{"pages":{"search":{"query":"jbstatistics","originalQuery":"jbstatistics","serpid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","parentReqid":"","serpItems":[{"id":"16030207459843026748-0-0","type":"videoSnippet","props":{"videoId":"16030207459843026748"},"curPage":0},{"id":"4121817742828943158-0-1","type":"videoSnippet","props":{"videoId":"4121817742828943158"},"curPage":0},{"id":"13456936732257505937-0-2","type":"videoSnippet","props":{"videoId":"13456936732257505937"},"curPage":0},{"id":"13766171144434148995-0-3","type":"videoSnippet","props":{"videoId":"13766171144434148995"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dGpic3RhdGlzdGljcwo=","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","ui":"desktop","yuid":"2538296901769019360"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"14911750688497889707-0-5","type":"videoSnippet","props":{"videoId":"14911750688497889707"},"curPage":0},{"id":"16470374100342589984-0-6","type":"videoSnippet","props":{"videoId":"16470374100342589984"},"curPage":0},{"id":"3813483826064284221-0-7","type":"videoSnippet","props":{"videoId":"3813483826064284221"},"curPage":0},{"id":"16791687109102819451-0-8","type":"videoSnippet","props":{"videoId":"16791687109102819451"},"curPage":0},{"id":"3805548858636482982-0-9","type":"videoSnippet","props":{"videoId":"3805548858636482982"},"curPage":0},{"id":"1154685848863284334-0-10","type":"videoSnippet","props":{"videoId":"1154685848863284334"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dGpic3RhdGlzdGljcwo=","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","ui":"desktop","yuid":"2538296901769019360"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"9244528070355632111-0-12","type":"videoSnippet","props":{"videoId":"9244528070355632111"},"curPage":0},{"id":"12072438615848583708-0-13","type":"videoSnippet","props":{"videoId":"12072438615848583708"},"curPage":0},{"id":"959313134886548354-0-14","type":"videoSnippet","props":{"videoId":"959313134886548354"},"curPage":0},{"id":"5031331938342937031-0-15","type":"videoSnippet","props":{"videoId":"5031331938342937031"},"curPage":0},{"id":"7370521484173341159-0-16","type":"videoSnippet","props":{"videoId":"7370521484173341159"},"curPage":0},{"id":"5982338972076148514-0-17","type":"videoSnippet","props":{"videoId":"5982338972076148514"},"curPage":0},{"id":"15881904890160606004-0-18","type":"videoSnippet","props":{"videoId":"15881904890160606004"},"curPage":0},{"id":"13740889111621702333-0-19","type":"videoSnippet","props":{"videoId":"13740889111621702333"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dGpic3RhdGlzdGljcwo=","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","ui":"desktop","yuid":"2538296901769019360"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Djbstatistics"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5901526321152076907145","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1455699,0,46;1466868,0,20;1433082,0,29;1424968,0,55;1450255,0,30;1460724,0,70;1460717,0,47;1464561,0,67;1460214,0,97;1452511,0,25;1464524,0,86;1470249,0,24;1470226,0,78;1282204,0,4;1466295,0,34;1465958,0,40;1466081,0,65;1464403,0,25;1466618,0,77;1471401,0,86;1470514,0,2;241534,0,9;1467620,0,29;89014,0,78;1460387,0,87;1467158,0,40;1469393,0,46;1297912,0,13;1470414,0,59;151171,0,97;1459211,0,3;1281084,0,63;287509,0,69;1447467,0,27;1005534,0,59;1466396,0,0;681842,0,63"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Djbstatistics","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=jbstatistics","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=jbstatistics","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"jbstatistics: Yandex'te 544 video bulundu","description":"Результаты поиска по запросу \"jbstatistics\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"jbstatistics — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"y9e4530568fd57ee57b44f82c3d4ba634","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1466868,1433082,1424968,1450255,1460724,1460717,1464561,1460214,1452511,1464524,1470249,1470226,1282204,1466295,1465958,1466081,1464403,1466618,1471401,1470514,241534,1467620,89014,1460387,1467158,1469393,1297912,1470414,151171,1459211,1281084,287509,1447467,1005534,1466396,681842","queryText":"jbstatistics","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2538296901769019360","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769019374","tz":"America/Louisville","to_iso":"2026-01-21T13:16:14-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1455699,1466868,1433082,1424968,1450255,1460724,1460717,1464561,1460214,1452511,1464524,1470249,1470226,1282204,1466295,1465958,1466081,1464403,1466618,1471401,1470514,241534,1467620,89014,1460387,1467158,1469393,1297912,1470414,151171,1459211,1281084,287509,1447467,1005534,1466396,681842","queryText":"jbstatistics","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"2538296901769019360","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5901526321152076907145","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":157,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"2538296901769019360","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1751.0__8090ba6dd9f4aabef48fe840a28cd06e2c1bb10e","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"16030207459843026748":{"videoId":"16030207459843026748","docid":"34-10-16-ZBB417E944F8B30B9","description":"An introduction to continuous random variables and continuous probability distributions. I briefly discuss the probability density function (pdf), the properties that all pdfs share, and the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3099332/d93ee100eb3d101bc1f9003e3d892b50/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KzRJswAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DOWSOhpS00_s","linkTemplate":"/video/preview/16030207459843026748?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Introduction to Continuous Probability Distributions","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=OWSOhpS00_s\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTYwMzAyMDc0NTk4NDMwMjY3NDhaFDE2MDMwMjA3NDU5ODQzMDI2NzQ4apMXEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E98CggQkAYAEKyqLARABGniB-P4D7wX6AAP_BgEPBv4CFwX3BvQBAQDhAPAKAP0CAAEG-Pz_AQAA-wcF__YAAAD0-woN8_8BAAgb_QAFAAAAFP0A9_8AAAAHA_UB_wEAAPj08wkE_wAAIAUICgAAAAD7A__sAP8AABEPCwIBAAAAFP7sAwEAAAAgAC2IKsI7OBNACUhOUAIqhAIQABrwAXXqDADbGQQA4vju_6834P-BAAL__S7XAMLr9ADPFNoAGuT_AN738f8Z-fYAwAcB_xcE2f8D2yUAReUJAETP_v_TDCkAF-v2AR0RKgLk5e7-1CsC_uLzDv_k4dP_ACT5__f9_P3k9fQBIPbWAkP6JwAG5gUBI-8AAQHnHP3iByD_5vfc_Qst9QIA6vr-5ywgAgkZAQYRQAT-8grtBA4HDAfl8BX_FArmA-wM9QUjEBD31e_4-Oj69f8TBxEF4QH9BegDFADg5RsD5-UJ-A7xAQb9Mgb8ARMDBwAHBwLt0ADy-_34AdUAAfze-AD-_vH-ASAALb9PJDs4E0AJSGFQAirPBxAAGsAHh2zYviRegz3j0bo7XNf5vO97b720BQS9OWTjvbLSCzuJAy29dhoJPlsAPz2kDdG8ll1QvpDs27yJKKY8y4AzPubRiL2YYjM8cT1avucWvz2FTKi89aFrvoTTBz10NcO7ZExQPUbPrTz7qp66iGVzPaVqm71wApk60YQ8PdV2cz1fAEu98FUGPc2Edb3mNcC8rX_hPLPFv7zETy28L1H9PbEFYLqfq62860MNvPQoJry2Ins8v5oDvZGUOT1165C6HejBPYb8frnqSY88m41avcN3rLyzCEU8bAeDvc0W2jyWMIm8D3uGPey5kT05oSu9f8K0PFp3Pb1HJe27Mn2qvfeJiD1xfGW75Gb4PWZM4T0YI9Q7OpM2vgSVTDxfiIu8mscKu1iTgr2u9YW8BhbbPKnC-jz2kxa8PF23PdYleT2KNQo6kCQQvBDfoz2mYgM9OeCpPfX7mT3gaAW8U6m-PMGrhrvsQ4e7LPmTvWJgQjwPL6O8qnMWPQSeKj189MQ7OU_rvD8ZEjrvm1I7RVylPHO49r3kBDc8XE2ovLlyUb1vVrO8ew2WPWS-bT3Lq8a6bvzpPUzkrb0rc6m7fvMMvdh667wqsjE8Vms8vFKvsL1ixxg7c9nIvWIzez0J7cm7v2unuzrDuTzWNX-8E6Z_O8OtzLwm0Se6ey0tvUdjs73wvog5KhwgPFjnuD1fULa7c_yLPWRdxz3vqLC3euSqPSNfrrxvSIK5xLkfu-zstbyZUYM7Y8QvPZY3ET3rjZy73rmmPTtoG73aGcc5mbU5PIt8Sbs86VW6Cr9PvSYe0D2AIzm5rPGIvJx3or1uhVE5FJ2LvYl64b3GJ3A5AEeMvfIHQ71pgFW5RY04PcFsBz0K0h45IKLHvZK-_7x1nQ-5umVqu9fdvLzuAcq48pUgPfDodb3Xd_e31spfPR-A9D1tkLS4AgNSPVqc8bwpvDW5DbbiPNqRKj6hYo257V9ePZ713zyJqFS4_ViXPdy3-j0dVsQ1G3m1veCx6TzMsgs49n-OPAAu0jy_89e4sEKQvUwAmb0hZWO4vDrLu7hcmDy-0JI2yuEDvhDXHjyX_U43Uqknu9cdZjwezxc4pyTrPel1GLriWkW4EquFPZ-bDL38wQa5glVFPnTINz3J3IS5hd5MvVSojr3qysO4K7Q9vOmaCb2efU23IvyLvIgf0rzUbUi4va8FPaVJCb6tnoW4qWuNPYsLkT0TJyI4d8aNvaspBD2f04q45yOfvTfAcTztZJe3zhgGPXrr8jyHuAk4IAA4E0AJSG1QASpzEAAaYDYDABbpH-DpHVTdBOzhFO3iIwNNvf__7_4ACSPl7PAE1LIOAgAc2Q_urwAAAPL14xsZAPVy4OLyIebu-6fSzCsrfxYWK636-iOu_AUcDuccIgkxMgDp77gvS9DMOgMKHiAALckVJjs4E0AJSG9QAiqvBhAMGqAGAAAkQgAAOMIAAAxCAADowQAAiMEAAFBCAADmQgAAUEEAADTCAAAIwgAAPEIAAAzCAABgwQAAAMAAACjCAAAQQgAAQEEAAGBBAACAQQAAUEEAACDBAAAgwgAA8MEAADhCAAAAwgAAoMAAABBBAAAAAAAAMEEAAOBBAAB4wgAA4EEAAILCAABAQQAAKMIAAMDAAABwQgAAZEIAACjCAADAwAAAoEEAADTCAAAAQgAAoMEAAOhBAAAswgAAiMEAAIhBAACgQAAAoMEAAADCAACYwgAAmMEAAIDAAAC4QQAAGEIAAJrCAAAwwQAAAMAAADxCAADQQQAAwMIAAMjBAAB4wgAAuMEAAMzCAADIwQAAOMIAAOBAAACuwgAAcEEAAGDBAACqwgAATEIAAPjBAAAAwQAAkEEAANBBAACgwAAA2EEAAEDCAACCQgAAEMEAAADBAAA0QgAAyEEAAOhBAACgwAAAgL8AAAxCAADQwQAAIEIAAIrCAADgQQAA8EEAADjCAACgQAAAEMEAAMBBAACCQgAA3MIAAHDBAADgQAAAwEAAAATCAACIQQAAuEEAAABCAAAMQgAAUEIAANhCAADAQQAAJMIAAIDAAAAAQQAAGEIAACBCAADAwAAAuMEAAIC_AAD4QQAA2MEAALDBAAAYQgAAIMIAAPBBAABwwQAAQMAAACDCAABoQgAAgL8AAKDCAADgwAAAhkIAALBBAADAwAAAUEEAAABAAAB4wgAAisIAANjBAACwQQAAaEIAAFBBAAAEQgAAwMAAAEBBAADwwQAA4MAAAEDAAAC4wQAAmEEAAABBAAAAQgAAqEEAAIA_AACGwgAA6MEAABDCAABwwQAAoMEAACRCAACowQAA4MEAAMDBAAAIQgAAwMEAAARCAACAQQAAmMEAAHzCAACAQQAA8EEAAJ7CAAC-wgAAjEIAAMBAAACIQQAAJMIAAJ5CAACAwgAA6MEAAJLCAAAQwgAAUEIAAEDBAACSwgAAiMEAAFBBAABQwQAAWEIAAJBBAACYQQAAgD8AALBBAABkQgAA2EEAAABBAAAUwgAAcMIgADgTQAlIdVABKo8CEAAagAIAAOi9AAC4vQAA4LwAAHQ-AAB8vgAAoDwAAGw-AAAFvwAAHL4AAIA7AAC4vQAATD4AADQ-AACIPQAAVL4AAFA9AAA0PgAAML0AABC9AAA1PwAAfz8AAIA7AACIPQAAmD0AAEy-AACmPgAAcL0AAOi9AABsvgAA4LwAACw-AAC4vQAALL4AAOA8AACWPgAA-D0AANg9AABMvgAAXL4AAIi9AADovQAA2D0AAGQ-AAD4PQAAUD0AABw-AAAEPgAA7r4AAGy-AADevgAAbL4AAFA9AAB0PgAAdD4AABC9AACgvAAAET8AAAw-AADIvQAADD4AAKC8AAD4PQAAcL0AACS-IAA4E0AJSHxQASqPAhABGoACAADOvgAA6D0AABS-AABHvwAA-D0AAFA9AABwPQAANL4AABy-AABEPgAAyL0AAEC8AAAEvgAAJL4AAPg9AAAQPQAAED0AABk_AAAMPgAAqj4AAHA9AACuPgAADD4AAHC9AABUvgAAyD0AAES-AADoPQAApr4AAHC9AAA0PgAAJD4AACw-AABAvAAA6D0AAAS-AADOPgAARD4AAFy-AABcvgAAJD4AAAw-AACKvgAAmD0AAJg9AACAOwAAf78AAIK-AACoPQAAnj4AAMI-AACAuwAARD4AAMI-AACgPAAA6D0AADC9AAA8vgAADD4AACy-AAAcPgAAwj4AABC9AAD4vSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=OWSOhpS00_s","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16030207459843026748"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"349156596"},"4121817742828943158":{"videoId":"4121817742828943158","docid":"34-1-4-Z0418926E8A20F538","description":"I work through an example of finding the median, areas under the curve, and the cumulative distribution function for a continuous probability distribution. I assume a basic knowledge of integral...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1780623/4cb2948b74b30e03aae229584564fe26/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/YtJPnAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEPm7FdajBvc","linkTemplate":"/video/preview/4121817742828943158?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Finding Probabilities and Percentiles for a Continuous Probability Distribution","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=EPm7FdajBvc\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFQoTNDEyMTgxNzc0MjgyODk0MzE1OFoTNDEyMTgxNzc0MjgyODk0MzE1OGqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxPOBYIEJAGABCsqiwEQARp4gQX1_fj_AgAQABAAAgf_AQEI_gj4_v4A8gD5DQUC_wAFBPsFAQEAAAb7BAz7AAAA_AIEBPb-AQD6Ff4FAwAAAAz6AAABAAAACAf_Av4BAAAB-fIDA_8AABYF_gYAAAAA7_0C8gD_AAAMBhL8AAAAAAz59wUAAAAAIAAtT4nYOzgTQAlITlACKoQCEAAa8AF0-iQB4g_JAt0Q4ADJC_r_gSIK_v0x1QDO9_8AzRXZAADi-gDPDff_EfoH_7kn-f889s3_-tICACbsEv9A4voA2fMJABjq9gEjMiT-_gL4_94MCv4T5g3__crgAAkq7wAS7gYB7u3rARsVzgEi_CwB-QEkBTz4CgPftP0B2An3Ag0E4v34IQUECuIO-Mr-HQEM6f0IIhsQ_P_90vwG7A_25gsZ9wcr1_4W-AcIBgb1CMvn_gUI7PsJJwISAeAB_AXz9yQC7ggJ-ub4BwAN6Aj99gP8A_Du-woY9A0E9toA_ATh-frTAAH8_gDqB-EI9e0gAC3_IR07OBNACUhhUAIqzwcQABrAB08-xb5-2Nw8McawO05j-7036Qy9d-nwvOOgub0cbYs8XgUjvBR2ET7fDt68Jr6DO4Qs670k5iM8jCuuPAovYT4XcbC8QdPGOXE9Wr7nFr89hUyovBUcTr6sTcg8NZcfOzs9SjxBGC48GGM7PKA0xD2m1VC9Ef_WOeiZgzwkVPo8mykjvbx8xjxuDh-8Ig14vRNctLsxzA69L_rIOxhaHT5qB3G7tIUQPLdXSz1WdNa7xqcgvdYxM72NUvg8ND_IvHVmLD2mi8M8_3SoPHovk72Gdp69P7PaPN8Ykr3Zv-E8AZnGO2YW4T1BtQY9E9aGvGL0jD2eftC9vnZdu6jIIb4CfBw96OltPP3Puz14uYg9qyaIvAmp-72l50w8JUQWu7O-N7y3HQW8-reJO2AhEz0b3IE9TojOOzdMiT2N_TY9yyrPupAkELwQ36M9pmIDPSBLqj2oFva8XHaIvKpdqD1LcA88bjVrvCpZib0ldDi7prXMuvC3g7uD5Lg9CJk_PBYYDTxuc187Ka94OwUjpT3WAju-SeWaOseDbb1XEI69nbdWvCmMkjyAY5E79Ve8u07wzT1mM-e9_1cAPIbGOL2Eewo9h-4jPBeZI7xnLHW9i7hKPHYnyb0aHMC8kBqLO79rp7s6w7k81jV_vBKONDwmyjk90HLqu5GgU7zfJq29Fu2euhR5Ej0rWi89JPsUuzVsuj0uYaM8e1LJOJcjnz37xny9A6wSOu3Par3V_5686vl7un5oML0pK6G9lE64uKGd0z1RgZi9l51RObRYK7tZYBk9zXlQORvqob2yW5U9LNmZOGRssjxcA9u94KQUucui8LxbQh6-NwXjObeyzblrzgU8zWywueWzvDw7WWU9MR-UulMekr1KG8i94XObN-pZ9bwReeY8C-zbOP7ymT3M1Wq7r9XEOPLfLb1LLB89n6nOt6D78jznKme9Ga1nOHUB7zzW9bU9PRDxuOukYzyijKK9v1JkORe-eT1_VK49OTHVOAYKQb2Q77c8EQdjONyUHD1OopQ9usCHN6_YGTzz2pa9SVoft6Ul4DxBsfo8QDvTuGVTzr3C6Kg8_jLoN4F73jywxKg8ORQktxO6yzvXoZq6Gl43tk8ONT2cICA9ylJHOIJVRT50yDc9ydyEuW4eYr2xK7K9E7-_uH-Jg70O2PW9C9ESuFUxE7xOmVs9Da_LN4YQIT1cd9O93vObt1UYpj1tC8U9g8fnOAP8lL1_qI89heReuSNozL0NAfo7bwYGNzexF7wrRw09YRitNiAAOBNACUhtUAEqcxAAGmAkBwAeCSP6-P1N9vkA8QQE-B_vLNka__DfAA0q3d79BMXDAyAACdYX8bgAAAAeAtMfFwD-Y_7m9vr5__ao79MvKH8DDSOqDBTyxOEM_Bf9Gv8sOD8A4PrEHzDppDz-8wogAC3o8zU7OBNACUhvUAIqrwYQDBqgBgAABEIAAJjBAABAQgAAAAAAANDBAAA8QgAA5kIAAABAAACWwgAAIMIAAEDAAABwwQAAcMEAAPDBAAB0wgAAwEEAAChCAADAQQAAYEEAANDBAACgQgAAHMIAAMjBAADAQQAAdMIAAFxCAAAUwgAAEMEAAABAAABAQQAA6MEAAOBAAACOwgAAkEEAADzCAAAEwgAAJEIAAABCAACYQQAAQMEAAKBBAABIwgAAmEIAAHBCAAAUQgAAuMEAAMBBAAAAwAAAIEIAAOBAAAAgQQAAOMIAAIDBAADwwQAARMIAAARCAABowgAAMMIAABBCAAAAQgAAjEIAAGjCAADIwQAAhMIAAKDBAADOwgAAMEEAAIjBAABQQQAAEMEAAIZCAACAvwAA6MIAANpCAABAwQAAuMEAAADAAAAkQgAAcEIAAOBBAACYwQAAlkIAAILCAAAAwgAAEEIAABDCAAAgQQAAYMEAAPhBAAAIQgAAyMEAAPBBAACWwgAAiMEAAODAAABwwgAAUMEAACDCAACQQQAAOEIAAKDBAAC4wQAAQMEAABBCAACCwgAAOEIAAIjBAAB4QgAACEIAAKBBAABAQgAAmEEAADDBAADgQAAAUEEAAEBAAAAcQgAAQEAAAEBBAABQwQAAGEIAADTCAACAvwAAgEEAAKDBAAAAwQAAuMEAAEBAAABwwgAADEIAAEDAAABYwgAAoMEAAPBBAAAAQgAAgMAAALBBAABswgAAhsIAAFDCAABQwQAAmEEAAIpCAABAwQAAwMEAAIBAAACgwAAA0MEAACBBAACgQQAAQMEAAIDBAABIQgAANMIAAGBBAAAYQgAAsMIAALjBAAAUwgAAkEEAANDBAACQQQAA4MEAALjBAACCwgAAHEIAACBBAAA8QgAAQEIAAOhBAACAPwAAgMAAAADBAABwwgAAOMIAAKBAAACoQQAAAMEAAFDCAACiQgAA4MEAAPjBAAB8wgAA8MEAACxCAABAwAAAgMEAAEBAAADAQQAAQMEAAKBBAAAgQQAAIEEAAADAAAAoQgAA8kIAADBCAABAwQAAaMIAAKjBIAA4E0AJSHVQASqPAhAAGoACAACgPAAAVL4AAOg9AAAQvQAA6L0AAMg9AABAPAAAHb8AABC9AAAQvQAAPD4AAPg9AACOPgAAUD0AANq-AAD4PQAABD4AABA9AACoPQAABz8AAH8_AADYPQAAuD0AAAQ-AAAEvgAAHD4AANg9AAAQvQAAtr4AAIA7AABkPgAAqL0AAI6-AAAwvQAArj4AABA9AACgvAAA6L0AAKq-AACqvgAAVL4AABA9AACmPgAA2L0AADy-AADIPQAAVD4AALK-AADgPAAAfL4AAFA9AACoPQAABD4AABQ-AAB0vgAARL4AABc_AAAsPgAAoLwAAPg9AABwPQAAML0AAFC9AAAcviAAOBNACUh8UAEqjwIQARqAAgAAqr4AAJi9AAAwPQAATb8AAFA9AABwPQAALD4AAPi9AABEvgAAqD0AAMi9AAD4vQAAUL0AACS-AAC4PQAAgDsAABQ-AAANPwAAmD0AAJY-AAAQPQAAND4AADA9AACovQAAmL0AANg9AAA8vgAAED0AACy-AACAuwAAuD0AACw-AACYPQAA6L0AAJg9AABAPAAAfD4AAHw-AAAUvgAA2L0AAEw-AACgPAAAcL0AAFA9AABQvQAAgDsAAH-_AAC4vQAAcL0AAFw-AACqPgAAoLwAAI4-AACKPgAAHL4AAIg9AABAvAAAcL0AADA9AABMvgAA-D0AAMg9AACovQAAmD0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=EPm7FdajBvc","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["4121817742828943158"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2099950270"},"13456936732257505937":{"videoId":"13456936732257505937","docid":"34-7-11-Z24DE99B8914E0AB7","description":"I discuss linear transformations, in the context of descriptive statistics. I discuss what a linear transformation is, give an example, discuss the effect of the linear transformation on various...