{"pages":{"search":{"query":"TileStats","originalQuery":"TileStats","serpid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","parentReqid":"","serpItems":[{"id":"17541692135614939269-0-0","type":"videoSnippet","props":{"videoId":"17541692135614939269"},"curPage":0},{"id":"8695896514729726923-0-1","type":"videoSnippet","props":{"videoId":"8695896514729726923"},"curPage":0},{"id":"5607228921909864469-0-2","type":"videoSnippet","props":{"videoId":"5607228921909864469"},"curPage":0},{"id":"1011555118718052638-0-3","type":"videoSnippet","props":{"videoId":"1011555118718052638"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dFRpbGVTdGF0cwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","ui":"desktop","yuid":"5620119401769284538"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"9922105268708046775-0-5","type":"videoSnippet","props":{"videoId":"9922105268708046775"},"curPage":0},{"id":"4545027009373898495-0-6","type":"videoSnippet","props":{"videoId":"4545027009373898495"},"curPage":0},{"id":"13347887546543971209-0-7","type":"videoSnippet","props":{"videoId":"13347887546543971209"},"curPage":0},{"id":"1510416419299072604-0-8","type":"videoSnippet","props":{"videoId":"1510416419299072604"},"curPage":0},{"id":"8527053050776657669-0-9","type":"videoSnippet","props":{"videoId":"8527053050776657669"},"curPage":0},{"id":"14822468016149199727-0-10","type":"videoSnippet","props":{"videoId":"14822468016149199727"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dFRpbGVTdGF0cwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","ui":"desktop","yuid":"5620119401769284538"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"2837433166803986098-0-12","type":"videoSnippet","props":{"videoId":"2837433166803986098"},"curPage":0},{"id":"10109690327132498673-0-13","type":"videoSnippet","props":{"videoId":"10109690327132498673"},"curPage":0},{"id":"17308837180605558222-0-14","type":"videoSnippet","props":{"videoId":"17308837180605558222"},"curPage":0},{"id":"1992520126928334115-0-15","type":"videoSnippet","props":{"videoId":"1992520126928334115"},"curPage":0},{"id":"10885229111142338145-0-16","type":"videoSnippet","props":{"videoId":"10885229111142338145"},"curPage":0},{"id":"1779425705081309698-0-17","type":"videoSnippet","props":{"videoId":"1779425705081309698"},"curPage":0},{"id":"7876030266654969248-0-18","type":"videoSnippet","props":{"videoId":"7876030266654969248"},"curPage":0},{"id":"4028514741845982069-0-19","type":"videoSnippet","props":{"videoId":"4028514741845982069"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dFRpbGVTdGF0cwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","ui":"desktop","yuid":"5620119401769284538"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTileStats"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"4737397595908463337168","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1457147,0,85;1450763,0,8;1472323,0,29;1466867,0,40;1457617,0,50;1433081,0,46;1424968,0,95;1468855,0,71;1460716,0,97;1462157,0,22;1459297,0,42;1465968,0,94;1459323,0,29;1471623,0,69;1461641,0,26;1339938,0,21;1464524,0,14;1470250,0,71;1463533,0,70;1373787,0,40;1466295,0,1;1463529,0,23;1466077,0,92;1464404,0,97;1349038,0,20;658770,0,24;364898,0,24;1466619,0,44;1465679,0,3;124062,0,78;1404017,0,93;1471182,0,84;1470320,0,23;1304309,0,35;284407,0,35;45974,0,48;151171,0,12;1281084,0,5;287509,0,39;1447467,0,23;927534,0,30;1466396,0,59;912283,0,23"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3DTileStats","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=TileStats","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=TileStats","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"TileStats: Yandex'te 492 video bulundu","description":"Результаты поиска по запросу \"TileStats\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"TileStats — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y24601eef1d6f8ecd6d24c1a4fa48e227","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457147,1450763,1472323,1466867,1457617,1433081,1424968,1468855,1460716,1462157,1459297,1465968,1459323,1471623,1461641,1339938,1464524,1470250,1463533,1373787,1466295,1463529,1466077,1464404,1349038,658770,364898,1466619,1465679,124062,1404017,1471182,1470320,1304309,284407,45974,151171,1281084,287509,1447467,927534,1466396,912283","queryText":"TileStats","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5620119401769284538","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769284561","tz":"America/Louisville","to_iso":"2026-01-24T14:56:01-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1457147,1450763,1472323,1466867,1457617,1433081,1424968,1468855,1460716,1462157,1459297,1465968,1459323,1471623,1461641,1339938,1464524,1470250,1463533,1373787,1466295,1463529,1466077,1464404,1349038,658770,364898,1466619,1465679,124062,1404017,1471182,1470320,1304309,284407,45974,151171,1281084,287509,1447467,927534,1466396,912283","queryText":"TileStats","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"5620119401769284538","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"4737397595908463337168","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":158,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"5620119401769284538","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"17541692135614939269":{"videoId":"17541692135614939269","docid":"34-1-3-ZA04CD9A8B5B5B51C","description":"This is to recommend you the TileStats YouTube channel. It is a very neat and useful resource for people eager to learn about various principles and approaches in #statistics. Especially useful...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1778564/1631119b745efc3e009f0d7228385698/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hx6_9AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzTEMgrYFg_M","linkTemplate":"/video/preview/17541692135614939269?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"TileStats YouTube channel | Recommendation","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zTEMgrYFg_M\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhYKFDE3NTQxNjkyMTM1NjE0OTM5MjY5WhQxNzU0MTY5MjEzNTYxNDkzOTI2OWqIFxIBMBgAIkUaMQAKKmhodWJoaXJkbnJvb2dyaWNoaFVDWHVYLWtRMVRiS0hXZUI3NU5nbWhsQRICABIqEMIPDxoPPxO5AYIEJAGABCsqiwEQARp4gf7_-P_7BgDy-xEFBgT-AQEI_gj4_v4A8wEGCQMC_wDpDgEDB_8AAAT4CAQAAAAA8PUGAAAAAAAE8vz_AgAAAAzy_f_6AAAAA_v9Af4BAAAE7QL1AQAAAAAGDgQAAAAA_AwH_wIAAAAA__sMAAAAAAjsCAYAAAAAIAAt2W3kOzgTQAlITlACKoQCEAAa8AF__9UAvxD7_87WRgA6K-AAmSLp_y3_1ADIDOcAoRTl_9r-FwD4CsH_6t4GAN8dHv_AFBb_KkQKAQ7_FP8g8yv_Uf3-AEU2GgD4B-kBND4F_Qkj4_4h1wICC_X4_-89-QA9JAr_5PvXA9spDgHZ7hT_8vYVAhYNJwTuIxv53gMLAeoEB_wQBQUA8vfT_vgJ5QAC1wkJAAP69wPwJQjw1icGBAL5CgMNAvbg9v3-8vAjAPgJIPT0yCQIFCnkBg_mAAT8EdcBERbc_xYx9Afh-PL1NQHl_eTdFP4sFPYO_t8DBioWCvDwDPv82PcA_RIbCA0gAC1D7gs7OBNACUhhUAIqzwcQABrAB0-s275jSyq9YjB_vMPmvT3BSxq9G0sYPGmNQT12erS9j7agvKDiaD4Ljv06MNYaurPwdb7H0Ja8RWRAOaZCPD5lYTm9PHxDPTsF1LxlCHY9CUmwPBzT071nORq9punYO66Yxj2rMp27u_Tpu_-VZT6WTe883xiCPLOudr3rPfC8IIAvvTLj8buxV_O8yZb-uv7VQz1gPnm9fNa1POMiLTz9dX294omqvH0_Bb56leu8mrw3u5dSV76fo8A6tr_OPKGutL3KMkS8hiW5vOA9UbyQfRU9xv86Oz3WDD5Lj0s8tJKUO7Xi272W4_y6M6X1vMNymr1o0FC89zRxvGRhADybjVq9hlg7u2nWIz3muMk8j5fkvMzISr2wtJK9Zp6BPGGCRD0qrom7frHSPBbswD1Kq0s9Y2JzvAi6TL3hz3A99ry0u_ZJSbwW65W9V9ktvF9wlzx9M5w7ss6CvL5b6jyWzpc9jzaOufYpIr1SMYk9MAonPFLtoz3F4Ma8JnyEO9j1izwn2rW9Uu6jPEK0Jj64gMa8W2zJvFwyOD0XWy28ZiCruB_fyb0JZQa9JWIjvHY0Dj1phwS9sjJYuw9hPD2RJC0824M1PIZwkT3cUj09a9UuvMRD2D03Aky8JWxVuiJOzLzU_2g9i_Wyumynd721qgC9FHD4OzoG5D25U4o9fftsueb2gTw1qVI9YYLgO8yfazsq8Uq8Oo6Cuy-RRr2XpWI9HmWruutjTzzLxY68oBdNuzi5xDxu5ka8pPOru5k2Mr0NGpc7C_KXuXv6GL5cSaE8NcO_Oai_Iz038V-9aDShuF-gv73i6Kq9vluLubnj6Dxa25-9jWhGOeIDqz1wkxY94wfCOOGiyTyPVP-9U1VkODUZX70F-w-9ep6JuriIuTxlAZ495ACouBPuBb5qvf-9KDg_OZFCiT2i4zS8hpaSuKHlr7xUTRW9tRgxuEGUeTwiwp66yj9MNzr0jLz0gEO85d2JuXisI7yun349fQTTOG4YBb15bJW8neFRty9rpLt7qnm9eVA6t26mAr7o24I8B9nxuLw6y7u4XJg8vtCSNg0_Dr2pbzQ9Ffa4NzfIXz26EkE9z9CTOK0V-zmztgk-wnvfNyUkDjxsKJC8iU7FN4ayi70hlT29OwmnOGU00j3sVR-9ofXEN-gnQbzX6Is9uttQOJ_Fdz1vj289bbCGN9KIjr2C68U9t9ccuIfTUz3_UQU9uVDTOPqLD71_doa9QVvntTblCr0gY2m9PTP8t-Jtbzw1bvs8zkjXNyAAOBNACUhtUAEqcxAAGmAvBQAA3RXTrgQO8_0F8hH7B98CD8_6_xL1APQmxMf4-u7Gxg8AN_sU0LAAAAD8G_REKQDJbgjL5DH2JgbOAeQPBH8XDC60HQr1488lC8np-wHobvgAKMfRBv_xqjcf-vEgAC3Bkio7OBNACUhvUAIqrwYQDBqgBgAAsMEAAPhBAAAMQgAAgMAAADBBAABowgAAyEEAABjCAAAEwgAAuEEAALDBAAD4wQAAnMIAAADCAACAvwAAQMAAAOjBAACewgAAYEEAAIhBAACAwAAAqMEAABBBAACGQgAAAAAAAADCAAAAwgAAwMAAAMBBAABAQgAAoMEAALBBAAAcwgAAqMEAAEBCAACQwQAAgEAAAFRCAADgwQAAPEIAAERCAABkwgAAUEEAAMDAAAD4QQAAFMIAAAzCAABwwQAAmEIAAADAAACkwgAAyMEAAGjCAABwwgAAVEIAAHBBAACwwgAARMIAAEBBAADYQQAArkIAAIDAAABAwQAAEMIAAMhBAACAwgAAiEEAAEzCAABQwgAAQMIAAHBCAACcQgAAoEEAAKhBAAAoQgAAgMIAANDBAACwQQAAbEIAACBBAABowgAAwMAAAMBAAACwQQAAUMEAAIC_AABsQgAADEIAAExCAABYwgAA-MEAAKBBAAC4wQAAfMIAAJDBAABYwgAAwEAAANJCAADIQQAAgMAAAJDBAADgQQAAmEEAAGjCAAAswgAAiEEAADhCAAAEQgAAEEEAABRCAAAIQgAABEIAADzCAAAcQgAAyEEAAEBCAAAQwQAAFMIAAMDAAACwwQAAAAAAAEzCAAAQwgAApsIAADxCAACAwAAAkMEAAEBCAAAQwgAAPMIAAMDBAACgQAAAIMEAAEBBAACgwAAAUEEAALhBAAC4wQAA4EEAAKrCAAAAQgAARMIAAOjBAACIQQAAYEIAAGDCAADIwQAAlkIAAGxCAAAAAAAAYMEAAMDBAACAwAAAbMIAAKBAAABAwQAAYEEAAILCAAAgQQAAcEIAAEjCAADYQQAAkMEAAPzCAACgQAAA2MEAACBCAAA0QgAAAEIAADDCAAD4wQAAvEIAAHTCAAA0wgAAkMEAADRCAAAEwgAAiMIAAEDAAABEQgAAsEEAAIhBAACgwQAAAEAAAIZCAAAkwgAAwMEAAEBBAAAUwgAAwMAAAGTCAAAQwQAAEEIAAEDBAACAQAAAAAAAAJjCAACgQAAA8MEAAIDBIAA4E0AJSHVQASqPAhAAGoACAAD4vQAAFL4AAHC9AADYPQAAqL0AADA9AAAwPQAAH78AADC9AAAEPgAAzj4AAJi9AACAOwAATD4AAJK-AADYvQAAhj4AADQ-AACYPQAA1j4AAH8_AAAQvQAAMD0AAOg9AABEvgAA-L0AALi9AADYPQAAuL0AABw-AACGPgAAQLwAAHC9AACYvQAAyD0AAKo-AACGPgAAir4AAGy-AAA0vgAAXL4AAFy-AADgPAAADL4AADS-AAAQPQAAQLwAAIq-AADGvgAAtr4AAAw-AAAUPgAAfD4AAPg9AACKvgAAmL0AADk_AAC4PQAAhj4AABQ-AADgvAAA2L0AAEA8AADYPSAAOBNACUh8UAEqjwIQARqAAgAABL4AABC9AAAEvgAAK78AAKA8AACoPQAAEL0AAEA8AADgvAAATD4AAKi9AAAEvgAAqD0AAFC9AACYPQAAQLwAAJg9AAA7PwAAUL0AAIY-AADgvAAAmD0AACw-AACYvQAAcL0AAIY-AABAPAAAgLsAAHA9AADIPQAAMD0AAOA8AACgPAAAHL4AAIC7AACAuwAAUL0AAJg9AAAUvgAAHL4AABQ-AABEPgAABD4AAHC9AADovQAA4DwAAH-_AABwPQAAED0AAEC8AADgPAAA6L0AAIg9AABsPgAAdD4AADA9AACoPQAAEL0AAOi9AACYvQAAcD0AAPi9AACAOwAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=zTEMgrYFg_M","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["17541692135614939269"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2688923352"},"8695896514729726923":{"videoId":"8695896514729726923","docid":"34-9-9-ZDE62BCCD234261AD","description":"See all my videos at: https://www.tilestats.com/ 1. How to calculate the IQR (0:26) 2. The boxplot (02:45) 3. The 1.5 IQR rule (04:00) 4. How to deal with outliers (05:00) 5. When a boxplot does...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/218123/65bc1e5e478be6e53f483c1d87cd58a6/564x318_1"},"target":"_self","position":"1","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DucjvikjP0g8","linkTemplate":"/video/preview/8695896514729726923?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to identify and deal with outliers | The 1.5 IQR rule | Boxplots","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ucjvikjP0g8\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzg2OTU4OTY1MTQ3Mjk3MjY5MjNaEzg2OTU4OTY1MTQ3Mjk3MjY5MjNqrw0SATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8T_wOCBCQBgAQrKosBEAEaeIEA_f_-_gMA9AILAAIE_gEZAAYJBwEBAOX2BgII_QIA_BH8-vwBAAAGCQcFCwAAAPgF-v70_wEACAoEAgUAAAAA_P4G-QAAAAcH_wL-AQAAAvYKBvUCAAEDAggHAAAAAPn67wMAAAABB_v8BgAAAAD37_D8AAAAACAALVL32js4E0AJSE5QAipzEAAaYFATADT79vfe2RzdGfbZ_QgL8zHf3Bn_HNsABSnM6gUI484Y8P8k5An3tgAAAAQmFDRTAAFgQ_KyCwwAH97Y9gEyfwIR-d0NDPwO-SvcCg0a8uA7MwC68wP03_8LJRwmESAALZfXOzs4E0AJSG9QAiqvBhAMGqAGAADgQAAASMIAADhCAADAwQAAKEIAAJZCAADIQQAAbEIAACjCAADAQAAANMIAAADBAAC6wgAA-MEAAOBBAADwwQAAOMIAAKjBAAA4QgAAmMEAAChCAAAowgAATMIAADBBAAAUwgAAPEIAAKBBAABwwgAAgD8AALjBAAAAwAAAYEIAABzCAAD4wQAAmMEAAIBAAABAwAAADEIAAABBAADAQQAAiMEAACBBAADgQQAABEIAACTCAACgwgAAoEEAAPhBAABgQQAAgD8AANjBAABQwgAAbMIAAFBBAAAIQgAAlMIAAAjCAACAQQAAIMEAAI5CAAA8QgAAwMEAANjBAADwwQAAgEIAAKjCAABEwgAA6MEAAIBAAABMwgAALEIAAIBBAAAQwgAAqEEAAEDBAABAwAAARMIAANhBAAAcQgAA0EEAAI7CAADaQgAA4EAAAIBBAAAAQgAAgMAAACBCAACYQQAAJEIAAODBAADAwAAAukIAADTCAADIwQAAmMEAAPjBAABMwgAACMIAAN5CAAAcQgAAxMIAAIDBAAAwQQAASMIAANBBAAAQQQAAHEIAAGhCAABQwQAAbEIAAABAAABgwQAAKMIAAAxCAACgQQAA8MEAAHDBAAAAwAAAHMIAAKBAAABAwQAAWMIAAFDBAAC4wQAA6MEAADhCAACMQgAAsEEAAADAAAB8wgAANMIAAMhBAAA4wgAAoEAAABzCAACgQgAANEIAAADAAAAIwgAAAAAAAIC_AABswgAAaEIAAKhBAAAUQgAAiMEAAJrCAACgQQAAFEIAAFxCAACgwQAAUMEAAMjBAABMwgAAYEEAAIBAAAB4wgAAMEEAAFjCAADAwQAAgEAAAMhBAAAoQgAAqMEAALbCAAAUwgAAnkIAAIBBAACIQQAA4MAAAADCAABkQgAAgEEAAFhCAACYwQAAgMEAAExCAACQwgAAUMEAAEDAAADQwQAAAEIAAIzCAADYQQAAEEEAAIA_AACAwQAAkEEAAAhCAAA4wgAAFMIAAOBBAABQQgAALMIAAATCAADAwQAAyMEAAKhBAABIQgAAQMAgADgTQAlIdVABKo8CEAAagAIAAAy-AAAsvgAA4LwAAFw-AABAPAAAkj4AAPg9AAANvwAAsr4AAPi9AAB8vgAAmL0AAOC8AAC4vQAAjr4AAEC8AAAkPgAAiD0AABA9AADSPgAAfz8AAKi9AABwvQAA4DwAADS-AACoPQAAdD4AAFQ-AABAvAAAmD0AAJ4-AAA0PgAAnr4AADC9AABAvAAAFD4AAMg9AAAQvQAAXL4AAOa-AADYvQAAqD0AANY-AABkvgAAyD0AADS-AACAOwAAgr4AAKg9AABwPQAAdD4AAOi9AACoPQAAmL0AAIi9AADYvQAAFz8AAOC8AACYPQAAMD0AAAS-AADYPQAARD4AAFC9IAA4E0AJSHxQASqPAhABGoACAACuvgAAmD0AAFC9AAAPvwAAUD0AADS-AADIPQAALL4AAKA8AAAcPgAAoDwAAHC9AACoPQAAFL4AAHA9AABQvQAAHD4AAAs_AACoPQAA8j4AADA9AACgvAAAQDwAAFy-AAAcPgAAcL0AAOg9AACAuwAALD4AAIg9AABAvAAA-D0AACS-AABAPAAAHD4AAHC9AADoPQAA6D0AADS-AACIPQAAyD0AALi9AACAOwAAUD0AAPi9AADYPQAAf78AAEC8AACqvgAA-D0AAFA9AADIvQAAML0AANg9AAC4vQAAiD0AAOC8AACYvQAAUL0AAOC8AAAkvgAAdL4AAFA9AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=ucjvikjP0g8","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["8695896514729726923"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"5607228921909864469":{"videoId":"5607228921909864469","docid":"34-3-7-Z41506CE08283B1A2","description":"See all my videos at: https://www.tilestats.com/ 1. How to calculate a 95% bootstrap confidence interval (01:40) 2. Do bootstrap confidence intervals work? (05:00) 3. How to calculate a 95...