsBbQNAv__AQP1ogAAACYNvAEvAAd_z-Tl1r1UB-mq1v0OUygvWMwECRnkESQR3tIG9AkLPwDu7KoXJMvG-UEnxiAALQqbGjs4E0AJSG9QAiqvBhAMGqAGAADIwQAAuEEAAJ5CAAAgwQAAHEIAAEhCAABYQgAANEIAAKLCAAAcwgAAmEEAALBBAAAAQAAAAAAAAIjBAABwQQAAAEAAAJ7CAACAPwAAaMIAALhBAAAAwQAAdMIAAAxCAABgQQAACEIAAJbCAAAYwgAAUEIAAEDAAAC4QQAAcEIAANjBAAAAwQAAsMEAALhBAACgwQAAgEEAAIDAAABgwQAAmsIAABDCAACAPwAAnsIAAOBAAACgQAAA8EEAANDBAABIQgAAUMEAAILCAAAgwQAAmEEAADxCAAAUQgAAiEEAANDBAABAwAAA2EEAAJxCAACowQAAAMAAAJjCAADowQAAwEEAAJbCAABAQQAACMIAAIjCAAC4wQAAhEIAACBBAACQwgAAAMAAAABBAACQwQAACMIAAPDBAAAcwgAA2EEAAMjBAABgQQAAJMIAAKDBAABAQAAAYEEAACDCAAAQwQAAikIAAKDAAABQwQAANEIAAEDCAADwQQAAiEEAAPDBAACwwQAAMEEAAFBBAACgQQAAVMIAAEBAAAAAQQAAgMEAAOBBAACgwQAAMMEAAPhBAACIwQAAIEIAAIhBAAC4wQAAMEEAAPjBAABgwQAA0kIAAJRCAABswgAAUEEAAKDCAADYwQAAcMEAAPhBAAAgwgAAYEEAAJLCAABwQQAAuMEAAIbCAACAPwAAgMAAAN7CAABkQgAAoMAAAPjBAAAAQgAAwEEAACTCAADgQQAAiMEAAPBBAACgQAAAgEAAAIBAAACAPwAAFEIAADDBAACIQQAAAEAAAGBCAABQwQAAQMEAACRCAADoQQAAcEIAAPDBAAB8wgAATMIAAIrCAADAQAAAFMIAAKhBAAAAQgAAcMEAAKBBAAD4wQAAYEEAALhCAAAgwQAAeMIAABDBAAAYwgAAEEIAAIBAAAAwwQAAcEEAAGBBAAAgQQAAjEIAAAxCAAC-wgAAEEEAAMDAAADgwQAAQEEAAATCAAAIwgAAREIAADDBAAAAAAAAAMAAAPjBAACYQgAAcEIAABhCAAC0QgAA8MEAAAAAAAAAQgAAQEEgADgTQAlIdVABKo8CEAAagAIAAKI-AAAwvQAADD4AAJg9AAAUvgAABL4AAJi9AACqvgAALL4AAKI-AAAkPgAAiL0AADA9AAAUPgAAir4AAMi9AAAQvQAAED0AAPg9AADGPgAAfz8AAFC9AAAkvgAAED0AANi9AACYvQAAED0AAHC9AACAOwAAlj4AAOC8AAAEPgAA4LwAAKo-AACgvAAAPL4AAMg9AABUvgAAjr4AAAQ-AACevgAAZL4AAOC8AADYvQAABL4AABy-AADgPAAAHL4AAKi9AACgvAAAfD4AAFQ-AACmPgAAqD0AAAS-AAAQvQAA-j4AAEA8AAD4PQAAND4AAEC8AABwvQAAiD0AAPi9IAA4E0AJSHxQASqPAhABGoACAAAUvgAADD4AAFy-AAAdvwAA6D0AAMg9AAAQPQAAUL0AANi9AACCPgAAhr4AAEy-AAC4vQAAdL4AAEQ-AAC4vQAAPL4AADE_AAD4vQAAkj4AAIC7AABAvAAAyD0AAMg9AACovQAABD4AADC9AABwPQAAMD0AADS-AACYvQAAqD0AAJg9AAAsvgAApr4AAOC8AACCPgAAUD0AALi9AAAMvgAAcL0AABA9AABAPAAAUL0AAPg9AAAEPgAAf78AAIq-AABAPAAAPD4AAMi9AABsvgAAND4AAJg9AAAwvQAA4DwAAFA9AACAuwAA4DwAAGQ-AADYPQAABD4AAEC8AABQvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=VNdyYbFYLag","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13009867764253428401"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3084626802"},"13445765597002048478":{"videoId":"13445765597002048478","docid":"34-7-8-Z26205DECCC4D7CC0","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4433979/7feef74aa87886db986e2e6a1ab51d73/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/d-udKwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDqvLRH7xL48","linkTemplate":"/video/preview/13445765597002048478?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Construction of the tensor product","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DqvLRH7xL48\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTM0NDU3NjU1OTcwMDIwNDg0NzhaFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4aogXEgEwGAAiRRoxAAoqaGhlZXN1YnJ1a2dkeXRsYmhoVUNZYTFXdEktdmJfYngtYW5IZG1wTmZBEgIAEioQwg8PGg8_E9USggQkAYAEKyqLARABGniB6gYLAgT8APjsCQoHB_wCFQr7_PQCAgAMDQ_8BgH_APr5C_kCAAAADv8NB_wAAADsBwQG8AEBABIEAfDyAAAACvYBB_EBAAD9AvUF_gEAAOMK9_kCAAAACPsHDf8AAADsAxEC_wAAAA0R_wIBAAAACvf5EgAAAAAgAC1MxcY7OBNACUhOUAIqhAIQABrwAX_uAADQ_Oj_2wTOAOAeCgKTCSf__S7XALAOJwKxEs__1An5ANHq9wAC9goAqxALAS7a1f8a5f0AHsb3_yAE_AHt-_0AMs8PAVIGGgAA8AMA7gUJAAb4-v8Sx-4AGBjhAP7pFP8H-90B7wPIAiH8KgEhEDQA6wsYAOXgEv0CGA4C5vfc_QQWDQTq3BL8ywsPAgvq_QcAA_r40B3t_-AH9_r85QP7_QLoBwju6gf_8_cG3eAEAfgX5_sDCBkC4Qf29PvrFv74C_z7JeYMCf36-gDe8_IC69sAAjUuAQD19fv9_wb38dbzBfb08P0C8QwB_yAALRggJDs4E0AJSGFQAirPBxAAGsAHgO7TvhHew7rl6Ja8nAGJvOPUmLw47W69-DM8vIdLMz3EwZS7_dKnPQmyFL1L_aE8OGmKvtEMPTztrn08PSlzPpTA5rv1cg492UNLvkOSdjspf4K99aFrvoTTBz10NcO7JmeyPbMxBjvR05s8wX6-PfL3wb0XrW28hWB1vRsWXr2Bfjq8Ag4Rvg4617wnPi28BcN5PTDNvr2754o8-dCPPYVEir2uoMS8_YC8PeWJFj2Jtwm97LOUvGvV7ryL6PK86q_3PTGyUTrITQM9xHk4vLJMv7uD-OE7-n0_vRqUHz3GBWQ64hMfvOj_8Dzozh29YvSMPZ5-0L2-dl27QLexvT0pEz2a3Bw8pw7NPEcWVbvLnoQ83O-Fvd0J9j3Ineu6HnyHvZMDkTwn4LK8fROZPQ9wFLtKP6M7s_tfPZDwYryRcO86BSotPEZBED3d81c8_R92PSL4RD3L8nW8llmpPKIBhjzAPbI7q-bevNZHtj0eVpM8UAgTPVVjLjzGFoI7pwdlPVuU2TzYwmI8cArrPEXvub32R-W5x4NtvVcQjr2dt1a8gQixPHcVUrwL6oC8Tv-DPQKVNj2e2L87pj-QvXzgurvAnic7i2o2PUL7hbvSP1o7TQVGvWGq2TxHV2m7iJXbPK8-vj3xHlK7YkBAvTHsoD1YFvE6IziEPYEtZb34cY86ngntPV0bxTy7e2262AAbPQ3uHT1JvQa7oI0sPsuuBb0gAg25i5ddPRAF070hOoi62CJzvT7HDD2upRQ6lEC0PeDNZL3ih2o5AyfbPYB0e7z2gSe6qSiYvf3xAz3LRX04FdeCPYlNWr0565M4qT-Qux9fJ72Tjp04uEPgO4qMM7xNJDy5SvG8PQRJKT2R7ue5p0fJvJsTxb0DArM4BucdPWBe27pD2ao4NOumPVdkD70kSzg5SFl6vSQmKLz1Fw65yLggurBl6DwvwnW4yC9yPJeonj2EkAe4TKgAPcfwnb3-7jA5lUFavBJpmzwhNbA4oiaqPeHfMTz8QnM4FnFXOzSkpT3tNwK4zGLiPWkbv72o5my4nsfyPAZuWD1slHa4yi_ovI8PhLwSpvQ3gNvuPKC2l705l3s4t8Q7PT_ekLxR34U4h-mxPNfqAT3O9KQ2weMrPtylaLwHiXS5qp7HvXqdjr2STdU3u-2CvJfmob36OP-31wUyPQh4TT3vxxy4SfeOPK1QxL1znPK4VRimPW0LxT2Dx-c4ru-TvTrjwD0eAum4lWlPveevqbvwvLc2NgZYvTInwzwwg8M3IAA4E0AJSG1QASpzEAAaYEr-AGbZ_vz3GivhJNC2C_jf_sQiyeP__MH_BB7m_-MNAcEdBP8lAivgogAAACbp0C8qAPJ_2eDr_-QmHbW54-wOYxgrPdP9KhAR7zBM9MkI4bwxJQD26Kw-TOWSGiUd-CAALTkdGDs4E0AJSG9QAiqvBhAMGqAGAADAQQAAAMEAAKZCAABwwQAAQEEAACBCAACCQgAAYEEAAOjBAACowQAAHEIAACBBAACgQAAAgEAAAIC_AACIwQAA6EEAAKrCAABQQgAAcMEAAPjBAABgwQAAwsIAABBCAADowQAA4EAAAHzCAAAwwQAACEIAAKBBAABAwQAAJEIAAAzCAACgwQAAhMIAAKDAAAAAQAAA4EEAADTCAACIQQAAAMIAACDBAAAQwgAAiMIAACDBAAAwwQAAMEEAAHBBAADIQQAAPEIAAEjCAADgwQAAgD8AADhCAAAsQgAAIEIAAFzCAABwQQAAAEIAACRCAADAwQAA4MAAAIjCAAAUwgAAyEEAANLCAADYwQAAUMIAAEDCAAA8wgAAZEIAABxCAAA8wgAA4MEAAEBAAACgQQAALMIAALDBAADowQAACEIAABjCAAAoQgAAgD8AAIDAAADgwAAACEIAAEDAAAAcwgAAhEIAAPBBAACAwQAAIEIAACTCAAA4QgAAQEIAAAjCAAAcwgAAqEEAAFBBAABYQgAAWMIAAHDBAADYQQAABMIAAADAAAD4QQAA0EEAAJBBAACYwQAAhEIAAFBCAACAQAAAAMEAAIjBAAAYwgAApEIAAHhCAABYwgAA4MAAAILCAAB0wgAAyMEAAOBBAAAswgAAYMEAADTCAADgQQAAoEAAADDBAADYQQAAkMEAALTCAACIQQAAuEEAAPjBAACMQgAAoEAAAPBBAABAQQAAAMEAACDBAABgwQAA4EAAADTCAAAAQAAAoEIAAFDBAABEQgAAmMEAAIBBAACYwQAAcEIAAHxCAAB4QgAAVEIAAIA_AACAwgAAoMEAAPjBAACwwQAAoMIAAExCAABkQgAAIEEAAI5CAADAwAAAAMEAAM5CAABEQgAAQMIAAIDBAAAgwgAAUEEAABzCAAAEwgAAIEEAAABBAACYQQAAgkIAABBCAACgwgAAmMEAAIBBAACGwgAAAEEAAOBAAAC4wQAAwEAAAGDBAADAwAAA8EEAANDBAAAEQgAAREIAAIBBAACSQgAAgMEAAIC_AAA4QgAAgEEgADgTQAlIdVABKo8CEAAagAIAAIC7AAAwvQAAhj4AAKA8AABQvQAA2L0AAPi9AAD2vgAARL4AAKo-AAB0PgAAiL0AADQ-AABwPQAAdL4AABA9AAAwvQAAUD0AAFQ-AAB8PgAAfz8AAIA7AADIvQAA4DwAAFy-AAAcvgAAqD0AAIK-AAAQPQAAdD4AAOA8AABMPgAAML0AAI4-AAAwvQAA4DwAAKg9AACCvgAAHL4AAFC9AACqvgAAUL0AAIA7AACovQAAyL0AAGS-AAAQvQAAiL0AABC9AAAQvQAAij4AAJi9AAC6PgAABD4AACS-AAAwvQAABz8AABC9AABQvQAAiD0AAHC9AADoPQAA2D0AABy-IAA4E0AJSHxQASqPAhABGoACAADgvAAA4DwAAAS-AAA3vwAA4DwAAOA8AABwPQAA6L0AAJi9AACWPgAA-L0AADS-AACIPQAAkr4AACw-AADovQAAmL0AAC0_AACgvAAAjj4AAFS-AAAwPQAAHD4AAFA9AACovQAADD4AAFC9AACAuwAAqD0AABy-AABwvQAAqD0AAFA9AABMvgAAXL4AAEA8AAAMPgAA-D0AANi9AAAQvQAA4LwAAPg9AAAkvgAAQDwAAOC8AABQPQAAf78AAPi9AAAQPQAABD4AAEA8AACmvgAAND4AAJg9AABAPAAAgDsAAJg9AAC4vQAAFL4AAFC9AACYPQAADD4AAKC8AACYvSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=DqvLRH7xL48","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13445765597002048478"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1891158870"},"1720590123713866184":{"videoId":"1720590123713866184","docid":"34-11-2-Z4676DBD28FA4A2AE","description":"video, sharing, camera phone, video phone, free, upload...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3819725/d459a97d102991887c2819989e95fafe/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/CC9yzAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DUCN_Dr2Kf1E","linkTemplate":"/video/preview/1720590123713866184?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor products of modules over commutative rings","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=UCN_Dr2Kf1E\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFQoTMTcyMDU5MDEyMzcxMzg2NjE4NFoTMTcyMDU5MDEyMzcxMzg2NjE4NGqIFxIBMBgAIkUaMQAKKmhoZWVzdWJydWtnZHl0bGJoaFVDWWExV3RJLXZiX2J4LWFuSGRtcE5mQRICABIqEMIPDxoPPxPXCIIEJAGABCsqiwEQARp4gfsEAQL-AwD4AQAK9wb-AgsA-_r3AAAA9A0MBQYC_wDz-gcBBAAAAO8JAAEAAAAA-AYLD___AAAT-vT1AwAAAAn3BPn-AAAADQoDAAj_AQH4AfwBA_8AAAD2DQb_AAAAAAUKAwEAAAAE-wQDAAAAAPz9A_wAAAAAIAAtnXXbOzgTQAlITlACKoQCEAAa8AF0BgwA0fr5_9kS3QDSKeEBgQot_xIXzwCjEC4Cm_PlAMAq5QC87f8A-QAV_6oFKAEv3PAADej_ABnJF_8lBfwB2AL8ASSyHwBgBx8A3-Hr_uUI_P_85AIA6snxAhwc3AAD1QX_5w_TAewDvwIYAyABO0AkAusJCQbc6hoEAhwQAu8V0v0JCBII1ecJ99UcIgL8_OIHAvkP_Ngu8wLnGAL76OT_BxcL4gQh8fYG9-Xy-urLBwElEPf3Dvgf_NwJ9fIF-xX56wkK-RP2Hwf04fUA3egGA_rSAwYkLu4N9vwGCv71AQLP8Qb1Adj7_u319_8gAC1QIw07OBNACUhhUAIqzwcQABrABx-8zr6xEpg7Ru3AO706BTvWBAy9lXDXvEleJ73jVVY9pr_NvJgw2j0FIKS8HtZlPDhpir7RDD087a59PP7Viz4gxJ88hqkxO9lDS75DknY7KX-CveC7bb5eipY9FrlMvBBcBT6bk1W77awru7J1mj2ly9G8LegBvIVgdb0bFl69gX46vAIOEb4OOte8Jz4tvOWAeD1HIUS9GwsOu2xIVz2x7Pi8VIaWvCN8hD05WcQ9o5X7vLVH9ztalW69-QLpvMdMAj5IDCw9XhwLPUoPHrttxb68wlGNPB-hpLtWJiE9ZoaqOy3hmrzLXKo8-gZLvLu7qT2SJIi9cihZukC3sb09KRM9mtwcPF2KCjwkgBs9Ls2IvNzvhb3dCfY9yJ3ruh58h72TA5E8J-CyvAGZtz3Woiq8VyGKPLP7Xz2Q8GK8kXDvOqoeRrqAgYA9VNNkPP0fdj0i-EQ9y_J1vJc9JD1BK_I7T8KWu_YpIr1SMYk9MAonPDPJkz2y53w8NBH0Oz-8-Dx5RYs8DrNhPC9OfDwfJDW9BcjMO2MqfbyjRcy9hypGvDzjljwnvpo8mMqyOlCPzT2ZULc8k63Luky6V71R54C8-TIsvIKrXD0vTZG8AcNyPJh8fb0exmQ93VACvIiV2zyvPr498R5Su2JAQL0x7KA9WBbxOiM4hD2BLWW9-HGPOguosT3xw_e8mIz7uSoBMT0Vrdw8NbQ_O4Fb9z0IS5a9-F_uOF9XHT0wgfu9dr44t7m8w7x4UI89Tc-iuco0-j0Te828WYZhOPK_mz00BIO5RogDObo7Ab03H1I9pMNyuRMjkD2Ps5-9Cn64N7vnpTy_mBK94mMCOrGuo7tN7Za8bfRHuhStAT0EwJ08KvCjuHfXHbz6H5q9RPFKOaQRvTwqaaw6xmdluAcM0j1fac-81d_VtHC8dr1jGQ08bqDqtpTJP70Xpfo8qHbXOL7x2jxAlo89At0FOVqvgz0Bj8O9ptFaOdHTF7z-5m47To39OOvJzD3hkzM9S86QN6wTYTwChO89qBqeNsxi4j1pG7-9qOZsuNpO5TxkLIk8fJqYuIziy7x3hsQ8vDHhOMvrUjx8Yt29TNuKOKDOaz3NJri7rqu9N2qirjtSKAs8AphZOMHjKz7cpWi8B4l0uRZOAr4wq2a9VSpWOFG5Dr3pctS8OP7vNuP_jj1_3zo9rfHTt-AfBLsEO169_X17t1UYpj1tC8U9g8fnOAcLp7y9_O49g7QeuZ_HuL0KHH-9mzfYt1QfaL0IEzA9PRyMOCAAOBNACUhtUAEqcxAAGmBk9ABYDC8NFvsO-OjFwhQC6dXQFtTp_xHS_99A3ObwFO2kFhn_PPMr-5gAAAAl-9wUKwDif-XA-uPMTDrLzewKD3EwFk_eATETJ8w2F-7P8AUBYzMACgG0_C3HlCMsMNUgAC0GnRE7OBNACUhvUAIqrwYQDBqgBgAAAEAAAABAAACOQgAAUMEAABhCAAAAQgAAxkIAAABCAAB0wgAAwMEAAABBAABAQQAAcMEAACDBAADAwAAAoMEAAKhBAAC4wgAAQEEAADDBAABAwAAANMIAAKzCAAA4QgAAcMEAALBBAAB8wgAAisIAAAxCAACwQQAAAMAAANBBAAAMwgAAEEEAALDCAACoQQAAmEEAAIBBAACIwQAAoEAAAODBAABAQAAAsMEAAETCAADIQQAA-MEAAKjBAACAQAAAOEIAANhBAABgwgAAdMIAAEDAAABEQgAAKEIAALBBAABwwgAAwEAAAIhBAABkQgAA8MEAAFDBAACYwgAASMIAAChCAADMwgAAAEAAAATCAABcwgAAKMIAAJRCAAC4QQAAqMIAAADBAAC4QQAAkMEAAPDBAAAMwgAALMIAABxCAAAowgAAQEIAAHDBAACAvwAAEEEAAARCAACQwQAAEMIAAKpCAAA4QgAAwEEAADBCAAAowgAA0EEAAAxCAAAYwgAAAAAAAIBBAADIQQAA-EEAAFzCAABwQQAA8EEAALjBAACAwAAAAAAAAEBAAAD4QQAAOMIAAI5CAABYQgAAgMAAAAxCAAAAwgAAAMIAAFRCAACEQgAAIMIAAKDAAAAswgAAHMIAAKhBAABwQQAA-MEAAKDAAACwwQAAEEIAALjBAABgwQAAAEAAAIDBAACwwgAAsEEAAEBAAACQwQAAVEIAANhBAAC4wQAAqEEAAIC_AACgQQAAwMEAAABCAABUwgAAgMAAABRCAADgwAAAUEEAAGBBAACAQAAAhMIAAKhBAACCQgAALEIAAHRCAAAUwgAAGMIAAATCAABIwgAAmMEAACjCAAA8QgAAWEIAALBBAABQQgAAJMIAAAxCAADUQgAAwEEAAJjCAABwQQAAgMAAAMBAAAAUwgAAAMEAAPjBAACwQQAAoEEAAGxCAAAAQgAAmsIAAIjBAACAwQAAuMEAAMBBAACgQAAALMIAAOBAAACYQQAAgD8AAGBBAABswgAASEIAAGxCAAA4QgAAxkIAAFDBAACoQQAA2EEAANBBIAA4E0AJSHVQASqPAhAAGoACAAAcPgAAgDsAAHA9AACYPQAA-L0AAIi9AAD4vQAAyr4AAMi9AADIPQAAED0AAKA8AAAQvQAAZD4AABy-AAAQvQAAcL0AAMg9AADoPQAAsj4AAH8_AAAwPQAAJL4AAKg9AACGvgAAJL4AADC9AABsvgAA-D0AADQ-AABwvQAAbD4AAHC9AADIPQAA4LwAAIi9AADgPAAAiL0AAFS-AACovQAAyL0AADC9AACAuwAAmL0AAIi9AADYvQAAEL0AAAS-AABQPQAA2L0AAK4-AACuPgAArj4AABC9AACWvgAAcL0AAAs_AAAQPQAARD4AABQ-AACYvQAAgLsAABA9AAAEviAAOBNACUh8UAEqjwIQARqAAgAATL4AABQ-AACAuwAAIb8AAAw-AAAQvQAAMD0AADS-AABQvQAAbD4AADS-AABUvgAAyL0AAIq-AACoPQAAiL0AADA9AAArPwAAiL0AAKI-AACgvAAAiD0AAFA9AAAQPQAAoDwAABA9AACYvQAAcD0AAFA9AADgvAAAUL0AABQ-AAAQPQAAjr4AADy-AADgPAAAqD0AAEA8AACovQAAMD0AAOC8AADgvAAADL4AADC9AABAvAAA4LwAAH-_AAA8vgAAuL0AAIo-AABQPQAAFL4AADA9AACYPQAAgDsAAIC7AACAuwAAiD0AADS-AACoPQAAQDwAAKg9AABkPgAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=UCN_Dr2Kf1E","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1720590123713866184"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1724253695"},"18432236150441537691":{"videoId":"18432236150441537691","docid":"34-4-3-ZE8D2E11E406BCB78","description":"I discuss tensor products.