{"pages":{"search":{"query":"eigenchris","originalQuery":"eigenchris","serpid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","parentReqid":"","serpItems":[{"id":"9304078160741351241-0-0","type":"videoSnippet","props":{"videoId":"9304078160741351241"},"curPage":0},{"id":"6989326111684847947-0-1","type":"videoSnippet","props":{"videoId":"6989326111684847947"},"curPage":0},{"id":"6839165130839916709-0-2","type":"videoSnippet","props":{"videoId":"6839165130839916709"},"curPage":0},{"id":"8710080905522656406-0-3","type":"videoSnippet","props":{"videoId":"8710080905522656406"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dGVpZ2VuY2hyaXMK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","ui":"desktop","yuid":"5087269521769881952"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"7326326752305921367-0-5","type":"videoSnippet","props":{"videoId":"7326326752305921367"},"curPage":0},{"id":"6288718178008201116-0-6","type":"videoSnippet","props":{"videoId":"6288718178008201116"},"curPage":0},{"id":"9915049099661681835-0-7","type":"videoSnippet","props":{"videoId":"9915049099661681835"},"curPage":0},{"id":"12858440065847054650-0-8","type":"videoSnippet","props":{"videoId":"12858440065847054650"},"curPage":0},{"id":"8115113256113739094-0-9","type":"videoSnippet","props":{"videoId":"8115113256113739094"},"curPage":0},{"id":"4171312679803320920-0-10","type":"videoSnippet","props":{"videoId":"4171312679803320920"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dGVpZ2VuY2hyaXMK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","ui":"desktop","yuid":"5087269521769881952"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"15815206544725157963-0-12","type":"videoSnippet","props":{"videoId":"15815206544725157963"},"curPage":0},{"id":"9114987608141430193-0-13","type":"videoSnippet","props":{"videoId":"9114987608141430193"},"curPage":0},{"id":"8633327715492134551-0-14","type":"videoSnippet","props":{"videoId":"8633327715492134551"},"curPage":0},{"id":"11751159434853112887-0-15","type":"videoSnippet","props":{"videoId":"11751159434853112887"},"curPage":0},{"id":"6516361911412427041-0-16","type":"videoSnippet","props":{"videoId":"6516361911412427041"},"curPage":0},{"id":"15848855463945950131-0-17","type":"videoSnippet","props":{"videoId":"15848855463945950131"},"curPage":0},{"id":"1724146024986472400-0-18","type":"videoSnippet","props":{"videoId":"1724146024986472400"},"curPage":0},{"id":"10575742038037045079-0-19","type":"videoSnippet","props":{"videoId":"10575742038037045079"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dGVpZ2VuY2hyaXMK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","ui":"desktop","yuid":"5087269521769881952"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Deigenchris"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"9755487585404553427178","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455698,0,4;1472346,0,53;1457616,0,90;1433082,0,40;1473738,0,62;1476205,0,23;1460956,0,16;1470057,0,94;1460712,0,16;1459297,0,13;1152685,0,75;1456929,0,84;1472031,0,4;1471623,0,74;1477824,0,79;1478447,0,77;1475351,0,99;1479117,0,92;1470223,0,9;1373786,0,5;1479385,0,44;1466296,0,29;1467161,0,97;1475652,0,92;1452015,0,7;1349038,0,29;1279757,0,96;1477969,0,93;1470513,0,2;260561,0,62;1471678,0,90;89019,0,24;1404017,0,51;1473845,0,88;45299,0,89;1478802,0,48;63006,0,77;124069,0,49;1479363,0,51;996747,0,49;151171,0,92;126331,0,9;1281084,0,93;287509,0,12;1447467,0,95;1006026,0,67;1466397,0,59;1476845,0,78;1478789,0,2"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Deigenchris","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=eigenchris","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=eigenchris","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"eigenchris: Yandex'te 376 video bulundu","description":"Результаты поиска по запросу \"eigenchris\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"eigenchris — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yd95be9332f6f3745ff710bd8f4bd212c","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1472346,1457616,1433082,1473738,1476205,1460956,1470057,1460712,1459297,1152685,1456929,1472031,1471623,1477824,1478447,1475351,1479117,1470223,1373786,1479385,1466296,1467161,1475652,1452015,1349038,1279757,1477969,1470513,260561,1471678,89019,1404017,1473845,45299,1478802,63006,124069,1479363,996747,151171,126331,1281084,287509,1447467,1006026,1466397,1476845,1478789","queryText":"eigenchris","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5087269521769881952","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1472666,1478181,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769881961","tz":"America/Louisville","to_iso":"2026-01-31T12:52:41-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455698,1472346,1457616,1433082,1473738,1476205,1460956,1470057,1460712,1459297,1152685,1456929,1472031,1471623,1477824,1478447,1475351,1479117,1470223,1373786,1479385,1466296,1467161,1475652,1452015,1349038,1279757,1477969,1470513,260561,1471678,89019,1404017,1473845,45299,1478802,63006,124069,1479363,996747,151171,126331,1281084,287509,1447467,1006026,1466397,1476845,1478789","queryText":"eigenchris","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5087269521769881952","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"9755487585404553427178","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":159,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"5087269521769881952","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1759.0__78afb7e0ef66aeda09c521d3b89f7cdbe661a72a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","out":"3218","popup":"1544","scroll":"768","show":"487","retry":"3545","feedback":"296","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"9304078160741351241":{"videoId":"9304078160741351241","docid":"34-7-3-ZC7F4E041AF30968E","description":"Hitoshi Murayama / @hitoshimurayama2746 [B4] Peter Woit / @peterwoit8197 Peter Woit's work-in-progress text: https://www.math.columbia.edu/~woit/Q... [B5] Leonard Susskind (individual courses are...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3445336/c87810d07de16d34e58a2ba87c4fba76/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/c3WN7wEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4ZZ7Po6rckU","linkTemplate":"/video/preview/9304078160741351241?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"eigenchris's Math/Physics YouTube Channel Recommendations","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4ZZ7Po6rckU\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTOTMwNDA3ODE2MDc0MTM1MTI0MVoTOTMwNDA3ODE2MDc0MTM1MTI0MWqIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxPUBYIEJAGABCsqiwEQARp4gfsL_gD_AQD0AgwAAwT-AQQAAAL4__4A7QrwAAQAAAD3ARMBAQAAABMB_fv7AAAA-_z0-fX-AQAK_PcFAwAAAA_6_PX2AAAAC__7-P8BAAD8-_LyAQAAAAkKDQkAAAAABhUG9wD_AAD8CAgFAAAAABj6D_8AAQAAIAAtCGHVOzgTQAlITlACKoQCEAAa8AF_-AkE1Av8_wj6-v_5F-UBhQUK_xUc6QDA7_8AwQ7Z_wwsAwHQ5vEAEBUDAM4SBgAE-fMADvMJAR3xDf819gX_ARMOATTo9AEVCAD_6PD8AO4s_f_24QT_8dr2AQoS9v4J6gz__PXuBRMB9gIL_ywB_xQQBBLvBf_m__794SX4AOsC7gAgAfL__AzyA-8FGwHu9O79Ix0F_ukE__0RD_IC9QkK_gv6-wUX9ukE7AgI--_18_kEDgT_EvQOAPcB7frx8wcA9OIL9gX7CAQz9f_9-v4KBPT2Av_nCv4AA8wB_-wcEgH6EfsA8gYIBPzf9gEgAC2rSk87OBNACUhhUAIqzwcQABrAB5IH8r6mQAs94IOXvFXZ9zwSVdM8-DAgvS6pn70DC7u8U_BvvJu3YD3A-rk9t-C7vL2OkL5851y92KYpO8VVhT5UMG-9m38qvHoXL74IPDA9KZ_UvGcno77OGbS6pSYeuj17wz39EEA91Q1vvKA0xD2m1VC9Ef_WOeiZgzwkVPo8mykjvZfUnjusW5i9odCXvEKguT3bfRi9uAT9Oy9R_T2xBWC6n6utvFFM3rv2Ocg8Kdw8vL-1g715ioE8WmkMux3owT2G_H656kmPPJxYNr0tnjW9kOPiPOv2s73WviU8VdfGu4GJiT2EEkG8laxUvANoij13RkC9SoLsOhIuhTuuD0s9NV3wO-yG7T2M94M9cluROxjSAb5Jg6s9liYlvNSeMr2wZUM8etcLPADyhD2JKwI9-CsuPEQU0zxH0ok8XxbJPAlkwDzPWXU9hWOxPHBzTztndoI9SJK7vCM03TwVuCs9t29_PCz5k71iYEI8Dy-jvI0Bgrs72Ze8DsqHuxjriz0FWSW93lRmO91Xuj1DMZO9Lh3Su5oRGT0w8vK87aIrumAVeT2OPNA8Qa8qO6nOFbypbzS9CWSAvJpGbr08C2c8nyuAPEHYCT1CWKK95D8ium0Dcr0HZMo8yQKJO66wqjxcfAA9qwbAuyAfGT3YYZw9JKwVu7nNr7y70EG9ogC8u7iPfD08HJO8uEswu8b8XDzGjRa9IbWiOQ0_nj157II8yyeOOi3gnz2OPNC998m-uX16xzz684g8trcdu_eeoTs_EKq9OOztt0gvLz0b1H68AsYGuevUi7yTCjk95TyWORr4VbsuvFy97z65OJLzVL0nNoq9n6oJuT6MFT3XaSS8VnPFOfFGZj1ofhA8RWWeuJLmz712CFK8-M0IOcw1Vr3Wi-M7RkoAucKSAjxZUQO9cjH3tjkL2z3od-u8izMsOdNRmT0hvfI8qo8Auqy6u7pQyI49ZMz6N3sS2LzPBmq98aehOMRWNT15YcY9tuYuuK_hU73aAdc9y00_NzgJLz25hVO8CfoOODm0mD2mj4q9zB3aN9CAFT2ASrU9ljSQuEN-vL2bRkm8eEvINxXtAL2_2aA7eFkBt5uvbT0z4p28V-abN7CvtTyz5py96qksNo-hmD3z3yi8lSceufZUWL1_wW68VLJTtzv-Sz2Iga48ghPKNle3tLum2Ey9zTG4N_Z0ej3gD9-9P5mbt3CCSjwq6rc95woJOTwp-rtVKm094DKNuDEHQb1WHg0819-tNnCZrrxw-um8D2e4NyAAOBNACUhtUAEqcxAAGmBM7AALISfE6BVC_5a3BBji8ub_D9Tp_9Xp__Qg3NcAB_jWIOj_NeUO3J4AAAD_5fX2HgDNf_XA5T4L4iujtf4hBGkWKRW9CjvbyPIBytPnByMNKkgA-8eOEQLytTwfJhQgAC2Laxg7OBNACUhvUAIqrwYQDBqgBgAAgMAAABDCAAAoQgAAAAAAAFBBAADwwQAA0EEAAMjBAABUwgAAoEAAAAhCAAAUQgAAqsIAAHjCAAAYQgAAPMIAAIBAAACgwQAAYEEAAKDCAAA0QgAAUMEAAMDBAAAIQgAAJEIAAKDAAABwwQAAfMIAADhCAACAQgAA4MAAAOBAAABcwgAAEEIAABTCAABMwgAANMIAAPBBAABQQQAAAEIAAKhBAACAQQAAmEEAALhBAADwQQAAQMEAAFTCAADYwQAAMEIAANBBAACIwQAAkEEAAODAAADwQQAAqMEAAETCAABEwgAAfEIAACjCAABQQgAAHEIAAMDAAACMwgAAsMEAAILCAADgwAAAiEEAAIBAAABEQgAAMMEAAKDAAACWQgAACMIAALRCAAB8wgAAyMEAAGDBAADIwQAAAMEAAKDAAABEwgAAYEEAANDBAAAkQgAAoEEAAGxCAACgwgAA6EEAAKJCAAAMwgAAIMEAAFxCAAAEQgAA8MEAAMDAAAAEwgAAQEEAAMBBAAAAQgAAPMIAAJbCAACqQgAAwEEAALzCAACkwgAAmEEAAPjBAADwQQAAAMEAAERCAAAwQQAAwMAAAIDBAABswgAAVEIAALRCAACwwgAAZMIAAMBBAADAwAAAXMIAAIzCAACIwQAABMIAANhBAAC2QgAAYMEAAGDBAAAwwQAADMIAAKBBAADAwQAARMIAAFhCAADAQAAAmMEAAADCAAAAAAAAZMIAAIrCAACgQAAAwMAAAOhBAAAgQQAAEEEAAFDBAADIwQAAPEIAAIDAAACYQQAA6EEAAMZCAABcQgAAoMAAAKDAAACMQgAAAMEAAI7CAADQwQAAFEIAAIDAAABAQgAA8MEAAKrCAAAUQgAAoMAAALhBAACAQQAAOEIAAIBAAAAowgAAgD8AAFhCAACAwAAABMIAAKjBAAAgwQAAMEEAAABBAACoQQAAgEEAAGBBAACQQQAAmEEAAIxCAABAQAAAwMIAADDBAAAYQgAAJMIAABTCAACwwQAAQMAAAKDBAAAAQgAAcMEAAHTCAADgwAAAKMIAAFDBIAA4E0AJSHVQASqPAhAAGoACAACGvgAAlr4AABQ-AABUvgAA6D0AAB0_AAAEPgAAf78AAFC9AACAOwAA2j4AADS-AAA8PgAAZD4AAJi9AAAkvgAArj4AAJg9AADYPQAA6j4AAHE_AADIPQAA1j4AAFQ-AACgvAAAnr4AABw-AADYvQAAwj4AAKo-AADSPgAADL4AALg9AACIPQAAwj4AANo-AAAkPgAAFL4AAGy-AAA0vgAAzr4AAJ6-AABsPgAAML0AABy-AACAOwAA6L0AAOa-AACqvgAAzr4AAOg9AAAUvgAA-D0AAOA8AACKvgAAML0AAGE_AAAUPgAAgDsAAOC8AAAwvQAAED0AAEw-AADoPSAAOBNACUh8UAEqjwIQARqAAgAAqL0AAJi9AAAQvQAAJb8AABA9AACgvAAADD4AABS-AAAwvQAADD4AADA9AACYvQAAED0AAJi9AAAsPgAAEL0AAIg9AAAzPwAAiD0AAMo-AACoPQAAiL0AAKA8AADYvQAAiD0AABA9AABwPQAA4DwAAIg9AAA8PgAAoDwAAJg9AACgvAAAFL4AANg9AABAvAAAgLsAAPg9AABsvgAA4LwAAGw-AABwPQAADD4AAEA8AACgvAAAED0AAH-_AAAQvQAAcD0AAFC9AABwPQAAuL0AAOi9AACAuwAAFD4AAMg9AAAQPQAAoLwAAOC8AACYPQAA6D0AAIi9AADgvAAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=4ZZ7Po6rckU","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9304078160741351241"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"306922287"},"6989326111684847947":{"videoId":"6989326111684847947","docid":"34-11-13-Z85569D62F7E17C03","description":"Full spinors playlist: • Spinors for Beginners Leave me a tip: https://ko-fi.com/eigenchris Powerpoint slide files + Exercise answers: https://github.com/eigenchris/MathNot... Sources to look at...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1573783/07796619ad3ee10b311c69c166f0b596/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/2s6mSgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DtztQrSRF_Ds","linkTemplate":"/video/preview/6989326111684847947?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Spinors for Beginners 20: Lorentz Group / Algebra Representation Theory","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=tztQrSRF_Ds\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTNjk4OTMyNjExMTY4NDg0Nzk0N1oTNjk4OTMyNjExMTY4NDg0Nzk0N2qIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxOTGYIEJAGABCsqiwEQARp4gfkP9P4C_gD4BwYJAAf8AgEN7f_2_v0AAwcD-QYE_gDz7P_0Av8AAPr9CQUAAAAA_vwL_fP-AQAbBu_-BAAAAA_rCQb6AAAABwz6_f4BAAD08f8BA_8AAA_x7QL_AAAAAP_w_AAAAAH_BwX8AAAAAA0DFgD_AAAAIAAtjvrLOzgTQAlITlACKoQCEAAa8AF_JvkD4vjsAe3w0QC-AvsAlwkl_xoh5ACy8S4Cx-3kAO8V4gDiFvYA8A8NANQeEQAd6fz_AN_3ADPh_QAp-wUA_QgaASXD9gEf-wYB9-33APsWPgIQ4RkA-v4U_-_77gAMDQ7-4APv__352f0s2iIB6PonAxrwEALh0QsA2RMCAQsA-vn5APQE-QL1_eX3KQbZ9-X-Ggn0_NsR9f0HCfr__vIF9hH24gAl_fUG-ggR--3e8vr95e_76gIRBfI1BPgV7woL3wzq_BEMA_Ut1vEG3fsDBQj2AgX2BO_-C_IA8PH1-_3MMQn58OsKD_kK-PMgAC2yxCo7OBNACUhhUAIqzwcQABrAB8Y0s76sOQA9u1MPPKAUcr3bugA98-7-vDVFQL6Dlbk8rKIJPD7Q6j2ZzvM8nYdRu421D76nQ4I85ZeDO8uAMz7m0Yi9mGIzPJ5ihb6Run09LHOEvDHqKr66cNY6QRIRvWDWGj2zNoc93MkWvAqdFz6TmxW8EYqtvEtPAj1Dh8g7f3YTvFBiAb0OUxc8vI5dvLkXfT23lzS8dx1gPBhaHT5qB3G7tIUQPNdoGT2cHzW9DJH0O0MRfL2oRwS9mWr_u_5ukD3H7HI7oXMNPTB0mTvDtmU9B1U0PIO-lL1T_RQ722POvLiklD0ghQa9Oj3OuwUX6z2nnvs8rXoMPEC3sb09KRM9mtwcPLlmtz1zE7A9vxuBPFDD173Eknc9a4zOOswv3rsM_A09Z7eWPHDdsz34EeQ8PTVquyspYb3Gex890B2OPDdvnLzMjaM9nZHWOlBTmz22ngS8hq5EvLIDeDzro7i8Dc-BvIM5pb34k6c9BKmUvJz64D1A_QK9DHXYOxkCAD6gxZI83hwuvN9mxj05tfO9hx8YPA_d4jx1dBy-GGL6ueXDwj1XUrg8jMecO4vLnD2kF3q9X3hKvIUedr3Qsxm9yGk-vAPBLT3svHK9l7hBuDfpkbxb5IO8iRrYOti_xrzE3lU8f_ExvMuupT0ESAM9_leEuzo5iL1Tjr69SA4UulmKND7jkyS9D-y-udJYlj0FqIS9TlsdOYPASj3Mzqa7ADcLu2kYH7wUIiC9OiakOmt7nrt0m8A9OP0wuaERjD16h8K6SZVIuZjHtT2G7m097NN0OdptvDxGj8Q8XPWZOC2fQD3f_hw9f7eyNzN5eb2D9iq9w88yuWblLb1JdEC9pV-zOanTKrvAXmE83VtrNm0-Sb1i9Ey-6u6sOfQA8bsNPBK9ni2sNoDM2Dx_6mm9LFR4OHPYfbzCR7m9Fpv7uKAfAb1JLKk86xtaOauzmrxN-0E8WKtDt98DDz3AsDy90KATuNDwZr14i6E9850kuUlTgz3mHUy853rzNN4Ciby6LdG89RcxN2dnbD0FTeu9XyY1ONCAFT2ASrU9ljSQuGh1Mr5kpCg9F8pMt4Db7jygtpe9OZd7OA_bET0hVM48Yp1OtxmDGL02ipG8zoeoN99PvT29rjo87FdruYYLrzxDJjS9WtxRuEcn5jy-p629yTRvt1CLYb2rijo8FJhrtybckLwWMDG-QaBaucr0cD0i4Ss-8cuKOLVXWj3SsoQ9kdm7uLHhab22Ko07i7zCtw9eAL3p8ga92cUpOCAAOBNACUhtUAEqcxAAGmA_7AAsDjbTHAM_58zbIB_S4wrOFsH7_xWx__bv9BIT6sjNHc8AU-j88aMAAAAkGuH__AD4f7Tp_g0BNADZoekgIWjP-iXg2zHxndYpOijfGggdCVYA0MW-Jjiy4wQPCS8gAC3Jthg7OBNACUhvUAIqrwYQDBqgBgAABEIAABBBAACIQQAA4MEAAMjBAACgwAAAUEEAAKDBAACwwQAAEMEAAPhBAADAwAAAKMIAAGBBAABcQgAA2MEAAODBAACEwgAABEIAAEDCAABQwgAA-MEAAJhBAABAQQAAAEEAAADBAAD4wQAAZMIAAABBAAAgQQAAKMIAABhCAAA4wgAAgMAAAEDAAAAAQAAAMMIAAOpCAAAAwQAACEIAAOBBAAAAwAAAgkIAADDBAADQQQAApsIAAEBAAAAUwgAAoEIAAFBBAABgwgAA-EEAAEDAAABAwAAAeEIAAAAAAACKwgAAwMAAAMBAAABoQgAAOEIAAODAAABwwQAABMIAAMBAAACwwQAAgEAAAMjBAAAEwgAALMIAANhCAADiQgAAnMIAADBCAAA8QgAAjsIAAITCAABAQAAAHEIAANhBAAD4wQAAEMEAAKDAAADwQQAAgD8AAABAAAA8QgAAAEIAAFRCAACiwgAAisIAAEhCAABowgAAisIAABBBAAA4wgAAAAAAAERCAAAwQgAAFMIAACDCAAAYQgAAgEAAAAzCAACSwgAAWEIAAGTCAAAUQgAAKMIAAPhBAABwQgAAuMEAAGjCAABAwQAAIEEAAPhBAACYwQAAAMIAAMhBAABgwQAAMMIAAIjCAABQwQAACMIAAABCAACwwQAAMMEAACDBAACAwgAAtsIAAMDBAABQQQAAcEEAADhCAAAQwQAA-EEAAGBBAAAAQAAAAMAAAJjCAADwQQAASMIAAGDBAACgQAAASEIAACTCAADYwQAA6EEAAIpCAACgQAAAcMEAAHBBAAAAAAAAgMEAAGBBAADwwQAAiMEAAEjCAADwwQAAIEIAAMDAAAA0QgAAAEAAAJTCAAAAAAAAyEEAAEBBAABIQgAA2EEAAHDBAADowQAAaEIAAFDBAACwwQAAoMEAAGBCAAB4wgAAYMIAAERCAACgQQAAgMEAADBBAACoQQAAYEEAAMJCAAB8wgAATMIAABDBAAC4wQAAmEEAAGzCAAA8wgAANEIAAHDBAAC4QQAAoEAAAIzCAAAAQAAAHMIAAEDCIAA4E0AJSHVQASqPAhAAGoACAAAEvgAAmr4AAPo-AACAOwAAgDsAACw-AABAvAAAZ78AAJK-AABkPgAABD4AAHy-AAC2PgAADD4AAKK-AACovQAALD4AAKC8AAARPwAAdT8AAH8_AACovQAAsj4AAFC9AACOvgAAyj4AAOI-AAA8vgAA4LwAAIY-AAB0PgAAEL0AAAS-AAB0PgAANL4AAKg9AABEvgAAqL0AACS-AACWvgAAlr4AAEA8AADGPgAAFL4AAB2_AADoPQAAmj4AAAu_AACYvQAAbL4AALa-AAAEPgAAUL0AAKI-AADYvQAAiL0AAEE_AACYPQAAFL4AAAs_AAAUvgAAoLwAAAw-AABAPCAAOBNACUh8UAEqjwIQARqAAgAAbL4AAMg9AABAvAAAY78AALi9AABQvQAAsj4AAIq-AADgPAAAhj4AACQ-AACIvQAAML0AACS-AADIPQAAEL0AAKi9AAATPwAADD4AAI4-AACgPAAAHL4AACw-AADIvQAADL4AAFw-AABcvgAAqD0AADA9AACAOwAAgDsAAKg9AAD4vQAAur4AAHA9AABQPQAAmj4AAAw-AAA0vgAA6L0AABQ-AADYPQAAQLwAAPg9AADYPQAAFD4AAH-_AAAsvgAAuD0AAGQ-AABsPgAAqL0AAEw-AADoPQAAgLsAAKg9AABQvQAAir4AAOA8AABUvgAAmj4AAAQ-AACgvAAAoDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=tztQrSRF_Ds","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6989326111684847947"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1901195736"},"6839165130839916709":{"videoId":"6839165130839916709","docid":"34-0-13-Z9E44C2FE445FE5F2","description":"Full spinors playlist: • Spinors for Beginners Leave me a tip: https://ko-fi.com/eigenchris Powerpoint slide files + Exercise answers: https://github.com/eigenchris/MathNot... My videos on...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2963679/93249356750225b652ab9afd5e046c8a/564x318_1"},"target":"_self","position":"2","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DF9m9bo6CGtg","linkTemplate":"/video/preview/6839165130839916709?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Spinors for Beginners 24: Proca and Maxwell Equations (derivation + solutions)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=F9m9bo6CGtg\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTNjgzOTE2NTEzMDgzOTkxNjcwOVoTNjgzOTE2NTEzMDgzOTkxNjcwOWqvDRIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxOxEIIEJAGABCsqiwEQARp4gfsE-wAB_wAM_QYD-Qb-AQwR_QX1AQEA8_D5_wUC_wD17wr8_gAAAAn9Cf4DAAAAAfYBBfX9AQARBAHx8gAAAAAF_fj-AAAABvj4_gwAAQEB-v8FDwT-AxP1AgEAAAAA8wr6_wMAAAD6EwoNAAAAABMLAPsAAAAAIAAt7d_OOzgTQAlITlACKnMQABpgIQMALf_2vxD9H-jz9RQYEv_j0ejG-v_z8AABKRriBwnqwQXe_0u2HRWxAAAAMQfbDwMABGbh8PspIxYKrrkACBh__vfT3xIi790DBBdRDDr5_hoeAPLp8u0UpLhC6x4mIAAtxdwwOzgTQAlIb1ACKq8GEAwaoAYAAFBCAADgwAAAMEIAADTCAACIQQAAIMEAAJhCAADgwAAAEEEAAEDAAAAMQgAAQMAAACDCAADAwAAATEIAAHDBAACAwAAAMMIAACxCAACQwQAAAMAAABDCAAC4wQAAwMAAAKjBAADYQQAAiMEAAADCAAAYQgAAQMAAAIjBAAAwQQAAkMIAAKBAAACawgAAoEEAAHDBAAC8QgAA4MAAAOBBAACAvwAAGEIAADRCAADIwQAAaEIAALjCAADgwAAA0EEAADBCAACwQQAAPMIAAKhBAAAwQQAA2EEAAMhBAAAcQgAANMIAADDBAABEQgAAVEIAABTCAACwwgAAYMIAADDCAACQQQAAEMEAABDBAAAgwQAAKMIAACzCAACgQgAAwkIAANbCAACgQgAAUMEAAIDCAABkwgAA8MEAAEDBAACgwAAALMIAAABCAACgwQAAfEIAAMjBAACIQQAAiEEAANBBAABgwQAAbMIAAODBAACoQgAAbMIAAAjCAACaQgAAFMIAAFDBAACAQQAAlkIAAEBBAABIwgAA6EEAAAxCAAAMwgAAtsIAAMBBAABQQQAAOEIAAODAAABAQgAAhEIAABDCAAAMwgAAiMEAAIjBAABQwQAAgEAAABDCAAD4wQAA6MEAANjBAAB0wgAAAMEAAOjBAAC4wQAAoEAAAGBBAAAwwgAAmMEAAAzCAACAwQAAkMEAAKDBAACMQgAAgMEAAHxCAADoQQAA2EEAAFTCAABkwgAAqEEAADDBAABQQQAAAMEAAKDAAACAwAAAZMIAAHBBAABAQAAAQEEAAPDBAABgQgAAoEAAAMjBAAAIQgAATMIAADjCAACGwgAAYMIAAIC_AAA8wgAACEIAAEBAAADwwQAAwEEAAMBAAABQwQAAikIAADBCAABAQQAARMIAAPBBAACAwAAAmEEAAGzCAACIwQAATMIAADzCAAA4QgAAgMEAABDCAACAvwAAyMEAAADBAACCQgAAgsIAAFjCAACIwgAAAEAAAOBBAABQQQAAJMIAAAhCAAC4QQAAkEIAAOBBAAAEwgAAmEEAAODBAAA0wiAAOBNACUh1UAEqjwIQABqAAgAAmL0AAAw-AABAPAAAmL0AADQ-AAAsPgAAPD4AAH-_AADovQAAmr4AALI-AACoPQAAjj4AAPg9AACgPAAA1r4AAMg9AAAUPgAAMD0AAA0_AAB_PwAABD4AAKI-AABEPgAAiD0AAPg9AAB0PgAA2L0AAFS-AAAwvQAAyj4AAKi9AACWvgAADL4AADC9AABkPgAA2D0AABS-AADmvgAAA78AAK6-AACyvgAAqD0AADw-AABAPAAA-L0AALo-AADuvgAALL4AAAS-AACgvAAAor4AADA9AABwPQAA6L0AAOA8AABBPwAADL4AADS-AAAEPgAAlj4AAFA9AAAkPgAAFL4gADgTQAlIfFABKo8CEAEagAIAAIA7AAAMPgAAbD4AAFG_AACgvAAAgDsAADQ-AAAMvgAAML0AAHQ-AAAEPgAATL4AAEQ-AAA8vgAABD4AAFC9AACovQAAQT8AAFw-AACKPgAAND4AAFS-AACCPgAALL4AAIC7AADgPAAAZL4AAMg9AACYvQAAcD0AADC9AACoPQAAiL0AAES-AABAPAAADL4AAOA8AACYPQAARL4AANi9AACIPQAADD4AAFA9AAAwvQAAyD0AANg9AAB_vwAAQLwAACQ-AACgPAAA4DwAABA9AACYPQAAbD4AABy-AADIPQAAML0AAEy-AACAOwAABL4AAEw-AACYvQAA4DwAAHC9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=F9m9bo6CGtg","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["6839165130839916709"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"8710080905522656406":{"videoId":"8710080905522656406","docid":"34-10-2-Z27D91ACDB730E9EA","description":"Full spinors playlist: • Spinors for Beginners Leave me a tip: https://ko-fi.com/eigenchris Powerpoint slide files + Exercise answers: https://github.com/eigenchris/MathNot... Videos on momentum...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3335875/f231b22a67fcdb55a9a3e0a87a9ad059/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NdeBQQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DIPzwqAVfce4","linkTemplate":"/video/preview/8710080905522656406?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Spinors for Beginners 16: Lie Groups and Lie Algebras","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=IPzwqAVfce4\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTODcxMDA4MDkwNTUyMjY1NjQwNloTODcxMDA4MDkwNTUyMjY1NjQwNmqIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxOGEYIEJAGABCsqiwEQARp4gfoB8wAG-AAD-Q8QBgz5A_AYAPT4_fwA_v0NAgAG_QD36v4HCAAAAP0NCAMAAAAAEwj_-vcAAQENDvsCBQAAAAj5B_jzAAAABPv46_8BAAAD9vf4A_8AAB_v9wP_AAAADRDv-v8AAAD8_g4FAAAAAP8IEf7_AAAAIAAt9MHAOzgTQAlITlACKoQCEAAa8AF_DfkB5e_QAbYF3AC1GAEAqiwj__4O4wC7KCkDzvMVAAAO4QD47rH_ANn6ANAPJgATBOoAANz2ADz_6P4t-wYA-PMYABLJAwAq3gQA-t_r_hD4Jv8H7hkACvb5__v03v0VHhL98ezW_v_mzAAJ1jwDF-44APrZEgPyyAf_6BQPAhLOB_0H_Ob_7vfs_9oEIQLiAvf3DOvgAOLrCwUi_ecC9Nr0-Rb57vwq8AUH7OQG_ADf-Prl7fwB_CMaCtY__vsQAQ3_0_rt9RkYD_cv9vUFufz9-gQKCg8UDfcADNoFDv4PCvXMIQ8H4vT9DfAMAf4gAC31iho7OBNACUhhUAIqzwcQABrAB2oW0L6slBk9Uw33uwMVRL0AiUs9VKcou6siDL4SAIc9m4ijPFTXmz3PkpE8r7j2O1nAVL4EjIw5Ks_XPBSUQj5GRRy9c-gAvJ5ihb6Run09LHOEvBU3Tr6tNOm8ZTpPvLzzqj2sGZ49Z_-NPLVrAj7Ek107oFiju6mqyLuyXSa9X8EMvVBiAb0OUxc8vI5dvL-zQj2UQqi7R1AhPWkZGT69Xzu9ZRfvO872DT1zi9S839Gxu7pnrb1BUhq9mdlCPAU08T0VJA28NkNfOv8sLD205mc91BayO792-rzW7Jw8k3cpvUcsGDy2LYq8RBwEvKXiuj1gNKU93B5OPFMJar1ENqA9mGdFOuRm-D1mTOE9GCPUOyYMdL1dRrs9TCy6PHq3Iz0UjqU9uQD0PN-Irj0EiRI8ThggvCspYb3Gex890B2OPCTRDbyZaCs9WJBmPN4Lwj3tVqA8U-4ZOuQn2TtsaQS9lNs0u4eAuL0qq4k9VwejO-23Bj5Sh8-7vChVvAQ56D0nAxY92ojQu99mxj05tfO9hx8YPA_d4jx1dBy-GGL6uQ_wlD3gMFG88sPSO3F5Rz2_P627C0zAuoUedr3Qsxm9yGk-vD2RcT34YS69-eaKu3Vn3Lxlnbu8rwEZPMZ8bTvVb7C8DVHMOQOjQT2aKYg8dAZUucyqub04tHK9Q_-4OdpVCD583jA6VJ0Cu5qnRD2cGFK9Pv4Yu7Jb1TxroT-8gfRiuz1KArx8LH28KtQHPNDxUTzvy7Q9rhmDOAX-Cz3iqWy8Oej5OCinjD3DjH89d26BOWM3gTuxrM88grASOH5Rhz2OEze6P3dnueh2Jb2xC9C8EqsIuQc-67wPWEO9eb0CuuFrHzy-J-A8hcAhuhL1Qr0iGOe9eBrqN9VFpbxQP4M8rYKcuV5oDj0-isS97_BltrKvhrwoTzS97ZICOr0YirzZ1FS8kHtDOBOIMjztSqY8KCGoOFnTxjxQHGC9INIXOBEeyLuRfVA97x2MNuztID1qiOi7Cw5DuL7Ol7lzaiK9T0ostzTc2zzmXSW-BpznuJRfR7oNZwY8HjFlN8rhA74Q1x48l_1ON2fZDj3Ncl69wIanN6RIiDx27_I8ABaSt2poA716fVe9GpX_N6OxFj6mVZ49RyMkuawbT71wAGK9cfqiuEcn5jy-p629yTRvt_5thb2ziqs6Rfi2tybckLwWMDG-QaBaucr0cD0i4Ss-8cuKOO3EmzxFScg97lIKuTEHQb1WHg0819-tNs9r7LtoUnG7dlnRNyAAOBNACUhtUAEqcxAAGmAm9QA44TTcKhQn7tXeHR_jFxXxG6oK_xz8AP_19Swk_tbTPDP_ONsA7KcAAAAyE9gOBADpcdTYBBEIDQCiq9IbMX_n0xTh1Uf2teNGFS3ySPs2HFUA6ezI7THW4OURHDIgAC22VR07OBNACUhvUAIqrwYQDBqgBgAAKEIAAEBAAACAQAAAGMIAAMDBAAAgQQAAmEEAAMDAAACIwQAACMIAADBBAADIwQAAhMIAAKDBAACCQgAADMIAAMDBAABswgAAYEEAAOjBAADgwAAAOMIAACRCAADIQQAAIEEAAKBBAADAwAAAfMIAACDBAADwwQAAiMEAADBCAADgwQAAIMEAAADAAADgQQAAAMAAANJCAABgwQAAmEEAAIJCAABAwAAAkkIAAGBBAABUQgAAlMIAAIDBAAAwwgAAnEIAAADBAACIwgAAEEEAAKjBAACgwAAAUEIAAIBAAABwwgAAMMEAAOBBAAAUQgAAoEAAAADAAAAwwQAAhsIAAMBBAAAMwgAAHEIAAEjCAAAwwQAAQMIAAN5CAACuQgAAAMMAAGxCAABQQgAAmMIAADzCAAAgwQAAEEIAAGDBAAA0wgAAsEEAAGDBAAAAQgAAqEEAAJBBAABIQgAAnEIAAARCAAC-wgAAKMIAALxCAAAEwgAAaMIAAOBBAACMwgAAJMIAABRCAACGQgAA0MEAADzCAAAIQgAAREIAAKzCAABIwgAAyEEAADDCAAAwQgAAEMEAALhBAABEQgAA0MEAADTCAAAIwgAAUMEAAABBAAAAQAAA6MEAALhBAACowQAAFMIAACDCAABAwAAASMIAABhCAABwwQAAVMIAAJjBAAAgwgAAlMIAAEBAAACAwQAAEMIAAChCAAAAwAAAIEEAACBCAADAQQAAPMIAACDCAAAYQgAAoMAAAADAAABAQAAADEIAABDBAACQQQAAgEAAAExCAACAQAAAgMEAABhCAACAvwAAEEEAAJhBAABQQQAA4MAAABTCAAAAwgAAFEIAAJDBAADAQQAAYEEAAIjCAACowQAADEIAAIhBAABkQgAAgMEAAOBAAACowQAA0EEAACDCAACAvwAAEMEAAOBBAAB8wgAAFMIAAJhBAADAwAAAEMIAAMBAAABgQQAAiEEAAK5CAACywgAA0MEAAIDAAACAvwAA4EAAABDCAAAwwgAAjEIAAODAAACIQQAAQEAAAGzCAAC4QQAAGMIAAGTCIAA4E0AJSHVQASqPAhAAGoACAADSvgAAmL0AAFA9AACAOwAATL4AAKg9AAAUPgAA6r4AAM6-AADYvQAALL4AAEC8AAAkPgAAEL0AAKg9AACqvgAAFD4AABA9AABsPgAAAz8AAH8_AABwPQAAqL0AAKg9AAAkPgAAcD0AAOC8AABUvgAARD4AAEQ-AACIPQAAgDsAABC9AACovQAAiD0AAMg9AABwPQAAqL0AADy-AAA0vgAAoLwAANi9AABwPQAAyD0AAKg9AABQvQAAyD0AAJi9AABMvgAAoDwAACS-AAAkvgAAbD4AADw-AAAsvgAAND4AAAE_AACgvAAAiL0AAM4-AADIPQAAjj4AABw-AACWviAAOBNACUh8UAEqjwIQARqAAgAAFL4AAOi9AADIPQAAKb8AABS-AABwvQAAVD4AAOC8AADgPAAAgj4AAJi9AACAuwAA2D0AAKA8AACgvAAAoDwAAIg9AAAVPwAABD4AAMY-AABEPgAAED0AAHC9AACIvQAAUL0AAEQ-AACgvAAAgDsAACQ-AAB0PgAAiL0AAOg9AACgvAAA9r4AADC9AABsPgAAvj4AAHA9AAC4vQAAoLwAACQ-AABwPQAAmD0AAFA9AACCPgAAUD0AAH-_AAAQvQAA6L0AAJg9AAAMPgAA4DwAAAw-AACIPQAAMD0AAAw-AABwvQAAqr4AAKC8AAAQvQAAXD4AAJi9AACIvQAAQDwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=IPzwqAVfce4","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8710080905522656406"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"837284697"},"7326326752305921367":{"videoId":"7326326752305921367","docid":"34-0-7-Z574DF33FBA8E3CA9","description":"Full spinors playlist: • Spinors for Beginners Leave me a tip: https://ko-fi.com/eigenchris Powerpoint slide files + Exercise answers: https://github.com/eigenchris/MathNot... 0:00 Introduction 1...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1784911/f011a4ae2185beafa34860e4109757f2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/VWN6HAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DDvEdm6a-9Tw","linkTemplate":"/video/preview/7326326752305921367?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Spinors for Beginners 2: Jones Vectors and Light Polarization","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=DvEdm6a-9Tw\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTNzMyNjMyNjc1MjMwNTkyMTM2N1oTNzMyNjMyNjc1MjMwNTkyMTM2N2qIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxOvCIIEJAGABCsqiwEQARp4ge0E-_cD_AD9D_II-Af9AvQV8_z3_fwA8grzC_sB_wD7_gIOAAEAAP79EQ0EAAAAFf_0-_QC_wEJ_PT99wAAAAPx_vT5AAAA_PHx9gEBAAD99gH49QIAAQ7w-A7_AAAA9Oz7DQAAAAD-Axj6AAAAAA8GAgMAAAAAIAAtnNXGOzgTQAlITlACKoQCEAAa8AF_-_QB4g_JAsHmyP_XJOQBgiIK_hwk4gDMAQ4AxjLcAP7z_gDS_AAAJP8RALom-f8R6OwA_-YHADDOH_8i8QcAuSsuACzmAgAvAgcA7NTyAMEoCf7q_hz__crgAA83-f0bFAP-3QTt_w7_1wMX5yoC7v4JBS70CQIB7xH__yojAOX22v0IBxAHD_L3-u0UNwES_g8HARQC-gL2-fwT7vcJAwoP-xX57_wo_fQH9BQV8-fq_vwICvT6_PoXCt7uBPvs7gkA7uYR-v__FfsW5Bz67wkECgYKAPgfBxD3DPEA7vkJ-v7TAAH83wz2_R_O-vUgAC1jyx07OBNACUhhUAIqzwcQABrAB5G33L6-SI0979ALvVXZ9zwSVdM8-DAgvUvTtr2Wyys9rO4HvX-iEj6Gjh090qZvvaCoTL7sq2a9qVGjOxh3Ez7VioC8_o2Hu55ihb6Run09LHOEvPWhg748d_E7LsWXO3awNDxH2hc9rUC-PODZfj1ScU29zTdHvLpLgj38E8G88joHvb5SsbzhiwK8fUHLvH0ANz37XA29dT-nOgRrwT0QmEG7YR4tvUE_uD3hO4u9bTrCvOxo3L0vvQG8GVgFOxEALD6WWxo92x3tPHbjGzy1ena6VuiNPIO-lL1T_RQ722POvGYW4T1BtQY9E9aGvPBuYD1bVTu9VthnvFUxFT2GMyQ9H0ufPN1gOD4pplw94xs-OshFJb5p0YE9nQjHvGGCRD0qrom7frHSPCxFEj6g3Du9z4mYPKvq5T2bQt86NtchPASs1Twzopk89PNLPOrjxjx68Y890m-hu1OdRLyGeCA7UYCNPCz5k71iYEI8Dy-jvFLtoz3F4Ma8JnyEO4_7VrxBDDk9PztgvN9mxj05tfO9hx8YPL_HKjxdl6u8GTJovAsSdj3doXY7W4ltu_cbszvMbpy8ZnE1vOfzy73oHSG8YrT1O6R9vT1zyYe9L8gvO8910LyWxjQ91D_OO2QntDsnUyI7voFuvP-wdjr6JPu7LFIXPNs7vDpKs3m8tx0BvHlioT1Vta49t0gYO1EhKrt3kE09JhkcuzTgxz1RuIM8axvzOXmnpzuAilm9pglWtlbT9Ty5YJo98w4ruRWzdD1AYK-9jWJ-OADy1LyGgR097SeduGlBXjybqMo8ZORyOCrG-byIOyi9VnZMt5LzVL0nNoq9n6oJucfmlTuRL7w8RXyKOryUOj2KP8o8BSDhN7oSYb3NvVG8l6mLOqOIdr1HiFc91jA4uGAi3ryrPa67d8dRuRZutD3d0xE8jcuAOEph3rtst3i9U2PDOcN4kj0UVIk9sfw1OLL-Zb0qYzI8_IwUuQqAsbwnF-M9YmCSuXtACr3VQsk8E6bnNj_Ko7yd-IW8yG6QuBrn5TxdD2u9uLCNN5CZMLyt5g89xyYWOG3F_r2i1D69Gi_0uBXtAL2_2aA7eFkBt_inFD4D-k49H_TtNk8ONT2cICA9ylJHOMHjKz7cpWi8B4l0uQpcCL3iw5G9PKVYuNW5fTyMEx-9cXMwtfB-5rwHRCi9ZFcSOB2XDD1JD0O-VDFNudJ-NTx8Sqk87e-3OKeMZL1BRAo9eBTkuJgPjb3dH4Q9jMPRN4ERajwt-CG85Gv-NyAAOBNACUhtUAEqcxAAGmBKAgAgBxrdBgcu7fz8MxrZ9gQKDN8V_xLVAOj29iICBPPKAtgAFM0e8rQAAAA_5ND8AADvZu3WHfv5IBCkpfEIB3_oIPv5HkgD6e4FLyoEFv8TAzcA5OG6Hx_F0_8KM1QgAC0UkTI7OBNACUhvUAIqrwYQDBqgBgAAWEIAAADCAAAQQgAAhsIAAIC_AABkQgAAxkIAACBBAAAAAAAAgEAAACDBAABwQQAAwMAAACDBAACAQgAAMMEAAGDBAADowQAAskIAAIrCAABwQQAA0MEAAMDBAABAQQAABMIAADRCAAAgwQAAmMEAABDBAADQQQAAAMIAAEDAAACOwgAAiEEAAETCAABwQQAAmMEAANBCAABgQQAAgEIAAIA_AACCQgAAeEIAAMBAAAD4QQAAhsIAAAhCAACYQQAAjEIAALBBAACQwQAAyMEAAEDAAACAQAAAQEAAAIC_AAAkwgAAAMAAAADAAABAQgAA0EEAAEjCAABowgAA-MEAAABAAAAYwgAAuMEAABDCAAAgwQAAQMEAAFRCAACuQgAAsMIAAJBCAAAQwgAAVMIAAJrCAAAQwgAAaEIAALhBAAAcwgAAbEIAANjBAAA4QgAAQEEAAFDBAACgQQAAoEAAAGxCAADQwQAA4MEAAIxCAABAwgAAKMIAABhCAADCwgAAiMEAAJjBAADEQgAAHEIAAPjBAADAQQAAAEAAAJDBAAD6wgAAQEIAAABBAACmQgAAsMEAAPBBAADAQAAAsEEAACjCAACAvwAAiEEAAOhBAADwwQAA0MEAAJDBAAA4wgAA-MEAAIjCAAAgQQAAAMAAAKjBAACQwQAAAEAAADDCAAB4wgAAMMEAAJjBAABQQQAAEEEAAFhCAADYwQAAgEEAAABCAACgQQAAMMIAAFjCAACgQAAAFMIAAADAAADowQAAgEEAAIA_AAAgwgAAuEEAAIhBAACIQQAA6MEAAFBBAAAUQgAAaMIAACRCAABAwQAAkMIAADjCAAA4wgAAIEEAALDBAADgQQAAcEEAAEzCAABwQQAA0EEAAEBBAACAQQAArkIAAMDAAACAQAAAyEEAAFjCAAAYwgAANMIAANjBAACowQAAMMIAALjBAABQQQAAgMIAAODAAACIwQAAjkIAAHBCAACwwQAAcMIAAHjCAAAgwQAAgEAAAPDBAABgwQAAkEEAAABAAACoQQAAqEEAAKBAAACoQQAAAAAAANjBIAA4E0AJSHVQASqPAhAAGoACAABkvgAARL4AAOA8AAAkvgAAML0AADw-AADYPQAAHb8AAAy-AABwPQAAML0AAKC8AADYPQAAEL0AAJq-AADIvQAAgLsAAKg9AADePgAA8j4AAH8_AABQPQAAyD0AAOg9AAAQPQAA6D0AAIA7AAAQPQAAUD0AAI4-AAB0PgAAEL0AAAy-AACmvgAA4DwAAK4-AABkPgAAUD0AAEy-AAD6vgAAQDwAAFy-AACAOwAAbL4AABA9AACIvQAATD4AAOi9AACgvAAAFL4AAOg9AACavgAA-D0AAAy-AABwPQAAUD0AABE_AAAQPQAAUL0AAIo-AADYvQAA4DwAANg9AABkPiAAOBNACUh8UAEqjwIQARqAAgAAgr4AAEC8AABsPgAAUb8AAJg9AAA8vgAA-D0AAK6-AAC4PQAAND4AAJg9AAAwvQAAij4AAOC8AAAQPQAAcL0AAIC7AAAtPwAAhj4AAL4-AAAQPQAABL4AAHQ-AACOvgAAQLwAAIC7AABAPAAAyD0AAIg9AAB8PgAAmD0AADQ-AABUvgAAuL0AAFQ-AACIvQAAhj4AAHQ-AABsvgAAoLwAAIo-AABwPQAAiL0AACQ-AAAUvgAA4DwAAH-_AAAQvQAAqL0AAIo-AAAkPgAA4LwAAPg9AACCPgAAQLwAAOg9AAAwvQAAVL4AANi9AACmvgAAJD4AAIA7AACAOwAADL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=DvEdm6a-9Tw","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7326326752305921367"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2410470036"},"6288718178008201116":{"videoId":"6288718178008201116","docid":"34-4-12-Z731BB75617EA6FE1","description":"Full relativity playlist: • Relativity by eigenchris Powerpoint slide files: https://github.com/eigenchris/MathNot... Speed of light not equal to c...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4078022/5f78d7cfdebd497c4c4819c9f9ac325f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/W7sYRgEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO92pQXZaEnw","linkTemplate":"/video/preview/6288718178008201116?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Relativity 105b: Acceleration - Bell's Spaceship Paradox and Rindler Coordinates","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O92pQXZaEnw\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTNjI4ODcxODE3ODAwODIwMTExNloTNjI4ODcxODE3ODAwODIwMTExNmqIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxONEIIEJAGABCsqiwEQARp4gQkACP8G-QDh_Qv_Cv4B_wIPBvP3__8A1QkA_Qj3BADwAhD6CAAAAAcKCAUMAAAAA_r8-v39AQAZ9vv48wAAAAMG9AkDAAAA9wb96gAAAAD4CvUCA_8AABn7_P4AAAAA7hb_-v___wD7CAfzAQAAAAD08v4AAAAAIAAtJiXEOzgTQAlITlACKoQCEAAa8AFcAfv_2_zb_-ID1wD5GOQBgQUL__0m3gDL9QgA4AXoARP66f_W_g0BGCILAMge-gDz7gT_FAwTAB7wDv8O8w4A3x0RASLu8gAS-A8BE_cJAM4fB_767A0A_tbnAPcj7f8NCAQA0BDr__n25QQrCSEAAfP8_y4HEQDrBfb_7iUZA-oC7QAU-v7_COoNCOIUGAEZDvUAJhzw_xEFAgP8AA0F_-vzBBAI6wMy-vcAAQMYAO3oDfoZ6OwCH-8D-vv8-ALf8wT9AO0I-gEGA_cg8AUE8_gBCAQPCPkJ5foEANn6AeQeBAX_8wH--RcECBD2_wQgAC1uJ0g7OBNACUhhUAIqzwcQABrABwk4xL44xY49Q9KNvUKk8LxxRC09CebDvDlk472y0gs7iQMtvX-iEj6Gjh090qZvvb2OkL5851y92KYpO6DiKD5R28a8RA42PHE9Wr7nFr89hUyovPWhg748d_E7LsWXO9uwfD2QIVE9hZwQPNLrBT1mg8y81SICvVuvLj03Wuk7-OddvSuIwbzDFxy9SVvmvMlAWT3vM5O8q9b4vC9R_T2xBWC6n6utvMrngD2G17-8j2wuPFdc_L1_TiG9UWCmu5TCHD7kk9-7eqMbPegWOjxgvHU9wnBJPdzHQL2zOM671tmavGYW4T1BtQY9E9aGvBq1nD0x8Le8MOEnOxfF4Tx1enk92sh1PPsFOz7aN9c9RHXKO6d3Ib5Rti09r9OjOpa0rT0fyZc7IYwEPQ5O5D1a-gu9K3ZqOzxdtz3WJXk9ijUKOrg_1zwe8oG7KpFEPGycCD1mcVU9C9SivLKyRz0lyxW6v82HPH7dLr0pp0c9d0l_O_ES_D3AKJy9rShru-cMG71w_lA9jAclvMU1Qz34UQ2-CW8su1wyOD0XWy28ZiCruGayCT3zwgQ6ZbegPBPjqzydUY49_KNzu3aq3L2N_PC8_KsFPEHYCT1CWKK95D8iulxPG7y7Mwk9PcIfPLbkJz2Y_iA9uV0gvHn8w7yrsJm8otbuu6NolDxFrqW8lpOzu3lioT1Vta49t0gYO59tWryu7ZI946wJN_NZ3j1u9uw8-oGcuAUSeT27-3K93N6oO1sekD04LgI889QzutU3dT0rFo-97rDLOQf1YzuCFpY63poNOz-g_TwVkuc8e1-rOD9jUL3t7Xu9D8o4t6aX-L3zq6m9qjR1OOd-e7uYyOA8ZZYLuWKqzzxWMOi6qSNcOLLtib002qo8A4uWuN804LrDTqw96gkVuFfZrbyjA3K9TIfXuNTjCD1fPTO98WvLuNlXAby92la9fLeVuHUB7zzW9bU9PRDxuBvJpL2WtoO9axosuP1Ylz3ct_o9HVbENSO9iL3YWT497IqwOI3R-rxwV4S9ZRC-t2CbBbyMRE29dp0vOJ_JHr1SFnQ8dCoaOcl5er3igRY8Wc1lOD9wNb16g5Q8GowoOMTPDz48aum7nsuVNqnRFT2z_0u85d9Rt8HjKz7cpWi8B4l0uewJ3LzhKV-9xKVjuCr9JbvjZt28oBnJNj5VqrsrqyS9jODmNx2XDD1JD0O-VDFNuYLEez1KewM9xPOIOFNTfL3w82Q9JnHDt2KCWr1bIGY9ZDW7N1sHhzx7rfq8_ixytyAAOBNACUhtUAEqcxAAGmAXAAAu-RjjAx807NfhDhfy4ffl7dkp_wjE_-QW_A4WHOet8sgAHtEz8qwAAAAW8dwLzgD7aAnG-xfmDC3areAs_mkRKiXQCCv5CufvANzlFP0gJgwAyPLCDH_8-DHECwcgAC28DTA7OBNACUhvUAIqrwYQDBqgBgAAAAAAAAjCAAAwQQAA2MEAACxCAADAQAAAwEIAABDBAAAcwgAAoEEAAADAAABgQgAAQMIAAIDAAACqQgAAwEEAAOBBAABAQQAAUEEAANDBAAB0QgAA4EEAABhCAAC4QQAAYEEAANhBAAB8wgAAhMIAAOBAAAAcQgAAUMEAADhCAAC4wQAABMIAACjCAAC4wQAAikIAADhCAACAPwAAREIAAATCAACAQQAA4EAAAATCAABcQgAAhMIAAMDAAAAwwQAAoEIAAKhBAAAowgAAoMAAAFDBAABAQAAAQEEAAIjBAACywgAAcEEAAJBBAABMQgAAMEIAAKTCAAAQwgAAEMIAAKBBAAAYwgAAwMEAAKDCAAAQQQAAOMIAAJDBAAAcQgAAfMIAAJBBAACawgAAgEAAAFjCAAAgQgAAEEEAAJhBAAB8wgAAMEIAAFTCAACQQQAAlkIAABzCAACwwQAAgEEAAHRCAACAwAAARMIAAJhCAAC4QQAAEEEAAIBAAADKwgAAAEIAAADCAAAgQgAAgMAAAPDBAAA0QgAAMMEAAOBAAAB4wgAAMEIAAEzCAACgQAAA-EEAAJpCAABAwQAAjkIAAMDAAACowQAAUMEAAFRCAADIwQAAoMAAAFDCAABAwQAAwEEAAHjCAADQwQAAcMEAAHBBAACIwQAAcEEAAODAAAB8wgAAnEIAAKhBAADowQAAmEEAAIhCAAA4QgAATEIAANhBAACowQAAZMIAACBBAADowQAA-MEAAEBCAADgwQAAAEIAAAzCAACgwAAAIEEAACxCAADAwQAAMEEAAIBBAABIQgAA2MEAAEBCAADAQQAAnsIAAMTCAACIwQAAikIAAODAAAA0QgAAuMEAAOLCAACAwAAANEIAADBBAAAsQgAA8EEAAMDBAABAQAAALEIAAJBBAADYwQAAAAAAAETCAADAwAAAQMAAAODAAAAYwgAADMIAAIDBAACYwQAA8EEAAOBBAACowQAA4MAAAJjBAABgQQAAAEEAAADCAADIQQAAHEIAADDCAADwQQAABEIAABBCAAAQQQAAAMEAAAjCIAA4E0AJSHVQASqPAhAAGoACAACIvQAAmD0AAJY-AAAMPgAA-L0AABw-AADIPQAA8r4AALi9AACAuwAANL4AAJg9AACGPgAA-L0AAFy-AADuvgAADD4AAEC8AADIPQAAuj4AAH8_AAAcPgAAJD4AAJY-AACgPAAAgr4AANg9AACAOwAA6D0AAMY-AACoPQAAmL0AANi9AABMPgAAmL0AADC9AACoPQAARL4AAKK-AAB8vgAAML0AAGw-AACePgAA-L0AAAy-AADIPQAA6D0AABS-AABMvgAAXL4AAKg9AADgPAAATD4AAMg9AABwPQAAyL0AACM_AABEPgAAwr4AABy-AAAcvgAALL4AAKg9AABsviAAOBNACUh8UAEqjwIQARqAAgAATL4AALg9AACAuwAAZb8AAAw-AACgvAAAcL0AAJK-AACyvgAAzj4AADC9AABAPAAAbL4AAKa-AABMvgAAML0AAHy-AABhPwAAyD0AAJo-AABAPAAANL4AAMg9AADIvQAABL4AAJi9AACOvgAAmD0AAOg9AADgvAAAqD0AAJi9AAA0PgAAjr4AAKg9AABwvQAAoDwAAGy-AAAsvgAAUD0AALg9AACgPAAALL4AABS-AACWvgAA-D0AAH-_AABcvgAAqD0AADQ-AAAcPgAA-L0AAEw-AAA0PgAAiL0AAJi9AACIvQAA-D0AABS-AAAsvgAAML0AAFw-AAAsPgAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=O92pQXZaEnw","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6288718178008201116"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2562600972"},"9915049099661681835":{"videoId":"9915049099661681835","docid":"34-9-9-ZC0DBBCB56D80D7F9","description":"Full relativity playlist: • Relativity by eigenchris Powerpoint slide files: https://github.com/eigenchris/MathNot... Leave me a tip: https://ko-fi.com/eigenchris Binary System orbit described in...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/475337/802d8f0ed661616f6fa08a75233f7352/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/3_Zn8gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCZoeBmrtJO0","linkTemplate":"/video/preview/9915049099661681835?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Relativity 109b: Gravitational Waves - Linearized Gravity / Weak Gravity","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CZoeBmrtJO0\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTOTkxNTA0OTA5OTY2MTY4MTgzNVoTOTkxNTA0OTA5OTY2MTY4MTgzNWqIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxO-BoIEJAGABCsqiwEQARp4gfsB-Qj8BQD1A_4CAAP_AQAD__j5_v4A-f3-AwUC_wD9_ADyCAEAAP4ECAn6AAAA7gD_-_sBAAALDPsBBQAAAAz6-fz-AAAAAAf9AP8BAAAD9_n5Av8AAAUBAP3_AAAA9gcIA___AAD_BgX9AAAAAAgCBe8AAAAAIAAtotThOzgTQAlITlACKoQCEAAa8AF2Avr_7_72ANkEzADMIPgAgSIK_v0x1QDE-x8AuPT2ANsW0wDR3s3_-gAT_74YCAAX2OP_-tICACr88f8i8QcAARkSASPW9AFE8wUA8fPs_t0OGv__4h8BAOjxAOwF_AEWABL-2OXPAe4DxQIO_jsBDAgpAzLxFwHezQwB6BQPAgH97v4iD_QF7AAIA-0UNwH4-f_7AAP6-NYF5gIO8-oA8_Qa-Rv_y_tb8fgC__MD_fPfAvr8AegEBAcq__ETBfgR1hwL5fP79PwO_AE43QD44eoGAxH_Bw0EDfMDCuEL_PD0-_3MEQMC8vgGB90M8v8gAC3_IR07OBNACUhhUAIqzwcQABrAB2oW0L6slBk9Uw33u1PkVb1R3oc8i-IwvBTamL0nT3k9CxGJuxiYBT6AM-s7f7O9u_aWYr4FeIE8eT8NvMuAMz7m0Yi9mGIzPNlDS75DknY7KX-CvRU3Tr6tNOm8ZTpPvJUspz3Sypg8EkJRvODZfj1ScU29zTdHvCS6Ir0JDIO9S-okvQ9YQ70_GWO8bInmvHjACjwEtwS9xkqxPCDrCT7Fbdm8qpk1vKMysLsMjje9OfWcvNd-p70L_V28d0tyvAl5kz0N1sk8_I5hPPvkzTz2Rg09NMXzOmwHg73NFto8ljCJvGijxDxcKPC7nUUUvfzD1j1mgI87-_IXvMxQS71Yy709HQbOPCcXEz5P1XM9FamwPLDi1L11Nsk9PI5VPKQDqzvGeQ496UdDvKoGZj2h6Is9G9Wru5niYDw16Ts9OZ8TPODsAL3gWIY8nTnaPK5G9j1S6Uw85dCivKYTRD3VTl69-Y2nu4M5pb34k6c9BKmUvLjq-j2E2SS9ZciMvN71Yz1jzvm7_e2ZOgUjpT3WAju-SeWaOvnj7rtbYfq9hQK-O3MPKT1sMMO8ts6Ju_YFqT3BvNG8b3zxu5OuFL0oni69EGLfuzUpZT2hgbi9alAPO3CkQr2quBI8yC1BPPxlQbyF7Nm7h0I6vOnsyTxMGM09X-iauTHQVb2LmU695vj-OdpVCD583jA6VJ0Cu8ITuj1qm-q6mQCyutoQLT3ozh87RrIJvGZWpTz20Wm9tWxOO39Ogbwpe6Y8V0qluD5hRD3nA329J5a9uC04rT2UpAs9DQqKOUoi4LyMh1I8SI2FOSKI8zy1nqu8ssYUOURvzLzsZ5a9m8zqOPTvozuP_ay8oAplOcpTljyTh6o8Eq8AOmsewb3ErqK9WfgiOJObsrznpg09sSLnuGrV9DsFTpa9oDYzOP6wSjzEIBW96bEHN4V_rLxDmJG6lLRfNmV4prsAlBo9NnHQOEHxAz1xT8G91zh7OSnbdrzn7LM9J5-AN-WOSDwJjiY86VuEuPXZ4LoaGuq8WFXINw8PnD1UqD6-0zkDuoefBD1qPZI9NCKkuMrhA74Q1x48l_1ONzaL_Lz72--8kvuHuBKfYLuyHDa7ZQsyNgJhTLxsteK8diIyOC-mGT54O8w8_OYbufZUWL1_wW68VLJTt9PLPj3nOeK9rWpaOPY8xL1GmAI9ZDUQOB2XDD1JD0O-VDFNuYqWVz0QWPk9jRdAOO2WRjp16KQ9Cm7juLKrj718uvo8c5Q0N-sWBr1JMoa8u4WfOCAAOBNACUhtUAEqcxAAGmAe5QAxsPLE9uwp7e_P2RYJ7_Tv7O7l__y___s57O0C783FC-oAR-AZ8KUAAAAR5_4ntgDcc7fABvsBQADFpu4dNH_9AFaY_RPqvdrm8wHgGiAeEzMA5--iEC7ut-kZ__IgAC2dyRs7OBNACUhvUAIqrwYQDBqgBgAAcEEAAIDBAAA4QgAAJMIAADBCAACIQQAAoEIAAIA_AAAAAAAA-EEAAABBAABkwgAAeMIAAPDBAAAsQgAA8MEAAEBAAAD4wQAAEEIAANDBAACgQAAAEMIAAATCAADgwAAAwMEAAFBBAAC4wQAAcMIAACRCAACYQQAAQMEAAMBBAACUwgAAsMEAAL7CAADgQAAAQEAAANRCAAAAAAAAZEIAAGDBAAA8QgAAWEIAACDBAABEQgAAssIAADDCAABcQgAAoEEAAExCAABAwgAAoEAAAIA_AAAwwQAA4MAAACRCAADEwgAAAEAAALhBAAAsQgAAiMEAAITCAAA4wgAAosIAAMBAAABUwgAAVMIAAFDCAADIwQAAUMIAAFRCAACCQgAAhMIAABxCAABgwgAAXMIAAFjCAAAAwQAAuMEAAEjCAAB8wgAAbEIAAADBAACeQgAAEEEAAIA_AAAMQgAAVEIAAOBAAACSwgAAwMAAAL5CAADQwQAAyMEAALhBAAAwwgAAQMEAABDCAACwQgAAAEIAAETCAAAEQgAAPEIAADDCAACswgAAqEEAABBBAACYQQAAuMEAAHxCAAAkQgAAiMEAAODBAACgQAAABMIAAKBAAACwQQAAoMEAAJDCAAAgwQAAcMEAAFTCAABAwQAAPMIAAKBAAACAQAAACEIAAJDBAACgQQAAUEEAABDBAAAAQAAAYMEAADxCAAAAQAAAgEIAACBBAADAQQAAMMIAADTCAACYwQAAgD8AAAhCAAAwwQAAQEAAADBBAAA4wgAAgMEAAOhBAACwwQAA4MAAAChCAAAMQgAAkMEAAIhBAAAkwgAAMMEAAFjCAAB0wgAAQMEAAIDCAABAQQAA4MAAABDCAADgQAAAkEEAAKhBAAC4QgAAdEIAAMDAAABAQAAACEIAAIA_AACYQQAASMIAADDCAAAwQQAAJMIAAChCAACgwAAACMIAAADBAADwwQAAAEIAAIZCAADwwQAAPMIAAIzCAACgQAAA4MAAAEBAAAA4wgAAgEEAAKBBAAA0QgAAJEIAALDBAABAwAAAIMEAADTCIAA4E0AJSHVQASqPAhAAGoACAADIvQAAQDwAAPg9AACYPQAAVD4AAFQ-AACGPgAAK78AAPi9AAD4vQAAMD0AAJY-AACYPQAAJD4AAJi9AABMvgAAyL0AAJg9AACAuwAAAT8AAH8_AACAOwAAHD4AADQ-AAA0vgAA4DwAAMi9AAD4vQAAqD0AALI-AAAUPgAA-L0AAI6-AABUPgAAUL0AAMg9AAAsPgAAwr4AAKK-AAAwPQAA6D0AAAS-AACovQAA-D0AAEC8AADgPAAAJD4AAIq-AACCvgAAE78AAHC9AABMPgAADD4AAJg9AAAQvQAA4DwAACE_AABwPQAAyL0AAI4-AADgvAAAqD0AAIi9AABUviAAOBNACUh8UAEqjwIQARqAAgAAgLsAACw-AACSvgAAUb8AAIK-AACovQAAjj4AAPi9AACgvAAAbD4AAEC8AAAwPQAAgDsAALi9AADYPQAAUL0AABS-AAAJPwAARL4AAAE_AAAUvgAATL4AALi9AAAMvgAABL4AADA9AADIvQAAgLsAADy-AACYPQAA4DwAAKA8AACYvQAAJL4AAOi9AACgPAAA6L0AACw-AACovQAA2L0AAFA9AACoPQAA2L0AAPg9AABQvQAAUL0AAH-_AAA0vgAAcL0AAIA7AAAEPgAATD4AABw-AABcPgAAJL4AAKg9AADYvQAAED0AABA9AAAsvgAADD4AALI-AAAkPgAAgr4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=CZoeBmrtJO0","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9915049099661681835"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1429824760"},"12858440065847054650":{"videoId":"12858440065847054650","docid":"34-0-10-Z286C5D79D6FAF310","description":"Full relativity playlist: • Relativity by eigenchris Powerpoint slide files: https://github.com/eigenchris/MathNot... Leave me a tip: https://ko-fi.com/eigenchris Previous videos on the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2339442/d32d5306276bf0a75a3155de2193312a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jNoWcwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DF8hmyOin2Nw","linkTemplate":"/video/preview/12858440065847054650?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Relativity 105d: Acceleration - Twin Paradox and Proper Time Along Curves (Rindler Metric)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=F8hmyOin2Nw\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFgoUMTI4NTg0NDAwNjU4NDcwNTQ2NTBaFDEyODU4NDQwMDY1ODQ3MDU0NjUwarYPEgEwGAAiRRoxAAoqaGhraHdtY3VkZHFjdmpsZGhoVUNOOHdUVWxTQXJvTHNsV3lmODdFMnB3EgIAEioQwg8PGg8_E5oPggQkAYAEKyqLARABGniBA_X-BAP9AOvxCwEKAf8AAg0A__f__wDwAwjxAwEAAOsECfEAAAAA-gUKAwkAAAAGCPj7-P0BABL1-AkCAAAAEfn1AfQAAAAIAAXv_gEAAPz7_fYC_wAADv3-9_8AAADyDP_--v8AAAMEC_cAAAAAGPP2AwEAAAAgAC1C08s7OBNACUhOUAIqhAIQABrwAX8ECQHs6ecCz_faAM8e-ACJIAr__S7XANDkEAGyEdD_7xbiANT2HwAtARj_viT5_yjh8gAS4Rb_NegWABn9EwDdDxMBN-_7AED0BAAI1-0B0h0Z_gn7CgD82fsA7Bjn_wn0Efro_N0D9_XgBUL7JgD9JAkCIvAAAebgEf3gGxMA5vfc_Q0EBAD69Pv73QQeAv3s-f8XHAUD2QH-BRgBBQUM7Qn9EwrmAzUN_grUExQG7Pz3-_zl9wUBAgsO-hTe_f7sB_X16Aj--esE-AH7BQLw9wIJFxP2_QT4_gIC9v776gcFAdwcDfv2DfgL8eEFASAALc0dJzs4E0AJSGFQAipzEAAaYBX-ABAKEfb5JTLo4Nj5H_HVFNsPyQL_BNIA-gz0BBAR0b0F4P9A3irrtAAAACoQ3APWAPlgBev2GvMsItip9SEafwQpErvhKPoEx_MM9AQj_wweHADHBsIfZ-veHgYEByAALUSNODs4E0AJSG9QAiqvBhAMGqAGAABAQAAAgMEAADBCAACYQQAADEIAAABBAACgQQAAiMIAAGDBAAAwQQAAAEEAAIrCAAB0wgAAMEEAAKhBAACAvwAAUMEAAEjCAADowQAAsEEAAMBBAAAAQQAADEIAAEDAAACYwQAAhkIAAPjBAADgwQAACEIAAJBCAACYQQAAQEEAAABBAACOwgAASMIAACTCAABQwQAAeEIAADBBAAA0wgAAcEEAABBCAACUQgAA6EEAAPhBAAA0wgAAJMIAAOjBAADaQgAAIEIAANjCAABAQAAAYEEAAKDAAAA4QgAAwEAAAJjCAABAwQAA0MEAABBBAAAwwQAAqMIAAPDBAAAMwgAANEIAAHzCAACgwQAAbMIAANBBAABEwgAAkEEAAJBBAABkwgAA-EEAAABAAADIwQAAUMIAAIhBAABAQAAAkMEAAKDBAABsQgAAAMAAAEDBAAAgQQAAKEIAAOBAAACkQgAAmMEAAIDAAAC4QQAAoEIAAFhCAAB8wgAAoEEAAFjCAABAwQAAwEAAABBCAABcwgAAusIAAAxCAAAoQgAAnsIAAFDBAAB8QgAA-MEAAERCAADIwQAAyEEAAPBBAACAwgAAUEIAAADAAABcwgAAYEEAALhBAACawgAAKMIAACDBAADgwAAA4MAAAGzCAACAQAAAsEEAAJjBAACAvwAA2EEAAFzCAAAkwgAAgEAAAEBAAAB0wgAAaEIAAKBBAADAQQAAAMAAAPDBAABAwgAAaMIAAGBBAACAQAAAnEIAAGDBAABsQgAAQEEAADzCAAAgQQAAwMAAABTCAAB8wgAAgL8AAHDBAACGQgAAmEEAAGBBAAC4QQAAYMEAAGBBAABAwAAA-MEAAKhBAACAwgAAWMIAAKBBAAC4wQAAuEIAAChCAABgQgAAoEAAABxCAAAAwAAAkEEAAFDBAACAPwAAcMEAABRCAABAwQAAwEAAABhCAACAvwAAnMIAAJjBAABEQgAAuEIAAKLCAABAQQAALEIAACDBAAC4QQAAoMEAAFTCAAAMQgAAmMEAABDCAADgQAAAgMIAAKBAAADgQQAAOMIgADgTQAlIdVABKo8CEAAagAIAACy-AACgPAAAvj4AAHC9AACIvQAAVD4AABQ-AAALvwAAUL0AAIi9AABcvgAADD4AAIA7AACIvQAARL4AAIq-AAAUPgAAiL0AADQ-AADmPgAAfz8AADS-AAD4PQAAgj4AAKC8AACOvgAADD4AAOC8AAA8PgAApj4AAIA7AABMPgAAHL4AAMi9AABQvQAAoLwAAJg9AABwPQAAVL4AAFS-AABwvQAAoLwAAHQ-AADYvQAAZL4AADy-AAD4PQAAHL4AABS-AAAMvgAAgLsAAKg9AAAUPgAA4LwAAOC8AABQvQAAET8AAEQ-AABkvgAAEL0AAJi9AACYvQAAyD0AAIY-IAA4E0AJSHxQASqPAhABGoACAABUvgAALD4AAAS-AABbvwAAgLsAAIC7AABwPQAAHL4AAFS-AAB0PgAAoDwAAPi9AAA0vgAABL4AAIC7AADYvQAA-L0AACM_AABQvQAAoj4AAIC7AAD4vQAAcD0AABy-AADgPAAAQLwAAHS-AAAQPQAAQDwAANg9AACoPQAAoLwAABC9AADIvQAA2D0AAEy-AAAwPQAAQLwAAAy-AACgvAAA2D0AAIA7AAAEvgAAiD0AAHS-AADgvAAAf78AABC9AACAOwAAkj4AAPg9AABAvAAA2D0AAII-AACovQAAQDwAAIi9AADoPQAAEL0AACS-AAC4PQAAgj4AAHw-AAAUviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=F8hmyOin2Nw","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12858440065847054650"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"790265387"},"8115113256113739094":{"videoId":"8115113256113739094","docid":"34-7-16-Z0E20BE131857AC9B","description":"Full relativity playlist: • Relativity by eigenchris Powerpoint slide files: https://github.com/eigenchris/MathNot... Leave me a tip: https://ko-fi.com/eigenchris Links/Sources: Sean Carroll's...