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/763269/6f38db477569fab6e76fcada21c10316/564x318_1"},"target":"_self","position":"2","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAA7Jtuu9TaE","linkTemplate":"/video/preview/5607228921909864469?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Bootstrap confidence intervals - explained","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AA7Jtuu9TaE\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzU2MDcyMjg5MjE5MDk4NjQ0NjlaEzU2MDcyMjg5MjE5MDk4NjQ0Njlqrw0SATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8TpAaCBCQBgAQrKosBEAEaeIEFEAQJ_gIABQQPBfoI_AIHAADw9___AO4J8QAEAAAA_QMA-fYBAAD0-_YL_QAAAPkH-vP2_gEACPoADAMAAAAW-A4J_QAAAA4Y-wL-AQAA9PL_AQP_AAD3-gH__wAAAPsEBP0AAAAAA_zwBQAAAAAB_OsEAP8AACAALcaJ2Ds4E0AJSE5QAipzEAAaYCIcADUV79zX8VDmKPL78y8P4vrc0zAABf4AChnP2QvqA9ADA_9D1yjssQAAAN4vzks6AAln9Py4ARYA9KPQ-C07f0H8IBdM3Ozo6vkZAwX0Bt8DHADx6vAXPsvaLfYcESAALU4ELDs4E0AJSG9QAiqvBhAMGqAGAABAwAAAoEAAAARCAAAwQQAAsEEAAEBBAABIQgAA-EEAAAjCAAAAQQAATEIAAODAAADQwQAAPMIAAADAAAAQwgAAUEEAAAjCAADAQAAAQMAAAABCAADIwQAA0MEAAABCAACMwgAAoEIAAHTCAABQwQAAyEEAAKDBAABYQgAABEIAAPjBAABQwQAAgD8AACBBAAAgQgAAkkIAANBBAACgQAAAUMIAAIC_AAC0QgAARMIAAOBAAAAAwQAAFMIAAJBBAACwQQAAGMIAAHBBAABAQAAAaMIAAAAAAACMQgAAcEIAAKTCAACIwgAAuMEAAERCAACuQgAA4EEAABzCAADewgAATEIAALjBAAA4wgAA8MEAAKjBAACOwgAAIMIAAMBAAABIwgAAoMAAACDBAAAwQQAAIEEAAPBBAADIwQAAKEIAAADCAACEQgAAYMIAANBBAABgQgAAUMEAAPjBAAA8QgAAqEEAAEDAAADAwQAAXEIAABBBAADgwAAAAMIAALDCAACgQAAAgL8AAJpCAAAAwAAAQMIAAOBBAAAcQgAAYEEAAETCAAAAAAAAYMIAACBCAABAwQAATEIAAHBCAADIwQAAmsIAAABCAACIQgAAEMEAAHBBAAAAwQAAAEAAAADAAABAQAAAMEEAAMjBAADAwAAALMIAALhBAAB8QgAABEIAACDCAAAcwgAA-EEAAILCAAAcwgAAUEIAAERCAAA0wgAAwEIAAGDBAACGwgAAVMIAAFBBAAAAwAAAPEIAADxCAADoQQAAgD8AACBCAAAwQQAAKEIAAAAAAABEwgAATEIAAGBBAAAYQgAAWEIAAMjBAAAgwgAAIEIAAJhBAACoQQAAIEIAAABCAAAwwgAAUMIAACTCAACQwQAAoEEAADhCAAAAwgAAEMIAAIDCAACAQgAAIEEAAEBBAABcwgAAikIAABhCAAAAQQAAgD8AAIZCAAAUwgAA4MAAABjCAACAwQAASEIAABRCAAAswgAAsMEAADBCAACQwgAAwEEAAEBAAABgwQAAmMEAADRCAABEQgAA6EEAAIC_AAAAAAAA4EEgADgTQAlIdVABKo8CEAAagAIAABS-AAAMvgAAQLwAAKA8AACAuwAAyD0AAJY-AABdvwAAuL0AAI4-AADyPgAAuD0AAFS-AABcPgAAML0AAFS-AAC-PgAA6D0AABS-AAAVPwAAfT8AAFA9AAAMvgAAML0AAEy-AAAwPQAAUD0AAHC9AAA8vgAADD4AAJI-AABQPQAAkr4AALi9AAAUvgAAoLwAADw-AAC4vQAANL4AAGS-AABMvgAAir4AADA9AAAMPgAAuD0AACw-AADgPAAABL4AAOi9AAAsvgAAoLwAAPg9AACIvQAAMD0AAIq-AACYPQAAfz8AAOC8AABcPgAAyj4AANg9AADoPQAAND4AABA9IAA4E0AJSHxQASqPAhABGoACAABwvQAAMD0AAFy-AAAfvwAAMD0AAKi9AACYvQAAML0AACS-AACCPgAAMD0AAAS-AACAOwAA1r4AAMg9AAAwvQAAyD0AADM_AACYPQAAqj4AAIA7AAA0PgAARD4AAHC9AAAQvQAAyD0AAFS-AABwPQAAmL0AAAS-AAAQPQAAqD0AADQ-AACovQAAMD0AALi9AADIPQAALD4AANi9AAAwPQAAgj4AAHC9AACSvgAADL4AAHC9AAA0PgAAf78AAKq-AACGvgAAoLwAANg9AADYvQAAND4AAFA9AAAwvQAAgDsAABC9AABAPAAAcL0AAKi9AAC4vQAAJD4AAOi9AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=AA7Jtuu9TaE","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5607228921909864469"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1011555118718052638":{"videoId":"1011555118718052638","docid":"34-0-14-Z224BE0202E82A675","description":"The basic steps of hypothesis testing explained in this video: 1. State the hypothesis 2. Choose a significance level 3. Perform the experiment and select a test 4. Compute the p-value 5. Draw a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/777325/569f5247b99ddf09e1e6a582aa4e5577/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/AqHZrwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DR5KxCisLQuI","linkTemplate":"/video/preview/1011555118718052638?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The basic steps of hypothesis testing","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=R5KxCisLQuI\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzEwMTE1NTUxMTg3MTgwNTI2MzhaEzEwMTE1NTUxMTg3MTgwNTI2MzhqiBcSATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8T-AOCBCQBgAQrKosBEAEaeIH2_vQB_AQA-f75BAwF_QEAA__4-f7-APMA-Q0FAv8AB_sIAfsBAAD7B_oPAgAAAPj0BgH6_wAAEAMC9QQAAAAM-vn8_gAAAAcG_wL-AQAA9fv-_AMAAAAMAQoFAAAAAP0G-PoCAAAA9wb-CQAAAAAR-wAB_PX-ACAALVAZ4Ts4E0AJSE5QAiqEAhAAGvABf_UYAcwI4wAHBe8A-BzgAY4eCf8rMuX_pwAlA8YD5gDwFeMA2OwMAPkaFADfGvwAFfX9_xACDAAe9QP_NAEUAO4aFgBH0vcBKfb7AAry_f7vLQ3-DgYO_xr49QLkAwD9IP0e_7vu5P79-dr98vM7Ah8PMQAs8hUBAAEN_OsSDQIEF9YA_fLxBPX7-QbcDwgEBwXv_QESAvvoAgUKEe_4CP798vkqD-kBMgz_CvoIEfsC8AD3Fff9BAz5Gf0MGfX63Qj4Afnn9wLtCgMBF9j0BPr0G_X-_QcAAwv1A_L0CvUDIxX86ygIAOIB_gf72fQBIAAtD2wvOzgTQAlIYVACKs8HEAAawAf9FgG_WNHVPFS3hrtCpPC8cUQtPQnmw7wZyd68Cm00veIL7jybt2A9wPq5Pbfgu7z8jLu-WlMPvMbqxbu14ZA-uhE2vRqJMD16Fy--CDwwPSmf1Lzgu22-XoqWPRa5TLxYwcQ9kZYPPUcagTyTbwY-b7AhPZyQDrxg_WS9ebltunh8ubtdqbK9wZwqvT0eRLzmlOA95ty3vLbQnzzmA0I-9j1PvUcBAbsvb-m8IanoO2FmhLzSzo-95ymhvBDf8Lsd6ME9hvx-uepJjzxH4oo8-CenvC1D2juqdwC8LuWZO2voMDw9KAi947sePWfLILwDaIo9d0ZAvUqC7DoMyIO9_xmvPF7xdTsnFxM-T9VzPRWpsDwmDHS9XUa7PUwsujxlyRe9zjjNPG2gDLzXitY9cG32O1SLqbro7oS8xyVzPemuLToSq3U9EAFsPWuEM7mfTag9_G8lPbnUkryEjgw9H4IqvJaVprxVj7q9vjk3PBeZJbwPttg9XKNvvbDtiDzMyaU9136XPIX-sjukGoY9YXxHva6njLu_xyo8XZervBkyaLxzDyk9bDDDvLbOibuPjus8FJb4PBJCUbxMule9UeeAvPkyLLzDPps9E481vSUkEjxUJT068FXGPCkT6br-LNa8YVygvPO-O7yUpn87dtr_PHeIvTsQsmo7gsQ7vZWFqzujDcY9lq_LOmBuvTvG_Fw8xo0WvSG1ojkocQc9BlTNOp8xXbvONQo7v42OvbZB1LpcUMS8w6llPRe7gjoF_gs94qlsvDno-TjVCP08vb31PCKsjrnAIAk9NYdaPNWvGTibaOE8j4YYvVeudDpy4uk7c0EHvRKYbrmxlnG8fnNavPf_Mzs7mAM9zgr7u70x67oSKt28Z3ukvXqeVbnEAC48_g-wPES7rLd70Ui9glS6vc8-XbkpY9e8jf4hvXBNm7ny8o-87taNvf4cNzj1Vei8j4lZPdYxQTgytds8eBIsvTheBDluvOC8V8uCPKOuOjitDiU8UcAWPQ3JVbcfR3M8vxLhO-wWL7idDkc7d58DvkPejLcRTJq8o9KDPSMfDDjfbKO9_C0JvM19qrY1tpc857RdPMFA5zjjQtQ8P5KtPNwvwbZ0Ka48TlB5va7RqDWd2e49n5WTuqNqDrnfDMg8EclrvCvsBLjK1-88r-X6vCNsMTeakAC5wMRpvKgBh7hhBnk98zoSvkvnqbghMrY8OznjPQQbBjkpnmm8eM2QPaHmmrhMnhy9Fsq6uiTeyLfPPA-9QEkmvYxPyDcgADgTQAlIbVABKnMQABpgL_QAHv4Y9-YyRwgE6ecB5wbl9h7R_gD39wDb_tzvBw3y7vobAFq7Cua0AAAACgDSIyIAEGLPwADw7QbvycXlDyF_LANA-gki8N8DKTDP_wsH0yRIAAHQrBQx7ecyARQNIAAtuxo1OzgTQAlIb1ACKq8GEAwaoAYAAAhCAADAwAAAWEIAAKhBAACCQgAAYEEAABRCAADQQQAAiMIAAKBBAAAcQgAAXMIAAOjBAAAMwgAAfEIAAADAAAA8wgAArMIAAKjBAAAAwgAAeEIAAGDBAABMQgAAGEIAAIBBAAAkwgAAsMIAADzCAACeQgAAgEEAAFjCAAAcQgAAOMIAAMjBAAAQwgAA4MEAAMBBAAB8QgAAiMEAAOhBAADgQQAAHEIAAMhBAAAQQgAAIEEAAJDBAAAcwgAAWEIAACBCAACeQgAAPMIAAODBAABUwgAAEEEAAIRCAACGQgAAbMIAADRCAAAAQAAAkEEAAPBBAABowgAAwMEAALrCAABIQgAA0MEAABzCAAAkwgAAkMEAANDBAABQQgAAyEIAAOBBAADIwQAAgMEAAJbCAABQwQAAAEAAAERCAACYwQAAhMIAAGRCAACgQAAAOEIAAEDCAAAAAAAAuEEAAIBCAAA8QgAAaMIAAABAAACQQQAAwMAAAJjCAAAAwgAABMIAALDBAACAQAAAREIAAODAAABowgAAWEIAAMhBAACowQAAiMEAABDBAAAYQgAAlkIAAABBAABkQgAA4EEAAAjCAAAkwgAAAEIAAPBBAADQwQAAAEEAAETCAACAPwAAcEEAADhCAAC-wgAACMIAAATCAAAgwQAAZEIAACjCAACAvwAA6MEAAIDBAAAgwgAAgMAAABTCAABQQQAALMIAAOhBAAAoQgAAEEIAABTCAADCwgAAIMEAAIC_AABQQQAAQEAAAJhBAAAAwAAAtMIAALhBAACgwQAAeMIAALBBAACAwAAAqEEAAMBBAADYwQAAwMEAAODBAAA8wgAAuMEAALhBAAAAwAAAgEAAABzCAAAMwgAAGMIAAFhCAACYQQAAXEIAABBBAACIQQAACMIAAEBCAACYwQAAiMEAAJDBAADAQQAA2EEAAPDBAACmQgAAiEEAACTCAACAQAAAgMAAAAhCAACGQgAAoMEAAI7CAAAAQgAAAEEAANBBAADAwQAA4MEAAEBCAAAAwAAAmEEAAMBAAAA0wgAAgMEAAMDAAADQwSAAOBNACUh1UAEqjwIQABqAAgAAFL4AAKA8AABUPgAAXD4AAKg9AACgvAAALD4AAPq-AACYvQAATD4AAIi9AAAwvQAA4DwAAEC8AABAvAAA-L0AAKA8AACAOwAAgDsAAPY-AAB_PwAADD4AAIA7AACYvQAAHL4AANi9AADIPQAA4DwAANi9AAD4PQAABD4AALg9AAA8vgAAJD4AAKA8AAAUvgAAVD4AAFA9AABkvgAAoLwAADy-AADIPQAApj4AANi9AABAPAAAuD0AAEC8AACgPAAAFD4AAIC7AAC4vQAAyD0AALg9AACCPgAAQDwAAKC8AAA9PwAAhr4AAOC8AABcPgAAqL0AAAw-AAAcPgAA4DwgADgTQAlIfFABKo8CEAEagAIAAGy-AACIvQAAbL4AACW_AACAuwAA6D0AAEA8AAAkvgAATL4AAMg9AACKvgAAhr4AAJi9AACGvgAAQLwAADC9AAAsPgAABz8AABy-AACePgAA4LwAAGQ-AACgvAAAUD0AAKA8AABwvQAAML0AABC9AABAPAAA4LwAABw-AAAEPgAAqL0AALi9AAAQvQAAoLwAAII-AAA8PgAAmr4AALi9AACgPAAA6D0AABC9AACAuwAAmL0AAIg9AAB_vwAAgLsAAAy-AAAUPgAAgj4AAHy-AAD4PQAALD4AAIC7AADgPAAAcD0AAJY-AAAUvgAAED0AAIA7AAAkPgAABD4AAIi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=R5KxCisLQuI","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1011555118718052638"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1586396837"},"9922105268708046775":{"videoId":"9922105268708046775","docid":"34-4-7-ZE215A0C83CBE7B46","description":"Transpose the data (13:20)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2847730/53f7b08faf6e79a96d6fd69174cff825/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_6gG5gEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuWf__KIKzPQ","linkTemplate":"/video/preview/9922105268708046775?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hierarchical clustering - explained","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=uWf__KIKzPQ\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzk5MjIxMDUyNjg3MDgwNDY3NzVaEzk5MjIxMDUyNjg3MDgwNDY3NzVqrw0SATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8T2AaCBCQBgAQrKosBEAEaeIH3DAf8_gMA9AIMAAIE_gEPDfoCCP8AAO38BvoHAAAA9wT2-gQAAAD6AvvwAQAAAPgF-v70_wEADQMB_gQAAAAZ9vUI_QAAABAIBgL-AQAAAfnyAwP_AAAA_wAJAAAAAO3zAAH-AAAA_QwA-gAAAAD77P7_AAAAACAALcRC2Ds4E0AJSE5QAipzEAAaYCUQAA8w-x7g_VDoz-HnEw3J-___9QAA-tAAEhMBAiIE-M34IQAv7iL5vwAAABj6JSfzABxNEfDbG_brHPgJ5xkrf9UW_zIUGQQz5_gD3gvn9ggPVQDIHhUuFNvjAQ4G-SAALdS-Tjs4E0AJSG9QAiqvBhAMGqAGAABkQgAAMMEAABRCAAAAwAAA-EEAAHBCAACEQgAAgkIAAFzCAABkQgAA8EEAADhCAAAowgAAyMEAALBBAABgwQAAAEAAAJhBAACIQQAAmEEAAIRCAAAgwQAAgD8AAKhBAADYwQAA2EEAANjBAAAQQgAAEMEAACDBAABoQgAAJEIAAHBBAACoQQAAYMIAAEDBAACowQAA4MAAAExCAABsQgAAgMEAAFDCAAAAQgAASEIAABhCAACYwgAAAMIAAGDBAADYQQAANMIAAJrCAACgwQAA6MEAABhCAAAgQQAAuEEAAOjBAACgwAAAUEEAAGxCAAAkQgAAZEIAAJTCAABAQAAApkIAABTCAAAAQQAAkMEAAGRCAAD8wgAAmMEAAIDBAABIwgAAkEEAAARCAACowgAAzsIAABDBAAAcQgAAiEEAACzCAADuQgAAEMEAACDBAACowQAAEEIAAFRCAACuQgAALEIAAABBAACcwgAAokIAAEBCAABgQQAAKEIAAEDCAABAQQAAyMEAAGBCAACAvwAAmEEAAPDBAAAEQgAA6MEAAMjBAABgwQAAIMEAALhBAAC4QQAAQEIAAJhBAACgQAAAgL8AACRCAAAAQAAAKMIAABxCAABkQgAAaMIAABDBAACQwQAA8MEAAHBBAADgwQAA2MEAAIDAAAAQQQAAhEIAAEzCAACCwgAAAEIAAADBAACowgAACEIAAKjBAADgwQAAPEIAAMDAAACCwgAAgL8AABTCAADQQQAAgL8AAOhBAADIQQAAoMEAAIC_AAAYwgAA0EEAAAhCAAD4QQAAwEAAALDBAAAAQAAA4MEAAKhBAABkwgAAEEEAAIhBAABwwQAAEMEAAERCAAA0wgAAwMAAAOBAAACQwQAAHEIAAHhCAACAvwAAwMEAAMBAAABgwQAAcMIAAITCAABAQAAAAEEAABBBAABYwgAAdEIAALBBAADIwQAAiEEAAGjCAABAwAAA0MEAAITCAAAgwgAACEIAAGhCAADAwAAA4MEAACBCAADgQQAAyMEAAPBBAAAEQgAAOMIAALBBAACQwQAAPEIgADgTQAlIdVABKo8CEAAagAIAAFC9AAAwPQAAML0AAKA8AAD4vQAAoDwAABQ-AAAHvwAA2L0AAKC8AADYvQAAqD0AAAS-AABUPgAAhr4AAAy-AADoPQAAUD0AAPg9AADaPgAAfz8AAHy-AADgPAAAQLwAAOi9AADYvQAAFL4AAJi9AADgPAAAqD0AABQ-AABkvgAAuL0AAFy-AABQPQAAFL4AAHA9AACCvgAAZL4AAHC9AAAsvgAAoLwAAAQ-AAD4vQAALL4AAHS-AAAEPgAARL4AAKi9AAAQPQAA6L0AAOA8AAAwPQAADL4AADA9AAAQPQAAEz8AAOC8AAAMPgAABD4AADA9AADoPQAA2D0AANg9IAA4E0AJSHxQASqPAhABGoACAABMvgAAPD4AAEy-AABLvwAABL4AAFC9AABMPgAAJL4AAIA7AABcPgAAcD0AAPi9AACgvAAADL4AADQ-AAC4vQAAFD4AAOY-AACgPAAA9j4AABS-AAAwPQAAUD0AAJi9AAAwvQAAoDwAABS-AACgvAAAEL0AADC9AABAvAAAuD0AAOA8AADgvAAAUD0AAMi9AAAQPQAAqD0AAKi9AACgPAAAcL0AAJg9AABcvgAAuD0AAAy-AADoPQAAf78AADA9AAAEvgAAFD4AACQ-AACYvQAAoDwAAK4-AABEvgAA2D0AAIC7AADYvQAAqD0AACy-AABAPAAAQDwAAPg9AABQPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=uWf__KIKzPQ","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9922105268708046775"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2272562479"},"4545027009373898495":{"videoId":"4545027009373898495","docid":"34-10-11-ZA1771FB48F53936D","description":"https://www.tilestats.com/ 1. Gradient descent in one dimension (0:30) 2. How to implement the gradient descent method in R (05:40) 3. Gradient descent in two dimension (8:18) 4. How to use...