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032051/709db8cf6af74b9358a17618cd8c3147/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OXp7FAIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D32dGPyIMgJ8","linkTemplate":"/video/preview/13456936732257505937?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Linear Transformations (in a Descriptive Statistics Setting)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=32dGPyIMgJ8\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTM0NTY5MzY3MzIyNTc1MDU5MzdaFDEzNDU2OTM2NzMyMjU3NTA1OTM3aogXEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E6oFggQkAYAEKyqLARABGniB8_8DC_0DAPgHBQgABv0CDf35AQn-_wDo_QUC__4BAAz_B_4DAAAA-f3yAgAAAADzA_4B-gAAAPcA9gb2AAAAEwAFBPwAAAANGPsC_gEAAP3-BfQCAAAACQoNCQAAAAD-CwgE-v8AAPkAAREAAAAADPn3BQAAAAAgAC1Csds7OBNACUhOUAIqhAIQABrwAXHcEACwBNP9BvXfANwpxwGBAAL_GyPjALAOJwKxEs__AOP6ANno5QHm8AcA0w4jABQV7wAc0AcBKP3y_yHxBwDeAv0BK_IkAEH0BAAb8-UB0Rnz_-jmCQEP9e0A9ArzAwfXGf7z_OX7Ce3ACA7-OAEMBycDEwshA-8A_AbPEhoB9u3x_Ajz-wDxFQX7s_8ZBzT6A_8AA_r47SH-BAEMCfv27_n6EvbgACsM2QILBgH64gYK9vHZ6QIb-iAFCg7t__ERCAYABQf_8RMI8SPRAP37AfX14-wHBhDu8wEC3fnz-Qn6_uYJ-fbZFwL-Gx36BiAALb9PJDs4E0AJSGFQAirPBxAAGsAH6rDqvtrSPLv4lxM9qFTJvJjgFD0n3Gu9LqmfvQMLu7xT8G-8MzIYPhA0cL18PcQ8-MGBvn_o-LxEaU89_b10PpJUS70Dsew8dXT8vS8Tmj0LAhC978X3vSIoqD0pL6i8eRMuO2Aa7bt99Se9q02iPVTcHb0JdhK96JmDPCRU-jybKSO94V4ZPXfxo7yRviS8fQA3PftcDb11P6c6007tPXVADb2daR29ARhPPYgNGz34DxM92xkWvq99ATzCxzu9UpCpPL93AD0hG608LpnZvH_4eTwRwuC4EEamO9SdBz43d887lgpqva6Uij2pfzW8b1NyPf74Rj1dkhk9d_UKvqCfLj1c-VG8Ka6qPJZKrj34P9m7Jgx0vV1Guz1MLLo8ipUsvOWfdDw34zS8APKEPYkrAj34Ky48gqigvKRzGzzXk--8LQ4fvFVWLj0QQhs9rkb2PVLpTDzl0KK8xLHwO3jAKz2xnv87rKbQvIDhi7yB6ZO7aVfMPaYTJD1tKws8MQnXPGgnnjxQ8Ym832bGPTm1872HHxg8D93iPHV0HL4YYvq53cF-Pby7JD2Ie5G8ACkePJvXAr2En7S7jk9SvUkgj72zddM7ZLZgu6gEj72aNBm7YEGFvU15_jz51Fa8ByM2vbwcmzujyjC8y66lPQRIAz3-V4S70E8nvXeihL2h94Q6VIWLPQ-b6D1epFE6p9N1PQGZJbuwMfm6UZfWPOXRbb2gGky72RASvUnN6LxaQqU7I5olvdChp7ymi2I7PL3yPUrIUb1XwY45TLMMvECj9DzEFeW5_uuRvWeHUz2cSPG4icjVPH0_hb1HWoU5qz2RvRpSFb4wUQo65gRtPUOFtLxAFRq6gFUkvUK3cr3uLg86vbkJvRh-K720UAa5qDxVPSusKj0VmZO4e9FIvYJUur3PPl25dCEcPJSpjb3zwCc30bp8vSd1OLyYNlU5fr_9POQfTD0Hayg5wsOPPBEZ1ryFBKG37URJPVvs9jzjfGc4Wsb8vKlQWD0q2gS1ogipPTxQ5z3EjfY489r2vAj5yr1ah3u2mCsoPSinLLwMj4g4CrtovUUwmT1HvMI4J6YmPWnynrxkPFU4irWTPJYjhD1sDYw4jZPnvOTT67t0V3U4L6YZPng7zDz85hu5732wvWSKQ70ULkG4IY1Pve6CfL1GFY64xPXBO-4OJD2H-c233uhePXjlhL1BUrS4QstfPWMatz1ukI44fGKNvSED2T2BNTC5K6advVjywrzwqKW3oZ1YvfTuWT1T31g4IAA4E0AJSG1QASpzEAAaYBX_AC3mFOniGkrq8fi-G-36ItgZxQb_ztX_6SDF6BAM7t7x__9E2xLcsAAAAP4A7yoMAP9z0NvvIfQVDcPPzxcxfyoQJrXx9vSo9DYX2f4qECY5VAAH3Kb6PiDSNv8PDiAALWvYJDs4E0AJSG9QAiqvBhAMGqAGAABQQgAAyEEAAAhCAABUwgAA2MEAAODAAADeQgAAAMAAAETCAABEwgAAQEIAAIC_AABgQQAAQMIAAODBAACmQgAArEIAAEBAAADoQQAAiMEAAPhBAAAwwQAA8MEAACBCAACQwgAAcMEAALjBAAAEwgAAqEEAAKBBAAAAAAAAAMAAAODBAAAwQgAAIMEAAODBAADIQQAAikIAACRCAAAwwQAA8EEAAEBAAADEQgAA4MAAAAjCAAAUwgAALEIAAIDBAABAQAAABEIAALjBAABowgAAqMEAAIC_AADwQQAAIEIAACzCAAAwwgAAAAAAABBCAAAwQgAAnsIAAIjBAAAEwgAAAEEAAMrCAAAQwQAAMMIAALjBAADYwQAAikIAAOBBAADQwQAABEIAAOjBAACwQQAAoMAAAEBBAACGQgAAkEIAAODBAABwQgAA6MEAAMDBAADoQQAAwEAAAABBAACwwQAAoEIAAHRCAADAwQAA2EEAAIzCAAAswgAAoMAAAIzCAADAwAAAAEAAAGBBAADgQAAAeMIAABDBAACGwgAAAMAAAHBBAACAvwAADMIAADBBAADAwAAAOEIAAIJCAAAgwQAAwEAAAPhBAAAAQQAACEIAAIDBAADQwQAABEIAAGBBAADAQAAApsIAAODAAADgQAAAjMIAAEjCAACQwQAAoMAAAJDBAACYQQAAyMEAAHjCAABAwAAAIEEAAHzCAAAMQgAA4EAAAIjBAACAQAAA4MAAAMhBAABEQgAA0MEAAABAAAA0QgAAzEIAAKDAAAAoQgAAoEEAACTCAAAswgAAwEAAAEDAAADgwAAAlkIAAMBBAACIwgAAYMIAAGzCAAAkQgAA4EEAAHBBAACgQAAAkEEAABTCAACAvwAAZMIAAKRCAABAwAAAmEEAAPjBAADAQQAAQEAAAGDBAAAYwgAAFEIAAFTCAAAcwgAAhsIAAAxCAABQwgAAgMAAADjCAACowQAA2EEAADDBAAAAwgAAcEEAAKLCAADIQQAAdEIAACzCAAAUQgAAAMEAANDBAAAMQgAAPEIAAHBBAACAQQAApkIgADgTQAlIdVABKo8CEAAagAIAAKA8AABsvgAAUD0AAHA9AAD4vQAAQLwAAK4-AAARvwAAJL4AAFC9AACWvgAAML0AABC9AABUPgAAhr4AAJi9AACaPgAAuD0AAJg9AAAXPwAAfz8AAJi9AACgPAAAoDwAAOi9AAA0vgAAlj4AAKC8AACavgAAmD0AAEw-AABQvQAAED0AABy-AABQvQAAqD0AAHQ-AADgPAAAsr4AADC9AABMvgAAUD0AACQ-AABAPAAAfL4AAJ4-AACaPgAAVL4AAEy-AADIvQAAcD0AAIg9AACCPgAAqL0AADy-AABQvQAAWz8AAPg9AACoPQAAkj4AAMg9AADIPQAAUL0AAEQ-IAA4E0AJSHxQASqPAhABGoACAADgPAAAEL0AAGy-AAArvwAA6L0AABA9AADYPQAAmL0AAJi9AABcPgAAqD0AAFy-AABUvgAAVL4AAKg9AAAwvQAAFD4AABk_AADIvQAAyj4AAAQ-AADgPAAA4DwAAMi9AADgPAAAfD4AAAy-AACYPQAA-D0AAAQ-AABwPQAAuD0AACy-AACivgAAEL0AANg9AAB8PgAADD4AAFy-AAAUvgAAfD4AAIg9AABQvQAAiD0AAKA8AAB8PgAAf78AAES-AADYvQAAFD4AALi9AAAQvQAAmL0AAIg9AADIPQAAUD0AAIA7AAAwPQAAoLwAAKg9AAAcPgAAFD4AAEw-AABAPCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=32dGPyIMgJ8","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13456936732257505937"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3765506998"},"13766171144434148995":{"videoId":"13766171144434148995","docid":"34-10-7-Z21B873D7C1B017B0","description":"I develop the appropriate confidence interval for the ratio of population variances (when sampling from normally distributed populations), then work through an example. Note that these methods do...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3615731/bcaf20ab6024d2992b9b06d26336a295/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/b56PdAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D64hFiLSq3Fg","linkTemplate":"/video/preview/13766171144434148995?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confidence Intervals for the Ratio of Population Variances","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=64hFiLSq3Fg\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTM3NjYxNzExNDQ0MzQxNDg5OTVaFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1arYPEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E4YEggQkAYAEKyqLARABGniBChH7Af8CAPj-_QH5BP8B_gv48vf-_gD8Bfn9BwT-APoFBwT5AQAA-gj6EAIAAADuBwX--gEAAA0A_QP7AAAAFvgOCf0AAAAODPwD_gEAAPb6BvkCAAAAAQH1BAAAAAD6FQj8_v8AAAQE_AcAAAAABQH7BQAAAAAgAC2ee9c7OBNACUhOUAIqhAIQABrwAX_uAADaJtYA-RnkAOX65gCTCSf_FkP6AM4BDQCjAvj_D9_t_9no5QHu7_0B0x8RADMK3f8D2yUADdr2AC7lBwHr9AsAMs8PARIIDQAg-NYC8fURAAjd_P8W2tcCCArV_gfXGf7v7uwB7wPIAg7-OAEc7iICCecV_vX4A_vVJQr__ejh_gzr6f_-8BQAxR4WAxzy6gPoIvb5_hHtAPwCAQP4BvUBBynZ_v_--gMFFQr-6_z3-wjs-wglAhEB5QkG-_T4IgIKDwH0_NX49fbm9wAKAdz378gIARDu8wHc0Pb4BQvz_OsbAQDeAw0J7hf1ASAALRggJDs4E0AJSGFQAipzEAAaYDT_ADMCJO3R0UnSEwLv-w8I99gPmuv_6br_7Cni59_l6r_2Bf87zxzvoQAAAC4Gzi8NAAh_2NrEBwEU59LB3UxCai4aK7fYAQy16vIpCe4iCdf4ewAD8bcVSsfDNwoRJyAALdmiFjs4E0AJSG9QAiqvBhAMGqAGAAAwQgAAoEAAAEBCAACuwgAAcEEAAHBBAADaQgAAMMEAACjCAADYQQAAFEIAANDBAAAwwQAAAAAAAABAAAAAQgAALEIAALDBAAAQwQAAAEAAAPDBAAD4wQAAoMIAAFBCAABEwgAAJMIAAPjBAAAAwAAAMMEAAIDAAACMwgAAAEAAAMzCAABMQgAAQMIAAIDAAAAQQQAAmkIAAABBAAA0QgAAQEIAAIBAAAAQQgAAwMEAALBBAABIwgAAlkIAACxCAABEQgAAuEEAAEzCAADgwAAAuEEAANBBAACgQQAAiEEAAJDCAADoQQAAyEEAAKZCAAAUQgAAoMIAABDCAADYwQAAoEAAAKrCAACAPwAAEEEAAGDBAAAEwgAA-EEAAFRCAAA8wgAAjkIAALDBAAAgwgAAbMIAABDBAABAQgAAbEIAAADAAAB0QgAAmMEAAEzCAAAYwgAA8EEAAIA_AAAAQAAAYEIAANhBAAD4wQAAQEIAABzCAACgwAAAsEEAAEBAAABAQAAAEEEAAKhBAAAUQgAAXMIAAOBAAADAQAAAsEEAAMjBAABAQQAAAMIAANBBAAAwQQAAkEEAAJBCAAC4QQAAQMEAALhBAAC4wQAApEIAAABCAAC4wQAAAEIAAMjBAAAYwgAAHMIAAMhBAABAQQAA-MEAAMjBAADIQQAAEEEAAPDBAAAIQgAAGMIAACDCAABQQgAASEIAAADCAABQQQAAAMIAAIZCAACgwQAAJMIAAEDAAAA8QgAAWEIAAGDCAACIQgAAtEIAANjBAACgQQAAAEEAAIjBAACqwgAAsEEAAHBBAADAwAAAyEEAAIBAAAB8wgAAQMEAAJzCAADgwQAAAMIAANhBAACQQQAAAEAAAPBBAACAPwAAaMIAAKZCAAAwQQAAcEEAAKDAAACgwAAA4EEAAGDCAABQwgAAKEIAABBCAAAMwgAAIEEAAGxCAACawgAAMMEAAKBAAAAswgAAWEIAACjCAABMwgAAcEEAAOjBAAAgQgAAbEIAAKDAAABAQQAAQMAAAKDAAAAUQgAA-MEAALBBAACgQQAAEMEgADgTQAlIdVABKo8CEAAagAIAAEA8AABMvgAAqL0AAAw-AACAuwAAcD0AAEC8AAAxvwAAfL4AADQ-AACCPgAAFL4AAOC8AAC4PQAAEL0AACy-AACIPQAAoDwAAFC9AABcPgAAfz8AAFQ-AAAUPgAAqD0AAOi9AAAEPgAAML0AADC9AACGvgAADL4AAII-AAC4PQAAmr4AADC9AABwvQAAqD0AAOg9AABQvQAAsr4AADy-AACWvgAA4LwAAFQ-AACoPQAARL4AAFA9AADgPAAAnr4AADy-AADCvgAANL4AAJg9AABkPgAAUD0AAGS-AADovQAABT8AAAQ-AADgPAAAyj4AAJI-AABwPQAAuD0AAAQ-IAA4E0AJSHxQASqPAhABGoACAAAEvgAATD4AABS-AAAtvwAA2L0AAIi9AABQvQAA6D0AAIC7AACaPgAAuD0AACy-AAAwPQAAqr4AAOC8AACAOwAAXD4AABU_AADoPQAAgj4AAIY-AAA8PgAA2j4AAEy-AADgvAAAuj4AAGS-AABkPgAABL4AAHC9AAAwPQAA2D0AAKA8AACOvgAAHL4AAJi9AABkPgAArj4AAIi9AACYvQAA0j4AAKi9AACIvQAAcL0AAGw-AACqPgAAf78AAEy-AACivgAAxj4AACw-AACIPQAAHD4AAGw-AACgvAAAMD0AANi9AAAEvgAAML0AAJK-AAAwPQAAqD0AABC9AABAvCAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=64hFiLSq3Fg","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13766171144434148995"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"527583997"},"14911750688497889707":{"videoId":"14911750688497889707","docid":"34-9-1-Z25EF2BAC91F6677D","description":"I discuss confidence intervals for a single population variance. The methods used here are based on the assumption of sampling from a normally distributed population (these methods involve the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2185593/cdd67ae90435710b2248fcc81bc422fe/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Et-WBwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DqwqB5a7_W44","linkTemplate":"/video/preview/14911750688497889707?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Confidence Intervals for One Population Variance","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=qwqB5a7_W44\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTQ5MTE3NTA2ODg0OTc4ODk3MDdaFDE0OTExNzUwNjg4NDk3ODg5NzA3apMXEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E9QEggQkAYAEKyqLARABGniBCQX6_AAAAPj-_QH5BP8B_gv48vf-_gD2B_v-_wL_APoFCAT5AQAA9A4BCgIAAADuBwX--gEAABL1-QgCAAAAFvgOCf0AAAABEAAE_gEAAPT3BwIDAAAA_vj3Bv8AAAD6FQj8_v8AAP8F9gMAAAAA_AH4-wAAAAAgAC0YBNU7OBNACUhOUAIqhAIQABrwAXX1_wDbDd8A1irUAMwg-ACBIgr-_THVAM73_wCrEej_E-70ANjn5AEj7QX_0Cv-_zDY0_8DyxT_KNkNACLxBwDl4wIAONv9ACUYGgAd8uQBxPYF_wvm6AH9yuAAGRnfAA3jD__x7df-Dv_XAyL8LAH5ASQFKOQPAfbgGAXTJgr_7d_b_vUL8_791xYA4vYtBxHiCf8cIfD88QrsBAcK-f8AAAD8AxjlBfL2_wXpHwgB1wP9-yDi5gInAhIB5voG-fP3JALuCAn699kP9P7t_QbkAPgF-9YDBSr2CfvszgDx_-vtAPIL_PzoE_wD5CP68iAALf8hHTs4E0AJSGFQAirPBxAAGsAHXB_GvgBBdD2nEpQ8moKbvam1F7wDBV694KD9vS4MpjsFkR68GxARPtJUT7z0hRU9lpNAvqLMqzzo0mQ8FJRCPkZFHL1z6AC8ehcvvgg8MD0pn9S89aFrvoTTBz10NcO7Kz9fPX5fcbufzSq81qIvPVQ99LzapCq7AZzFu33-wbugkm693GoZOvURWL0TfFi9bjC5PNkFSL1qocc7BFcJPuutXDwvREO6t1dLPVZ01rvGpyC9cv4BvfQSiDz2Ali8ySJtPUWE2jslMyg86_uFvT5oTL2HOxE83xiSvdm_4TwBmcY7D3uGPey5kT05oSu9u7upPZIkiL1yKFm6-aAHvvQamz0vgYA77IbtPYz3gz1yW5E7UMPXvcSSdz1rjM46iFfjvA9Hl7xnLBi8LP6lPOdAxT2paKw8N0yJPY39Nj3LKs-6LQ4fvFVWLj0QQhs9UFObPbaeBLyGrkS8ql2oPUtwDzxuNWu8VY-6vb45NzwXmSW8bD_ZPDus0D0bGPE7pzUTuTb2Nryw0GI8BSOlPdYCO75J5Zo6zvIGvZA4ir2cy0O8H4cgvFD65zsIZpa7bvzpPUzkrb0rc6m7pj-QvXzgurvAnic74nmEvGmocb31jLe7ggLPvSbXzrdUYBY82L_GvMTeVTx_8TG8xJJ2O99vpD1cQMM60E8nvXeihL2h94Q69StdPXMRPz2wlem6mDIAPhZ_QD0tP7W38WhjPfZuYr3Btym6m9zUvPNNJL3-XBc73WsXvUqqAL0eTD25oZ3TPVGBmL2XnVE5cPcoPVQKsDwjTiM5G-qhvbJblT0s2Zk4mS6fO0x_wL2GlFY4vsXgO6xTFb6mjMk5--gUvROUBzzdBlu6Hgh_POZpSj3rswQ6FOfovXPJIr0i3kO5OJagOgL-3zzgxUi3mVJtPRYp3rwT8424vo4TO574ID2VO024CgahPN7fRbzey_Q5HI-OPWa8zT2tY4W4TKgAPcfwnb3-7jA5xFY1PXlhxj225i64uhdzvfQyyjyS2hK1csJkPd__Aj1sDQw4nQ5HO3efA75D3oy3IzbxOzv_Nj3XXJa4yuEDvhDXHjyX_U43ibbjvKyPh7wU2v04E7rLO9ehmroaXje210ZhPcZUVTw9Vqa3weMrPtylaLwHiXS5qCanvVQ9xL0cuIO4b0VnvbQWm71OcPi3VTETvE6ZWz0Nr8s3va8FPaVJCb6tnoW4Iv_sPTUpBT7zflu48LI1vVzMzz0MRgq5w_PSvY6KBL2Hssm2kQl4OwRdljyClXA4IAA4E0AJSG1QASpzEAAaYFEEACYNNuHn10PYDO709vv0_NU4sun_5N__9CAA6OMJ7r0X7v9BzhrrpAAAABkC1zr7APp_5---JPARHMyV2yg2dSILIL8EEgu7AAsUCvAj9f8OcgDe_K42S7-pP-MIISAALbQRFzs4E0AJSG9QAiqvBhAMGqAGAAAoQgAAAMEAADRCAACuwgAAoEAAAIDAAACaQgAAQEAAAFTCAAAAQAAAyEEAAITCAACQwQAA0MEAALBBAACoQQAAQEIAAODAAADoQQAAUMIAAHTCAAAEwgAAmsIAACRCAACAwgAAaMIAAJjBAAAAwQAA8EEAACBBAAAcwgAAuEEAAJjCAAB8QgAAmsIAANDBAADoQQAAvEIAAADBAACSQgAAIEIAANjBAAB0QgAAQMEAAJBBAAA4wgAAEEIAADRCAABMQgAAgD8AABDBAAAQwgAAEMEAAIhBAADYQQAAqEEAAMrCAAAoQgAAQEAAAChCAAAEQgAAtsIAAGDBAAA4wgAACMIAAMjCAACgQQAAHMIAAABBAAAIwgAAOEIAAGRCAAAAQAAAXEIAANjBAABMwgAAEMEAAJDBAADgQQAASEIAAADBAACCQgAAAEEAAEBAAADowQAAWEIAAKjBAAAAQgAAHEIAAOBAAADQQQAAikIAAILCAAA4wgAAgMAAAEDAAABQwQAAgMAAAABBAAAIQgAAyMIAACRCAADwQQAAJMIAAADBAAAgwQAADMIAAFBBAAAEwgAANEIAAGhCAAAUQgAAQEEAAFDBAADAwAAAUEIAACDBAADwwQAA0EEAAODBAAAgwQAAZMIAAEDAAAAAQAAAoMAAAIhBAAB4wgAAiEEAANDBAAAYQgAADMIAAHDBAACIQQAA2EEAAOjBAACAQQAA6MEAAFhCAADgQAAAOMIAACDBAACCQgAAAEIAAFTCAABwQgAAYEIAAIDBAAAwwQAAsMEAAIA_AADgwAAAuEEAAAxCAAAQwgAAMEEAAABAAAAEwgAALMIAAMLCAACAQAAA6MEAAIhBAADgQAAAqEEAAHDBAAAsQgAAkMEAALBCAAAgQgAA0EEAAODBAAAAAAAAYEEAAOjBAACOwgAAKEIAAEDAAABwQQAAqMEAALJCAACMwgAAkMIAACDBAACAwAAAsEEAAAjCAACUwgAAqEEAADjCAAAAQQAALEIAAMDAAABAQQAAAMIAAIjBAABQQgAAyMEAAABBAAAAwQAALMIgADgTQAlIdVABKo8CEAAagAIAAOC8AAA0vgAANL4AAPg9AAAQPQAAmD0AAFQ-AABDvwAAlr4AACw-AADePgAA-L0AADy-AACIPQAAoLwAALK-AAA8PgAA4DwAADA9AACqPgAAfz8AAI4-AAC4PQAA6D0AAEC8AACoPQAAmL0AAEC8AAC-vgAADL4AAKY-AAAwvQAApr4AAPi9AAAMvgAAgDsAAGw-AAAUvgAAH78AAIq-AACOvgAAoLwAAAQ-AADoPQAAoLwAAEQ-AADoPQAAor4AAOi9AADGvgAAor4AABA9AACYPQAA2D0AAJ6-AABQvQAAHz8AAOg9AACIPQAAFz8AAK4-AAD4PQAAqD0AAJg9IAA4E0AJSHxQASqPAhABGoACAACGvgAAXD4AAFC9AAAxvwAAMD0AADC9AACgvAAA4LwAANi9AAC-PgAAFD4AAPi9AAAUPgAArr4AAKC8AADgvAAAED0AAF8_AAAkPgAAND4AAHw-AABAPAAAAz8AABS-AABwvQAAbD4AACy-AACePgAAgLsAABS-AADIPQAA4LwAADA9AABEvgAAyD0AADy-AABMPgAAfD4AACS-AADYvQAA3j4AAJi9AADgvAAAPL4AAOg9AACCPgAAf78AAIK-AACGvgAAkj4AADQ-AADIPQAAgj4AAEQ-AABQPQAAQLwAAOi9AABwPQAAoLwAAJq-AAC4PQAATD4AAIA7AAAEviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=qwqB5a7_W44","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["14911750688497889707"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3176537794"},"16470374100342589984":{"videoId":"16470374100342589984","docid":"34-2-4-Z02F3D11744F2DE0E","description":"A look at the relationship between the binomial and Poisson distributions (roughly, that the Poisson distribution approximates the binomial for large n and small p). I work through some...