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3699080/e33645919be8879eaa1ba1c4bf42f112/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jviyDAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DyIKye8SJcBc","linkTemplate":"/video/preview/8115113256113739094?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Relativity 110f: Cosmology - Friedmann Equations Derivation + Universe Evolution Models (Finale)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=yIKye8SJcBc\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTODExNTExMzI1NjExMzczOTA5NFoTODExNTExMzI1NjExMzczOTA5NGqIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxPoEoIEJAGABCsqiwEQARp4gQQL8wEAAAAG8wgCBAj9AggDCQn4__8A7QcHAAH_AAD7_Qbu_QAAAP8GAf8FAAAA-AX6_vT_AQAZ-QEI8gAAABL-APj_AAAA-vwKAf8BAAD59fQJBP8AABEF9v0AAAAA-Q8E8f__AADkEvsBAAAAABT8AAUAAQAAIAAteBzVOzgTQAlITlACKoQCEAAa8AF_BfsC7QLiAdwE0ADaIuYBlgkl_wgb6f_J_B0Ax-3jAPIHzwDP-vL_BhkQAMw79QAn4vIA8OzuAC3wAP855BYA3Q8TASDeCgA3EwP_BND9_uANGP8DzvsB_dn7AAYL8P4R7CP93ffnAA3_2gIN_jYB7xoPAyXmDQHh0QsB2wcRAwsA-vn0Ew4DH_gKAs7_GwHy8_T-KyMH_f4Q7gAQAvYG7gAG-CwQ6AEl_fUG3BQDA9bm6v0M8v38EwYQBewV9vYE_BH7_fgH_ArsDf0g_QT--Nn1BfX--f7w9fT__-wH9fT6Cf_GJ_oE-OD9D-QH9u8gAC3g4Sk7OBNACUhhUAIqzwcQABrAByOiwL5uFk89YnSvvAoHzL1XDxS8NIUOvf2FHr4Bamo84dBbvHYaCT5bAD89pA3RvFnAVL4EjIw5Ks_XPMuAMz7m0Yi9mGIzPFouW77qj5U8bmKSvPWha76E0wc9dDXDu5Uspz3Sypg8EkJRvB0A8T311RW9-Z4xvSCo6LoddRE8M9wAvSuIwbzDFxy9SVvmvObLiz18lgy9bjzOPGkZGT69Xzu9ZRfvO8TBdD38HLy6DrGLu33PqL322gc89EAYvB3owT2G_H656kmPPBkdsbuVwnI8op46O2wHg73NFto8ljCJvOoHdT2_hMQ7sdUKvdKjjj2ZpA29UN-yPCY19L1-Ay49q7oCPfsFOz7aN9c9RHXKO8sGo72G1W49ptzYPNGwmLy5hr48vu-EPM98oz24MlI9p9BUPDyUMjxK35o8nmutO5AkELwQ36M9pmIDPc-krT1gZDg85uKUvLIDeDzro7i8Dc-BvAPfvr0s3wk95_ITO1Ltoz3F4Ma8JnyEO4o-nz38uAc8gGxIvAUjpT3WAju-SeWaOmMqfbyjRcy9hypGvHMPKT1sMMO8ts6Ju_YFqT3BvNG8b3zxu0E8XL3CGsK8U08PPDUpZT2hgbi9alAPO6cWi73Fby88Oq8xPDp5bDx883Y8LtYmvA-peD2oMIs9GDBUu9BPJ713ooS9ofeEOp4J7T1dG8U8u3ttuoeAbT2RlJm8PNYZOgfu4D163B679qUOutSggTt0FbG9PrNbuDzrRzvu31Y6DGJauwaYXj1-6zm9HiXNOYEKQj0P1RA8Yc0zuOYpozp-7a897o7BOPb4Uz36gxy9ATZCuVxUC72cFfG93J51OS3oYrxAvFM8l0A0OvUUGT3YDik7gGTSuBQcg73HJK29GlEVOELkmTy-ieE8Va0oOXFQBrwVGf29wLcwN0IG0bu2UM28i0UmuRjxeL3BFC-9hWVCOWFmabw1rT49AO6JuFqvgz0Bj8O9ptFaOWJDnDzDHYk9WLChOVd9CT2kaXU87TQHuEtFmbyTKVU8_tUnN50ORzt3nwO-Q96Mt9CAFT2ASrU9ljSQuGVTzr3C6Kg8_jLoN5werzwppfG8TE_qt74wOT2jS6488I5GOCUkDjxsKJC8iU7FN8HjKz7cpWi8B4l0uVsFlrxwCDW9PEWotxHvLz2C_E-7XeoENz3tVb0hvRc7ezVnOCbckLwWMDG-QaBauYqWVz0QWPk9jRdAOO3EmzxFScg97lIKuehVs70WJOw8zbghOCCz87yvOEE8Qf3_NyAAOBNACUhtUAEqcxAAGmBh8gAc9x7uHwpT5ezR7ysF_wH7A9TvAALW_-wm_N8p-dHc-9__Q7Ey86UAAAAh-xj24QDdfNb9EDcTDyuystIgK38qFzi0-Tzl188C-ybzLxMpEkwA9eyoBCrvjkLjHRggAC0LBBg7OBNACUhvUAIqrwYQDBqgBgAAQEIAAEDAAACIQQAAnMIAADRCAACAPwAAsEIAAODAAACAwAAAwEAAADBBAAAwwQAAUMIAAKDBAAAYQgAAoEAAAMBBAACIwQAAKEIAAADCAADgwQAAXMIAACDCAAAgwQAADMIAAGDBAACYQQAAQMIAAIBAAADIQQAAPMIAAJDBAACYwgAADEIAAHDCAABwwQAAiEEAAKxCAAAAwAAArEIAAAhCAADoQQAAZEIAAIrCAAC4QQAAxsIAAEDBAADoQQAAIEEAACRCAABIwgAAuEEAAJDBAACgQAAAsEEAAPhBAAAAwwAAYEEAAABAAABwQgAAcEEAABzCAAAYwgAA6MEAAKhBAADOwgAA2MEAAOjBAABQQQAADMIAAEBCAACAQgAAIMIAAIxCAACCwgAA4MAAAFzCAACQwQAAEEEAABRCAAAMwgAApEIAAKBBAAAgQQAAgMAAAIA_AAAAQQAAEEEAACxCAAAQwQAAyMEAAHhCAAAswgAA4MAAAHxCAABQwgAAGMIAAIC_AACMQgAABEIAAKjCAADoQQAAYEEAAHjCAABEwgAABEIAAADAAAC4QQAAgD8AAEhCAABgQgAAMMEAAIDBAACYQQAAAMIAAGBCAADIQQAA8MEAACzCAACIwQAAgMIAAJTCAACAQQAAiMEAANjBAACAwAAAgEAAAFBBAADgwQAAEEEAAIzCAACYQQAAQMAAAFhCAAAowgAAjkIAAIDBAAAkQgAAaMIAAKjBAACAwQAAgMEAABBCAACQQQAAYEIAAGhCAAA8wgAAAAAAAKBBAAAAwQAAMEEAAIhBAADYQQAAwMEAAChCAADIwQAAXMIAAGDCAABAwgAAcMEAAODBAAAcQgAAgEEAAODBAACAQQAAqEEAAIDBAACMQgAAlkIAAJhBAABgwQAAQEEAAEDAAABAwQAAkMIAAIA_AADIwQAAMMIAAKBBAABQQQAAUMIAAFDBAADAwAAA2MEAABhCAABQQQAArMIAAGjCAAAMwgAAcEEAAGBBAAAQwgAAgL8AAEBAAACAQQAAQEEAANjBAAAEQgAAwMAAAHDBIAA4E0AJSHVQASqPAhAAGoACAAAUvgAAXD4AAKA8AADgvAAAUD0AABQ-AAAMPgAAF78AAMi9AAD4vQAAcD0AAFQ-AABAPAAAsj4AAJa-AACuvgAAij4AAHC9AAAwvQAACT8AAH8_AAAkPgAAND4AAIg9AAAMvgAAUD0AAKC8AAC-vgAAZD4AAJY-AADIPQAAgLsAALi9AACAOwAAQLwAABC9AABUPgAAFL4AAKK-AADOvgAAbL4AANg9AABEPgAAFD4AAES-AAAsPgAAJD4AAKK-AABEvgAAfL4AABA9AAC4vQAAXD4AAFQ-AAAsvgAAiL0AADc_AABAvAAAHL4AADC9AACavgAAmL0AAJg9AABsviAAOBNACUh8UAEqjwIQARqAAgAAPL4AAGw-AADgPAAAQ78AAJi9AAC4vQAAEL0AAEA8AABwvQAAFD4AAKA8AABkvgAAiL0AAKq-AADYPQAAcL0AALg9AAAnPwAAJD4AAJ4-AAAMPgAA2D0AAFQ-AAAcvgAA6L0AAKg9AABQvQAAND4AAOC8AABAvAAAUD0AADA9AABwPQAAhr4AAIi9AACAOwAAyL0AAFQ-AAAEvgAAPD4AACQ-AAAQvQAAmL0AAHA9AABwvQAAFD4AAH-_AAAUvgAA2L0AAJY-AACIPQAAiL0AADA9AAAcPgAATD4AABA9AAAQvQAAqD0AADS-AACavgAAML0AABQ-AABUPgAAEL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=yIKye8SJcBc","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8115113256113739094"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1152340273"},"4171312679803320920":{"videoId":"4171312679803320920","docid":"34-5-14-Z1F7DA39A0CD4C127","description":"Tensors for Beginners Playlist: • Tensors for Beginners Tensor Calculus Playlist: • Tensor Calculus Relativity Playlist: • Relativity by eigenchris Contact: eigenchris.videos@gmail.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2711900/42a790eddabcef98f68f3ae02cbc11cd/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Q1LuwQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DMIHhXdARp5c","linkTemplate":"/video/preview/4171312679803320920?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensors for Relativity Explained in 1 Minute (#VeritasiumContest)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=MIHhXdARp5c\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTNDE3MTMxMjY3OTgwMzMyMDkyMFoTNDE3MTMxMjY3OTgwMzMyMDkyMGqSFxIBMBgAIkQaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqD8IPDxoPPxM8ggQkAYAEKyqLARABGniB9Aj7B_0DAPnuCQkGB_wBCwDwAfb__wD1CwMG_QL_APkKC_n_AAAA_f_8BvYAAAD2-P__9P8BAAML9v8EAAAAHf3z-vwAAAAEBP70_wEAAPn39_0D_wAAFwDyBv8AAAD7AQkA-_8AAPv7AgMAAAAABgYDCf8AAAAgAC0jP9w7OBNACUhOUAIqhAIQABrwAX3M7fvkBNMCufPIAItP0f_BWy3_Xg3WAe4KMgDm_c8BGyEDAdL-FP8w5gf_geoMAQf06QAXskH_QPgy_xkhDQC9Bh0APNwDABTLOwA-2NP_1yw6_K7x9QD07vIBHy74AxwoGfz41ewCGMrhBUTpKQIJ-fMD8Cf0AzbrAwnGHAMC9MjrAivTzAI4If732soyBO4XDPznA-oH1wj_-jLW9_Yf8fn19vLLAi8R9Qbu_hoGICDw_tYJ_AAIBe0CohAc_gTUEP_SHPP_6AMT99j81Qz7HeL4IVbjEjj69wIDzvbu1O7mAfNcEQnMz_8eI-og-yAALXXv4zo4E0AJSGFQAirPBxAAGsAHCU-gvoftPT34iL08oBRyvdu6AD3z7v68--c5vmLCQzz7rd280WDuPFcSLz0-FHu9-MGBvn_o-LxEaU89j3EVPsAuu7praQk9F_Fdvsca5DxEP4k8y4NUvppVqbwRmpM88Ib0Paez0zx3mxy9b5spPXG7Qb3O0C48zllaPQ2rGD08GuK88Mk7O6rQZb3SI3w8G0dcPirZe71HulG7dzHtPY8AKb12lhE8M3hOvDTW_ry-HsS7dvk7vf_jKTxLTUw8x0wCPkgMLD1eHAs9F8u-vHqysLtjwiC8BhIUvj1n5jyytaO83gydPTN51jt_4h27VSK_PWeu3Txf77y7UwlqvUQ2oD2YZ0U6J5J-PXz5iD3gfI88wrKYvZXp_DxoMLw8OkXCvWI-aj2aL-U714rWPXBt9jtUi6m6xBCUPcRW9TzWlL-8Eg8LvCQUtjzuKK07FqkLPTIi0T2eZ0c8-8_1OrIFzjyy1Lo81tnaPCpFobxWD5g8K-oAvHNuSTyoUo05pO3vO5GAUT0cJS-8xTVDPfhRDb4Jbyy7HtOUPRRJir0HgXC8YBV5PY480DxBryo7we4KPR7cgjygGm07CtvPvCpwFbxPfNK7364RPEyp67293dQ7Y3Rlu-2WybxpDhy7cMGIPAeVnbzwcBq8_tm6PSsSAz7LsVu5N-o3vXmyez1gNui6gdILPQNphT2TGxG6xvxcPMaNFr0htaI5KHEHPQZUzTqfMV27TkEOPtbqRr2VpLC4xyvwPRQaMr0VS9Y4MlcmPbjkmL2gavK3O3XAPPvYU71uLsU49fykPaCOYj33odU5BnYmPerbiL0CzWY4ppf4vfOrqb2qNHU4ZuUtvUl0QL2lX7M5EWpLvZjDSTyxZZk5ax7BvcSuor1Z-CI4xLFOvZX_mjxpQWG4NrzqPOjsnj2po8a4tdGvPC1_eb1kbwc5rh17PNx5LL0XQgY3QSMdPUkv6j3kQu24sG-ru8U_BTtQsEe5eFLwPOiU0bzrBVy3Wsb8vKlQWD0q2gS1_2mkvSfZqr0XVGw4gQTlPXzVCr6Xx0C5B6havf57ID6ma5U5tMBIvekAMr1SM5c3_9vbPJwdZD2-hTw5xM8PPjxq6buey5U2khLxPBsNQL30ZmM4iq4bPvVmBD6nmK65voPfvHgJDr15e3i46gE4vcMupbyuEcm3xM6UPELeXL2HuDQ2va8FPaVJCb6tnoW4UA-bPBgOvrvACrE4BixZvTtSP7t4PCa4k8-hvM1imLytTog3zWdvvSH0Ir2jUNK3IAA4E0AJSG1QASpzEAAaYDb1ADb5GvAo-XDT-8QkAQG38fEnuRT_A-j_1RXBAOcC9-kAEgBZJR_roQAAACgb9inUAO960dkR7P8D_K6B5elTdvMU7eQILEak5-8xCRzqMQcgUgDS57RAStHlCyYLFCAALcQ-Ezs4E0AJSG9QAiqvBhAMGqAGAADwQQAAwEEAAChCAAD4wQAAlkIAAMDAAADoQQAAqMEAAMDBAAAMwgAAoMAAACxCAACQwgAAUMEAAAhCAADAwQAAgL8AABBBAACAPwAAUMEAABhCAAAkwgAAcEEAAOBBAAAQQgAA4MAAANjBAAAQwgAAaEIAAIhCAAAowgAAEEEAABDCAADIQQAABMIAAADBAAAQwgAAZEIAAIDBAAAIQgAASEIAAIA_AABIQgAAGEIAAAxCAABAwQAAoMAAAFzCAABwQgAA-EEAAHzCAACIQQAAwMEAAAxCAAAgwQAA8MEAAEjCAACoQQAAyEEAAKhBAAA8QgAAgEAAABTCAABAwgAAqMEAAIbCAAAQwQAAsEEAABRCAACYwQAAnMIAAJBCAACuwgAA3kIAAODBAABAwQAALMIAAKDAAAAQQQAAMEEAADzCAACAQQAAIMEAAMhCAADuQgAAIMEAAJBBAAAgQQAAREIAAKjBAAAwwgAArEIAAMBAAACYwQAANEIAAIrCAABAQQAAmEEAALxCAAAwwQAA-MEAADBCAACoQQAAtsIAAJLCAACgQAAAiMEAAGBCAACoQQAAaEIAAOBBAAD4wQAAoEEAAKzCAACIwQAAZEIAAPjBAAAIwgAAoMAAAIC_AADAQAAAdMIAAFBBAAAwwgAAqEEAAODBAACgwAAATMIAAAjCAAC4wQAAsEEAANhBAADQwQAAokIAAOBBAAAgwQAA-EEAAABAAACOwgAATMIAADhCAAAUQgAAPEIAADhCAADYQQAAEMIAALjBAABwQQAAMEEAAADAAADwQQAAsEEAAJhBAAA8wgAAFEIAAHhCAABAQQAAvMIAAADBAAD4QQAAsEEAAGBBAACQwgAAgMIAABRCAACwwQAAQEAAAOhBAAA8QgAA6EEAAIC_AAAAQgAAAMEAAEBAAACIQQAAAMIAAJDCAABQQQAAuEEAAPhBAAAAwgAAeMIAAFzCAAAAAAAAAMEAADzCAADgwQAAKEIAAERCAABwwQAAgMAAAIbCAACgQQAA8MEAAABBAABgQQAAAMIAAADBAADQwQAATMIgADgTQAlIdVABKo8CEAAagAIAACS-AAA0vgAAED0AABC9AAAcvgAARD4AABw-AADSvgAA-L0AAFA9AAAQvQAA2L0AAHQ-AAAQPQAAgr4AAGy-AAAwPQAAoLwAAEQ-AAA5PwAAfz8AABw-AAAUPgAAcL0AAEy-AAAQvQAADD4AALg9AACYvQAAnj4AAEw-AAAQvQAANL4AAJg9AAAwPQAAiL0AAHA9AABwvQAAlr4AABy-AACyvgAAoDwAAM4-AACKvgAA4LwAAJI-AACAOwAAur4AAAS-AAB0vgAALL4AAKg9AABMPgAAdD4AAHy-AACYvQAAIz8AAFC9AACAuwAAAT8AAIA7AACIPQAAUD0AAGy-IAA4E0AJSHxQASqPAhABGoACAACYvQAA0j4AAEy-AAA_vwAAiL0AADC9AADIPQAAgr4AAHC9AAC2PgAAcD0AAIa-AADIvQAA0r4AAJg9AACIvQAAcL0AACc_AAAUvgAAXD4AAEC8AAAMvgAAFD4AAEC8AABwvQAABD4AAIa-AADoPQAAiL0AABS-AAAQPQAA4LwAAOC8AAAUvgAAFL4AAFC9AACIvQAAcL0AACS-AAD4vQAAcL0AANg9AABQvQAA4LwAALi9AAA0PgAAf78AABS-AACIvQAAHD4AABA9AACovQAAuD0AABw-AAAMvgAAQLwAAIi9AAAsPgAADL4AADC9AAAwvQAAJD4AAJY-AAAQvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=MIHhXdARp5c","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4171312679803320920"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"148101928"},"15815206544725157963":{"videoId":"15815206544725157963","docid":"34-7-5-Z4031BE994E5AA6C1","description":"Full relativity playlist: • Relativity by eigenchris Powerpoint slide files: https://github.com/eigenchris/MathNot... Leave me a tip: https://ko-fi.com/eigenchris Ricci Curvature of 3-sphere...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3359997/749500e9600899c2e76c1d6f48c29e67/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/4T1ZFAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiERBF2_TnXo","linkTemplate":"/video/preview/15815206544725157963?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Relativity 110b: Cosmology - FLRW Metric Derivation (3 possible geometries)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iERBF2_TnXo\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFgoUMTU4MTUyMDY1NDQ3MjUxNTc5NjNaFDE1ODE1MjA2NTQ0NzI1MTU3OTYzaogXEgEwGAAiRRoxAAoqaGhraHdtY3VkZHFjdmpsZGhoVUNOOHdUVWxTQXJvTHNsV3lmODdFMnB3EgIAEioQwg8PGg8_E5QMggQkAYAEKyqLARABGniB9PT5_v0DAO0DAgwHA_4ACwoHAPcBAQDuBPz4BQAAAPXwCfz-AAAA_fgHBfgAAAD4Bfr-9P8BAAX5-wryAP8AEPr2AfUAAAAHAA73_wEAAPn5_gYD_wAAEQX3_QAAAADuCAHz__8AAPkJ-v8AAAAAC_8F_gAAAAAgAC3nmNw7OBNACUhOUAIqhAIQABrwAX_7EwHiAwYByBLjANUPwgCS-g7_HCXiAMP7HwC798oAFBkCAc_ZAAAb-PYAv_MBABgF1_8E-Q4AN_0E_1oGAQAHMhsA9MT3ARj2EwHS6tz-00Uh_-Pw_QH38vYB7AX7AR7xEvwFI_ABIvbTAg7-OwERHBj_L_QJAuH48f_oFA8C_Ofg_SodAQP8Dg386gckAfgQ7PkZHgYDAB3zACEQ-grg4vf7HP_L-yn99Af0FRbz1O8M-v8F-Qrz7xsB5C7z_ejwF_nw2A_y-BMMAB7dAvLg6gYD9P74_tPnCAUPzPny4RYAA-ocAQDs_BL65vEEBCAALVwwGzs4E0AJSGFQAirPBxAAGsAHBwfbvnkDjDzKZzE6HMg_vQnqjDuczC69DytcvoCyjryrQl48PtDqPZnO8zydh1G7ofUgvmFL9LxbItc8FJRCPkZFHL1z6AC8z8B4vpOBTbyItgi99aGDvjx38TsuxZc7Hq92PX27Gz0OeKq84Nl-PVJxTb3NN0e8bYqMPRdtaT2pToe8Twh8O3LSRb3fikS85suLPXyWDL1uPM48IOsJPsVt2byqmTW8PAThOpicQTvo4SG7cv4BvfQSiDz2Ali8mj-GPenVQD2E2d-7t63SvHaM67yUXmU8BhIUvj1n5jyytaO8F2PgPU348bkdL027GrWcPTHwt7ww4Sc7XqPAvA1ikT2O06s8LTfCPblGVT34rpw8xmGqvatbnT3u1Jo7x9TdvaY3bTwElas734iuPQSJEjxOGCC8yG1qu8yRmTuuIoo7kCQQvBDfoz2mYgM9VWSJPfaX3T2Y8ka8H8QpvAnK6bqSy2K7EAfpvR9VQz08qMA7s1Z-PM44Lb1RzLA8YyZRPZ8dUL1RS3O832bGPTm1872HHxg83M26uyD0Z71JslS7EJUGPtQmczz2C_Y7hlqePSdQRLpdN4C85xYfvY1Hqbz5A7O65Mj5vGkRq73IogC8UxGNvfdkVbsQlJk6rrCqPFx8AD2rBsC7vuzIPQ-zPD2k0is6OjmIvVOOvr1IDhS6Y6SdPWoGJz2Qn_A6OzxfPKrcn72zYEY6a7uEPfuzerw3uWe7gBvYPGhvtb10O0a5Y8QvPZY3ET3rjZy72C7tPOfqPb1TdSa57aynPeKATLwDjGW5OD09u1fzMj3JTxG7U7MnPdKQTL0zGpQ4FJ2LvYl64b3GJ3A5Xdo1PQEOhrxAOlq5tQEzvJaM67vNijA6FOfovXPJIr0i3kO5DIwhPLjiJ7191cO4tySsPB-5Fb3TGg05E7J4PchKJ73ngrE3azOEPJuL5DyUDeW4iUUMvQgE-j1vcTq4qyaIPc-3mr37n4c5eq3fPPUfozyZHoS5Wsb8vKlQWD0q2gS1CRwkPdSv2bz_HCy4Z2dsPQVN671fJjU432hsPL1ipz2wGok3bcX-vaLUPr0aL_S4Xb8APb8ZC73JcmI4hXq6PTompjzH6Gg4hyGovQbgmr3KdC44ndnuPZ-Vk7qjag65jHEUvdt7Qr3F_Ge46fCQPfvBKj36UoW4PiqZvA7Rjb0Gjfu3HZcMPUkPQ75UMU25QstfPWMatz1ukI44vxYKPaFvwT3_L5y3bWpqO71nDj2x1Mi3fCcmvU4zkzxdNco4IAA4E0AJSG1QASpzEAAaYBjzABjrKsYOLkXo2Lz2GO28GAQbvgL_8uf_AS_-FSb-3-cYAgA4yTwNpgAAACYAFBPkAOd4td81GxMEFZWv9Bo3f_APBNQAJ_Cy2_T5DPoaHiMIOACt67PxYv62FxwRHSAALcXQGzs4E0AJSG9QAiqvBhAMGqAGAACIwQAABEIAABxCAADAQAAA4MAAAADCAADuQgAAgL8AAK7CAACgQQAAcEEAAFTCAABYwgAAoMAAAKBAAACIQQAAEMIAACDBAAAAQAAAiMEAAMDAAAAYwgAAdEIAAAAAAACoQQAAEEEAAEDBAAC4QQAAIMEAAJJCAABwwQAADEIAAGzCAAD4wQAAoMIAAADCAAAQwQAArEIAAOBAAADAQAAAQEAAALhBAABsQgAAOEIAAMBAAAAYwgAAJMIAAABAAAAIQgAA8MEAACDCAAAUwgAAwEAAAOBAAABAQQAA4EEAAADDAACIQQAAgEAAALhBAADwQQAAKMIAAPBBAACgwAAAMMEAAIhBAAAQwQAA6MEAALBBAABAQAAAQEAAAOBAAADYwQAAeEIAAEBBAADwwQAAZMIAABRCAABkQgAAMEEAACTCAADsQgAAgEEAAFzCAACgQQAAsMEAAGDBAABIQgAAqEEAAJDBAACIwQAAwkIAAEBAAAAEwgAAgkIAAMrCAAAAQQAAQEAAAODAAABQwQAAjsIAAJBBAADgQAAAlMIAAGDCAAAIQgAAaMIAAODAAACAQAAAoEEAADxCAAB8wgAAGMIAAOBBAABswgAAQEAAAKDBAADawgAAAMAAAGDCAACYwQAAqMEAAGBBAAAYwgAAgMEAAHDBAADYwQAALMIAAMjBAAAMQgAAgEEAADBBAAB8wgAAdEIAAFBCAADoQQAAqMEAANBBAABQwQAAWMIAAIBBAABAwAAAaEIAALDBAAD-QgAA2MEAAJjBAADAQAAAAEAAAIJCAADgwAAAyEEAAGDCAABowgAAyEEAABDCAAAgwQAAQMAAAKBAAADQQQAAiMEAAFBBAAAIwgAAsMEAAKBBAAAUwgAAUEEAAExCAAB0QgAA4EAAAMBAAACAQAAAsEEAAKzCAAB4wgAA8MEAABBCAAB0wgAAQMAAAFBBAAD4wQAAUMEAADjCAAC4QQAAkEIAAEBBAABgwQAAsEEAAGBBAABQQgAAMMIAAAjCAADAwAAAwMEAAABAAAAAwAAAkEEAADDCAACAwQAAhMIgADgTQAlIdVABKo8CEAAagAIAAHy-AABEPgAALD4AADA9AACoPQAAiD0AAOA8AAAVvwAAPL4AAIA7AACAuwAAiD0AAJ4-AAA0PgAAoDwAAOC8AAAcPgAAUD0AAEw-AAAFPwAAfz8AAPg9AACSPgAA6D0AAKg9AAD4PQAAyL0AANi9AACCPgAAJD4AALg9AACAuwAABL4AACS-AAAcPgAAgDsAAOi9AAC4vQAAFL4AANq-AAAsvgAAQDwAACQ-AADovQAAHL4AAIA7AADgPAAAqr4AAPi9AAA0vgAAED0AAJi9AAAMPgAA6D0AADS-AABAvAAAKz8AAEA8AACAOwAAoDwAAIC7AACAOwAAmD0AADS-IAA4E0AJSHxQASqPAhABGoACAACYvQAAjj4AAOC8AAA1vwAAbL4AANi9AAAQPQAAmL0AALi9AAAUPgAAoDwAAJ6-AADYPQAATL4AAFA9AACIvQAAmL0AAB8_AADgvAAAJD4AALg9AAA0vgAAiD0AACy-AADgvAAA4DwAAJi9AACgPAAAML0AADA9AACYPQAAQDwAANi9AACovQAADL4AABC9AAAEvgAAVD4AABy-AADovQAA2D0AAMg9AACoPQAAQLwAADC9AACAOwAAf78AAHA9AADgPAAAgLsAAHw-AADovQAAuD0AAPg9AACgPAAAED0AAOC8AACCPgAAdL4AAOi9AAAwPQAAEL0AAIg9AAAcviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=iERBF2_TnXo","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15815206544725157963"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"604665275"},"9114987608141430193":{"videoId":"9114987608141430193","docid":"34-1-7-ZC49ED627626C42E4","description":"Parts 1 and 2 (Block Sphere, Pauli Vectors): • Chapter 25+. Spinors: Bloch sphere and Pau... Parts 3 and 4 (Clifford Algebras, Minimal Ideals): • Chapter 25+.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2765210/8f795e7e2c6030c9e003a977b3a9278a/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/30mkJwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO12Y0DkLDf8","linkTemplate":"/video/preview/9114987608141430193?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Introduction to Mathematics of Spinors (from a self-learner)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O12Y0DkLDf8\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTOTExNDk4NzYwODE0MTQzMDE5M1oTOTExNDk4NzYwODE0MTQzMDE5M2qIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxOoA4IEJAGABCsqiwEQARp4gfcF9_z-AgAGBP4O-Qv7AwEM7__2_v0A_AH7Bf0F_gAB6_n6_wAAAAj-8ggCAAAA_v0L_vT-AQANBvUDBAAAABL-APj_AAAAFQgC9f4BAADs9wL_AwAAABIKCAH_AAAA8vn_-_v__wAJBAgBAAAAAP4D_QD79P4AIAAtWiDYOzgTQAlITlACKoQCEAAa8AF6-_QB4fjrAbUb0f_YI-UBgQAC__0u1wDDBf0AwgPkAAkJ-ADg8wQBI_8QAKAmAAEe6fz_EQINAB3k__8u5QcB2CMVARHZ8AIbBRkB7dbyANQrAv7c5_n_3s7k__cR5P8c8hH89hzgARoU0AEO_jgBBh8oCRoC_AHe2_gC6i0fAwwE4_30E_sG__gEBeT2Kwf9-vcFGywVAO4R4P0fD_oK_f4O-CQC6AINBvMG_iESB_ThAvsW8O0HB-omBuUs9P3Y8QX82egR-P3zEPkl6vgA4usFA_3k9AngDP0B3dD2-PMbAAzmCfn29PD9AvLn9P4gAC2_TyQ7OBNACUhhUAIqzwcQABrAByOiwL5uFk89YnSvvAoHzL1XDxS8NIUOvTVFQL6Dlbk8rKIJPE0yEj6Zib08Y4fnvLPwdb7H0Ja8RWRAOcuAMz7m0Yi9mGIzPJ5ihb6Run09LHOEvPWha76E0wc9dDXDu17FGjxsbpY8_CzgvMF-vj3y98G9F61tvOiZgzwkVPo8mykjvaSYk7pqNLm6kXfzvP7VQz1gPnm9fNa1POYDQj72PU-9RwEBuyalZT1A22o9tMBoPBaSYr0RXnW7PvTTvA_8jj38jCs93yD1PLet0rx2jOu8lF5lPJEM2b3rIuA8ibW4vHG1uT36Jzi8T-oLvbu7qT2SJIi9cihZum2s5L2mES49lE7BOycXEz5P1XM9FamwPBjSAb5Jg6s9liYlvB88ybzvXRw86XRqPLmJ2j0J6xU9rguFO8QQND0EXt47Z_9NPHbhB70qMp89GbRrPMeLOz3gle48tIC_vGuDrrzJSCw83saLvAwYKb1qxr08FqS6O4yySDyIVl08yBmUPH0J1T0RqrM66kKHOwUjpT3WAju-SeWaOmMqfbyjRcy9hypGvFRkHj1YVQA673pEvPYFqT3BvNG8b3zxu2qgXr3ib0C9Bw8uPEHYCT1CWKK95D8iuqcWi73Fby88Oq8xPG4iqTyMpk49m1HWu18gTT373Ho9h5fUOzT-E7044kS9S74GOzqcnz3aOrg8XHxAO6fTdT0BmSW7sDH5ugfu4D163B679qUOuj4Dars34d692XzOuX16xzz684g8trcdux-i0T1Y-B-9edGKOEgvLz0b1H68AsYGuTPFnLzjf5w9v-5aNxMjkD2Ps5-9Cn64N82Rdb01RWC9HDIuOZ4RwLwhqIE7Okkpuq_TA70IFFq7bVkdOakEGr3vB1e9f-ZFuvQA8bsNPBK9ni2sNtoeXT0KtGW9O1DGN0IG0bu2UM28i0UmuVGfZL1miam8mfFXObWNej3IoaQ9LdQBODvWVjwpYHa9yVBQuBe-eT1_VK49OTHVOOKJKj1zVno9ZNmpN_ZpyzyxPhS9gkzqt9PPCDxmMdG9PkuXNrGLAbz0xck9JfkdOcrhA74Q1x48l_1ON-4d2jwcGbW8n5Rst4V6uj06JqY8x-hoOEIoSrzbk3a8SZwUOK2n9j2z6pi8ezs6uZOMnLwmsaq99wHbuDpZ6jz_AM47gaaitfB-5rwHRCi9ZFcSOOwDvTt81A--F_rcuIqWVz0QWPk9jRdAOPI2ID2RGZ494xxiuCumnb1Y8sK88Kilt6x6L71anPE8qKPsNyAAOBNACUhtUAEqcxAAGmAa9AAf8h_mDwpG9eWwAhm18PLRE8AC_-70_wv-5xP-FvjGFPsACNc_7akAAAAU6fH5CADfc8i2CR8dFRTIpO0uFn8ZBgbx-hH1u_cK9PYBISXeDC0A4eDBEkbLhDb0JlogAC1LqyE7OBNACUhvUAIqrwYQDBqgBgAAAEEAANhBAAAAQAAAEMIAALBBAACYQQAACEIAACDCAAAQwQAAQEAAAMBAAAA0wgAARMIAACzCAACcQgAAPMIAAAAAAAAowgAAmEEAAJbCAADYwQAAkMEAAIBBAACoQQAA8EEAAAjCAAAowgAAnMIAAERCAACQQQAAkMEAAOBBAACQwgAAQEAAAHTCAACAwQAAIMEAAPBCAADQwQAAkEIAAMBAAACwQQAALEIAADBBAADAQQAAmMIAAGzCAACgQAAATEIAALBBAAB0wgAA4EEAAIBAAACgQAAAiEEAABBCAAAAwwAA6EEAADTCAAAUQgAAiEEAAATCAADQwQAAxsIAAIDAAAD4wQAAKMIAANDBAADIwQAA-MEAAIRCAACqQgAAYMEAADxCAABwwQAATMIAALjBAADYwQAADEIAAKDAAAB4wgAA6EEAACDBAACsQgAAkEEAAIA_AADAQQAAEEIAAIxCAACGwgAAEEEAAOhBAACAwQAAjMIAAJDBAABwwgAAAEAAACDBAABIQgAAQMAAACTCAAAsQgAAREIAAKDCAAA0wgAAwEEAAIDBAABAQgAAFMIAALBBAACAQQAAgL8AAODAAAA0wgAAgEEAAKBAAAAkwgAAbMIAAIDBAACYQQAAoMEAADDCAACgwQAANMIAAABBAAAMQgAAwEAAADDBAAAwwQAAdMIAAKBAAACgwAAAuMEAABhCAACowQAADEIAAIBBAACQQQAARMIAAMLCAAAAwQAAwMAAAARCAABgQQAAQEEAACDBAACGwgAAoMAAAFhCAACIwQAAoMAAAFBCAAAgQgAAsEEAANjBAACYwQAAAMAAAIzCAABAwgAAgEAAAAjCAACQQQAAwMEAACjCAABwwQAAEEIAAGBBAAAMQgAA2EEAADBBAAAEwgAAUEIAAOjBAADIQQAAIMIAAGDBAACAQAAAkMEAAEhCAACAQQAA6EEAAKjBAABgQQAAoEAAANpCAABAwAAAgMIAAODAAADAQQAAQMEAAGzCAAB8wgAA6EEAADDBAABAQgAAWEIAAFTCAACowQAA6MEAAPDBIAA4E0AJSHVQASqPAhAAGoACAABwvQAAmD0AAEw-AACevgAA6L0AAII-AAAMPgAATb8AAMK-AAC4vQAAsj4AANi9AACYPQAAND4AAFS-AADCvgAAHD4AAEA8AADSPgAAVz8AAH8_AABEvgAAkj4AAIi9AABcvgAA6D0AAEQ-AAAQPQAAQDwAAHQ-AACuPgAAur4AANi9AAAkPgAAmj4AAKg9AABQvQAAlr4AAKa-AADivgAAJL4AAMi9AACgvAAAVL4AADy-AACAuwAAqj4AAKa-AAA0vgAARL4AAAO_AAAkvgAAQDwAAFw-AADIvQAA2D0AACM_AACgvAAAcL0AAGQ-AAAkvgAAwj4AAEQ-AACYvSAAOBNACUh8UAEqjwIQARqAAgAAbL4AADA9AAAUPgAAVb8AAEC8AACAOwAAuj4AAL6-AACYPQAA2D0AAIg9AAA8vgAAED0AAMi9AACYPQAAoDwAAEQ-AAAPPwAAHD4AANI-AACIvQAA-D0AABA9AACYvQAAyL0AAJi9AADIvQAAmD0AAIC7AACIPQAAyD0AAEQ-AAAkvgAAZL4AAPg9AADgPAAAij4AADQ-AACGvgAAyL0AAIg9AAA8PgAAHL4AAMg9AAC4vQAA-D0AAH-_AABwvQAA6D0AAFQ-AACSPgAAED0AAKC8AAB0PgAAMD0AABw-AAAQvQAABL4AABA9AAAcvgAAPD4AAEA8AAD4PQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=O12Y0DkLDf8","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["9114987608141430193"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1751458440"},"8633327715492134551":{"videoId":"8633327715492134551","docid":"34-4-7-Z2F9BEDD9AD38F077","description":"Tensors for Beginners playlist: • Tensors for Beginners Leave me a tip: https://ko-fi.com/eigenchris I made a mistake in the original version of this video that has been confusing people for years.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2776505/f3d33e4925adf87d1299d4a326416cee/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/nZhuGwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbpuE_XmWQ8Y","linkTemplate":"/video/preview/8633327715492134551?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Tensors for Beginners 1: Forward and Backward Transformations (Remake)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bpuE_XmWQ8Y\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTODYzMzMyNzcxNTQ5MjEzNDU1MVoTODYzMzMyNzcxNTQ5MjEzNDU1MWqIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxOlBYIEJAGABCsqiwEQARp4gfT89v4B_wDs_xL5BwAAAAIU-vr2__8A8QH3AggB_wD19wP_9wAAAPr8-fj3AAAA-wMEBfX-AQD9Afnz9AAAAPb2CgECAAAACgfz9f8BAADx7Qr9AgAAAAPzAP__AAAAAQoL-f7_AAAK_wIMAAAAAAX8-f4AAAAAIAAthUHROzgTQAlITlACKoQCEAAa8AF_6A4A6ubkAuvuywHKIvgAiQoq__0y0wC68QsAqhPL_tAK-QDQDAz_BvEcAJ8qIAAy1tL_ANv2ACnYDf8u6fgAzQUWACgBDAFNFRABAeILAM0gG_745REAJdT2AQAn-f8g4h7_-QHJ_xwWzAJJ-ioA4CUZAg39A_zLxvkH4AMLAfMK7PfzFfsGDBEV-dPsHQIF8e3_DQXy-uwS3f0d8w8E8Q0N_Q0S0QAf8vcF-Bb2_uXb8gv96_r4AwgbAt8I9fP-1RX17QgJ-jf_BwUN5wj99tT0BRr19Az94uj1CwD1_Cv_CP7LEgQC7egMEPXn8eggAC3RQhc7OBNACUhhUAIqzwcQABrAB23I375z99Q8_gGgPFNgHL0kQuO8b5EFvWpNc72pCME8tnIFvaDiaD4Ljv06MNYauvs8Nr4jsRG8rBCAPRSUQj5GRRy9c-gAvHoXL74IPDA9KZ_UvOf-Kr5dy_88SHQqPF8_6Tw355q7I6y8vMF-vj3y98G9F61tvP2z7rv4em29YxZwvfBVBj3NhHW95jXAvPSV9jx7IAi9eI99PGDnJj4N0w298R7xvMTBdD38HLy6DrGLu14uIr5Nj5w8WJ2mPA_8jj38jCs93yD1PDFCGL3C-v88Ma-IvGLEGTzfrnI9mAzRvCZAqD2QqCs9b9GuvH_CtDxadz29RyXtu6jIIb4CfBw96OltPKj8Cz6lg5U9JI6GvBK97L2F9gA99EOZOyZIF7znEa2875rGPPQ04D04k8A9dwJQPIkXmj3VAh68IRSlusOjaL3-Tgk9a5T_PFN52z3W8Q49DUY2vATwBT0la_27QRM8PHqslL3IluU84TOIPMwZiz3d9Wg9SzmEPDuz1bvt2Ig9YhC7u4_gFj5beA6-A-cOvM7yBr2QOIq9nMtDvFJI8Lsg1rY81aiRvFmHwz0Kz1W99IJTO21TvLy9qx69t76COqX_QDzZ6rK9U5I3umBBhb1Nef48-dRWvP4s1rxhXKC88747vAOjQT2aKYg8dAZUufNxbbyUzrC7KTuiO6q6hzxxEtQ8IqLeu4sQmD0Rn8U8_kzyufc_qz1DId27Kvm7uwnrErwRgXS9dWH_un1rgT02-0i9PXOzuKGd0z1RgZi9l51ROYJHZbyh2ys9csMjOXdf3zsJrWI8wk0DuZtw8TuARDi9tsNpON0qo7xXPcC9kQYeObEeUjzvzwA9hUuZObckyTvnKDG9G9HGuTz1KL0pZH29-BefuW5x6LzB-689U-68uPPdt7z4RMi9_wXQuD9uZDy-WC27N32DOM9EPb0bTF69Ml47OVuteD3u9Bk98rGYOFnTxjxQHGC9INIXOBe-eT1_VK49OTHVOFvhJz2oJQy9oPp3uOvQPz2z3TM9y4-TuOXiubxxaJu95a0INi7nkj0W4DY9JycWuVifzL2mLjQ9g38sORYggDwIVMG7JeR6tooi5D3eVc-8m3ZUN2ikrzy3G249F0UPOJJdGT7ZT1C9rMI_uelAO70JJxi9WGgouLvtgryX5qG9-jj_t60kQ70Mc0c9HsEWN72vBT2lSQm-rZ6FuCTeMD128cg8To39OAP8lL1_qI89heReuSNozL0NAfo7bwYGN32RFDzYQUo9FGMIOCAAOBNACUhtUAEqcxAAGmAt-wBF5g_R8P8X8P-35A4H8A3jM-QC__PXAPgK1AoM_grTCfkAH90V77gAAAACFdwr9gD0YwKXDgbrJOjgv_Qh738RISm0-A7q0xgVARYiEBgiKk8A__G4Jy391CgLHSkgAC2SLDc7OBNACUhvUAIqrwYQDBqgBgAAmEEAAODBAAAgQgAASMIAAGBBAACAwAAAhkIAAOBBAABgQQAAyEEAAJhBAAAgQQAAAEEAAFhCAADowQAA6EEAAHBBAACowQAAwEAAAEDBAABAQAAAPMIAADzCAADoQQAA8MEAANhBAACAQQAAwMAAAADAAABQQQAAWMIAAJBBAABUwgAAIEIAAIrCAAAAwAAA4EEAAHhCAADYQQAAmMEAAGBBAADgQQAAmEEAALhBAABwQgAAfMIAAGRCAAD4QQAA8EEAAFhCAAAcwgAALMIAAOjBAAAAAAAAQMAAAEBAAADAwAAAiEEAAIBBAABIQgAAKEIAAJjBAABgwgAAeMIAANDBAABwwgAAXMIAANDBAABAQQAAwMAAAPBBAABAQAAA-sIAAEBAAAAYwgAAgL8AAKrCAACgQAAAKEIAAIDBAADAwAAA_kIAAHBBAADgQAAACEIAAMDBAAAYQgAAKMIAAIBCAACgwAAAZMIAADhCAAA8wgAAgD8AAIDAAAAQwgAAkMIAAOjBAACyQgAAREIAAMDAAABwwQAAbEIAAChCAABEwgAAQEIAAIDAAADAQQAAREIAAJZCAAAQQgAAjEIAABTCAAAkQgAAuMEAAABCAACyQgAAmEEAAMTCAABQwQAAUMEAAKrCAAA4QgAAAAAAAODBAAB0wgAAEEEAAILCAACAwAAAAAAAAJjBAADAwAAAIEIAAFRCAAAEwgAASEIAAABAAAAoQgAAhsIAAEDAAAAAwQAAbMIAACxCAACcwgAAMEEAABxCAADowQAAcMEAANjBAADgwAAASMIAAChCAACQQQAAgL8AABxCAADgQAAAPMIAANDBAACEwgAAuEEAAFDBAAC4QQAAoEEAAETCAABgQQAAqEEAAIDAAACKQgAAWEIAAMhBAABAwQAAAAAAAADBAAAwwgAAjsIAAEDCAAAQwQAAgL8AAAAAAABQwQAAisIAADDCAACgwAAAQMAAALxCAAAgwQAAQEAAAMjBAAAoQgAAMMEAAIhBAABAwQAAsEEAAAAAAADQQQAAMEIAAJBBAACQwQAANEIAAADAIAA4E0AJSHVQASqPAhAAGoACAAAUPgAA-L0AAJ4-AADoPQAA-L0AAAQ-AADovQAAJb8AAJi9AAAcPgAAZD4AAHC9AABQPQAA4DwAAJK-AADYvQAAjj4AAOC8AABwvQAAmj4AAH8_AABEPgAAqD0AAOC8AADYPQAAVL4AAIY-AAB0PgAARL4AADy-AAA8PgAARD4AAGy-AAAUPgAA6L0AAIq-AAB8PgAAiD0AAOa-AAC-vgAAPL4AAEy-AABUPgAA6L0AAFA9AAC4PQAAgj4AAKi9AACOPgAALL4AAHw-AACAuwAAqD0AACQ-AACWvgAADL4AAEU_AADgvAAAyL0AAJg9AAAsPgAAXL4AAPg9AABQvSAAOBNACUh8UAEqjwIQARqAAgAANL4AANg9AABsPgAAL78AACw-AACYvQAAQLwAAFS-AABAPAAAfD4AAHC9AACIvQAARD4AAGy-AADgPAAAiL0AAAS-AABdPwAA2D0AAHw-AACIPQAAjr4AAIY-AAAEvgAAcL0AAJg9AACgvAAAiD0AAJg9AAA8PgAAED0AAOA8AACovQAAyL0AAPg9AACAOwAAiD0AAKA8AAB0vgAAyD0AAMg9AABQPQAAJD4AAOA8AAAEvgAA4DwAAH-_AADIvQAALL4AANg9AABAvAAAiL0AAJo-AACoPQAAqD0AAEC8AACgvAAA-L0AAIK-AAD4vQAAMD0AAKg9AACYPQAA-L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=bpuE_XmWQ8Y","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8633327715492134551"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4080195822"},"11751159434853112887":{"videoId":"11751159434853112887","docid":"34-10-3-Z93ADFF1B677FB14A","description":"Full relativity playlist: • Relativity by eigenchris Powerpoint slide files: https://github.com/eigenchris/MathNot... Leave me a tip: https://ko-fi.com/eigenchris Additional Resources: Sean...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2802633/5fabc5130086fc9140a3335f586ee5f4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/f3_IJAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO_2vnb_eVGE","linkTemplate":"/video/preview/11751159434853112887?