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4584022/eb991792bd0c2554ab632090695410aa/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TzotNAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D31w-xQX0Z_8","linkTemplate":"/video/preview/4545027009373898495?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Gradient descent - with a simple example","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=31w-xQX0Z_8\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzQ1NDUwMjcwMDkzNzM4OTg0OTVaEzQ1NDUwMjcwMDkzNzM4OTg0OTVqiBcSATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8TxwiCBCQBgAQrKosBEAEaeIH-_gEI-wUA9wEB-fsBAAEAA__4-f7-APEAAvz-AQAABQH7AfcBAAAI_Qj-AwAAAPL59_z6AAAAAgUIBwQAAAAPBv4I9wAAAA4A_Ab-AQAA9wQC-AIAAAAW_Pz-AAAAAPQBAwkBAAAA9RD-_gAAAAAI_gQGAAAAACAALXmg4js4E0AJSE5QAiqEAhAAGvABciAs_t_rxgG9_hEA1eoBAKkm9wD8PMoArdADAdcv3QHE-PkB7yfx_yH38wCgBS0BBwfy_QDU9AAn4C0A8PD9AQAQEAED3QP_fxsJAfTm9ADJVCj_AQ0P_dO_3P8FKtP-CQIQ_hf3tQEM56wKPMwtAkDr_QYt6gEB4dgLDNvtCgbLFsv9Df_zCx7kCAPvCx8OEBAS_eNK-__oFtb8E_oiBgzj_gcAE-v2PCvj-wgy8gS-4v4G_AHiBNYYEBHK1t8G09sL9DbUK_7l3wYLCe4TBO4CFfU5D_D8FvzwCg8BA_PN1e740OLz89YB_gng2PgGIAAtrAn9OjgTQAlIYVACKs8HEAAawAeyDse-51kkPN8Kl7y3G469q_nLvf0BZb1L07a9lssrPazuB712Ggk-WwA_PaQN0byh9SC-YUv0vFsi1zyMEQk-XRYzvUcmm71aLlu-6o-VPG5ikry3siS-KRXDPETQYrxWYTM8MbytvRuun7zBfr498vfBvRetbbzomYM8JFT6PJspI71RzaY9ABsQvdaF6bxhr4s8tyQsOuOwDz2civQ9q9AbPXExULxYbs48fxscO9jVZDxDEXy9qEcEvZlq_7uEWRI9uOdZPWIgGTwoQm-9QtGnvaF_p7ukRJy8skOhPDsOjzs9Cjc9pkZovJPGqLy5q9e887-mvS6rEL2Gd4S9R1QtPd-Zu7vdYDg-KaZcPeMbPjpkO8S9FXWBPKQLe7xcPq08-LuhvURdWjx9E5k9D3AUu0o_ozs8Xbc91iV5PYo1CjoJZMA8z1l1PYVjsTw54Kk99fuZPeBoBbyE8dO8Dtkgvc_zp7zEQxO9PxjdPGWb5byqcxY9BJ4qPXz0xDsvr9K8oOL4vK0stLvJU1s9AICNvagwWzwTiRi957o6vKTxlbxjL589Jv-jPbhiNbxZh8M9Cs9VvfSCUzvlwoc9WKyRvd1ivDul_0A82eqyvVOSN7qJFcS9pn_pPesQLLq25Cc9mP4gPbldILx_Dhi9oGeYPKasTzvMbJa980qTvQf_XDeJZlk9AfGUPdF-vLg7YkM9HYbAPUHibLmgjSw-y64FvSACDbkeE468ex89vVGWqbvyIpc6Pu0QPVhRZruhEYw9eofCukmVSLk7KxK84wgovRvUGrmot1C8dLQKPvzFWDes8Yi8nHeivW6FUTnNkXW9NUVgvRwyLjmvayW9k31GvH-lNrpba_87g8DKvLUpKjkvUPK9qFycvUOAv7c-aqK9GiSzvDGMObjQfB4-3RehvPWPEzjuTsi8Mo8cPoJdArm9GIq82dRUvJB7QzieAzC9D_IqPr3F37iwk4U97wPrPJecNTj9WJc93Lf6PR1WxDWMCIA9S0zhPNKkHDgqjkM94gLQPbsB9zgQma29eEBevSuds7gdoaA9NKBePQNJwrjCS7W9jU0CPA26TzaA2-48oLaXvTmXezjIXzo-3JXCPM2vSzioL1U9RArQOtaTDjbb4Yo9p8Q_PNErETkRQAA9PY97vR1MrbjKwyK9zhMVvBP0wLYv-d-98_YRvTpC0zWGECE9XHfTvd7zm7dVGKY9bQvFPYPH5zhEgeM8eXKyPMjEtrh9iYK9tN40PUVhPTj4-we8pdCDPFDjNzggADgTQAlIbVABKnMQABpgMwUADQ4S9wUPCPXr7gXo5MYQ9vfm7wD57gAGAuID9ivd1ejvADTTGfDGAAAAExQOKvwAIUz--uYSFusIDO34_xR_Ix4Y1QAM_qHXLCkQ6iLtEzAsAOf21h4nFOIu8fQkIAAt8e9WOzgTQAlIb1ACKq8GEAwaoAYAAJjBAAAQQQAA4EAAADDBAAAgwQAAXEIAAFxCAAAwQQAARMIAAADAAAAIQgAA0MEAACzCAAAkwgAAQEAAAChCAACAwgAAsMEAAGBBAABQQQAAiMEAAFTCAABwwQAAUEEAANDBAABwQQAA0MEAABBBAAC4QQAAJMIAABDCAACmQgAAgMIAAJhBAACCwgAA6EEAAIJCAAAAQgAAAMEAAEzCAAC4QQAAqMEAAGxCAACgwQAAikIAALjBAACqwgAAmMEAAABBAAAAAAAAwMEAAGBBAADwwQAAqMEAAARCAAAQQgAApMIAAEDBAAAIQgAAoEAAABxCAAB4wgAA2MEAAIC_AAAAQQAAvMIAADDCAAAwwgAAiEEAABTCAAAMQgAAQMIAAMjCAABMQgAAQMAAAABBAACIQQAApkIAAHRCAAD4QQAAsMEAAMJCAACAwAAADEIAAKhBAADgwQAAGEIAAKhBAADgwQAAaMIAAJjBAABAQgAA-MEAAJRCAAC4QQAAjMIAAATCAABAwgAAhEIAADxCAAAQwgAACMIAAKhBAADQQQAAiMIAAERCAABgwQAAAEIAABBBAACgQgAAkEEAADBBAABowgAAjEIAAIjBAAAAAAAAPEIAALhBAAB0wgAAoMEAAKBAAACwwQAAyMEAAMDBAABIwgAAYMEAAI5CAADgwQAA8MEAAHBCAACwwQAAmsIAAILCAACwQQAAyEEAACBCAACQQQAA2MEAAOjBAAD4wQAAqEEAALjBAAAAQQAADMIAAEBCAAAQQQAA4EEAAIhBAABkQgAAqEIAAKDAAAAkQgAA4EAAABRCAABEQgAAcEEAAFjCAACAPwAA0MEAADxCAAAIwgAAgEEAAIC_AAAswgAANMIAADDBAACowQAAbEIAAMhBAABQwQAAmMEAAKBBAAAAwQAAjMIAAEBBAAC4wQAA2EEAAEDAAAAQQQAAQEEAAKDBAADAQAAANMIAAPDBAACcQgAAyEEAACTCAADAwAAAhEIAABTCAAAAwAAAVEIAANhBAADAwAAABMIAALRCAAAwQQAAQMAAABxCAACCwiAAOBNACUh1UAEqjwIQABqAAgAA6L0AALi9AAAMPgAAyj4AAOC8AADuPgAA6j4AAFe_AAAEvgAAoDwAAIY-AADovQAAmL0AADw-AAAcPgAA-L0AABw-AAAUPgAA6D0AACc_AAAtPwAAyD0AADA9AAAkPgAA-L0AAFQ-AAAwvQAANL4AABy-AACGPgAAjj4AAJg9AAAEvgAA5j4AAMi9AABkPgAAqD0AAKa-AADmvgAAMD0AAKA8AACovQAAgDsAACQ-AAAwvQAAMD0AAJi9AAA8vgAAdL4AALK-AACIPQAAmD0AACw-AABcPgAAqL0AAMg9AAB_PwAAoDwAAOA8AACOPgAAgDsAAPg9AABQPQAAQLwgADgTQAlIfFABKo8CEAEagAIAAMq-AAAwvQAAor4AAF-_AAA8PgAAyD0AANY-AADYvQAA-D0AAGS-AACoPQAAiD0AAAy-AACGvgAAuL0AAJg9AAC4vQAAuj4AAIK-AAC2PgAA-L0AALg9AAAEPgAAVL4AAKi9AABQvQAALL4AAEC8AAAcvgAAFL4AAHQ-AABEPgAAfL4AAIi9AAAQPQAAlr4AAPg9AACOPgAAlr4AABw-AACqPgAApr4AAEA8AADYPQAAiL0AAEC8AAB_vwAABL4AAIA7AACaPgAAxj4AAKA8AACWPgAAUL0AADQ-AABQPQAA-L0AAEy-AABwPQAAgr4AAEC8AACAOwAAXL4AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=31w-xQX0Z_8","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4545027009373898495"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1841161167"},"13347887546543971209":{"videoId":"13347887546543971209","docid":"34-1-15-ZDD4754F3428DF95A","description":"See all my videos at: https://www.tilestats.com 1. Example: binomial probability distribution 2. Probability (0:47) 3. Likelihood (01:55) 4. Notations (03:35) 5. Maximum likelihood estimation...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4136126/aeaed10a275c1837b5bde085d0582ee8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/8pEpCQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPRpmA6WsY6g","linkTemplate":"/video/preview/13347887546543971209?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Probability vs Likelihood - Explained","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PRpmA6WsY6g\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhYKFDEzMzQ3ODg3NTQ2NTQzOTcxMjA5WhQxMzM0Nzg4NzU0NjU0Mzk3MTIwOWqIFxIBMBgAIkUaMQAKKmhobmtycHpubWxnanZ3b2RoaFVDWlFxckZXMlZraXJCRjJhLWFWMUZkdxICABIqEMIPDxoPPxOSA4IEJAGABCsqiwEQARp4gf0I-vYE-wD7_P8RAQn7AgoK__f2AAAA1QQCC_33BAAC-wX7BAEAAAj-8AkCAAAA7AcEBvABAQAEAwQD-wAAAPv5AwP-AAAAAAoW__8AAAAH-Ov4Av8AAA3-_QEAAAAA9f708QAAAAH9-A_4AAAAABnz9QMBAAAAIAAt76LFOzgTQAlITlACKoQCEAAa8AFr-iIBrgzr_SHgAQH98-wBgf7lADj39ACn4g8C0BPcAAP-BQDV_QAA7gMIAPwOJAAJ7Pv_Av0cABftOP4a9iT_FfcoAEXlDAE3EwP_7wAE_-o2_P8d7CoC8e0DAf0D6QAUABH_-gHP_w3_2gMN_jYBNPsOAhvv8wD-EgkC8xYcAQwE5P0VAPAD7QAHA9rtAQcRKuMBFy7_BwQPAgADDhQDABQQBvD3_f8H89v__ikN-9gT-vkHCfT6_vwECOEh6P_w9v4GFwAL9RACAwIU5hr7-wcbAvsLB_8DDPQDDdD68-ILAfPzCvz96Db5DwLG8PggAC0Jlyk7OBNACUhhUAIqzwcQABrAB_0WAb9Y0dU8VLeGu18eHD3zVt2848SHvXUZI7s3xk68BZNRvdOjGT6oNng9YQn3uoQPVb5KQw09LuljPZ1Ggj5_Fku8vhLIvIc0Kr6eaag9tnJlvLeyJL4pFcM8RNBivNz1Ej2RC868oAcQu9EfKj7qsCK9UMLMvFYQsz0H6hQ7s7xBvZfUnjusW5i9odCXvGGvizy3JCw647APPQRrwT0QmEG7YR4tvdqAvryLjC697xxKvH3PqL322gc89EAYvPBZzTyscoA7RtJuPEjLFz3sB4Y8d_N5vK_vHj1298I7wzEGPY1_nzuhjn09_wkuvErExT2X0xS9MGOKvIVjcbwsRXc9nqGLOORm-D1mTOE9GCPUO--SWL2TyQ05CCp8u5tATL3n9ve83OqgO9-Irj0EiRI8ThggvGtzrbtc4zg9A50kvAib8Lz_Yxw9Fw2ZPJ9NqD38byU9udSSvIJvv7yJHVe8FZQaO9l4MLyF7SO7S502vC2PmjyGe8A8PRKrOxxc2j217vC8RGyPOpSJ2z3Y74m9GRT2OtzNursg9Ge9SbJUu3sNlj1kvm09y6vGuhIiLz3k_j69OnmRu6LgmD0YeVm9C3nGu9EyGjznjEi92TwzPCECEruh47k9Vsr8u79rp7s6w7k81jV_vDl4S7y6Z907b5PdOk4CZbzwrIi9-PXHOkVTrDxLrw0-2XqGOpqnRD2cGFK9Pv4Yu_c_qz1DId27Kvm7u8tuAb3xHIA8cOmYO9hDAD2GQMk9ZR81udCQez2ir4W842vPuQG7j72Hkr-89kB9OO8ZLjyp2UM9aTACOQRfh7zFmiC9RuE_Ofr9DL0_S2G9v1eTuemLczwbDSW9ocUbujNcU7yApsS9rXuRudNS1Lx6Qbq8J34UuupZ9bwReeY8C-zbOCtziT1tFQm93SrGONUCAD368t08x6I3uA9SJrxg7s26QlgnOJ4DML0P8io-vcXfuGcSED0EhjY9Qn61ONTuV7ykORI-xf1VuTormDwS-Z49bJ6HuHJv3j0vWLA9rfGoOLBCkL1MAJm9IWVjuE_RrD3DjQo9qdyJuHdld73x-Xy9YNZqOLyUurzuvb69SYubN_inFD4D-k49H_TtNsplTT2sxtK8b5QbN0grKL23fhk8niIqOCbQdj38bJm9P7IRuA2fujvPXFG9oUWutnH0gr2YC0a9z0OiNqFvQbsLi5C9YoYJuFUYpj1tC8U9g8fnOLjgEb3v1BA86MYEuW-9Ab2PiZQ9NKHbNx2TJDv3UEe8wUjENyAAOBNACUhtUAEqcxAAGmBMDAALE_gE7R8u9f7FCwUTC9gB_fIkACHnADIVBtgS7-SrGyIAJ8kR8rQAAAD_3RwaCgABZv7XBg700AOr4dsmEn8WIiHA_xX24gi48fj23yclRkYA9wW2OEf10gA0CfsgAC1l7C87OBNACUhvUAIqrwYQDBqgBgAAoEAAAEBAAADoQQAAMEEAAPhBAAAoQgAApEIAABBCAAAMwgAAQEEAACxCAAAQwgAAiMEAAMDAAACYwQAAmMEAALDBAABowgAAAMAAAKBBAADAQQAAAMEAAMjBAADAwAAAPMIAABhCAABgwgAAEMEAADhCAACAwAAAaEIAAFhCAABEwgAAcMEAAEDCAAAUQgAAGEIAAL5CAABAQAAA8EEAAGBBAACAQAAAjkIAAIDCAAAwwQAAyMEAAIDCAADgwAAAyMEAAAjCAACAPwAAgEAAABDCAAD4wQAAYEIAACBCAACowgAAJMIAABjCAABkQgAAskIAAKjBAAAcwgAAnsIAAARCAAAwwgAAiMIAAPjBAABwwQAAosIAANDBAACgQAAAisIAAAhCAADIwQAAiMEAAOhBAABUQgAAoEAAAFhCAAAgwgAAmEIAADjCAACGQgAAUEIAALhBAAAAwQAAQEIAAKBAAACQwQAAAMIAAEBBAACAQAAAIEEAANDBAADEwgAAwEAAAIjBAABQQgAAIMEAAETCAAAEQgAAFEIAAMhBAAAMwgAA4MAAADDCAACgQQAAgMEAADxCAACkQgAAiMEAAHjCAAB4QgAAREIAAIA_AAAEQgAAAEAAAADAAACQwQAA2EEAAKDAAAD4wQAAgD8AAEDCAADYQQAAcEIAABhCAACgwQAAcMEAAOhBAACGwgAAQMIAABxCAAA4QgAAyMEAAMBCAABgwQAAtsIAABTCAADAQAAAyEEAAIBCAABQQgAAmEEAAHBBAADYQQAAwMAAAAhCAAAAQQAAvsIAADxCAACwQQAAgEIAAMBAAACgQAAAbMIAABhCAADYQQAAPEIAANBBAACIQQAAhMIAAIzCAADIwQAACMIAAMBBAACCQgAAIMEAAODBAABMwgAAqEEAAADAAADIwQAAOMIAACRCAAD4QQAAAMEAAKDAAAAAQgAANMIAABBBAABowgAAkMEAABhCAABAQAAABMIAAADCAADYQQAAIMIAAADAAABAQQAA-EEAABDBAABYQgAADEIAABBBAAAwQQAA4MAAAOhBIAA4E0AJSHVQASqPAhAAGoACAADIvQAAHD4AAEA8AAC2PgAAQLwAABS-AABMPgAA4r4AAIC7AACePgAAHD4AACw-AADYPQAAUD0AAES-AAAwPQAABD4AAEA8AABEPgAAjj4AAH8_AABAPAAAuD0AACQ-AADYvQAAFD4AAKi9AACAOwAAHD4AABA9AAAEPgAABL4AAEy-AAAMvgAAmD0AAFC9AADYPQAAbL4AAJK-AACSvgAAqL0AADA9AACuPgAAcL0AAAQ-AABwvQAA-D0AAJa-AADIPQAADL4AALg9AACYvQAAgLsAAIA7AAA0PgAAQDwAAPI-AAAcvgAAcL0AAOA8AAAQPQAAcL0AAPg9AAD4vSAAOBNACUh8UAEqjwIQARqAAgAAPL4AAKA8AACovQAAKb8AAIA7AABUPgAAML0AAPg9AACOvgAAxj4AALi9AABcvgAAcD0AAFC9AADgPAAAHL4AAIi9AAA7PwAAiL0AAI4-AAA0PgAAEL0AAI4-AACYvQAAiD0AABS-AAAkvgAAHD4AADw-AACYvQAAQLwAAEA8AACAuwAAqL0AAOg9AABsvgAAnj4AAIg9AADYvQAAQDwAADw-AAAEvgAAUL0AAAS-AABAvAAAFD4AAH-_AABUPgAAML0AAIo-AABwvQAAmL0AADA9AADOPgAA2L0AAFA9AACAOwAABD4AAPg9AABAvAAAUD0AADA9AAAEPgAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=PRpmA6WsY6g","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13347887546543971209"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2874189713"},"1510416419299072604":{"videoId":"1510416419299072604","docid":"34-10-8-Z07D30DB8F55ACD11","description":"In this video, we will discuss different scales of variables that are used in statistics. We will also see how we can change the scale of a numerical variable into a categorical scale. For more...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1778943/52e3f1f9f75160ebadf6ddfcda544648/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jZ-6tQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Do9xmsyO4yME","linkTemplate":"/video/preview/1510416419299072604?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Variables and scales in statistics","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=o9xmsyO4yME\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzE1MTA0MTY0MTkyOTkwNzI2MDRaEzE1MTA0MTY0MTkyOTkwNzI2MDRqiBcSATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8T3wKCBCQBgAQrKosBEAEaeIH7AAH6_wIA_PnzAPsF_wHtDQL_-v7-APwF-f0HBP4AAwQP_f4BAAD6A_IIBwAAAPQEDgT3AAEACPP38wIAAAAd-QL1_QAAABn99gT-AQAAAf__A-0EAAH5_QYQAAAAAPoVCPz-_wAABAT8BwAAAAAH-AD-AAAAACAALVkm1zs4E0AJSE5QAiqEAhAAGvABaxkZAMPh6v_5GuIAAQnFAYEiCv4wOOL_rQ8pAsAD4wDY7wgA4ur0ANkK9ADO-REAEODRAC745QAF8Az_JCAoAP7hJQFL4w0BPQ3vAAvw_P4Q-SX_H-otAhf7DADuA-H_HBE4_9r25QDuA8UC8fFCAgkzFQEk7gAB-wYXBdM5IP747f_-FfYkAuXi4P7e_gkHD-vjAQT5_QL_BfP_ABD0CuTw3AAj8_IAQPj1AOzkBvzwASwAIgTq_QQJDAMeHQP26hMN9i_u-wP8DvwBFtwOCQztEvvf9wL2HyTk-OLeCffa_xUF1Db1_ub3_O7w6QP3IAAt_yEdOzgTQAlIYVACKs8HEAAawAcrhO2-NwvFO7Nsubvu0qG8B6gaPSARLjzg4te8eLQQPNiTBrsrq4Q9aYhvPQ8JX7tyNrW-3p5xPexZhLr-1Ys-IMSfPIapMTsOMQ6-TQaRPEfoQrz1oWu-hNMHPXQ1w7t9A9M9VwKMO6t2TT3_PkM-d38GuAzrQb1vsQy9VlsbvVI4zLw5bMG9pMXZvTpjDjzX6sE9N_CUvQnpHzzmA0I-9j1PvUcBAbsWrCc8cbWpPPvEJrs3iAa-v7BjOwBCmrz3qY89gM1evGo39jtiEHg9CWJKPfyYRbxqGq89yGuUPBBdkDzTmSW9Fzl6PFuoRry8Wm49t4u8OnblrztUfDK90EPtPMKMhDwnFxM-T9VzPRWpsDwilK28dEuhPc7BszwxW4K9bkddvLWqgDxLD5k9IRisvD-IJruiI769QV9fPVa2jzwIzUk9fm2iPOr_xTtVZIk99pfdPZjyRryX3uO87vHdPKVhvrt1F629GRczPNdzLTwPttg9XKNvvbDtiDyIVyg9pY2ZPHxnzbovTnw8HyQ1vQXIzDvqTas9ScOEuiSm2bsZNBk9FAAovfLjlruPjus8FJb4PBJCUbyqpY-9YHlrvLPsSbz0_t89vKIlvZQtlruTzfA8AmKCPWt3NLyz_iI8c3VRvVcHgLyrg3K8ddAAvNad-juRoFO83yatvRbtnrqeCc09h_SQPbt2krp2D5q9yKUgvfWKRbpUQLW8Ia01O1BtsrvsQKe8IUqou8-3CTtW0_U8uWCaPfMOK7npDfc8gC6FvZJN3blMswy8QKP0PMQV5bmOmIQ9pufnvCxhrzk5WCk9COkpvNv1aTn11RU9MveavB66grlNx5I8xFiLvPeQqbkcRfE88nmFvHYfP7mypeI885kivRgKYrnxAva8oaGPPW0IyrZxUAa8FRn9vcC3MDe10a88LX95vWRvBzlsdqS9Zg-ZvNwtrTnYWYC792zjut2AwTc71lY8KWB2vclQULg3Q_270MoCPQvkQDmDNU48_RQFvGsWbrgih4y7GtoEuwijJbjz2va8CPnKvVqHe7YLtSY8lX8tPGCZKjjHYqC9Im95vam4oLgCigc8nzmgvbMRnbf89VQ9hhQNPX1KzrYz_Fc6dooVvb3kMDgLkII9BcLOPCD4ArmOqsu8cRb-u5mnn7YvJQE75zqNPEkmibeTpyy8A7z7vFvtiTdDIsg8pU3VvVAHd7j5ZOU9yNmaPbVA1jZxfGO9-iUCPqmBLLk1ehW9K2E3PC6yDzeWkR-99z1KvWJTabUgADgTQAlIbVABKnMQABpgSQ4AGwUgAN5PPwTQ_A0D-Bbm8BrIGf_spP-zNcMG_ALW7_kLAEfBENueAAAAO8YUISAADn_auR7u6Q0usf3S8t511AQ9pAJGHSE5Kwy2_QX28lRxANTUshwd7tz88u_7IAAtnnMSOzgTQAlIb1ACKq8GEAwaoAYAAADBAACAwQAAXEIAACTCAAAAQgAAwEAAANBCAABYwgAAwMAAAOBBAADgwAAASMIAAGzCAACgQQAAUEEAAPDBAABAQgAAFMIAACBBAACYwQAAyMEAAGzCAAAIwgAA4MAAALBBAACQwQAAZMIAAFjCAAAgQQAADEIAAHxCAABsQgAAgL8AABzCAAB4wgAAYMEAAIBBAAA8QgAAMMEAAHRCAAAAwAAAJEIAALJCAACIwQAAIEEAAMhBAAB4wgAAoEAAANhBAACoQQAA6MEAAEBAAABAwQAAgD8AAPBBAAAEQgAA8sIAAAzCAAAgwgAADEIAAIC_AAAAQQAAHMIAACzCAADoQQAAcEEAAFDCAACQwgAASEIAAMDBAAAMQgAAmEEAAOBAAABgQQAAyMIAAJ7CAACGwgAAIEEAABjCAAC4QQAAMMIAAJBCAADwwQAA0EIAAMDAAAC4wQAAcEEAAMBCAAB8QgAAgMIAAGBCAACgQgAANEIAABTCAABgwgAA4MAAALDBAAAAwgAAgEEAAMDBAADYwQAAXMIAAMpCAACgwAAA6EEAAMDBAACAwAAAgMEAAEBBAABAQAAA-EEAAABBAACYQQAAuEEAAChCAADgQAAA4EEAANhBAABAwAAACMIAAFBBAADQwQAAAAAAAEjCAADgwQAAWEIAAEDAAAAMQgAAEMIAACjCAADgwAAAqMEAAMDBAADwwQAAkMIAAHBBAAC4wQAANMIAABjCAAAAwgAAsEEAAMhBAAAAwAAAqEEAAIBCAAAQQgAAEMEAAIC_AABMQgAAfEIAADzCAAAIQgAA2MEAAEBBAABAQAAAAEEAAExCAADIwQAACMIAAHBCAACowQAA0EEAAAzCAACKwgAAgMEAACBCAAAYQgAA0EEAAIBAAAAEwgAAMEEAADRCAAAYQgAAkEEAABjCAAAcwgAAmEEAAEBAAACAvwAAiMEAAEzCAAAAwQAAhkIAAADAAACcQgAAOMIAAEzCAAAEwgAADEIAAHDBAADgwQAAisIAAFxCAAAgwQAA0EEAAMBBAAD4wQAAKMIAAJDBAACIQSAAOBNACUh1UAEqjwIQABqAAgAAdD4AAIa-AACgvAAAqD0AAGy-AABwPQAAML0AADG_AABQPQAAML0AAIi9AACIvQAAQLwAAJ4-AACuvgAATL4AAJI-AABEPgAAuD0AAPo-AAB_PwAANL4AADA9AABQPQAA-L0AAAS-AAAMPgAAPL4AAIi9AACKPgAAVD4AAEC8AADIvQAAVD4AANi9AAB0PgAAiD0AACS-AACavgAAfL4AAKi9AAAEvgAAEL0AAOi9AABsvgAAoLwAAIg9AAAwvQAATL4AAKi9AADoPQAAVD4AAHw-AAAMvgAAEL0AAFC9AABxPwAAMD0AAMg9AACePgAAoLwAABA9AACgPAAA2D0gADgTQAlIfFABKo8CEAEagAIAADC9AACgvAAAgr4AACu_AAAQvQAAQDwAAKA8AACAuwAAmL0AACQ-AACAOwAA-L0AADC9AADYvQAAmD0AAOC8AAAQPQAAEz8AAKi9AACSPgAA2D0AAFQ-AAAQPQAAqL0AAIi9AAAEPgAAED0AAIA7AADYPQAAND4AAFA9AAC4PQAALL4AAKa-AABsvgAAQDwAALg9AAAQPQAAVL4AACy-AABAPAAAUD0AAIA7AAAcPgAAyD0AAFQ-AAB_vwAAFL4AAFA9AAAEPgAAML0AAIC7AAC4vQAAyD0AADw-AACIPQAAED0AABA9AACoPQAAiD0AABw-AACYPQAA2D0AAGy-IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=o9xmsyO4yME","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1510416419299072604"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2964206055"},"8527053050776657669":{"videoId":"8527053050776657669","docid":"34-0-13-ZA9D6844765111459","description":"test, WMW, Mann–Whitney U-test, Friedman, Kruskal-Wallis, McNemar, Chi-square, one or two proportion Z-test, Pearson correlation, Spearman correlation, chi-square goodness-of-fit, the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3282308/6333915adffdb7c9b067ac3858fffde0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/wuQW7AEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DdYJLUvo0Q6g","linkTemplate":"/video/preview/8527053050776657669?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to choose an appropriate statistical test","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=dYJLUvo0Q6g\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzg1MjcwNTMwNTA3NzY2NTc2NjlaEzg1MjcwNTMwNTA3NzY2NTc2NjlqiBcSATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8T2wiCBCQBgAQrKosBEAEaeIED-v0C-wUA-_4NBPsG_QILEP0E9gEBAPT4Bv__Af8A_wIF-f8BAADyBgEBCQAAAPP6AQX9AAAAAQr_BQQAAAAR_gD5_wAAAAUGCBL-AQAACvz1AvYCAAERCQgB_wAAAPQJ-v8CAAAA__wDCgAAAAAD9gj7AAAAACAALVlC4js4E0AJSE5QAiqEAhAAGvABZPYE_8385v8G9N0AAQnFAYEiCv40EskAxPsfAMLr4QHuGfcA3_MEAdQjGv_NFPQA_-HdACIHBwAcDgb_LxAbABcdEgAt8SUAKgn3AAvw_P75Ewb_MPcmARQG_gHfCvIAIRodANr25QD0FNsBCR0xAygr-gQ7CBYA_T4gA9oWLwEWHQUB_QcCBM_j9wLeE_oIRebhBQD84foAHPMA-wAQB-_xCf8p5tf9QeDtAAEBC_kKCSYAEBfxCvgSA_06Hfb54fj7-hfm9QLsGPr-JrkM_frkFQLpCB4A-gL4BBPpCPnLBQ7z2SX9BPQSBwIGBQH6IAAt_yEdOzgTQAlIYVACKs8HEAAawAeM9vi-XgImPPEN6rwd4kQ8QiEiPSfAsDzmxKK7ThORvDm0rbx55fo9JbC5Pagi8DyZgKe-ZfvQPJ_6ET3-1Ys-IMSfPIapMTuGyt-9X5PaugWl6Lz1oWu-hNMHPXQ1w7s9ofI8rtklvNTMfz1UUwI-3Es6vXbMELyRVkY8tI6qvJSAHb0YHCq9vk6KvQYOC7zX6sE9N_CUvQnpHzxpGRk-vV87vWUX7ztRTN679jnIPCncPLy6Z629QVIavZnZQjwDwcI9N0oovML4q7uMsV09YUAFPUL2EL3ZbDY93ACiPDYS1ztoCKa65zCEPEAmo7wDaIo9d0ZAvUqC7DrGKm-8t50xPcfj2DwnFxM-T9VzPRWpsDwDc1m9DeaaPS9jL7xJ9569U4equgL44TsBmbc91qIqvFchijwrKWG9xnsfPdAdjjw4fZI9H56lPO8hPLxVZIk99pfdPZjyRrw_fRo9vMbTPLhAgjvcoPa9GP4bvBtvYTzMZ4Q9NwDbvTjvBbwcXNo9te7wvERsjzohn8Y9YswnvQrOBzzrAfM8fXV6vKCD07uBCLE8dxVSvAvqgLyPjus8FJb4PBJCUbztZNC99qfgOtNSdbukfb09c8mHvS_ILztctWE9dJl6Pe-79TvpC2G92c63vGTivbtFgJM8TzAtPW3tsztsAee7MEfvvT-aoLrrAdM9qNGaPHk45DvlhOS8ModOvVmvu7vaEC096M4fO0ayCbwf1dW8SpywvGRml7rHHBq9r_6pPfyqB7pA1oG6f8iGvbseG7mlBZo7WTVjPNE64jkktVA97niTvJVSpzoxs2899SNPPRA_uDiGyfE78gUQu0NNWzpPPQI-sbP0O22Tarn1FBk92A4pO4Bk0rjzqmW66kRdvYspQzqjRyO8PXSLPFpSSjn72sS8sy4oO-xaGDgmGA49kwWHvbVyBblUCD-9O22RO0H6gzgC3yO96B5IvDKrYLfynRM9e6-QvHUoKDjDdyw97kigPW3tGzkyIqy8SleXurNS4bZx6XO8cqbLuxoG_jfz2va8CPnKvVqHe7bfaGw8vWKnPbAaiTdL5li9fzmeveMyMjiW5IW9SWm2vXbfprf7BxE9BsaTO4ByCrjFnBa9tJOsvVGCgzgNnqM9TsjYvHYfv7ihZV08PCLVPLgBlLhRuQ696XLUvDj-7zYIvMA7_itrvZErmLcU9E09tL2nvZeXjbepa409iwuRPRMnIjjwsjW9XMzPPQxGCrnaETi9LSuoPPQiJLjcWvC8gBH0vcgN67cgADgTQAlIbVABKnMQABpgM_oAIt4t7-JNUAT7_ekR5hTh6ArKQf_r-P_5JQH84i-8wOg6_yf1LM-eAAAAGenwMOcAF3_xtc4BuhgKrdfh8_9j8xUyvOL-AuLxTPD39iPy0DsuAPO9nStL-eMdN6_6IAAtiMMZOzgTQAlIb1ACKq8GEAwaoAYAADjCAADQQQAAMEIAAMDAAACAQAAAkkIAAPRCAAAMwgAAIMIAAIBAAADAwAAAwMEAADDBAADgwAAALEIAAJjBAAAwQQAAYMIAAGBBAACYQQAAgMEAAJbCAAAswgAAXEIAAAhCAACwwQAAgEEAAODBAABoQgAAOEIAAFxCAAAEQgAAcMIAAHBBAABAwQAARMIAAIA_AAAAwQAAREIAAK5CAACQwQAAQEAAAFxCAAAwwQAARMIAAARCAAAQQQAAAMAAAOBBAADAQQAALMIAABxCAACowQAASEIAABDBAAAIQgAAeMIAAOjBAACQwQAA-EEAAJDBAADIQQAAwMEAAHzCAADgQAAAEEEAAKDBAAD4wQAAEMIAABTCAAAMQgAAqEEAALBBAAAYQgAAVMIAACTCAABYwgAAEMEAAEBAAAAwQQAAEMEAANRCAADIwQAApkIAAIxCAACAPwAAXMIAAGRCAAAQQgAAQMAAAGxCAACgQgAA4EAAAODAAAAwwQAAdMIAAIjBAADIwQAAwMAAAKDBAAAMQgAAEMIAALpCAABEwgAAsEEAACDCAADAQQAAQMAAAIjBAAAgwQAABEIAAPhBAADwwQAAAEAAAFhCAAAAwQAAqMEAAMBAAAC4QQAAAMEAAIDAAADAwAAAQEEAAKLCAAB4wgAAeEIAANhBAACwQQAAYMIAABDCAACwQQAAQMIAAMBAAACgwQAAWMIAAFhCAAAIwgAAJMIAAIjBAAA0wgAAoMAAAKRCAACAwQAAYEEAADhCAAAMQgAAQMEAAABBAAAUQgAArEIAAJBBAAAAAAAA6MEAAGDBAAAEQgAAMMIAAEDAAAAwwgAA-MEAANhBAAAEQgAAXEIAADBBAAA8wgAA6MEAAHBBAAAYQgAA6EEAANhBAABIwgAAuMEAADxCAACQwQAAAAAAAABAAAAQQQAAwEEAAKjBAAAAQAAAmMEAAOjCAACwwQAAokIAAJzCAACQQgAAgD8AAHDCAAAYwgAAzEIAAHBBAADIQQAAXMIAAARCAADYwQAAYMEAAABBAACgwQAAGMIAAJjBAABwQSAAOBNACUh1UAEqjwIQABqAAgAAFD4AAEC8AACOPgAAHD4AAFC9AADYvQAAuD0AAPK-AABsPgAAuD0AAOC8AAAwPQAAiL0AADw-AABcvgAAED0AAK4-AABAvAAAQLwAAO4-AAB_PwAAMD0AAFQ-AABEPgAAiL0AAOi9AAAcPgAAiL0AAKg9AAC4PQAAUD0AAJg9AAAwPQAAcL0AAAy-AABwvQAA-D0AABy-AACSvgAAFL4AAES-AABQvQAA1j4AAIA7AAA0vgAAEL0AAJg9AABMvgAA4LwAABw-AACAuwAAjj4AAOC8AAAcPgAAJL4AAHC9AAAtPwAADL4AAIi9AAAcPgAAUL0AAFQ-AAA8PgAAoDwgADgTQAlIfFABKo8CEAEagAIAAJq-AACAOwAA8r4AADW_AACIvQAAgDsAAAQ-AADIvQAA4LwAAOA8AACYPQAAPL4AAM6-AABEvgAA-D0AAKC8AAA0PgAAvj4AAOi9AACyPgAAJD4AAJI-AABwPQAAoLwAAFC9AACuPgAANL4AAMg9AABAPAAAqL0AADQ-AAD4PQAA6L0AAJi9AACIPQAAcL0AAKI-AACgPAAAgr4AAES-AAB8PgAAVD4AAKi9AAAEPgAAqL0AADQ-AAB_vwAAcL0AAIA7AAA8PgAA2L0AAHC9AABUvgAAtj4AAGw-AAD4PQAAED0AALg9AADgPAAAEL0AAHC9AAAwPQAARD4AAOg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=dYJLUvo0Q6g","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["8527053050776657669"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1003485683"},"14822468016149199727":{"videoId":"14822468016149199727","docid":"34-7-1-ZF86F5D7C83DD7BAD","description":"In this video, we will discuss the differences and similarities between the one-sample t-test and confidence intervals. For more videos in a logical order, go to: https://www.tilestats.com...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4230331/930c3031bc36bc67b5a4204566e35aca/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/-3NvSQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DB_lK0CNSgvQ","linkTemplate":"/video/preview/14822468016149199727?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"t-test VS confidence intervals","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=B_lK0CNSgvQ\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhYKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3WhQxNDgyMjQ2ODAxNjE0OTE5OTcyN2qIFxIBMBgAIkUaMQAKKmhobmtycHpubWxnanZ3b2RoaFVDWlFxckZXMlZraXJCRjJhLWFWMUZkdxICABIqEMIPDxoPPxPFBYIEJAGABCsqiwEQARp4gQQI_wUAAAD5BwsH-Ab9AgYPEf33AP8A5gME_Qn9AgDiAQoA-v8AAPoD8ggHAAAA9QT5AgL_AAAQAff8BAAAAAnzAhH_AAAAAgv3Bv4BAAD5-P0GBP8AAAX39QH_AAAABhQGAv4AAAAFA_D8AAAAAAcC8g0AAAAAIAAtAAfVOzgTQAlITlACKoQCEAAa8AF_AO8C1vvX__b16wDSHfkAjx4J__0r2gC2DSUCtxDS_-YLAgDZEen_E_IOAcQkGAEt9On_Dd8EADLqFQASAQsA-fUVAB_fCQAqAgcA5ufv_9QcF_4P1wcACeDs__EV_P325QgA8-_b_v352v0r2yABGv4aBSUCC__y3gAA3QcQA_j84wDlCwkDDfP4-9D_GgECCPkGFhsFA-4f_gT67fkADPsVAQYC5fsaDuwE_AkC_u7f8_r74__3EgYQBfn69fL3BBPz9PX-_RXtCQEL6wf9-Q_4AesBAv8SAhUDEvP9_f_t7wDPBgn07PryAvvZ9AEgAC19nDA7OBNACUhhUAIqzwcQABrAB24T1r5Rau-8gtYPPJwBibzj1Ji8OO1uvWpNc72pCME8tnIFvX7Iaz52aB29jexKPH-DFr6iC2o7IVAHPf29dD6SVEu9A7HsPHV0_L0vE5o9CwIQvR2Rz73kCok9jcIBvHkTLjtgGu27ffUnvatNoj1U3B29CXYSvSGys71NO627qzFXvPihGjwfheu9vJF5vLd_hb3n09m80I_QOoU4gD1v3rS6rtcUvQzyqT3ZAXw8X-qpu6xw673w04I8MgWpu4RZEj2451k9YiAZPGlRf70Ih0g9CrEEva-wID2oN4M9nyPNPGNebDw7Dg09LU7rvLmr17zzv6a9LqsQvV2Rs72MQhg8PjWHu_B_bD1mqcA95WUJPE89Ur63CIE9f-1Lu_VSDD2gD2C8_E_EOw-_hj3vnKw9w1WUPLi3NjxkkeY8TWoIvZAkELwQ36M9pmIDPfFmzT2vV7-73Sz7u0aBmT2hoDQ9Ut9ou7JSGDwCCQ892by_O_aGNjpk3Zk9AKNwvOGAEb1jMaC8JycDvAUjpT3WAju-SeWaOpiBr7yPwrq9q74pPOfMUT24oIg9WX0evOQsTD7qV4-9AwyFO-8LHj28PrO8r7uUPDlZD73Bqc-9p4MMPL2pKL15UaU9ULpyuubCor0p4aM9tCr4uw5PrzyDNek8A_j6O8iAh7yd8qi8PJj7O-pu6LtLVf-863KMOmjMFD41PIO7cSgauhfeiz0imcA7tyiSu68y5DtGW9W8ccE-uiwWOj0Huaa957Uxud65pj07aBu92hnHOe65h70Pu8o805bRuBvqob2yW5U9LNmZOHmrUzyTcWy9qoYDOfr9DL0_S2G9v1eTudhi1z3YPg28LIi-uFZSnbxDyk-8twPFNhQcg73HJK29GlEVOLplarvX3by87gHKuHFQBrwVGf29wLcwN9R0ybsGLPk8HhssOdVTkLxCLTy9NNFrNwNGkj09ze48tkfQOEUO0T0pI-694iy_OXVuH71znFs9XstiN6hPlzwjQi09z9p-OHJv3j0vWLA9rfGoOAacJbyMatG9-lP3N6Dcez0Bmbc9WAA2uMSIg72vcm09GWuqOJwerzwppfG8TE_qt7dp4jyaTqG84T2wuK1jgbzczuM8VXF1OMKk2D02Kia9e7QtuU7BkL0_vk69U05lN4sINbyWAcq70BxAN5dRkb2Hch09UziLtmEGeT3zOhK-S-epuCL_7D01KQU-835buO3EmzxFScg97lIKuVBvCLxKqJo9IyYKtnLsv73Iq3g9F9mNOCAAOBNACUhtUAEqcxAAGmBNDAAa4TPm-v5B_ATdA_b998sC78gc__neAAn968v8DvzF8SP_Q_Qj2KgAAAD-BuQcCgDzduvv7h7pLPraotEUQX8tB0TlBSD74A0nNfHONv7aLh0AD8qfRz_gui80BCkgAC0O5iE7OBNACUhvUAIqrwYQDBqgBgAAwEAAAADAAACYQgAAcMIAAARCAACwQQAAeEIAACBBAAAEwgAAYMEAAKBBAAAAwgAAqMEAALjBAABwwQAA4EEAANBBAAAwwQAAAMEAAARCAADYQQAAiMEAAETCAACAQgAAMMEAAJhBAAAowgAARMIAACBCAAC4wQAAsMEAACxCAAB8wgAA6MEAAKTCAAC2QgAAqEEAABxCAACoQQAAREIAAMBAAACYQgAAGEIAAMBBAABAQgAAPMIAAMBAAACYQgAAxkIAAGhCAACowQAA2MEAAODBAACAQgAAgEAAAIZCAACQwgAAoEEAAEhCAAA4QgAA2EEAADzCAABYwgAAaMIAAABCAAAswgAACMIAAFBBAADIQQAA2MEAAChCAADAQQAAPMIAABhCAAAAwAAAQMIAAODBAADgwQAABEIAAOBAAAAQQQAAskIAANjBAADwQQAATMIAAIhBAADAwAAAQEEAAARCAAAcwgAAIMEAAKhCAABAwQAAIEIAABxCAAAAwgAAUMIAALBBAAA8QgAAlkIAAJ7CAABwQgAAhEIAACzCAABowgAABMIAAChCAABcQgAAXEIAAIBCAAAwQgAAgMEAAFTCAABMQgAAcMEAADDBAADOQgAAyEEAAIC_AACAwQAAoEAAAJDBAABAQAAAqMEAAI7CAACwwQAAmMEAAMjBAACAQAAAcMEAAIjBAACAwQAAJMIAACBCAABUwgAALEIAAIBBAAAAQQAAMEEAAMBAAABwwQAAoEEAAKBBAADowQAAiEIAAAAAAAAQwQAAcEEAAHhCAABAwQAAmMEAADRCAAAgwgAAiEEAAKBCAAAAwQAAEMIAACxCAAAkwgAA6MEAAIDBAADAQAAAbEIAAADCAAAwwgAAoMAAAEDBAAAwQgAAQMEAAADBAABAQQAAsEEAABTCAABAQAAAJMIAADDBAAAAAAAA8MEAAOhBAABAwQAALMIAAMBAAACGwgAAAMEAAOpCAABYwgAAQMEAAIjBAAD4QQAAIEIAAGDBAACIwQAAgEAAACTCAAAAQQAAmEEAAGBBAACgwAAAoMEAAAjCIAA4E0AJSHVQASqPAhAAGoACAACYPQAAoDwAAGQ-AAAcPgAAgLsAANi9AAB0PgAA5r4AAEA8AAAMPgAAJD4AAHC9AABQvQAAuD0AAFy-AACoPQAAyD0AAHA9AACoPQAA9j4AAH8_AABAPAAAiD0AAKA8AABkvgAA4DwAAOg9AACgPAAAoLwAAAw-AAD4PQAAuD0AAGy-AAAwPQAAuL0AAIi9AACGPgAAgr4AAOq-AABsvgAAnr4AAFS-AABcPgAAgLsAAMg9AABkPgAALD4AAGS-AACAuwAAHL4AADC9AABkPgAAED0AAGQ-AAAsvgAA4LwAADU_AABQvQAADD4AAKI-AAAMPgAAgDsAAIA7AAAcviAAOBNACUh8UAEqjwIQARqAAgAALL4AAHA9AACovQAAHb8AAAQ-AACAOwAAuD0AAPi9AAA8vgAA5j4AADQ-AADovQAAoLwAAJq-AADYPQAAqL0AAKA8AABDPwAAgDsAAJo-AADIPQAAoDwAAII-AACAuwAA4DwAAIA7AAAEvgAADD4AABA9AAAwvQAAQDwAAFA9AACovQAAFL4AALg9AAAMvgAA4LwAAKg9AAAcvgAAiD0AAFQ-AAAwvQAAuL0AABy-AACAuwAAVD4AAH-_AAAsvgAAyL0AAJi9AACYvQAA4LwAAPg9AACIPQAAgDsAAEA8AACAOwAAuD0AAFC9AACIvQAAmL0AANg9AACIPQAAgLsgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=B_lK0CNSgvQ","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14822468016149199727"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2087545770"},"2837433166803986098":{"videoId":"2837433166803986098","docid":"34-3-4-Z49EEB4966D63A934","description":"See all my videos at https://www.tilestats.com/ In this video, we will see where p-values come from and how they are distributed under a false and a true null hypothesis, and how the p-values are...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3110743/53643074ec4b2d50804c92aeb54d412f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/xLe93QEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DaYqIs4XZli8","linkTemplate":"/video/preview/2837433166803986098?