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2706631/e9d56077c144eea55a0f80e9c1af8549/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3vRB6wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtpL95Sd7zT0","linkTemplate":"/video/preview/18432236150441537691?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor products","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tpL95Sd7zT0\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTg0MzIyMzYxNTA0NDE1Mzc2OTFaFDE4NDMyMjM2MTUwNDQxNTM3NjkxapEXEgEwGAAiQxovAAooaGhpdmh3bGNuaXd4bGhoaFVDdDFuX2NfbGJQSXZ6X3ljdzNFcTk2dxICABAqEMIPDxoPPxPBA4IEJAGABCsqiwEQARp4gfT__gX7BgD2_gMF_gX-AQsQ_QT2AQEA_wkKAAUF_gD08gcJAAAAAPUOBwD7AAAA7v4FAvkBAAAQ_P75AwAAAAoEAAAFAAAADAEBAf8BAAD_BPz_A_8AAAjvBP__AAAA-wQJC_4AAAAEAgcIAAAAAAD6_PkAAAAAIAAtTxjkOzgTQAlITlACKoQCEAAa8AF_BfsC2fv6_w0H3QC9FOwAhQAC__0t2ADC8woA2BXvAfcL_ADRAeH_5hEBALgEIgEO4tQAAusUAD31-f8p7PkA8A8MABDOAgBEEw4B5vTZAPEbGgD02wX-AOv_Afvh1f4b8hH87QLwAwntwggN_jYB6PwVART2HQL97P8A3RQrAQna-Pz-6fz_EP4LA8ffIQEQ3_D99xj2-eoc6wIJE-785vAU_wwQ1wA0Df4K8gX8-r_y-f7z39X_G_ofBeQM8gL0-CEC0wcWAe4dCQM03wD58O8L_PvZAwUZ8_oM-OUO_fAN-_riFvP17wcKBf0LBAIgAC3g4Sk7OBNACUhhUAIqzwcQABrAB9hF-b4orD-7gpzmPBzIP70J6ow7nMwuveOgub0cbYs8XgUjvBCAbj3ZVW28OXuIujhpir7RDD087a59PMVVhT5UMG-9m38qvHoXL74IPDA9KZ_UvBUcTr6sTcg8NZcfO_Q2Nryd-pu8cSSrvDBRgz1B_LI82wESvW-LCL1DRwe6I9gYvaSYk7pqNLm6kXfzvM6HDD0lMj28zJ3TO2kZGT69Xzu9ZRfvOyBSgLpm1pQ77ITXvKYQg70fACc9Mxv_vP5ukD3H7HI7oXMNPRWkgLvPl5i9gNGKPJPVHr0yL7E9P95QvHzxRT37BD05xYdhu1-Mkj1OETu8ccG-vPmgB770Gps9L4GAO0YK5T2jliA8U83uOxSbCr1dNU89-CVRPGZlHjwJAp67VhaBux88ZD0-40c90AHROzzG8LyFAc-6R8AyvJAkELwQ36M9pmIDPSBLqj2oFva8XHaIvHm1N7xt7YO9_5GpvI2bmr1zlTg97PuLvDPJkz2y53w8NBH0O9thfT1_1kE93ri5O3AK6zxF77m99kfluZXcPL088cG9Q-nmux1twT05aRA9LgV_vFdYFT2LVHi9khDdu6ERjbu5sCS84ML0uprjAT335yK9y2S4Oyy9Mb36jDU97QivOnDBiDwHlZ288HAavJ8qFT2wAGY9A2a2uzHQVb2LmU695vj-OWj-rT15qHI9zRgLO7qenT3Te9M7eTWKOsysLz3FvbO9uqHGOmSrsLyW54a9iOTYupguqbyjj_m6MQd1OR-i0T1Y-B-9edGKOLepSz0tWgU9ueJiOZG6eL0onB09xwEJuIPhVz2G3LG8TLIUud0qo7xXPcC9kQYeOaqaYL0NUaa7KmpGuUV9N7yd9lQ94jJ_Or25Cb0Yfiu9tFAGuda17DyWAhg8m8OAOfpYZj1w1ZA8DCNguOzbC7y27Ji7H0Uvuj39lDscHQG9L6WiuOMWmLzXrn8911M4OLfJcjxtLR29y6PCuEF9UD2_zjA7-sGJNgAjAz0O29Y9Pk-MN4TyADygeto8Tu9pt50ORzt3nwO-Q96Mt57H8jwGblg9bJR2uMrhA74Q1x48l_1ONyemJj1p8p68ZDxVOKRIiDx27_I8ABaSt_eopDyrIOu88XHeNoJVRT50yDc9ydyEubhdk73Pq5C92nVEuAfiBj3hlk-9maTONeY7OL2oLX89yhDIsh2XDD1JD0O-VDFNucr0cD0i4Ss-8cuKOJiTZTuAC9I9mOQPuWBGp70XgRC7k3TZNyCz87yvOEE8Qf3_NyAAOBNACUhtUAEqcxAAGmAaAgBHDSTt7hk5-QfCCfnW1gblEMHx_9zQABXvsPfR8gXUATEAIgo62KgAAAD--OIV2gAIecHI4_EAJvfawPAGQH8fMlXJCQAG3A0XCtjMBxHI8kQA0fKkT_vGle9LAfggAC0Gyho7OBNACUhvUAIqrwYQDBqgBgAAQEIAAIBAAAAcQgAAAMAAAAhCAAA4QgAArkIAANjBAADwwQAADEIAAABBAABswgAACMIAAJjBAAAgQQAABEIAAIJCAABowgAAAEIAAABBAADQwQAAUMEAAGzCAACAQAAAGMIAAIbCAADAQAAA2MEAAGBBAAAQQQAAUMIAACRCAADWwgAAmEEAAFTCAADgwAAAEEIAAGRCAADgQAAA8EEAAJJCAADQwQAAKEIAAKjBAAAEQgAAvsIAADBBAAA4QgAAQEIAAKhBAACgQAAAQMEAACDBAAAwQQAAmEEAAIBCAADowgAAUEEAAGDBAACCQgAAsMEAALTCAACowQAADMIAABBCAADCwgAAUMEAABjCAABAQAAAcMIAAOhBAAB4QgAApMIAACBCAAAQwgAA-MEAAPjBAAC4QQAAwEAAAABAAAAQwQAAikIAAEDBAAAAwQAAAAAAABBBAAAAwQAA0EEAAKBCAADIwQAAQEAAALBCAABEwgAAgL8AAPhBAACgwQAAUMEAAOjBAAAgwQAAqMEAACTCAACAPwAAYEEAACxCAACwwQAAPEIAAOjBAADowQAAAMEAAIBBAABkQgAAgEAAABDBAAAgQQAAbMIAAJxCAAAEQgAAcMEAAHTCAAAIwgAAfMIAADDCAABwwQAAMEEAABBBAACYQQAADEIAACBBAAAAQQAAOEIAAFjCAADAwQAAsEEAAJpCAACAPwAAtEIAAMDBAABsQgAAgEEAAEzCAAAQwQAAiMEAAJhCAAAswgAAsEEAAHBCAABEwgAA0EEAAEDBAABwQQAA0MEAAEBBAADoQQAAkMEAAARCAAAAAAAAQMIAAOjBAABMwgAAMMIAAGDCAADgwAAAsMEAAIDAAAAYQgAAAEAAAJjCAADQQQAAMEIAAABAAACgwAAAQMAAAFBBAAD4wQAAJMIAANhBAABkQgAAbMIAANhBAACgwQAAXMIAAGDCAACQwQAAKMIAABBCAAAMwgAAZMIAAOjBAACgwAAAoEEAAMBBAAAAwQAAAEAAAEBBAACIQQAAMEIAAETCAAAgQQAAmMEAAABBIAA4E0AJSHVQASqPAhAAGoACAACgvAAAyL0AAKg9AAC4PQAABL4AAIA7AADovQAADb8AAFA9AAAMPgAAHD4AAOi9AABAvAAA2D0AABS-AACgPAAAEL0AAEC8AAA0PgAAuj4AAH8_AAAUvgAA4LwAAAS-AABEvgAAuL0AAAS-AABQvQAAHL4AAGw-AAD4PQAAJD4AAPi9AACePgAA4DwAABC9AABQvQAANL4AAIa-AAD4PQAAsr4AAPi9AAAwvQAAyL0AAEA8AACCvgAAyD0AABy-AABEvgAAyL0AAIg9AABQPQAAXD4AAIA7AAAsvgAAgLsAAAE_AAC4PQAAcD0AAHw-AACgPAAAiD0AAKA8AAAQvSAAOBNACUh8UAEqjwIQARqAAgAAmD0AAAw-AABMvgAAJ78AAKA8AACoPQAAyD0AANi9AAAwvQAAgj4AACS-AABsvgAAoLwAAIK-AABwPQAAUL0AAHC9AAAnPwAALL4AAII-AACgPAAA4LwAACQ-AAAwPQAAcL0AACw-AAAEvgAAUD0AAEC8AAC4vQAAgDsAAIg9AAAwPQAAHL4AAL6-AADgPAAAgDsAAOC8AAAwvQAA-L0AABw-AAC4PQAA4LwAANi9AACAOwAA2D0AAH-_AADIvQAAuD0AAOg9AACgvAAAFL4AAKA8AAD4PQAA4LwAAFA9AABAPAAAMD0AAOi9AAC4PQAAgLsAADC9AADgvAAAoLwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=tpL95Sd7zT0","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":480,"cratio":1.33333,"dups":["18432236150441537691"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4283952652"},"10288858144530856715":{"videoId":"10288858144530856715","docid":"34-5-17-ZDE55B5EDE42B3A87","description":"Universal property introduction: • Complete Derivation: Universal Property of... This video proves the uniqueness of the tensor product of vector spaces (or modules over a commutative ring).","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2365106/7134d43ae2c2f4654b3d58c54de24909/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/iYn2KgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVJJK2BoIaD8","linkTemplate":"/video/preview/10288858144530856715?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof: Uniqueness of the Tensor Product","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=VJJK2BoIaD8\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTAyODg4NTgxNDQ1MzA4NTY3MTVaFDEwMjg4ODU4MTQ0NTMwODU2NzE1aocXEgEwGAAiRBowAAopaGhtamdkZ3hkZXR6d3pkaGhVQ284VDBEOG15MUh6NUtvSENSWU9BblESAgARKhDCDw8aDz8TzQWCBCQBgAQrKosBEAEaeIHqBgsCBPwA_AARBQcH_AIRA_cBIfz9_-8BAvz-AQAA8voIAgQAAADx_Q8CBwAAAOwHBAbwAQEAEQH3_AQAAAAOCAcD_AAAAAYWAPr-AQAA8_31BPUCAAEZ-_z-AAAAAPYDDfwCAAAA8PoBAgAAAAAO-fYGAAAAACAALUzFxjs4E0AJSE5QAiqEAhAAGvABf-oX_s7L4gHABwAA0z8dArMFIv8iLdsAwtwVArk-1ADyIQoA9PAHAOwF7wDKEAsA4-m9_97uIP8UuOL9JQTmAf_T2wEWzuwCRRY0_wTQ0ALDJiD98fINABzQywMjHbwAI_IE_SYG4gD-4cIAHOEzA-H4NAU97RwB6tky_Qkd7v7p2NP9Df_0C960GP61Jh0EEqDo-88F6ve23vcA7ODlBhQACvbxPvcCJPDbBgcH8wrT9f4H5gjPA-YoIf7jAuwJ8PUsAtHhAPYc5gwB5dXrCO772vIBqPYDPQkFAQAOB_zhwOcBtfrnB8X76Q7cLPcHIAAtv04AOzgTQAlIYVACKs8HEAAawAe77tW-2xkmvILxQjup9xS8RCXDu3cuzLw_6V-98GScPRKPWr0UdhE-3w7evCa-gzuBCAG-Nz5JPa5tgLz9vXQ-klRLvQOx7DwZgaK9QLW7PeGkX73vxfe9IiioPSkvqLx22mA79tEpPXIojbygNMQ9ptVQvRH_1jkkuiK9CQyDvUvqJL1RzaY9ABsQvdaF6bwX0ma9dnQ3PLUtrzyj0M87uVUOvInC3bxrcxC8tlfVPH2wDjzWMTO9jVL4PDQ_yLyaP4Y96dVAPYTZ37sguOq9PJfzO8SBK71KRd-7Dff2vM8qm7m5ALS8ZU2RPUysZ7yfEdc7-bV6vfZOnrthpYq-c5xbPFUE7jvkhv89OXb1PIxvnjzc74W93Qn2Pcid67rd8aE9S3qTvWArl7yoyWe8Nnu7PEWAkzzWZJc9OCEDvbc1N7sJZMA8z1l1PYVjsTz4cbS8WBwOPPFHUbwjoti8xLU1PeHAmrweJSW9v9lBvNpr6rvfMxS8Q52IPb2chjs3KTa9Qh8RveB9-jqkGoY9YXxHva6njLvHg229VxCOvZ23Vrx-SRO8rsi5Pb-gYDxDqR0-H2rbvcSaqTldJrm81xuQvRpbPjw9kXE9-GEuvfnmiruX4iq9y90OukDU5LtmHr-9hS1sPWoxW7swZss8KqcNPm6TKLrQTye9d6KEvaH3hDoanI095McOPZ6R77uGKNc7TbG0PEvibjqr5r49iQwrvozmljoa3iy-0Xo4vaFywDnZhOq8L9QrvN39STr3nqE7PxCqvTjs7be7J-89CFpKt93667iSXSm-e5qYPQj3zblI0RQ85e3IPP2ODTpq9iO7752nvWJI3Lhs85W9Jl__vLHARLi08Ku7M3V5OvKpjDlff729Hxg7vQjVN7nrnBW9QGzpOz4P7benMMA8LDx5PYIDoDYoMYQ7g3wYvDgWeDnc9bE6zPqDPKt5MThLVqo8Q7kjPbTyHTnCtLm8TIqfvQZgdjhQiIU9RghvPR_WJjhaxvy8qVBYPSraBLWHU5E99F_GPaq5JDfH_BS8r44NPQ9EnTjA5wc-3kLyvDkRGjigUM-9Fe-GPcLSAjgd7Ig9byGZPNuQPDj1uO88EnYAPRKDvjhY55i7WBlyPZzcXzgfnwA-pOSQvRXoOrnApEI83wNPvG50Jbh19fS8Wd3qvQ0j8TWXpSI9EFLBPRGZT7ivc2o6fKKGPFGIz7jK9HA9IuErPvHLijg5oQu90RCEPeXT1bgrpp29WPLCvPCopbeFTKg8VH9TvXJCnbYgADgTQAlIbVABKnMQABpgLQYAQAQH_cwUKun02_D68Mn63e3W-v_28gD1Adb-9AARvhMS_yP7F8-zAAAAMeHzGPYA8mbe6dUA7yP67Lb91yJ_3xUzvBQs7dDlAB_86xH0xuFTAOvztVAL4sD_KAsVIAAteuAzOzgTQAlIb1ACKq8GEAwaoAYAAFDBAABAwQAAYEIAAADBAAA0QgAAgMEAAOZCAACAQAAAAEAAAIC_AAAAQAAAuMEAANhBAACQQQAAMMEAAODAAACSQgAAMEEAAERCAAAAwQAAjkIAAABBAABYwgAAwMAAAPjBAABAQAAAjMIAAPDBAACuQgAA4EEAAOBBAAAMwgAAeMIAAEBBAADKwgAALEIAAKhBAADAQAAAoEAAAKBAAAAQwQAAQEEAACRCAADwwQAA4EEAAKTCAAA0QgAA2EEAABxCAAAMQgAA0EEAAGjCAACAwQAAwEAAAADBAABIQgAA0MEAAADCAACCQgAAyEEAAIC_AABowgAA0MEAAEjCAAAAQAAAIMEAACTCAADIwQAAEEEAAOBBAABQQQAAAEIAAJTCAACYQQAAbMIAACjCAADgwAAAQEEAADDBAACGwgAAQMAAANZCAABwwQAA0EEAAHBBAAB8wgAAUEEAACDBAAAEQgAAUMIAAHhCAACkQgAAyMEAAKDAAABgwQAAIMIAAGDBAAAowgAAwEEAAOJCAABQwQAACEIAAOhBAABgQgAAysIAANjBAACgQQAAsEEAAABAAAB4QgAAUMEAADBBAAAAwQAAQMEAAOjBAAAAwQAA6EEAAOjBAAAcwgAAgMAAAIDAAABAwgAAUMIAAGTCAADgwAAA8MEAAFBBAACwwQAA0MEAACRCAAAQQgAAQEAAAPjBAABAQgAAAMIAANZCAABwQgAA2MEAAGTCAACAPwAAMMEAAMDAAAAAQAAAEMIAAODBAADQQQAAAEAAALDBAADAQQAAEEEAADjCAAAsQgAA-EEAALDBAAAUQgAA6MEAABTCAAAEwgAAhMIAAMBBAAA8wgAAQMAAAIC_AABIwgAAyMEAAABCAAAoQgAAiEIAACxCAADoQQAA2EEAADBCAADgQAAA0MEAAODAAAAAwgAAAEIAAOjBAACYwQAAAEIAAHTCAAA0wgAAwMEAAOBAAACCQgAAPMIAAODAAAAAwAAA-MEAAJjBAACQwQAAcMEAAFBBAADAQAAATEIAAJZCAADwQQAAvsIAAMDBAABswiAAOBNACUh1UAEqjwIQABqAAgAA2L0AAFC9AACoPQAAqL0AAIg9AAD4PQAAir4AAOK-AAB0vgAABD4AAEC8AAC4vQAAUL0AACQ-AABEvgAADL4AAOg9AABwvQAAVD4AAHw-AAB_PwAA6D0AAJg9AAA8vgAAiL0AADS-AABQvQAA6L0AAEA8AACWPgAAcD0AAOg9AADgvAAAHD4AALi9AAAwvQAAUD0AAIi9AABUvgAAqL0AALq-AAAwvQAA4DwAAIg9AAC4vQAATL4AABC9AAAsvgAARL4AAAS-AACIPQAAEL0AAIo-AACgvAAAVL4AAIi9AADOPgAATD4AAIA7AAAEPgAAUL0AALg9AABwPQAANL4gADgTQAlIfFABKo8CEAEagAIAAIi9AACyPgAA2L0AAP6-AADIvQAAMD0AAMg9AAAQPQAAcD0AAFw-AACWvgAAxr4AALi9AAC2vgAAQDwAAEC8AAAMPgAAKz8AAOi9AACWPgAA4DwAAKC8AADgPAAAiD0AAOi9AACCPgAAqL0AAMg9AABAPAAABL4AAOC8AADYPQAA4LwAAAS-AACivgAAqD0AAI4-AABAPAAA-L0AABS-AABAvAAAqD0AAIA7AADYvQAAED0AAKY-AAB_vwAAdL4AAKa-AAAUPgAAgLsAAFC9AACoPQAAyD0AADA9AAAQPQAAoDwAANg9AAC4vQAAXD4AAIA7AACovQAAED0AABA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=VJJK2BoIaD8","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10288858144530856715"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2661775393"},"11640970086896877245":{"videoId":"11640970086896877245","docid":"34-2-17-ZE3E5355718E14320","description":"Lecture 21: We started this lecture by proving a result about spanning sets of tensor products of modules. We then saw that m \\otimes 0 = 0 \\otimes n = 0. We proved that for any finite abelian...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2950295/140d01f8e7127f8db288206fb55b51c8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hGofLQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dt11BsdWTfSA","linkTemplate":"/video/preview/11640970086896877245?