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Relativity 108d: Schwazrschild Metric - Eddington-Finkelstein, Kruskal-Szekeres, White/Wormholes","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=O_2vnb_eVGE\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFgoUMTE3NTExNTk0MzQ4NTMxMTI4ODdaFDExNzUxMTU5NDM0ODUzMTEyODg3aogXEgEwGAAiRRoxAAoqaGhraHdtY3VkZHFjdmpsZGhoVUNOOHdUVWxTQXJvTHNsV3lmODdFMnB3EgIAEioQwg8PGg8_E7URggQkAYAEKyqLARABGniB-AwE_wL-APMEBgH5BP8BBhAR_PcA_wAADgzzAwT-APH2CvIIAAAAAgEF_AsAAAAGCPj7-P0BABkBA__6AAAADfYIAvoAAAAI7w4D_wEAAPgB_AID_wAAAv0QEQAAAAD-__37AgAAABACDgsAAAAABP7_Awj0AP8gAC0wmMo7OBNACUhOUAIqhAIQABrwAX_6BAPg9-oB2gTMAM0g-ACDIQr-9A_TALH7GQGvEs7_9wz7ANAN9_8k_xEAuib5_0L34wD60wIASsMIACz7BgDjAw4BK-YCADQOFgL26_cA5xUG_v3nAgD9y-EA7Bnm__7pFP_a9uUA_fnW_TDwHQLvChcFKQIM_9_ODAHoEw8CDATi_fMUDwPx4P_6y_4dAf7rHPwtJgf99ffvAhn09fsQAAj4FArlBAv1_Ay3Egz-9e30AfHg_QQmAhIB6xb29fvrF_7n_AT_A94A_CjsBwXh6wYDD__yAQf8B_Lt5wD9-v4F8-QTCfT43v0P8OkD9yAALa6gHzs4E0AJSGFQAirPBxAAGsAHI6LAvm4WTz1idK-8pZ2PvUTkz7yFS728--c5vmLCQzz7rd2806MZPqg2eD1hCfe6ll1QvpDs27yJKKY8y4AzPubRiL2YYjM8cT1avucWvz2FTKi89aFrvoTTBz10NcO7ZExQPUbPrTz7qp66wX6-PfL3wb0XrW28W68uPTda6Tv45129KBMyPbBfK72xpz29Wt82PenbnbxTkco8L1H9PbEFYLqfq628xMF0PfwcvLoOsYu7fc-ovfbaBzz0QBi8gkLIPdoT7jwi2N08xHk4vLJMv7uD-OE7l1fOvaCpMrwQ_Lm8nLS6PUrtRTywepu8u7upPZIkiL1yKFm6bazkvaYRLj2UTsE7-wU7Pto31z1Edco7yEUlvmnRgT2dCMe8HzzJvO9dHDzpdGo8cN2zPfgR5Dw9NWq7Yz2KPSAghDz5SIo8brYjvflYcD0JEsA8n02oPfxvJT251JK8U6m-PMGrhrvsQ4e7ft0uvSmnRz13SX87XadRPVWXnTxNg6I8MQnXPGgnnjxQ8Ym8BSOlPdYCO75J5Zo6zvIGvZA4ir2cy0O8CxJ2Pd2hdjtbiW27thyOPZKXsbtAmZA7aqBeveJvQL0HDy48pf9APNnqsr1Tkje6Cnm-vZgAFz2DLgY88NWWO7cfNT1inc-7g23kPcKmmT1LomU5eE3-vIAF-ry0xw-7OpyfPdo6uDxcfEA7JlaGPVr5AL08kvi4GZEYPvh-tDwZ5m051KCBO3QVsb0-s1u4dIdDPX9s8bvBVPG6qoKhPRoYmb1HSqA4SC8vPRvUfrwCxga5-5tLvfuoCz1q9MM5Au8pPc0ZtrydJRU4FJ2LvYl64b3GJ3A55357u5jI4Dxllgu5xiZjPUvWl7z2b845FByDvcckrb0aURU4rL4EvVKfHz1Jkbw5yHSNPMebPL3EoJC4k9jeOwNMT71GXwW41VOQvEItPL000Ws3dQHvPNb1tT09EPG4D2T7O5zF5ryjkJy4xFY1PXlhxj225i64WpUOO5DvVz23dY24GnEcPTbqHTubMlu4mgcQPd44yb0INPs20IAVPYBKtT2WNJC4wku1vY1NAjwNuk82FA9evDOeEr0clje3iiLkPd5Vz7ybdlQ37QirO-VtmzxHylg4raf2PbPqmLx7Ozq5rBtPvXAAYr1x-qK4gbsiPaycx7ySuF03eaDEvCuVprxeV9m3HZcMPUkPQ75UMU25oBcOPRclvT0ofwA5uhOsvHLcuT10MBi5OE9QvTjWCj0QdqY2vXbEvCYuET2D2yU4IAA4E0AJSG1QASpzEAAaYET5AAMRGQT1CWTi7bUXIun4_-gNsvj_CbL_4_z3LxbrwOX9H_8nqhr6nQAAABn42A_8ANl_0sP8CCXiHqXIsVMqWAMH-N0VXQ_x8AkVB-tYA0ASLwD_4K0nUva8M0QHBCAALUJ_Fjs4E0AJSG9QAiqvBhAMGqAGAADowQAAgL8AAFBBAACAPwAA6EEAACBBAAD4QgAAjsIAALDBAACQwQAALEIAAJjBAAA8wgAA4MAAAOBBAAAwwQAAPEIAAAjCAACAPwAAPMIAAIBBAACAwQAAUEIAALhBAACgQgAA4EAAANDBAACAvwAA0MEAAGhCAAAEwgAAsEEAADDCAAAcwgAAgMIAAKDAAACYQQAAJEIAACTCAADgQAAAEMIAAMBBAAC4QgAAEEEAAGhCAAAYwgAAYMIAAKhBAAA8QgAAuMEAAMBBAABAwQAAIMIAAMjBAAAAwAAAREIAAPDCAABwwQAAwMEAAARCAABQQgAAgsIAAIxCAABAwAAAgEAAAIBBAABcwgAAfMIAANBBAAC4wQAACEIAAChCAAAQwQAA-EEAAIjBAADowQAAJMIAADhCAACYQQAA-EEAABDCAABQQgAAyMEAAIBBAAA8QgAA-MEAAGDBAABEQgAAaEIAAKDAAACIQQAAgEIAABBCAADgwQAANEIAAITCAACgwQAA-MEAACRCAAAAQAAANMIAAMDAAACAQAAAUMIAAJDCAABYQgAAYMEAAPhBAAAAAAAAEEEAAOhBAADAwAAA2MEAAMRCAACgQAAAgL8AAHBBAACEwgAAhsIAALjCAACAQQAAgsIAAMDBAABAQAAAUMIAAOBBAAAAwQAAQMAAAATCAACYQgAAgD8AAJjBAABQwgAA4EEAACRCAAAoQgAAWEIAAMDBAAD4wQAARMIAAPjBAADYwQAAEMIAACDCAAAsQgAAaMIAAJhBAACAQAAAdEIAAFBCAACAwAAAkMEAAHDBAABQwQAAnEIAAChCAADgwQAAUMIAAGDBAABQQQAAQMEAAADAAABowgAAIMEAAHBCAACgwQAAgMEAAPBBAAD4QQAAoMAAAMhBAACgQgAAwMAAAGDCAADAQAAAFMIAAPBBAADAwAAAuEEAAKRCAAAIwgAAIEEAAFTCAADoQQAAaEIAAHBBAAD4QQAAwEAAAKBCAACQQQAAgMIAACBBAABAQQAAhsIAAKBAAADgwQAAkEEAAAjCAAA8wgAAXMIgADgTQAlIdVABKo8CEAAagAIAAEy-AAAMPgAAlj4AABC9AAAsPgAAgDsAAGw-AABPvwAADL4AAEC8AABQPQAADD4AAFQ-AACCPgAAoLwAADy-AABMPgAAiD0AAEw-AAAhPwAAfz8AAHC9AAA8PgAAPD4AABQ-AADovQAAiD0AACS-AAC4PQAAzj4AAAw-AAA0vgAAXL4AAHA9AADgPAAAgLsAAJi9AABEvgAAnr4AAMa-AAC4PQAA6D0AAIA7AABUvgAAPL4AAIC7AAC-PgAAjr4AAFS-AADivgAAiL0AAHC9AACGPgAA4DwAACy-AABAPAAAYT8AAAS-AAAkvgAAZD4AAJg9AAB0PgAA4LwAADS-IAA4E0AJSHxQASqPAhABGoACAABAPAAAhj4AAHA9AAA9vwAAyL0AACy-AADgvAAABL4AAIK-AADGPgAAiD0AABS-AABAPAAAdL4AADC9AADovQAAdL4AADM_AADYPQAAgj4AABQ-AAAUvgAAmD0AADS-AACIvQAAJL4AABS-AAAUPgAAoDwAAEA8AAAQPQAAED0AAEC8AAD4vQAAFL4AAMi9AACYPQAAVD4AAAy-AAAQvQAABD4AAKC8AAAsvgAAmL0AAIA7AACoPQAAf78AAOC8AAAUPgAABD4AAMg9AAAQvQAAyD0AABQ-AADovQAA4DwAAKi9AAAMPgAA6L0AAHC9AACAuwAA6D0AAPg9AAC4vSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=O_2vnb_eVGE","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11751159434853112887"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1336695013"},"6516361911412427041":{"videoId":"6516361911412427041","docid":"34-0-1-ZC7C7D32BB0EB465B","description":"My math/physics playlists: Tensors for Beginners: • Tensors for Beginners Tensor Calculus: • Tensor Calculus Error Correcting Codes: • Error Correcting Codes (ECCs) Relativity: • Relativity by...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3273229/aeb5488a2214a684a1ad9954496d6254/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Ltw9KQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Djm7jVi8akcc","linkTemplate":"/video/preview/6516361911412427041?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What Is Momentum? (joke video)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=jm7jVi8akcc\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTNjUxNjM2MTkxMTQxMjQyNzA0MVoTNjUxNjM2MTkxMTQxMjQyNzA0MWqTFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxPSAoIEJAGABCsqiwEQARp4ge4B-f38BQDx-xEFBgT-AfAF_wD6__4A9gf8__8C_wD5C_EB_gAAAP4GBAoEAAAA-_3-B_7-AAD6APb6AwAAABHyAfwDAAAAAAIB_P4BAAAJBwP6AwAAABYE_gYAAAAA7gQM9gAAAAAH_PwFAAAAAATlAf8BAAAAIAAtcYbeOzgTQAlITlACKoQCEAAa8AF_AxQDtQwE_DABBwDu_gAB1if1AGQA9QDsAPUB7hHuARspFQD_EEL_8A4NAOftDP_W6f__DSr_AB3pIABADQwA2_beAA70_gEmDeoB99Ec_-4IIQDvIQX-5AbqACMbB_4b5hoA2gfdAAn_7gAK9Rz_DO_lAgP2_gUm_Az_9SMTA-T7GP0EFP4FGfvm__j6EfzoGA4AwfoFAPc9_QAhERsHtuIGAPUQ3_8gCgYMDwLu_uYg8AAsFer64OIWAesB8Qbc8_H0Gf7w-eT2CvMH8w4DAvcWCQ3vAg8AGhL99-QMDgMPAv8NyBT9GQT_-RnlDPwgAC3fXS47OBNACUhhUAIqzwcQABrAByuE7b43C8U7s2y5u33OXT3ucCU9iiVAPYqOFL5HpzO9at-cPB-BP7xNLNU8jVLXu_jBgb5_6Pi8RGlPPYNQtj4a8rS8r1VMPHE1pz2ezvq81BhDvWU0F73YIrM8lH2hPMaNFj3C8LY75BvlPDXSEr0oMYS7PiEtuvBKtzxyUjg9jzlPvA_gIz2gE2e9ueQTPQ13OTpigQ89q8m2O6XghD36R7o8QC2nu2PbmLzUHVU8g33FPNLOj73nKaG8EN_wuyvZ8T09fQS9LwFTPHcfNrwaEZE9HDoivAwjHT04Pbm8bzmNvN_8xj3sG_M8h1k-vWOSArngXj68JBW8vGzp0b2pVqU9bRrbvN20GT49FtE8A2D6u7Di1L11Nsk9PI5VPDc6kj0cF4Q97GudvKdJ3zz8ooy7UoTvPEQU0zxH0ok8XxbJPAD8uLwUT6g7eT0Yu2Q99b15hIk9xGLxu9wjIzxR0xM9HLvfvMMKnL1JNcc8JCmKu8PtdTx6Sa28udj-O1OwhjyxJTW99kWhOxZErryO1Ia9AOphPBmKYDzfbkk9vzR7PO-imjs9MNs7e3qVO0ppjD1PWBI-ZlNou3icUrr3PSM68ztNPEHYCT1CWKK95D8iutu_sj1gOSI-2AonOVJfFj3sarK84Yc5vKmrVr2TASA-oYpMuSRztr26F_e7HIJMOgVdsTz8FoK8pe4xu11pvjzEln694Lcluhfeiz0imcA7tyiSu8naUL0g33S9SNkhuW1Ybr05EZg8D-NBOQL4wryDauO99NZoOLgkZrvo4V-9SXDeOCZeVDz2YT283vELOj8Zo7yy9le9Q_ULuNtvSDxgbLs9TiaruPXgtD3J6nM71qQmuNZ3uLsmioA9iqaUOO89l70PZm494vkGujf74jq8VBE9XHC5tk-iELsJfM-8aK_MOBOyeD3ISie954KxNwPdKLxksvi8ojEQObC_hj1Q8cm8AvjDOPRs9j1ny4O8bOxQOdrYdj04mie7S1kOuH8VQD2b1py8c-V4OOU6lz1S_qQ8UEn8tosWgD1EKsG9fSojOInCfb1JO6Q8O9mpOKwJmL1IELY7BKbBN9NKAb4wLWo8s6NEOPinFD4D-k49H_TtNli0hD1UHp28G_RFuCeFGb7qqqW9Wa_POIXeTL1UqI696srDuOgnQbzX6Is9uttQOAcUoLrJILc9wteatxp6NT1Sghm9mg5SuAyTST33cG48VUBsOBt31DzTJ2M9pTSguLPp7TxKx0Y9gZLItnuOI71ENHq9y-gQtyAAOBNACUhtUAEqcxAAGmBZEAAj9gbd1v4u7PjXAwHUCeAZ6h3R_xgH_yII2eLiGePMHQX_NN_8_K4AAAAEvxUbGgDccN7oySrnCw26wuAgNH8I_-_x7RjZr9QSA-v2ITQCDxkA3gyoEuH6D0IsJmQgAC3Idyk7OBNACUhvUAIqrwYQDBqgBgAAoMEAAIJCAADkQgAAVEIAAODAAADAwAAAHEIAAIDCAACCwgAAoEAAAKBBAAC4wQAAisIAAFDCAABMQgAAYMIAAABCAAAEwgAAXEIAACzCAAAwQgAA4MEAACTCAACYQQAALEIAANDBAACowQAAoMAAAPhBAABcQgAADMIAAABAAAAcwgAANEIAAETCAACAvwAAQMEAAIRCAABAQAAAEEIAADxCAABQQQAAwMEAAIjBAACwQQAAkEEAAIC_AAA4wgAAiEEAAABBAABAwAAA4MEAAFDBAACAQQAAAEAAALhBAAAAwQAAkEEAAIDAAABoQgAAFEIAADDCAAAgwQAAGMIAADTCAAAIQgAAQEAAAMBAAACYwQAAWEIAAMBBAACAQQAAcMEAAKRCAABcwgAACMIAAFTCAACIwQAAQEAAAHzCAADCwgAADEIAACRCAABcQgAADEIAAKpCAACIwQAAcEIAABRCAABgwgAADEIAADRCAABgwQAADMIAAPhBAADowQAAQEEAAADCAADQQQAAgMEAAAzCAAAwQgAAgMEAAODCAADGwgAA2EEAAHBBAAAQQgAAYMEAAJhBAAAEwgAAgL8AAJhBAADYwQAAcEIAAFBBAACAvwAAgMIAAIDBAAAAwAAAQMIAALrCAADAQAAAIMEAAKBAAABgQgAAqEEAAJzCAACAPwAAIMEAACDBAACAwAAAyMEAAJBCAACIQQAA4MEAAMDAAACIQQAA2MEAAHTCAADAQQAAkEEAAAhCAABwQQAAyEEAALhBAABQwgAAQMAAAIjBAAAYwgAA6EEAAABAAACwQQAAiMEAAJ5CAAAUQgAADEIAALTCAAAEQgAAskIAAIjBAACAwAAAIMEAACBBAACowQAAcMIAAFRCAAAwQQAAOEIAAERCAAA4wgAAUMIAAADAAABsQgAAQMAAAIDAAADAwQAAmMEAABBCAACEQgAAkMEAAADCAACQwQAAAMAAAJhBAAB8wgAA0sIAAJxCAACIwQAAAAAAAKhBAAAQwgAAmEEAAKBBAAAYQgAAKEIAAMjBAACoQQAAjMIAAFDBIAA4E0AJSHVQASqPAhAAGoACAAC4PQAAcD0AAIA7AADgPAAA6L0AADw-AABQPQAAxr4AAKg9AAAcPgAAmD0AADC9AABwPQAA-D0AAPi9AADovQAAJD4AAOA8AADoPQAAtj4AAH8_AACgvAAADD4AABw-AADGvgAAyL0AAKi9AAAwvQAABD4AAKY-AADYPQAAyL0AAJK-AACAOwAAQDwAAKi9AACKPgAAEL0AAIq-AAAkvgAAyL0AAGS-AABMPgAADD4AAIC7AACIPQAAoLwAAIq-AADgPAAAgDsAAEA8AAD4PQAAJD4AALg9AADYPQAAiD0AABU_AADovQAAyD0AAEw-AABkvgAAoLwAAPg9AABQvSAAOBNACUh8UAEqjwIQARqAAgAAQLwAAHA9AAAcvgAAIb8AAKi9AACCvgAAND4AAEy-AAAEPgAAyD0AALg9AAA0vgAAPD4AAGS-AAD4PQAAFL4AAEC8AAARPwAAiD0AAKo-AABwPQAAuL0AADw-AADovQAAmD0AAKA8AABQvQAAcD0AADQ-AACgvAAA4DwAANg9AACYvQAAoDwAAFA9AAAEvgAAgj4AAJY-AAAcvgAAUD0AANo-AABwPQAAoLwAAFA9AACAuwAAcD0AAH-_AACgPAAABL4AAPg9AAAwPQAAUL0AAOg9AABwPQAAgDsAAMg9AAAwvQAAuL0AADy-AADYvQAAMD0AAFA9AADYvQAAML0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=jm7jVi8akcc","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6516361911412427041"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2348242661"},"15848855463945950131":{"videoId":"15848855463945950131","docid":"34-11-13-Z8648CEA60C4D0DAF","description":"Full spinors playlist: • Spinors for Beginners Leave me a tip: https://ko-fi.com/eigenchris Powerpoint slide files + Exercise answers: https://github.com/eigenchris/MathNot... Video by comparing...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1620001/4b0b0ed2e78a7a44aae64249574d5d8b/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wisoJAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DT0V08u4t-cg","linkTemplate":"/video/preview/15848855463945950131?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Spinors for Beginners 5: The Flagpole and Complex Projective Line (CP1)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=T0V08u4t-cg\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFgoUMTU4NDg4NTU0NjM5NDU5NTAxMzFaFDE1ODQ4ODU1NDYzOTQ1OTUwMTMxaogXEgEwGAAiRRoxAAoqaGhraHdtY3VkZHFjdmpsZGhoVUNOOHdUVWxTQXJvTHNsV3lmODdFMnB3EgIAEioQwg8PGg8_E7cLggQkAYAEKyqLARABGniB9wwH_P4DAPv8_w8BCfsCCwz29_YAAAD8AfsF_QX-AAT68fj7AQAACQcGEAEAAAD_8v_4-P0BAA4O_f74AAAADPH9__oAAAABCQUE_gEAAPLz-PUCAAAAB-8GDf8AAAD5AfoK_wAAAAEKDf8AAAAAAwwDBAAAAAAgAC3EQtg7OBNACUhOUAIqhAIQABrwAXcHCAHr5-UCuAXdAMQpCQCBIgr-_THVALwoKAO898oAAATvAN338f8WCwv_uSf5_17v5f_x8gUAK74LAi3q-ADzHAUBEtfwAioALAH26_YA4CIR__MM8f79yuAAAhbpAwz5A_vdBO3__fnW_THwHgLm-ioEKOQPAd-0_QHiHgAC_Ofg_QQW_QX75Qr-4vYtBxHiCf8PHBf66P7hBAf_9fz8_g_4JgLnAhb-9ALlGBcA898C-v3s-vkN-Rz80icE-OfjHP_n_AX_-eoF9zXsD_zs7OwKCe_2BxAJCP7tz_QC8PT7_en1E_X27uwK8ebz_iAALf8hHTs4E0AJSGFQAirPBxAAGsAHxjSzvqw5AD27Uw88moKbvam1F7wDBV69--c5vmLCQzz7rd28PtDqPZnO8zydh1G7oKhMvuyrZr2pUaM7y4AzPubRiL2YYjM8nmKFvpG6fT0sc4S8RBhfvtRkZzulnT88lSynPdLKmDwSQlG84Nl-PVJxTb3NN0e8W68uPTda6Tv45129vlKxvOGLArx9Qcu8zocMPSUyPbzMndM7GFodPmoHcbu0hRA8z0mfPYWZkbwuqoe70s6PvecpobwQ3_C7gkLIPdoT7jwi2N08SUcevK5-sLhZuPY8fCcGvpZ98rykpOy8cbW5PfonOLxP6gu9FK7nPaQYgL1THn67JjX0vX4DLj2rugI95Gb4PWZM4T0YI9Q7GNIBvkmDqz2WJiW8qzHXvKKlIT268Ic7uYnaPQnrFT2uC4U7RBTTPEfSiTxfFsk84OwAveBYhjydOdo8nleBPcBfpzyKhha8phNEPdVOXr35jae7A9--vSzfCT3n8hM7ESqyPRogKDt6UBK7v8ODPTQqlTwLD6m5BSOlPdYCO75J5Zo6Yyp9vKNFzL2HKka8AmcEPShPNDwiQB87Xpk8PZOEabzbAIe8ajGIvfYfXr1pdAO59kVfO5psbb1O1qS7ziaWvfqerDy14TC7v2unuzrDuTzWNX-8cwdbPQNTxz1yDME50E8nvXeihL2h94Q6MIMRPkBEFD02jFu6ixCYPRGfxTz-TPK5GLIKPmWew7sY0YI4gBvYPGhvtb10O0a5OiETvGQq8zzZyHm73rmmPTtoG73aGcc5zaHWPHhSlTw8ypc4FszOvNOhcz3rQ2462j_qPAlG77xybWq6_LNVvXc9sr2FGzC4uFb7PNlxy7rLzwy69RQZPdgOKTuAZNK4AvSLvUU1kL07hjE41UWlvFA_gzytgpy5N_8PPRjbOr1sYMS1ej8EPb10brz8hUi4hbGJu5L6_Ds6jEK4FwMVPb98dz09Bwc5t8lyPG0tHb3Lo8K4Kdt2vOfssz0nn4A3nPKNPI46vjoPZVG3U-NKPLValrt4aLK3w9PrPGcm-L0iJCS4F3j4vNaN1z041Lo4IvsAvsZfJD0XmGU4FA9evDOeEr0clje3N27RPSfQUT2HLmo2rWOBvNzO4zxVcXU4kl0ZPtlPUL2swj-5N6moPEK8xL1kXRi4poaRPCNjWr30foo3_aQ1vd-ITbtXxXQ2HZcMPUkPQ75UMU25VRimPW0LxT2Dx-c4G3fUPNMnYz2lNKC46FWzvRYk7DzNuCE4-ckHvCCBGr1ufJ23IAA4E0AJSG1QASpzEAAaYDz7ACgDLtgrC0_f1-kfCMfByeEGxBr_Kef_AuPsOBoB4tcd7wArphr4oQAAAC0c1RT4AO9-wt8UCzYhKa-W1TEdf_b5B6QUPeqn4SgjK-QYBUgHPwDG8r8kTtPODxMLVCAALZqiDzs4E0AJSG9QAiqvBhAMGqAGAAAsQgAAwMAAAFBBAAAcwgAAAMAAAHhCAACuQgAAMEEAAODBAABAwQAAmEEAAKhBAADQwQAAAEAAALBCAAAgwQAAgEEAAFDBAADgQAAAtMIAABhCAAAwwgAAJEIAAOBAAADgwQAAYEEAAOBBAABwwQAAEEIAAEBAAABQwQAA6EEAAEjCAAA0QgAAuMEAAIjBAAAAwQAA6EIAANBBAABwQgAA4EEAABRCAACQQgAAIMEAABBBAACCwgAAAEEAAADAAAA4QgAAAAAAAFDCAAAEQgAAEMEAAGBBAADwQQAAyEEAAGzCAACQQQAAYEEAANhBAAAQwQAAEEEAADzCAABYwgAAjEIAAODBAAAsQgAAFMIAACzCAADAwQAAYEIAAJ5CAAD2wgAApkIAACDBAABAwgAABMIAACjCAACYQgAAoEAAADDCAAA4QgAAIMIAADRCAABQwQAA4EAAADBCAADIQQAAGEIAAAjCAAAowgAAjkIAAITCAABowgAAYEIAAADDAACgwAAACEIAAIpCAAAQwgAAKMIAAFBBAAAAQgAAlsIAAJjCAABEQgAAgMEAAKBCAAAEwgAAqEEAAMBAAACgwQAAQMIAAIDAAABAQAAAgEAAAMDBAACQwQAAQMEAALDBAAAEwgAAUMIAAOBAAAAwwgAAgEAAAADBAAAkwgAADMIAAEjCAAAQwQAAAMAAAOhBAAAswgAAOEIAAADBAAAQQQAAeEIAADRCAACmwgAAAMIAACBCAACIQQAAMMEAAJhBAAAUQgAAGMIAAKDAAAAAAAAAIEIAAEDAAACAQAAAwEEAAMhBAABQwQAABEIAACBBAAA4wgAARMIAACjCAACAPwAA4EAAABRCAABgwQAAbMIAAIC_AACwQQAAFEIAAFxCAAC4QQAAAEEAAMDAAADQQQAAUMIAABDBAADIwQAAUMEAAIzCAABIwgAAEEEAAFBBAADIwQAAuEEAABTCAACaQgAAYEIAAHDBAACAwgAAgMEAAKBBAADAQAAABMIAAHDBAAAwQgAAAMEAAAAAAADgQAAAJMIAAFBBAAAAwQAAgMEgADgTQAlIdVABKo8CEAAagAIAAAy-AABAPAAAkj4AAKi9AACAOwAAML0AAKg9AADOvgAAhr4AAIA7AAC4vQAAoDwAAEw-AACgPAAAgr4AAAy-AAB0vgAAUL0AALo-AAAHPwAAfz8AAKA8AABcPgAA2D0AADC9AABMPgAA-D0AAIC7AABMPgAAlj4AAIg9AAA0PgAATL4AABy-AAAEPgAAEL0AAIg9AAB0vgAAXL4AAGS-AADovQAAfL4AACQ-AACivgAAoDwAABw-AABcPgAAHL4AAOC8AAAUvgAAUL0AAOi9AABQPQAAcD0AAOC8AABAPAAABz8AAAy-AACAuwAAuD0AAIa-AACgPAAAED0AAOi9IAA4E0AJSHxQASqPAhABGoACAACOvgAAoDwAAEQ-AABRvwAAqD0AAKg9AAA8PgAAbL4AAOC8AAC4PQAA4LwAAKK-AACYPQAADL4AAEA8AACgPAAAdD4AADM_AAAEPgAAjj4AAKC8AAAwvQAAMD0AAIi9AADoPQAAuD0AAIi9AACgPAAAqD0AANg9AACAOwAA6D0AAPi9AAAkvgAAED0AALi9AAAUPgAA6L0AAHS-AAAUvgAAUL0AALg9AABwPQAA4DwAAES-AAAwPQAAf78AADA9AACovQAAdD4AAEw-AADIvQAAmL0AACw-AAD4vQAAiD0AAIA7AACYPQAAED0AAHC9AAA0PgAAkr4AAKg9AACIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=T0V08u4t-cg","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15848855463945950131"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"913643616"},"1724146024986472400":{"videoId":"1724146024986472400","docid":"34-4-8-Z2ACEA3E5495B2992","description":"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3238086/e9f1b15ce2f7e08602b5862dadc10cd2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/858p_AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DcDJb-TIhmdI","linkTemplate":"/video/preview/1724146024986472400?