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"p-values - a deeper understanding | alpha | t-statistics","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=aYqIs4XZli8\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzI4Mzc0MzMxNjY4MDM5ODYwOThaEzI4Mzc0MzMxNjY4MDM5ODYwOThqiBcSATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8TowaCBCQBgAQrKosBEAEaeIEB_foFAAAA_PkGBwIH_AL_Bwj_-P7-AOgB-Pv5_gEA9Q7__gYAAAD-CwcCAAAAAPr9_gf-_gAAAw4FBvgAAAAOAfQP_QAAAA8N_QMR_gEB-fj9BgT_AAD0_AkA_wAAAPkO-xD_AAAA8vwRBwAAAAAICfsDAAAAACAALSxg1Ts4E0AJSE5QAiqEAhAAGvABcxEQAc4M_P8A3PsA3QQEAYEV8P8YH-YAxt8CAd0LyAH4CvwAzuQj_xPyDgHaCwgAEvXp_yXfGwAb6h8AHBAEAO4ZFQAm6gIALiEUAO72_P_3Jvz-JfUMAOzz8gH9A-oACPUP-_oB0v_--tv9DP4zARAZBgEv8Pf_Afr6__8NIgANF-T9DQnw_uXm-_3eDwgEAhP1BRknEwDqA_QB__QYAwX0_foDFekELAf0_AIpAPr8AAv3Dw_q9-sBEAXqEOUH2f0MAvbqB_4PAgMCAOgW_xIL_wcJGf3vHAb9BSHp-_bZ8_8L5fr9-uMiCBHhxf39IAAtUfQ1OzgTQAlIYVACKs8HEAAawAe37Ni-XXepPLHUxLy-Wfk8EtjcvDwe6bzO3Ai9VWWEOl8OFr3S_9I9aSp1PVSUBbz4wYG-f-j4vERpTz343yo-psAXvLlIC72eYoW-kbp9PSxzhLz1oWu-hNMHPXQ1w7vJMzQ9OOhcvVCQM7xyHmk9O2pxvby0PL1bry49N1rpO_jnXb2X1J47rFuYvaHQl7w_P2c9e2GXvNILDrzr4LA9f3iMvHwVT7whv8i8xf8AuyHdmTyVZg69KZ2jvETbMTwd6ME9hvx-uepJjzzlg3k9_4A9POAwUbzZbDY93ACiPDYS1zudon48l0F5OumnbrxxyMY8cYQWvccpn7xVMRU9hjMkPR9LnzzkZvg9ZkzhPRgj1DtSnqS9tXr9vCyQ6ryOm1C9nHdSvI7M4bt9E5k9D3AUu0o_ozvpjcm858LtPOTumLsIm_C8_2McPRcNmTwsYe09LYTLPWemLLvPa6e9iY7uvIkW7rtVyYa9AonBvLxGJrwr6gC8c25JPKhSjTnh4Qc92UXsvJFxFjzdV7o9QzGTvS4d0rsu8h28by6Zvc3LfrvpyWY9gbAzPZx1Pjt0iZk86GyMvTUOULwi5ZI902ldvcI-cDxB2Ak9QliiveQ_IrqQYHS8Exa7PdQmEjz-LNa8YVygvPO-O7yrg3K8ddAAvNad-jvQTye9d6KEvaH3hDpFMbe7jxjdPU2fdzr7m2s99gtWPQ4rJ7oH7uA9etweu_alDrpS-Y28Jw6FPBdyV7vYQwA9hkDJPWUfNbmcIYs8Rcw2vC9DV7pK8Uy8EXpsvBFjwTgyu7g7N6jdPZtsBDhYEiq9vEHUvY_yYrkKrrO9p6E8vSUYd7qUpzY66WuMvcOxarrVmXc7YFUCve5VSznljJK9k7kDveN9nrk7TEE7cwIHPGnLIrlPXl89CvS5vaGX7DiL6BI9MbbLPcvtFrk9_ZQ7HB0BvS-lorieAzC9D_IqPr3F37iTjNw9UcB2PCBljThFnO87PdHVPeIJR7lGGia9ftcRPVAAI7fo2AE9EhNUPaqcgrbvR8C9eLoOvTXQZ7gMKXU8HuYGPYMtWDdtxf69otQ-vRov9LhhTP671Ji1vTO0gjb4pxQ-A_pOPR_07TbufJo9boSqvWr67LiKZZk9oGqZPC30PLhcSQG9yt7SvRciBLnVO4E87z2Hvc2Tvzc3_6-9jus_vSA0AreGECE9XHfTvd7zm7ci_-w9NSkFPvN-W7gvwSm8CsTGPFtMlrhiglq9WyBmPWQ1uzeRCXg7BF2WPIKVcDggADgTQAlIbVABKnMQABpgUQcAE-oa_v0uI_77_OL32Anz3AzPCAD31AD8EOr4ABvi1PAc_yvoDOG2AAAAKQX-KCwAAV0h6fVC-vsk1csgIBJ_AxQrBD8IAMzjDibw7ybiGToOAM7WyRYv-OYT6SP_IAAtTANDOzgTQAlIb1ACKq8GEAwaoAYAAADCAACAvwAAEEIAALjBAABQQgAAwEEAAMpCAADgQAAAkMEAAAhCAAAYQgAA6MEAAETCAACAwAAAwMAAALDBAACYwQAALMIAACDBAAAMwgAAoEEAAATCAADAQAAAcEEAAKDBAABAQgAAoMEAADDCAADAQQAAwEEAAGDBAADwQQAANMIAAOBAAADwwQAAiEEAADRCAAC2QgAAQMAAAKBAAACoQQAAuMEAAGRCAABUwgAAbEIAADTCAACEwgAA2EEAAIBAAACIwQAA-EEAAEDAAABswgAA4MAAAHxCAABIQgAA3sIAACTCAADAwQAAEEIAAJpCAACQwQAAwMEAAM7CAAAIQgAAYMIAAFzCAACywgAAkMEAAHTCAAAAQAAAgMEAALjCAAD4QQAAmMEAAODAAAD4QQAA4EEAAADAAAA4QgAA2MEAAFRCAAAswgAAOEIAAEBCAAAAwAAAMEEAAChCAAAwwQAA4MEAAADBAABYQgAAuMEAABRCAABQwQAAKMIAAJjBAAAowgAAvEIAAHDBAACCwgAA6EEAAABCAADQwQAASMIAAAAAAABcwgAAPEIAAEDAAACeQgAAHEIAAADBAABowgAAcEIAABhCAACgQQAAoEEAAHDBAADYwQAAkEEAACRCAACwQQAASMIAAKhBAAD4wQAAoEAAAEBCAACoQQAA8MEAAFBBAABQwQAAjsIAAODBAABwQgAAREIAAAzCAADEQgAAIMIAAHTCAAAkwgAAgEEAAAAAAABoQgAAuEEAAABBAAAcwgAA8EEAABzCAABgQQAAkEEAACDCAADwQQAA8EEAAFxCAAAwQgAA-MEAAODAAABQQQAAyEEAAFDBAACIwQAAQEEAAI7CAAC2wgAADMIAADDBAACgQAAAdEIAAEDAAADAQAAAHMIAAIRCAAC4QQAAIMEAAAzCAAA8QgAAMEIAAJBBAACoQQAAgEEAABDCAACAQAAAiMIAAATCAAA8QgAAmEEAAI7CAABgwQAAgEIAAKjBAACIwQAAAEIAAIBAAAAgwQAAyEEAAJpCAADAQAAAcEEAAKjBAAAQwiAAOBNACUh1UAEqjwIQABqAAgAAVD4AAMi9AABUPgAAcL0AAIA7AABQPQAAoLwAANK-AABAvAAAUL0AACy-AADovQAAgLsAANg9AAAcvgAAoDwAALg9AABAvAAAuL0AAB0_AAB_PwAADL4AAIC7AADYPQAAsr4AABQ-AAAUPgAAUD0AABQ-AACWPgAA2D0AAJg9AAD4vQAAMD0AAHA9AABwPQAAiD0AAAS-AADIvQAAEL0AAFy-AABsvgAAvj4AAFC9AABEvgAA6D0AAFA9AACGvgAAir4AAOi9AABwvQAAjj4AAPg9AAAkPgAAoDwAADC9AAAdPwAAcD0AAFA9AACKPgAAiD0AAIi9AADYPQAATD4gADgTQAlIfFABKo8CEAEagAIAAFy-AACYvQAAgr4AAE2_AADYvQAAmD0AABQ-AADIvQAAQDwAAAQ-AAA0vgAAkr4AAES-AAD4vQAAEL0AAFC9AABAvAAAET8AAPi9AACOPgAAED0AALi9AABAvAAAgLsAAFA9AABcPgAAmL0AAHC9AAD4PQAAuD0AAOA8AACIPQAAuL0AAGy-AADovQAAcL0AAHQ-AADoPQAATL4AAAS-AAAsPgAALD4AAEw-AACgPAAAgLsAAEA8AAB_vwAAgDsAABC9AAD4PQAAmD0AABy-AAA8PgAAMD0AAKg9AACgPAAAED0AAAw-AAC4vQAAQLwAAGw-AADgPAAAML0AAKC8IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=aYqIs4XZli8","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["2837433166803986098"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3216917639"},"10109690327132498673":{"videoId":"10109690327132498673","docid":"34-0-9-Z7B6DB6C267D72A49","description":"See all my videos at https://www.tilestats.com/ In this video, we will see how multiple linear regression is computed. The focus is to understand how to interpret the coefficients in models with...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3151714/85f2086e168f6eabc641fb4ae01aa137/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/_kZSSQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DAP_K7SaKkIE","linkTemplate":"/video/preview/10109690327132498673?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Multiple linear regression - explained with two simple examples","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=AP_K7SaKkIE\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhYKFDEwMTA5NjkwMzI3MTMyNDk4NjczWhQxMDEwOTY5MDMyNzEzMjQ5ODY3M2qIFxIBMBgAIkUaMQAKKmhobmtycHpubWxnanZ3b2RoaFVDWlFxckZXMlZraXJCRjJhLWFWMUZkdxICABIqEMIPDxoPPxOLB4IEJAGABCsqiwEQARp4gf0H_g3-AgAL_QUD-gb-AQ4M8gT1AAAA-P3-AwUC_wD9AwD59wEAAPsC_vz-AAAA-O30_fr-AAAQ-_75AwAAAAj4AAf9AAAAFQgC9f4BAAD59ArxAgAAAA3x-Q3_AAAA_vQB-_v-_wD0EP7-AAAAAAYDAQAAAAAAIAAtjY_aOzgTQAlITlACKoQCEAAa8AFq7AsAsSDZ_AcF8AAaFOYAgRXw_wcn9ADG9AkA7Q_aAejk7wAU-Bf_FfoZ_wcSFAAFBfb-6foIAD7lKgAfBg0A8OsRAEbnKQNKBRgAKwDo_9sTAf4EE_0AFfYVAPgQ5v_9Dgj-9Pzn-wXx6QAM_jMBMA4VA_sBBQHzDP4D_AkABNsQ2_4X2gMC9QXkAdAKDQIiHPgAHRcO_QgS-wkW2xMB_v3y-R719AAVDuH6AAb2-_0RA_4U9_4EGu_1AgkN7_8AGfUKBQn8_w0Q9fcl2Q4BHvcC-fb--f84DPYBEOwH-vv-BPXfIP0D6hz9BvYIDAMgAC1R9DU7OBNACUhhUAIqzwcQABrAB_Et5L4zxTc99UccvNzxJj0OVWe8vZh7u_N3DrxiHDI9Xwh5vYBgLj5vNQE9n07DvPjBgb5_6Pi8RGlPPYwRCT5dFjO9RyabvYbjCb7fIPU8rAEqvRH8P75_YHg9EEQSvGyw8DwKa6E7Dtmjun-hhz1DuBe71Hx6vSGys71NO627qzFXvKz6AT2om6W9ZUH6OxNctLsxzA69L_rIO0gDgz1dz8K72LaIvQp91TxA_Bk8LpjTPN6PC74vv9e7lpktPPc_ED4XoG28n0nyO9LkEj7owLI8JZyOu-j-RTwUMRY9Gr39u6jKMj1_FPU8iTxuvJxarDyjHsc7fEj4vHf1Cr6gny49XPlRvORm-D1mTOE9GCPUOxU5FL5PlW88qxmjvP1S3Dumtre75BGcPOenCD6xLF09RvJwuyCihzz5pG49oEiBvJn7j72bRY49Z23JPFVkiT32l909mPJGvLLLgTxqBIE9yQyKvJViR7zpmxQ9seiMvKpzFj0Enio9fPTEO1fk_DyiYpy7nYiZvMU1Qz34UQ2-CW8su1OCFTzopqi921wKvJyiCDz6hog9dmU8vEGUiT1tJS-9O0j8On7zDL3Yeuu8KrIxPA4-Az3nOsi9LzNsPCexVb0juwI-2B-0t9566rvMfwM9S22Qu3nzSj1cLQU8s5ouPF0VDb1L3Z-8QTvxO4qfUL3mYkI8lOibO1OGID3WLnm7PyH5ur6BTj2lWlU8aWFku-9zvDyv10-8tGdgu0vJ0j0zlMm8C4qOuKERjD16h8K6SZVIuTZXzbwREo48ApX5uo6krjwbcmI9bPtPuDXhKDw1lZq9qORHObKrP72vyFS9c64-t4GvKD2MLm-9IYr8ucYC1ztiBYm97XAAOV9_vb0fGDu9CNU3uaNHI7w9dIs8WlJKOch0jTzHmzy9xKCQuNc0yrxsAPy792uvuMFC3DyTGMm9RTbUNg_Rqrtvngo-oKIZuT99ej31ZB286eRoON3zVz3HV1E9B3ofN5Z2ajxPR1Y9Tcw-uE8rWz07J6w9PEyEuJHEIb2LDKy9yCZ8OB2hoD00oF49A0nCuOoQDr2apMe7wNltOOE0szzcYXi9OPeqt8hfOj7clcI8za9LOHdz57zwYzG9wsPcN4JVRT50yDc9ydyEuWbYjb2OfHs7Eo-fNwL-3zyflKS8bj1MOIEmYr1NqBs9dgd1OEMiyDylTdW9UAd3uFUYpj1tC8U9g8fnOIFe-Lwl7xc9PNmmuJVpT73nr6m78Ly3No2R9Doexws8WvCXOCAAOBNACUhtUAEqcxAAGmBBBwAjM_0B_TH24uMV9_8X8fnt-8Yx_wbo_-Xuy-kqFO2TAv7_OcMG2qwAAAAa9xLtHwAGdubs8Bjmugqpud8lB38NGxHk_DPyneADDevc5PAWEVwAEQCmJ0na30QC7_kgAC0r-iE7OBNACUhvUAIqrwYQDBqgBgAA2EEAAJjBAAA8QgAAcMEAAKDAAAD4QQAAPEIAADhCAABAwQAAyMEAALhBAACYQgAAAMAAAGBBAABgwQAAHEIAABRCAACYwQAAuEEAAFBBAAAAQgAAGMIAABBBAABAQAAARMIAAKxCAACgwgAAhsIAAMDBAACoQQAAoEAAAIBBAAAUwgAAgD8AAKTCAAC4QQAAQMAAAKJCAAAcQgAAyMEAANBBAABcQgAATEIAAADBAACgQQAARMIAAABAAAAQwgAAgEIAAIDAAAAowgAAYMEAAIjCAAAYQgAAqEEAABBBAACYwQAA4MEAAJBBAACwQgAAmEIAAKDAAACEwgAA2MEAACRCAACcwgAAQEAAAGzCAADIQQAAosIAABRCAADAQAAAqsIAAADAAACYwQAAuEEAAATCAABQQQAAoEEAAODAAAAIwgAAQEIAADBBAAC4QQAAcEEAAMjBAACowQAAYEIAALhBAADIwQAAOMIAAJZCAACAQAAAYEEAAIBAAABUwgAA5sIAALhBAACuQgAAJEIAADjCAAAQwQAA2EEAAIBAAAAQwgAAKEIAAEjCAAAAAAAAgEEAAMRCAAC0QgAAMEEAAADAAAD4QQAAEMIAAATCAABEQgAAHEIAAPjBAAAQQQAA4MAAAEDAAAAwQQAAVMIAAGDBAACwwQAAwEEAAKDAAAAAwQAAwEEAAOBAAAAwwgAA4MAAAExCAAAwQQAAuEEAAMRCAADwwQAAeMIAAOhBAACgQQAA2MEAAMBBAABAQAAA4EAAABDBAADoQQAAMMIAABhCAADAwQAAwMEAABRCAABYQgAAwEEAAKRCAABAwQAA2MEAACDCAAAQwgAAAEIAADBBAABgQgAABEIAAAzCAABAwgAAMEEAAADCAACqQgAAgD8AAHDBAAB8wgAABEIAAABBAAAIQgAAiMIAAODBAAAsQgAAcMEAAFDBAAAAwgAAHMIAAFDBAADwwQAAsMEAAJxCAAC4QQAAAMAAAJjBAAAQwQAAiEEAACjCAACgQAAAaEIAAIC_AABwQgAAEEEAADBBAADYQQAA2MEAAIxCIAA4E0AJSHVQASqPAhAAGoACAACCvgAAJL4AAHC9AADoPQAA2L0AAKA8AAD6PgAAU78AAOC8AACGPgAA4LwAAJi9AAAcvgAAyj4AAFS-AAC4PQAAZD4AANg9AADCPgAAPz8AAHk_AAAQPQAAcL0AAKg9AACqvgAAfD4AAEw-AACOvgAAHL4AAHw-AAA0PgAAoLwAAJa-AAAQPQAA-D0AANg9AACoPQAAoDwAAFS-AACOvgAAgLsAABA9AAAwPQAAoLwAAIA7AAAQvQAAcD0AAK6-AACgPAAAVL4AAI4-AABAvAAA6j4AADA9AADgvAAAML0AAH8_AACIvQAAyL0AAGQ-AAAwvQAAlj4AAFC9AADovSAAOBNACUh8UAEqjwIQARqAAgAAEL0AADC9AACYvQAAR78AAES-AACYvQAAjj4AAEC8AACgvAAADD4AAKA8AAD4vQAAuL0AADy-AABAPAAA4DwAACQ-AAAHPwAAoDwAANo-AABUvgAAoDwAAPi9AADYvQAABL4AAJg9AABMvgAAyL0AAAQ-AABQPQAAUL0AABw-AAC4vQAAdL4AAIg9AAAEPgAAkj4AAAS-AAD4vQAAQDwAAEA8AABQPQAAyr4AABw-AABsvgAAlj4AAH-_AAA8vgAADL4AAHC9AABMPgAAiL0AAHC9AAAEPgAAoDwAAMg9AACAOwAAbL4AAOg9AAAwvQAAcD0AANi9AAD4vQAA4DwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=AP_K7SaKkIE","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10109690327132498673"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4276992042"},"17308837180605558222":{"videoId":"17308837180605558222","docid":"34-3-0-Z8E29D4BDC4BD223E","description":"See all my videos at https://www.tilestats.com/ In this video, we will discuss the Hotelling's T-square test. We will start by comparing it to Anova, Manova and the t-test. Then (03:15) we will...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1577330/a003fe0157f0e4403ff287df1fa344a7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/oQAYhwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRmktDvMrhGw","linkTemplate":"/video/preview/17308837180605558222?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hotelling's T-square - explained with a simple example","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=RmktDvMrhGw\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhYKFDE3MzA4ODM3MTgwNjA1NTU4MjIyWhQxNzMwODgzNzE4MDYwNTU1ODIyMmq2DxIBMBgAIkUaMQAKKmhobmtycHpubWxnanZ3b2RoaFVDWlFxckZXMlZraXJCRjJhLWFWMUZkdxICABIqEMIPDxoPPxPRBYIEJAGABCsqiwEQARp4gfP_Awv9AwD3_Qj--wT_ARwC-_8DAgMA8QEC_P4BAAAID_oE_QEAAPX2AAYGAAAA8voBBv0AAAAJ_PgFAwAAABMABQT8AAAABQH9Bv8BAAD0-_78AwAAAAn3CgIAAAAA9f__Bvr_AAD9DAD6AAAAABP8AAUAAQAAIAAtQrHbOzgTQAlITlACKoQCEAAa8AF_8SMB2RLvAA_yDQAN4OYAqgP2ACL_3wCtAwoAx_jTACwS9QHL4-__FwccAQgGMgH2-PL_HQYGACHgCwA7DAwACwYSABYCAgMCFAIA6PXdAPUaCP_9_gEA8u8CAc8UBv8e_hz_FhbV_hz32wIM_jEBEBgGASMCCv8CG_gD3xztAPDl4f4x_fwC9BD7AfPkDAMQJuUBFSn_BjPqAP8d8Rf99_H6-hEJ6QMb0_QCAQEJ-gMXFv0XARIIFg4IDCg39AD9AgEE6_0EAAEHBPYv4wD5EvcMA-kHDPb63QQGDNX79fnsAQD5EvsABxf8CALcBQQgAC1BCDw7OBNACUhhUAIqcxAAGmBHEgAjICDn8k5o4vXx8_oKABYvxrc8_xTqAPYeDfcWKbbL5CQAKdw96KMAAAAH9yQUGAAKfwXGFiL10iCLpaogGXn-EiDhICv4yQzhMv_WFCE6ODYA79egD1Ll-xvY_RQgAC3w3xM7OBNACUhvUAIqrwYQDBqgBgAAyEEAAHDBAADwQQAAAEEAAMDAAAAAAAAAdEIAADBBAAB4wgAAMEEAAABCAAD4wQAABMIAAHzCAACgQQAAqMEAAODAAABIwgAA0MEAAADBAABAQAAATMIAAFDBAABgQQAAWMIAAIhBAAAswgAAyMEAAIhBAAAQwQAAhEIAAJJCAAA8wgAAoEAAABTCAADwQQAAAMAAAIRCAADQQQAAaEIAAPDBAACAPwAAwkIAAATCAADYQQAAAEAAAKjCAACgQQAAuEEAAFBBAADYwQAAoEAAAKjCAABwwQAAYEIAAJhBAACgwgAADMIAAPjBAAC6QgAAqkIAAPhBAACYwQAAusIAAExCAADwwQAAAMEAAHTCAAAgwQAAlsIAABBCAABgQQAAyMEAABBCAAAIQgAAbMIAAEDAAABYQgAAgL8AAIDBAABAwQAAoEEAAPjBAAAcQgAAmEEAABBBAAD4wQAAvkIAALjBAACYwQAAMMEAACxCAADgQQAAEMIAAADCAAAkwgAAJMIAAMhBAADwQgAAqMEAAOjBAAAEQgAAYEEAABhCAAAgwgAAYEEAAATCAAAAwAAAGMIAAFxCAABYQgAAsMEAAFTCAAB4QgAAQEEAAOBAAADgwQAAAMAAAIC_AADwwQAAoMAAABTCAACWwgAAkMEAAMDAAAAUQgAAhEIAAOhBAAAswgAAjsIAAJDBAAAMwgAAYMEAAAhCAADoQQAAEMEAAFBCAADgQAAANMIAABDCAADAQQAAiEEAAOBBAADwQQAAwEAAAKBAAAAEwgAAgEEAAKpCAAA4QgAAssIAAKjBAAAEwgAAAEIAAFBBAABwwQAAXMIAAJBBAABgQQAAuEEAAPhBAACwQQAAjMIAAJTCAAAUwgAAEMEAAGBCAACWQgAAoEAAAEzCAAAkwgAAFEIAAEDBAACYwgAACMIAAMDAAACAQQAAgMEAAIBAAADQQQAATMIAAIBBAAAQwgAAgMAAABxCAAAEwgAAVMIAABDCAADoQQAAwMEAAMDAAACAwQAASEIAAABAAACAPwAAEMEAAITCAADIQQAA4MAAAERCIAA4E0AJSHVQASqPAhAAGoACAACovQAALL4AAKg9AADCPgAA-D0AAOA8AACWPgAAWb8AAJK-AACgvAAAoLwAACS-AAB0vgAAhj4AALK-AAAsvgAAyD0AAPg9AAAEPgAA-j4AAHM_AAAUPgAAQDwAAHC9AACgPAAAEL0AACw-AABwvQAAyL0AAJo-AACqPgAAbD4AABS-AABEPgAA2L0AAEw-AACyPgAAir4AANa-AABMvgAAyL0AADQ-AACGPgAALL4AAIA7AADoPQAABD4AAEy-AAAwvQAAkr4AALI-AADIPQAAFD4AAIA7AAAQvQAAFL4AAH8_AAAQPQAAUD0AAKA8AADYvQAA6D0AAOA8AACGviAAOBNACUh8UAEqjwIQARqAAgAAsr4AAJg9AABQvQAARb8AAEC8AAAUvgAABD4AAPi9AACgvAAA6D0AAAy-AAD4vQAAoLwAALq-AADovQAAgLsAABC9AAAFPwAA4DwAAFw-AACovQAAcD0AAIg9AACAOwAA2L0AABC9AABcvgAAgDsAABA9AAAcvgAAMD0AAFw-AACIvQAAXL4AAKi9AADIvQAA2j4AALg9AAB8vgAAiD0AAFC9AACYvQAAhr4AAOA8AAAUPgAAMD0AAH-_AABwvQAAmL0AAEw-AADePgAAdL4AACw-AADoPQAAEL0AABA9AACgvAAAmL0AAKi9AABQvQAAqD0AAEC8AADIvQAAoLwgADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=RmktDvMrhGw","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":640,"cheight":360,"cratio":1.77777,"dups":["17308837180605558222"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3754771912"},"1992520126928334115":{"videoId":"1992520126928334115","docid":"34-1-1-Z38CBF89DA6CBB1F4","description":"In this first video, we will have a look at the basics of how to create a cellular automaton. We will learn things like: 1. Lattice, states and neighbors (0:50) 2. von Neumann and the Moore...