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Products of Free Modules (Algebra 2: Lecture 21 Video 4)","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=t11BsdWTfSA\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTE2NDA5NzAwODY4OTY4NzcyNDVaFDExNjQwOTcwMDg2ODk2ODc3MjQ1aogXEgEwGAAiRRoxAAoqaGhha3VrYmNubXhqcWtzYmhoVUNHRWhlbEkycTEwRk13RzJyODVTcS1REgIAEioQwg8PGg8_E4IHggQkAYAEKyqLARABGniB8vz_9f4CAAD5_wP6B_4CCwDvAfb__wDtCv8GCP8AAOn5AwYJ_wAA8BX-_wQAAAD1_AkL9P8BABb08AABAAAADAn6-QAAAAANAQEB_wEAAPYEAvgCAAAAC_UBBwAAAADxCPcJAQAAAAb9DP8AAAAAAPr8-QAAAAAgAC0dPdY7OBNACUhOUAIqhAIQABrwAXwE6_-nDen9HgrlAMQpCQCBIgr-HCTiAM8PA_-l9egAHx3fAMHv6f8Y-R3_7xYC_17v5f8b5P0AKNkNAATz9gHyAxYAMtzbACMNDADk89YA4iAq_SDsBQAK3On_DAAA_Ov_8P4P-fT9_-fNACruDP3m-ioEDf0D_PDaAAHiHgAC5fba_f0HAgTz8Qf46gcjAQLe9QIrEggCxhP7BPgL4_3j7xX_EBXzAB7y9wXs5Ab82xcKAh4R8QYUHyH-0eH5_PvqF_7ix_f7_A78ASvTEAIPDAf96PrxDQkHAw0V8fz9BgEA-_MI8QkI7P3__Bvy-yAALf8hHTs4E0AJSGFQAirPBxAAGsAHu-7VvtsZJryC8UI7nE3nvVOVVr1ctUY8vMravUAYwz0iT7O77jqAvDFcwrsfNok6OGmKvtEMPTztrn08Jv_zPfEFt72gZSc8Wi5bvuqPlTxuYpK8RBhfvtRkZzulnT88bLDwPAproTsO2aO64Nl-PVJxTb3NN0e8YP1kvXm5bbp4fLm7mIFvvApzs7u68RO7BcN5PTDNvr2754o8agSBPZOQk70PWCQ7z0mfPYWZkbwuqoe7EJSZu8griz3u5s68x0wCPkgMLD1eHAs9Lz_Duy-xiTtygpu8l1fOvaCpMrwQ_Lm8aAimuucwhDxAJqO8vJsiPcADqL3DP7I7qMghvgJ8HD3o6W088IsLPvM_s7viOsY7bD4uPMXF0T3_5qo8EKeIPeDIUbpkVN-6fROZPQ9wFLtKP6M71IXzPLrSVzwziUG6CWTAPM9ZdT2FY7E8pNQSPM5Csbzej9u8U6m-PMGrhrvsQ4e78ofVvKZpaz0Y9Lm8Gt-nPTHAVD1PIMu6OU_rvD8ZEjrvm1I7xTVDPfhRDb4Jbyy7JpR5vbEJWr2Rgn051Cr6PSsbsbz_d1e6ryLIPN9OJ71naq28RRv2PE-2Gjs9LC88MKtTue7Omrxtk4a7zisIvaAGhDvUQqw7KHJSvXQwMT0-qf67y5jnvFoNuT3sjIg7mTbSvLxazr0YnC86tGBYPc_56TzEL6s6W3lJPTIuZjzJWj-7VPqePZroOL14Wk84uHRMvSGH7zsElli6YqDrvXdLcrzXPIY5ZrZQPYnu2b0hlb05s3iBPct-AjxRHL82c0u7vfPt-Dzccuk4U7MnPdKQTL0zGpQ4XFQLvZwV8b3cnnU5RrkvvdzFCr14RbO5Nw2bPVHHOT25Iz435YySvZO5A73jfZ659ADxuw08Er2eLaw2FkBCPF7aED3ceYe3vNRDvUFYFbu5SOa33c_pvHfkfry_NrW4Ue6YvQU3bT1q9k04wJWJukRjd71e3BW4Ri7TvPYBEj1oC_E4F4V4PSe85D3ojjK3wVifPQsZnj29GSM4ge2LPQjKTb3nrKA40IAVPYBKtT2WNJC4WJ_MvaYuND2Dfyw5nEhVPU8tkTzeqZw4Yi-UPa1pHrw_ddy1YV72vP1P2TyU4lE49wEoPnBh3b3xZ7-5VMXUvf97S70YUVe2k2tPPfzujL1tIg03pn_pvYxktD08KOk4szEGuwivvb0cfaa3ipZXPRBY-T2NF0A4kqgcvUdVMz3mr3y4bgONvSdprj2_9xY3wHJpvfg7r7xQuLS3IAA4E0AJSG1QASpzEAAaYFP9ADUyHfrFAzrFKuXS_ujACvzuxfX_8ML_2wL8EAgb9qUb9f8fAPnxpQAAACziLfsUAAN_COO3EvQxFOyewAgReSU0GZ3vLwnW8RDk_Pz_69jcXADQ8KgrQ9X0EShJCSAALfQdGTs4E0AJSG9QAiqvBhAMGqAGAACAwQAAgD8AAIhCAAAQwQAA2MEAAIBBAABwQgAAgMEAACjCAABMwgAAwMEAAEDBAABwwQAAAMAAACBCAAAAAAAAjkIAAHjCAAAoQgAALMIAAFTCAADYwQAAlsIAAJBCAABQQQAACMIAABzCAAA8wgAAREIAAAhCAABAwgAAYMIAACzCAAAIQgAAisIAAJDBAACQQQAAqEIAALBBAACUQgAA0MEAAJBBAAAwwQAAgEAAABDBAACYQQAAoMEAAPDBAACQQgAAQMEAABjCAADAwQAAQMIAAGBCAADQQQAAmEEAAJrCAAAAwAAA4MEAAABCAAAMQgAAsMEAADzCAACSwgAAMEEAAILCAAAAwQAAkMIAANbCAAAgwQAA6EEAABBCAAAAAAAAqEEAANhBAAA0wgAAbMIAAHDBAACAPwAAoMEAAHzCAAAwQgAAAAAAAIDBAACwQQAAYEIAABDCAAAMwgAAJEIAAEDAAAD4QQAAAEIAAGDBAACIwgAACEIAAJLCAADAQAAAAAAAAABAAADAQAAAbMIAALhCAAA8QgAAZMIAAJLCAAAsQgAAIMEAALBBAADgwQAAiEEAAHRCAAAAQgAAoEAAAFTCAAAIwgAAaEIAAKjBAAAIwgAAAAAAAIzCAACowQAAsEEAAIBBAAA4wgAAwMAAAODAAABIwgAAoMEAAILCAAAgQQAATEIAAJTCAAAMQgAA0EEAADDBAACYQQAALEIAACBBAADAwAAAHMIAABhCAAAAwAAAIEIAAADAAAAoQgAASEIAAJDBAABAwAAAUMEAAPhBAACAPwAAgD8AAChCAAAYwgAAkMEAACDCAAC8wgAAGMIAADTCAAAAAAAA2MEAADBBAACoQQAAAEIAAMBAAADgQAAAuEEAAJpCAAAIQgAAHMIAAIbCAAAwQQAAwEAAADBCAADYQQAALMIAAIDAAACAQAAAwEEAAIhCAAAYwgAAusIAAIDAAAA4wgAAuEEAAKLCAACUwgAAkEEAADDBAABwwQAAMEIAAPDBAAAMwgAAcMEAAABAAACwQQAAHMIAAIhBAAAQQQAA8MEgADgTQAlIdVABKo8CEAAagAIAAOg9AABwPQAAED0AADQ-AACoPQAAEL0AAOA8AADWvgAAnr4AAFQ-AACgvAAADL4AAEC8AADKPgAADL4AAHy-AACePgAAED0AAJo-AAAlPwAAfz8AAIA7AADIPQAAmL0AABS-AADgPAAAQLwAAIA7AADIPQAATD4AADA9AADovQAAQLwAAHQ-AACoPQAAVL4AAEC8AAAEvgAApr4AABA9AACevgAAPD4AAJi9AAAsvgAARL4AAKA8AAA8PgAAor4AAJi9AABcvgAAQLwAACw-AACmPgAAhj4AAEC8AACovQAACz8AADC9AAAQPQAAZD4AABS-AADgPAAAQDwAAOi9IAA4E0AJSHxQASqPAhABGoACAABUvgAA6D0AAAS-AABVvwAAED0AAHC9AACgPAAAZL4AAFC9AACWPgAADL4AAOi9AADGvgAApr4AALg9AABwvQAABL4AABE_AAAQPQAApj4AAPg9AADYvQAAqL0AAMg9AACovQAADD4AABy-AADIPQAAuL0AAIi9AADgvAAAPD4AABw-AAAsvgAAFL4AABA9AADKPgAALD4AAGy-AAD4vQAA4DwAAEA8AACYvQAAEL0AAHQ-AAC4PQAAf78AAAS-AABQPQAAJD4AAEA8AACSvgAA6D0AAIg9AAA8vgAAqD0AAHA9AAAwPQAAED0AACw-AAD4PQAAcD0AAFC9AACGPiAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=t11BsdWTfSA","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["11640970086896877245"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2947266852"},"14699814226962564882":{"videoId":"14699814226962564882","docid":"34-7-12-Z070DFA2EDF018F57","description":"Error: at around 13:25, on the last line, the input space should be V-tensor-(V*), not (V*)-tensor-V, although the two spaces are involve vector-covector pairs, the order is different, and so they...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4485678/156fdc25ef537e118d5abc48806b4ce9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/7ABqGwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DM-OLmxuLdbU","linkTemplate":"/video/preview/14699814226962564882?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensors for Beginners 15: Tensor Product Spaces","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=M-OLmxuLdbU\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTQ2OTk4MTQyMjY5NjI1NjQ4ODJaFDE0Njk5ODE0MjI2OTYyNTY0ODgyapMXEgEwGAAiRRoxAAoqaGhraHdtY3VkZHFjdmpsZGhoVUNOOHdUVWxTQXJvTHNsV3lmODdFMnB3EgIAEioQwg8PGg8_E5kHggQkAYAEKyqLARABGniB8_8DC_0DAPz5BgcCB_wCDgzyBPUAAAD2B_z-_wL_APX3A__3AAAA_PsG_AIAAAD49AYB-v4AAAj89f34AAAABvr9__oAAAD_CPL9_wEAAPII-vICAAAAF-wE-v8AAAD6BgEGBAEAAPv0_wkAAAAA_wP18gD_AAAgAC1Csds7OBNACUhOUAIqhAIQABrwAX8U-__o5OIC1AXEAKAVyv-JFw7_ExfOAKT6HgG2A98A3B_qAML8EgHsEhAAyTH-_zrw4_779-gBOOwA_0_xB__sEw8BFMIDADwrGwDo8vv_3gFB_hHp__8A5O8ACA3s_v7lGP_5AcP_7AO9Aj8OMAD7HCn_NfIKA7nKA__f9R__JQDk_Pkw9wH-7RcA3vQzCPzh5AEqGvr2yjbeBBng__7o4QrzDxTNAC798gj4GPX-tsnvBPze6vr8KB0L5S4D-eTfIP_h8frzCQ0J_h7N8AX2z_MGBQLxDvH_Af0V5gn5DtT6DOMw9f_s5g0S9OTw5iAALVJtCTs4E0AJSGFQAirPBxAAGsAHv7q6voAL1zyR_WK8CgfMvVcPFLw0hQ69NUVAvoOVuTysogk8FHYRPt8O3rwmvoM7VPwfvifMKj1387k8pkI8PmVhOb08fEM9cT1avucWvz2FTKi8TMQ7voKcRbtWMte6rpjGPasynbu79Om7Cp0XPpObFbwRiq28kVZGPLSOqryUgB29mK1rvRflQ728SQK9Wt82PenbnbxTkco8dOs1PnAcQryxVPI8xMF0PfwcvLoOsYu7136nvQv9Xbx3S3K8D_yOPfyMKz3fIPU8xHk4vLJMv7uD-OE7pNg2vaB2zzsDigK9lVKGPSMxwTy7ZWK8u7upPZIkiL1yKFm6Y7QevjYWe7t_YFg85Ib_PTl29TyMb548wrKYvZXp_DxoMLw8QCt2u6lj-rzZegQ8hO1MPeTzaj1UkPo8yG1qu8yRmTuuIoo7CJvwvP9jHD0XDZk8FoTSPUV2j70nZyi88UibOtGuQjyJkjW8VY-6vb45NzwXmSW8Uu2jPcXgxrwmfIQ7LGe6PZH6BDziEGA832bGPTm1872HHxg82HcqvRzNMb7XNIy6KYySPIBjkTv1V7y7IorpPf37J73B_mu8cWOJvcwRvb0stSQ7baSRPF7Ieb0frDU7TQVGvWGq2TxHV2m72L_GvMTeVTx_8TG8cwdbPQNTxz1yDME5n6a7PFH8s72XBps72lUIPnzeMDpUnQK73h7kPU_ExzyIVyM5Yi9UPSmjwLy_dyO7PHyjvILnqb3Wf1-4H_TsvFgKljuVkWW7H6LRPVj4H7150Yo4GFWQPXiLMT1gxBI52m28PEaPxDxc9Zk4U7MnPdKQTL0zGpQ4y6LwvFtCHr43BeM5GU10u1RrhjxQyLy5Z2szvTpySbzMw1y6zCDDvdQNBL4IU4U5NokrPegHIDw7DXG4N_8PPRjbOr1sYMS15m-nPGF4O731yqm2UZ9kvWaJqbyZ8Vc5HYi0uwwOZT0SZwc4Wq-DPQGPw72m0Vo5V6AMvU92kz3qSGe4nPKNPI46vjoPZVG3yd3TuahmoDyWZCg4sRODPLaxs70Vqek4zedcPUczmz3VLSW5tJAQvtiMoj2ZewS3PGrMvPKlZr369-W3xmwpPdVyDD2bmYk3qz_CvG_DnrweNmw0raf2PbPqmLx7Ozq5vZUAPfRbSr07Rme4DZ-6O89cUb2hRa628LsOvccWPT2_0rM27AO9O3zUD74X-ty4yvRwPSLhKz7xy4o4JxEhPV44Zj2246u4I2jMvQ0B-jtvBgY37Yh5vQe9rTxkxcA3IAA4E0AJSG1QASpzEAAaYEIDADoBM8wEDD_0IdAUDNbWEcQHxBH_Bdr_Ce7ADeIw6MAvDQAn_jThpAAAABsI7PnuAPN9wrb0__ZnDbCp1hgwf9n6NNIoOvqzGi0nAu4j5QUJSADP-ZpFGLe8APUQFiAALTaQEzs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAQMAAABhCAACQQQAAmEEAACBCAAA8QgAAqMEAAODBAACAPwAAFEIAAOjBAAAswgAAyEEAAIjBAAAwwQAAkEIAAHzCAABwQgAAiMEAAPhBAACgQQAAqMEAAFhCAACAvwAAAEEAAJ7CAAAQwgAAAEAAAATCAAAAwQAAEMEAAEjCAABwwQAAAMIAAHDBAAAkQgAALEIAACDBAABQQQAAhMIAAJjBAAAsQgAACMIAAABAAACowQAAhEIAAMhBAABoQgAAVEIAABhCAADQwQAAiMEAADhCAADgQAAAqEEAABBCAACYwQAAWEIAAHxCAABAwAAAqMEAAFzCAACYwQAALEIAAMBAAAAEwgAAoEEAAIA_AABwQQAAQEAAAEDAAABwwQAAmMEAAEBCAACgwQAAmMIAAGBBAAAQQQAAgMAAAPBBAADIQgAAhMIAAKDAAADYQQAAgMAAAKDBAABAQAAAHEIAAMDAAADYwQAAvkIAAKjBAABAQAAAyEEAAMrCAACwQQAA-MEAAPBBAABoQgAAkMEAALBBAACgQAAANEIAAADDAAAUQgAANMIAAChCAAAAwAAArEIAACRCAAAgQQAAUMEAAAjCAADQwQAAkEEAACBCAAAAwQAA0MEAACBBAABgwgAAqMIAADDBAAAMwgAAAMEAAIBAAACAPwAARMIAAGDBAAC4wQAAEEEAAEjCAACQQQAA4EEAAIDCAADMQgAAQMEAALhBAAAcQgAAXMIAAMBAAABgwgAAQEIAAABAAAAgwgAACEIAAADBAADQQQAAgMAAAHBCAAC6wgAAkEEAAMBAAAAwwgAAkEEAAFjCAAB0wgAADMIAAHzCAADwwQAAEEEAAIjBAABAwgAA4MEAAMBBAABwQQAAiMEAALBBAADIwQAAIEEAAOBBAAAEQgAAQMEAAKDBAAAwQgAAUMIAAEDBAAAgQgAAMEIAANDBAAAAwwAAwMEAALjBAABAQQAAAEIAAAAAAACAwAAAMEEAAGBBAADAwQAAoEEAAAhCAAC2QgAAcMEAADhCAAAwQgAAsEEAAIDBAABwQQAAWMIgADgTQAlIdVABKo8CEAAagAIAAHQ-AAAwvQAAbD4AAPg9AAB8vgAAiD0AAMi9AADSvgAAQDwAACw-AABwPQAAuL0AAFw-AABkPgAAmL0AADy-AADYvQAAcD0AAAw-AADOPgAAfz8AAIg9AAAQvQAAqD0AAIa-AABEvgAADD4AAJg9AAAcvgAAsj4AAIg9AACIPQAALL4AAKo-AAAwPQAAgDsAABA9AABQvQAAfL4AAIC7AACWvgAAbL4AAIi9AAA0vgAAcD0AAPi9AACgvAAAlr4AAMi9AABkvgAAXD4AADw-AACePgAAmL0AAAS-AABwvQAAFT8AAIg9AACIvQAAqj4AAKA8AABQvQAAuD0AAJi9IAA4E0AJSHxQASqPAhABGoACAAAcvgAAbD4AAIA7AABXvwAAUD0AADC9AABAPAAAJL4AAHC9AACOPgAAEL0AAKq-AACgvAAAtr4AAKg9AACYvQAA2L0AAFM_AAAwvQAAyD0AAIA7AAB0vgAAXD4AABA9AACIvQAAhj4AAJq-AACIPQAAED0AAAy-AACgvAAAmD0AAIC7AABQvQAAyL0AAOC8AAA0PgAAmL0AABy-AAB8vgAAEL0AAAQ-AADYvQAAyL0AAIi9AABEPgAAf78AAKi9AAC4vQAA4LwAAEA8AABUvgAAkj4AADQ-AACGvgAAQDwAAFA9AACYPQAAgDsAAOi9AABwPQAA2L0AADC9AADgPCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=M-OLmxuLdbU","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14699814226962564882"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"650941375"},"2257417525591023728":{"videoId":"2257417525591023728","docid":"34-1-14-ZBCFC15D874B05BC9","description":"Session by Syed Emad Uddin Shubha (RA, NSU Optics Lab) for CSE 499A...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3372419/9dd5d56c102d113b2f1dd8a4d52e9d49/564x318_1"},"target":"_self","position":"10","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DvzD1zsZtAAg","linkTemplate":"/video/preview/2257417525591023728?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Product, Entanglement, Bell Basis Measurement, Superdense Coding | Bangla","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=vzD1zsZtAAg\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFQoTMjI1NzQxNzUyNTU5MTAyMzcyOFoTMjI1NzQxNzUyNTU5MTAyMzcyOGqvDRIBMBgAIkUaMQAKKmhoc21lY3hxc3NsbG9yYmNoaFVDYUw3OC12dkY5VXotZHRSM0tBV2xZdxICABIqEMIPDxoPPxPLJoIEJAGABCsqiwEQARp4gfD9CgD-AgDzBAUB-QP_Af4GBQAJ_f4A7gT8-AUAAAD3CPwB_wAAAPUOAQoCAAAA9v77CPT_AQAbAvv1AwAAAA8D_v_8AAAABA_7BAoAAQH7EAYPA_8AABH4DAwAAAAA-Q8E8f__AAD6AgQHAAAAAP3y-gQAAAAAIAAt6A3XOzgTQAlITlACKnMQABpgMA4ANDQ316khJ9f84trx8-EVz-zK3__46f8zAP7f-xXUl9MZ_0EBB_WhAAAAzxyvTvoAAnLz7Ofs_AXxqOT1LiZ_DAwI1Fz-67ZXMiL90ErOKUsnAODzHekq6fIqIBX9IAAt2H4XOzgTQAlIb1ACKq8GEAwaoAYAAMhBAACAQAAADEIAAMjBAAAwwQAALEIAAIhCAADYwQAAisIAACDCAAAAwQAAqEEAAPDBAACgwAAAJMIAADDBAAA0QgAAoEEAABBBAACgwAAAcEEAAJrCAADAwAAAUMEAAADBAABAQAAAkMEAAFRCAAAwwQAA0EEAANjBAAAsQgAAHMIAAABCAACkwgAAOMIAAABBAABQQgAAsEEAAERCAAAQQQAAMEEAAJhBAABcQgAA4EAAAHDCAAAgQgAAmEIAAKxCAAAQQQAA0MEAAGzCAAAQwgAAwEEAAATCAACgwAAANMIAAIA_AAB4QgAAlEIAAOBBAABkwgAAbMIAAIC_AAAwQQAA-MIAAMjBAADoQQAAOMIAAMjBAADgQQAAFEIAAADCAACQQgAAgMEAAObCAAAAwgAADMIAAERCAACgwAAA4MAAANBCAAAswgAAqMEAAOBBAACWQgAAmMEAAJBBAABcQgAAFEIAAADAAACkQgAAgEAAAAzCAABEQgAAAMIAAJDBAABQQQAAJEIAAFRCAACwwQAA4MEAADTCAAAIwgAAgMIAAGBCAABgQQAAJEIAAOBAAABAQgAAoEIAAIhBAAAwwQAA4MAAABBCAABQwQAACEIAAATCAABEQgAAAMEAADjCAAAQwQAAVEIAAKrCAADQwQAAQMAAABjCAAAgQQAASMIAAMDBAAAwQQAAAEAAAIA_AACUQgAA4MEAAHBBAAAwwQAAoEAAACDBAACuwgAAwEEAAGxCAAAIQgAAgMAAAAhCAADgQQAATMIAANjBAACgQQAAEEEAAHBBAACAQQAA2EEAAEDCAADwwQAAMMEAAJLCAAAwwQAAuMEAAKDBAACAwgAAfEIAAPBBAAA0QgAAmEEAACDBAAAAQAAACEIAANBBAABwwQAAMEEAACBBAAAwQQAAgMEAAHDBAAA8QgAA0MEAAGDBAAAIwgAA4EIAAJTCAACIwQAAUMEAACDCAADAQAAAAEAAAMDAAACowQAAQMEAAJhBAABAwQAAmMEAAKDAAAAAwAAAgMAAAERCAAAwQQAAwMEAALDCAABAQCAAOBNACUh1UAEqjwIQABqAAgAAcL0AAFC9AACOPgAAoLwAAIC7AADIPQAARL4AAMa-AACIvQAADD4AAI4-AADgvAAAJD4AAAQ-AAAwvQAAcL0AAGQ-AADgPAAAiD0AAFw-AAB_PwAALD4AAHC9AAC4PQAABL4AAJK-AACIPQAA6L0AANg9AACuPgAAgLsAAIg9AAAsvgAABD4AAIC7AAAQPQAADD4AALi9AABEvgAAXL4AAJa-AABQPQAA4LwAAJg9AAAsvgAAiL0AAPg9AAAQvQAAmL0AAHy-AAD4PQAAVD4AAFw-AABcPgAANL4AADC9AAAJPwAAoDwAACQ-AAAkPgAA4LwAAIi9AADIPQAAgr4gADgTQAlIfFABKo8CEAEagAIAAGy-AAAcPgAAyD0AAEO_AAAEPgAABL4AAJg9AAAcvgAA2L0AAIY-AABQvQAAJL4AAMi9AACevgAAQLwAADC9AACYvQAAVz8AAIg9AAAkPgAADL4AAHy-AABwPQAAgLsAADC9AABcPgAAmL0AAKg9AABwPQAAgDsAADC9AACoPQAAiD0AADC9AADYvQAAQLwAAFA9AACgPAAAUL0AAKC8AAB0PgAAyL0AAOi9AACgvAAATL4AAKA8AAB_vwAAfL4AAOi9AABEPgAATD4AADy-AAB0PgAAcL0AAJi9AABwvQAAgLsAABQ-AAAkvgAAmL0AAIg9AAAQvQAAVL4AAOA8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=vzD1zsZtAAg","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["2257417525591023728"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"9856994532268442583":{"videoId":"9856994532268442583","docid":"34-2-3-Z698BCBBBC5271C79","description":"Tensor product universal property explanation: • Complete Derivation: Universal Property of... the Cartesian product to linear maps on the tensor product. This video explains how we can use the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3502737/36a5acbab15bd037ab9cf074075ecab8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/psC0KQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5i8tp0rD2EA","linkTemplate":"/video/preview/9856994532268442583?