{"pages":{"search":{"query":"zedstatistics","originalQuery":"zedstatistics","serpid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","parentReqid":"","serpItems":[{"id":"10337028713951463192-0-0","type":"videoSnippet","props":{"videoId":"10337028713951463192"},"curPage":0},{"id":"4540345910284890202-0-1","type":"videoSnippet","props":{"videoId":"4540345910284890202"},"curPage":0},{"id":"1733198795697780309-0-2","type":"videoSnippet","props":{"videoId":"1733198795697780309"},"curPage":0},{"id":"100536450673434026-0-3","type":"videoSnippet","props":{"videoId":"100536450673434026"},"curPage":0},{"id":"R-I-113683-5-0-4","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":4,"grab":"dHplZHN0YXRpc3RpY3MK","statId":4,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","ui":"desktop","yuid":"8135844991769274294"}}},"isAdult":false,"position":4,"placement":"empty"},"curPage":0},{"id":"3704266759468091280-0-5","type":"videoSnippet","props":{"videoId":"3704266759468091280"},"curPage":0},{"id":"10232929039292843262-0-6","type":"videoSnippet","props":{"videoId":"10232929039292843262"},"curPage":0},{"id":"14342049205211543809-0-7","type":"videoSnippet","props":{"videoId":"14342049205211543809"},"curPage":0},{"id":"10019978606673494813-0-8","type":"videoSnippet","props":{"videoId":"10019978606673494813"},"curPage":0},{"id":"11204518298610420708-0-9","type":"videoSnippet","props":{"videoId":"11204518298610420708"},"curPage":0},{"id":"6166657995251540989-0-10","type":"videoSnippet","props":{"videoId":"6166657995251540989"},"curPage":0},{"id":"R-I-113683-5-0-11","type":"direct","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"","renderTo":"","pageNumber":11,"grab":"dHplZHN0YXRpc3RpY3MK","statId":11,"darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","ui":"desktop","yuid":"8135844991769274294"}}},"isAdult":false,"position":11,"placement":"empty"},"curPage":0},{"id":"13831867315969486400-0-12","type":"videoSnippet","props":{"videoId":"13831867315969486400"},"curPage":0},{"id":"5943834911622760586-0-13","type":"videoSnippet","props":{"videoId":"5943834911622760586"},"curPage":0},{"id":"10270813852831219877-0-14","type":"videoSnippet","props":{"videoId":"10270813852831219877"},"curPage":0},{"id":"3890924451934912687-0-15","type":"videoSnippet","props":{"videoId":"3890924451934912687"},"curPage":0},{"id":"75649868075974832-0-16","type":"videoSnippet","props":{"videoId":"75649868075974832"},"curPage":0},{"id":"12463192261726464391-0-17","type":"videoSnippet","props":{"videoId":"12463192261726464391"},"curPage":0},{"id":"5325715596660587711-0-18","type":"videoSnippet","props":{"videoId":"5325715596660587711"},"curPage":0},{"id":"15275030553566968996-0-19","type":"videoSnippet","props":{"videoId":"15275030553566968996"},"curPage":0}],"filters":{},"serpFooter":{"linksGroups":[{"type":"geo","links":[{"label":"Columbus","title":"Columbus","url":"//yandex.com.tr/tune/geo/","logNode":{"name":"region"},"target":"_self","a11yLabel":"Bölgeniz Columbus","needRetpath":true}]},{"type":"help","links":[{"label":"Bize ulaşın","url":"https://yandex.com.tr/support/video/troubleshooting.html","logNode":{"name":"feedback"},"needRetpath":true},{"label":"Yardım","url":"https://yandex.com.tr/support/video/","logNode":{"name":"help"},"needRetpath":true}]},{"type":"settings","links":[{"label":"Ayarlar","url":"https://yandex.com.tr/tune/search/","target":"_self","logNode":{"name":"settings"},"needRetpath":true}]},{"type":"company","links":[{"label":"Şirket hakkında","url":"//yandex.com.tr/company/","logNode":{"name":"about"},"target":"_blank"},{"label":"Kullanım lisansı","url":"//yandex.com.tr/legal/termsofuse/","logNode":{"name":"license"},"target":"_blank"},{"label":"Gizlilik