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2468218/616c42fab1ee9e5c3c551099977146f4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/vsSWAwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2nE0z_9-fCY","linkTemplate":"/video/preview/1992520126928334115?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Cellular automata tutorial - the basics","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2nE0z_9-fCY\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzE5OTI1MjAxMjY5MjgzMzQxMTVaEzE5OTI1MjAxMjY5MjgzMzQxMTVqiBcSATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8T2wWCBCQBgAQrKosBEAEaeIHzCQcI_wIA9gEB-fsBAAEO_fkBCf7_ANwBDf4F-gMA_P8IAwEAAADrA_sM_QAAAPUE-QIC_wAADQL4EAIAAAD5DAMI-QABABcG9fn-AQAA_PQM_AIAAAAIBQ_8_wAAAPoL-AP-AAAA-Pf7AQAAAAAX8_8MAAAAACAALdl91js4E0AJSE5QAiqEAhAAGvABZRIS_ejyDwLGBgAAztLGAYEKLf9j9hIA8PwfAd7B3wHdHusA3eke_9PY6wG2GggABsDT_-gX0P8Y7BD_PNboACIYBQE6xxEBLwr2AAzu_P4VETL_5B8W_wkeAAAOAhj-FyEU_P4N6wHt0-4EGuQvAwoc-f0stQUB2wgcBPfvJAMf_PwD6er6Bg0oAPgMAyMD_CTWBRcT5gHqJv4FJf3kAvvgBPoqAuQCGO4G_vgdBAbxCPgGIhPvB9c1Cgk2SfAALzEH8fPv8QjvFgnvD7vfAx_NCwUDFfcT9OL2Bt_aCvb2CgAJwTsL-L3KCQcB3Q3zIAAtUCMNOzgTQAlIYVACKs8HEAAawAdcH8a-AEF0PacSlDyoVMm8mOAUPSfca70ZAiC-CGqAuzj8iTz5ENQ9qcNFPaq78jyf5Ja-G9hqPUoNTb0tC1Y-sIpcvUEtJr1ERba9VHcAvXnGY7xnYgq-VWH9PDBCPb2jiiy8fV-3uzlBwDv61dw9N35yPKugFjzOWVo9DasYPTwa4rxRlmu8gXSmvZtz0zu94yQ-H7SDvGQe_Tu7JgQ-rYefvUB3-LwVPra8JK6IvOhXKT2ZKe291SkLPPKhujxC0uc8McOQPMgljrycR4u7xonPvS2SG71GJqC8208GvCmoUTsNFzm9RJEkvCqQWTzR9p65dXcZvJgZMjsxzSS-4Y9svSFhczxmMGY9C8qZPfOBk7zCz0m7fKJGPIlutjmkbqc8_dJHPBa6t7yOIFU-e0jdvC-nwjv-npi8YvgGvKuDVTtt3p08a30hPq6mY7vHjnw9MC_AOybb5byEjgw9H4IqvJaVprzNrbC9Dfv_u07dSzyQvZ69--fpvMBqdjx9CdU9EaqzOupChzvWwcY9I5QIvHWgWjvKQNQ896T6u1vzPjxmsgk988IEOmW3oDyyW3U93Gd1PXgGsrsfFpW9KVmOPPM05LoCyIo9OIyNvRTHZLu15Ew8iPlNPecXpTsBwLG8QHbNu-ZI2zqWfbI9IQJuvVN5WLttxoo6R5qRugVCHTzm9oE8NalSPWGC4DtMes48l_3avcIwyDkYsgo-ZZ7DuxjRgjiAG9g8aG-1vXQ7RrlW0_U8uWCaPfMOK7lDKMY7gZugO42LKjoK9wo9zwYqPfatvTmObLg9bvhdPA2IGbmq1Lw99LMHPWXzU7mOv769a3CvuNrMHbl_jNQ8JML1PDMfvLmUZ569yWqEvZnmfzkC9Iu9RTWQvTuGMTiEni09YqlkvcixiLktf_i6142SPUxKXbijHie9Rhy8vISPqbfBNBG9PrPkvdqi2TjaQqa9OymdPQIvjbc8hoc8kzB4PLF_q7glq0e8L41avcxZyzcBTPk9oJLOvDrIEDlVmZQ7k0yDPZQPmbiwQpC9TACZvSFlY7iL15Y9nw8FPSCNFbjK4QO-ENcePJf9Tjekwpg9tz_dO4ED_zh56o07_3gvPEmoILiVbYa9CobvOzi7jjcdVCc9Ff6MPCyWX7ezG0c93dQROkeYDbds7mg8KSCSvIcYqjejmp09295uveB1DThhBnk98zoSvkvnqbjK9HA9IuErPvHLijiH1Uk9QC_8PbeqB7nQrSG9TOmvvUthvzbtiHm9B72tPGTFwDcgADgTQAlIbVABKnMQABpgNwcAQjUk3PUXD-8O0AAWuw7m1g3t6f_b7f_fFBUAC-22pN08ABH3OtirAAAA7v8RCx4ALmr4tRfj1ewE2svALfx_T_825iYQF_v_JPHrDfXtyBxPAOUA6TxU89Iu_yodIAAtWLgkOzgTQAlIb1ACKq8GEAwaoAYAAJjBAAAAwQAAMEIAAHDBAAAYwgAAqkIAAAhCAAAYQgAAgsIAAABAAAAMwgAAREIAAABBAABQQQAAKEIAAIhBAACQQQAAJMIAAAAAAACowQAANEIAAFDCAAAAwQAAAEIAALjBAADYwQAAYMEAACDBAACQwQAAAEAAAJDBAAD4QQAAHMIAABDBAACgwQAA8EEAAKDAAABMQgAAAMAAAKBBAADowQAAsEEAAPBBAAAAQAAACMIAAMDAAAAQQgAAgEIAAFBBAAAAQQAAwEAAAKBBAABAwgAAAAAAAJDBAACowQAAkMEAAEDBAABAwQAAbEIAAMRCAACwwgAAhMIAACDCAADcQgAASMIAAIDAAACgwAAAgMAAAAzCAAAAAAAAyEEAAAAAAACUQgAABMIAAFTCAAAEwgAAYMEAAFxCAABAQgAAuMEAALxCAABgwgAAuEEAABRCAADwQQAAMMEAAOhBAABcQgAAFEIAAIzCAADeQgAAlsIAAEDCAABQQQAAysIAADDCAACAQQAAqkIAAERCAADQwQAAkMEAAJDBAAAUwgAApMIAABRCAAAAQAAAikIAABDCAADQQQAAAAAAAOBBAABwwQAAaEIAAIhBAACiwgAASEIAAIjCAAAUQgAAAAAAADDBAABgwQAAJEIAAJjBAAAwwQAAYEEAAEhCAABwwQAAwMEAACzCAACowQAAQEEAAFTCAACQQQAAjsIAAAhCAAA0QgAA0EEAANjBAACIQQAA8MEAAADBAACgwAAAgMAAAMhBAAAIwgAA4MEAAIBBAABwQQAA-EEAACDCAABAwAAANMIAAOLCAACwQQAAkMEAAGjCAACgQAAAIMIAAEzCAAAwwQAAPEIAAEDAAADAQAAAEMEAAJTCAAAcQgAA0EEAAHBBAADAwQAA0MEAAEhCAACwwQAAhsIAABzCAABwwgAAwEAAAHjCAAAQQQAA8EEAAIDCAABwQgAAUMIAAIBAAACgQAAAwMAAADDCAAAYwgAAqEEAAAhCAABAwgAAAEIAAOhBAAC4wQAACMIAAKhBAACIQQAAQEEAAAAAAAAMQiAAOBNACUh1UAEqjwIQABqAAgAApr4AAAS-AAAHPwAAED0AAAw-AAAcPgAAZD4AABm_AAAsvgAAdD4AADQ-AABMPgAA7r4AAIi9AAAMvgAALL4AAHQ-AABQvQAAQLwAAIo-AAB_PwAAiD0AADC9AABEPgAAcD0AAFC9AAAcPgAAEL0AALg9AADOPgAAZD4AAOA8AABMPgAAQDwAAAS-AACavgAAgj4AABW_AADCvgAAUD0AADw-AADavgAAVD4AAK6-AABsPgAAyD0AAAw-AAAQPQAAoDwAAJg9AABsPgAANL4AAOi9AAD4vQAAgDsAAHA9AAB1PwAAlr4AALg9AADIPQAAiL0AAIA7AABkPgAA2D0gADgTQAlIfFABKo8CEAEagAIAAGy-AAAQvQAANL4AAFG_AACgPAAAmL0AAKA8AABQvQAAmD0AABS-AACCvgAAuL0AAKi9AAC4vQAAiD0AALi9AABAPAAA5j4AABS-AAC2PgAAyL0AAKC8AACAuwAA6L0AAIC7AACIvQAAyL0AABS-AAA8PgAAPD4AAHA9AAC4PQAA4LwAAAS-AABQPQAAgLsAAFQ-AABQPQAADL4AADQ-AADYPQAAUL0AADC9AACSPgAANL4AAKC8AAB_vwAAuD0AADS-AAB8PgAARD4AAGS-AAD4PQAAyD0AADA9AAC4PQAAgDsAACy-AACYvQAALL4AAOA8AAC4PQAAUL0AAOi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2nE0z_9-fCY","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1992520126928334115"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4164784161"},"10885229111142338145":{"videoId":"10885229111142338145","docid":"34-5-15-Z0E6CCC7F3286C1CB","description":"8. Linear regression vs regression trees (23:25) 9. R code (24:37)...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/905202/51db7d26f4f2133bd4940d3c58354edc/564x318_1"},"target":"_self","position":"16","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dv5k1x_1CWi8","linkTemplate":"/video/preview/10885229111142338145?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Regression Trees and the complexity parameter","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=v5k1x_1CWi8\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhYKFDEwODg1MjI5MTExMTQyMzM4MTQ1WhQxMDg4NTIyOTExMTE0MjMzODE0NWqvDRIBMBgAIkUaMQAKKmhobmtycHpubWxnanZ3b2RoaFVDWlFxckZXMlZraXJCRjJhLWFWMUZkdxICABIqEMIPDxoPPxOXDIIEJAGABCsqiwEQARp4gff5BPv8BAD8-QYHAgf8AvYLBgL5_f0A8gH3AgcB_wD16v4C-wAAAAUAAAEEAAAA9vMBBQP_AAAaAvv2AwAAABX5_AD_AAAAC_r4Af8BAAD18v8BA_8AAAb7_xMAAAAA8gj3CQEAAADuEP_0AAAAAAv-_gEAAAAAIAAtluDdOzgTQAlITlACKnMQABpg_xkAFB_36-kgE-jY7N_yHvQi_fPi9AAO6QD1EOj1LuMA2woLABvlD-_RAAAAEQQAEAgA_DwI4-f2Eh0XzfP1CBN_ByXw8_wj7AX27g0H_-v0CA0JAA8H-hYw4RQp7y0QIAAtScOBOzgTQAlIb1ACKq8GEAwaoAYAALhBAABAQAAAQEAAALhBAACgwQAAskIAAJZCAAD4QQAApMIAAMDBAAAwwQAAAAAAACjCAADAwQAAAEAAAAzCAAC4wQAAPMIAADBBAABAwQAA2EEAADzCAAAcwgAAJEIAABTCAAC4QQAAIMIAADTCAAAEQgAAIEEAADRCAACoQgAAbMIAANDBAAB0wgAAcEEAAIjBAABcQgAA0EEAAIBAAAAgwQAAoEEAAJxCAABgwQAASEIAAHjCAAAAQQAAAAAAAKhBAACwQQAA4MEAAEBBAACEwgAAgEAAAIBAAACAwQAAOMIAAOjBAAAQwQAApEIAANRCAABAwAAAFMIAAHTCAABEQgAAVMIAAMDAAACUwgAAAMAAAJLCAACgQAAAMEEAACDCAAAAQgAADMIAAIDBAAC4wQAAoEEAAIhBAACQQQAAYMIAAEBCAADgwAAAUEEAADxCAABQwgAAQMEAAIpCAAAAQgAA4MEAAIjBAACiQgAAwMAAAIDAAACowQAAXMIAACzCAACQwQAAxEIAALDBAABwwQAAUMEAAPBBAADAwQAA2MEAAJjBAAAMwgAA4EEAAOjBAACKQgAAikIAAEBBAAAkwgAAxEIAADBCAACAwgAAoMEAAKBBAAAgwQAAqEEAAIBBAAB0wgAAGMIAADzCAAAAwgAAAEEAAIJCAACMQgAAFMIAAJjBAACIwQAAlMIAAIDAAACAvwAAgL8AAFDBAAAwQgAAAMAAAJLCAACgwAAA4EEAAFBBAAC4QQAA-EEAAMBAAAAQQQAAYEEAANjBAADAQQAAQEEAACDCAADYQQAAgEAAANhBAAAkQgAA6MEAABjCAAAAwAAAVMIAANhBAACQwQAAREIAAMDAAAC-wgAAnsIAAADAAAAQQgAApEIAAIA_AAAIwgAAZMIAADhCAAC4QQAADMIAAODBAADYwQAAMEEAADDBAAA0wgAA2MEAAAzCAAAQQgAAHMIAAHTCAABUQgAAaEIAACTCAABQQQAASEIAAEDAAAAMwgAAoMAAAGxCAABgwQAAuEEAAGBBAAAwQQAAoMAAAHTCAADgQSAAOBNACUh1UAEqjwIQABqAAgAADL4AAPi9AAAkPgAAgj4AAJa-AAAQvQAA2D0AAIa-AAAMvgAAmD0AAEy-AAAsPgAADD4AAOA8AABMvgAAEL0AADC9AAAwvQAADD4AAP4-AAB_PwAAcL0AAKi9AACWPgAAir4AAKY-AABAPAAABL4AAEC8AAC4PQAAoLwAAPg9AAAcvgAA6D0AAOg9AAD4vQAA4DwAAFy-AACivgAAmL0AAIA7AACYPQAAmj4AAFC9AABsvgAATD4AANg9AAC4vQAAFL4AANi9AACovQAAgLsAAMo-AABcPgAAhr4AABA9AAAxPwAAUD0AAIi9AAAUPgAAoLwAAIg9AAAQvQAAyr4gADgTQAlIfFABKo8CEAEagAIAALq-AACYPQAAPL4AAG2_AAAkPgAA6D0AAIi9AABkvgAALL4AALI-AACIPQAA-D0AAJa-AAA0vgAAUL0AAIA7AADgvAAAMz8AAHA9AADyPgAABL4AAHA9AAAkPgAALL4AAHy-AAAQPQAAVL4AAOA8AAAQvQAAqD0AABw-AAAwPQAAiD0AAPi9AAAsPgAAoLwAAJg9AAD4PQAANL4AABA9AACYPQAABL4AAIa-AAAQPQAAVL4AALY-AAB_vwAAhr4AAKC8AAA8PgAAXD4AAFS-AACWPgAAPD4AAIC7AACgPAAAQLwAAFS-AABEPgAAir4AAIC7AABMPgAAQLwAAKg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=v5k1x_1CWi8","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10885229111142338145"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"1779425705081309698":{"videoId":"1779425705081309698","docid":"34-4-10-Z60E95FC243DC3E1A","description":"See all my videos at https://www.tilestats.com/ 1. Permutations with replacement (0:29) 2. Permutations without replacement, factorial (1:55) 3. Combinations without replacement (06:20) 4. The...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3378293/c2f40533f3deaeb5c157ca6a50e3eb60/564x318_1"},"target":"_self","position":"17","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPJ58wZcW4kw","linkTemplate":"/video/preview/1779425705081309698?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Permutations Combinations and the Hypergeometric distribution","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=PJ58wZcW4kw\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzE3Nzk0MjU3MDUwODEzMDk2OThaEzE3Nzk0MjU3MDUwODEzMDk2OThqrw0SATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8TlAaCBCQBgAQrKosBEAEaeIHv-gEA_AUA-QEACfcG_gIEAAAC-P_-APr1Bf4GBP4A_fYGAwIAAAAEBvcBAgAAAPr7-PoC_gAACgUACAQAAAAU-Q_69wAAABAA_PH_AQAA-AH8AQP_AAAH-wYL_wAAAPQJ-v8CAAAA9wsI_QAAAAAOBQIDAAAAACAALXxl3js4E0AJSE5QAipzEAAaYBQLAAbnDODeJAzz9PPr8wv-HgMO3eQA7PwABTwA9CYN6ePnKQAk3wgSzgAAAAER8if9AOY6AvsVJhj4EOAH7vobfxEK5PTtAOvo_PobFRc5FfwO6QDx_hT3HNHpJQkRICAALVlbezs4E0AJSG9QAiqvBhAMGqAGAAAAQAAAmMEAAKBAAAAAQAAAQMAAACDBAACQQgAAJEIAAHTCAAA8QgAAoEAAAKDBAACAPwAAFMIAAAAAAADAQQAAAEAAAMjBAAAgQQAAmMEAABBBAAAUwgAAgL8AAJhBAABIwgAAsEEAALzCAAAcwgAAiEEAAMBAAADAQQAAPEIAADBBAADowQAAkMIAAIhBAAA0QgAAmEIAACDBAADwQQAAZMIAAKDBAAC4QgAAMMIAAJhBAADIwQAAbMIAAKhBAAAQwgAAHMIAAKDBAABAwAAASMIAAEBBAAAQQgAAQMAAAKbCAABAQQAA6MEAAGhCAACOQgAAkMIAAIjBAABQwgAAXEIAAOjBAACMwgAAGMIAANhBAACOwgAAgEAAAEzCAAB8wgAAEEIAAATCAAAIwgAAwEEAAJBBAAAQQQAAqEEAAETCAACKQgAAAMIAAOBBAAA0QgAAmEEAABDBAABoQgAAMEIAAOjBAABEwgAAXEIAABhCAAAAQAAA4EAAALTCAABAwgAAiEEAAFxCAAAAQAAA0MEAAOhBAAAAQQAA4EAAAHzCAAAkQgAAVMIAAEBBAADwwQAAOEIAAJZCAAAcwgAAtMIAADhCAAAAQQAAUMIAAIDBAADgQAAAgD8AALjBAAAYQgAAAEEAAJjBAACIwQAADMIAALDBAADYQQAADEIAAIhBAAAAAAAAQEEAAOjBAACiwgAAAMAAAABAAACAvwAAXEIAAABBAACwwQAAfMIAAABAAADwQQAAlkIAADBBAAAwQgAA2EEAACBBAACAvwAAlkIAAEhCAADawgAAIEIAABDBAAAMQgAAgL8AANDBAABIwgAAHEIAAODBAACwQQAAgEEAACRCAADGwgAAkMIAAODBAADAwQAAoEAAAMxCAAAcQgAAgMIAAMhBAAAgQQAAgEAAAETCAABAwAAA0MEAAPBBAADAQAAA4EEAAFBCAABQwgAAwEAAAFTCAABgwQAAIEIAABRCAACAPwAAAAAAAHDBAABAwQAAIMIAAOBAAACAQQAAXMIAAFBBAAA0QgAAqEEAACDBAACoQQAAYEIgADgTQAlIdVABKo8CEAAagAIAAFA9AAAwPQAAMD0AAKo-AABcPgAAFL4AAFy-AAAlvwAAJL4AAIY-AAC2PgAAZD4AAHA9AACgPAAA7r4AAEA8AAA8PgAA4DwAABC9AAAbPwAAfz8AABy-AAAQvQAAML0AAKA8AAC4PQAAUL0AABw-AABAvAAA-D0AAIY-AACiPgAAbL4AAEw-AABMPgAAFD4AAAy-AABUvgAAgr4AAA-_AACIPQAAyL0AAP4-AAC2vgAAPL4AALg9AADIvQAAHL4AALi9AACSvgAAmD0AAES-AAA0PgAAoDwAAL6-AAAkvgAAQT8AAPg9AABEvgAAXL4AAAS-AAAsvgAAML0AAEQ-IAA4E0AJSHxQASqPAhABGoACAAAMvgAADL4AAAy-AAArvwAAmL0AAOg9AACIPQAALL4AACS-AABcPgAAfL4AAAy-AACgvAAATL4AAHA9AAAwvQAAQDwAACE_AACgvAAAwj4AABA9AABAPAAAEL0AAIC7AACAOwAAmD0AAOC8AACgvAAAML0AABA9AABwPQAAmD0AAPg9AABEvgAAQDwAAKg9AABEPgAAtj4AAFS-AADIvQAAdD4AADQ-AAAkPgAA6L0AAHA9AAAQvQAAf78AAHC9AABQvQAA4LwAAEw-AAB0vgAAnj4AAOA8AACAuwAAED0AAKA8AACIPQAATL4AAEC8AAAUPgAAZD4AAHC9AACgPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=PJ58wZcW4kw","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1779425705081309698"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false},"7876030266654969248":{"videoId":"7876030266654969248","docid":"34-4-8-Z02144975ED4CB060","description":"For more videos in a logical order, go to: https://www.tilestats.com 1. Expected value vs mean 2. Weighted average vs the expected value (04:36) 3. Expected value of a discrete uniform...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4570717/9264c8a3ba501e3fd620c093f88a24a3/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/NfjXSgIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5Xs35Jnam5Q","linkTemplate":"/video/preview/7876030266654969248?