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/939778/328756ffd78c344f86d9031219d4982f/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ixBcsAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeexQyHj6hEA","linkTemplate":"/video/preview/16470374100342589984?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Relationship Between the Binomial and Poisson Distributions","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eexQyHj6hEA\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTY0NzAzNzQxMDAzNDI1ODk5ODRaFDE2NDcwMzc0MTAwMzQyNTg5OTg0aroNEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E8QCggQkAYAEKyqLARABGniB9QEC_gX6ABEAEgADCP8C9BXy_Pf9_ADx_AH09AEAAOv7A_kD_wAABwMEBPUAAAAE__IA_f0BAA4H9AMEAAAAIQEK__kAAAAXBv8A_gEAAP7_-AAO-wAAAv0QEQAAAAAABAT1-_8AAAQFFAcAAAAADPQGDgAAAAAgAC23ycI7OBNACUhOUAIqcxAAGmArFAAN_wDX-ARM4-rp4_IPJSTt_7EB_wPsACYU79sZCNqpKvD_ScoSCa8AAAD-9tkNQADZas7x0U8P5TTb8N0aHH8O8PkA8-kA1BRBAAtCIxwMOiQAyu37_ifZ4kjkRyUgAC3H7ik7OBNACUhvUAIqrwYQDBqgBgAAPEIAAAAAAAAwQgAAcMIAAJBBAABQQQAArkIAAIDAAACYwQAA2EEAAMBAAABQwgAAoMEAAIA_AADYQQAAIEEAAGBCAABwwQAAkEEAAKDBAABswgAAfMIAAMjCAAAkQgAAaMIAABjCAACowQAAgMEAAIC_AAAAQgAARMIAAKBAAAC8wgAADEIAAIzCAACAwAAAyEEAALZCAACAwAAAqEIAAEhCAACwwQAAGEIAAATCAACwQQAAqMIAAEBAAACIQgAABEIAABBBAAD4wQAAQMEAAADAAACwQQAAAEIAAJBBAAAAwwAAuEEAABBBAABcQgAAkEEAAKrCAAAUwgAARMIAAIC_AAC6wgAA4MAAAAjCAABwwQAAXMIAAAxCAABgQgAAfMIAAHxCAACAwAAAYMIAADzCAACYwQAAMEEAAMBBAACYwQAAoEIAABDBAABgwQAAuMEAAChCAACwwQAAAMAAAOBBAACwQQAAyEEAAHRCAABcwgAAuMEAAABBAADgQAAAQMEAAIjBAABQQQAAQEAAAJbCAACAQQAA8EEAABjCAABwwQAAiEEAAGDBAACAQAAA8MEAACBCAACAQgAA4EEAAEDAAACIwQAAIMIAALhCAACAPwAAuMEAAHDBAAAswgAA0MEAAPjBAACIwQAAkMEAAOBAAACgQQAAoMAAADDBAADwwQAAEEIAALDBAAAEwgAAgEAAAIRCAAAQQQAA4EEAAAjCAABYQgAAgMAAAIrCAADgQAAAoEEAABBCAABMwgAADEIAADhCAACQwQAAoEAAAIDBAACAwAAABMIAACxCAACKQgAAoMEAACDBAABAwQAACMIAAATCAACgwgAA4MAAAGTCAAC4QQAAwMAAAOBBAAAQQgAA6EEAAEDBAACsQgAAMEIAAADBAAAAQAAAAAAAAMBBAABwwQAAVMIAABhCAACAwAAA8MEAAODAAACkQgAAhMIAAJDCAABAQAAACMIAADRCAAAEwgAARMIAAHDBAACYwQAAAEEAABBCAADIwQAAQEEAABDBAACgQAAATEIAAHTCAADIQQAAUMEAANjBIAA4E0AJSHVQASqPAhAAGoACAABEvgAA6D0AABw-AADoPQAALL4AAEw-AACoPQAA2r4AAFy-AAD4PQAAUL0AAPg9AABQPQAAFD4AAKA8AAD4vQAABD4AAKi9AACgPAAAsj4AAH8_AAAsvgAAJD4AALg9AACgvAAARD4AAAy-AACgPAAAQDwAAII-AACAOwAAND4AAEy-AAAwPQAA2D0AAFC9AAC4PQAATL4AACS-AAAsvgAAnr4AABS-AABkPgAAgDsAAHA9AABEvgAAUD0AAAy-AABsvgAALL4AAIA7AADIvQAADD4AACQ-AADovQAAMD0AAOY-AABQPQAAqD0AABw-AABAPAAAEL0AAEw-AABAPCAAOBNACUh8UAEqjwIQARqAAgAABL4AAHA9AAA0PgAAMb8AAKA8AABQPQAA6D0AAFA9AAD4vQAAlj4AAPi9AAA0vgAAtj4AAGy-AABQvQAA4DwAABQ-AABJPwAAhj4AAJo-AADoPQAABD4AAIY-AABcvgAAoLwAAHA9AAAQPQAADD4AADy-AABwvQAAQDwAAKg9AAAUPgAAfL4AAKi9AAAUvgAA-D0AAM4-AADIvQAAqL0AAMI-AABAvAAA4DwAAEy-AADoPQAAiD0AAH-_AABUvgAATL4AAII-AAC-PgAA-D0AAKo-AADYPQAAoLwAABA9AAC4vQAA4LwAAJi9AACSvgAA-D0AAIg9AACCvgAAJL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=eexQyHj6hEA","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16470374100342589984"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1947366"},"3813483826064284221":{"videoId":"3813483826064284221","docid":"34-1-3-Z65AD66DA2C95182C","description":"I begin with some motivating plots, then move on to a statement of the law, then work through two examples.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/923292/42b3c48064dc2481c478da8e77cf63d7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UPnxtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D7t9jyikrG7w","linkTemplate":"/video/preview/3813483826064284221?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Law of Total Probability","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=7t9jyikrG7w\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFQoTMzgxMzQ4MzgyNjA2NDI4NDIyMVoTMzgxMzQ4MzgyNjA2NDI4NDIyMWqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxPtBIIEJAGABCsqiwEQARp4gfT0-f79AwD8BfwGAQb9Au0D9gD6__8A7Qn_BggAAADzAAAH_gAAAAkHBg8BAAAA_v0K_vT-AQD-Bvz_BAAAAAYE_gf9AAAAAP8GC_4BAAAJ8wIGA_8AAAsE-QUAAAAA-QX--P4AAAD9DAD6AAAAAAz6-fsAAAAAIAAt55jcOzgTQAlITlACKoQCEAAa8AFi_A8Bx_0A_gj6-v_eAOAAgQUL_yYs6f-05g0CzgLpAAP19ADa4gAA-PfxANX5Jf8VANMAAf4YAC76Dv8k9-gAAAoKABzf9wE19gQACAj2__MXFgD_2Q0AA_DkAAz15P8QACD--xH5AgjwywcL_y4BDRYTAA7z_QP5-Rf_7Q8MAgP0-vz2EPwFAgEE_PEQKwEGBPL-CR8F-_Ab_gMGMO38AAAA_SDr4P4CEucFF_z4-s_wD_4T5_n1EBga_-ok9v7tAhAA7t4JAvMCC_sR5AsHEvf8_Nz69_73CgD_8dgA9P8gAwXvHQf06xQLBgD59v4gAC1uJ0g7OBNACUhhUAIqzwcQABrAB23I375z99Q8_gGgPMl3hLrVNeQ8-_HNvNnfw71-Ors7gL6IPNSBDD5SvYC9AtLAuzhpir7RDD087a59PP29dD6SVEu9A7HsPNlDS75DknY7KX-CvbSsG74rsIY9YvgDvUCKOj0sE1k8LngMvVr0zj3C8mw9PzjhurKCX730CKS8eXyWvNybBDzUk968_O0BvV0voj1Ipdi8R0mZvOGXCj5xqJS9uqtsu9-S0jzEjQA9dEhFuxh9Jb5Joay8Ci9BvHVmLD2mi8M8_3SoPEQgvb20YD29W9VHOU9mMr0KQn49s5etPBEWW7tXXHw94yQjvbU1Aj1M1Bw93HskuWO0Hr42Fnu7f2BYPHSt4jwqjO097RD_vCYMdL1dRrs9TCy6PKQDqzvGeQ496UdDvADyhD2JKwI9-CsuPJO5A70VXh29o8SVuG62I735WHA9CRLAPJ9NqD38byU9udSSvPFImzrRrkI8iZI1vHGvx71Iso29K5tevE9cbj2Rtzw9YXwHuy24Gj0tmb66MhxAOsU1Qz34UQ2-CW8su8FrfD1St_O9axWIOaDzpDxfHhc9MLP4ulmHwz0Kz1W99IJTO4Uedr3Qsxm9yGk-vPMnYLw_xty9KcrGu9n1sb1IRym6IzAZusuFSrxYoKe8E3JvuyQcRD0amAm6W-TtOfNxbbyUzrC7KTuiO967PDzvlIk9mYvsu4sQmD0Rn8U8_kzyudDzwjzD7bW8rbQ1uzx8o7yC56m91n9fuD_6K71CYjY93cK4Oco0-j0Te828WYZhOA0WszwIfIk93Kn4OFbFSr3OhOy7jXSAORMjkD2Ps5-9Cn64NyUyHb2VEIy90iOpON4Y57wiKRO9S_KJua_TA70IFFq7bVkdOYmAXr24U588tpZMubgHkT2EP828mkYBufmfWzv_nzm9DobKN0OaKTuhXro7-bV5OP3GEj0ZmuG82ZV6uIK_hD0-iE49DmtHOMCVibpEY3e9XtwVuP196zwtM5U7cRBcOOcfOD0P77k9tGi5OBpxHD026h07mzJbuDTc2zzmXSW-BpznuKgXnTsiFes8B6t-tqBQz70V74Y9wtICOJpKOj2BVkO7306ROO1CmLx9xxU9EK1DtpctA70vave8WincN8HjKz7cpWi8B4l0uVxJAb3K3tK9FyIEudjJSr0MUES9WsCquOYwKTw3cAe9rmMlOB2XDD1JD0O-VDFNucr0cD0i4Ss-8cuKOAcLp7y9_O49g7QeuYZVjL30W4q9LFHgtsXdRb3_q9C6poM8OCAAOBNACUhtUAEqcxAAGmBEAgBG-hkLAvMy4hDe1fD88BkWJuYAAAzzAPMbJNf-5uG2JBkABf8797MAAAAez9j1KgDlawvQ3w7w1d3g7NsGH38UBzXb-xY03OsDI_TG6R3iTl4A7_e1Fz0DmwwpCBAgAC1VXys7OBNACUhvUAIqrwYQDBqgBgAAHEIAAEBBAABEQgAAkMEAAGxCAAD4QQAA3kIAADDBAABQwgAAkEEAAJhBAABMwgAAiMEAALjBAAAIQgAABEIAAGxCAAC4wQAAEMEAANjBAAAwwQAA0MEAALLCAAAAQQAApMIAABTCAAAUwgAAFMIAAIBCAACAQAAAEMIAACBCAADQwgAAnkIAAEjCAACgwQAA8EEAAHBCAABgQQAAPEIAAEBCAADgwQAAREIAAMDBAACYQQAAqsIAAEBCAAAIQgAABEIAAADBAABQwgAABMIAALhBAABgQQAAEEIAAGxCAAD6wgAA8EEAAGBBAABMQgAAwEEAAKTCAABgwQAASMIAAAhCAACowgAAYEEAAHDBAACgwQAANMIAAAxCAACUQgAAQMIAAFRCAAAUwgAAwMEAADzCAACAPwAAqEEAAIBBAABAwAAArEIAAIDBAAAAwAAAwMEAAEDAAACQwQAAuEEAAIZCAACYQQAA6EEAAI5CAABkwgAAwMEAABBCAADAQAAAwMAAAPjBAAAAAAAAuMEAADzCAAAMQgAAPEIAAPhBAAAUwgAAkEEAAITCAACIQQAAEMIAAAAAAACQQgAAMEEAAFBBAADAwQAAwMEAAJZCAAAwQQAAuMEAAKDAAADAwQAACMIAABjCAACAPwAAAEAAAIDAAACoQQAAsEEAAABBAABgwQAA4EEAAAjCAAAYwgAAUEEAAHBCAAD4QQAAYEIAAIhBAADQQQAAqEEAAEzCAAAQwQAA0EEAAChCAACMwgAADEIAAIZCAABkwgAAwEEAAKBAAAAQwQAAKMIAAKBBAACAQQAA8MEAAMhBAADAQAAAOMIAAABAAACOwgAAEMIAACjCAAAAwAAAYMEAAMBAAACIQQAAQEAAAFTCAAAMQgAAyEEAAHBBAAAQwQAAgL8AADRCAACwwQAAZMIAAARCAAAoQgAAGMIAAEDAAAAgQgAAfMIAAHDCAABQwQAALMIAADBCAAC4wQAAgMIAAAAAAAAwQQAAKEIAAEhCAAAAwQAAmEEAAIDAAADAwAAAjEIAABTCAAAAAAAAAAAAAIDAIAA4E0AJSHVQASqPAhAAGoACAABAPAAAuL0AACQ-AAAsPgAAqL0AAKC8AAAQPQAArr4AACy-AAAwPQAAgLsAAIg9AADIPQAAPD4AAJi9AADgvAAALD4AAFA9AAD4PQAAHD4AAH8_AADgvAAABD4AAOg9AACavgAAcL0AAIA7AABUvgAAoDwAADQ-AADgPAAAgDsAAGy-AAAEPgAAiD0AAFA9AAAkPgAAir4AAIK-AAAUvgAANL4AAIA7AABQvQAAcD0AAKi9AABAPAAAmD0AAFC9AADYvQAAgr4AAIC7AAA0PgAA2D0AALg9AACYvQAA4LwAABc_AACIvQAABD4AACw-AADIvQAAuL0AAIC7AACaviAAOBNACUh8UAEqjwIQARqAAgAAQLwAANi9AADoPQAAS78AACw-AACgvAAAyL0AAIA7AADovQAAuD0AAAy-AABEvgAAEL0AAJq-AAAwvQAA4LwAAFQ-AAAjPwAAEL0AACw-AAD4vQAAoj4AAKA8AACYPQAAmL0AAPg9AADgvAAAED0AAHw-AABwPQAAMD0AAEQ-AAD4vQAAfL4AAK6-AAA0PgAAyj4AAOg9AACKvgAAhr4AAAS-AAAwPQAAkr4AAOg9AACAOwAAJD4AAH-_AACAuwAA4LwAAKY-AACAuwAA2L0AABQ-AAAUPgAAPL4AAOA8AACYPQAAEL0AAOA8AADgvAAA-D0AAHC9AACYPQAAqL0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=7t9jyikrG7w","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3813483826064284221"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3058746250"},"16791687109102819451":{"videoId":"16791687109102819451","docid":"34-3-5-Z3204EF7C3C0DAA5A","description":"I work through an example of deriving the mean and variance of a continuous probability distribution. I assume a basic knowledge of integral calculus.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/908902/d76f908e8dee919092633331161fbeb7/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/EfE_sgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DRo7dayHU5DQ","linkTemplate":"/video/preview/16791687109102819451?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Deriving the Mean and Variance of a Continuous Probability Distribution","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Ro7dayHU5DQ\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTY3OTE2ODcxMDkxMDI4MTk0NTFaFDE2NzkxNjg3MTA5MTAyODE5NDUxapMXEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E7kDggQkAYAEKyqLARABGniBBvgF8AP8ABEAEQACCP8C8w8DDPn9_QDw-vIE-AH_APsN_Ab5AQAABgT-C_4AAAD2_vsI8_8BAP0RAPn4AAAAFPgC_vYAAAAXCAL0_gEAAPj19AkE_wAAEQQIEQAAAAD8BQ7uAAAAAAsL_A0AAAAAE_7tAwEAAAAgAC1aHsg7OBNACUhOUAIqhAIQABrwAWjuE__e97UBzwLqAckL-v-BIgr-_THVAM3iEQHNFdkA9ez0_9YYAgAP6v0B0Cv-_zz2zf8DyxT_Me8A_0Di-gDZ8wkAGOr2ATgSKv8V9_gA3Q4a_xPmDf_9yuAADRfz_hLuBgHx7df-Cuy9CA7-OwH5ASQFMvEXAd-0_QHhAgoBDQTi_fQU-wYD1__62gQgAgzp_QguJgf97RLe_fD2BQftAAb3ByvX_iIM-AUMBwH5x_sDAQjs-wkSEgUB4AH8BdILHQHyJfv17fES8gbi-PwGD_QG_OP0CRru__f22gD8BOH5-toT_vv27uwK1vgD7iAALf8hHTs4E0AJSGFQAirPBxAAGsAHWmi_vjxeEj3SjAU9CgfMvVcPFLw0hQ694KD9vS4MpjsFkR68MzIYPhA0cL18PcQ8Jdq_vYA3Mz1U9BM8_b10PpJUS70Dsew8cT1avucWvz2FTKi85_4qvl3L_zxIdCo8Kz9fPX5fcbufzSq8fnl8PRnFsrwWnjw86JmDPCRU-jybKSO9vHzGPG4OH7wiDXi9G8lUvJ_xM7y5cB48GFodPmoHcbu0hRA87cgCPSsSODyRNiO8phCDvR8AJz0zG_-8UpCpPL93AD0hG608nFg2vS2eNb2Q4-I862sivf6DozwW-0s7JkCoPZCoKz1v0a68vJsiPcADqL3DP7I7seFJvi6S9jxPCJ087IbtPYz3gz1yW5E7ZDvEvRV1gTykC3u8iFfjvA9Hl7xnLBi8tMlhPBWnjz3_Fi48QgNWPcTdzzx5aKs6LQ4fvFVWLj0QQhs9IEuqPagW9rxcdoi8KnF9Pae-PbzVfka8VcmGvQKJwby8Ria8pUNMPCAalz2FHOM7zxPPu7QZTDxmxH07BSOlPdYCO75J5Zo6Yyp9vKNFzL2HKka80KD8PFCJ0DyKcQC8bvzpPUzkrb0rc6m7SAjFvNoXFjxpGIS7yj7-vIrzhr0SjpM7difJvRocwLyQGos7_GVBvIXs2buHQjq8lKZ_O3ba_zx3iL07kaBTvN8mrb0W7Z66FHkSPStaLz0k-xS7mDIAPhZ_QD0tP7W32scqPSFLNb2Atri70vGyvSeoPLy36p06iKZHvVdgg710_2c47q8OPp8Skb1-0JQ5_reSPAZcAT3bHSw4Jmy0vWRA1j1cJhA4QZhAPYqT-71Ma3Y46Q9NPKg4Pr5yn105JzJzvKvZHLx8gwq7HWCcvLw7kj2IMbC3zCDDvdQNBL4IU4U5LKhevB_Ojbs31wS6Pr6TPZF1nbwwTfM3M-4ZvHxXTj0edQg5dpkrPC2IUr1W6Vy4FwMVPb98dz09Bwc5jBgxPRcYiL0zlRw5p70XPWhOaD2GYDo5NWIhvTmmXTyE0MK35lViPVOSVT0ALio4UkjPuz48q71PsuQ4lF9Hug1nBjweMWU3oFDPvRXvhj3C0gI4Zt4FPehaCTwTLW437UKYvH3HFT0QrUO2F4mEPUd9SDzMNQG4glVFPnTINz3J3IS5-UrgvQyP3b1jM0S4bhuxvSwuzr0-8V64m9KPu-Lkjj1g3kc33uhePXjlhL1BUrS4VRimPW0LxT2Dx-c4A_yUvX-ojz2F5F65rW3qvRQ7vzxv0uM3aewBvQxN4zw_aZM4IAA4E0AJSG1QASpzEAAaYDAFACH5JdD69zTl3OHl8vH-CuoVuPz_7sUA8DcE4wjlxb3yBf8k0SrwqwAAACAExxMWAAh12OwDKfAO9KX31CY7fxcDOKfsGfDR5AgaJgIjDTE4YwDkDdEoMcfPVtYgHCAALTmXIDs4E0AJSG9QAiqvBhAMGqAGAAAMQgAAkMEAAKBCAACkwgAAQMEAAADAAADGQgAAgD8AANDBAADAQAAACEIAACzCAACAPwAA2EEAANjBAAAgQQAApEIAAABBAACgQQAAgEEAALjBAAAswgAAhsIAADBCAACwwgAAiMEAAEDBAAA4QgAAAEAAAHRCAABswgAAIMEAAGTCAABkQgAAmMIAAHDBAACAwAAArEIAAMhBAAAwQgAA-EEAAIC_AAAQQgAA4MAAAABBAABQwgAATEIAAFxCAABAQgAALEIAAAzCAAA8wgAAAMEAAMhBAACQQQAAgEEAAKDCAACwQQAAREIAAGRCAAAoQgAAIMIAACDCAAAswgAAsMEAAO7CAADYwQAAFMIAAHDBAADQwQAAwEAAAFRCAABgwgAAYEIAAATCAAAIwgAAqsIAABDBAADoQQAAKEIAABDBAACmQgAAAMEAAADCAABwwQAAVEIAAABAAADAwQAAIEIAADBCAAAAAAAAsEEAAFDCAACAwAAAqEEAACDBAAAAwgAAQEAAAFBBAACQQgAAKMIAAADBAACAPwAAwMAAACjCAAD4QQAAoEAAABBCAABAwQAAWEIAAKpCAABgQgAAUMEAAJjBAAAAwQAAeEIAAGBBAABIwgAAEEIAAODBAAC4wQAAhMIAANhBAADgwAAAoMEAAMDBAABQwgAAAMEAAEzCAAA4QgAAAMEAAIjBAABwQQAAeEIAAODAAABgQQAAHMIAAFxCAACowQAAKMIAAIDAAAAgQgAA6EEAAIDCAABYQgAAUEIAAJDBAAAAwAAAQMAAAFDBAADgwQAAgD8AAKBBAAAQQQAAIEEAADDBAACmwgAAAMIAAIrCAACAwQAAVMIAAKhBAADgQQAAAMAAAKhBAADIQQAAMEEAAJJCAABEQgAAAMEAACDBAACIQQAAgEEAALDBAABUwgAAmkIAABDBAACIQQAAcMEAAJZCAACowgAAwMEAAMDBAACYwQAAkEEAABzCAACwwQAAUEEAAHDCAADgQAAALEIAAKDBAADgwAAAiMEAAAzCAAAoQgAA4MAAAODAAABgwQAA4MEgADgTQAlIdVABKo8CEAAagAIAAOg9AAAsvgAAij4AANg9AAA8vgAAqD0AABy-AADSvgAABL4AABQ-AAAEPgAAuD0AAFQ-AADIPQAAkr4AADS-AABwPQAA4DwAAEA8AACSPgAAfz8AADQ-AADovQAAij4AAEC8AAD4vQAA2D0AAKi9AAD4vQAAgDsAAFC9AACIPQAAZL4AAFC9AAAUPgAAoLwAAAQ-AABMvgAAPL4AADS-AACWvgAADL4AAFw-AAAQPQAAHL4AAGS-AAAQvQAAgLsAAIi9AADovQAA6D0AAKg9AADYPQAA-D0AAJK-AAAEvgAABz8AAKg9AAAQvQAAyL0AABA9AAC4vQAAyD0AAKC8IAA4E0AJSHxQASqPAhABGoACAAA0vgAAXL4AAFA9AABLvwAA4DwAAPg9AACovQAAQDwAAFy-AACePgAAJL4AAIg9AAAsPgAAMD0AAKg9AACIvQAAmD0AAD0_AAAQvQAAtj4AAES-AABAPAAATD4AANi9AACgvAAAMD0AAIg9AAAwPQAAyD0AAOg9AAAwvQAAyD0AAIA7AACOvgAAQLwAAPg9AACoPQAAoj4AAOA8AAAMvgAAFD4AAKi9AABcvgAAQDwAAIi9AACovQAAf78AAFC9AACYvQAApj4AAAQ-AABwvQAAfD4AALY-AACKvgAAED0AAEA8AADgPAAAgDsAAHy-AACCPgAARD4AAMg9AABcviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=Ro7dayHU5DQ","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["16791687109102819451"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1960219145"},"3805548858636482982":{"videoId":"3805548858636482982","docid":"34-5-12-Z23C6F5D599E39968","description":"I have an updated and improved (and less nutty) version of this video available at • Deriving the Mean and Variance of the Samp... . I derive the mean and variance of the sampling distribution of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/962783/d048441fb935c2509a3742fdc6649dd6/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/51KKAQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJLmD0sJId1M","linkTemplate":"/video/preview/3805548858636482982?