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Doing the World's Hardest Integral (joke video)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=cDJb-TIhmdI\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFQoTMTcyNDE0NjAyNDk4NjQ3MjQwMFoTMTcyNDE0NjAyNDk4NjQ3MjQwMGqIFxIBMBgAIkUaMQAKKmhoa2h3bWN1ZGRxY3ZqbGRoaFVDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdxICABIqEMIPDxoPPxOwAoIEJAGABCsqiwEQARp4gfgAAgYB_wAD_gv6_QP_AeAH8AL7AQEA7QT8-AUAAADz-_QEDAAAAP0M_AUMAAAA9wb6_vP_AQACDgD7BQAAAAD3_AEBAAAAAPH-_QABAAD5Afn4A_8AAAb6_xQAAAAA7AIGAwMA_wAFAgcJAAAAAAnuAv4AAQAAIAAt9AnQOzgTQAlITlACKoQCEAAa8AF_7CEBwffy_scS4wDCKgkAte4cAB0l4QDKAg4AwOvgARIFCADX5uMBCSXmALEEJQETBOoAEwIOACfsEv9P9iD_AycIARLW7wI6Eiz_4uPt_u8eHQDb_xIAF9jUA_YT4f_-5ScAKQgK_v_mzAAY5isC1-8NARnpB__dzAwB8xsJ_gnm6v_-MgcD2OkI-BDfJgXo7-j8E0UE_v4S7AAWFO0DHg8E9R0T-AYBBOcD-QkT-r7O8QThB_0A9gQO_OgqA_qu4An9x_8B9f3yEvgMD-T42AwBD9sJ6gPVEgkKBOj3-uoO-RLmK_b_-v0H-dwM8v8gAC1U6Rg7OBNACUhhUAIqzwcQABrAB8Y0s76sOQA9u1MPPOlDXL17erY8KLlDPLyUer6uWEs7loqXPP4N2j1fLVI8nPTjvK8I3r2G1GW7icTOu7XhkD66ETa9GokwPdlDS75DknY7KX-CvbeyJL4pFcM8RNBivEaO2zsQd3U97h17O9aiLz1UPfS82qQqu876FD2plRO9lDlRvSgTMj2wXyu9sac9vf7VQz1gPnm9fNa1PGkZGT69Xzu9ZRfvO_kPjjxZz3-8NnXePBaSYr0RXnW7PvTTvFKQqTy_dwA9IRutPPElmb2H1P689VHhPAYSFL49Z-Y8srWjvG8uyT1Xqzu95ETgvKD-Ez5QwxY7q6UIu6jIIb4CfBw96OltPCeSfj18-Yg94HyPPFDD173Eknc9a4zOOhFoejyErF09yRPSu898oz24MlI9p9BUPDRT9bwPtCc8RTQTPAlkwDzPWXU9hWOxPCJEAz1FgFO8RN_dvGueQz3yYry8l7MxOwu45712UIk7W4SYvCwp97t0cnG71kmFOhjriz0FWSW93lRmOwUjpT3WAju-SeWaOlOCFTzopqi921wKvD0VRj3qa6c8egZDvIvLnD2kF3q9X3hKvJOuFL0oni69EGLfu-J5hLxpqHG99Yy3uwjb2byRyp48oB42vGQntDsnUyI7voFuvMSSdjvfb6Q9XEDDOpk20ry8Ws69GJwvOqGGzz2lF9I7o-qyu4fLgD1pjiw8Addgug6qkz0J6_W8Ki-_Os41Cju_jY69tkHUuk7EbLxK1RG97Hifu5RAtD3gzWS94odqOe2spz3igEy8A4xlubodkLwmPpI8RbY5OoTgpz0BaDm8B9RsuVxUC72cFfG93J51OemLczwbDSW9ocUbupm49rselOY8ox8RO2sewb3ErqK9WfgiOBlYBz0oyQS9knjFOCtziT1tFQm93SrGONUCAD368t08x6I3uHaZKzwtiFK9VulcuL8gM7ysG889SQw0NVnTxjxQHGC9INIXOHn5qbunJcY9xK7_uIM1Tjz9FAW8axZuuOPj0zzGhQM9zeEyuJ0ORzt3nwO-Q96Mt3ey5Tvf-4s9WufUt8rhA74Q1x48l_1ON-4d2jwcGbW8n5Rst6ck6z3pdRi64lpFuNhjorxB2wO7GWU0OLEVBD7G__g7MtlTuIXeTL1UqI696srDuI5KkD1-HI296RY1OD3tVb0hvRc7ezVnOL2vBT2lSQm-rZ6FuGpPGT6pbpk9CAIyt3XJ9jtHGTY9wpKNuOEti72bf8s65gAKOM9r7LtoUnG7dlnRNyAAOBNACUhtUAEqcxAAGmA8-AAg8hvo3gkH5OnKAhUA-tr--uD7_-HNANsZ6gwHG92xB_EADMoT47UAAADlCzg06wAIYgz38CDzLx7ft-s7Fn8U9AfD3Q4e6-Po5-wRFionSyIAywLGHgjd-zYXBBYgAC2KrTo7OBNACUhvUAIqrwYQDBqgBgAAVEIAAIA_AADCQgAAKMIAALDBAAAQQQAAKEIAAEDBAABwwgAAwMEAAIDBAACIQQAAwsIAAILCAAAYQgAAEEEAAEBAAABwwQAAhkIAAJ7CAABAQAAA2MEAAPjBAACcQgAAAEIAADTCAABAQAAAKMIAAADCAABgQgAAaMIAACxCAAAwwQAAYMEAAHzCAABQQQAACMIAAKJCAABwQQAA6EEAAMhBAAAQQQAAAMAAAEBAAABgQQAAoMEAAMjBAACoQQAABEIAAOhBAABQwQAAcMIAACjCAABwQgAAgEAAANDBAABIwgAAQEIAAPjBAAAUQgAAcEEAAKBAAACowgAAQMIAAODAAAAwQQAAIEEAAABBAAAYwgAA4MAAAERCAABQQQAAlsIAAMJCAADAQAAAgMEAAFBBAACwwQAAcMEAAKjBAAAYwgAA2EEAAIhBAADMQgAA-EEAAIxCAAAIwgAAuEEAABBBAACQwgAAEMEAAFxCAAC4wQAA0MEAADjCAABQwgAAkMEAALhBAACOQgAAAMAAABDCAABUQgAATEIAAMrCAACUwgAAiEEAAJjBAABAQgAA6MEAAHxCAACIwQAAmEEAAAxCAAA8wgAAREIAAAxCAAC4wQAAsMEAABTCAADowQAA6MEAAILCAADwQQAAwMEAAOBAAABIQgAA4MEAAKjCAABAQQAAQMIAAIDAAAAYwgAAoEAAAHBCAAD4wQAAAMAAAIA_AADAQQAAtMIAAFjCAACAwAAADEIAADBBAACowQAAAEEAALBBAACgwAAA2EEAAIDBAACgQAAAoEEAADRCAAAgQgAAiEEAAABBAAAwQQAA4EAAAGzCAACAwgAA4EIAAADCAACAwQAAIEIAAJjBAACowQAAEEEAAPBBAACCQgAAAEIAAJBBAAAQQQAAgMAAAPhBAADwwQAAwMAAAABAAABAwQAAAMAAAOBBAABgQgAAosIAAIjBAAAMwgAAcEEAAMBAAAA0wgAAmMIAACxCAABQQQAAgEEAADBBAAAwQQAAsEEAAABAAAAQQgAA8EEAADTCAAAsQgAA4MAAAIjCIAA4E0AJSHVQASqPAhAAGoACAAAcPgAA4LwAACQ-AABwPQAAXL4AAFQ-AAD4vQAAxr4AAKA8AABEPgAA6L0AAPg9AAA8PgAAjj4AANi9AAAwvQAA0j4AALg9AAAEPgAAHz8AAH8_AAC4PQAA6D0AAPg9AABAPAAAcD0AADS-AAAsvgAAgDsAAJ4-AACYvQAA-L0AABA9AADoPQAAmD0AABA9AABEPgAARL4AAN6-AADevgAADL4AAOA8AABQPQAA6D0AALi9AAAMvgAAXL4AAFC9AADIvQAAgLsAAEA8AADYvQAAgj4AAOI-AACavgAAyD0AAFU_AACYvQAA4DwAAII-AAAEvgAAgDsAAPg9AACaviAAOBNACUh8UAEqjwIQARqAAgAAmL0AAJq-AAAEPgAAP78AADw-AACovQAAkj4AAKq-AABAvAAAHD4AAIg9AAAQvQAARD4AAMi9AABQPQAAML0AAHA9AAAtPwAAmL0AAEw-AABQvQAAmL0AAOg9AABAPAAADD4AAFC9AADovQAAEL0AAII-AAAwPQAAgLsAABw-AAAcvgAATL4AABw-AAC4PQAARD4AAIA7AAAkvgAAHL4AAI4-AAAcPgAAML0AABC9AACovQAA6L0AAH-_AAAUPgAA6D0AAFC9AACIPQAAgLsAACQ-AACIPQAAdL4AAJg9AABAPAAAyL0AAAS-AAAsvgAAcD0AABS-AACYvQAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=cDJb-TIhmdI","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1724146024986472400"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1910208569"},"10575742038037045079":{"videoId":"10575742038037045079","docid":"34-5-5-Z09820171D59D893A","description":"Full relativity playlist: • Relativity by eigenchris Powerpoint slide files: https://github.com/eigenchris/MathNot... Leave me a tip: https://ko-fi.com/eigenchris Previous videos on covectors...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2210495/2e3555e6cdd0714549d6c3ca2c6ea587/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cxr6gQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQ8SfVDr4OjU","linkTemplate":"/video/preview/10575742038037045079?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Relativity 106a: Tensors - Frequency Wave Covectors and Doppler Shift (with accelerating frames)","related_orig_text":"eigenchris","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"eigenchris\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Q8SfVDr4OjU\",\"src\":\"serp\",\"rvb\":\"EqkDChM5MzA0MDc4MTYwNzQxMzUxMjQxChM2OTg5MzI2MTExNjg0ODQ3OTQ3ChM2ODM5MTY1MTMwODM5OTE2NzA5ChM4NzEwMDgwOTA1NTIyNjU2NDA2ChM3MzI2MzI2NzUyMzA1OTIxMzY3ChM2Mjg4NzE4MTc4MDA4MjAxMTE2ChM5OTE1MDQ5MDk5NjYxNjgxODM1ChQxMjg1ODQ0MDA2NTg0NzA1NDY1MAoTODExNTExMzI1NjExMzczOTA5NAoTNDE3MTMxMjY3OTgwMzMyMDkyMAoUMTU4MTUyMDY1NDQ3MjUxNTc5NjMKEzkxMTQ5ODc2MDgxNDE0MzAxOTMKEzg2MzMzMjc3MTU0OTIxMzQ1NTEKFDExNzUxMTU5NDM0ODUzMTEyODg3ChM2NTE2MzYxOTExNDEyNDI3MDQxChQxNTg0ODg1NTQ2Mzk0NTk1MDEzMQoTMTcyNDE0NjAyNDk4NjQ3MjQwMAoUMTA1NzU3NDIwMzgwMzcwNDUwNzkKEzYwMzc5Mjk0NDI0NTQ4Njk2NDYKEzc3ODUzODkxMTE3MTM0Njg1MTYaFgoUMTA1NzU3NDIwMzgwMzcwNDUwNzlaFDEwNTc1NzQyMDM4MDM3MDQ1MDc5arYPEgEwGAAiRRoxAAoqaGhraHdtY3VkZHFjdmpsZGhoVUNOOHdUVWxTQXJvTHNsV3lmODdFMnB3EgIAEioQwg8PGg8_E8IPggQkAYAEKyqLARABGniB-wr-CQL9APX4BgkPBvwBIwgJAA0CAwD1B_v-_wL_AOj8EQUFAAAA_QcECwQAAAD-A_8R9_4BAAj89f33AAAACA35D_sAAAAIB_8C_gEAAPX8_u0BAAAAGOsE-f8AAAD4_QsFAQAAAPkDDfsAAAAAEvX9_QABAAAgAC3gdcw7OBNACUhOUAIqhAIQABrwAX73D__fEcICxvbTAOgN1AGBCi3_Dh75AL37IgDQGewB_hnzANvxBAEIGin_kC3_AS7uDv8c-_8AP-QbABYCDgCxMTMACfHoASb6CAH2zA7_qwkO_-fMEgET6Pv_Hv_Y_xDh-vzZBOv_9fLaBgrSQgP9CRMCCQrvBOrh9QHwGiIB7xXS_fIIFQwSHgEDvNgoAvMT-AITNO__4-H2BiX39wv8DOL_ABD1BUf49ADYNhED-vz59P75-gAO-B_84_oH-AIBB_frCQr5NAoQ9vAG-fcW1fsL6BHvAfL_Af3_6Ajy3hgAA_AM-_wJ6PkQEb74DCAALVAjDTs4E0AJSGFQAipzEAAaYB8MABwUJe_qATv87ecQB-PH_d758RYAAMoA_QLy8AAA8dkK8QAd1xzbuwAAACD0EQvQAO5W8OT53OZXB97IACsEfxATH8cUN-3r-yT_CQcAAvoJMgDrC70iP7zcAeogICAALWEsRzs4E0AJSG9QAiqvBhAMGqAGAAAcQgAA0EEAANhBAADowQAAmEEAAAhCAACEQgAAIEEAAMDBAAAwwQAAAMIAAOBBAABswgAA2MEAAIBCAACYwQAA0EEAAMDBAABUQgAAcMIAACRCAABYwgAAQEEAANBBAAAAQAAAGEIAAJjCAAA8wgAAoMAAAOhBAACoQQAAcEEAAEzCAABAwgAAHMIAADDCAAD4QQAAoEIAAJBBAAAkQgAAVMIAAKBAAACcQgAAEMEAAJhBAACQwQAAEEEAAKBBAABAQgAAgEEAAMBAAAAEwgAAYEEAAKBBAADYQQAA4EAAAIjCAACwwQAADMIAAIpCAABIQgAAgMIAABTCAABYwgAAIEIAAFBBAAA0wgAAwMEAAIC_AAAowgAAEEEAADRCAABowgAAREIAADTCAADwwQAAkMIAAAjCAADAwAAAYEEAADzCAACGQgAAiMEAADxCAABwQgAAqsIAAKBBAAAsQgAAqEIAACjCAADQwQAAwkIAAIA_AACKwgAAEMEAANzCAABgwQAABMIAALBCAACAQQAAEEEAADBBAAAAQQAA-MEAAMTCAAA0QgAASMIAALhBAABswgAAGEIAACDBAAAwwQAADMIAANBBAACAQQAAJMIAAADCAADowQAAsMEAAOjBAAAQwgAANMIAAMBAAAC4wQAAVMIAAPjBAACEQgAAMMEAABTCAAAAAAAALEIAAMhBAAA4wgAAAEIAAIBAAAD4QQAAeEIAABxCAAA4wgAAbMIAAMjBAABAwQAAgEAAAKBAAAAsQgAAwEEAAODAAACAwAAAcEIAAIBAAACwwQAANEIAANBBAADQwQAACEIAAABAAACGwgAAJMIAAKbCAADgQQAAEMEAAMBAAABAwQAAhsIAAADCAAAwwQAAWEIAAKpCAAC4QQAAoMAAAIA_AADAQQAAIMEAADBBAADYwQAAFMIAABBBAAAIwgAAHMIAADRCAACAwgAA2MEAABDCAAAoQgAAVEIAABxCAAAAAAAAEMEAADDBAADAwAAA8MEAAPjBAABEQgAATMIAAFBBAAAUQgAAHEIAAABAAAAYwgAA4EEgADgTQAlIdVABKo8CEAAagAIAAFC9AAAwPQAAfD4AAIC7AAC4vQAAND4AAIo-AAAXvwAAED0AABA9AAAUvgAA4DwAAKA8AACoPQAApr4AAKA8AACoPQAAiD0AALg9AADePgAAfz8AAJ6-AADgvAAAiD0AAIi9AAAsvgAAgDsAAHC9AAC4PQAAvj4AAJg9AAD4PQAAHL4AADy-AABMvgAARD4AAHw-AAB0vgAAmr4AAEy-AACWvgAAiD0AAKg9AABAPAAADL4AADA9AAA8PgAAoLwAADS-AAC4vQAAJD4AALi9AABUPgAAiD0AABS-AADgPAAAHz8AADA9AABAvAAA2D0AAKA8AADIvQAAyD0AADQ-IAA4E0AJSHxQASqPAhABGoACAAAcvgAALD4AAFC9AAArvwAAjj4AAHC9AAAwPQAABL4AANi9AAAcPgAA4DwAAEC8AAAkvgAAir4AABA9AAAwvQAAuL0AABM_AAC4vQAAnj4AAKA8AADgPAAAyD0AAEy-AABAPAAAMD0AAFS-AADgPAAAHL4AABQ-AAAEPgAADD4AAEy-AADYPQAAoDwAABy-AACgPAAAUD0AAIK-AAAQvQAAFD4AAKA8AADIvQAAyD0AAEy-AACgvAAAf78AAIi9AAAQPQAA2D0AAOC8AAAQPQAAyD0AACQ-AABwPQAA4DwAABC9AAA0vgAA-L0AAMi9AAA8vgAAiD0AABQ-AACovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Q8SfVDr4OjU","parent-reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10575742038037045079"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1929399438"}},"dups":{"9304078160741351241":{"videoId":"9304078160741351241","title":"\u0007[eigenchris\u0007]'s Math/Physics YouTube Channel Recommendations","cleanTitle":"eigenchris's Math/Physics YouTube Channel Recommendations","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4ZZ7Po6rckU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4ZZ7Po6rckU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":724,"text":"12:04","a11yText":"Süre 12 dakika 4 saniye","shortText":"12 dk."},"views":{"text":"29,9bin","a11yText":"29,9 bin izleme"},"date":"23 oca 2022","modifyTime":1642896000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4ZZ7Po6rckU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4ZZ7Po6rckU","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":724},"parentClipId":"9304078160741351241","href":"/preview/9304078160741351241?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/9304078160741351241?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6989326111684847947":{"videoId":"6989326111684847947","title":"Spinors for Beginners 20: Lorentz Group / Algebra Representation Theory","cleanTitle":"Spinors for Beginners 20: Lorentz Group / Algebra Representation Theory","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=tztQrSRF_Ds","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/tztQrSRF_Ds?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":3219,"text":"53:39","a11yText":"Süre 53 dakika 39 saniye","shortText":"53 dk."},"views":{"text":"25,1bin","a11yText":"25,1 bin izleme"},"date":"2 haz 2024","modifyTime":1717332102000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/tztQrSRF_Ds?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=tztQrSRF_Ds","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":3219},"parentClipId":"6989326111684847947","href":"/preview/6989326111684847947?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/6989326111684847947?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6839165130839916709":{"videoId":"6839165130839916709","title":"Spinors for Beginners 24: Proca and Maxwell Equations (derivation + solutions)","cleanTitle":"Spinors for Beginners 24: Proca and Maxwell Equations (derivation + solutions)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=F9m9bo6CGtg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/F9m9bo6CGtg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2097,"text":"34:57","a11yText":"Süre 34 dakika 57 saniye","shortText":"34 dk."},"views":{"text":"9,8bin","a11yText":"9,8 bin izleme"},"date":"7 eyl 2025","modifyTime":1757250006000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/F9m9bo6CGtg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=F9m9bo6CGtg","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":2097},"parentClipId":"6839165130839916709","href":"/preview/6839165130839916709?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/6839165130839916709?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8710080905522656406":{"videoId":"8710080905522656406","title":"Spinors for Beginners 16: Lie Groups and Lie Algebras","cleanTitle":"Spinors for Beginners 16: Lie Groups and Lie Algebras","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=IPzwqAVfce4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/IPzwqAVfce4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2182,"text":"36:22","a11yText":"Süre 36 dakika 22 saniye","shortText":"36 dk."},"views":{"text":"55,5bin","a11yText":"55,5 bin izleme"},"date":"10 ara 2023","modifyTime":1702221534000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/IPzwqAVfce4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=IPzwqAVfce4","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":2182},"parentClipId":"8710080905522656406","href":"/preview/8710080905522656406?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/8710080905522656406?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7326326752305921367":{"videoId":"7326326752305921367","title":"Spinors for Beginners 2: Jones Vectors and Light Polarization","cleanTitle":"Spinors for Beginners 2: Jones Vectors and Light Polarization","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=DvEdm6a-9Tw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/DvEdm6a-9Tw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1071,"text":"17:51","a11yText":"Süre 17 dakika 51 saniye","shortText":"17 dk."},"views":{"text":"106,2bin","a11yText":"106,2 bin izleme"},"date":"13 ara 2022","modifyTime":1670889600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/DvEdm6a-9Tw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=DvEdm6a-9Tw","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":1071},"parentClipId":"7326326752305921367","href":"/preview/7326326752305921367?