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Expected value vs mean","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=5Xs35Jnam5Q\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzc4NzYwMzAyNjY2NTQ5NjkyNDhaEzc4NzYwMzAyNjY2NTQ5NjkyNDhqiBcSATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8T6gWCBCQBgAQrKosBEAEaeIEC-P34Av4AA_4L-v0D_wECDgbz9___AOz8B_oHAAAA5fD7CQL-AAALC_cK_AAAAAMA8wD9_QEAAQUK9eUA_wAEBAMGBgAAAAQP-wQKAAEB_RPxAAP_AAACBgURAAAAAAQIAAIH-wL_EwLuAwEAAAAV7wcCAAEAACAALRHtzjs4E0AJSE5QAiqEAhAAGvABfwQJAbsK8P329ekA5gr1AYkgCv9ACeMAytYiANoMwgHh_uAA-gorAe_v_QHBJhkBD-HUABHwCwEr-yL_HwT8Af0VKQAx6xIALAIHAAvh_ADWQB7_D_kc_wDq_wElHQf-CfQR-vP85fv_6NAAIPwpARIbBwER8P0E8g7-A__-BgUOGeH94_kIBADq-v7t8RYEIB_K_hsf8f3qHesCEOoRAwHyDAIZGOX-LSHq_OsLCgf0B_kFC_vxCfcREAcGK-H50AL7-Arc4gYA-fwD5dkHBgEFAwkXE_b9DO4BBxXj-_va__r1yzIJ-eEB_gfx6gP3IAAtzR0nOzgTQAlIYVACKs8HEAAawAeHFuG-uD7sPDlCJr1c1_m873tvvbQFBL3goP29LgymOwWRHrx2Ggk-WwA_PaQN0bybHaG-RqGbvMhnqDyY3SM-gUmQvUP09bzv5U6-EKhDPRiswLv1oWu-hNMHPXQ1w7tqXRM8RnwnvSBzDrurTaI9VNwdvQl2Er3h5S49Qzd7vDd9rLyX1J47rFuYvaHQl7y_s0I9lEKou0dQIT0vUf09sQVgup-rrbxrcxC8tlfVPH2wDjzsaNy9L70BvBlYBTsP_I49_IwrPd8g9TychLk7fjvJvOqrULwpD2G9QDX7O_d2y7uBiYk9hBJBvJWsVLzwbmA9W1U7vVbYZ7xAt7G9PSkTPZrcHDzkZvg9ZkzhPRgj1Duu1wS-DZ8-PexFmbxlyRe9zjjNPG2gDLxcHQA-kGaRPDNXgjvEEDQ9BF7eO2f_TTwJZMA8z1l1PYVjsTyPGN098_uDPQ4mj7wq3De92_biPPtnvLxz6Um9A208O1E7Mrwr6gC8c25JPKhSjTl3qbc9BAklvXGFgTxE87U92NTZvTpxILwu8h28by6Zvc3LfrvQoPw8UInQPIpxALxBlIk9bSUvvTtI_Dp96EK98Dscvf2N9znfrhE8TKnrvb3d1Du9qSi9eVGlPVC6crqI2Yu8AXW5PC6tczp4iSA9PBz4PJvIijt7LS29R2OzvfC-iDmB0gs9A2mFPZMbEbqHy4A9aY4sPAHXYLogKUI-IIwMPDtmxLjXBl28Z0pGvMACObtW0_U8uWCaPfMOK7kH0Vo9D0wJvbOFgLr4-4W8e09APA9nDTobH3u7axaOPcJ0YDnlQmW8pG_SvIY_Drjfbmm9VXMUvEDy1joRQ6E8fIidu3U0ejr3TIA8om5Rve9ycLhff729Hxg7vQjVN7n_W0m8bl2gvP0yijkrc4k9bRUJvd0qxjhiwJI8lyL1OxTHXzlKYd67bLd4vVNjwzl1U288SrzHPRmCf7gcZbg9n_oRvSlCdDnEVjU9eWHGPbbmLrgoMxQ9um-QO0jS4LcXH7A8S6CHPTgzx7jiz5u9M1D5vUbKDbig3Hs9AZm3PVgANrhKUai9Y27tPPsFPjgvyFE9z1XpvPlSMzgc2bA9QBeNvNQr4TcAlBq9GxJ3POOGszid2e49n5WTuqNqDrm6lhy8SepOvVhMfbnMHpI91hvzu9TWszdNaNK9TmElvH2A8ja9rwU9pUkJvq2ehbgi_-w9NSkFPvN-W7i2yp083NUrPV_ZcLiYD4293R-EPYzD0TeYZ0q9QRQnPPJETDcgADgTQAlIbVABKnMQABpgTAcAMCAo-wnuLfMJy_EF2BjsDMP1DwAZ5gAO8grhDBX8wh0X_y36Kem3AAAACgwYJvoACFra79wX5CL9v90BJAl_RwYr1QkX_vTuLy3Q7AAC4SQjAATn1Sk0_MQcLyg2IAAto7o8OzgTQAlIb1ACKq8GEAwaoAYAALjBAAAAAAAA-EEAAEDBAAAwQQAA6EEAAMpCAAAAwAAAAMEAAKDAAABwQQAAAEEAAIzCAAAIwgAAEMEAAKjBAADQQQAAmMEAAIC_AABQwQAA-EEAAAzCAAAAAAAA4MAAAIjBAAAcQgAATMIAAHzCAAAAQAAAUEEAAIjBAAAsQgAANMIAANjBAAAIwgAAoEEAAFRCAABEQgAAAMEAAAjCAACAwAAAQEAAAAhCAACgwQAAPEIAAGzCAACIwQAA6EEAAADAAAAQwQAAAMEAAGzCAACMwgAAQMAAANBBAAAEQgAAsMIAAMjBAAAAwQAAcEIAAOJCAACEwgAAUMEAAJDCAABEQgAAkMIAAGjCAABkwgAAsEEAAIzCAACQQQAAwMEAAHzCAAAMQgAA2MEAACTCAABQQQAAoEEAACjCAAAAQgAAwMEAAKJCAABIwgAAfEIAABhCAAAwwQAAwMEAABxCAACoQQAAIMEAAETCAACwQgAAgD8AAChCAABgQQAANMIAAFzCAAAowgAAzEIAAIRCAABswgAAIEEAAFBCAACIwQAAksIAAARCAACQwQAASEIAADBBAABgQgAAQEIAAJjBAAAAwgAAREIAAEDBAAAgwQAAyEEAAADAAAAowgAAkEEAACxCAAAcQgAAsMEAAJDBAAB0wgAA4EAAAGhCAACgQQAAqEEAADBBAAAAwAAAPMIAAKjBAABAQgAAGEIAAIhBAADiQgAARMIAAEzCAACAwAAA4MAAAATCAABcQgAAwEAAANhBAADwwQAAVEIAAAzCAAAsQgAADEIAAETCAABwQQAAAMEAAABBAAB0QgAAIEEAABTCAADgQQAAyMEAAADCAADAwQAAkEEAAJDBAABYwgAAQMIAALjBAAA4wgAAYEIAAIA_AABgwQAAsMEAAJJCAAAQQQAAAMIAAHDCAACAQAAAREIAAODBAABQwQAAwEEAAILCAACAvwAApsIAABBBAACEQgAAYMEAAIBAAABwwQAAHEIAAODAAAA4wgAAIEIAAPBBAAB0wgAAAEAAAGBCAABMQgAAgEAAAEBAAABgwSAAOBNACUh1UAEqjwIQABqAAgAADD4AAJi9AAAsPgAAuL0AAES-AAAEPgAAgLsAAB2_AAC4vQAAHD4AAAw-AABkvgAAML0AAIC7AACSvgAAfD4AAOA8AADgPAAAhj4AAN4-AAB_PwAAgr4AAJY-AAD4vQAAor4AADA9AABwPQAA1j4AADC9AADYPQAAjj4AADC9AABAvAAAyD0AAHy-AADgPAAAiD0AAKq-AADSvgAAiL0AAJq-AABEvgAABz8AAMi9AACavgAAuD0AAOg9AAAsvgAA-D0AAKC8AAAcPgAAVD4AABA9AAAkPgAAiL0AAKA8AABJPwAAJD4AAJI-AAAQvQAAHD4AAHS-AABEPgAAEL0gADgTQAlIfFABKo8CEAEagAIAAAQ-AAAMvgAAmr4AADW_AAAwvQAATD4AABw-AACIPQAAEL0AAOg9AADIPQAAoLwAABA9AACevgAADD4AADA9AABwvQAABz8AALq-AAAcPgAAdD4AAOA8AAAwPQAAQDwAAHA9AACOPgAApr4AAKC8AACOvgAAmD0AALg9AACgPAAAmL0AANi9AABAvAAAmD0AAKg9AABAPAAApr4AACy-AABsPgAAmL0AABQ-AADIPQAAbD4AAIA7AAB_vwAAqD0AALi9AADKvgAAcL0AADC9AABsPgAA-L0AAAS-AAAMPgAA4LwAACy-AAA8PgAAcL0AAFA9AAAQPQAAXL4AAFA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=5Xs35Jnam5Q","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["7876030266654969248"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3323042857"},"4028514741845982069":{"videoId":"4028514741845982069","docid":"34-11-15-Z568FE18292EC4186","description":"https://www.tilestats.com/ This video is an overview of multivariate methods and machine learning methods that are used in AI. 1. Get familiar with the Iris data set 2. How to standardize the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3244157/a290bc5cf17fc91067ec67e74d6371bc/564x318_1"},"target":"_self","position":"19","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DXMZ_0aloVAc","linkTemplate":"/video/preview/4028514741845982069?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"How to select a multivariate analysis or machine learning method","related_orig_text":"TileStats","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"TileStats\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=XMZ_0aloVAc\",\"src\":\"serp\",\"rvb\":\"EqoDChQxNzU0MTY5MjEzNTYxNDkzOTI2OQoTODY5NTg5NjUxNDcyOTcyNjkyMwoTNTYwNzIyODkyMTkwOTg2NDQ2OQoTMTAxMTU1NTExODcxODA1MjYzOAoTOTkyMjEwNTI2ODcwODA0Njc3NQoTNDU0NTAyNzAwOTM3Mzg5ODQ5NQoUMTMzNDc4ODc1NDY1NDM5NzEyMDkKEzE1MTA0MTY0MTkyOTkwNzI2MDQKEzg1MjcwNTMwNTA3NzY2NTc2NjkKFDE0ODIyNDY4MDE2MTQ5MTk5NzI3ChMyODM3NDMzMTY2ODAzOTg2MDk4ChQxMDEwOTY5MDMyNzEzMjQ5ODY3MwoUMTczMDg4MzcxODA2MDU1NTgyMjIKEzE5OTI1MjAxMjY5MjgzMzQxMTUKFDEwODg1MjI5MTExMTQyMzM4MTQ1ChMxNzc5NDI1NzA1MDgxMzA5Njk4ChM3ODc2MDMwMjY2NjU0OTY5MjQ4ChM0MDI4NTE0NzQxODQ1OTgyMDY5ChM0MjE1NzI5Nzc5NzEzNDE5MTUzChMzMzIyNTQ1OTc5MzY3OTc0NzMwGhUKEzQwMjg1MTQ3NDE4NDU5ODIwNjlaEzQwMjg1MTQ3NDE4NDU5ODIwNjlqrw0SATAYACJFGjEACipoaG5rcnB6bm1sZ2p2d29kaGhVQ1pRcXJGVzJWa2lyQkYyYS1hVjFGZHcSAgASKhDCDw8aDz8T1Q6CBCQBgAQrKosBEAEaeIEDAvMD_QMA8Qf9CQAE_gEZAAEJ9QICAPwF-v0GBP4AAvsE_AMBAAAEBvcBAgAAAAUDA_z-_gEAFQ_2BwMAAAAIDwH_AwAAAA4N_QMR_gEB_-UK-wEAAAAcBvn6_wAAAAMN-f3__wAABQPx_AAAAAAY-_n2AAAAACAALXVL3js4E0AJSE5QAipzEAAaYAgEACca7MLmEALtBu_3KyMSKOke1Av_4u8ACST84Pro1MsDBP82FhryuwAAAADS1_8MABha_urV5Bj6D6u40BADfxYByvTQFf_U7OQRGhUSBf1GRgDiFfb3KM3rAyLuHiAALes2Qjs4E0AJSG9QAiqvBhAMGqAGAACQQQAAEMEAAIDAAACQwQAAYEEAADDBAACAQgAA-EEAAIA_AAAEQgAAoEEAACzCAAB0wgAAFMIAADBBAABQwgAANEIAANjBAACgQQAA4MAAACBCAABQwQAAoEAAAJjBAABAwQAAiEEAAEjCAABUwgAAsMEAAPBBAADAQAAAREIAACDBAADQwQAANMIAAFDBAABQQgAAbEIAAKjBAAAAQgAA4MEAAAAAAABoQgAAFMIAABRCAAAcwgAAOMIAAJhBAADoQQAAUEEAAABAAAAUQgAA0MEAALDBAAAoQgAAoEEAAADDAAAQwQAABMIAAERCAACcQgAAWMIAAMDAAACQwgAAlEIAAODAAACAwgAAzMIAACBCAACcwgAA4EAAAGBCAAB8wgAAHEIAAJjBAAAAQQAA-MEAALhBAAAgQQAAqEIAAJTCAACGQgAA4MEAALhBAABQQgAAmMEAAADAAAA0QgAAXEIAACzCAAAUwgAAsEIAAFxCAACAPwAAmEEAAKbCAABAwAAAJMIAAK5CAAAAQAAAQMEAAMhBAAAAAAAAqMEAAHTCAAC4QQAAYMIAAADAAABgwQAAIEIAAJBBAACAPwAA8MEAAHBCAAAAQAAACMIAAEBBAAAAQQAAqsIAAKBBAACoQQAAwMEAAFDBAADIwQAAyMEAAJjBAABkQgAALEIAAMDAAAAAQQAAcEEAABDCAAAMwgAAQEAAALBBAAAUwgAAiEIAAFzCAAB0wgAAiMEAABDBAADwwQAAgEAAAIDBAACYQQAAcMEAAJBBAACowQAAPEIAABhCAACawgAADEIAAARCAABQQQAADEIAAOjBAABIwgAA-MEAABzCAAD4QQAAgEAAAChCAAAswgAAisIAAIbCAADQwQAAwMAAAK5CAADAQAAA2MEAAOBAAACCQgAAgL8AALjBAABgQQAAKMIAAPBBAABQQQAAwEAAANBBAABQwQAAgD8AAEjCAABAwAAA4EEAAGBBAAAgwgAA4MEAAMBBAABEwgAAksIAAJDBAADAQQAALMIAAIBCAABkQgAAYEEAABDBAABkwgAAMEEgADgTQAlIdVABKo8CEAAagAIAAFA9AABQvQAAXD4AAIg9AADYvQAAiL0AAMg9AAABvwAAnr4AAIA7AABAPAAAcD0AAKi9AAAcPgAAZL4AAMi9AACSPgAAgLsAANg9AAC2PgAAfz8AAKi9AAAcPgAA2D0AAAS-AACgvAAAUD0AAFA9AAAUvgAAuD0AABw-AADIPQAADL4AAPg9AAAEPgAAMD0AAII-AAA0vgAALL4AANi9AACYvQAAFL4AAOg9AACAOwAAHL4AAOA8AABsPgAATL4AAKC8AADYvQAADD4AABA9AAAkPgAAoLwAABC9AABQvQAADT8AAJi9AACgPAAAMD0AABS-AABkPgAA2D0AAIg9IAA4E0AJSHxQASqPAhABGoACAACyvgAABL4AAK6-AAAZvwAAoLwAAMg9AABQvQAAUD0AANi9AAAQPQAAPL4AAKi9AACuvgAATL4AADQ-AAAQPQAAPD4AAAk_AACovQAA7j4AAFA9AACuPgAAiL0AAMg9AAAEvgAABD4AAKC8AABwPQAAcL0AADC9AAAEPgAAJD4AABA9AAAEvgAAFD4AAFA9AACaPgAAJD4AAK6-AABAvAAAQDwAALg9AAAUvgAAoDwAADA9AACYPQAAf78AANi9AACIvQAAyL0AAKC8AABsvgAAFL4AAHQ-AACuPgAADD4AALg9AADIPQAAcD0AABw-AAAwvQAA6D0AABw-AADIPSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=XMZ_0aloVAc","parent-reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4028514741845982069"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false}},"dups":{"17541692135614939269":{"videoId":"17541692135614939269","title":"\u0007[TileStats\u0007] YouTube channel | Recommendation","cleanTitle":"TileStats YouTube channel | Recommendation","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=zTEMgrYFg_M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zTEMgrYFg_M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWHVYLWtRMVRiS0hXZUI3NU5nbWhsQQ==","name":"Genomics Boot Camp","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Genomics+Boot+Camp","origUrl":"http://www.youtube.com/@GenomicsBootCamp","a11yText":"Genomics Boot Camp. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":185,"text":"3:05","a11yText":"Süre 3 dakika 5 saniye","shortText":"3 dk."},"date":"5 oca 2022","modifyTime":1641340800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zTEMgrYFg_M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zTEMgrYFg_M","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":185},"parentClipId":"17541692135614939269","href":"/preview/17541692135614939269?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/17541692135614939269?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8695896514729726923":{"videoId":"8695896514729726923","title":"How to identify and deal with outliers | The 1.5 IQR rule | Boxplots","cleanTitle":"How to identify and deal with outliers | The 1.5 IQR rule | Boxplots","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=ucjvikjP0g8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ucjvikjP0g8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":511,"text":"8:31","a11yText":"Süre 8 dakika 31 saniye","shortText":"8 dk."},"views":{"text":"1,6bin","a11yText":"1,6 bin izleme"},"date":"4 mar 2024","modifyTime":1709510400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ucjvikjP0g8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ucjvikjP0g8","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":511},"parentClipId":"8695896514729726923","href":"/preview/8695896514729726923?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/8695896514729726923?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5607228921909864469":{"videoId":"5607228921909864469","title":"Bootstrap confidence intervals - explained","cleanTitle":"Bootstrap confidence intervals - explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AA7Jtuu9TaE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AA7Jtuu9TaE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":804,"text":"13:24","a11yText":"Süre 13 dakika 24 saniye","shortText":"13 dk."},"views":{"text":"5,9bin","a11yText":"5,9 bin izleme"},"date":"7 nis 2024","modifyTime":1712448000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AA7Jtuu9TaE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AA7Jtuu9TaE","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":804},"parentClipId":"5607228921909864469","href":"/preview/5607228921909864469?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/5607228921909864469?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1011555118718052638":{"videoId":"1011555118718052638","title":"The basic steps of hypothesis testing","cleanTitle":"The basic steps of hypothesis testing","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=R5KxCisLQuI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/R5KxCisLQuI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":504,"text":"8:24","a11yText":"Süre 8 dakika 24 saniye","shortText":"8 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"24 haz 2021","modifyTime":1624492800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/R5KxCisLQuI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=R5KxCisLQuI","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":504},"parentClipId":"1011555118718052638","href":"/preview/1011555118718052638?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/1011555118718052638?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9922105268708046775":{"videoId":"9922105268708046775","title":"Hierarchical clustering - explained","cleanTitle":"Hierarchical clustering - explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=uWf__KIKzPQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/uWf__KIKzPQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":856,"text":"14:16","a11yText":"Süre 14 dakika 16 saniye","shortText":"14 dk."},"views":{"text":"11,8bin","a11yText":"11,8 bin izleme"},"date":"22 ara 2021","modifyTime":1640131200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/uWf__KIKzPQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=uWf__KIKzPQ","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":856},"parentClipId":"9922105268708046775","href":"/preview/9922105268708046775?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/9922105268708046775?