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Product Basis With the Universal Property","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5i8tp0rD2EA\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFQoTOTg1Njk5NDUzMjI2ODQ0MjU4M1oTOTg1Njk5NDUzMjI2ODQ0MjU4M2qHFxIBMBgAIkQaMAAKKWhobWpnZGd4ZGV0end6ZGhoVUNvOFQwRDhteTFIejVLb0hDUllPQW5REgIAESoQwg8PGg8_E7AGggQkAYAEKyqLARABGniB_v4BCPsFAPUBAwUHBP0BDwgDCvYBAQD0EPoCBgL_APX3A__4AAAA-AUCAgAAAADz-gEF_QAAABkC_PYDAAAA_vX8C_4AAAAJBvcI_gEAAOkB_QADAAAAC_b8__8AAAAA_wMBBAEAAAQE_QYAAAAABvYA9gAAAAAgAC15oOI7OBNACUhOUAIqhAIQABrwAX3LFf3DzbkAs_0TANAtDwKpLUX_NznxAM7W_ACtSM0A5iTzAOLiFgAaGvH_yyn6AN7lsv_q0Bf_DNvj_y4AwQET8-8BK-3WAX8sPfwa2q7-1S09_OPU_P78s9IAJCTR_xTY-Ps_Iuf__PXD_EbpKwP1ATMIH_AuAwHbKvwd9gwGw-TZ_wvQAQLYpxz9qC0hBEXD4QTc6_H0wPDxAwDW3vQg8Pn17kn1AirS1QD4Ed0Mz94QDg013_3LRA0LC_rUCMntPgjVrvP588gW7vDY8gAp7tj756wMAjsN9PYUDRX627bjAcoV6A7eHPsF1Avw5SAALexd2zo4E0AJSGFQAirPBxAAGsAHK4TtvjcLxTuzbLm7qfcUvEQlw7t3Lsy8SV4nveNVVj2mv828_yPTPcFSXTyaC5w8dLUVvpmDkD0tBg-9xVWFPlQwb72bfyq8GYGivUC1uz3hpF-981kOvjhvNz12-yy7Oz1KPEEYLjwYYzs84Nl-PVJxTb3NN0e8qarIu7JdJr1fwQy9Uc2mPQAbEL3Whem8CgLavCIFxTxHUnc8U9CtPBbsEL0Sb_i8gl4TvZNdRDw7Lzo8v5oDvZGUOT1165C6DbmzPZN_fD1cQ1-8_Vq9vYIDVjvXnn68eGSLuuO_Zb2l2HK7WPMtvHURNT164U68vJsiPcADqL3DP7I7YaWKvnOcWzxVBO47RgrlPaOWIDxTze473O-Fvd0J9j3Ineu6VTwEPRB6Vr0qUwy9qMlnvDZ7uzxFgJM8pyqIPb_Cl7vb5nw8jUolPdYjKD0s85Y8XBMcvQjwzLscn6S8e6A1vYdtizxWLq-7c-lJvQNtPDtROzK8qnMWPQSeKj189MQ7QbltvHW227wQ1Yo8o8eEPYPHFLwbg0o7x4NtvVcQjr2dt1a8_aTaO7qNsT0NDbS65CxMPupXj70DDIU7KHbZvFcIq700iIu7NfqHPQ79rrzjmaO7zisIvaAGhDvUQqw7KHJSvXQwMT0-qf67MGbLPCqnDT5ukyi60E8nvXeihL2h94Q6m36_PRR3_Dz0iCs6g7X7vDsECT1WWaW7q-a-PYkMK76M5pY6Gt4svtF6OL2hcsA5dxfDvFIiETwEVJs70NCkPPbTn72EWbI5U-oCPrT43rxgHL-5LdEJvpYhLj2euGC4WJygPAtP3jzRj8U4iwZfPNO8o70_fEE4RrkvvdzFCr14RbO5qdMqu8BeYTzdW2s2U1n0va_hs7yMjI-5o0cjvD10izxaUko5FtIrPbwwYz1L4sA2xdRMPI-tQrzjHwi6hbGJu5L6_Ds6jEK4u4-rurUFujxj-AU5wrS5vEyKn70GYHY4w3csPe5IoD1t7Rs5UdnwvDnlGz2SSpQ4YIksPTBXED0SDCo39y-avFc0pTuOujo4DaniPSKVOL3t3kE3tJAQvtiMoj2ZewS3BBCNPXq9AL0FMIA49bjvPBJ2AD0Sg744lkhYPK5IzDwfR1A4H58APqTkkL0V6Dq5wKRCPN8DT7xudCW4MpTuvLr4u702Fya4I9yEPfmXvj1uUTW3cX55PL7pzLuX72GyyvRwPSLhKz7xy4o4OaELvdEQhD3l09W44S2LvZt_yzrmAAo4WOq0PLMAl73dM0c3IAA4E0AJSG1QASpzEAAaYDINAC_yDBPvJCLvFPPs9gHhBO7ruhf_6OYA6wHTHP4L7sEX8P9H9hvluwAAAAP9_jIHAAld7QLd8PUu6tulCQMaf-YKKqLv_-X8FfswEgMJ8NgXIgDm9cM-G-HBDxDeESAALREYPzs4E0AJSG9QAiqvBhAMGqAGAACYQQAAoMEAAKBCAABAwQAAikIAAOBBAAC0QgAADMIAAGDCAADgQAAA2MEAAKBAAABMwgAAAAAAACxCAACAPwAAwMEAAKjBAACaQgAAcMIAAPjBAAAAwAAA0MEAAERCAACoQQAAAMEAAPDBAAD4wQAAVEIAAEBBAACAwAAAoMAAAJjBAACgQQAAnMIAACBBAAAAwAAAjkIAAEDCAADgQAAA4EAAAAxCAAA0QgAAEMIAAFDBAADYwQAAQEEAAIBBAACOQgAAPMIAADzCAAAQwQAAGEIAAFxCAAAAwAAAoMEAAIA_AADoQQAACMIAALhBAAD4QQAAksIAABDBAABIwgAAiMEAALDBAAAAAAAAoMIAADzCAACAwQAAYEIAAKJCAADYwgAAoEIAAIhBAADAwgAARMIAAABAAADgQAAAwMAAAKLCAACAwAAAFEIAAIC_AACEQgAAiEEAAKDBAADgQQAAqkIAAHzCAACYwQAAMEIAAIBAAAB0wgAAgD8AAJjCAACoQQAAMEEAAERCAAAAQAAA8MEAACxCAABQQgAATMIAAPrCAAA4QgAADEIAAABCAADgwQAAOEIAABhCAABgQgAALMIAAIBAAAAgwQAAYEIAAEDAAACAPwAA8MEAAILCAADAwQAAAMEAAAzCAACAwQAAIEEAACBBAACowQAAAEAAAEDCAAAcwgAAQMAAAKhBAAAAQQAAmkIAAIDAAAAQwQAA4EEAACxCAACAvwAAgsIAAAxCAACQQQAA4EAAAFTCAACYQQAAwMEAAKDAAABgQgAAQEAAAPDBAACgQAAAoEAAAHhCAAAwwQAA8EEAAGDCAABQwQAAOMIAAPDBAAAoQgAAbMIAAHxCAAAAwAAAsMEAAEBAAAAEwgAAgEEAAGBCAABAQAAACMIAAIA_AAAAwQAAwMAAAJDBAAAYQgAAoMEAAFBBAAAAwgAAoMAAAMBCAADAwAAAJMIAAAjCAABIwgAA-EEAABDCAAAAQQAAMEIAAIjBAACgwQAA4MEAAMBBAADoQQAAEMIAAAjCAAB0QgAAgMEAAOhBAACAwgAAYMIgADgTQAlIdVABKo8CEAAagAIAALi9AAA0vgAAZD4AAKA8AAC4PQAA-D0AAPi9AAAPvwAAZL4AAIg9AACgvAAABL4AAEA8AAC4PQAA2L0AAOC8AABkPgAAcL0AAMg9AACqPgAAfz8AAKI-AABUPgAAgLsAAIA7AACgvAAAqD0AAEC8AAD4vQAA-D0AAAQ-AABcPgAA6L0AAJg9AAC4PQAAgDsAAAw-AABwvQAAZL4AAOi9AADevgAA2L0AAEQ-AACIPQAAcL0AABS-AACgvAAAfL4AACS-AAAQvQAAND4AADS-AACIPQAAgj4AAHy-AAAEvgAABT8AAIA7AABMvgAARD4AAJg9AAAkPgAAHD4AAAy-IAA4E0AJSHxQASqPAhABGoACAADgvAAAPD4AAIi9AAATvwAAUL0AAIg9AAAkPgAAoLwAAIC7AABUPgAARL4AALK-AABQvQAATL4AAJg9AABQvQAAiL0AACk_AACgvAAAkj4AAKg9AACYvQAAQLwAAEA8AAAwPQAADD4AAFA9AADYPQAAMD0AAFC9AADgvAAAyD0AALi9AAAMvgAAgr4AAAS-AACSPgAAUD0AAHS-AAA0vgAAiD0AABw-AAAMPgAAmL0AAIg9AAAwPQAAf78AAFC9AAAQPQAAJD4AAPi9AAC4vQAAHL4AAJg9AABMPgAAmD0AAOA8AAAEPgAA2L0AAJY-AAAkPgAAyL0AABA9AACgvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=5i8tp0rD2EA","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9856994532268442583"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1124677718"},"12253591538338101501":{"videoId":"12253591538338101501","docid":"34-5-3-ZE478C500052FBA75","description":"The notion of tensor products of vector spaces appears in many branches of mathematics, notably in the study of multilinear algebra which is vital to differential geometry. However, one can...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3430537/da5c334a52f08b7aad453dd9a9ad7faf/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gqgZ3wAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkGkOo7w8xeM","linkTemplate":"/video/preview/12253591538338101501?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor products of modules","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kGkOo7w8xeM\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTIyNTM1OTE1MzgzMzgxMDE1MDFaFDEyMjUzNTkxNTM4MzM4MTAxNTAxaogXEgEwGAAiRRoxAAoqaGhndWVxcmN0aWl2aWN5YmhoVUNuVHVIQlZhQnNLOVRCUms5NkJKaFF3EgIAEioQwg8PGg8_E88HggQkAYAEKyqLARABGniB7gH5_fwFAPf3AQn5Bv4CEwn8_PUCAgD_CQoABQX-AO4DBQoFAAAA9Q4BCQIAAAD0BA4E9wABABP69PUDAAAACwYD9gEAAAAMAQEB_wEAAPb_AP35AQAAAvcFBgAAAAD7BAkL_gAAAAT7BAMAAAAA-_P7-QAAAAAgAC1xht47OBNACUhOUAIqhAIQABrwAX_5_wHB7tr_Fe7wAMoGCwGQHgn_GSDlANUOA__cBeUBFQv3Aebs9gAB9wkAwSL5_xgAzgAD0RL_K_EA_zv58gDz_wkAF_AOASUAJwEEBdkA2hQB_jHqBAIIAuUBFhMFAP0ENP_0_Of7_-rTABnsEwLwGA4DBewH_wX7JgP8CgAE7-Pf_u7vDAb16hcA0P8aAf3o6gH76_f33AH-BBf19vv85wP7EjXt_xoO7ATY-wb76AP_Aw7c9f79HxYJ7RP6BOoDEgDo9Pz2CiYR-w3yAQXvC_D6HcX8CBQOCAzv0wDz5PXvAfgXB_zYGPkL-Qn49CAALZx_MTs4E0AJSGFQAirPBxAAGsAHgO7TvhHew7rl6Ja8yrufvVpGij18hku8qyIMvhIAhz2biKM8eLXcvIvT3jvRMRG9nE2Xvuo9XLlkjxa8oOIoPlHbxrxEDjY8dckovtpUnT2TkKM8bt9jvtVuRb0Gnhu9TBkIPqaM7jwzrlG7HWaePPOXEb2zaoY8fN_uvK2uGb1l7pA7CUG9vbkmkzz2kxa8R9WVPTPRVr27lrW8-nTBPa5OCb3uMvI8_RWyPMb8rL046Nw8I50DvM3aNzw3nEM856tUPvBdlDxsyQ08Be5qPU611rxTH207v3b6vNbsnDyTdym9Iee9vJGp8TycH7k7_MPWPWaAjzv78he82T_vvZz59T0DNm-7-wU7Pto31z1Edco7GD5ivXa3fD0W3ys8ofbbPQF6Cz3usAk9C5YqPXCVJ7yqzDk8m55hvR093j2Wqry62uOmuxydTrz6PgE9KwP9PM23Gb22bwm8qOyqPKFeFT39HcC707aGO6AmaTzd6Mi8uOr6PYTZJL1lyIy88SmVPcHFCj1F0D28RVylPHO49r3kBDc80omEO_dGA726gU06e2j_PdirXr2so1M7ruT0PHS_froav_Q7uY2mPZuv0r2iSGU670kxvaySIz29rjq8kNlZvbAjabw1pQi8ByM2vbwcmzujyjC8nfiou-mRcD1V50W72zu8Okqzeby3HQG8m36_PRR3_Dz0iCs6UpNFPc78arw6ZtG7aeTTPcnSvbxSsAa40ClIO5MtHL31B1I7By4HPKHCDL3EyYG7PmFEPecDfb0nlr24osdWO7jNpD1xGcI42e3zvBdcGL0y3LM3OgEPO1cDObwKdB86FJ2LvYl64b3GJ3A57i2bvCNIqbuRwPY6nj-SPaED3Dw7brG59pA6vAtWZjw9V4Q574IyPWuOnT09LRW5nfiFPOIEJrw4fLW4EwlLvVnajrzvjSW55qULO1O7Nb193MI4HYi0uwwOZT0SZwc4mLRSOz9wxb33LmA5zq_BPEmTzD3fRIe4ZYTcvKyXlT16Lwk39mnLPLE-FL2CTOq33ln7PNjxn70YDZc4Z_iqvGHJsLzsJ404VFPSveh0z7wv-MU3k55xO9uZE72LC9o4pVJHPGCBPr2_5tI39qRCvTAlFz2Dw8g3weMrPtylaLwHiXS5IHJkvZ7ZKb0EK3-4DZ-6O89cUb2hRa62Bfrkve0Gdj0qe8847AO9O3zUD74X-ty4VRimPW0LxT2Dx-c4mJNlO4AL0j2Y5A-52hE4vS0rqDz0IiS4uEuRvH7vJbxpk5I3IAA4E0AJSG1QASpzEAAaYED5ACv-IPfeGTvjGJT3G-zUJ8IPxPj_-9__3fzQA_L-D7IBG_8P_v7SowAAAB7q-_oKAP9_yrTB8N8q7emt7_cieyYaT8T4GP7F_A0DzvwbE9X3agDtBpU8982z5003ByAALU7OFjs4E0AJSG9QAiqvBhAMGqAGAACQwQAAQMAAABxCAAAUwgAAQMAAAIhBAADgQgAAQMEAAKTCAACAPwAAAEEAAGDBAAC4wQAA4EAAAAAAAAD4wQAAhkIAAGTCAACAPwAA2MEAAFDCAADwwQAAkMIAAHhCAAAoQgAAAMAAABDCAADgwAAAkEEAAJBCAADgwAAAAMIAAJDBAAAcQgAAeMIAAKDAAABAQAAALEIAAEBAAABMQgAANEIAAMBAAAAAAAAAoEAAAIhBAACwwQAABEIAAKDAAABQQgAA2EEAAODAAAAAwgAAQMEAAARCAABAwAAAIMIAAI7CAABMQgAAgL8AADRCAACgQQAAwMAAAETCAADQwQAAQMEAAHjCAABwQQAAqsIAAADCAAAYwgAAXEIAAGhCAAAwwgAAgEIAAIhBAABMwgAAzMIAAODAAADoQQAAQMEAAMDCAABkQgAAAEAAAADCAABQQgAApkIAAEDCAABQwQAAaEIAAGBBAABgQQAAHEIAAMBBAAD4wQAAYEEAAOjBAAC4QQAAgMEAABxCAADAQQAAPMIAAKRCAACQQQAAoMAAAFjCAACgQQAAAAAAADBCAABwwgAAqkIAAMhBAABMQgAAgD8AAODAAABwwQAAqkIAALjBAAB4wgAAuEEAAGjCAACYwQAAIEEAAHBBAABswgAAwMAAAKBBAAC4wQAAWMIAABTCAADQQQAA8MEAAGzCAACgwQAAnkIAAFBBAADwwQAAIMEAANDBAAAIwgAAjsIAAHhCAABQQQAAiEEAAMDAAACAQQAAwEEAALDBAAAgwQAAqEEAAJjBAAC4QQAAEEIAANhBAAAAwQAAAMIAAPjBAACkwgAAmMEAAHzCAAAAAAAAlsIAANhBAABgQQAAKEIAAIpCAAAQQQAAyEEAABBBAACYQQAAEMIAABjCAACAPwAAmEEAACBBAACAwAAAoEAAAHBCAACgwQAAoEAAAMxCAACMwgAArsIAAHDBAAAQwgAAOEIAAHTCAABswgAAuEEAAADAAABAwAAAUEEAAADAAADAwQAAAAAAAKjBAAA0QgAA-MEAAAhCAACowQAA6MEgADgTQAlIdVABKo8CEAAagAIAALg9AACgvAAA4DwAADA9AACAuwAA4DwAAJi9AAAJvwAAyL0AACQ-AACYPQAAPL4AALi9AABUPgAAfL4AAEC8AACgvAAAcD0AACQ-AADqPgAAfz8AANi9AABwPQAAkr4AAJ6-AACAuwAA4LwAAOC8AABAvAAAdD4AACw-AAAQvQAAuL0AALY-AAD4vQAAuL0AADC9AABkvgAAir4AAKA8AACqvgAAFL4AAEC8AABEvgAAuL0AAIi9AADIPQAALL4AAHC9AACYvQAAmD0AAOg9AAB0PgAAyD0AAOi9AABQvQAAHz8AAFC9AACYPQAAhj4AAJi9AACAuwAAcD0AAOi9IAA4E0AJSHxQASqPAhABGoACAACYvQAAFD4AAFS-AAAbvwAA4DwAAHC9AAA8PgAAHL4AAIC7AAAcPgAAZL4AAKK-AADovQAAvr4AALg9AAAQvQAAED0AACE_AABMvgAAhj4AAIg9AAAwPQAAED0AAJg9AACAuwAAyD0AABS-AACoPQAAQDwAACy-AABAvAAAND4AAFC9AACOvgAApr4AAKg9AACaPgAAMD0AAAy-AAAkvgAABD4AAIA7AADYvQAAyL0AABw-AABEPgAAf78AAJq-AAAkvgAAqD0AADA9AAAEvgAAgLsAAKC8AACYvQAAiD0AAIC7AAAMPgAAUL0AAFQ-AAAwPQAAEL0AABC9AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=kGkOo7w8xeM","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12253591538338101501"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2846502744"},"12839996867003173050":{"videoId":"12839996867003173050","docid":"34-10-6-Z9E7B26A2C0F098EC","description":"lecture • Group theory lecture Category theory • Category theory Field theory in abstract algebra • Field theory (abstract algebra) Mathematical analysis • Mathematical analysis...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4370837/eaf8bf29cb4cabe585a04839879ceea5/564x318_1"},"target":"_self","position":"14","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOdPtwCRL9EU","linkTemplate":"/video/preview/12839996867003173050?