Politikası","url":"//yandex.com.tr/legal/confidential/","logNode":{"name":"confidential"},"target":"_blank"}],"a11yHidden":true}],"hasExtralinks":true},"currentPage":0,"prevPageToLoad":-1,"nextPageToLoad":1,"isTranslationsFilterEnabled":false,"isTranslationsDistributionEnabled":false,"isTranslationsDistributionOnboardingEnabled":false,"isFeedbackModalVisible":false,"prevention":{},"hasNextPage":true,"rightSerpItems":[{"type":"direct","id":"search-list-right","props":{"advRsyaActivateParams":{"pcodeParams":{"blockId":"R-I-8843654-1","renderTo":"search-list-right-0-R-I-8843654-1","pageNumber":0,"grab":"dHplZHN0YXRpc3RpY3MK","darkTheme":false,"lazyLoad":false,"extParams":{"reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","ui":"desktop","yuid":"8135844991769274294"}}},"isAdult":false,"position":0,"placement":"search-list-right"},"curPage":0}],"isAdultQuery":false,"errorList":[],"layout":"list","retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dzedstatistics"},"main":{"_isInitial":true,"snippets":[],"serpFooter":{"linksGroups":[]},"isLoggedIn":false,"tags":[]}},"internal":{"nonce":"5601128638674825207168","expFlags":{"video_settings_toolbar_redesign":1,"velocity_delay_drawer":1,"video_feedback_in_d2d":1,"video_viewer_heartbeat_disabled_in_no_js_api":1,"video_search_toggle_with_text":1,"velocity_disable_suspense":1,"video_viewer_desktop_smart_layout":1,"dark_theme_desktop":"cookie","distr_splashscreen_on":1,"video_viewer_check_sandbox_origin":1,"video_font_yandex_sans":1,"video_adv_new_show_rules":1,"video_resource_loader":1,"video_adv_config_desktop":{"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"new_template_version":4,"video_search_page_no_islands":1,"video_vh_player_js":0,"video_masthead_ratio":"180,4","video_searchdata_scheme":1,"video_viewer_related_fail_error_screen":1,"velocity_delay_metrika":1,"video_viewer_no_islands":1,"video_viewer_channel_link_mode":2,"video_partner_label":1,"video_resource_loader_load_timeout":6000,"int_tr":1,"mmui_extended_escape_scheme":"searchdata.clips.0.authorname","tabs_order_version":"search,images,video,newstr,maps,translate,tr_ecom","spok":"id","video_suggest_use_serp":1,"video_search_grid_direct_repeat":6,"video_viewer_critical_error_codes":"101,102,103,100,151,152,153,154,155,156,150","video_direct_config_desktop_search":"search-grid-row:R-I-48058-718:R-I-474674-109,search-grid-head:R-I-2120168-7","init_meta":{"enable-yabs-distr":1,"ask-user-purchase-history":1,"use-src-videoquickp":1,"enable-begemot":1,"enable_masthead":1,"use-src-videop":1,"use-src-videoquickp_misspell":1,"enable_blackbox_multisession":1,"begemot-enable-cancelled-misspell-rtmr":1,"enable_video_iron_fetcher":1,"use-related-only":1,"ask-yandex-io-devices":1,"use-images-device-setup":1,"use-src-imagesp":1,"images-apphost-collections-front":1,"enable_aab_apphost":1,"graph-is-video-search":1,"bg-bert-video":1,"use-src-imagesp_misspell":1,"use-src-imagesultrap":1,"use-video-apphost-pre-templates":1,"use-src-videop_misspell":1,"use-video-apphost-post-templates":1,"use-src-imagesquickp":1,"enable_video_carousels":"1","restrict-max-docs":"1000","use-images-region-setup":1,"use-post-auto2":1,"use-images-settings-setup":1,"use-src-ugc_favorites":1,"video_vitrina_disable":"0","use-images-user-setup":1,"use-video-pre-search-data":1,"begemot-no-suggest-history":1},"video_depot_viewer_masthead_ssr_only":1,"video_blender":1,"video_search_grid_enable":0,"video_viewer_desktop_fix_d2d_scroll":1,"video_depot_viewer_legacy_counters":1,"video_search_grid_direct_start":3,"video_adv_new_show_rules_docs_count":1,"beauty_header_futuris_tab":9,"video_related_suggest_enable":1,"video_redirect_plug":2,"video_adv_grid_inplace":1,"distr_popup_on":1,"dark_theme_desktop_default_pref":"system","video_search_toggle_enable":1,"video_depot_viewer_related_adv_margin":400,"video_viewer_doc2doc_instant_load":1,"velocity_split_hydration":4,"video_duration_counter_new_format":1,"video_force_grid_on_premordie":1,"int_online_summarization_video_snippet":1,"video_morda_header_nav":1,"video_nohost_full_filter":1,"distr_pcode_off":1,"video_baobab_blockstat":1,"video_thumb_poster_full":1,"video_scrollpages":2,"video_serp_desktop_block_design":1,"video_nohost_youtube_filter":0,"video_viewer_host_link_mode":1},"slots":["1472323,0,44;1466868,0,47;151171,0,89;1281084,0,39;287509,0,50;86180,0,87;1447467,0,18;1037340,0,68;1468028,0,88;1467129,0,74"],"isYandexNet":false,"platform":"desktop","isEnLogo":true,"retpath":"https%3A%2F%2Fgs.yandex.com.tr%2Fvideo%2Fsearch%3Ftext%3Dzedstatistics","mordaUrl":"//yandex.com.tr/","videoSearchUrl":"https://gs.yandex.com.tr/video/search?text=zedstatistics","settingsUrl":"https://yandex.com.tr/tune/search/","helpUrl":"https://yandex.com.tr/support/video/","legalUrl":"//legal.yandex.com.tr/termsofuse/","feedbackUrl":"https://yandex.com.tr/support/video/troubleshooting.html","basename":"/video","currentPageName":"search","isYandexApp":false,"isYandexAppAndroid":false,"isYandexAppIos":false,"isAnyYaBro":false,"isAndroid":false,"isHamster":false,"serpid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","backUrl":"//ya.ru","url":"https://gs.yandex.com.tr/video/search?text=zedstatistics","isIntegrationTest":false,"isEndToEndTest":false,"shouldDropLogs":false,"seo":{"title":"zedstatistics: Yandex'te 342 video bulundu","description":"Результаты поиска по запросу \"zedstatistics\" в Яндексе","keywords":"яндекс видео, поиск видео, смотреть онлайн, сериалы, фильмы, клипы","shareTitle":"zedstatistics — Яндекс — поиск по видео"},"isEmbedded":false,"isPumpkin":false,"sessionCsrfToken":"yd932b4f39781d0808bce851dd3c5a4ea","reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1466868,151171,1281084,287509,86180,1447467,1037340,1468028,1467129","queryText":"zedstatistics","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8135844991769274294","uid":"0","isChildAccount":false}},"userTestids":"191768,238743,246500,253288,265553,270072,277807,274239,294077,278842,331010,338398,378416,359879,415420,644350,652605,645301,679708,689693,690449,696466,696473,722746,740796,776165,771230,781521,790415,801982,851450,886706,883477,900639,931367,937268,969063,935488,945314,989988,982463,991363,990185,1015567,1011895,1035320,1033956,1035241,1036046,1087297,1060131,1071879,1078818,1077703,1116602,1045814,1131637,1144233,1151726,1156933,1174275,1173000,1167408,1202006,1194718,1221235,1228280,1239596,1227266,1226860,1246754,1276447,1289213,1316370,1313283,1321224,1300570,1320679,1352408,1342688,1344637,1341968,1345362,1343279,1367583,1336673,1348424,1382036,1391511,1384451,1402882,1407422,1417605,1424780,1429092,1438908,1444206,1449283,1452713,1457995,1459277,1459585,1461130,1466451,1299604","regionId":20815,"isYaRu":false,"shouldUnmountSearchPageInViewer":false,"videoGlobalContext":{"platform":"desktop","isPumpkin":false,"language":"tr","user_time":{"epoch":"1769274371","tz":"America/Louisville","to_iso":"2026-01-24T12:06:11-0500","__is_plain":1},"isHermione":false,"shouldStubImages":true,"enableVideoPreviewInHermione":false,"reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","isEmbedded":false,"shouldShowMainPageButtonInViewer":false,"shouldDisableWebp":false,"removeLinkPrefix":"/video","shouldUseHighresPreview":true,"shouldCutSnippetTitle":true,"shouldShowPlusBadge":true,"reportFeedbackBaseProps":{"initEmail":"","metaFields":{"userAgent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)","userTestids":"1472323,1466868,151171,1281084,287509,86180,1447467,1037340,1468028,1467129","queryText":"zedstatistics","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","userRegionName":"","userRegionId":"id() {\n return this._region.id;\n }","yandexuid":"8135844991769274294","uid":"0","isChildAccount":false}},"deviceDetect":{"OSFamily":"Unknown","isTV":0,"x64":0,"GoogleToolBarVersion":"","MultiTouch":0,"BrowserBase":"","YandexBarVersion":"","isTablet":0,"YandexBar":0,"hasWebOmni":0,"isTouch":0,"hasYandexCamera":0,"isMobile":0,"DeviceKeyboard":"","device":"desktop","TurboAppPlatformVersion":"","historySupport":0,"BrowserShellVersion":"","DeviceVendor":"","isBrowser":0,"hasFlash":0,"MailRuSputnikVersion":"","isSameSiteSupported":0,"BrowserBaseVersion":"","BrowserVersionRaw":"","hasWebVert":0,"DeviceId":"","error":"","MailRuAgent":0,"ScreenWidth":0,"inAppBrowser":0,"hasHTML5":0,"isEmulator":0,"J2ME":0,"MailRuAgentVersion":"","BrowserEngineVersionRaw":"537.36","isRobot":1,"__is_plain":1,"BrowserEngineVersion":"0537.0036","BrowserName":"Unknown","DeviceModel":"","BrowserEngine":"WebKit","DeviceName":"","OSVersionRaw":"","OSName":"","GoogleToolBar":0,"ScreenSize":"","isTurboApp":0,"MailRuSputnik":0,"YaBuildName":"","isWAP":0,"PreferMobile":0,"DesktopMode":0,"BrowserVersion":"","BitsPerPixel":0,"BrowserShell":"","YaGUI":"","isBeta":0,"OSVersion":"","ScreenHeight":0},"nonce":"5601128638674825207168","disableDoc2DocHostLink":false,"shouldHideChannelLink":false,"disableChannelLink":false,"userConnectionRtt":159,"animated":false,"isDoc2DocScrollFix":true,"smartDesktopLayout":true,"enableVIImprovements":false,"enableLazyPoster":false,"isAdvDisabled":false,"shouldShowVideoPlaylistPane":false,"isVideoTranslationSupported":false,"isSummaryDisabled":false,"isSummaryOnlineEnabled":true,"shouldRenderBroSummaryApiContainer":false,"shouldDropLogs":false,"shouldUseBeacon":false,"hasAdBlock":false,"rknWarnHosts":[""],"relatedAdvRootMargin":400,"postInstreamScreenDuration":2000,"minVideoDurationForInstream":120,"isInstreamEnabledInTesting":false,"isFinalHeartbeatDisabledInNoJsApi":true,"wildcard":false,"isAdvUnderPlayerRedesign":false,"disableEarlyEventsInD2d":false,"isDoc2DocInstantLoadEnabled":true,"disableEarlyEventsUnsubscribe":false,"showDebugRelatedURL":false,"shouldUseBetaErrorLogging":false,"shouldShowMetaUnderPlayer":false,"isVideoViewerMetaTitleHidden":false,"isStickyPlayerDisabled":false,"headerNoFavicon":false,"headerBranded":false,"shouldCensorSensitiveContent":false,"isAdvUnderPlayerTransparent":false,"isDoc2DocGridLayoutEnabled":false,"detailsRedesignEnabled":false,"detailsRedesignV2Enabled":false,"detailsRedesignV3Enabled":false,"isIslandsDisabled":true,"isD2DEmptyLoadFixDisabled":false,"isRoundedPlayerEnabled":false,"isSettingsToolbarRedesign":true,"isDoc2DocEmptyRetryEnabled":false,"isAdvUnderPlayerWithBackdrop":false,"isTouchAdvWithBackdrop":false,"isDoc2DocErrorScreenEnabled":true,"isDoc2DocFeedbackKebabEnabled":true,"isCommentsEnabled":false,"isCommentsCountOnSnippetsEnabled":false,"criticalErrorCodes":["101","102","103","100","151","152","153","154","155","156","150"],"isVideoMainButtonInitiallyCollapsed":false,"isAdvUnderPlayerWithInnerPadding":false,"isKebabAdvancedActionsEnabled":false,"isKebabOnTouchVideoSearchEnabled":false,"isAdvVideoListLikeUnderPlayer":false,"isSummaryInMetaButtons":false,"isSummaryInMetaButtonsDesktop":false,"isMetaCommentsButtonEnabled":false,"preventAdvHideOnEmpty":false},"shouldShowAdvId":false,"isAdultQuery":false,"isSensitivePage":false,"showSensitive":false,"shouldReplaceHref":false},"user":{"tld":"com.tr","isEuDomain":false,"login":"","passportId":"","isLoggedIn":false,"locationName":"Columbus","isFamily":false,"yandexuid":"8135844991769274294","ugcCsrfToken":"","family":1,"isChild":false},"config":{"skinMode":"system","skin":"light","version":"releases-frontend-video-v1.1753.0__c83439c9643899cbfcbabfd82f198d10e202213a","isGridSupported":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"isSkinInitedOnClient":false},"counters":{"params":{"useBeacon":false,"clickHost":"gs.yandex.com.tr/clck","pid":197},"dict":{"viewer":"2921","user":"538","info":"1275","sources":"1500","select":"775","close":"486","open":"842","source":"186","link":"513","click":"882","tech":"690","player":"1242","change":"719","summary":"3410","init":"1309","item":"22","button":"440","shown":"3780","copy":"1276","text":"232","load":"1724","fallback":"2010","channel":"1345","hide":"1656","serp":"471","pager":"405","down":"601","up":"600","footer":"295","more":"75","page":"143","loaded":"1007","grid":"3223","support":"2458","client":"2989","layout":"54","list":"436","duration":"2136","within":"3247","on":"10","off":"11","host":"3052","supported":"3761","enable":"2396","disable":"2395","full":"318","video":"231","translation":"347","distrib":"316","onboarding":"2045","filters":"618","lang":"1144","advanced":"255","apply":"2461","reset":"3236","short":"142","toggle":"237","snippet":"254","icon":"1167","abuse":"1436","submit":"297","wizard":"358","incut":"1073","extralinks":"3557","show":"487","feedback":"296","out":"3218","popup":"1544","scroll":"768","retry":"3545","region":"287","help":"177","settings":"1137","recommendations":"2671","home":"1319","soo":"65","youtube":"624","google":"66","bing":"568"}},"clips":{"items":{"10337028713951463192":{"videoId":"10337028713951463192","docid":"34-2-12-Z566A4DA0464CCA66","description":"See the whole descriptive statistics playlist here:https://www.youtube.com/watch?v=bfQLNyiDPsk&list=PLTNMv857s9WVStKLco6ZBOsfSGXzJ1L0fSee all my videos at ht...