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Sampling Distributions: Deriving the Mean and Variance of the Sample Mean","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=JLmD0sJId1M\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFQoTMzgwNTU0ODg1ODYzNjQ4Mjk4MloTMzgwNTU0ODg1ODYzNjQ4Mjk4MmqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxOdAoIEJAGABCsqiwEQARp4gQEAAgb_AgAEAAUHAQj8AvUU_gH4_f0A__UG-fgE_gD7APf__AAAAP8NAAn6AAAA9AP--wQAAAALAQD_7AD_AAL6CAP4AAAAEwEJ_f4BAADx-_wDAwAAAAIFBREAAAAA9wML_AEAAAAFCu8JAAAAAAjz-QIAAAAAIAAtXrXYOzgTQAlITlACKoQCEAAa8AF_AxQD3wziANQC7ADRHfkAjh4J__0s2QDZ--sByO3kABIN6AHQ-vP__Q0PANQn_v8299L_AOD3ADLi_QA65foA4AH9ARv05gAvIhUABPfyAOENGP8D5AsA_s_jAAz_5wAJ9BD69Pzm-_352v0_-yQA3-YmCC3yFQH4x_YD3Aj4Af3q4_7pG-4D8uL_-uX3KAYa0v7-EhAH--kE9AENBwsH7wAG-Acn2_4Z4QMBAwkJBdjw-Pke0e4DCBcOBMsD-Pv1-CAC4Q8I--ju-PIb8gT49wP8AgXy5QMcBg74994A_Q7v9AAAAPUD9wz5C-8V9QEgAC3fXS47OBNACUhhUAIqzwcQABrAB1wfxr4AQXQ9pxKUPEwYDb6nmrQ8VD0XvNnfw71-Ors7gL6IPP3Spz0JshS9S_2hPIEIAb43Pkk9rm2AvAovYT4XcbC8QdPGOYc0Kr6eaag9tnJlvFexOL5HpX08pdQKPStLdLyzvve8xyRIOzuVAj2fRDo8J7QTOyCo6LoddRE8M9wAvbGczryXnEm8tu1gvatH9TzqR3m94ezWvGkZGT69Xzu9ZRfvO6_HqT0oJhC7rNAWvV0eRrwQBp48YZktvQl5kz0N1sk8_I5hPKqB5r0CKwe-0mJfPAZifr0dpVy8BOa-OiZAqD2QqCs9b9GuvGL0jD2eftC9vnZdu7HhSb4ukvY8TwidPGYwZj0Lypk984GTvFDD173Eknc9a4zOOmZlHjwJAp67VhaBu-c6KD0XNjk9H4LLu8htarvMkZk7riKKO262I735WHA9CRLAPFuVlD3qDqi9MDCGvKCbhz0I-H88a76IuypZib0ldDi7prXMukUguL2nnCU9asK2PEQgzTwTOIa6ohUOPAUjpT3WAju-SeWaOseDbb1XEI69nbdWvNHH3zsz3as8l0MBvFs-lz34pMO9qNQ6u5eL3bxs6wc9WCB2u8o-_ryK84a9Eo6TO_gmrL3553O93m2DO9i_xrzE3lU8f_ExvNw2Ir1RqEI93eraO8VlBj36DAi-VSEDugwDFj19CCq8-tRSu94e5D1PxMc8iFcjOVGX1jzl0W29oBpMu8wMm7zzwKy8ySnPO7Qipb1tLT29ariEOe50nD2s4s29Kv-9Of63kjwGXAE92x0sOO9-K71KHGk6jrVzOLnSYT0u3pS9c0_dONgCjDyDaM29LiTCuLhOrTwxlV49nEaOOG84Ar3Z7q491MswOGN0ar3gGWi9WW_9t7plarvX3by87gHKuLDzsD0T3307Eyyft7zUQ71BWBW7uUjmtwIDUj1anPG8Kbw1uQArdjwIsEM9l5NPOOci2TwDzPy9UknIOX2AyTtrZm09mnjhOOWOSDwJjiY86VuEuPZHMz2mNHE9Cu2xuMnLej36thC-3VOkuADrzLh-Kji8Ry43OGh1Mr5kpCg9F8pMty5BAT1D9gs9SL0NODJyhr2Ei0u9SxsLuBbz2DxKv7M8ZYWVt8HjKz7cpWi8B4l0uagmp71UPcS9HLiDuH-Jg70O2PW9C9ESuPt5LjyD_4g9mMmgNWEGeT3zOhK-S-epuMr0cD0i4Ss-8cuKOJKoHL1HVTM95q98uKdaC77Mmhi9Cpd0uDoKDLvw3tE8SNeEOCAAOBNACUhtUAEqcxAAGmA49QAV5RrO9v4k2MzvxPDpGgbiAbv5__S4_-E2-x4b8sK07-b_T7r_5qMAAAAs7AcKMgDwf9_bGDj98za54vEuM3oT_g-dBBYEuR8WAwYbUisjC1QAEfjJGCij-WHILSwgAC0gTBU7OBNACUhvUAIqrwYQDBqgBgAAJEIAAGDBAAA8QgAAcMIAABTCAAAAQAAAlEIAAMhBAAB4wgAA8EEAAEBCAAAIwgAAgL8AAMhBAABQwQAAAEEAAKpCAACwwQAAcEEAAMBBAAAwwQAA2MEAAOLCAAAwQgAAqMIAAJjBAABwwQAA0EEAABDBAAAgQgAADMIAAJjBAACGwgAAdEIAAKLCAACAwAAAqEEAAIRCAADIwQAAoEIAAAxCAAC4wQAAwEEAAPDBAACAQAAAJMIAAGRCAAC8QgAAFEIAAKhBAACgwAAAMMIAAOBAAAAwQgAAEMEAAAhCAACswgAA4EAAAChCAAA0QgAAAMEAAEjCAADgwQAA2MEAAGDBAACowgAAgEEAAKDAAACgwQAAkMEAAIBAAACKQgAAqMEAAEhCAACwwQAADMIAAI7CAADgwAAAAEEAAPBBAACAPwAAxEIAAMDBAAAMwgAAYMEAAFRCAACgwQAAMMIAADRCAADYQQAAmEEAAABCAAA0wgAA4MAAANBBAABAwAAAIMEAABBBAACIwQAAmkIAAMDBAADQQQAA0EEAABRCAACCwgAAuEEAAKBAAAAMQgAAiMEAAAhCAACSQgAAhkIAAEBAAACYwQAAgL8AAJhCAACAQAAAGMIAAGBBAADgwQAAEMIAANjBAADAQAAAQMIAAADBAACAQAAAMMIAACDBAAAQwgAAYEIAALDBAAAEwgAAqEEAAIxCAAAQwQAAFEIAAIDBAABYQgAAAMAAAJ7CAACIwQAAAEIAAKhBAABIwgAALEIAAIhCAADgwAAAAEEAAJjBAAAwQQAAKMIAAAhCAAA0QgAAEMEAAMDAAAC4wQAAhsIAALjBAABowgAAJMIAACjCAADIQQAAYEEAABxCAAAcQgAA4EEAAKBAAABoQgAAREIAAADBAADQwQAAgD8AABBBAAAQwgAAGMIAAGBCAABAwAAAYMEAAKjBAAC2QgAA2MIAAEjCAABAwQAAuMEAADRCAAAgwgAA6MEAAJBBAACowQAAcMEAADBCAADAQAAAqMEAABDBAACAwAAAeEIAAPDBAAAQwQAAwMAAAPjBIAA4E0AJSHVQASqPAhAAGoACAABwPQAA2L0AAGw-AACgvAAA-L0AAMg9AAAkvgAAC78AACS-AAD4PQAAcL0AAIi9AACgPAAADD4AAJq-AABUvgAAQLwAAKC8AAD4PQAAuj4AAH8_AAAQPQAAqD0AAHC9AABAvAAAVL4AAPg9AADYPQAApr4AADA9AAAwPQAAHD4AANi9AACYvQAAED0AAAy-AABcPgAAJL4AAIK-AACgvAAAlr4AABS-AABUPgAAgDsAAKi9AAAkPgAAiD0AAEC8AABMvgAADL4AAHA9AACIPQAA6D0AAFC9AACavgAA2L0AACs_AAAEPgAAqD0AAKi9AACAOwAAgDsAAHC9AABwPSAAOBNACUh8UAEqjwIQARqAAgAAyL0AAFC9AADYPQAATb8AAJi9AABcPgAAgLsAAJg9AACIvQAAnj4AAPi9AAAQPQAAJD4AABS-AACYvQAAUD0AABw-AABbPwAAuD0AAMI-AABAPAAAbL4AAKo-AAAMvgAATL4AAIo-AAAQvQAAuD0AAOC8AAA0PgAAoLwAAIg9AADIvQAAur4AAMi9AACCPgAA-D0AAOg9AADovQAA6L0AAHA9AAAsvgAAED0AAOA8AABEPgAAwj4AAH-_AACGvgAAnr4AAII-AABkPgAAoDwAAJI-AABcPgAAdL4AABA9AABAvAAA2L0AAEQ-AAAcvgAAoj4AAFA9AADIvQAA2L0gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=JLmD0sJId1M","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["3805548858636482982"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3876174054"},"1154685848863284334":{"videoId":"1154685848863284334","docid":"34-6-10-ZC76C567F72D346B9","description":"An introduction to the expected value and variance of discrete random variables. The formulas are introduced, explained, and an example is worked through.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3070367/0b30c395d1575499cf8c3cfdd781d9d8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/qRLiZwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DVyk8HQOckIE","linkTemplate":"/video/preview/1154685848863284334?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Expected Value and Variance of Discrete Random Variables","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Vyk8HQOckIE\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFQoTMTE1NDY4NTg0ODg2MzI4NDMzNFoTMTE1NDY4NTg0ODg2MzI4NDMzNGqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxOnBYIEJAGABCsqiwEQARp4gQIA9P0C_gD0A_0CAAT-AfYLBgL5_f0A_AUDAAIF_gD2ARQBAQAAAAUO9AoFAAAAAfYBBfX9AQAL9QAB-gAAABoICPkBAP8AFP4A_Av_AQEAD_0AA_8AAPwNAg0AAAAA-RYI_P7_AAAECQQEAAAAAAf7_goAAAAAIAAtzrPOOzgTQAlITlACKoQCEAAa8AF_-xMB0PvR__kb4gDP3OcCkvoO_xwl4gDH6SkAt_T2AP3q5QDi6vQAthDmAM34EQAA4u7_LuojACfs8f8e5-8A-yD4ARnq9gE7AP0A8ALz___-Ov_d4CD_JOj0APve0f7-5ScA-vcIBQrrvAgO_jsB9PcTARb1IAL_4Ar60_oJAxXk9gACEO0KEf4MBMr-HgEy9OH_ERf7_QQu_gMLAwT-5_P8-gcs1_45Dv4LARYA8rbWDP_w9ej4_PkXCvUl7P_tAQb6-Q8Q-QAeEwEa4e71CfgB9O_u-wr1BO3-9Of07wTu__XHNgr4_hMB7ggi-gEgAC1cMBs7OBNACUhhUAIqzwcQABrAByKo4r7xHvE8D5M1PUKk8LxxRC09CebDvOOgub0cbYs8XgUjvNvdIz2UpfG8Vin9vNJykL79rn49XBENuv29dD6SVEu9A7HsPHoXL74IPDA9KZ_UvLSsG74rsIY9YvgDvUCKOj0sE1k8LngMvXIflD2YB4o99HHpO7Oudr3rPfC8IIAvvQ9YQ70_GWO8bInmvJMZjz3aHj07O713vCDrCT7Fbdm8qpk1vIev5Tz3hDa83aCsvGsRsb3HyMg8HxHTvDsEST1hEei8j90HvOv7hb0-aEy9hzsRPMkaSjoKMac90zuNOz0oCL3jux49Z8sgvO-I7zy5Z5I9vwCMPKjIIb4CfBw96OltPOXv3jz1K908Da7zu_zrrrvuHmU9iAOyPGZlHjwJAp67VhaBuz_mwzzTpNQ9baZnvDeZIr1TiJE8hmuavC0OH7xVVi49EEIbPQcp2D3_WfO8oImwvATwBT0la_27QRM8PDg8g72TuD295duxvBvtXT1vFLQ8VUxBOi24Gj0tmb66MhxAOnAK6zxF77m99kfluQ_d4jx1dBy-GGL6udCg_DxQidA8inEAvEGUiT1tJS-9O0j8OjMD8Lwp3AG9llCLvALIij04jI29FMdkuxmBQr0jsQ69MVIYvA-nAr0B8US9BQYgvASmWD3hcDA98iCDu1alSL3EGhm8YKDWO3gfjD0isXM9gHIIu5W1LT4-Hp88SSfYuN4c0zz0U9y9g-GWOjx8o7yC56m91n9fuMakP7zkBLe8PP75uN65pj07aBu92hnHOWZhVD238Yc9StyxObO_Ir36kME8460fOQZ2Jj3q24i9As1mOGr2I7vvnae9YkjcuER1Cb1lrNG8XYQjuRzbQb30v9w8uhxuOiXWOL0YzES9Hx_MOXXZiT16HAY9CvhXuZ5nhbtTYnK9R4ett9xUtLqjwIy80JFtOf3GEj0ZmuG82ZV6uKGlRj1lOzo98H-_OEyoAD3H8J29_u4wORnQgzuYYMA7-brAuGVFHj0ygTE9NFyVtvZHMz2mNHE9Cu2xuJ0ORzt3nwO-Q96Mt6gXnTsiFes8B6t-tqBQz70V74Y9wtICOG3zcD2LpvM8pZlNOG-Wd73z7wk9BnzXuEIoSrzbk3a8SZwUOIJVRT50yDc9ydyEublg-ryzxmq8DUC_N3-Jg70O2PW9C9ESuKDP9jweB1Q9MFa-t72vBT2lSQm-rZ6FuCL_7D01KQU-835buLoTrLxy3Lk9dDAYuV7Rcr37KbS9NE0cOAfJp7wCPkk9MAHYtiAAOBNACUhtUAEqcxAAGmAdCQBJEhbb7BlP8L_j1QQi_9_yDM7j_96K_9Qa9Bn6APCnA_v_Sf0w4qAAAAAU2_sX3QArfd_QzhrxBxK128Q9FX8bGAqE7DoTu_AaFfIPBxQmBWoAAOykMSrKziHSFg4gAC2lxhI7OBNACUhvUAIqrwYQDBqgBgAAIEIAAMjBAABsQgAAOMIAAOBAAADwQQAAukIAAKBAAACmwgAAiEEAANBBAABIwgAAqMEAACTCAABAQQAAqEEAACxCAAAgwQAAAMAAAEDBAAAQwQAAgMEAAK7CAACIQQAAlMIAAPDBAABMwgAA6EEAAFxCAAC4QQAAMMIAAADAAADWwgAAVEIAAGTCAABAQQAAEEIAAKZCAADAwAAALEIAABBCAABAwAAAXEIAABTCAADIQQAAcMEAAEBCAAAQQgAAaEIAAEBAAACQwQAAEMEAALhBAACAQAAAcEEAAHBBAAC4wgAAIEIAABBCAABkQgAAgL8AALTCAAAgwQAAUMIAAPDBAAC6wgAABEIAAFDBAAAQwQAAqMEAAAxCAACCQgAABMIAAEhCAAC4wQAAYMIAAGTCAAAAQQAA6EEAAAxCAACAQAAAjEIAAGDBAACIwQAAIMIAAPBBAAAAAAAADEIAAOBBAADAQQAAMEEAABhCAAAswgAAisIAACBCAAAAQAAAgL8AAEBAAACAwAAAuEEAAJ7CAABEQgAAHEIAAOhBAAAYwgAAAMEAAFDCAABUQgAAiMEAADBBAABcQgAAyEEAAFBBAADAQAAAiMEAAFhCAACAQQAACMIAAABCAADQwQAA0MEAAADCAAAAQAAAAMEAAABAAACIwQAADMIAAMBBAAAowgAA-EEAADDBAAAAwAAAiEEAAJRCAADgQAAA2EEAAEDAAABwQQAAIEEAAFTCAACOwgAArkIAAFxCAABcwgAAQEIAAIRCAADgwQAAoEEAACDBAAAQwQAAyMEAAIC_AAD4QQAATMIAAKhBAACAQQAA-MEAACDBAAC6wgAACMIAABDCAACAvwAAmMEAANBBAABAQAAAoEEAAGDBAAAwQgAAZEIAAKhBAADQwQAAEMEAAEBBAAAYwgAAUMIAAIBBAABQQQAAAMIAALDBAAB4QgAAysIAADDCAADAwAAABMIAAERCAABYwgAARMIAAFhCAACowQAABEIAAHhCAACAwQAAwEAAAMjBAAAcwgAAtEIAALDBAABAQAAAMMEAAMDBIAA4E0AJSHVQASqPAhAAGoACAAAQPQAAXL4AANg9AAAcPgAARL4AAM4-AAAkvgAAEb8AAHy-AACIPQAAEL0AAIi9AAC4PQAA4DwAAHS-AACoPQAAVD4AAEC8AAC4PQAAmj4AAH8_AAAEvgAAXD4AAAy-AABwvQAADD4AAOi9AACGPgAAcL0AAFA9AACKPgAAQLwAAFC9AABcPgAAyD0AAGw-AACIPQAAiL0AAJ6-AACSvgAAML0AAMg9AACSPgAAPL4AADS-AACgPAAA6D0AAAS-AACYvQAAqr4AANg9AABwvQAAfD4AAEC8AADIvQAAcL0AAAc_AACIPQAAuD0AAAw-AACoPQAATL4AABQ-AAAEPiAAOBNACUh8UAEqjwIQARqAAgAAqD0AAFA9AAA8vgAAJb8AAGy-AACSPgAAND4AAKo-AABEvgAAhj4AAEA8AAD4vQAAbD4AAFS-AAA0PgAAoLwAACw-AADiPgAAbL4AAJo-AACYPQAApj4AADA9AAD4vQAAoDwAAJg9AACovQAAuD0AAOq-AAAQvQAAyD0AAIC7AADgvAAAoLwAAFC9AACovQAAND4AANY-AACKvgAAUL0AAHA9AAAsvgAAMD0AAAw-AAA8PgAAQDwAAH-_AAAcPgAAvr4AAHA9AADIPQAAJD4AALI-AAAkPgAATL4AAMg9AAAwvQAAQLwAAGw-AABcvgAAyD0AAJ4-AACAuwAA4LwgADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Vyk8HQOckIE","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["1154685848863284334"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4138226387"},"9244528070355632111":{"videoId":"9244528070355632111","docid":"34-9-5-Z3CEFD2E97E3C57F0","description":"I work through a few probability examples based on some common discrete probability distributions (binomial, Poisson, hypergeometric, geometric -- but not necessarily in this order). I assume...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1599979/bee249b4c2f1d9813b44d6e2f92ca326/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/5GUqnQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DJm_Ch-iESBg","linkTemplate":"/video/preview/9244528070355632111?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Discrete Probability Distributions: Example Problems (Binomial, Poisson, Hypergeometric, Geometric)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Jm_Ch-iESBg\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFQoTOTI0NDUyODA3MDM1NTYzMjExMVoTOTI0NDUyODA3MDM1NTYzMjExMWqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxP6BoIEJAGABCsqiwEQARp4gfLuBPz_AQD1DgUC-QT_AQ0G_wL2AAAA9QD19AMC_wD19wP_9wAAAAb7BAz7AAAA9v3-_vz_AAADDgUG-AAAABIFBvn4AAAAFAEJ_f4BAADu_vT5AgAAABb-BgMAAAAA8wT3A_r__wH-FBABAAAAABT_9w4AAAAAIAAtydbUOzgTQAlITlACKoQCEAAa8AF_9_ICyBfo_wsH4QDuFvsBhxTw_ygu5__fBfkBvA_W_wAL5wDn2fH_5fcZANkaDwAo39v_Ce7_ACjyAP8s9hAB7xgUAB3e9gE1AhL___Xa_-MMFv_v5_7__tPmAAYJ2_7-7BH_6Pf2AQwA3gIM_zABAe8f_QADFwMB8g7_7BAMAgrb4P4A9xIC6u0LAeEVGQEK7f0G7_8H-vUF_QMG__f8BvMS-AYk3_4J9_wK9v4DAdvx-fkJ6u4BEQYPBe0B8wb8-AwBAAQG_-gGDAEk2w0B8gED-PzeAgQh_PoB8NYA9PAC9PYDGvj-7BD9A-cG9_EgAC2nuj47OBNACUhhUAIqzwcQABrAB-li076K8AU9kHjDPJqCm72ptRe8AwVevcyll71xqvU8PTyVPBCAbj3ZVW28OXuIuhToM77779w8WdOGvMVVhT5UMG-9m38qvHoXL74IPDA9KZ_UvOC7bb5eipY9FrlMvKOKLLx9X7e7OUHAO0fOnT3Yv4Y8dCMsvG-LCL1DRwe6I9gYvb5SsbzhiwK8fUHLvF0voj1Ipdi8R0mZvCDrCT7Fbdm8qpk1vGWxwzyo_6w8aeTzvF0eRrwQBp48YZktvR9nGj2GZug7szyTuvRhB73DDYi9Lp2FPHW9jr3OT1E9hZCYPI1_nzuhjn09_wkuvPBuYD1bVTu9VthnvLHhSb4ukvY8TwidPBpCjz328MA8ZzGpOiKUrbx0S6E9zsGzPAATIr2dL7a8CVq3vKHbBj0L6Ko955F9u1ZakDxVcf48KpMWvOQ7xjuM9wM-vyzIPFBTmz22ngS8hq5EvEXU6Tyo0dq8nGCsu42bmr1zlTg97PuLvBvtXT1vFLQ8VUxBOiGNLzyqR5o8vM9xPMU1Qz34UQ2-CW8su5XcPL088cG9Q-nmuymMkjyAY5E79Ve8u3PzbT0tk4G9r1A1PPnQD73X3qe6flreOwPBLT3svHK9l7hBuLdE7r3AnsS7BXqXu_xlQbyF7Nm7h0I6vEWAkzxPMC09be2zO2aEV702kgS9LBD7O5xygD1qPEc8bToCvCVIuz2eoCM9YE8ruVqzWj09dpG96obYumnMP73QYzS9yI-dugfI_LzTzCm9g6VbuqGd0z1RgZi9l51ROSinjD3DjH89d26BOSpFYb1qXI49h2QruBMjkD2Ps5-9Cn64N9gCjDyDaM29LiTCuJ32NL10rYO66oh_uR1gnLy8O5I9iDGwtzUZX70F-w-9ep6Juo0_9jzxgX09Qh7TuCZAYz0zKvw7KM2DOJxETr0q4Yk8h_rGOD39lDscHQG9L6WiuPVV6LyPiVk91jFBOCRGzzxuXIW9SVyfOMEaZzzy_LM80teEOT_JeDyeAb89e0CHtuvQPz2z3TM9y4-TuJ0ORzt3nwO-Q96Mt8mqjT0jnuw60OO2OMrhA74Q1x48l_1ON27UVDy0RJ28M-cAODo8xLxhqIM8Jd36tzjshLoR7sS8KwdeN8HjKz7cpWi8B4l0ue99sL1kikO9FC5BuHkzFL1qLJa9SOgwt7uIpTzOyDs9RRyFt72vBT2lSQm-rZ6FuMr0cD0i4Ss-8cuKOAcLp7y9_O49g7Qeuaw667352oO9Gf4EuPQ8brwmvJ4975CFOCAAOBNACUhtUAEqcxAAGmAoAQAX3gas8Cg54N_XCiAEzDP7Jc3X__IC_w4rvu0aD92l-UsAIbH6DKUAAAAj5t0VKAAbf93HBBgCufqhycEuIXsVIc-r9Ab3rQQRPQsGCBsXPS4A9QKkC2boqUkWBvkgAC0udBE7OBNACUhvUAIqrwYQDBqgBgAAREIAAMhBAABYQgAAEMIAAFBCAABwQQAA1EIAAATCAACCwgAAUEEAABxCAAAgwgAAUMEAAIjBAABAQgAA0EEAAKBCAAAQwgAA8EEAABDCAABIwgAAoMAAAHzCAAAIQgAAfMIAAGjCAAAkwgAA2MEAAFRCAACAvwAA6MEAADhCAADKwgAAfEIAAAzCAACowQAAKEIAAKpCAACAQQAAfEIAADhCAAAgwQAAaEIAABDCAACAwAAAlMIAAIBCAACgQQAAPEIAAOBAAADgwQAAMMEAAKBAAACgwAAAOEIAACRCAADawgAAJEIAABBBAAB4QgAAYEEAAJjCAACIwQAAkMEAABBCAAC2wgAA4MAAADDBAACgwAAAGMIAAAxCAACQQgAA8MEAAGxCAAAswgAAUMEAAOjBAAAAwAAAMEIAAEBCAADgwAAAhEIAAGDBAAAAwAAAiMEAAMBAAAAMwgAA4EEAAKZCAADQQQAAIEEAAJxCAAAowgAAgMEAABhCAACowQAAgMEAAAAAAABAQAAAgL8AAIbCAAAwQgAAAEAAAODAAACgwQAAqEEAADTCAACAwAAA4MEAACDBAABwQgAAoEEAAEBAAABQwQAA2MEAAJJCAABQQQAAyMEAAKhBAACwwQAAUMIAACDCAACAPwAAEEEAAKjBAACAQQAAkEEAABhCAACYwQAAIEEAADDCAAAwwgAAQMAAAFBCAAC4wQAAUEIAABDBAADAQQAA-EEAAATCAAAAwQAAmEEAABRCAAA8wgAAkEIAAKhCAABQwgAA6EEAAEBAAABQQQAAPMIAAAhCAABQQQAAYMEAAAhCAACIQQAAeMIAAEDBAACQwgAAAMIAAMDBAABgQQAAgEAAAEBAAAAAAAAAcEEAAKTCAABAQgAAwEEAADBBAACAwQAA0MEAAGBBAAAkwgAAUMIAAEhCAAA0QgAAQMEAAGDBAADQQQAAtMIAAEDCAACAPwAACMIAACBCAADgwAAAaMIAAKDBAADgwQAAaEIAAOhBAAAAwQAACEIAAGDBAABAQAAAGEIAAFDBAACYQQAAyMEAAGDBIAA4E0AJSHVQASqPAhAAGoACAAAkvgAAHD4AALg9AACOPgAAoLwAAPg9AABwPQAAL78AABy-AACYvQAA6D0AAGQ-AAAEPgAAZD4AADy-AACIvQAAHD4AAKC8AABAvAAAGz8AAH8_AAAUvgAARD4AAOA8AABcPgAATD4AAHA9AAC4vQAA2L0AABw-AABUPgAA-D0AAES-AAA8PgAAsj4AABQ-AAAQPQAATL4AAJ6-AACivgAAkr4AAKi9AABMPgAAiD0AALi9AAAUvgAAjj4AAN6-AACKvgAAJL4AAEC8AACIvQAAmD0AAEA8AAD4vQAAqL0AAAk_AABEPgAAMD0AAIC7AACoPQAAcD0AAFA9AABAPCAAOBNACUh8UAEqjwIQARqAAgAAmL0AADA9AAAEvgAAO78AACS-AAAQvQAAuD0AANi9AAB8vgAARD4AAAy-AAAkvgAAQDwAAES-AAD4PQAAqL0AAAS-AAArPwAAMD0AAKo-AADoPQAALL4AAKA8AACYvQAAML0AAJi9AAAMvgAAMD0AACy-AABAvAAAMD0AAJg9AABwPQAAoLwAAEC8AAC4vQAA-D0AAKo-AAA0vgAABL4AAHw-AADYPQAA4DwAAJi9AADYPQAAgDsAAH-_AADovQAAcD0AAHC9AABsPgAAcL0AAFQ-AAAsPgAANL4AAIg9AADgvAAAPD4AAOC8AADgvAAAJD4AAI4-AADovQAAHL4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=Jm_Ch-iESBg","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["9244528070355632111"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3813615351"},"12072438615848583708":{"videoId":"12072438615848583708","docid":"34-2-0-Z2A3F2E1F5FAA9BED","description":"I have a slightly slower and more refined version of this video available at • The Sampling Distribution of the Sample Mean . I discuss the sampling distribution of the sample mean, and work...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/404360/7dbe890f2f488406e323310d051275a4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/F5cbQQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0zqNGDVNKgA","linkTemplate":"/video/preview/12072438615848583708?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"The Sampling Distribution of the Sample Mean (fast version)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0zqNGDVNKgA\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTIwNzI0Mzg2MTU4NDg1ODM3MDhaFDEyMDcyNDM4NjE1ODQ4NTgzNzA4apMXEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E7wDggQkAYAEKyqLARABGniBAfoKBv4DAPkHCwb4Bv0CAQj-CPj-_gDz_QH19gEAAPMA_v7_AAAA9Q8IAPsAAADsBvz8AgEAABcBA__6AAAACPgAB_0AAAAU_gMF_gEAAPEE-_0DAAAAAf0PEAAAAAD3Awv8AQAAAAsE9wQAAAAAA_AABQABAAAgAC1prdo7OBNACUhOUAIqhAIQABrwAWjyAADLFun_FwjrAN8d6gCBBQv_Ejf7ANoMAv--Du3_KvvtAc_l8P_1-R3_4xf8ADX56QAC7hEAJvMA_zHoEwDyChwAHN_3ARUJAP_0A-MAAgn9_xv9Af_w2fUBChL2_vz9DgDSAQn98RD7ASbfHQH66wwDDgwL_wHsF_7fEAIB8ebj_g7v_Qb19AX51v8XARP3Bv_rAwwE5_b0_foJ6f4YBA7-BiLg_gn4_AkABvf8_P37-AYI9vsWHAf86PoFCBf4Cv8FCf3_ART9_RP2CwYF_w3-7uEAARkC7QToyA70-_8E9voJ8_r7_QX6_RX1_CAALW4nSDs4E0AJSGFQAirPBxAAGsAHzF3DvmTS-LpL8P47CgfMvVcPFLw0hQ69gtS8veTclj38iyA9zNJOPejoJzyT5X-8nE2Xvuo9XLlkjxa8LQtWPrCKXL1BLSa9ehcvvgg8MD0pn9S8T3iRvmcVTD2p5ou6Kz9fPX5fcbufzSq81qIvPVQ99LzapCq7XRe-vV2WpbySzVW9IhehvTucirwFK1O9RgCRPWHMsb0FNge9IOsJPsVt2byqmTW89GfkPE4si7zEwS-99yIaPeXzBDx1gNa84pIDPoejkDw4D0w8ei-TvYZ2nr0_s9o83xiSvdm_4TwBmcY7ERZbu1dcfD3jJCO98G5gPVtVO71W2Ge8-aAHvvQamz0vgYA7GyqbPVidRj3fTC-7Jgx0vV1Guz1MLLo8FXUFvJ_EjLwxlDi8D7-GPe-crD3DVZQ8My02PSAqTT2lKx47kCQQvBDfoz2mYgM9rkb2PVLpTDzl0KK8qOyqPKFeFT39HcC7GxRoveaszzzWXIm88p1Su8zJMD3kvWq89OlnvPqcNj0-vxw8xTVDPfhRDb4Jbyy7JpR5vbEJWr2Rgn05POOWPCe-mjyYyrI6WYfDPQrPVb30glM74k-evA5tm7yKfV08A70mPTS_9byUULg7UxGNvfdkVbsQlJk6GlUBvYuBHz11LCW86ezJPEwYzT1f6Jq55tKTPDeGBb0PH2A7Yt-pPNOueDy1d1u7Tzv8Pc0Iyjpz6gS3uCJRPRRb4b1bLcm6eaenO4CKWb2mCVa23WsXvUqqAL0eTD25ZrZQPYnu2b0hlb05t6lLPS1aBT254mI5kbp4vSicHT3HAQm4icjVPH0_hb1HWoU5XFQLvZwV8b3cnnU5LvBrvd0A_TzRa4a4e0_APAbH2zxTqcC6PkKdveiqVL2Wh065vLS8O94EPz3wrKU5uKcUPA_nCjzuXJ-4jVsxvfqJGDzkoYy5Mk94PLT08rxnr5m4QSMdPUkv6j3kQu24q8wKOsurKb0JVcK3zq_BPEmTzD3fRIe4r-FTvdoB1z3LTT83Wk8oPTPUcjwBYEy3ixaAPUQqwb19KiM4cHATPRFcQDzq3YA5yuEDvhDXHjyX_U43NbaXPOe0XTzBQOc459e9u9-MdbwI4UO4V8IDvAAIjjyM4po4glVFPnTINz3J3IS57CNhvb8nmLtdw-W3SJZCvSwRw73BzI-47ZGXvEH2hT1-hZ-2va8FPaVJCb6tnoW4ucF1PC3sCT6GJ-c48LI1vVzMzz0MRgq5hlWMvfRbir0sUeC25uUQPeSrcz1GzUM3IAA4E0AJSG1QASpzEAAaYCUOAAnOJeTPFkPa2vTOCPk9E-8L4fr_ItH_-gb3OAUWzroK3v88qt_EpgAAABLn9_JMAOh_2ufnJ_DYHLn_Bh40dw4L-bAN6OahKTkR4BxHExUQFAAA3K8XS5wQMekoOCAALWDZGDs4E0AJSG9QAiqvBhAMGqAGAAA4QgAAAAAAADRCAACgwgAAQEIAAOBBAAC-QgAAgL8AACzCAADgQAAAAEAAAEjCAADIwQAAEMIAADhCAABgQQAAGEIAAKDBAABAwQAAwMEAAHDBAABAwgAA1MIAABRCAABUwgAARMIAAODBAAAIwgAAUEIAAAhCAACAwQAAwEAAAK7CAABUQgAAdMIAAADAAAAIQgAA_kIAANjBAABsQgAAQEIAAABBAABcQgAAwMEAAFRCAAC0wgAAUEEAAEBCAAAYQgAAgD8AAGDBAACAwQAAgD8AAEDAAADAQAAAgEEAAADDAADgQQAAgMAAAPhBAACwQQAArsIAAODBAACAwgAADMIAAMrCAACIwQAAEMIAAKDBAAAgwgAADEIAAHRCAAC4wQAAfEIAAKjBAAA8wgAAFMIAAAzCAAAMQgAA-EEAAMDBAACQQgAAYEEAAAxCAADwwQAA6EEAAJjBAACoQQAALEIAAAhCAAAYQgAACEIAAFDCAAAYwgAAgEAAAABAAADYwQAAwMAAAMhBAACAvwAAnMIAAGBCAAAwQgAAgMEAAIjBAADowQAA-MEAAGxCAADYwQAAUEEAAPhBAABMQgAAgL8AAIjBAADIwQAAgEIAAJjBAAAUwgAAgL8AAOjBAACowQAAHMIAAPjBAAAAQAAAgL8AAJBBAABQwgAAoMAAAKDBAADQQQAAgL8AAJDBAAAAQAAAeEIAAKDBAADAQAAAAMAAAPhBAADowQAANMIAABDCAABEQgAAWEIAACTCAABAQgAAPEIAAMDBAACQwQAAAMAAAADCAAAAwgAAIEIAAFBCAADwwQAAYEEAADDBAAAQwgAA4MEAANrCAAAAwQAA2MEAACBBAACAvwAAcEEAAKhBAABQQQAAUEEAACRCAABMQgAAUEEAAIjBAACgQQAAcMEAAEDBAABgwgAA4EAAAIA_AACwwQAAgMAAADBCAAA4wgAAmMIAAIC_AACgwQAAgEIAAADCAABIwgAAoEEAAKDAAACgQQAADEIAALDBAADgwAAAHMIAAFDBAABEQgAAEMIAAPhBAABAwQAA6MEgADgTQAlIdVABKo8CEAAagAIAALg9AACIPQAApj4AAEw-AAD4PQAA4LwAABy-AAD2vgAA6L0AAIg9AACYPQAAmL0AADA9AACOPgAAdL4AALi9AADoPQAAED0AADC9AADaPgAAfz8AAMi9AAAQPQAAgLsAAMi9AABsvgAAPD4AANg9AADavgAAPD4AAOg9AAAUPgAA2L0AAJg9AAAsPgAA6L0AACw-AAC6vgAArr4AABC9AAAsvgAATL4AAII-AACYvQAAEL0AACQ-AAAsPgAAmL0AAHS-AACKvgAAiD0AAIg9AABQPQAADD4AAI6-AADovQAAJz8AALg9AABwPQAAyD0AABC9AACIPQAAqL0AAEA8IAA4E0AJSHxQASqPAhABGoACAAAMvgAAVL4AAEA8AABTvwAAoDwAAIg9AAAQPQAAcD0AAOA8AADgPAAAbL4AAEC8AACYPQAAPL4AAKA8AAAQPQAAHD4AADc_AACYvQAAwj4AAKC8AAAsvgAAXD4AAMi9AAD4vQAAkj4AAKC8AAAQvQAAyD0AAEQ-AABAPAAAqD0AAIC7AADyvgAAuL0AALo-AACIPQAAQLwAABC9AAAEPgAAJD4AAFS-AACYPQAA2D0AAIC7AAAsPgAAf78AAJK-AADavgAAgj4AALg9AACovQAAZD4AALg9AADIvQAA4DwAADC9AAC4vQAAoLwAAAy-AABEPgAAgDsAAKi9AABAvCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=0zqNGDVNKgA","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["12072438615848583708"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2616850224"},"959313134886548354":{"videoId":"959313134886548354","docid":"34-9-8-ZC35014606A797AF9","description":"Just getting warmed up.Here I prove that if events A and B are independent, so are Ac and Bc. I make use of De Morgan's Laws, without offering a formal proo...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4032463/f957f540f81c1e8b463a36f0d7151dc9/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/UXvW0gAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbnDpZNlVZ3k","linkTemplate":"/video/preview/959313134886548354?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Proof that if two events are independent, so are their complements.","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bnDpZNlVZ3k\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFAoSOTU5MzEzMTM0ODg2NTQ4MzU0WhI5NTkzMTMxMzQ4ODY1NDgzNTRqtg8SATAYACJFGjEACipoaGV2YWNobnNtZnN0empjaGhVQ2lIaTZ4WEx6aTlGTXI5QjB6Z29IcUESAgASKhDCDw8aDz8TnAKCBCQBgAQrKosBEAEaeIEA9wX-_AQA9QILAAIE_gHr_QsD_AAAAOcDBP4I_QEA9gYGAQEAAAD6EAP-BgAAAPMD-Pr8AAAABAT4BwQAAAAT-gn9AQAAAAYB_f7_AQAA_fv99wIAAAAN9Qb3_wAAAO4EDPYAAAAA_QwA-gAAAAD_8AcBAAAAACAALc5t3js4E0AJSE5QAiqEAhAAGvABdfkMArnYAf0f_vIA3PT0AoEFC_8WHegA0hsKAM_w6ADyEucA5vYDAfj38QDbCx0AG_Hi_yPp-AAr5v0AHfn3ABH3AAAO4PMBGwoJAPjv-AAM_g3_DuYVAAPw5AAJ6ev__Q0I_vgI6QHyAtIBDCEVA_H_BwQK9wsG_-cH_M4oDQEa3f0B9wn1_wIBBPzQ5BwBC_DpARAOBvvrD_0E-QgA-wISF_0QCOsDBwgCC-j1DPvj5gMBBPjz_B8BDgH4JxEC-AwXAu3zCv0SD_8CD9MGBQDlCfcG5u8B9fj7C-PY-PkRJQf98gAB-QAFCQEA-fb-IAAtbidIOzgTQAlIYVACKnMQABpgUwEAT-M3ztrqPObo6-vn9-IBBRHoxv_6_v8AIdv64S7Ys_sc_zO8EdmjAAAADwIKO_0A9H8R4OY86kv01eC-9h1sRf4QkvQ5IMfcKxX75hQm0RtKAOEDoBwR38E8ItITIAAtJkgZOzgTQAlIb1ACKq8GEAwaoAYAAAxCAAAQQQAADEIAABDBAAAoQgAAOEIAALpCAAAgwQAANMIAADBBAAAcQgAAwMAAACDBAAAswgAAcEEAABxCAAB4QgAA4MEAAEBAAABgwQAAUEEAAKDBAACwwgAAoEEAAETCAAAAwgAA4MEAAPDBAADoQQAAUEEAAKDAAADAQAAApMIAAJRCAACQwQAAiMEAAJBBAAAUQgAAQEIAAFxCAABQQgAAFMIAAARCAADYwQAA4MAAALDBAAB4QgAABEIAAKBBAACQwQAAFMIAABDCAAAAQQAAQEAAAJBBAAAcQgAAmMIAAEDBAAD4QQAAxEIAACDBAABkwgAAEMEAABjCAAA8QgAA2MIAAERCAACIQQAACMIAAAjCAAC4QQAAHEIAAFjCAABIQgAAcMEAAETCAAAswgAAWEIAABBBAACIQQAAMEIAALZCAAAYwgAANMIAAGDBAACgQAAAmMEAAARCAACIQgAAyEEAAEBAAACgQgAAOMIAACDCAADIQQAAwMAAAAjCAACAwAAAUMEAALDBAABgwQAAYEEAAIBAAABwQgAAoMEAAIJCAAA4wgAA4EAAAJDBAAAwwQAArEIAAEBAAABQQQAAiMEAAPDBAACWQgAAWEIAAKDBAAD4QQAAmMEAADDCAACAwQAACEIAAODAAABAwQAAgMAAAGhCAADwQQAAkMEAAAhCAAAMwgAA6MEAANBBAACSQgAALEIAAJZCAACgwAAA8EEAABBBAABAwgAAAEEAAABBAAA0QgAAeMIAACBCAAC6QgAAAMIAABBCAABAQAAA2EEAAFzCAACgQAAAQMAAADTCAABgQQAA4EAAAGjCAACgQAAAmMIAAHzCAAA4wgAAAMEAABDCAADwQQAA-EEAAIC_AACowgAAyEEAANhBAAAAwQAAgD8AACjCAAAkQgAAoMEAAADCAAAMQgAAVEIAABzCAACwQQAAYEEAANDCAACQwQAAwEEAAFDCAABAQgAA4MEAAFDCAABAQAAAQEEAABRCAAAkQgAAQMAAAJhBAACYQQAAgEAAAKxCAACgwQAAgEAAAEDAAACAQSAAOBNACUh1UAEqjwIQABqAAgAA-D0AADA9AABUPgAAQDwAACS-AAAwvQAABL4AAA-_AABAvAAAcL0AAFA9AACavgAAiL0AANY-AABEvgAAiL0AAHQ-AACAOwAARD4AAOY-AAB_PwAAqr4AAEC8AABQPQAAUD0AAEC8AAAkvgAARL4AAMg9AAB8PgAAoDwAAMg9AACgPAAAED0AALg9AAC4PQAALD4AAI6-AACWvgAA6L0AABC9AAB8vgAAyL0AADA9AAD4vQAA2D0AAFw-AADovQAAXL4AAHy-AABAvAAAoDwAAK4-AAD4PQAAnr4AAKg9AAATPwAAQLwAABw-AACWPgAALL4AAIi9AAAwvQAAdD4gADgTQAlIfFABKo8CEAEagAIAACS-AABwPQAA6L0AAEG_AAC4vQAAoDwAALY-AAD4vQAA2L0AAKI-AABEPgAAJL4AAIA7AAD4vQAAyD0AAFC9AAAUvgAAGz8AAPi9AAAsPgAAcD0AAEC8AABQvQAA4LwAAFA9AACCPgAAUL0AABQ-AACovQAAUL0AAFA9AACAuwAAmL0AAAS-AACIvQAAmL0AADQ-AAAsPgAAPL4AACy-AACaPgAA4LwAAKg9AABQPQAAgDsAAOi9AAB_vwAAED0AAJg9AACgPAAAiD0AABC9AAD4PQAAUL0AABA9AACYPQAAUL0AAOg9AADgPAAAyL0AADQ-AACAuwAA2L0AAJg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=bnDpZNlVZ3k","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["959313134886548354"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1593593812"},"5031331938342937031":{"videoId":"5031331938342937031","docid":"34-1-5-Z75A75A5B354A6E0E","description":"I have an updated and improved video on calculating power and beta available at: • Calculating Power and the Probability of a... I work through an example of calculating the probability of a Type...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1000846/4482e30017c19b5ad24e242c4f4d2f95/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/6LEisgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DFUVL7ppjYuA","linkTemplate":"/video/preview/5031331938342937031?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Calculating Power and P(Type II error) (A One-Tailed Z Test Example)","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=FUVL7ppjYuA\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFQoTNTAzMTMzMTkzODM0MjkzNzAzMVoTNTAzMTMzMTkzODM0MjkzNzAzMWqTFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxOHBIIEJAGABCsqiwEQARp4gQb-BgAAAQD0-AgBAgT-ASIICQANAgMA7vgQBQcBAADsCQ4D_gAAAPAV_v8EAAAA8PfwB_sAAAD5Bu8AAgAAAAf6_f_5AAAACRD7Dv4AAAD1_gMFAwAAAAf7Bwz_AAAABw3_APn_AAEEBPwHAAAAAP0GBQ3_AAAAIAAtEkDVOzgTQAlITlACKoQCEAAa8AF29On-vBzi_9kEzADXABYCgSIK_jA44v_PDwP_qxHo_xT_8gDR3s3_ANr6AL0pGwEbAccAA8sU_zHvAP86ARYB7wwkABPdBAEo_OsB5PPWAAIL_f8X-A8A99zU__v03v0K-h4B8vzk-vQU2wEi_CwB-QEkBQz0Dwjq9hb-0yYK_-3f2_4jA_4E6-v-AsMfFwMNDQ_94gD6_tT19QL1DfL7LAEGBAcr1_757vYOF-75AvsADfUb9-j4CRkQBNYIDggQ-BsJCQbr9fEUCPAp7AcF5goBAN_E8gYpCfj57OcA_f8H9vACAQwB7wsF9Or-7QQgAC3_IR07OBNACUhhUAIqzwcQABrABwcH2755A4w8ymcxOqoLnb3Lgb87wP6QvNnfw71-Ors7gL6IPBCAbj3ZVW28OXuIutJykL79rn49XBENuv29dD6SVEu9A7HsPHoXL74IPDA9KZ_UvBQHUL6Tdn48ipoevdz1Ej2RC868oAcQu3YJPT2OY1q8i1IfvG-LCL1DRwe6I9gYvSIXob07nIq8BStTvUfVlT0z0Va9u5a1vHcx7T2PACm9dpYRPPRn5DxOLIu8xMEvvbfVrDvnzDE92T4Evbsvsj0WPPs8pQUau4BK1bzuari9pg3Ju98Ykr3Zv-E8AZnGO_cm4TxdhpQ98LXxvHkqhj1FBym9CpAXvajIIb4CfBw96OltPD7qvz3otPg8dgqPtxg-Yr12t3w9Ft8rPFKHDzxQE6K8oGyKvB88ZD0-40c90AHRO8htarvMkZk7riKKO5AkELwQ36M9pmIDPRaE0j1Fdo-9J2covOeBWT0yFSg7ux3rvFWPur2-OTc8F5klvG2shDwdEDc9s1twPEVO_LuSdRg9nSbYPEVcpTxzuPa95AQ3PMeDbb1XEI69nbdWvESxSz15XRy8_9YIu4vLnD2kF3q9X3hKvOcWH72NR6m8-QOzuueihjxPZYe8NgIQPNn1sb1IRym6IzAZugcjNr28HJs7o8owvEI9IjwtcWk9WemkOynEqzsn66G9bAZ6O0e5mj1jVjm8XgaMO4eAbT2RlJm8PNYZOogkhD2lGba93Jkuu9kQEr1Jzei8WkKlOx9NUL0GWQC9OIsTOsdnEj6uoOm9kAm0uSinjD3DjH89d26BOUoi4LyMh1I8SI2FOYiZYj2XKse94QbXt60vtzr9EvG9vCOJOXSWmbx1Fsc8xifwuNDhKz1fYic9Juy8uSXWOL0YzES9Hx_MOe2lJD1rxhg9Qtbjtl8h2DwztRm8oTdnOHC8dr1jGQ08bqDqti1zPz0A-HG9nIObuAWkfTyahIE9sLWpOOy5r7vFwZq9E4B2OX2AyTtrZm09mnjhOKMLRbx2T5M99i1HOOjYAT0SE1Q9qpyCttPPCDxmMdG9PkuXNtpO5TxkLIk8fJqYuCL7AL7GXyQ9F5hlOG7UVDy0RJ28M-cAOJTdjLx4h8q8LidoOIf287pgO4C5eYZ7OMHjKz7cpWi8B4l0ubqWHLxJ6k69WEx9ubvtgryX5qG9-jj_t5vSj7vi5I49YN5HN2EGeT3zOhK-S-epuMr0cD0i4Ss-8cuKOBgnOb2UQ6U9ZZTHuMPz0r2OigS9h7LJtoKAazxMXag8tbgbOCAAOBNACUhtUAEqcxAAGmAm_QA8C0_t_gk55hgA2wYI0xD_BO7e_xjr_xPo9fPZNrKVGyr_SNUexKIAAAAY-eof8QAEf_r93e3V0ffm2OEbEHgIDP-4xCrwzwU4KPAYM-XmNw4AxRCeOHOtkzMyGwkgAC0vLxQ7OBNACUhvUAIqrwYQDBqgBgAALEIAAIDAAAAMQgAARMIAAEDAAACAQQAApEIAAABBAADAwQAACEIAAJhBAABowgAAqMEAAOBAAADIQQAAAAAAABBCAAAAwgAAiEEAAADBAABAwgAAVMIAALLCAAAYQgAAYMIAABTCAADAwAAAIMEAAIC_AABAQgAAisIAAEDAAADAwgAAEEIAAKjCAABgwQAAgEEAAFxCAAAAwQAAokIAAExCAADYwQAA4EEAABjCAADIQQAAisIAACBBAACKQgAAJEIAACBCAACwwQAAGMIAAKDAAAAkQgAA8EEAAJhBAADowgAAEEEAAKDAAAAwQgAABEIAAHjCAABEwgAARMIAAFDBAAC-wgAAMMEAAIDCAADgwAAAbMIAABxCAABIQgAASMIAAOhBAABQwQAAYMIAAGjCAACAwAAAmEEAAMBBAACYwQAApEIAAEDAAACYwQAAAMEAAFBCAACQwQAAgEAAABhCAAAwQQAAsEEAAFxCAABowgAA4MAAABDBAABAwAAAgMEAAADCAADgQQAA8EEAAGDCAABQQQAA8EEAAGDBAAAMwgAAIEEAALjBAABAQAAA-MEAAGhCAAB8QgAAqEEAAEDBAABwQQAAiMEAALhCAADAQAAAkMEAAHDBAABAwgAA2MEAABDCAAAgwQAAwMEAAIA_AACYQQAAgMEAAIA_AAAowgAAVEIAANDBAADAwQAAEEIAAIJCAACAwAAA8EEAAOjBAABgQgAAoMAAAJTCAACgQAAAoEEAACRCAABYwgAAOEIAABxCAACYwQAAgEAAAODBAABgwQAA4MEAANBBAABgQgAAuMEAADDBAAD4wQAAOMIAAEBAAAB4wgAAUMEAAJLCAADwQQAAAEEAALBBAABYQgAAUEEAAJjBAACQQgAAgEIAANjBAABAQAAA2EEAAJhBAAAUwgAASMIAACBCAAAgQQAAsMEAAIDAAAC2QgAAssIAAI7CAACowQAA4MAAAERCAADowQAARMIAAKBAAACgwQAAEEEAACxCAAAgwQAAAEEAAGDBAACowQAAVEIAAEzCAACYQQAAgEAAABjCIAA4E0AJSHVQASqPAhAAGoACAACYPQAARD4AAKg9AACGPgAAor4AAPg9AADIvQAAIb8AAMq-AAAQvQAAnr4AALq-AAAQvQAAoj4AAPi9AAALvwAAXD4AAIA7AAAsPgAALz8AAH8_AADgvAAABD4AAJg9AAC4PQAABD4AAGQ-AABQPQAAMD0AAIg9AABEPgAAlr4AAI4-AAAEPgAAoj4AAKC8AACgPAAA2L0AAPq-AADOvgAAqD0AAI4-AADePgAAkr4AAKi9AABwPQAArj4AAK6-AAA8vgAApr4AACy-AAAEPgAArj4AADQ-AAAQPQAA4LwAAEE_AACCPgAAqD0AAKC8AABwvQAATD4AADw-AABcviAAOBNACUh8UAEqjwIQARqAAgAAC78AANg9AABwvQAAQ78AADw-AAAcvgAAij4AADy-AADgvAAAmL0AANg9AABwvQAA4LwAAKa-AACgPAAAQDwAAKA8AABVPwAALD4AAFw-AAAwvQAAPL4AAJI-AADYvQAADL4AAHC9AABQvQAA4DwAAEw-AAD4vQAAcD0AABQ-AADevgAABL4AACw-AAAcvgAAFD4AAMi9AAC2vgAA4LwAAHC9AADIvQAAQDwAANg9AABQPQAAvj4AAH-_AADivgAAJL4AABw-AACGPgAAUD0AABw-AACoPQAAED0AAEC8AABAPAAAqD0AAMg9AADYvQAAPD4AAFC9AACgvAAAkr4gADgTQAlIfFABMAk4AUoAUgkIDxCSAhgAMAFgAGgA\"}","related_url":"http://www.youtube.com/watch?v=FUVL7ppjYuA","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5031331938342937031"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2655061327"},"7370521484173341159":{"videoId":"7370521484173341159","docid":"34-6-3-Z7F4C363C6A471B2B","description":"A discussion of the assumptions of the t test on one mean. (The assumptions are the same as those of the t confidence intervals for one mean.) The assumptions are discussed, and the effect of...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4272400/caa0d4f8960ae223fd1fbb20e8e79cb0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/FugKTgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DU1O4ZFKKD1k","linkTemplate":"/video/preview/7370521484173341159?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"t Tests for One Mean: Investigating the Normality Assumption","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=U1O4ZFKKD1k\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFQoTNzM3MDUyMTQ4NDE3MzM0MTE1OVoTNzM3MDUyMTQ4NDE3MzM0MTE1OWqIFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxPZA4IEJAGABCsqiwEQARp4gfb6Av4BAAD8AwUC-gb-AvUV_gH4_f0A6AH4-_j-AQAFAfoB9gEAAA0F-wMCAAAA7PP9AvYBAAD9Afnz9AAAAAn2AQbyAQAACQ7-7_4BAAD4CfYCA_8AABAEBxAAAAAA-RYI_P7_AAD7-wIDAAAAABHo-_4BAAAAIAAtrT7ROzgTQAlITlACKoQCEAAa8AFs9hQBqP75-zf9_wDkIdMBgfD7_xQP9QDEDg4B2RDiABP66v_Q5vEAAfgIANr6DQAM59wAI_AbACADDgAd-BMABxkWACfvDgAb8Q0A8d_1APEmC_4ZAhIACe0JAeDz_v4W9Q798_HwAQAE6QMQAhYADPkNAx7rCwEAAQv98iEG_wv99QMJ-gQC4gf1AdYJDAIkDPP6Dw0G-_PwAv0RD_IC7AAKARQI9PsWDO8D9vkJ-ev5Afr9Be71Iw8KARIX6QEC6AkA7f0DAP0L_QES9woG-_YX9vcCD_8GEP4E8doA9fQQB__vFQEA9hwA-v70_gAgAC2Q-k47OBNACUhhUAIqzwcQABrAB5IH8r6mQAs94IOXvMl3hLrVNeQ8-_HNvEleJ73jVVY9pr_NvAmy1LwFkkY9djs2vfyMu75aUw-8xurFuxSUQj5GRRy9c-gAvFouW77qj5U8bmKSvPWhg748d_E7LsWXO6CfDj3P-Zk9LgbqPCfAcD30zhm8T7HqvAGcxbt9_sG7oJJuvcv7M71AEOY7DIOmO5WsxD2xSaO8qgPqvCDrCT7Fbdm8qpk1vDQ8xzxwA5O99V02vJo6VL1MU6W7uAD6ugGFOj4b_3S8-O3Wu3BEEr0EG3y8nUgQPXN2_LwzuLc8Dw52vD0oCL3jux49Z8sgvHGknT0kBuY8QEkFvKWVDD2fyLM9Tx-iO_3Puz14uYg9qyaIvHq2Xb1pQDg9j5rEuxV1BbyfxIy8MZQ4vFO-VjywUzE93qA2Ohq4zbxnKVk9vdUEvW62I735WHA9CRLAPHcRBj703lg9iB5nu5ryHD0v5de8D7HmPCz5k71iYEI8Dy-jvIa6iT0GpNg719ULvIhXKD2ljZk8fGfNunABLb2vZJK9OJAiu-s8hTwPz4e9WMG1Oz0VRj3qa6c8egZDvCmVsDwKNac46T_Su_Fum73Jy5q9Xm0BvKR9vT1zyYe9L8gvO1MRjb33ZFW7EJSZOg42ED0AqIK9IjM8vA5PrzyDNek8A_j6O8zuub3S9rm8ra-FO2Vu_j0JQpg9-ASiOosQmD0Rn8U8_kzyudrHKj0hSzW9gLa4u2UOUz09Tke9cDdSO7m8w7x4UI89Tc-iuQKmQjyfqRy92LKEupDC0DzJu1k9njYeOUbvL7x7tKM6NnsvOQLvKT3NGba8nSUVOA8KyrwSDTe9DHufOKqaYL0NUaa7KmpGuZ37xjx14Q08ZBKYuWkufbr6zL68UaXBuczNnD05UFY9N-xduMKi4jwGuKC8HrEkuIBE-Dw6riY9fx43uYLyiDzjVXE9z2fTuO7AirylIbQ8ifupN7Xp_rxlhJw81yaAuH2AyTtrZm09mnjhOHtACr3VQsk8E6bnNswZADwQTtW8HDCsuJ0ORzt3nwO-Q96Mt8_W5rxEeTW9E7hrOG3F_r2i1D69Gi_0uGbeBT3oWgk8Ey1uN-1CmLx9xxU9EK1DtnQprjxOUHm9rtGoNYJVRT50yDc9ydyEufZUWL1_wW68VLJTt3P5ajxV-KO94xA7NzXAuzxcG4-8Kn4ls-wDvTt81A--F_rcuFUYpj1tC8U9g8fnOOcgQ70LdHI9BXWVuHxOhb1jhEu8wsjotuiGpjwal2A8VkB8OCAAOBNACUhtUAEqcxAAGmA6BQA87zX04vtX5Nb71RTj__kGAaTq_wrYANEL1d35H_elGx7_cvsT4qAAAAAMDRAwAQDQf--38ijRDvfJw_UPB34Q-hLd8RTJkvPtON_pVhsEMjwA4MaaJ0bV4jwCDBQgAC3uExM7OBNACUhvUAIqrwYQDBqgBgAAMMEAAKhBAACAwQAAAAAAAAhCAACOQgAA_kIAAMDAAABowgAA4EAAACxCAABcwgAA4MEAAIA_AACAwAAAoMEAAABBAADwwQAAKMIAADDBAACAQQAAoMAAALjBAADIQQAAuMEAAKDAAACQwQAAcMIAAHBBAADAQAAAMMEAAOBBAADowgAAYEIAAIjBAABwwQAAGEIAAEBCAADYQQAAgEIAAFRCAACgwAAAokIAAEDBAAD4QQAA0MIAAADAAABAQgAAsMEAAFDBAAAkwgAAQMAAALjBAACAwQAAAEAAAJpCAAAAwwAAoMEAAIDCAACCQgAAiEIAAITCAABwQQAAFMIAAKBAAABAwgAAyEEAABjCAACIQQAAUMIAACBCAACAvwAAmsIAAFRCAACAvwAAuMEAAATCAACIQQAAoEAAAOhBAABIwgAAFEIAAKDBAABwQQAAAEIAAIA_AABQwQAACEIAACxCAABEQgAAAMAAAKpCAAAcwgAA6EEAACBBAAAowgAAsEEAAJ7CAAC4QgAAqMEAADzCAACAQgAAMEEAAEBCAAAAwgAAgEEAAEDBAAAgQQAAEMEAANBBAACAPwAA8MEAAIC_AAAAQQAAIEEAAChCAACQQQAAMEEAACDBAACAQQAA0EEAACDCAACgwQAAuMEAANjBAABAQgAAIEIAAKBBAAAQQQAAQEAAADjCAACYwQAANEIAAOBBAAAYQgAAoEEAAEBBAADgwAAAmMIAAODBAACAQAAAgD8AAERCAACgQAAAgEEAAHDBAAAgwQAAMMEAAEhCAACQQQAA6MEAAMDAAACAQAAAIMIAAHBCAAAEwgAAQMEAAPjBAACcwgAAgEAAANBBAAAAQgAAIEEAAMDBAAAMwgAAuMEAACBBAABAQgAAMEEAALhBAACAQQAAqEIAAOjBAAAAwgAAFMIAAFBBAABkQgAA4MEAAIA_AABkQgAAiMIAAIBAAACYwgAAkMEAAJRCAABAwAAAaMIAAKBBAACaQgAAcEEAAKhBAACoQQAAQMEAAEDBAABwwQAAFEIAAIDBAABQQgAAQMIAAODAIAA4E0AJSHVQASqPAhAAGoACAACYvQAAML0AAFw-AABAvAAAPL4AAAy-AABQPQAAxr4AAES-AADoPQAAiL0AAKA8AAD4PQAAEL0AABy-AACovQAAiD0AABA9AAAUPgAA4j4AAH8_AADoPQAAED0AAMg9AAD4vQAAPL4AAIA7AAA0PgAAiL0AAMg9AAAwPQAAqr4AAMi9AAAMvgAAHD4AAAS-AABkPgAAgr4AAKa-AAAkvgAAFL4AACS-AACKPgAAML0AAKi9AACWPgAATD4AAJi9AACIPQAAdL4AAIC7AAAQPQAAyD0AAJo-AACavgAAQLwAAFs_AAC4PQAA4DwAANi9AACIPQAABL4AAIC7AADqviAAOBNACUh8UAEqjwIQARqAAgAAHL4AAJi9AACAuwAAdb8AABA9AAAQvQAAmL0AAFC9AAB0vgAAij4AAI4-AAAcvgAAgLsAAK6-AACgPAAA4LwAAJg9AABdPwAAZD4AAMg9AABAPAAAML0AAPY-AADovQAAJL4AAIY-AABkvgAA-D0AAIo-AAAQvQAAyD0AAKC8AAAsvgAApr4AAMg9AABQPQAAiD0AAEA8AABEvgAAJL4AABQ-AAD4PQAAbL4AAOA8AACYvQAA0j4AAH-_AABkvgAAUD0AADQ-AABwPQAAFL4AACQ-AACCPgAA4LwAAOC8AACgPAAAMD0AAIA7AADevgAA6D0AAAQ-AAC4PQAARL4gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=U1O4ZFKKD1k","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["7370521484173341159"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1667765568"},"5982338972076148514":{"videoId":"5982338972076148514","docid":"34-8-2-ZE709361A3275368F","description":"An introduction to the rejection region approach to reaching a conclusion in a Z test. This video discusses the rejection region in the context of a Z test for one mean, but the same logic holds...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4012730/d21813e111e6682e79cd6a835e4af430/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/z3ramwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D60x86lYtWI4","linkTemplate":"/video/preview/5982338972076148514?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Z Tests for One Mean: The Rejection Region Approach","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=60x86lYtWI4\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFQoTNTk4MjMzODk3MjA3NjE0ODUxNFoTNTk4MjMzODk3MjA3NjE0ODUxNGqIFxIBMBgAIkUaMQAKKmhoZXZhY2huc21mc3R6amNoaFVDaUhpNnhYTHppOUZNcjlCMHpnb0hxQRICABIqEMIPDxoPPxPuBIIEJAGABCsqiwEQARp4gfbw_AID_ADxAREE-QT_AQINAP_3__8A6fUB_Pn_AQD2_ekAAAAAAAj-8QkCAAAA5fD1-vsCAAD5BfgHBAAAAAf5B_j0AAAAChH6D_4BAAD49vb9A_8AAAAA-Az_AAAABAgAAgf6Av_9Cv8DAAAAAP_2_gf89f4AIAAtXEXKOzgTQAlITlACKoQCEAAa8AF_-SgB3xHDAtgKCQDW__UBiPoQ__w10QCj5_7_oxPm_xHb6v_cCPsAHfj1AKsFKAEmDuP_9egnAS4EFABM8gf_6PIMADnnFAAiFDACIgDk_sod8f4V5A___cXdAAgN7f4G6voC2gTs_wvqtgkK00ED8_YVAizhEAHv5w0B6QcX_fzl3f0FGP0G-fL6-70iGgMT_hEIBk0bAOsT2_0A-RD8_vzv9_j11gIbEtn5EhTw9s_t9_fo4vD5FggUBs797gT4FAf58fL-_OPhCvcc3f4B_SPwCuIJEPIE9v0D6skA8OcC9gHe-Pz56vsT-vQD9gAgAC3nWA87OBNACUhhUAIqzwcQABrAB_Et5L4zxTc99UccvFNgHL0kQuO8b5EFvWpNc72pCME8tnIFvT7Q6j2ZzvM8nYdRu1nAVL4EjIw5Ks_XPAovYT4XcbC8QdPGOZ5ihb6Run09LHOEvBUcTr6sTcg8NZcfOys_Xz1-X3G7n80qvG_AAj040VO9CgmivOTDxzzD8iC6g5rrvCuIwbzDFxy9SVvmvMQdtTskJV29NT-jvC9R_T2xBWC6n6utvC_rtDwJACm9210WvZo6VL1MU6W7uAD6ulN5Cz67RzY8yhwmvO7QML1Yeoi8iyrPu_p9P70alB89xgVkOiZAqD2QqCs9b9GuvNjCBz1Ex5m98juyvDlCtr2kZpQ9T7C_PORm-D1mTOE9GCPUO3ya072xoiY9fV6xvJzZUzzQsei8x1WSOQVbmzxOtmE9SVjlPDMtNj0gKk09pSseO8OjaL3-Tgk9a5T_PCjunT061RA8rfLKOypxfT2nvj281X5GvCpZib0ldDi7prXMunt90jxXLHk9XS4HO9kuBrzMofs82jPwOgUjpT3WAju-SeWaOnNawbxVvUG9-g56uwsSdj3doXY7W4ltu1s-lz34pMO9qNQ6u0E8XL3CGsK8U08PPLIRyLy9Ski97faTugp5vr2YABc9gy4GPOO1Qb0K1hi9qFbfu6DM9TxwysE8b7iPu3stLb1HY7O98L6IOYHSCz0DaYU9kxsRuvubaz32C1Y9Disnumu7hD37s3q8N7lnu3xIUzwVzBM9UxgqungmNDw8qlA8A683uzy98j1KyFG9V8GOOQf1YzuCFpY63poNO6komL398QM9y0V9OO5z47vSoYi9wyM8Oa0vtzr9EvG9vCOJOWeK7zxaHjW957bVuJ4_kj2hA9w8O26xuV9_vb0fGDu9CNU3ucw1Vr3Wi-M7RkoAuUDj3Ty1npu9Fq-4tixNZT03TLk9Y8ZUuDAmQj3pMiu9J0wAuXh9Zjw7VPM9UxwoONx7QLs-LOm7CHoUuP1Ylz3ct_o9HVbENSpT7L3woSk9vcBaOVpPKD0z1HI8AWBMt9S6SL1qpZC9DrU2uJCZMLyt5g89xyYWOMJLtb2NTQI8DbpPNiPRsLxyU8O84xA7uLAETT0segy9VuL4N8DQnj12BRE9MrMSuIJVRT50yDc9ydyEuagmp71UPcS9HLiDuM5yNLxdD8u9qHCbt4EmYr1NqBs9dgd1OPZ0ej3gD9-9P5mbt1UYpj1tC8U9g8fnOAP8lL1_qI89heReuehVs70WJOw8zbghOM4YBj166_I8h7gJOCAAOBNACUhtUAEqcxAAGmAwCAAjCzni8d8e7u__5Rze4QsO99b1AP34APgS8QsYD_2uC-4ALeQv1bgAAAATAO4m6wDrX9j1xzr_HRr40-MXEX8QGx3q4x3z1usoLQz1Ekb0FyUA9_WsJFbU1igLI0EgAC0PzTg7OBNACUhvUAIqrwYQDBqgBgAA4MAAAODAAAAgQgAAeMIAAABAAAAoQgAA_kIAACBBAAD4wQAAMMIAACRCAABgQQAAwMEAAADAAADQwQAAwEEAAGxCAACwQQAAsEEAAOBAAABUQgAAwMEAAJjBAAAAQAAABMIAAMBAAABAwAAAIEEAAIA_AABwQQAAMMIAADBBAABgwgAASEIAAIrCAABcwgAAbEIAADxCAAAAwgAAAEIAAOhBAACAvwAAjkIAADBBAAAYQgAAmMIAAMBAAAAIQgAAkEEAABTCAABwwQAAFMIAACTCAAAAwQAAwMAAAHxCAACywgAAUMIAAADBAAAwQgAAHEIAAJrCAAD4wQAAUMIAAIDBAACIwgAAEMEAAPjBAACIQQAAgMIAADBCAAAAQAAAvMIAANpCAAAkwgAAmMEAAODBAABAQAAAEEIAAExCAACewgAAkEIAAHjCAAAAQAAAwEEAAEDBAACAwAAA4MAAAIBBAACQQQAAIMIAAHxCAACwwQAALEIAAFBCAAAkwgAA4EAAAKTCAAD4QQAAuEEAAIjBAAAwwQAAmEEAAEBBAAB8wgAA-EEAABxCAAAIQgAALEIAAKBAAACOQgAAMEEAAHBBAACoQQAAEMEAABhCAABgQgAAEMEAAMjBAACAvwAAAMAAAIDBAACwQQAAAAAAAEDBAACAQQAAMMEAADBBAAAswgAAOEIAADBBAABwwgAAYEEAAGhCAADgQQAAAMEAAIBAAAC4wQAASMIAAJzCAAD4wQAAyEEAACBBAACAPwAAUMEAAODAAADYQQAA8MEAAEBBAADgQAAAAEAAAAAAAADIQQAAQMEAABBCAAD4QQAAXMIAAAjCAACIwgAAAEAAAHDCAAAgQgAAgMAAAEDCAAAwwgAA8EEAAKBBAACAQgAADEIAAABCAACAwQAAyEEAAIA_AACAvwAArsIAAOBBAAAAQAAAQMAAAPDBAABYQgAAtsIAAODBAAAMwgAAYMEAAMBBAAAAwgAAAMIAAKDAAAAAQAAAuEEAAPBBAACYQQAAoEAAADBBAAAAQQAAwkIAAChCAAD4QQAArsIAAEzCIAA4E0AJSHVQASqPAhAAGoACAABAvAAAUD0AACQ-AAA0PgAAPL4AAIi9AADgPAAArr4AAIq-AAAkvgAAiL0AABy-AABwPQAAyD0AADC9AABAPAAAyL0AAJg9AACoPQAAkj4AAH8_AACgvAAAnj4AAPi9AABAvAAA6D0AAKA8AAB8PgAAHL4AADS-AABcPgAAUD0AAEC8AADIvQAAcD0AAIC7AABcPgAA-r4AABu_AACKvgAAJL4AACy-AADoPQAAJL4AAKg9AABAvAAABD4AAFC9AAAkPgAA-L0AAPi9AAC4PQAANL4AADw-AACovQAAiD0AABE_AACIPQAA0j4AAHw-AABAPAAALL4AAAQ-AACovSAAOBNACUh8UAEqjwIQARqAAgAAA78AAEy-AABAvAAARb8AANI-AABAPAAA4DwAAIK-AACgvAAALD4AAKI-AAAEPgAA6D0AAJK-AACYPQAADD4AACQ-AAB3PwAAgj4AAKg9AACoPQAAFD4AAAc_AADgPAAAuL0AAPo-AAAwvQAAkj4AAOC8AAAMvgAABD4AANg9AAB0vgAAUL0AAFw-AAAwvQAARD4AAKC8AACWvgAA0r4AAJo-AACgvAAA2L0AAOC8AAAEPgAA-D0AAH-_AADavgAAML0AAKg9AACAOwAAiD0AAIC7AABsPgAAEL0AAJg9AAAQvQAAoLwAAEQ-AACGvgAAJD4AADS-AAA0vgAA6L0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=60x86lYtWI4","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5982338972076148514"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3905334776"},"15881904890160606004":{"videoId":"15881904890160606004","docid":"34-0-4-ZB34866C816BD1730","description":"I discuss standardizing normally distributed random variables (turning variables with a normal distribution into something that has a standard normal distribution). I work through an example of a...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2850500/e34ddfd8fbb5c6a35e6264f467471a04/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/jNtrtAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4R8xm19DmPM","linkTemplate":"/video/preview/15881904890160606004?