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor product of Ox modules, locally free sheaves and Picard group","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OdPtwCRL9EU\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTI4Mzk5OTY4NjcwMDMxNzMwNTBaFDEyODM5OTk2ODY3MDAzMTczMDUwaq8NEgEwGAAiRRoxAAoqaGh4anNoZW53ZWFqaGJlYmhoVUNMU0w5WUdUVS1CWmpxdFl3a252OWZBEgIAEioQwg8PGg8_E-4FggQkAYAEKyqLARABGniB8P0KAP4CAPv1Df8HBf4BFAX4BvUBAQDzEfoCBgL_APMACPz7AAAA-v0JBQAAAADtDgQM-wEAABkF8P4DAAAACQ38AvoAAAAJAwcH_wEAAPT7_vwDAAAA_vYADP8AAADy_wgF-_8AAPj4AvsAAAAA9ekH8wAAAAAgAC3oDdc7OBNACUhOUAIqcxAAGmAYFAAhM_rJ7eho1wTO1wIi4gzO2OVN_xDQ_wjwyM0lycbLIfL_HfEN4aEAAADc9-8JNwDwewqyquYhJvPlp-wnGn8mEyHCAyrvrgft-jQA0vst82UAxen_JAWmDfcbJP8gAC2UVxc7OBNACUhvUAIqrwYQDBqgBgAABMIAAMBBAAB0QgAAoMAAABBBAAAgQgAAiEIAAGzCAACCwgAAEMIAABhCAAAAwQAArsIAAEzCAAD4QQAAIMEAAJBBAADoQQAAMMEAABDCAACIQQAAHMIAAPBBAAAsQgAAHEIAAIBAAABIwgAAQMAAAABCAACOQgAA4EAAAChCAACUwgAABMIAAFzCAAAUwgAA4EAAAL5CAAAkwgAAMEIAACTCAACAwAAAcEEAAFDBAAAIQgAAgL8AAADBAADYwQAA4EIAAFDBAAA0wgAAmEEAAJBBAAAAQAAA4EAAAOjBAADUwgAAIMEAAMBAAAAwQQAAgD8AAFDCAAAAQAAAgMEAAIBAAAAwQQAAiMIAAEDCAACoQQAAAEEAAFBBAAAcQgAAhMIAAMhBAABAwQAALMIAAJzCAAAEwgAAgkIAADRCAABAwgAAkEIAAABAAAAQQQAAHEIAAIA_AAAAwAAADEIAAKRCAABAQQAAiEEAAHhCAACowQAAdMIAAOhBAACKwgAAwMEAAKjBAABAwAAAkMIAAGjCAADwQQAAsEEAAIDBAACCwgAAREIAAEjCAAAAAAAAwMAAABxCAABYQgAAjEIAADDCAACwwQAAAEAAAEzCAACowQAAEMEAAHDBAACSwgAAYMIAAHDCAACwwQAALMIAAPjBAADYQQAABMIAADDCAAB8wgAAZEIAALBCAAAwQQAAZMIAAJhBAAC4QQAAwEAAAFBCAADIQQAAuMEAAJDCAACewgAAwMAAAIjBAAA4wgAANEIAABDBAAA4wgAAsMEAAIDBAACAwAAAqEEAAMDAAACoQQAAQMAAABBBAAAAwgAAXMIAAIjCAACEwgAAikIAAOhBAACoQQAADMIAAIC_AABAQAAAEEEAADBBAAA8QgAADEIAAAhCAABQQQAAXEIAAAAAAACAQAAAAEEAABBBAAAwwgAAwEEAAFBBAABUQgAANMIAABzCAABQwQAAgL8AACRCAAAcQgAAgL8AAExCAACYQQAA0MEAABDBAACAPwAAEEEAAEjCAAAwQQAAgL8AAABCAAAUwgAAlsIAAIDAIAA4E0AJSHVQASqPAhAAGoACAACAOwAAML0AADQ-AABQvQAAuD0AADA9AADoPQAA6r4AAGS-AACoPQAA2D0AAMi9AADIPQAAuj4AAOi9AABQPQAAyD0AAAQ-AACCPgAA5j4AAH8_AADoPQAAcD0AAOi9AACOvgAAuL0AABw-AAAQvQAAND4AAEw-AAAEPgAAsr4AAEC8AACAOwAAyD0AAJg9AACoPQAAmL0AAJq-AAAkvgAALL4AAIi9AABQPQAA-D0AAJK-AACoPQAAdD4AAMK-AADoPQAAbL4AABw-AABsPgAApj4AAKA8AAA0vgAA4LwAAAU_AAAUPgAAPD4AADA9AABAvAAAqL0AAFA9AACGviAAOBNACUh8UAEqjwIQARqAAgAAyL0AAI4-AAAQvQAAD78AAJK-AACIvQAAhj4AADy-AAC4vQAAvj4AADC9AABsvgAAVL4AAAy-AADoPQAAcL0AAKi9AAAxPwAAML0AAMY-AAA0PgAAXL4AAGS-AAAwPQAAqL0AAHC9AAAkvgAABD4AAMg9AABwvQAAcL0AAOg9AAAUvgAALL4AAKA8AAA8PgAAtj4AAIg9AAA8vgAATL4AAEA8AAA0PgAA6L0AAJi9AABcPgAAdD4AAH-_AACYvQAAuD0AADy-AABAvAAAoLwAAFC9AAAsPgAAyL0AABw-AACAuwAAuD0AAIA7AACaPgAA6D0AAEC8AAA0PgAAUD0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=OdPtwCRL9EU","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12839996867003173050"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"14903190412506391483":{"videoId":"14903190412506391483","docid":"34-5-1-Z10EFBB83FD6304B4","description":"This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2Do0Dek]. For this example, we will...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3431135/e8fab51ad2347f43fee63a6e1dd0287e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ZENTRwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNMPufa4IA3A","linkTemplate":"/video/preview/14903190412506391483?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TensorFlow for Machine Learning Solutions: Working with a Linear SVM| packtpub.com","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NMPufa4IA3A\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFgoUMTQ5MDMxOTA0MTI1MDYzOTE0ODNaFDE0OTAzMTkwNDEyNTA2MzkxNDgzaogXEgEwGAAiRRoxAAoqaGhraGRkdmtpbGFjenRmY2hoVUMzVnlkQkdCbDEzMmJhUENMZURzcE1REgIAEioQwg8PGg8_E6ECggQkAYAEKyqLARABGniB_BH4CP8CAPwAEAUHB_wBFAX4BvUBAQD9CfgIAwX-AAL6-___AQAABgP8CgkAAADvAPj_8AABABAB9_wEAAAA_gMEBfwAAAAED_sECgABAfX-AwQDAAAACQUEAQAAAAD7BAkL_QAAAAUH_v4AAAAABQH7BQAAAAAgAC21k9Y7OBNACUhOUAIqhAIQABrwAVv9-P4B-QMDxuT4ANkFBAGBAAL_Jv_bALkO7ADd8sgB8PXpAOf8Of7vDw4ArBALAe4C3f4bGCsACeAr_yP49f8YEPcBMuoSACr8FgHwIPj_AR8n_yPWEgAi1_YBMPjn_S_aGP7b9-YA1ezqAP8EKAAQ8wL_NO72_-oFAgDsBhT91xHX_gMJDPrT_hf_EeoNABIs4gEiMfT-_fv7BzET8wsX_CcBGxH5Be0WFwXsEf4C7BHtAgX2BgMBAgsPDzIVAegDFAAE7fz18yfx9jXn8P4BGPv4Ht3rAvoB-ATn9Pz2zDAHAucxAw7RDxH76v4O_CAALb9PJDs4E0AJSGFQAirPBxAAGsAHkgfyvqZACz3gg5e8yXeEutU15Dz78c28zcCivTMmE72UPyk8TROWPaMViT1BbwA9HcnFvmYIkbx9pY09_b10PpJUS70Dsew8YtksvnICqjvDZAq99aFrvoTTBz10NcO7O0VdPZm6K7xd34c8qcHUPeqoNDztSqa8MzilvIAl2ztbAGS88FUGPc2Edb3mNcC8lPYGPqoAqTwTMtS55gNCPvY9T71HAQG7WldWvZ4MLj0KSg88cv4BvfQSiDz2Ali86q_3PTGyUTrITQM9SXQlvQhcEr3-XHq7SQv8PJkHVT1Juqg7ZEBRvDcXfzxnPow8XU4uPTED-rytd6w7rfkBvlSlkjwh0d873WA4PimmXD3jGz464KA9vfWR5Ty4b5o8s743vLcdBbz6t4k7MGOqPaGRmTwmaaM8a3Otu1zjOD0DnSS8mtKFPTcvEz1BCwk8umMWPeT2yzym1Yy73GE4vLNVUz3z-wI8VY-6vb45NzwXmSW8LY-aPIZ7wDw9Eqs7fQnVPRGqszrqQoc7o8eEPYPHFLwbg0o7g-rVOlGQELwauMm7tZEmPX-rMD27Hcy7FZBWPb9elr3dQ8K7SAjFvNoXFjxpGIS7pH29PXPJh70vyC879BNzPAo6ED0SH-07s_4iPHN1Ub1XB4C8OmlrvTQHMj3gEp075wfkvGiXj72ZtRi7GpyNPeTHDj2eke-77yuFvD96O7s4zQ47ElDBPcF4Qb1h0wq6H9XVvEqcsLxkZpe6EWBHPOPpkD1bADA5at6BPVFmaL0CFoQ5qvBKu_R-7TuZZKK6CXEgvV9XGD0H7DY52j_qPAlG77xybWq63SqjvFc9wL2RBh45ZuUtvUl0QL2lX7M5Kcz7vErfNbyFYNE501LUvHpBurwnfhS6i3xNPIuxfbkb2R-5nfiFPOIEJrw4fLW4JYgkPRZdjTzYNeU4tUsAvW5RRr27SlI4rEyCvTFnsT2r-0g4wtD0PN3U_rvhjgs5Rj86PfTOhz1s_re44okqPXNWej1k2ak3uUhrvAGDKT2eV9K4dlNqvVfPyb1cOmq4YmROPXEhKj2aHBq4wku1vY1NAjwNuk82AooHPJ85oL2zEZ23TJJCPd2YHrpxTAc4v_-FPJjd870orbo2E4aMPU3dRTqQ2524jNsoPUV_Tb1fQBM3OlnqPP8AzjuBpqK1naJ-PJ4QFT1hK5s2P47GPSveCL6HIrS4yvRwPSLhKz7xy4o4pU8rvWaGDT0Oq-e4lWlPveevqbvwvLc2wcWOu2IVr7xBcTM3IAA4E0AJSG1QASpzEAAaYCf6ADUFEbLpIEXnG8rrDPf1BcEdqCb_DOX_6QUTGfQHvMMq-v8p7iPtoAAAAC0DxSQUAAl5-cbg3d8P9KyV8Sjff8QHItolShm5zhfyIezyF_1VRQAU28wRMvLSK14HMSAALVf-FTs4E0AJSG9QAiqvBhAMGqAGAABAwAAAkEIAAChCAABkQgAAXEIAAMBCAABcQgAAwEAAAJzCAAAswgAAgEEAAEzCAACcwgAACEIAAOBAAAB8wgAAQMEAAKTCAABgwQAAHMIAAIBBAADQwQAAHMIAAHBBAACAQAAAMMIAAFDCAAAowgAA2kIAAMjBAAAAwQAAsEEAAJ7CAAD4QQAAiMEAAATCAABQQQAACEIAAMhBAACMQgAAgEEAAPDBAACQwQAA2MEAAHjCAAAgwgAAwEEAAKBBAADoQQAAuMEAAJ7CAABwwQAA0EEAAMBAAACuQgAAuEEAAGzCAADgwQAAUMEAAPhBAACoQQAAEEIAAAjCAAA4wgAAuEEAAIDAAACAQQAAmMEAAODAAAAwwQAAHEIAAADAAABQQQAAUMEAABDCAAAAAAAAJMIAAIDAAABQQgAAgMEAACDBAACuQgAAYMEAAOBAAAAcwgAAiMEAAHBBAAAMQgAAxkIAAADBAABAQQAAgkIAAHDBAAAUwgAATMIAABDBAAAQwgAAQMEAAJhBAAB0wgAAPMIAAIA_AAD4QQAAFEIAALjBAACoQQAAAMIAADxCAACgwQAAokIAAMBAAACgwAAAkMEAAPRCAAAgwQAAaEIAAADCAADgwAAA6MEAAIjBAAAwwQAApsIAAIDBAACKwgAAJEIAAOBAAADgQQAAIEIAALDBAABQwQAAHMIAAKjBAABwwQAAmMEAAKDAAAAMQgAAnkIAAIBAAACAQQAA6MEAAKBBAABQQQAAsEEAADTCAACIQgAA0MEAANjBAACqQgAAEEEAAFTCAAAAwAAAAAAAAPhBAACAwAAAcMEAACTCAACIwQAAgEEAAADAAACAQQAAQEAAAKZCAABAwgAASMIAANDBAADAwQAAFEIAAGBBAAAYwgAA0EEAAADAAABkQgAAwMAAACxCAAAAQQAA4EEAAHxCAADowQAAAEEAAHRCAACQwgAA0MEAAIBAAACAQQAAQMAAAEBBAAB8wgAAaEIAAIhBAACYQQAAIEEAAFDBAACYQQAAwMAAABDBAACQQQAAjMIAABjCAADgQQAA6MEgADgTQAlIdVABKo8CEAAagAIAAPi9AAAUvgAAPD4AAKY-AAAwvQAAUD0AADC9AAAPvwAAfL4AAHS-AABwvQAAmL0AAEC8AAB0PgAAtr4AAIi9AADGPgAA4LwAAHw-AAD2PgAAfz8AABA9AABQvQAAUL0AAJi9AAAcvgAAgj4AAFS-AACevgAARD4AAEw-AACAOwAA4DwAAEQ-AAC4vQAAMD0AAKA8AADKvgAArr4AAHA9AACuvgAAmL0AAHw-AACoPQAADD4AADw-AADOPgAAVL4AAHC9AAA0vgAAbD4AAKA8AABQPQAAZL4AADy-AAAUvgAAVT8AADQ-AAAMPgAAED0AAPi9AADgvAAANL4AAEC8IAA4E0AJSHxQASqPAhABGoACAACCvgAA-D0AAPi9AAAZvwAABD4AAIA7AACovQAAiL0AABC9AAAQPQAAlr4AAEy-AABMvgAAxr4AAOg9AABQvQAAuL0AAC8_AABwvQAAdD4AAKA8AAAUvgAADD4AAPg9AADgvAAA-D0AAIK-AADIPQAAqD0AAFy-AAAQPQAABD4AAKA8AACIPQAAgDsAAKC8AACqPgAAmD0AADy-AAAwvQAA2D0AAJg9AAC4vQAAiL0AAHA9AACgvAAAf78AAIi9AACgPAAA-D0AAEA8AACmvgAAiD0AAEw-AACgvAAAcD0AAKA8AABAvAAATL4AACQ-AABwvQAAED0AABA9AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=NMPufa4IA3A","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14903190412506391483"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2895432942"},"8054963125669036454":{"videoId":"8054963125669036454","docid":"34-0-14-Z0E44D23CADE587FB","description":"Program written by Caio Adriano Silvano as a final assignment for Stanford University's Code in Place (2021) Software for calculating Tensor Products and Matrix Multiplications without using NumPy.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4022006/4329867e781a36db2867cb6fad196a52/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2I92ngEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D60YJBFE3bM0","linkTemplate":"/video/preview/8054963125669036454?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Product and Matrix Multiplication (Python Code) - Code in Place 2021 (Stanford University)","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=60YJBFE3bM0\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFQoTODA1NDk2MzEyNTY2OTAzNjQ1NFoTODA1NDk2MzEyNTY2OTAzNjQ1NGq0DxIBMBgAIkMaLwAKKGhocGVwdXpjY2JyY2NkaGhVQ0xKSnloWE5FQ3NjT3RPS3JpNWhDRHcSAgAQKhDCDw8aDz8T_wGCBCQBgAQrKosBEAEaeIH6AgsABPwA8AERBPkE_wEp9vQC8wUEAPMP9vQDAf8A6_gR_P3_AAAHAwME9QAAAP78C_3z_gEADRHtAAMAAAAPAfMQ_QAAAA0P7gL_AQAA6vvyCQP_AAAh9QYDAAAAAP_4CQX8_wAADQcBBQAAAAAIBgsD_wAAACAALWz4xjs4E0AJSE5QAiqEAhAAGvABcwTs_87-AwAAFQAA2e_hAIHID_xBK_8ABvIGAMQD5QDm9_QA3wIdAakIBwHREvUAyuLf_i4NBgEW6O7_D_A0ACcnBAAQ2vECP_QEANkb-v8EFhT-NOkFAiXsGADhCfMAL9cFAPDu7QHY3M0F8vI9Ag_zAv8HFwQC2_AwBBD_IP7q9A8E3wH5A9Ll9wIV-RYD-w3GCDQI3QDxIxADAPj6BwAAAPz__wICDQgSBf_0A_3aA_37-PwFC_UH-fgV-CT_7BIM9-8HCPvs-vX6Cw3n-fYjE__65REJ5fgACv_sB_Ua9PwC5hII9egLGP7vFvUBIAAt93IpOzgTQAlIYVACKnMQABpgGfwAN-wX3d4HPd_34tAhAMYc6CL7___63QABAt3xAAMNqwAm_y3eDwGzAAAAJw7wKPAA-WTi09nz3Df34932IRp_Afcr0PkJ3e3YPSPQAgzOCxMSAAm6xA4oEss4QREKIAAtwzg3OzgTQAlIb1ACKq8GEAwaoAYAAGDBAACKQgAAIEEAADBBAAAUQgAAmkIAAEBCAACAPwAAlsIAALDBAACgQQAA6MEAAKBBAACoQQAAjkIAAMjBAABQwQAAgMAAAJjBAABEwgAAQEIAANDBAAB8wgAAgEEAADBBAAD4wQAADMIAAIBBAAB8QgAAyMEAAGDBAADAQQAAiMIAAIJCAADAQQAAmMIAAIA_AADwQQAA2EEAALpCAABgQQAAVMIAAKhBAAAEwgAAwEAAAGTCAAAgQgAAGEIAAGxCAABwwQAAoMIAALDBAACYQQAAVMIAAPBBAACgQQAAfMIAABDCAAAgQQAA2EEAAABBAABAwAAARMIAAJrCAABwQQAAeMIAAJBBAAAQQQAAZEIAAEzCAAAwQQAAAEAAAMBAAAAYQgAAgEEAAMhBAAAwwgAAwEEAAFhCAABgQQAABMIAAKRCAADQwQAAAEAAAHBBAADgQAAAgMEAAFBCAABIQgAAgEAAAEBBAACIQQAAgEAAABzCAAAQQQAA4EEAAFzCAACgwQAAQEEAAKDBAABgwgAAaEIAAPhBAAAYQgAAXMIAAMBAAACIwQAAIMEAAIA_AAA8QgAAcMEAAFBBAADQwQAAXEIAAGBBAACYQQAA0EEAAKDAAABUQgAAgMAAAMBBAAC4wgAAmEEAAFTCAABAQAAAmEEAAEBBAADAQAAAeMIAAJBBAACowQAAVMIAADBCAAC4wQAAwMAAALDBAABAQQAAOMIAACDCAADgwQAAAAAAAIC_AAAAQgAAAAAAALxCAACIQQAAGMIAACBCAAAwQQAANMIAAKhBAAAIQgAAcEEAABjCAABgQQAAhsIAAKDAAADgwAAAUEEAABBCAABkQgAAIEIAAMDBAAAwQgAAQEEAAEjCAABAQgAAgL8AAExCAAAgwQAAgMEAAGBBAADIwQAAwMAAAAAAAACMQgAAtkIAAJDBAABAQQAA9kIAAJ7CAABEwgAADEIAADTCAABUQgAAyEEAAIjCAADKQgAAwEAAAOjBAABUQgAAVMIAABTCAADYQQAAIMIAAFhCAACOwgAA0MEAAIBAAAAAACAAOBNACUh1UAEqjwIQABqAAgAAML0AANi9AACuPgAAMD0AADC9AABQvQAAEL0AAEm_AADivgAAqD0AABQ-AAAcvgAAqj4AAIY-AACovQAAnr4AAEQ-AAAkPgAARD4AALI-AAB_PwAARD4AAKg9AABsPgAAHL4AAAy-AADuPgAAgr4AADC9AAAkvgAADD4AAFC9AABQvQAAUD0AAII-AACIPQAAij4AAKK-AABMvgAAPL4AANK-AABkPgAAfL4AAKC8AACgPAAAbD4AAJI-AACKvgAAQDwAALq-AAD4PQAAcD0AACQ-AACmPgAAyL0AALi9AAA3PwAAcD0AAEA8AACSPgAAyD0AANg9AABwPQAAVL4gADgTQAlIfFABKo8CEAEagAIAAKK-AABMPgAAUL0AACO_AABcvgAAqD0AAFQ-AAAQPQAAQLwAAIo-AAB0vgAAiD0AAMi9AABAvAAA6D0AAEA8AACWvgAAXT8AAEQ-AAAXPwAAqD0AAIK-AAAwvQAAyL0AAKa-AABMvgAAXD4AAMg9AAD4vQAAEL0AAIA7AABAvAAAcD0AALi9AAA8PgAAiL0AADA9AABUPgAAkr4AAJg9AAAQPQAATD4AACw-AAAMvgAABD4AAAw-AAB_vwAAnr4AAOg9AACGvgAAoDwAALg9AABUPgAALD4AAMo-AAAMPgAAgLsAAIA7AACIPQAAqD0AABQ-AAB0PgAAUL0AADy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=60YJBFE3bM0","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8054963125669036454"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2460824967"},"1355218466143973820":{"videoId":"1355218466143973820","docid":"34-3-6-ZB84D053812696B1F","description":"Tensor products are the first step towards a theoretical framework of tensorial data, that, is scalars stored in arrays and grids. We define this beginning ...