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/7326326752305921367?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6288718178008201116":{"videoId":"6288718178008201116","title":"Relativity 105b: Acceleration - Bell's Spaceship Paradox and Rindler Coordinates","cleanTitle":"Relativity 105b: Acceleration - Bell's Spaceship Paradox and Rindler Coordinates","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=O92pQXZaEnw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O92pQXZaEnw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2061,"text":"34:21","a11yText":"Süre 34 dakika 21 saniye","shortText":"34 dk."},"views":{"text":"55,3bin","a11yText":"55,3 bin izleme"},"date":"10 kas 2020","modifyTime":1604966400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O92pQXZaEnw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O92pQXZaEnw","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":2061},"parentClipId":"6288718178008201116","href":"/preview/6288718178008201116?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/6288718178008201116?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9915049099661681835":{"videoId":"9915049099661681835","title":"Relativity 109b: Gravitational Waves - Linearized Gravity / Weak Gravity","cleanTitle":"Relativity 109b: Gravitational Waves - Linearized Gravity / Weak Gravity","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=CZoeBmrtJO0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CZoeBmrtJO0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":830,"text":"13:50","a11yText":"Süre 13 dakika 50 saniye","shortText":"13 dk."},"views":{"text":"32,5bin","a11yText":"32,5 bin izleme"},"date":"31 oca 2022","modifyTime":1643587200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CZoeBmrtJO0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CZoeBmrtJO0","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":830},"parentClipId":"9915049099661681835","href":"/preview/9915049099661681835?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/9915049099661681835?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12858440065847054650":{"videoId":"12858440065847054650","title":"Relativity 105d: Acceleration - Twin Paradox and Proper Time Along Curves (Rindler Metric)","cleanTitle":"Relativity 105d: Acceleration - Twin Paradox and Proper Time Along Curves (Rindler Metric)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=F8hmyOin2Nw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/F8hmyOin2Nw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1946,"text":"32:26","a11yText":"Süre 32 dakika 26 saniye","shortText":"32 dk."},"views":{"text":"31,9bin","a11yText":"31,9 bin izleme"},"date":"14 oca 2021","modifyTime":1610582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/F8hmyOin2Nw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=F8hmyOin2Nw","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":1946},"parentClipId":"12858440065847054650","href":"/preview/12858440065847054650?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/12858440065847054650?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8115113256113739094":{"videoId":"8115113256113739094","title":"Relativity 110f: Cosmology - Friedmann Equations Derivation + Universe Evolution Models (Finale)","cleanTitle":"Relativity 110f: Cosmology - Friedmann Equations Derivation + Universe Evolution Models (Finale)","host":{"title":"YouTube","href":"http://www.youtube.com/live/yIKye8SJcBc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/yIKye8SJcBc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2408,"text":"40:08","a11yText":"Süre 40 dakika 8 saniye","shortText":"40 dk."},"views":{"text":"56,2bin","a11yText":"56,2 bin izleme"},"date":"22 tem 2022","modifyTime":1658448000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/yIKye8SJcBc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=yIKye8SJcBc","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":2408},"parentClipId":"8115113256113739094","href":"/preview/8115113256113739094?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/8115113256113739094?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4171312679803320920":{"videoId":"4171312679803320920","title":"Tensors for Relativity Explained in 1 Minute (#VeritasiumContest)","cleanTitle":"Tensors for Relativity Explained in 1 Minute (#VeritasiumContest)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=MIHhXdARp5c","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/MIHhXdARp5c?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":60,"text":"1:00","a11yText":"Süre 1 dakika","shortText":"1 dk."},"views":{"text":"47,6bin","a11yText":"47,6 bin izleme"},"date":"26 ağu 2021","modifyTime":1629936000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/MIHhXdARp5c?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=MIHhXdARp5c","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":60},"parentClipId":"4171312679803320920","href":"/preview/4171312679803320920?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/4171312679803320920?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15815206544725157963":{"videoId":"15815206544725157963","title":"Relativity 110b: Cosmology - FLRW Metric Derivation (3 possible geometries)","cleanTitle":"Relativity 110b: Cosmology - FLRW Metric Derivation (3 possible geometries)","host":{"title":"YouTube","href":"http://www.youtube.com/live/iERBF2_TnXo","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iERBF2_TnXo?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1556,"text":"25:56","a11yText":"Süre 25 dakika 56 saniye","shortText":"25 dk."},"views":{"text":"36,4bin","a11yText":"36,4 bin izleme"},"date":"5 tem 2022","modifyTime":1656979200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iERBF2_TnXo?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iERBF2_TnXo","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":1556},"parentClipId":"15815206544725157963","href":"/preview/15815206544725157963?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/15815206544725157963?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9114987608141430193":{"videoId":"9114987608141430193","title":"Introduction to Mathematics of Spinors (from a self-learner)","cleanTitle":"Introduction to Mathematics of Spinors (from a self-learner)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=O12Y0DkLDf8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O12Y0DkLDf8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":424,"text":"7:04","a11yText":"Süre 7 dakika 4 saniye","shortText":"7 dk."},"views":{"text":"30,8bin","a11yText":"30,8 bin izleme"},"date":"20 haz 2021","modifyTime":1624206702000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O12Y0DkLDf8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O12Y0DkLDf8","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":424},"parentClipId":"9114987608141430193","href":"/preview/9114987608141430193?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/9114987608141430193?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8633327715492134551":{"videoId":"8633327715492134551","title":"Tensors for Beginners 1: Forward and Backward Transformations (Remake)","cleanTitle":"Tensors for Beginners 1: Forward and Backward Transformations (Remake)","host":{"title":"YouTube","href":"http://www.youtube.com/live/bpuE_XmWQ8Y","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bpuE_XmWQ8Y?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":677,"text":"11:17","a11yText":"Süre 11 dakika 17 saniye","shortText":"11 dk."},"views":{"text":"152,9bin","a11yText":"152,9 bin izleme"},"date":"30 kas 2022","modifyTime":1669827630000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bpuE_XmWQ8Y?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bpuE_XmWQ8Y","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":677},"parentClipId":"8633327715492134551","href":"/preview/8633327715492134551?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/8633327715492134551?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11751159434853112887":{"videoId":"11751159434853112887","title":"Relativity 108d: Schwazrschild Metric - Eddington-Finkelstein, Kruskal-Szekeres, White/Wormholes","cleanTitle":"Relativity 108d: Schwazrschild Metric - Eddington-Finkelstein, Kruskal-Szekeres, White/Wormholes","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=O_2vnb_eVGE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/O_2vnb_eVGE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2229,"text":"37:09","a11yText":"Süre 37 dakika 9 saniye","shortText":"37 dk."},"views":{"text":"42,2bin","a11yText":"42,2 bin izleme"},"date":"31 mayıs 2022","modifyTime":1654015061000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/O_2vnb_eVGE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=O_2vnb_eVGE","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":2229},"parentClipId":"11751159434853112887","href":"/preview/11751159434853112887?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/11751159434853112887?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6516361911412427041":{"videoId":"6516361911412427041","title":"What Is Momentum? (joke video)","cleanTitle":"What Is Momentum? (joke video)","host":{"title":"YouTube","href":"http://www.youtube.com/live/jm7jVi8akcc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/jm7jVi8akcc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":338,"text":"5:38","a11yText":"Süre 5 dakika 38 saniye","shortText":"5 dk."},"views":{"text":"1,2milyon","a11yText":"1,2 milyon izleme"},"date":"1 nis 2021","modifyTime":1617235200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/jm7jVi8akcc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=jm7jVi8akcc","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":338},"parentClipId":"6516361911412427041","href":"/preview/6516361911412427041?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/6516361911412427041?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15848855463945950131":{"videoId":"15848855463945950131","title":"Spinors for Beginners 5: The Flagpole and Complex Projective Line (CP1)","cleanTitle":"Spinors for Beginners 5: The Flagpole and Complex Projective Line (CP1)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=T0V08u4t-cg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/T0V08u4t-cg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1463,"text":"24:23","a11yText":"Süre 24 dakika 23 saniye","shortText":"24 dk."},"views":{"text":"49,3bin","a11yText":"49,3 bin izleme"},"date":"8 şub 2023","modifyTime":1675870522000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/T0V08u4t-cg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=T0V08u4t-cg","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":1463},"parentClipId":"15848855463945950131","href":"/preview/15848855463945950131?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/15848855463945950131?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1724146024986472400":{"videoId":"1724146024986472400","title":"Doing the World's Hardest Integral (joke video)","cleanTitle":"Doing the World's Hardest Integral (joke video)","host":{"title":"YouTube","href":"http://www.youtube.com/live/cDJb-TIhmdI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/cDJb-TIhmdI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":304,"text":"5:04","a11yText":"Süre 5 dakika 4 saniye","shortText":"5 dk."},"views":{"text":"176bin","a11yText":"176 bin izleme"},"date":"1 nis 2022","modifyTime":1648814431000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/cDJb-TIhmdI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=cDJb-TIhmdI","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":304},"parentClipId":"1724146024986472400","href":"/preview/1724146024986472400?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/1724146024986472400?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10575742038037045079":{"videoId":"10575742038037045079","title":"Relativity 106a: Tensors - Frequency Wave Covectors and Doppler Shift (with accelerating frames)","cleanTitle":"Relativity 106a: Tensors - Frequency Wave Covectors and Doppler Shift (with accelerating frames)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Q8SfVDr4OjU","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Q8SfVDr4OjU?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDTjh3VFVsU0Fyb0xzbFd5Zjg3RTJwdw==","name":"eigenchris","isVerified":false,"subscribersCount":0,"url":"/video/search?text=eigenchris","origUrl":"http://www.youtube.com/@eigenchris","a11yText":"eigenchris. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1986,"text":"33:06","a11yText":"Süre 33 dakika 6 saniye","shortText":"33 dk."},"views":{"text":"32,9bin","a11yText":"32,9 bin izleme"},"date":"14 mar 2021","modifyTime":1615680000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Q8SfVDr4OjU?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Q8SfVDr4OjU","reqid":"1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL","duration":1986},"parentClipId":"10575742038037045079","href":"/preview/10575742038037045079?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","rawHref":"/video/preview/10575742038037045079?parent-reqid=1769881961257317-16975548758540455342-balancer-l7leveler-kubr-yp-sas-178-BAL&text=eigenchris","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"9755487585404553427178","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"eigenchris","queryUriEscaped":"eigenchris","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}