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Standardizing Normally Distributed Random Variables","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4R8xm19DmPM\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTU4ODE5MDQ4OTAxNjA2MDYwMDRaFDE1ODgxOTA0ODkwMTYwNjA2MDA0apMXEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E_MEggQkAYAEKyqLARABGniBBvgF8AP8AAP_BQEOBv4C9Bb-Afj9_QDsCu8ABQAAAPIAAQf-AAAA9RIH8gAAAADuAPf_7wABAA4D9xEDAAAAF_gQ-fYAAAAU-gf0_wEAAPv4AQn5AgAAAgYFEgAAAAD5Fwj8_v8AAPEHCg4AAAAAAuj1AwEAAAAgAC1aHsg7OBNACUhOUAIqhAIQABrwAX_uAAC_G-T_9fTpANgj5QGGIAr-FkP6AND3_wCxEs__F_jk_8Tw6v8V8Q8B0x8RABoByQAS4Rf_ReUJADgBFQDTDCkAId0KADYRKf_x5N7_1CsC_vIBDAL-zOIADBbz_vHzGf3sAu8DDv_YAyH8KgEE-RkCL_EWAev2Ff_0JRQD7uHd_gb85__k-An_xR4WAxAV-fwLJgb62hH0_Q_3AvsM7Qn9CyPw9QEE6AMUA__95vcC-QcJ9PoIGA8E7gH7__vrFv7-_vv64vUK8hf0DQf0Egb78fMD_hDu8wHk3wj48fT7_dwT_vzvBwoGAPj0_iAALRggJDs4E0AJSGFQAirPBxAAGsAHahbQvqyUGT1TDfe7CgfMvVcPFLw0hQ69Df7-vVIOpjyIXYA8UbuvPZ7OOrwIoji89pZivgV4gTx5Pw28y4AzPubRiL2YYjM8ehcvvgg8MD0pn9S89aFrvoTTBz10NcO7O56APSjABr2RjOY61qIvPVQ99LzapCq7b4sIvUNHB7oj2Bi9IhehvTucirwFK1O9R9WVPTPRVr27lrW8BFcJPuutXDwvREO6L-u0PAkAKb3bXRa9R1qFPMSNgDzbkQO8HejBPYb8frnqSY88nFg2vS2eNb2Q4-I8JgWRvfxnkzvYnaw7D3uGPey5kT05oSu98G5gPVtVO71W2Ge8-aAHvvQamz0vgYA7GyqbPVidRj3fTC-70lebvd1IVD0a9C27mscKu1iTgr2u9YW8U75WPLBTMT3eoDY6My02PSAqTT2lKx47LQ4fvFVWLj0QQhs9w7oRPs6RsLx9p5O8RdTpPKjR2rycYKy7c-lJvQNtPDtROzK8GimlPDjuGT2ZW6m7PnspvXXjIj3o8DU8xTVDPfhRDb4Jbyy7wdIPvSjTCL01n0680KD8PFCJ0DyKcQC8SBgGPm7JZb3t1QW8fvMMvdh667wqsjE8N6ruPCqZUr0LR2s8dKCyvbryfjwShdQ72L_GvMTeVTx_8TG8nyoVPbAAZj0DZra7anqaPOQJTr2CxPo7FHkSPStaLz0k-xS7mQ_oPQwDlj38XVW6lyOfPfvGfL0DrBI6KlkpvJtUVL1vHdI7TsRsvErVEb3seJ-77nScPazizb0q_705mcCIPfN23zzFB4q3KkVhvWpcjj2HZCu4mS6fO0x_wL2GlFY4qz2RvRpSFb4wUQo6nhJrvfJjJzyNH0A5h-T_PO67_Tzynac5sz8Qvsg4EL0Mk0q5pBG9PCpprDrGZ2W4NOumPVdkD70kSzg5C0BIPGSvhz3t5hE2MCZCPekyK70nTAC5DbbiPNqRKj6hYo25Xw0QPZdjCL3ypa-3zq_BPEmTzD3fRIe4LA63vX8mTD1KrMQ4s9NKPa2djztETPa2UkjPuz48q71PsuQ4zF2LPJwOrjx13wa4uOQovtF_hbyd-Bq5Fe0Avb_ZoDt4WQG3fOGEPDf8sLpszNQ2sLIxPTb5tbs1wPM2weMrPtylaLwHiXS5rBtPvXAAYr1x-qK4eTMUvWoslr1I6DC3V7_IvPkVxjyuaau39nR6PeAP370_mZu3Iv_sPTUpBT7zflu45yBDvQt0cj0FdZW4p1oLvsyaGL0Kl3S4-zAMPTX7Mj3Wqpw3IAA4E0AJSG1QASpzEAAaYCL6ABPlEeviGP7r1uvY-gL-CA8-z_L_78AA3Q3BHwbu18cJAABB4B_itwAAAB7xBQEPAPpi_en4KtnnB6vg_Q42fxslIrT2CgPY4_8k5wci-gM8MADo-8kbVNf3G_TzFyAALXxrOTs4E0AJSG9QAiqvBhAMGqAGAACwQQAAgD8AAABCAACIwgAAHEIAAJBBAADgQgAAAEEAANjBAAAAwQAAKEIAABDCAABQwgAAcEEAACBBAADgQQAA8EEAAPjBAACAQQAAIEEAADDBAAA0wgAAisIAAIBCAAA8wgAAkMEAACRCAABswgAAqMEAABRCAAAswgAAgEAAALbCAADYQQAAgsIAAIDBAAAQQgAAikIAAADCAAAoQgAAGEIAAIDBAAB4QgAA4MEAAIJCAADmwgAAgMEAACBCAADoQQAAAMEAACjCAABMwgAAoMAAANhBAADgQQAATEIAAObCAABQQQAAwMEAAARCAABMQgAAlMIAAATCAAAIwgAAyMEAAJTCAABAwQAANMIAAMBBAACawgAAEEIAAKBBAACIwgAAfEIAAKBAAAC4wQAAIMEAAKBAAADgwQAAwEEAAMDBAABAQgAA4MAAAARCAAAwQQAAXEIAANjBAABQQQAACEIAAEDBAABQQQAAkkIAAGzCAAC4QQAAIMEAAGDBAADAwQAA0MEAAHhCAADIQQAAysIAADRCAAAoQgAAEMIAAAjCAACAvwAAgEAAAIC_AADQwQAAYEIAAFhCAAAcQgAAAEEAAKDBAADQwQAAdEIAAKhBAACgQAAARMIAAKDBAACIwQAA6MEAANDBAAAAwQAAoEAAAEBCAADYwQAAgMAAAOjBAABEQgAAiMEAAETCAAAAAAAAkEIAAAAAAAAQQgAAAAAAAOBBAADgwQAAWMIAABDBAACIQQAANEIAAOjBAAAoQgAAAEAAAKBAAABEwgAAMMEAAODAAADAwQAAMEIAAMBBAACAvwAAAAAAAEjCAAAAwgAABMIAAHTCAADgQAAALMIAACBBAACAQQAAgEEAAKBAAACoQQAAgMEAAIJCAADoQQAAgMAAAAzCAADQQQAAoMAAAHTCAAB0wgAAREIAAAAAAACgQAAA6MEAAHBCAACCwgAAosIAAEjCAABAwAAAnkIAAKDBAABEwgAAYMEAAOBAAABgwQAA0EEAAIhBAAAgQQAAyMEAAKBBAAA0QgAAgMEAACRCAAA0wgAAaMIgADgTQAlIdVABKo8CEAAagAIAAHA9AAB8vgAAhr4AAFw-AAA0vgAA4DwAAMg9AAALvwAAzr4AABw-AADIPQAAPD4AAJg9AADoPQAAXL4AAOA8AABMPgAAMD0AAFA9AADqPgAAfz8AAOA8AAA8PgAAmL0AAFC9AAAcPgAARL4AAKC8AAAwvQAAML0AAJo-AACWPgAATL4AAIC7AAC6PgAAlj4AAII-AABQvQAAqr4AAIa-AACYvQAAFD4AANg9AAAwvQAAqD0AAAw-AACovQAAnr4AADC9AADCvgAAQDwAAGS-AACSPgAAFD4AAFC9AACgvAAA5j4AADA9AACgvAAAuD0AAEA8AAC4PQAAuD0AAHC9IAA4E0AJSHxQASqPAhABGoACAAAEvgAAFD4AAHC9AAAVvwAAuD0AAFC9AACgvAAAHD4AABy-AAB8PgAADD4AAOi9AADgvAAAZL4AABA9AABQvQAAUD0AACM_AACYvQAApj4AAFw-AACiPgAAUD0AAGy-AACAOwAA4DwAAJi9AAAMPgAAEL0AAOg9AAD4PQAAUD0AADC9AADovQAA4DwAAAy-AAA8PgAAmj4AAJa-AABQPQAAND4AAFS-AAAwvQAAQDwAABC9AAAcPgAAf78AAKA8AABkvgAA-D0AABC9AADYPQAAVD4AADA9AAA0PgAA4DwAABC9AADIvQAAqD0AAJi9AADYvQAAUD0AACQ-AADgPCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=4R8xm19DmPM","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["15881904890160606004"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1639725601"},"13740889111621702333":{"videoId":"13740889111621702333","docid":"34-3-7-ZCE2FA8BCCD33C31A","description":"An introduction to the normal distribution, often called the Gaussian distribution. The normal distribution is an extremely important continuous probability distribution that arises very...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1771294/530391d8bc7e04eec4bdf7d3f26e24c5/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/hr/TevPAAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiYiOVISWXS4","linkTemplate":"/video/preview/13740889111621702333?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"An Introduction to the Normal Distribution","related_orig_text":"jbstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"jbstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iYiOVISWXS4\",\"src\":\"serp\",\"rvb\":\"EqwDChQxNjAzMDIwNzQ1OTg0MzAyNjc0OAoTNDEyMTgxNzc0MjgyODk0MzE1OAoUMTM0NTY5MzY3MzIyNTc1MDU5MzcKFDEzNzY2MTcxMTQ0NDM0MTQ4OTk1ChQxNDkxMTc1MDY4ODQ5Nzg4OTcwNwoUMTY0NzAzNzQxMDAzNDI1ODk5ODQKEzM4MTM0ODM4MjYwNjQyODQyMjEKFDE2NzkxNjg3MTA5MTAyODE5NDUxChMzODA1NTQ4ODU4NjM2NDgyOTgyChMxMTU0Njg1ODQ4ODYzMjg0MzM0ChM5MjQ0NTI4MDcwMzU1NjMyMTExChQxMjA3MjQzODYxNTg0ODU4MzcwOAoSOTU5MzEzMTM0ODg2NTQ4MzU0ChM1MDMxMzMxOTM4MzQyOTM3MDMxChM3MzcwNTIxNDg0MTczMzQxMTU5ChM1OTgyMzM4OTcyMDc2MTQ4NTE0ChQxNTg4MTkwNDg5MDE2MDYwNjAwNAoUMTM3NDA4ODkxMTE2MjE3MDIzMzMKEzE5NTU2OTgzMTEwNjkzNDIyNzAKEzM1ODQ0MTg1MTIxOTQ0NjYzNTQaFgoUMTM3NDA4ODkxMTE2MjE3MDIzMzNaFDEzNzQwODg5MTExNjIxNzAyMzMzapMXEgEwGAAiRRoxAAoqaGhldmFjaG5zbWZzdHpqY2hoVUNpSGk2eFhMemk5Rk1yOUIwemdvSHFBEgIAEioQwg8PGg8_E8YCggQkAYAEKyqLARABGniB-wv-AP8BAAP_BQENBv4BDBH9BPUBAQDo_QUC__4BAP7z8PwEAAAADAz_APoAAADvAPj_8AABAAYE_QEEAAAAEwAFBPwAAAAT-PP4_wEAAPT7_vwDAAAADQEKBQAAAAD0CgP6AgAAAPoSCg0AAAAACvj5EQAAAAAgAC0IYdU7OBNACUhOUAIqhAIQABrwAVXuAf_tC_AB4_UEANcZ-gCBBQv__SbeAMv1CADOAukADOXwANz9AAAg4_QAzBMGABUA0wAS8CkALvoO_zT69ADnBRsBIuwCABgOIwH06eT_5xsN_wT0BwHk1-n_BxEB_vn-_f3e5Pj7_-zYACsJIQAF6wQBKvH3__PiAADvBRD-9gfx-QwJ8f7_9fD_7CQaAQIH-QUONQP-8Q7m_v0CAQMA9AoBAxPrBP0J-gcUAwr40_wCAQT48_wHFAwD5wH9BO0CEADh-AkE4_ERAP_x_gX9KQX9-BoFBB4RCgD-2Af56PL7-d71BPjmAf4G_vT-ACAALW4nSDs4E0AJSGFQAirPBxAAGsAHXB_GvgBBdD2nEpQ8U2AcvSRC47xvkQW94KD9vS4MpjsFkR68PtDqPZnO8zydh1G7ofUgvmFL9LxbItc8FJRCPkZFHL1z6AC8cT1avucWvz2FTKi89aFrvoTTBz10NcO7Kz9fPX5fcbufzSq8b8ACPTjRU70KCaK8W68uPTda6Tv45129KBMyPbBfK72xpz29rX_hPLPFv7zETy28vFruPUBjS7wrAac8gN4KPdSZ_7uE1G07cv4BvfQSiDz2Ali8gkLIPdoT7jwi2N08m41avcN3rLyzCEU86_azvda-JTxV18a7JkCoPZCoKz1v0a68u7upPZIkiL1yKFm6bazkvaYRLj2UTsE77IbtPYz3gz1yW5E7FTkUvk-VbzyrGaO8K2W-vElY5bwWRZc7YCETPRvcgT1OiM47N0yJPY39Nj3LKs-6kCQQvBDfoz2mYgM9n02oPfxvJT251JK8UAgzPQm_GrwkUFS7VY-6vb45NzwXmSW8qnMWPQSeKj189MQ72S4GvMyh-zzaM_A6xTVDPfhRDb4Jbyy7XE2ovLlyUb1vVrO83cF-Pby7JD2Ie5G8bvzpPUzkrb0rc6m771GkvG743bw4xJE6Vms8vFKvsL1ixxg7c9nIvWIzez0J7cm7ZCe0OydTIju-gW68gcecPEYIj7wBDVu7ey0tvUdjs73wvog5nokfPWbJwj3v5t44J_SvPV9AlD2I2xa3euSqPSNfrrxvSIK51wZdvGdKRrzAAjm7OiETvGQq8zzZyHm7PL3yPUrIUb1XwY451ZN5PGsWnjxJJ1g5Cr9PvSYe0D2AIzm57nPju9KhiL3DIzw5FJ2LvYl64b3GJ3A5ZuUtvUl0QL2lX7M55IKzPA7XKj1Q42i6PkKdveiqVL2Wh065vWGRvMerYrzAkcW4Pr6TPZF1nbwwTfM3i-gSPTG2yz3L7Ra5rh17PNx5LL0XQgY3QSMdPUkv6j3kQu24uNNRPc0ujLtlKaQ3FAQPPRBdAD6Nw3G4mPJGvQMaVj3k6YU47-cUPe3i7Dzj-pi1kcQhvYsMrL3IJnw4b3mTu3MwNj20xZC3yuEDvhDXHjyX_U43FA9evDOeEr0clje3Cqi7PVxaoDlpqxo4x3OsPfNySbqMasu3glVFPnTINz3J3IS5XEkBvcre0r0XIgS51V2ZvBGXgr0HcQO40CUBvdBEuzvlMNC3va8FPaVJCb6tnoW4VRimPW0LxT2Dx-c4xb-ZvXM4ST1dTuO4rW3qvRQ7vzxv0uM3W8rePPqE6LtJUcc3IAA4E0AJSG1QASpzEAAaYDn8AAEBMNvyJRfr0wzpAOT6DORFvuf_6-QAAB7bGPcY354Q6_86yAv1rQAAAP7k3R33APZx1uoOTwD9DcbB2CIofxIPLL_t7heu-hYcGeEbIvohKwAf7bI9UsLPQN0hHCAALXV6Ijs4E0AJSG9QAiqvBhAMGqAGAABQwQAAyMEAAOBBAAAAwQAAYEEAAHBBAAD-QgAAFEIAACzCAABUwgAAvEIAAIDAAACowQAAAMAAAITCAAAwQgAAoEEAAADAAADAQAAAoMAAAABCAAAIwgAAgL8AAOhBAABQwgAA0EEAALjBAABAwQAA2EEAAIBBAADgwQAAAEEAAMLCAAAAQQAAVMIAAIDBAACYQgAAHEIAAIjBAAAAAAAAgL8AAMjBAABQQgAAoMAAAEDAAAAEwgAAuMEAAEBBAADoQQAAYMIAAJjBAABEwgAAaMIAAADCAACQQQAAkEEAALTCAAC4wQAAGMIAALBBAAAwQQAAkMIAAKBBAAD4wQAAiMEAAJjCAABYwgAAAMIAAFxCAAA8wgAAoEAAAATCAACOwgAAjEIAAAAAAACAwQAA0EEAAKJCAAA8wgAAQEEAAKDBAACMQgAAsMEAAIDAAAA4QgAA0EEAACRCAABQQQAAqEEAAGxCAAAEwgAApkIAAATCAACYQQAA2EEAAEjCAADowQAAMMIAAHBBAACmQgAArMIAAEBAAADgQAAAAMAAACTCAAA8QgAAEEEAAFRCAAAwQgAA0EEAAMhCAACgwQAAAMEAAGjCAABAQQAATEIAAGBCAACAwAAAAMEAAKDAAAAAQQAA4EAAANjBAACQwQAAEMIAAKBBAADAwAAAgEAAADTCAABUQgAAkEEAAEDCAAAQQQAAbEIAAHRCAAA0QgAAlkIAADjCAABUwgAAFMIAAADCAABYQgAAVEIAAMhBAACCQgAAMMEAAFxCAADIwQAAuEEAAPBBAAAgQQAAuMEAAGDBAABQQQAAIEIAAFDBAAD4wQAAkMEAADDBAACAwAAAKMIAAJDBAAAgQQAAGMIAAMDAAADwQQAA4EAAAIBBAABQwQAAgD8AAMjBAAAwQgAAQMAAAADCAABQwgAAWEIAANBBAAAAQQAAWMIAAJ5CAACuwgAADMIAAIDCAAAQwgAAOEIAADBBAADgwQAAcEEAALBBAAAEwgAA0EEAAIhBAACAvwAAsEEAAIBAAACGQgAAYEIAADDBAADAwAAAVMIgADgTQAlIdVABKo8CEAAagAIAALg9AABQvQAAgj4AAEw-AAAEvgAAoDwAAHC9AAC6vgAAXL4AAIg9AACOPgAAgLsAANg9AAD4PQAAPL4AAJg9AACCPgAAML0AAOA8AAD6PgAAfz8AABC9AACgPAAAoDwAAI6-AACYPQAAHL4AAHA9AADgvAAAoLwAAAw-AABAPAAALL4AABA9AACqPgAAcD0AAMg9AACOvgAADL4AAFC9AAAwvQAAir4AAFw-AABQPQAAuD0AANg9AAAQvQAAnr4AANi9AAC2vgAAPL4AAOC8AAC4PQAAPD4AAIa-AACgPAAAqj4AAKC8AAC4vQAAPD4AAKi9AACYPQAAUD0AABQ-IAA4E0AJSHxQASqPAhABGoACAACIvQAAyL0AAHA9AABDvwAALD4AAKA8AADYPQAAuD0AANi9AACKPgAAoLwAAKi9AAAQPQAAUL0AAKA8AABAvAAA-D0AACE_AADIPQAAqj4AAHC9AACqPgAAcD0AAKi9AAC4vQAAFD4AADA9AACAOwAA2L0AAJI-AACoPQAA2D0AAIA7AABQvQAA6L0AAMi9AACOPgAA4DwAAFS-AACAOwAAyD0AAIC7AAAcvgAARD4AANi9AAAQPQAAf78AAHC9AADovQAAVD4AAEA8AAAMPgAAND4AAAQ-AADIPQAAmD0AAIA7AABkvgAAPD4AABS-AAAkPgAAiD0AADy-AADIvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=iYiOVISWXS4","parent-reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["13740889111621702333"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2179084399"}},"dups":{"16030207459843026748":{"videoId":"16030207459843026748","title":"An Introduction to Continuous Probability Distributions","cleanTitle":"An Introduction to Continuous Probability Distributions","host":{"title":"YouTube","href":"http://www.youtube.com/v/OWSOhpS00_s","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/OWSOhpS00_s?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":351,"text":"5:51","a11yText":"Süre 5 dakika 51 saniye","shortText":"5 dk."},"views":{"text":"662,5bin","a11yText":"662,5 bin izleme"},"date":"23 ara 2012","modifyTime":1356220800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/OWSOhpS00_s?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=OWSOhpS00_s","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":351},"parentClipId":"16030207459843026748","href":"/preview/16030207459843026748?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/16030207459843026748?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4121817742828943158":{"videoId":"4121817742828943158","title":"Finding Probabilities and Percentiles for a Continuous Probability Distribution","cleanTitle":"Finding Probabilities and Percentiles for a Continuous Probability Distribution","host":{"title":"YouTube","href":"http://www.youtube.com/live/EPm7FdajBvc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/EPm7FdajBvc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":718,"text":"11:58","a11yText":"Süre 11 dakika 58 saniye","shortText":"11 dk."},"views":{"text":"660,9bin","a11yText":"660,9 bin izleme"},"date":"27 ara 2012","modifyTime":1356566400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/EPm7FdajBvc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=EPm7FdajBvc","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":718},"parentClipId":"4121817742828943158","href":"/preview/4121817742828943158?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/4121817742828943158?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13456936732257505937":{"videoId":"13456936732257505937","title":"Linear Transformations (in a Descriptive Statistics Setting)","cleanTitle":"Linear Transformations (in a Descriptive Statistics Setting)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=32dGPyIMgJ8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/32dGPyIMgJ8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"https://www.youtube.com/channel/UCiHi6xXLzi9FMr9B0zgoHqA","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":682,"text":"11:22","a11yText":"Süre 11 dakika 22 saniye","shortText":"11 dk."},"views":{"text":"17bin","a11yText":"17 bin izleme"},"date":"31 oca 2021","modifyTime":1612051200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/32dGPyIMgJ8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=32dGPyIMgJ8","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":682},"parentClipId":"13456936732257505937","href":"/preview/13456936732257505937?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/13456936732257505937?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13766171144434148995":{"videoId":"13766171144434148995","title":"Confidence Intervals for the Ratio of Population Variances","cleanTitle":"Confidence Intervals for the Ratio of Population Variances","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=64hFiLSq3Fg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/64hFiLSq3Fg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":518,"text":"8:38","a11yText":"Süre 8 dakika 38 saniye","shortText":"8 dk."},"views":{"text":"35,1bin","a11yText":"35,1 bin izleme"},"date":"4 kas 2012","modifyTime":1351987200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/64hFiLSq3Fg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=64hFiLSq3Fg","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":518},"parentClipId":"13766171144434148995","href":"/preview/13766171144434148995?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/13766171144434148995?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14911750688497889707":{"videoId":"14911750688497889707","title":"Confidence Intervals for One Population Variance","cleanTitle":"Confidence Intervals for One Population Variance","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=qwqB5a7_W44","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/qwqB5a7_W44?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":596,"text":"9:56","a11yText":"Süre 9 dakika 56 saniye","shortText":"9 dk."},"views":{"text":"152,4bin","a11yText":"152,4 bin izleme"},"date":"21 eki 2012","modifyTime":1350777600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/qwqB5a7_W44?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=qwqB5a7_W44","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":596},"parentClipId":"14911750688497889707","href":"/preview/14911750688497889707?