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4286047/d4b5cb3133ad90d5e0da256b470ceb83/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jn3_2wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNMi9XC-K8R4","linkTemplate":"/video/preview/1355218466143973820?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensor Products are just Matrix Multiplication, Seriously.","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NMi9XC-K8R4\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFQoTMTM1NTIxODQ2NjE0Mzk3MzgyMFoTMTM1NTIxODQ2NjE0Mzk3MzgyMGqIFxIBMBgAIkUaMQAKKmhoaGJ4eHZndHpoYXl5d2NoaFVDdXo5eGQ5YmRNZlZ4dXk3VkxwTWlwURICABIqEMIPDxoPPxPUB4IEJAGABCsqiwEQARp4gfH6_AcI9wD8AA0R9wv7Ax8QAAfyBAQA6RH8_fr_AQDq9xL7_P8AAOQNBQv9AAAA-wQJ8Pr-AQAO_-r7AwAAAAMG8wkDAAAACwjy9P8BAAAH9RDxAQAAAA_zB_b_AAAA7_8QEP8AAAAOBxT8AAAAAP8BCwf_AAAAIAAtBA-8OzgTQAlITlACKoQCEAAa8AF_DOwCze0A_vAF2wDLFOP_lgkl__4N5QCx8S4Cs9blAP4V9QDhA-wA_Q0PAMT1AQD_4-AA_-jpATPh_QAp-wUACxUEAErQ9wFFEw4B5gbq_-QBNf8SBycA_dn7AAsAAPz6BQj8-gHP__f14AUJ2jcCGQwZAS7yFQHm4RH98BABBAIP6P7z9v7-AwIF-87_GwEOAQP8Gh_x_cz0BAUXBv369d31-gYC5PsxHv0C-RP3_-z89_sC9OD8_CAYCfYi7v__-QD99ekI_h8bCgkm7QYF9OMDAQfeBxHeA-cDEesI-vT6Cf_cI_0E9RAGAvj_BPkgAC2RNyk7OBNACUhhUAIqzwcQABrABy_9674KYgU93dT-O6hUybyY4BQ9J9xrveOgub0cbYs8XgUjvP8j0z3BUl08mgucPNJykL79rn49XBENusVVhT5UMG-9m38qvIbjCb7fIPU8rAEqvfWha76E0wc9dDXDu5Uspz3Sypg8EkJRvH9LQD6nSso7gbiGvM76FD2plRO9lDlRvVGWa7yBdKa9m3PTOwXD-T0xi1q9C4gfPbsmBD6th5-9QHf4vCOTgr1Vh9w8uhVCPJo6VL1MU6W7uAD6ugU08T0VJA28NkNfOu73urw63i69YRkbvej-RTwUMRY9Gr39uy3hmrzLXKo8-gZLvHp5cDu6tTE9Gv7uPG2s5L2mES49lE7BO-yG7T2M94M9cluROxSbCr1dNU89-CVRPHVGar2pzCM9FUtbvGST3D1u_U88ZzHMPPEB57lpSrw82soHvI1KJT3WIyg9LPOWPCJEAz1FgFO8RN_dvF3_KT0MtcE8P3ScvMMKnL1JNcc8JCmKuxH29zyfTK28WQ-EPKuWFD7TvS49JRIYvKA9Uj3MHxi9SNoyPFxNqLy5clG9b1azvESxSz15XRy8_9YIu7Ycjj2Sl7G7QJmQO1xMGrxte7G8_RErvH6fmz3vlj-8_AgVPGozSrt99jI93d-1OXDBiDwHlZ288HAavOPgUjxvvmw88xP3O4Q_CTsVjYW9aHwZO2IbpzzTcAU94BZJuiOaJT0A04i9RH-MORJQwT3BeEG9YdMKunmnpzuAilm9pglWtmt7nrt0m8A9OP0wuc53pj0qDtY8zlYquaUFmjtZNWM80TriOQY70TvJPBI90pddOAZ2Jj3q24i9As1mOJqjjb3ANoy9ulGWuEa5L73cxQq9eEWzuS5AtrzMAtK8WOONOen2rbwlO_a9ubzMOLplarvX3by87gHKuN2cRT2tnjg9NnWpOC1hCL0tnYq96KQwuXEHRb1nJCe9Qh_cN-oeHr3IF449OclHON8DDz3AsDy90KATuAnfGz2Ejzc9XCn8uHQGqz0k2089kTu7uAib8Dy5_dI9R2llOHZTar1Xz8m9XDpquB2hoD00oF49A0nCuKBQz70V74Y9wtICOMe4Rz2jJI-9E_u4OO8tdjwvcqo8xX_dODEo073lbBC9-sJYOKBUyz338ca8LY_VuIgXP71yk8e8d88muKaGkTwjY1q99H6KN2VSJjsgvNE8fAFjt72vBT2lSQm-rZ6FuMr0cD0i4Ss-8cuKOAcLp7y9_O49g7QeuXUeVb2U2aC8fylKN9gR5ruEP009HsdVOCAAOBNACUhtUAEqcxAAGmAw_gAvDC7k4QVB9fXWxhoK2QPPNr7s_9zk_zMVuwgd4gKr-gv_LuIo2aAAAAAW5e445ADhf9vJ4hjZFv2lqPsiFlkAIULKBjbRvBUAINMQFO7V4iAA7NutRyUEtiM0BxcgAC297xs7OBNACUhvUAIqrwYQDBqgBgAA2EEAAOBBAAC2QgAAaMIAANBBAABEQgAAZEIAAPhBAACkwgAAEMIAAHDBAAAQQQAAAMIAAIjBAABcQgAAAEEAAIC_AAB8wgAA4MAAACDCAACgwQAALMIAAFDCAACaQgAANEIAAKjBAAA8wgAAYMIAAM5CAABIQgAALEIAAIA_AABQwgAAUEEAAGzCAAAIQgAAAEEAAMBCAAAAQAAAwEAAAJjBAABEQgAAIEEAACzCAABAQQAAsMEAALDBAADgQAAAikIAACBBAACwwgAATEIAAKBAAAAMQgAAsEEAAAjCAACgwgAAoEAAAOBAAAAkQgAAwMEAAIrCAAA4wgAAhsIAADBCAAAswgAABEIAALDBAABIwgAAQMAAAHxCAABQQgAAWMIAAIhCAACwwQAAjMIAAGzCAACwwQAA8EEAABDBAAAUwgAAIEIAAMjBAACIQQAAgEEAAIJCAAAAwAAAsEEAAERCAAAowgAAiMEAAMBBAAAAQQAAQMEAACDBAACowgAAAEIAAADAAAA4QgAAMEEAAGjCAABoQgAAkEEAANDBAABUwgAAqEEAAJjBAABgQgAATMIAAARCAABQQQAAAMAAADTCAACIwQAACEIAAFhCAADgQAAAgMIAANjBAAAAwgAA2MEAALjBAACowQAAUMIAAHBBAACgwQAAsEEAAMzCAABAQAAA8MEAAADCAACIwgAAoEAAAOBBAABgQQAAgEAAAABBAAAkwgAABMIAAHjCAACAQQAADEIAAKpCAACAQAAAYEEAABhCAACWwgAAyEEAAAAAAADYwQAA8MEAAABAAACIwQAAyMEAADBBAABwQQAAKMIAAPjBAADIwQAA-EEAAKBAAACoQQAAQMEAAODAAABQwQAAEMIAAGBBAABkQgAAQMAAAIBAAAAQwgAAYEIAAHBBAABQQQAAEMEAAEDBAACaQgAA0MEAAJJCAACgQQAAnMIAAGDBAAAYwgAAUMEAABxCAACCwgAAjsIAAIA_AADgwQAA0MEAAJhBAACYwQAAgMAAANBBAADgQAAAYEEAADzCAACgQQAAIMIAAMhBIAA4E0AJSHVQASqPAhAAGoACAAAQvQAAuD0AANg9AAAcPgAAoLwAACS-AADIPQAAH78AAPi9AACgPAAAcD0AAIi9AADoPQAAdD4AAJK-AABEvgAA4LwAAJg9AABcPgAAGT8AAH8_AAAQPQAAQLwAADC9AACovQAAiL0AALI-AACYvQAA2L0AAHA9AADIPQAAUD0AAGy-AABEPgAAhj4AAOi9AACAuwAA2L0AACS-AACovQAAur4AAKK-AAD4vQAADL4AAIg9AACSvgAATD4AAKq-AABAPAAAML0AAHQ-AAAMPgAAqL0AANg9AAAwvQAADL4AAAk_AAAEPgAA6L0AABw-AACovQAA4LwAADA9AAAEviAAOBNACUh8UAEqjwIQARqAAgAAoDwAALI-AACAOwAAL78AAIi9AACYvQAA2D0AAOi9AAC4vQAAhj4AAIA7AABsvgAAqD0AAIq-AAA8PgAAML0AAIA7AAA9PwAAXD4AAM4-AADgvAAA2L0AAMg9AAAEvgAAEL0AAJi9AADYvQAA4DwAABS-AABwvQAAmL0AAKA8AAAEPgAAQLwAAFC9AAAcvgAATL4AADC9AADYvQAAQLwAAFC9AAAMPgAA6L0AANi9AAAEvgAADD4AAH-_AABMvgAAQLwAAFC9AACoPQAAoLwAAKi9AAA0PgAAqL0AAIg9AAAQvQAAoLwAAKC8AACgPAAAgLsAAFC9AAAwPQAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=NMi9XC-K8R4","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1355218466143973820"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3522933209"},"5969047934941644309":{"videoId":"5969047934941644309","docid":"34-3-15-Z615A766493C4CA39","description":"Glad to have this one shipped! Today we'll explore how to build the rest of the explicit, unitary representations of SU2 from the two-dimensional case we considered in an earlier video.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4696891/fa43beedd26eb61ed817f7b6dc771d5d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/LUnTfgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DfDReFtcUimU","linkTemplate":"/video/preview/5969047934941644309?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Unitary Representations of SU2 via Tensor Products","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=fDReFtcUimU\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFQoTNTk2OTA0NzkzNDk0MTY0NDMwOVoTNTk2OTA0NzkzNDk0MTY0NDMwOWq6DRIBMBgAIkUaMQAKKmhoamtzZ2JscmpqYXNzbWRoaFVDUEwyd3VMWlhRV3JQWS1xTFV4VXFnZxICABIqEMIPDxoPPxP3BoIEJAGABCsqiwEQARp4gfQI-wf9AwD8AA8FBwf8ARQF-Ab1AQEA-wUBCAgE_gD7_Qbv_QAAAO0FCP35AAAA9vwJC_T_AQAM_-38AgAAABMEBgUEAAAADQoDAAj_AQH1-_78AwAAAA7y7gL_AAAA_g0FCQEAAAAMD_8CAQAAAPP4BAUAAAAAIAAtIz_cOzgTQAlITlACKnMQABpgBxQAJwn53c0eXNkRzL_z8s80zwLH4f_e3__j_934yAHXmvTn_zj1GP6lAAAAIufnHRQA-3bF2p8eGgsU7b_s8U5_9PLfCBct2bwUAQo47lf-6TE3AMr07zH64ZofJCQUIAAtf4IZOzgTQAlIb1ACKq8GEAwaoAYAAAjCAADIQQAAGEIAAIDAAADwwQAAVEIAAIhBAAAcQgAAaMIAAJjBAACAQQAATMIAAPDBAAAwQQAAbEIAABDCAABgwQAAQEAAAIBAAACYQQAAgsIAANjBAAAgwgAAfEIAAODBAADIQQAAisIAAKDBAAAAQgAAUMEAAEDBAAAAQAAAisIAADRCAAAQwgAA-EEAAEBCAAAwQgAAHMIAAIZCAACowQAAWMIAAGRCAAAYwgAAZEIAAAhCAACAwQAAwMEAAFhCAACgQAAAQEAAAAzCAAAAQgAAVEIAAEBCAACkwgAAcMEAAMDBAACAvwAAkEEAAKDAAADowQAAkEEAAEjCAAC6wgAAAAAAAJDBAAAAQQAAgMAAAFTCAABAQAAAsEEAALjCAAAAQgAAcEEAAFjCAABIwgAAmMEAAGhCAAAIQgAAoMAAAJJCAAAAQQAACMIAAMBAAACUQgAAUEIAALBCAAA8QgAAWEIAACTCAADYQQAAoEAAAHDBAAAoQgAAuMEAAJhBAADIQQAAwMEAAAAAAACYwgAAyEEAAHRCAADwwQAALMIAAHDCAAAUQgAA8MEAAFTCAADIQQAAYEIAAHBBAADwQQAAgEEAAIZCAACYwQAAwEAAABBCAACowgAAUMEAALDBAACAwAAACMIAABhCAADQwQAAGMIAAIjCAACgQAAANMIAAFTCAADAwAAALEIAAHBBAACAQgAAYEEAAKDAAACAwAAAMEEAAADAAADgwQAAoEAAAOBBAAAgwQAAMEEAABxCAAAgwQAAwMAAAAAAAAA8wgAAoEAAADzCAABAwQAAoMEAACDCAAAAQgAAoEEAAEzCAAAwwgAA0sIAAFhCAAAIQgAA2EEAADjCAACYwQAAEMIAAMBAAAC2QgAA-EEAAAhCAAAgQgAAiMEAAAjCAACQwQAADMIAAJhBAACQwQAAxMIAABTCAAAgQgAAQMAAAMDBAAAgwgAAPEIAAKjBAACoQQAACMIAAILCAACUQgAAvMIAAJBCAADYQQAACMIAAKBAAACYQQAAYMEAADxCAAAgwQAAIEIAAIA_AAAEwiAAOBNACUh1UAEqjwIQABqAAgAARL4AABC9AABAPAAAVD4AAKg9AAC4PQAAQDwAABm_AAAEvgAAyD0AADC9AACovQAAgLsAAIo-AABUvgAABL4AAIA7AACIPQAAVD4AABM_AAB_PwAABL4AAHC9AACYvQAAdL4AAEC8AACgPAAAdL4AAMg9AAB8PgAAqD0AABS-AAA0vgAAVD4AAHA9AAAEPgAAqL0AABS-AACavgAAFL4AAJq-AACoPQAAJD4AABC9AABMvgAAXL4AADw-AAAcvgAAyL0AAJK-AAAEvgAAyD0AAK4-AABUPgAARL4AAJi9AAALPwAA-D0AAOA8AABEPgAAoLwAAJg9AAAQPQAAEL0gADgTQAlIfFABKo8CEAEagAIAAGS-AADoPQAAqL0AAC-_AACAOwAAED0AAMg9AACovQAAHL4AAKo-AACgPAAAyL0AAIi9AAA0vgAAQDwAAEA8AACKPgAAGT8AAPg9AADaPgAA6L0AAHQ-AADYPQAAHL4AANi9AACYPQAAiD0AAHA9AABAvAAAoDwAAFA9AADoPQAAiL0AAHS-AAC4vQAAML0AAEA8AACGPgAALL4AANi9AACIPQAAuD0AANi9AAAwvQAAyL0AAHQ-AAB_vwAATL4AABC9AACWPgAAhj4AAHC9AACgPAAAVD4AAAw-AACAOwAA4DwAAIA7AACovQAA2L0AAOA8AABAPAAA6D0AADC9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=fDReFtcUimU","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5969047934941644309"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3244711261"},"8642826357474615052":{"videoId":"8642826357474615052","docid":"34-0-4-Z04F4375D414C25B3","description":"Crash course on tensors (what they are, what cross norms are, basic generalities about nuclear norm/operator and rank), followed by an application of this to the law of robustness conjecture for...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1381759/c7b60947de009fb862774991e3042202/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/c7TdTAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DxMXJ2zRyX7I","linkTemplate":"/video/preview/8642826357474615052?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Crash course on tensors with application to neural networks","related_orig_text":"Tensorbundle","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"Tensorbundle\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=xMXJ2zRyX7I\",\"src\":\"serp\",\"rvb\":\"Eq8DChM4NzYyMjAyOTQ2NzY0NjIxMDkwChQxNjI5NjA0Njk5MzY2MDk4OTE1MAoUMTMwMDk4Njc3NjQyNTM0Mjg0MDEKFDEzNDQ1NzY1NTk3MDAyMDQ4NDc4ChMxNzIwNTkwMTIzNzEzODY2MTg0ChQxODQzMjIzNjE1MDQ0MTUzNzY5MQoUMTAyODg4NTgxNDQ1MzA4NTY3MTUKFDExNjQwOTcwMDg2ODk2ODc3MjQ1ChQxNDY5OTgxNDIyNjk2MjU2NDg4MgoTMjI1NzQxNzUyNTU5MTAyMzcyOAoTOTg1Njk5NDUzMjI2ODQ0MjU4MwoUMTIyNTM1OTE1MzgzMzgxMDE1MDEKFDEyODM5OTk2ODY3MDAzMTczMDUwChQxNDkwMzE5MDQxMjUwNjM5MTQ4MwoTODA1NDk2MzEyNTY2OTAzNjQ1NAoTMTM1NTIxODQ2NjE0Mzk3MzgyMAoTNTk2OTA0NzkzNDk0MTY0NDMwOQoTODY0MjgyNjM1NzQ3NDYxNTA1MgoUMTIyODY4MjkzNTU3ODUwNTk3MDQKEzkzODY1MjAxNjYwMDgwNTAxMDcaFQoTODY0MjgyNjM1NzQ3NDYxNTA1MloTODY0MjgyNjM1NzQ3NDYxNTA1MmqvDRIBMBgAIkUaMQAKKmhobXZrbmVtamR1ZG1naGNoaFVDLVVDLW5FOEIzM1VHbkMtTlJhU2Z1ZxICABIqEMIPDxoPPxPPGYIEJAGABCsqiwEQARp4gfsB-Qj8BQD79g3_BwX-AQwF_wL3AAAA_AH7Bf0F_gDz8gcKAAAAAP0C_AUBAAAA7_cK__QAAQABCv8FBAAAAAjp9_z9AAAA_QL3BP4BAAD8-AL_Av8AAAn3CQIAAAAA9gcIA___AADzBgkNAAAAAAf4AP4AAAAAIAAtotThOzgTQAlITlACKnMQABpg-BMALg0r6N8VAPMF8bkSE8kc2MraBv_vy_8JHAn9Dgbyu-w2_17ENsieAAAAH9vXBREAEn_j2pMS__8gitPxIhtXx-MM-RQW2uoH9OEm4ArC-zIJANfh5Ccm8NpGKUElIAAtQ5AgOzgTQAlIb1ACKq8GEAwaoAYAADxCAACAwAAAukIAAODBAACAPwAA4MAAAIxCAACYQQAAAMEAAKjBAAC4QQAAIEEAAIBAAACQQQAA6EEAAKDBAAAoQgAAdMIAAGBCAACgwAAAoMAAAI7CAADAwgAAJEIAAJbCAAAAAAAARMIAACDBAABAQQAALEIAAEDBAACIwQAAWMIAALhBAADKwgAAoEAAAHBBAAB4QgAA4MEAAFBBAACwwQAAQEAAAGDBAAAwwgAALEIAANjBAABgwQAACEIAAGDBAAAgQQAAVMIAABzCAAAcwgAAGEIAAOBBAACIQQAANMIAAJBBAABUQgAA-EEAABjCAABYwgAAhMIAABDCAABAQQAATMIAAIA_AADAwQAAssIAAPDBAABoQgAAVEIAAEDCAAAoQgAAgL8AABBBAACcwgAAwMEAAATCAADgwAAA-MEAACBCAACQwQAAQMAAAIDAAACcQgAAGMIAAIrCAAA8QgAAGEIAAIhBAADQQQAAAMIAAEBCAABgQgAAHMIAADDBAABAwQAAIEEAAJJCAAA8wgAAcEEAAPBBAACAPwAAjMIAAOhBAABQQQAAVEIAAADAAAAEQgAAKEIAANBBAAAAwAAAKMIAANDBAACYQgAAQEEAAGTCAACgwQAARMIAAPjBAACAPwAAmEEAAFzCAAA8wgAAEMEAAOhBAADAwQAAoMEAAGBBAAAAwQAAnMIAAOBAAABcQgAAQEEAAExCAAAAQQAAUEEAADzCAABwwgAAQEEAAJBBAACgQQAAkMIAABDBAAAQQgAAqMEAAABBAADgwQAAIEEAAAzCAACQQgAAfEIAAHDBAACgQAAAQEAAAIjCAAAkwgAAsMEAAFTCAAAcwgAAkEEAAKhBAABwQgAAYEIAAHDBAABAwQAAjEIAAJBCAACEwgAAQMIAAGBBAACoQQAAEMIAAATCAACgQAAAoEAAAABBAABgQQAAREIAAKDCAAB8wgAAYEEAAHDCAACwQQAA-MEAAEjCAACQwQAAiMEAAABAAABIQgAAQMIAAMBAAADAQQAAkEEAAKJCAADAQAAAEEEAAKBBAAAgQSAAOBNACUh1UAEqjwIQABqAAgAAuL0AAPi9AABEPgAAQDwAAHC9AADoPQAA4DwAAEO_AACIvQAAHD4AAIC7AABwvQAAcD0AAFw-AAB8vgAAoDwAADw-AAAMPgAAqD0AAN4-AAB_PwAAEL0AAMi9AACYPQAApr4AADy-AAAUPgAARL4AAMi9AAA8PgAA-D0AAFA9AADYvQAAEL0AAOi9AACCPgAAXD4AAJq-AADovQAA6L0AAJK-AAAQvQAAJD4AADC9AACePgAAJD4AANi9AABAvAAAoDwAAJ6-AAB8PgAAyD0AADw-AABEPgAAkr4AAFC9AABzPwAA-L0AALg9AAB8PgAAyL0AAEC8AABQPQAAoDwgADgTQAlIfFABKo8CEAEagAIAAGS-AAC4PQAAJL4AAEG_AAAMPgAAmL0AAFA9AAAUvgAAEL0AAJg9AACYPQAAUL0AAOi9AABcvgAA2D0AAIi9AAAwvQAA9j4AACy-AAC-PgAANL4AAIg9AACAOwAALL4AAKA8AAAwPQAAZL4AADC9AACAOwAAgLsAALg9AAAMPgAADL4AAOg9AAAEPgAA6L0AAAw-AACYPQAAXL4AABC9AACgvAAAUL0AAIq-AAAMPgAAlr4AAOC8AAB_vwAAcD0AAKi9AAC4PQAAoLwAAAy-AABwPQAAhj4AAOi9AABwPQAAoLwAAEy-AACAOwAAqL0AABS-AACIvQAAJD4AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=xMXJ2zRyX7I","parent-reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8642826357474615052"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"8762202946764621090":{"videoId":"8762202946764621090","title":"The Truth about \u0007[Tensors\u0007], Part 9: Vector \u0007[Bundles\u0007]","cleanTitle":"The Truth about Tensors, Part 9: Vector Bundles","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RqQ-Jm2wtAI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RqQ-Jm2wtAI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUlhDNk02NXFpRmxIYVhHRE5DLS1WQQ==","name":"K-Theory","isVerified":false,"subscribersCount":0,"url":"/video/search?text=K-Theory","origUrl":"https://www.youtube.com/channel/UCRXC6M65qiFlHaXGDNC--VA","a11yText":"K-Theory. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":712,"text":"11:52","a11yText":"Süre 11 dakika 52 saniye","shortText":"11 dk."},"date":"12 oca 2023","modifyTime":1673481600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RqQ-Jm2wtAI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RqQ-Jm2wtAI","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":712},"parentClipId":"8762202946764621090","href":"/preview/8762202946764621090?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/8762202946764621090?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16296046993660989150":{"videoId":"16296046993660989150","title":"The Truth about \u0007[Tensors\u0007], Part 8: Tangent \u0007[bundles\u0007] & vector fields","cleanTitle":"The Truth about Tensors, Part 8: Tangent bundles & vector fields","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=KxH37F43Bqo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/KxH37F43Bqo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUlhDNk02NXFpRmxIYVhHRE5DLS1WQQ==","name":"K-Theory","isVerified":false,"subscribersCount":0,"url":"/video/search?text=K-Theory","origUrl":"http://www.youtube.com/@k-theory8604","a11yText":"K-Theory. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":598,"text":"9:58","a11yText":"Süre 9 dakika 58 saniye","shortText":"9 dk."},"views":{"text":"1,2bin","a11yText":"1,2 bin izleme"},"date":"2 mayıs 2022","modifyTime":1651449600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/KxH37F43Bqo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=KxH37F43Bqo","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":598},"parentClipId":"16296046993660989150","href":"/preview/16296046993660989150?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/16296046993660989150?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13009867764253428401":{"videoId":"13009867764253428401","title":"\u0007[Tensor\u0007] product of R-modules","cleanTitle":"Tensor product of R-modules","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VNdyYbFYLag","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VNdyYbFYLag?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWExV3RJLXZiX2J4LWFuSGRtcE5mQQ==","name":"NPTEL-NOC IITM","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NPTEL-NOC+IITM","origUrl":"http://www.youtube.com/@nptel-nociitm9240","a11yText":"NPTEL-NOC IITM. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2114,"text":"35:14","a11yText":"Süre 35 dakika 14 saniye","shortText":"35 dk."},"views":{"text":"4,1bin","a11yText":"4,1 bin izleme"},"date":"8 haz 2021","modifyTime":1623110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VNdyYbFYLag?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VNdyYbFYLag","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":2114},"parentClipId":"13009867764253428401","href":"/preview/13009867764253428401?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/13009867764253428401?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13445765597002048478":{"videoId":"13445765597002048478","title":"Construction of the \u0007[tensor\u0007] product","cleanTitle":"Construction of the tensor product","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DqvLRH7xL48","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DqvLRH7xL48?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWExV3RJLXZiX2J4LWFuSGRtcE5mQQ==","name":"NPTEL-NOC IITM","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NPTEL-NOC+IITM","origUrl":"http://www.youtube.com/@nptel-nociitm9240","a11yText":"NPTEL-NOC IITM. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2389,"text":"39:49","a11yText":"Süre 39 dakika 49 saniye","shortText":"39 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"8 haz 2021","modifyTime":1623110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DqvLRH7xL48?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DqvLRH7xL48","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":2389},"parentClipId":"13445765597002048478","href":"/preview/13445765597002048478?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/13445765597002048478?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1720590123713866184":{"videoId":"1720590123713866184","title":"\u0007[Tensor\u0007] products of modules over commutative rings","cleanTitle":"Tensor products of modules over commutative rings","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=UCN_Dr2Kf1E","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/UCN_Dr2Kf1E?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWWExV3RJLXZiX2J4LWFuSGRtcE5mQQ==","name":"NPTEL-NOC IITM","isVerified":false,"subscribersCount":0,"url":"/video/search?text=NPTEL-NOC+IITM","origUrl":"http://www.youtube.com/@nptel-nociitm9240","a11yText":"NPTEL-NOC IITM. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1111,"text":"18:31","a11yText":"Süre 18 dakika 31 saniye","shortText":"18 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"8 haz 2021","modifyTime":1623110400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/UCN_Dr2Kf1E?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=UCN_Dr2Kf1E","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":1111},"parentClipId":"1720590123713866184","href":"/preview/1720590123713866184?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/1720590123713866184?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"18432236150441537691":{"videoId":"18432236150441537691","title":"\u0007[Tensor\u0007] products","cleanTitle":"Tensor products","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tpL95Sd7zT0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tpL95Sd7zT0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdDFuX2NfbGJQSXZ6X3ljdzNFcTk2dw==","name":"Jim Fowler","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Jim+Fowler","origUrl":"http://www.youtube.com/@kisonecat","a11yText":"Jim Fowler. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":449,"text":"7:29","a11yText":"Süre 7 dakika 29 saniye","shortText":"7 dk."},"views":{"text":"108,5bin","a11yText":"108,5 bin izleme"},"date":"21 ara 2011","modifyTime":1324425600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tpL95Sd7zT0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tpL95Sd7zT0","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":449},"parentClipId":"18432236150441537691","href":"/preview/18432236150441537691?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/18432236150441537691?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10288858144530856715":{"videoId":"10288858144530856715","title":"Proof: Uniqueness of the \u0007[Tensor\u0007] Product","cleanTitle":"Proof: Uniqueness of the Tensor Product","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=VJJK2BoIaD8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/VJJK2BoIaD8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbzhUMEQ4bXkxSHo1S29IQ1JZT0FuUQ==","name":"Mu Prime Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mu+Prime+Math","origUrl":"http://www.youtube.com/@MuPrimeMath","a11yText":"Mu Prime Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":717,"text":"11:57","a11yText":"Süre 11 dakika 57 saniye","shortText":"11 dk."},"views":{"text":"3,5bin","a11yText":"3,5 bin izleme"},"date":"7 nis 2023","modifyTime":1680825600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/VJJK2BoIaD8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=VJJK2BoIaD8","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":717},"parentClipId":"10288858144530856715","href":"/preview/10288858144530856715?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/10288858144530856715?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11640970086896877245":{"videoId":"11640970086896877245","title":"\u0007[Tensor\u0007] Products of Free Modules (Algebra 2: Lecture 21 Video 4)","cleanTitle":"Tensor Products of Free Modules (Algebra 2: Lecture 21 Video 4)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=t11BsdWTfSA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/t11BsdWTfSA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDR0VoZWxJMnExMEZNd0cycjg1U3EtUQ==","name":"nckaplan math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=nckaplan+math","origUrl":"http://www.youtube.com/@nckaplanmath2660","a11yText":"nckaplan math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":898,"text":"14:58","a11yText":"Süre 14 dakika 58 saniye","shortText":"14 dk."},"date":"23 mar 2021","modifyTime":1616457600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/t11BsdWTfSA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=t11BsdWTfSA","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":898},"parentClipId":"11640970086896877245","href":"/preview/11640970086896877245?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/11640970086896877245?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14699814226962564882":{"videoId":"14699814226962564882","title":"\u0007[Tensors\u0007] for Beginners 15: \u0007[Tensor\u0007] Product Spaces","cleanTitle":"Tensors for Beginners 15: Tensor Product Spaces","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=M-OLmxuLdbU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/M-OLmxuLdbU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":921,"text":"15:21","a11yText":"Süre 15 dakika 21 saniye","shortText":"15 dk."},"views":{"text":"88,8bin","a11yText":"88,8 bin izleme"},"date":"3 mar 2018","modifyTime":1520035200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/M-OLmxuLdbU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=M-OLmxuLdbU","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":921},"parentClipId":"14699814226962564882","href":"/preview/14699814226962564882?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/14699814226962564882?