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/1974186/af1858708102d5cd8c381ee907f78d7e/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/c-7sigAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"0","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DISaVvSO_3Sg","linkTemplate":"/video/preview/10337028713951463192?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What are \"moments\" in statistics? An intuitive video!","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=ISaVvSO_3Sg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxMDMzNzAyODcxMzk1MTQ2MzE5MloUMTAzMzcwMjg3MTM5NTE0NjMxOTJqkxcSATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8TrweCBCQBgAQrKosBEAEaeIEAEPr7_QQA9AILAAIE_gHj-AYG_QEBAOj9BQL__gEA_f769gEAAAD-B_QH_AAAAOr8AgQBAgAAAgv0AfAA_wAJ9wT5_gAAAAAH_QD_AQAA9Pv-_AMAAAARBff9AAAAAPwIAQH8_wAACv8CCwAAAAAH-AD-AAAAACAALZN52zs4E0AJSE5QAiqEAhAAGvABf-4AAI8R3vo8DfQAD_7ZAZEW8AAyEswAr-r-ALv19gDlB_QA2ejlAQQDBgDwCRgA1ybn_w4uEwAJ4Cv_Cw8UAAXvBwFI5AwBKAn4ABwb-gD1COb_Cgn-Agv4CAL9A-gAEesk_Qf73QEO_9gD2BUQAFQSEgL7_TADCQzuAf_-9Aja8QH-_fHwBPIS-wLk9isHHxHz__H66Pv2PBkBBtEa__MMDP4G6u4EAxbiBwsHAfoN-Q73J_3jA_z3DP0XHeIC7xj7-h75-QcJF_EGMw8BCjz2GADo4hH-_R71B_nzDQQTDvn0ywYK8-AB_gcYAPHvIAAtGCAkOzgTQAlIYVACKs8HEAAawAcEqge_KQievJirejycau09fm90u0kJBr3HIoc9fREjvBUDJLyrex-9vUVxvBujkjuyL-G-johzPILA0rr9vXQ-klRLvQOx7Dzv5pm9cQ5tPfoIAT0VHE6-rE3IPDWXHzsHmg8-Vt6EvEV4xTyydZo9pcvRvC3oAbypqsi7sl0mvV_BDL2-yPq8gLKOvaaNFD2xIok9NxwGvrz8lLuj0M87uVUOvInC3bxrcxC8tlfVPH2wDjx6tqi9ruLDuymL6zvikgM-h6OQPDgPTDy4g4U7bUXRPGZbvDwdhIo9ltEoPRxOzzxET-q912YIPfGYpjzELL89UWmEvMx5qzxM-vs9vngVPTP9Djv2DP678YWUPX_MPbzbTAo9_CL8PIzTtTwefIe9kwORPCfgsryEfhY-jXecvau1Tbvo7oS8xyVzPemuLTqhYoG9St6vPMi_A7zq48Y8evGPPdJvobszi1C8YHJjPVKj6zzaiIw9UpRwPM_2pjs7dMU9BwEeva4UG7x5zAC9T_dLvQnyHjxwCus8Re-5vfZH5bkW9pQ9rrYnvb55fbsZqHE95wqFPSXJczxqEMk7TJOtPHPIvDl2qty9jfzwvPyrBTxGM0C9larjvGuxALy5AC892c_iPcd3tTqdIWa8lBYOvZMtHryUqY09tzoqPcSZnTsozJW9gPkgvMtDrjtFMbe7jxjdPU2fdzojmiU9ANOIvUR_jDkCZj68bE0JvZuoZzuaZjU9gUjavDwkqbtflIW88LRGvGzIX7h4KbW8SrZavWjn_7kDDCa8SVjFPSJFrbZzEiq9wwM0vZ3cFjkC7yk9zRm2vJ0lFTjodiW9sQvQvBKrCLm4Tq08MZVePZxGjjip0yq7wF5hPN1bazYBRvw8-DsMvNlVHLlpD0U8uDISPfb1Nrk3_w89GNs6vWxgxLWatp89BEe4vM0bBzgPFgS9XHgaPMyuXbhtCKk8-MxIPCbJ4zRMrCe9bmY6u1273bi3z0-8yQiDvO-3pDju4JG9ij76PEIYorfPVJM9C7vDvN9d1rc5tJg9po-Kvcwd2jdveZO7czA2PbTFkLdUshe9c7g2vSiRWLc2i_y8-9vvvJL7h7gBbGA9DiuxPUmjmzhZh0O99rPYvPZXYTgHCEa9rhd5PCHEBjnfDMg8EclrvCvsBLiOSpA9fhyNvekWNThdMi69cPsOPM6sULZa_AE9AuF5vIkqwbdptbS7zjxUPXilEThIrQs9A3clPYb2eLg9utE8mvpvPXrIE7V7jiO9RDR6vcvoELcgADgTQAlIbVABKnMQABpgSwUAHuQRFsX2JvXnAdgG2vz4A_7p7_8GAQAII9jS5i7mtf0X_yTN-_iyAAAAHuUGKgkA0GsP2dxB3hny88Lt9RJ_8QEb3AIZ2LP6FwbcAAUl81wnAL7VuA8RK_k7FtEUIAAtDQoxOzgTQAlIb1ACKq8GEAwaoAYAAGxCAACowQAAfEIAAIhBAAAQQgAAQMEAAARCAABwwgAASMIAABhCAABwQQAAmEEAALLCAACOwgAAdEIAAAjCAAC4wQAAAEIAAKBBAAAMwgAAwkIAAHTCAAAAQQAAqEEAAAxCAAAgQQAAeMIAAIDAAABQQgAAlkIAAEzCAADAQQAAoMEAABBCAADWwgAAAMAAAATCAAAgwQAAAMAAANhBAAAAQQAADEIAAGRCAADAQQAAYMEAAPBBAACAwQAAAEAAAFBCAADAwQAAgEAAAMjBAADAwAAALEIAAFDBAADQQQAA6MEAAFRCAADwwQAAYEIAAMBBAABAQAAAoMAAAILCAACQwQAAAAAAAKBBAADAwAAAiMIAADRCAADAQAAAdEIAAKDCAAA4QgAAoEAAACDBAADIwQAAAEEAAMjBAACowQAAcMIAABhCAAAgQQAAOEIAAHBBAACAvwAAZMIAAIBBAACgwAAAcMEAAMBBAAB0QgAAAMAAABTCAACIQQAAFMIAAPDBAABwQQAALEIAABTCAABgQQAAgL8AAGBCAACAwgAAoMIAAGRCAAAgQgAAgEEAAPBBAABAwAAAFEIAAAxCAABwwQAAEMIAAIBCAABQQQAAYMEAAADCAACOwgAAnsIAAFzCAAAAwgAAuEEAACTCAAAwwgAAlkIAANBBAACgQAAAisIAAHDCAADgwAAAwEEAACDBAADGQgAAMMEAACTCAACgQAAANEIAAJrCAACawgAAkEEAAOBAAACAwAAAMMEAADBBAACgQAAAAEEAAARCAAAEQgAAMMEAADhCAACAvwAAwMEAAIjCAAB0QgAAGMIAAIpCAADowgAAoEAAAFxCAAAMwgAAEEIAAKDAAADwwQAAkMIAAFjCAACAPwAAcEEAAPBBAADAQQAADMIAABxCAABwwQAAAMEAABBBAADQQQAAoMAAAHTCAAAgQQAAAEIAAKBAAABEwgAAMMIAAKDBAADgQAAAsMEAALDBAACsQgAAQMAAAIDAAACAQAAAgD8AACxCAAAMQgAAMMEAAEhCAAAwwgAAWEIAADDCAAAQwiAAOBNACUh1UAEqjwIQABqAAgAAUL0AAIY-AAAwvQAABD4AAIC7AABEvgAAUD0AAK6-AAAEvgAAdL4AAHS-AADovQAAQLwAAGQ-AABcvgAAPL4AAGw-AAAQPQAAgLsAAP4-AAB_PwAApr4AACw-AADYvQAA-L0AANi9AAAMvgAAiD0AADC9AACKPgAAdD4AADC9AACoPQAADL4AABS-AAAwPQAAgj4AAMK-AAC2vgAAML0AAKC8AAAcvgAAHD4AAOC8AABEvgAAZD4AAII-AAAcvgAAor4AAFC9AAAMvgAATL4AABQ-AAAQvQAADD4AAMg9AAApPwAAoDwAANg9AAAEPgAAqr4AAOi9AABQvQAAnj4gADgTQAlIfFABKo8CEAEagAIAAJi9AAAkvgAAkr4AACO_AAA0PgAAEL0AAHQ-AACCvgAA4DwAAOA8AACIPQAAmL0AAGw-AABkvgAAND4AADC9AAD4PQAACz8AACy-AACiPgAAoDwAAIA7AABUPgAAcL0AABw-AABkPgAA4DwAAFA9AACIPQAAQLwAALg9AABwPQAAXL4AAMi9AACovQAA4LwAAEA8AAD4PQAALL4AACy-AACiPgAAoDwAAHw-AACIPQAAoLwAAEC8AAB_vwAAuL0AADy-AAAkPgAAML0AAIC7AABAvAAAmD0AABy-AABwPQAAcL0AAIA7AADYvQAAiL0AAKA8AADgvAAAgDsAALi9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=ISaVvSO_3Sg","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10337028713951463192"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"125579412"},"4540345910284890202":{"videoId":"4540345910284890202","docid":"34-9-16-Z03C158FAD8EA9E17","description":"See all my videos at http://www.zstatistics.com/videos/ 0:00 Introduction 0:27 Definition 5:09 Mean vs Median 8:17 Challenge Question Series music by Purdy. https://purdy.bandcamp.com/ Song: 3...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3570198/0a075397050547c2d5d200a32fb2a9a8/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/QhnIDwEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"1","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHUUyX80PUuI","linkTemplate":"/video/preview/4540345910284890202?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Descriptive Statistics: The Mode","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HUUyX80PUuI\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoVChM0NTQwMzQ1OTEwMjg0ODkwMjAyWhM0NTQwMzQ1OTEwMjg0ODkwMjAyapMXEgEwGAAiRRoxAAoqaGh2anl0eHVkbHF2ZnByZGhoVUM2QVZhMHZTckNwdXNrekdEREt6X0VREgIAEioQwg8PGg8_E9MEggQkAYAEKyqLARABGniB8wkHCP8CAPoKAPv9AwAB-vwE_fn9_QDcAQ3-BfoDAAQBAf7_AQAA7gTuBP0AAADxAAYAAAAAAPj7_gcDAAAAFvn7AP8AAAAKDwMA_gEAAAYB-fj4AgABBQP9BAAAAADsAgYCAgD_AAUGAxQAAAAADfn3BQAAAAAgAC3ZfdY7OBNACUhOUAIqhAIQABrwAX_38gKz__39K_75APTp5ACHFPD_Kw_TAKX1CwHWEeAA5P8RANjt-AD38Qv_-_0f_9cMAf8MKBAA6_UZAB4FDQAJ9BYAOObzATERA__7DfcA_hj6_wTu9gAE9RX_9Qj1AinfFP4P-s4BCQvrAuQGFANI_AgC_-gbAg0M-gPv_uUB3v_2AP3o5QD69fz84QMbAhwb0f7z--z8BwcNBfThHQTtHw4A_QL2_PoT8wEKBgH7C_r9-g0T9Ajy3QX6EyLz--wK_gMHDQUL_gTvCBkZ-QUz-BUA7OYO__0a9wb0CAQDCxYE8ukQB_bqFQwGCfH8BiAALae6Pjs4E0AJSGFQAirPBxAAGsAHrDgJv7oV3Ty_RQa80BDJPVC9vzwLMOK7ByzEPaV5sjv6IVu8FqH9vKZdcT2qwrg7si_hvo6IczyCwNK6_tWLPiDEnzyGqTE751TSvYdDID2feKk89aFrvoTTBz10NcO7B5oPPlbehLxFeMU84Nl-PVJxTb3NN0e8rkUQPYOcwTxV7Lm86-Z9vYmukL3-HiM81-rBPTfwlL0J6R88-dCPPYVEir2uoMS8A8UXvFRCZj1cwFO7dvk7vf_jKTxLTUw84pIDPoejkDw4D0w86Lc0PUcvNDznVw48VMNePf9x5zye7hw9MhNWvdBCAj2GOs060qOOPZmkDb1Q37I8TPr7Pb54FT0z_Q47ZjBmPQvKmT3zgZO8Iq53PIBmSz273mw8wUwAvX-0ST1TfYK8qTLsPfE_g70RFbI721d5veOfIz2og8a8e-yIvUZrWz1oXUQ7OeCpPfX7mT3gaAW8MJZzvfJmaDwmk648BVEXPbaIKboe_ES8NEfWPfQ2NryhZz26U7CGPLElNb32RaE7L058PB8kNb0FyMw76k2rPUnDhLokptm7GahxPecKhT0lyXM8YdiGvKDqf7nKxbW7eGKWvS_V8bxd4gY70TIaPOeMSL3ZPDM8TRILPSYRuz1c9eu7aGm8u7PVIbzVLKc7lKmNPbc6Kj3EmZ07zO65vdL2ubytr4U7zP8zu2NylD1UOMS6OzxfPKrcn72zYEY6wW2zu48cabxmlJm7lhV5PV_R7bzKf1Q6X5SFvPC0RrxsyF-4N081vQgjMb0y0YC6JNDFvG0mVT1B2aU3qSKmvHViRbxD0c24BnYmPerbiL0CzWY4qT-Qux9fJ72Tjp04GU10u1RrhjxQyLy5h-T_PO67_Tzynac5ck0hPT1WOrySkwS6OJagOgL-3zzgxUi3wqLiPAa4oLwesSS4WaKIPQSCrTuOVvc4F8GavK4MTzwtk2E5BYQcvFm6JzzIAxu2cAorvXE5nrzLPoW4gpi-uuuz-byDyaM4RhomvX7XET1QACO3R_LLPDd_nbwlvBC5GuflPF0Pa724sI03YleJvKhiVzveYEG4JGHfvNgik73XzCM5WadKvTZHDL0BV0s3nZllPcPU1j2QobY4x87ju7LOsr2KOny3ovtovSz5Mz1hTu03l6ufPGNlz7yJytY3rvWlPdWdIr1sAXE4_m2FvbOKqzpF-La3dkMkPcJNxrwIC7O3y24BvSZX8T1yj7K4PCn6u1UqbT3gMo24_xauPM3nrD3AwBa4VDbsvEb4jb3OBtC3IAA4E0AJSG1QASpzEAAaYCkMACPWGe_ZG2cA8evIGOn6Jv3nwAz_ICUAvDjS4u4j39EIBgA0w-3_pQAAABYPMD79ANx_187dGs8jINzQEAcOdD0zE6cK58_pECQMyQH9OecYMwC9wZQOLDP0PwXiBSAALXnIGjs4E0AJSG9QAiqvBhAMGqAGAACGQgAAoMEAAI5CAABAwAAAOEIAAIBAAAAwQQAAdMIAAEjCAAAQQgAA4MAAAABCAACiwgAAjMIAAFhCAAAAwgAAJMIAAPBBAABAQAAASMIAAJ5CAACGwgAAAEAAACRCAAD4QQAA4EAAAHTCAADgwAAAMEIAAKZCAACWwgAAwEEAAKDBAADIQQAAmMIAAABAAAAcwgAAgL8AAEDAAADAQQAAsEEAANBBAACKQgAAyEEAANDBAACgQQAAgMAAAFBBAABEQgAANMIAAODAAABAwQAA4MAAAKhBAACAwQAAEEEAAJjBAACIQgAAIMIAAHRCAADwQQAAgEEAAADAAACcwgAAoMEAAADBAABwQQAAQMEAAHzCAAD4QQAAQEAAAHhCAAC2wgAAdEIAADBBAABwwQAAmMEAAJBBAACowQAAsMEAAGjCAAAUQgAAcEEAANBBAADgQQAAQMEAADjCAACIQQAAEEEAABBBAABAwAAAcEIAACDBAACAwgAAkEEAAPDBAADIwQAAoEEAAFRCAAAcwgAAUEEAAIBAAABcQgAAqMIAAKrCAACAQgAAAEIAAABBAAAEQgAAEMEAABxCAAAYQgAAoMEAACDCAABsQgAANEIAAIDBAAAQwgAAZMIAAJjCAABQwgAA4MEAAIBAAABAwgAAoMEAAIBCAACQQQAAEMEAAIDCAACMwgAAQEAAAARCAACAPwAAxEIAACDBAABAwgAAgD8AAEBCAACSwgAAjMIAAIBBAABgQQAAEEEAAODAAAC4QQAAwEAAAGBBAAAEQgAADEIAABDBAAAsQgAAgL8AAOjBAACAwgAAgkIAACDCAAB8QgAAyMIAAFDBAABUQgAAyMEAAPBBAADgQAAAMMIAAIjCAAA8wgAAyEEAAIBBAADYQQAAgEEAAPDBAAA8QgAAQMEAAHDBAAAAQAAAwEEAAIjBAACKwgAAEEEAABRCAACAwQAAJMIAADDBAAAIwgAAAEAAAKjBAABAwQAAkkIAAEBBAACgwAAAAEAAAIC_AAAgQgAAIEIAAMDBAAD4QQAAbMIAAIZCAAD4wQAALMIgADgTQAlIdVABKo8CEAAagAIAAKg9AADgPAAAyD0AAJg9AACgPAAAiD0AAOg9AAC6vgAAhr4AAHC9AACWvgAAgLsAAOi9AAAUPgAABL4AABS-AAB0PgAAED0AAHA9AACuPgAAfz8AAJa-AAC4PQAAED0AAOC8AAA0vgAAcD0AAIg9AAAcvgAAZD4AABw-AADIvQAAJD4AAKi9AADoPQAAgDsAAJg9AACavgAAtr4AAHA9AACOvgAA4LwAAAQ-AAAUvgAAPL4AABw-AACGPgAAgDsAAFy-AACgvAAAEL0AAJg9AACIPQAAFL4AALi9AADgvAAAKz8AAPg9AACaPgAAED0AAOC8AABwvQAAgDsAAII-IAA4E0AJSHxQASqPAhABGoACAACivgAAoDwAAHC9AAAnvwAAjj4AANg9AAC4vQAAHL4AAOC8AADYPQAA-L0AAEA8AAAwPQAAHL4AADw-AACgvAAAoDwAAFE_AACGvgAAXD4AAJg9AABAvAAAnj4AANi9AADgvAAAgj4AAKC8AABEPgAAuD0AAKC8AADIPQAAiD0AAIi9AACGvgAAUD0AADw-AAAkPgAAFD4AAAS-AACSvgAATD4AAPi9AABQPQAAgDsAADC9AACgPAAAf78AAHS-AAA8vgAA0j4AADC9AACgPAAABD4AAII-AABAvAAAgLsAAIC7AADoPQAAgDsAAFC9AAAEPgAALD4AAJY-AADYvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=HUUyX80PUuI","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["4540345910284890202"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2127534407"},"1733198795697780309":{"videoId":"1733198795697780309","docid":"34-9-3-Z61B8582B1B8F4A20","description":"See the whole descriptive statistics playlist here: • Descriptive Statistics (13 videos) See all my videos at http://www.zstatistics.com/videos/ 0:00 Introduction 0:53 Definition 3:30 Weighted...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2121721/0c45198df34868b4abd81c9810c7a7a1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zbdKcQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"2","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DbfQLNyiDPsk","linkTemplate":"/video/preview/1733198795697780309?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Descriptive Statistics: The Mean","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bfQLNyiDPsk\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoVChMxNzMzMTk4Nzk1Njk3NzgwMzA5WhMxNzMzMTk4Nzk1Njk3NzgwMzA5aogXEgEwGAAiRRoxAAoqaGh2anl0eHVkbHF2ZnByZGhoVUM2QVZhMHZTckNwdXNrekdEREt6X0VREgIAEioQwg8PGg8_E6QEggQkAYAEKyqLARABGniB-AkPAQAAAA8LBP_9BQAA7Ar7Awj_AADr_Q34-f8BAAUB-gH2AQAA_gjzB_wAAADrBvz8AgEAAPz_BPv8AAAADfoAAAEAAAAOGfoC_gEAAPgJ9gID_wAAAP8ACgAAAADzEQ0H_gAAAAv_9g8AAAAAEvX9_QABAAAgAC3KANE7OBNACUhOUAIqhAIQABrwAX_eCQGgIPP7QgwIAA7d4wCzCf8AGSHlAKcDCwDf8_AB6A8RAMfh7v_xBPMA7fguAOAK8f8C_RsAJN0MAA0fEwD59RYAPuPyAScZBAD6DvYA-_4L_-rnCQEA4QgACubo__L0GP0Q-coBGt3bAPIDFgFHHSICzfcO_-7n9wH7A-n-5vTy_v3y8QQMCv0HyOwOABAL7gHyHuoEES0JBB_wGf3kBRoD5_EGAwMV4wYb_Pb5AvAA9_L26_jv_AIBIgfw-PoRBvoP_w8IB_byBiQKBPM99AUK7N0AAvMO4AMO7wcMBR4G_PMY9vTQIQUAFAP9ACAALTLpLTs4E0AJSGFQAirPBxAAGsAHuqP3vjGDpzwifF48Ndq1PU1PMzwryCW9guEcPU9x3jsMgCe8BFqavYj7IzyOFjE8si_hvo6IczyCwNK6FJRCPkZFHL1z6AC856fYvZxTyTwA4i479aFrvoTTBz10NcO7JmeyPbMxBjvR05s8b8ACPTjRU70KCaK8X2VIPNCdYDzzmFy88Mk7O6rQZb3SI3w81-rBPTfwlL0J6R88-dCPPYVEir2uoMS8A8UXvFRCZj1cwFO7umetvUFSGr2Z2UI8HejBPYb8frnqSY88nFg2vS2eNb2Q4-I88zzYPYAfjz32DUw8RE_qvddmCD3xmKY8vFpuPbeLvDp25a87tLAHPulOiz09pHM8RG-xPNwDfj2bZ7a8PghhPahCoj0oKfA8ipUsvOWfdDw34zS88WY9Pn01Ub2Jcci76Y3JvOfC7Tzk7pi7e-yIvUZrWz1oXUQ73Ws3PYycqj0EfoO86s9evWP8Sj0d8sU8CoaePT7uVzvi6Cq8T1xuPZG3PD1hfAe74eEHPdlF7LyRcRY8Pc3NO_g7j72omDk8GfDIPRJvuLxr3ie8S3ZsPQ3twj055qM7Nd6MvAcuqrz6eTY7ajGIvfYfXr1pdAO5F5kjvGcsdb2LuEo8zxmsvFupoT0sVXW72y56uy__ujsGuU2705SjPXuOfj0B9eo7ZoRXvTaSBL0sEPs7MQKPvADQjD1yIaQ7mzeTPR8tzr2Mk0U6D4F-PCKQhr3GgxA7qdSBPT1wX7wINSa7zGG3vOMtXL0S8II3rnQGPME7Wb3UrwG5aUQfve28nT0CB6C55EJPvXrjBL1Ur7W4FdeCPYlNWr0565M4zrj6vMaOAb0SaMa3rGg9PEipJD0lyfK51qJLO928JroC5AQ48bkzPRBV3Tx1ZWC54q3zPN6wCD2gE8O4yHSNPMebPL3EoJC4yBe-PeTq0byWvQM4CgahPN7fRbzey_Q56h4evcgXjj05yUc438csvRzMSzxuY5C54gQmPXwltbyHmR24XRfhu5dssT1do2U40f2xPdI9Br1IRRA4ge2LPQjKTb3nrKA4rCepPFgN-LyrNrk4LWQHvBgQgL0fkgI5QNXNPAriUTsCDso3AWxgPQ4rsT1Jo5s474BhvVqhmL2QD484