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/14911750688497889707?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16470374100342589984":{"videoId":"16470374100342589984","title":"The Relationship Between the Binomial and Poisson Distributions","cleanTitle":"The Relationship Between the Binomial and Poisson Distributions","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=eexQyHj6hEA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eexQyHj6hEA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":324,"text":"5:24","a11yText":"Süre 5 dakika 24 saniye","shortText":"5 dk."},"views":{"text":"190,5bin","a11yText":"190,5 bin izleme"},"date":"16 kas 2012","modifyTime":1353024000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eexQyHj6hEA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eexQyHj6hEA","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":324},"parentClipId":"16470374100342589984","href":"/preview/16470374100342589984?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/16470374100342589984?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3813483826064284221":{"videoId":"3813483826064284221","title":"The Law of Total Probability","cleanTitle":"The Law of Total Probability","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=7t9jyikrG7w","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/7t9jyikrG7w?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"https://www.youtube.com/channel/UCiHi6xXLzi9FMr9B0zgoHqA","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":621,"text":"10:21","a11yText":"Süre 10 dakika 21 saniye","shortText":"10 dk."},"views":{"text":"192bin","a11yText":"192 bin izleme"},"date":"29 mar 2019","modifyTime":1553817600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/7t9jyikrG7w?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=7t9jyikrG7w","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":621},"parentClipId":"3813483826064284221","href":"/preview/3813483826064284221?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/3813483826064284221?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"16791687109102819451":{"videoId":"16791687109102819451","title":"Deriving the Mean and Variance of a Continuous Probability Distribution","cleanTitle":"Deriving the Mean and Variance of a Continuous Probability Distribution","host":{"title":"YouTube","href":"http://www.youtube.com/live/Ro7dayHU5DQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Ro7dayHU5DQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":441,"text":"7:21","a11yText":"Süre 7 dakika 21 saniye","shortText":"7 dk."},"views":{"text":"334,9bin","a11yText":"334,9 bin izleme"},"date":"27 ara 2012","modifyTime":1356566400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Ro7dayHU5DQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Ro7dayHU5DQ","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":441},"parentClipId":"16791687109102819451","href":"/preview/16791687109102819451?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/16791687109102819451?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3805548858636482982":{"videoId":"3805548858636482982","title":"Sampling Distributions: Deriving the Mean and Variance of the Sample Mean","cleanTitle":"Sampling Distributions: Deriving the Mean and Variance of the Sample Mean","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=JLmD0sJId1M","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/JLmD0sJId1M?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/user/jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":285,"text":"4:45","a11yText":"Süre 4 dakika 45 saniye","shortText":"4 dk."},"views":{"text":"94,9bin","a11yText":"94,9 bin izleme"},"date":"26 eyl 2012","modifyTime":1348617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/JLmD0sJId1M?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=JLmD0sJId1M","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":285},"parentClipId":"3805548858636482982","href":"/preview/3805548858636482982?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/3805548858636482982?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1154685848863284334":{"videoId":"1154685848863284334","title":"The Expected Value and Variance of Discrete Random Variables","cleanTitle":"The Expected Value and Variance of Discrete Random Variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Vyk8HQOckIE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Vyk8HQOckIE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":679,"text":"11:19","a11yText":"Süre 11 dakika 19 saniye","shortText":"11 dk."},"views":{"text":"399,8bin","a11yText":"399,8 bin izleme"},"date":"14 tem 2014","modifyTime":1405296000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Vyk8HQOckIE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Vyk8HQOckIE","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":679},"parentClipId":"1154685848863284334","href":"/preview/1154685848863284334?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/1154685848863284334?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"9244528070355632111":{"videoId":"9244528070355632111","title":"Discrete Probability Distributions: Example Problems (Binomial, Poisson, Hypergeometric, Geometric)","cleanTitle":"Discrete Probability Distributions: Example Problems (Binomial, Poisson, Hypergeometric, Geometric)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Jm_Ch-iESBg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Jm_Ch-iESBg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":890,"text":"14:50","a11yText":"Süre 14 dakika 50 saniye","shortText":"14 dk."},"views":{"text":"351,4bin","a11yText":"351,4 bin izleme"},"date":"9 kas 2013","modifyTime":1383955200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Jm_Ch-iESBg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Jm_Ch-iESBg","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":890},"parentClipId":"9244528070355632111","href":"/preview/9244528070355632111?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/9244528070355632111?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12072438615848583708":{"videoId":"12072438615848583708","title":"The Sampling Distribution of the Sample Mean (fast version)","cleanTitle":"The Sampling Distribution of the Sample Mean (fast version)","host":{"title":"YouTube","href":"http://www.youtube.com/v/0zqNGDVNKgA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0zqNGDVNKgA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/user/jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":444,"text":"7:24","a11yText":"Süre 7 dakika 24 saniye","shortText":"7 dk."},"views":{"text":"457,4bin","a11yText":"457,4 bin izleme"},"date":"26 eyl 2012","modifyTime":1348617600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0zqNGDVNKgA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0zqNGDVNKgA","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":444},"parentClipId":"12072438615848583708","href":"/preview/12072438615848583708?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/12072438615848583708?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"959313134886548354":{"videoId":"959313134886548354","title":"Proof that if two events are independent, so are their complements.","cleanTitle":"Proof that if two events are independent, so are their complements.","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bnDpZNlVZ3k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bnDpZNlVZ3k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"https://www.youtube.com/channel/UCiHi6xXLzi9FMr9B0zgoHqA","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":284,"text":"4:44","a11yText":"Süre 4 dakika 44 saniye","shortText":"4 dk."},"views":{"text":"50,7bin","a11yText":"50,7 bin izleme"},"date":"20 mar 2019","modifyTime":1553040000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bnDpZNlVZ3k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bnDpZNlVZ3k","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":284},"parentClipId":"959313134886548354","href":"/preview/959313134886548354?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/959313134886548354?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5031331938342937031":{"videoId":"5031331938342937031","title":"Calculating Power and P(Type II error) (A One-Tailed Z Test Example)","cleanTitle":"Calculating Power and P(Type II error) (A One-Tailed Z Test Example)","host":{"title":"YouTube","href":"http://www.youtube.com/v/FUVL7ppjYuA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/FUVL7ppjYuA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":519,"text":"8:39","a11yText":"Süre 8 dakika 39 saniye","shortText":"8 dk."},"views":{"text":"73bin","a11yText":"73 bin izleme"},"date":"8 mar 2012","modifyTime":1331164800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/FUVL7ppjYuA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=FUVL7ppjYuA","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":519},"parentClipId":"5031331938342937031","href":"/preview/5031331938342937031?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/5031331938342937031?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"7370521484173341159":{"videoId":"7370521484173341159","title":"t Tests for One Mean: Investigating the Normality Assumption","cleanTitle":"t Tests for One Mean: Investigating the Normality Assumption","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=U1O4ZFKKD1k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/U1O4ZFKKD1k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":473,"text":"7:53","a11yText":"Süre 7 dakika 53 saniye","shortText":"7 dk."},"views":{"text":"28,4bin","a11yText":"28,4 bin izleme"},"date":"5 mayıs 2013","modifyTime":1367712000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/U1O4ZFKKD1k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=U1O4ZFKKD1k","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":473},"parentClipId":"7370521484173341159","href":"/preview/7370521484173341159?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/7370521484173341159?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5982338972076148514":{"videoId":"5982338972076148514","title":"Z Tests for One Mean: The Rejection Region Approach","cleanTitle":"Z Tests for One Mean: The Rejection Region Approach","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=60x86lYtWI4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/60x86lYtWI4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/user/jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":622,"text":"10:22","a11yText":"Süre 10 dakika 22 saniye","shortText":"10 dk."},"views":{"text":"175,3bin","a11yText":"175,3 bin izleme"},"date":"26 oca 2013","modifyTime":1359158400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/60x86lYtWI4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=60x86lYtWI4","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":622},"parentClipId":"5982338972076148514","href":"/preview/5982338972076148514?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/5982338972076148514?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15881904890160606004":{"videoId":"15881904890160606004","title":"Standardizing Normally Distributed Random Variables","cleanTitle":"Standardizing Normally Distributed Random Variables","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=4R8xm19DmPM","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4R8xm19DmPM?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://gdata.youtube.com/feeds/api/users/jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":627,"text":"10:27","a11yText":"Süre 10 dakika 27 saniye","shortText":"10 dk."},"views":{"text":"332bin","a11yText":"332 bin izleme"},"date":"10 eyl 2013","modifyTime":1378771200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4R8xm19DmPM?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4R8xm19DmPM","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":627},"parentClipId":"15881904890160606004","href":"/preview/15881904890160606004?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/15881904890160606004?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13740889111621702333":{"videoId":"13740889111621702333","title":"An Introduction to the Normal Distribution","cleanTitle":"An Introduction to the Normal Distribution","host":{"title":"YouTube","href":"http://www.youtube.com/v/iYiOVISWXS4","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iYiOVISWXS4?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDaUhpNnhYTHppOUZNcjlCMHpnb0hxQQ==","name":"jbstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=jbstatistics","origUrl":"http://www.youtube.com/@jbstatistics","a11yText":"jbstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":326,"text":"5:26","a11yText":"Süre 5 dakika 26 saniye","shortText":"5 dk."},"views":{"text":"795,3bin","a11yText":"795,3 bin izleme"},"date":"23 ara 2012","modifyTime":1356220800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iYiOVISWXS4?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iYiOVISWXS4","reqid":"1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL","duration":326},"parentClipId":"13740889111621702333","href":"/preview/13740889111621702333?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","rawHref":"/video/preview/13740889111621702333?parent-reqid=1769019374996320-11590152632115207690-balancer-l7leveler-kubr-yp-sas-145-BAL&text=jbstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5901526321152076907145","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"jbstatistics","queryUriEscaped":"jbstatistics","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}