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2257417525591023728":{"videoId":"2257417525591023728","title":"\u0007[Tensor\u0007] Product, Entanglement, Bell Basis Measurement, Superdense Coding | Bangla","cleanTitle":"Tensor Product, Entanglement, Bell Basis Measurement, Superdense Coding | Bangla","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=vzD1zsZtAAg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/vzD1zsZtAAg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDYUw3OC12dkY5VXotZHRSM0tBV2xZdw==","name":"Schrodinger's Dank Knight","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Schrodinger%27s+Dank+Knight","origUrl":"http://www.youtube.com/@SchrodingersDankKnight","a11yText":"Schrodinger's Dank Knight. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4939,"text":"1:22:19","a11yText":"Süre 1 saat 22 dakika 19 saniye","shortText":"1 sa. 22 dk."},"date":"15 kas 2023","modifyTime":1700006400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/vzD1zsZtAAg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=vzD1zsZtAAg","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":4939},"parentClipId":"2257417525591023728","href":"/preview/2257417525591023728?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/2257417525591023728?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9856994532268442583":{"videoId":"9856994532268442583","title":"\u0007[Tensor\u0007] Product Basis With the Universal Property","cleanTitle":"Tensor Product Basis With the Universal Property","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5i8tp0rD2EA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5i8tp0rD2EA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDbzhUMEQ4bXkxSHo1S29IQ1JZT0FuUQ==","name":"Mu Prime Math","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Mu+Prime+Math","origUrl":"http://www.youtube.com/@MuPrimeMath","a11yText":"Mu Prime Math. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":816,"text":"13:36","a11yText":"Süre 13 dakika 36 saniye","shortText":"13 dk."},"views":{"text":"5bin","a11yText":"5 bin izleme"},"date":"1 nis 2023","modifyTime":1680296632000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5i8tp0rD2EA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5i8tp0rD2EA","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":816},"parentClipId":"9856994532268442583","href":"/preview/9856994532268442583?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/9856994532268442583?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12253591538338101501":{"videoId":"12253591538338101501","title":"\u0007[Tensor\u0007] products of modules","cleanTitle":"Tensor products of modules","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=kGkOo7w8xeM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kGkOo7w8xeM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDblR1SEJWYUJzSzlUQlJrOTZCSmhRdw==","name":"DanielChanMaths","isVerified":false,"subscribersCount":0,"url":"/video/search?text=DanielChanMaths","origUrl":"http://www.youtube.com/@DanielChanMaths","a11yText":"DanielChanMaths. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":975,"text":"16:15","a11yText":"Süre 16 dakika 15 saniye","shortText":"16 dk."},"views":{"text":"6,5bin","a11yText":"6,5 bin izleme"},"date":"14 eyl 2019","modifyTime":1568419200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kGkOo7w8xeM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kGkOo7w8xeM","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":975},"parentClipId":"12253591538338101501","href":"/preview/12253591538338101501?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/12253591538338101501?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12839996867003173050":{"videoId":"12839996867003173050","title":"\u0007[Tensor\u0007] product of Ox modules, locally free sheaves and Picard group","cleanTitle":"Tensor product of Ox modules, locally free sheaves and Picard group","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=OdPtwCRL9EU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OdPtwCRL9EU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTFNMOVlHVFUtQlpqcXRZd2tudjlmQQ==","name":"Math Geeks","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Math+Geeks","origUrl":"http://www.youtube.com/@mathgeeks3598","a11yText":"Math Geeks. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":750,"text":"12:30","a11yText":"Süre 12 dakika 30 saniye","shortText":"12 dk."},"date":"2 eki 2022","modifyTime":1664668800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OdPtwCRL9EU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OdPtwCRL9EU","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":750},"parentClipId":"12839996867003173050","href":"/preview/12839996867003173050?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/12839996867003173050?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14903190412506391483":{"videoId":"14903190412506391483","title":"TensorFlow for Machine Learning Solutions: Working with a Linear SVM| packtpub.com","cleanTitle":"TensorFlow for Machine Learning Solutions: Working with a Linear SVM| packtpub.com","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NMPufa4IA3A","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NMPufa4IA3A?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDM1Z5ZEJHQmwxMzJiYVBDTGVEc3BNUQ==","name":"Packt","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Packt","origUrl":"http://www.youtube.com/@OfficialPackt","a11yText":"Packt. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":289,"text":"4:49","a11yText":"Süre 4 dakika 49 saniye","shortText":"4 dk."},"views":{"text":"3,1bin","a11yText":"3,1 bin izleme"},"date":"13 mar 2018","modifyTime":1520899200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NMPufa4IA3A?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NMPufa4IA3A","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":289},"parentClipId":"14903190412506391483","href":"/preview/14903190412506391483?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/14903190412506391483?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8054963125669036454":{"videoId":"8054963125669036454","title":"\u0007[Tensor\u0007] Product and Matrix Multiplication (Python Code) - Code in Place 2021 (Stanford University...","cleanTitle":"Tensor Product and Matrix Multiplication (Python Code) - Code in Place 2021 (Stanford University)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=60YJBFE3bM0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/60YJBFE3bM0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTEpKeWhYTkVDc2NPdE9Lcmk1aENEdw==","name":"CaioAS","isVerified":false,"subscribersCount":0,"url":"/video/search?text=CaioAS","origUrl":"https://www.youtube.com/channel/UCLJJyhXNECscOtOKri5hCDw","a11yText":"CaioAS. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":255,"text":"4:15","a11yText":"Süre 4 dakika 15 saniye","shortText":"4 dk."},"date":"31 mayıs 2021","modifyTime":1622434326000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/60YJBFE3bM0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=60YJBFE3bM0","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":255},"parentClipId":"8054963125669036454","href":"/preview/8054963125669036454?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/8054963125669036454?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1355218466143973820":{"videoId":"1355218466143973820","title":"\u0007[Tensor\u0007] Products are just Matrix Multiplication, Seriously.","cleanTitle":"Tensor Products are just Matrix Multiplication, Seriously.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=NMi9XC-K8R4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NMi9XC-K8R4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDdXo5eGQ5YmRNZlZ4dXk3VkxwTWlwUQ==","name":"James Wilson","isVerified":false,"subscribersCount":0,"url":"/video/search?text=James+Wilson","origUrl":"http://www.youtube.com/@algeboy","a11yText":"James Wilson. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":980,"text":"16:20","a11yText":"Süre 16 dakika 20 saniye","shortText":"16 dk."},"views":{"text":"14,5bin","a11yText":"14,5 bin izleme"},"date":"13 ağu 2021","modifyTime":1628812800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NMi9XC-K8R4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NMi9XC-K8R4","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":980},"parentClipId":"1355218466143973820","href":"/preview/1355218466143973820?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/1355218466143973820?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5969047934941644309":{"videoId":"5969047934941644309","title":"Unitary Representations of SU2 via \u0007[Tensor\u0007] Products","cleanTitle":"Unitary Representations of SU2 via Tensor Products","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=fDReFtcUimU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/fDReFtcUimU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDUEwyd3VMWlhRV3JQWS1xTFV4VXFnZw==","name":"Sean Downes","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sean+Downes","origUrl":"http://www.youtube.com/@SeanDownes","a11yText":"Sean Downes. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":887,"text":"14:47","a11yText":"Süre 14 dakika 47 saniye","shortText":"14 dk."},"date":"24 mar 2021","modifyTime":1616544000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/fDReFtcUimU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=fDReFtcUimU","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":887},"parentClipId":"5969047934941644309","href":"/preview/5969047934941644309?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/5969047934941644309?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8642826357474615052":{"videoId":"8642826357474615052","title":"Crash course on \u0007[tensors\u0007] with application to neural networks","cleanTitle":"Crash course on tensors with application to neural networks","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=xMXJ2zRyX7I","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/xMXJ2zRyX7I?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDLVVDLW5FOEIzM1VHbkMtTlJhU2Z1Zw==","name":"Sebastien Bubeck","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Sebastien+Bubeck","origUrl":"http://www.youtube.com/@SebastienBubeck","a11yText":"Sebastien Bubeck. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3279,"text":"54:39","a11yText":"Süre 54 dakika 39 saniye","shortText":"54 dk."},"views":{"text":"2,7bin","a11yText":"2,7 bin izleme"},"date":"29 kas 2020","modifyTime":1606608000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/xMXJ2zRyX7I?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=xMXJ2zRyX7I","reqid":"1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL","duration":3279},"parentClipId":"8642826357474615052","href":"/preview/8642826357474615052?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","rawHref":"/video/preview/8642826357474615052?parent-reqid=1769379396972642-5681172514760462892-balancer-l7leveler-kubr-yp-vla-122-BAL&text=Tensorbundle","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"6811725147604628927122","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"Tensorbundle","queryUriEscaped":"Tensor%20bundle","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}