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4545027009373898495":{"videoId":"4545027009373898495","title":"Gradient descent - with a simple example","cleanTitle":"Gradient descent - with a simple example","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=31w-xQX0Z_8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/31w-xQX0Z_8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1095,"text":"18:15","a11yText":"Süre 18 dakika 15 saniye","shortText":"18 dk."},"views":{"text":"6,7bin","a11yText":"6,7 bin izleme"},"date":"2 mayıs 2023","modifyTime":1682985600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/31w-xQX0Z_8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=31w-xQX0Z_8","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":1095},"parentClipId":"4545027009373898495","href":"/preview/4545027009373898495?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/4545027009373898495?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13347887546543971209":{"videoId":"13347887546543971209","title":"Probability vs Likelihood - Explained","cleanTitle":"Probability vs Likelihood - Explained","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PRpmA6WsY6g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PRpmA6WsY6g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":402,"text":"6:42","a11yText":"Süre 6 dakika 42 saniye","shortText":"6 dk."},"views":{"text":"22bin","a11yText":"22 bin izleme"},"date":"27 mayıs 2022","modifyTime":1653609600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PRpmA6WsY6g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PRpmA6WsY6g","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":402},"parentClipId":"13347887546543971209","href":"/preview/13347887546543971209?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/13347887546543971209?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1510416419299072604":{"videoId":"1510416419299072604","title":"Variables and scales in statistics","cleanTitle":"Variables and scales in statistics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=o9xmsyO4yME","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/o9xmsyO4yME?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":351,"text":"5:51","a11yText":"Süre 5 dakika 51 saniye","shortText":"5 dk."},"views":{"text":"1,9bin","a11yText":"1,9 bin izleme"},"date":"2 mayıs 2021","modifyTime":1619913600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/o9xmsyO4yME?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=o9xmsyO4yME","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":351},"parentClipId":"1510416419299072604","href":"/preview/1510416419299072604?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/1510416419299072604?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"8527053050776657669":{"videoId":"8527053050776657669","title":"How to choose an appropriate statistical test","cleanTitle":"How to choose an appropriate statistical test","host":{"title":"YouTube","href":"http://www.youtube.com/live/dYJLUvo0Q6g","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/dYJLUvo0Q6g?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1115,"text":"18:35","a11yText":"Süre 18 dakika 35 saniye","shortText":"18 dk."},"views":{"text":"203,4bin","a11yText":"203,4 bin izleme"},"date":"9 eyl 2021","modifyTime":1631145600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/dYJLUvo0Q6g?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=dYJLUvo0Q6g","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":1115},"parentClipId":"8527053050776657669","href":"/preview/8527053050776657669?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/8527053050776657669?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14822468016149199727":{"videoId":"14822468016149199727","title":"t-test VS confidence intervals","cleanTitle":"t-test VS confidence intervals","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=B_lK0CNSgvQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/B_lK0CNSgvQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":709,"text":"11:49","a11yText":"Süre 11 dakika 49 saniye","shortText":"11 dk."},"views":{"text":"5,3bin","a11yText":"5,3 bin izleme"},"date":"17 haz 2021","modifyTime":1623888000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/B_lK0CNSgvQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=B_lK0CNSgvQ","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":709},"parentClipId":"14822468016149199727","href":"/preview/14822468016149199727?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/14822468016149199727?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"2837433166803986098":{"videoId":"2837433166803986098","title":"p-values - a deeper understanding | alpha | t-statistics","cleanTitle":"p-values - a deeper understanding | alpha | t-statistics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=aYqIs4XZli8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/aYqIs4XZli8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":803,"text":"13:23","a11yText":"Süre 13 dakika 23 saniye","shortText":"13 dk."},"views":{"text":"4,4bin","a11yText":"4,4 bin izleme"},"date":"29 kas 2021","modifyTime":1638144000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/aYqIs4XZli8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=aYqIs4XZli8","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":803},"parentClipId":"2837433166803986098","href":"/preview/2837433166803986098?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/2837433166803986098?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10109690327132498673":{"videoId":"10109690327132498673","title":"Multiple linear regression - explained with two simple examples","cleanTitle":"Multiple linear regression - explained with two simple examples","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=AP_K7SaKkIE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/AP_K7SaKkIE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":907,"text":"15:07","a11yText":"Süre 15 dakika 7 saniye","shortText":"15 dk."},"views":{"text":"81,9bin","a11yText":"81,9 bin izleme"},"date":"4 eyl 2021","modifyTime":1630713600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/AP_K7SaKkIE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=AP_K7SaKkIE","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":907},"parentClipId":"10109690327132498673","href":"/preview/10109690327132498673?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/10109690327132498673?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"17308837180605558222":{"videoId":"17308837180605558222","title":"Hotelling's T-square - explained with a simple example","cleanTitle":"Hotelling's T-square - explained with a simple example","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=RmktDvMrhGw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/RmktDvMrhGw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":721,"text":"12:01","a11yText":"Süre 12 dakika 1 saniye","shortText":"12 dk."},"views":{"text":"32,8bin","a11yText":"32,8 bin izleme"},"date":"21 şub 2021","modifyTime":1613865600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/RmktDvMrhGw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=RmktDvMrhGw","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":721},"parentClipId":"17308837180605558222","href":"/preview/17308837180605558222?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/17308837180605558222?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1992520126928334115":{"videoId":"1992520126928334115","title":"Cellular automata tutorial - the basics","cleanTitle":"Cellular automata tutorial - the basics","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=2nE0z_9-fCY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2nE0z_9-fCY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":731,"text":"12:11","a11yText":"Süre 12 dakika 11 saniye","shortText":"12 dk."},"views":{"text":"12,1bin","a11yText":"12,1 bin izleme"},"date":"10 nis 2022","modifyTime":1649548800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2nE0z_9-fCY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2nE0z_9-fCY","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":731},"parentClipId":"1992520126928334115","href":"/preview/1992520126928334115?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/1992520126928334115?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10885229111142338145":{"videoId":"10885229111142338145","title":"Regression Trees and the complexity parameter","cleanTitle":"Regression Trees and the complexity parameter","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=v5k1x_1CWi8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/v5k1x_1CWi8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1559,"text":"25:59","a11yText":"Süre 25 dakika 59 saniye","shortText":"25 dk."},"date":"20 nis 2025","modifyTime":1745175960000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/v5k1x_1CWi8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=v5k1x_1CWi8","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":1559},"parentClipId":"10885229111142338145","href":"/preview/10885229111142338145?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/10885229111142338145?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1779425705081309698":{"videoId":"1779425705081309698","title":"Permutations Combinations and the Hypergeometric distribution","cleanTitle":"Permutations Combinations and the Hypergeometric distribution","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=PJ58wZcW4kw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/PJ58wZcW4kw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":788,"text":"13:08","a11yText":"Süre 13 dakika 8 saniye","shortText":"13 dk."},"views":{"text":"2,6bin","a11yText":"2,6 bin izleme"},"date":"16 mar 2022","modifyTime":1647388800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/PJ58wZcW4kw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=PJ58wZcW4kw","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":788},"parentClipId":"1779425705081309698","href":"/preview/1779425705081309698?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/1779425705081309698?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7876030266654969248":{"videoId":"7876030266654969248","title":"Expected value vs mean","cleanTitle":"Expected value vs mean","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=5Xs35Jnam5Q","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/5Xs35Jnam5Q?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":746,"text":"12:26","a11yText":"Süre 12 dakika 26 saniye","shortText":"12 dk."},"views":{"text":"2,9bin","a11yText":"2,9 bin izleme"},"date":"14 nis 2024","modifyTime":1713052800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/5Xs35Jnam5Q?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=5Xs35Jnam5Q","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":746},"parentClipId":"7876030266654969248","href":"/preview/7876030266654969248?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/7876030266654969248?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4028514741845982069":{"videoId":"4028514741845982069","title":"How to select a multivariate analysis or machine learning method","cleanTitle":"How to select a multivariate analysis or machine learning method","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=XMZ_0aloVAc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/XMZ_0aloVAc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDWlFxckZXMlZraXJCRjJhLWFWMUZkdw==","name":"TileStats","isVerified":false,"subscribersCount":0,"url":"/video/search?text=TileStats","origUrl":"http://www.youtube.com/@tilestats","a11yText":"TileStats. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1877,"text":"31:17","a11yText":"Süre 31 dakika 17 saniye","shortText":"31 dk."},"views":{"text":"6,6bin","a11yText":"6,6 bin izleme"},"date":"3 eyl 2023","modifyTime":1693699200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/XMZ_0aloVAc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=XMZ_0aloVAc","reqid":"1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL","duration":1877},"parentClipId":"4028514741845982069","href":"/preview/4028514741845982069?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","rawHref":"/video/preview/4028514741845982069?parent-reqid=1769284561605537-17473739759590846333-balancer-l7leveler-kubr-yp-sas-168-BAL&text=TileStats","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"4737397595908463337168","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"TileStats","queryUriEscaped":"TileStats","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}