GuLzvLmDXT3dIpO3d-kGtw3TKL26Uh83eNyWPZl2W73hv8c4eaDEvCuVprxeV9m3bYaAPa1mgrxjWm64y24BvSZX8T1yj7K4tVdaPdKyhD2R2bu4NdogPQtSnzyrfRq4e7o_vVELD73IH7e3IAA4E0AJSG1QASpzEAAaYEoMACLjGALQ8XX5B_vDGt3qJ-vkwAf_ARf_xCnU2_kR0uAPAwAs0QjgpgAAABUYIUj0ANZ_4tjmH-f4KNzl2xsCdzo5GsP849P0FBoYvQApQt02OADBy5wFNjPrS-PoBCAALYZhGjs4E0AJSG9QAiqvBhAMGqAGAABkQgAAAMIAAHhCAACAQQAANEIAABBBAADgQQAALMIAACTCAAD4QQAAMEEAANhBAACwwgAAkMIAAGRCAADwwQAA6MEAAMBBAACAPwAA-MEAANBCAACAwgAAAMAAAKhBAADwQQAAmEEAAJTCAACAPwAAcEIAALJCAAAowgAAAEEAAAzCAADQQQAAvMIAAMDAAACowQAAgMAAAIA_AACQQQAAAEEAADBCAACSQgAA6EEAAKBAAAAAQQAAsMEAAKhBAACEQgAAOMIAAAAAAADQwQAAQMAAACBCAABQwQAAqEEAAKjBAABgQgAACMIAAGBCAACwQQAAQMEAAIjBAACIwgAAuMEAAJhBAABAQQAAkMEAAIDCAAD4QQAAAEEAAERCAACuwgAAaEIAAEDAAADAwQAAwMEAAEBBAADIwQAAsMEAAHTCAABAQgAAsEEAAFhCAAAwQQAAAMAAAGDCAACoQQAAAAAAAMBAAAAgQQAAeEIAAIC_AACCwgAAcEEAAOjBAADIwQAAQEEAAIJCAADAwQAA0EEAAMBAAABkQgAAYMIAALTCAAA8QgAAEEIAAMBAAADgQQAAAAAAADhCAADIQQAAwMEAADTCAAB0QgAAIEEAALDBAADowQAAcMIAAIrCAABgwgAAsMEAAFBBAAAkwgAAuMEAAJhCAACgQQAAMMEAAHzCAABwwgAAwEAAAOBBAACAwAAAukIAADDBAABQwgAAAEEAAFRCAACcwgAAgMIAAIBAAADYQQAAiEEAACDBAACoQQAA4EAAAIBAAAAAQgAAoEEAAJjBAAAgQgAAAMAAANjBAACkwgAAXEIAABTCAAB8QgAA0MIAAODAAACEQgAA2MEAAABCAACgQAAAmMEAAGTCAABkwgAA-EEAAGBBAAAQQgAAFEIAADTCAABMQgAAgMEAAAAAAAAwQQAAAEEAAABAAABwwgAAmEEAABhCAABQwQAAMMIAANjBAADYwQAAMEEAANDBAACAvwAAnEIAAOBAAAAwwQAAqEEAAAAAAAAIQgAAGEIAAJjBAAAAQgAALMIAAFBCAAA4wgAAQMIgADgTQAlIdVABKo8CEAAagAIAAFC9AAAUvgAABD4AAOi9AAD4vQAA2L0AAHA9AADOvgAAJL4AAFC9AABMvgAAoLwAAOi9AABEPgAAXL4AADS-AAAcPgAAQLwAACw-AADaPgAAfz8AALK-AAAUPgAA6L0AALi9AABkvgAAyD0AAEw-AABMvgAAZD4AACQ-AADovQAAND4AAJi9AACgvAAAED0AACw-AACevgAAtr4AAKg9AACevgAA-L0AAFQ-AACYvQAAfL4AAOg9AACyPgAAiL0AAIK-AACYPQAAFL4AABA9AACoPQAALL4AAFy-AAAQPQAANz8AACw-AACGPgAAoLwAAAS-AADgvAAAgDsAAAw-IAA4E0AJSHxQASqPAhABGoACAABQvQAAQDwAADS-AAAfvwAAFD4AACQ-AACYPQAAZL4AAIA7AACGPgAAoLwAAFC9AADoPQAANL4AAJg9AACgPAAAJD4AAEU_AACCvgAAlj4AAPg9AAD4vQAAmj4AAHC9AACAOwAAzj4AAKC8AAAkPgAABD4AAJg9AACIPQAAMD0AAGy-AACevgAANL4AAI4-AADYPQAAUD0AANi9AADuvgAAfD4AADA9AAA8PgAA4LwAAIg9AACmPgAAf78AAJK-AABkvgAAjj4AAKi9AACIPQAAcD0AACw-AABUvgAAMD0AAEC8AAAwPQAAUD0AAIC7AAAMPgAAQDwAADQ-AADovSAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=bfQLNyiDPsk","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["1733198795697780309"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4057748056"},"100536450673434026":{"videoId":"100536450673434026","docid":"34-10-14-Z343C4F7B2F34C808","description":"See all my videos at: https://www.zstatistics.com/videos0:00 Introduction2:46 Objectives of regression4:43 Population regression equation9:34 Sample regressi...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3435353/5871547e4d7fdc0ef1d154bf223dfa19/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/BGUXMwIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"3","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DeYTumjgE2IY","linkTemplate":"/video/preview/100536450673434026?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Learn Statistical Regression in 40 mins! My best video ever. Legit.","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=eYTumjgE2IY\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoUChIxMDA1MzY0NTA2NzM0MzQwMjZaEjEwMDUzNjQ1MDY3MzQzNDAyNmqIFxIBMBgAIkUaMQAKKmhodmp5dHh1ZGxxdmZwcmRoaFVDNkFWYTB2U3JDcHVza3pHRERLel9FURICABIqEMIPDxoPPxP4EoIEJAGABCsqiwEQARp4gQH8B_kAAAD-CggBBAX9AQEI_gj3_v4A7vgQBQcBAAAE9fv3BQEAAO8JAAEAAAAA9vL9Cff_AQAW_Qz2BAAAAB8ACf_6AAAABAX-9P4BAAAB9f7tAQAAAAgEAgoAAAAA_AEDBv7_AAD5EP0HAAAAAAn-BAYAAAAAIAAtp-LTOzgTQAlITlACKoQCEAAa8AF_DvYC1vcN_wX25ADiKhMBrBAKACoP1ACwACICvg_X_wgI-QDc7gsAHf8OAPwODP_--v3_DOIEAPMEFQBJEhD_GgIBADfm8wEx9PAA9Q7r_wEC9AEa8AQAHO33ABAB9QAXDi3_2h3e_RL19AIRAhcADOgPAw7y_QMO8Q__zgX5Af3s5v4LAwQA4e4G-gEmGQHT3RIADgwOAwzUBvv28d3_DvzzBxbjBfj8CfoH__UC_fcXCgb_-_sA-fIGB-cTHQH8-AwBCAwNAeQYBf8U-PkB--oRAfna9_oaIfMKCgEC9_EC9fbX9xT_3Bb6CvL4-v8gAC2vCUM7OBNACUhhUAIqzwcQABrABw5oDb_qiA092FpJvec6jT1evrU9TgIGPHyhmzwi3RQ9gMRlPNiLOjsb94E8U0MWvZfHqr4Tx-w7vhGdvMZrpj7IqlI86ZctvDV5Or4Oq5E7Sn5EPPWha76E0wc9dDXDuwlrIz6sKR89o3nAPGFdiz1SD9E8kAsTPW4bIzyqJo29PvH3vA9YQ70_GWO8bInmvEKguT3bfRi9uAT9O8jUGD1sy0W9iFyZu4JeE72TXUQ8Oy86PNlkiL0eFxU9TfbPPPc_ED4XoG28n0nyO6lO5z3LxOM8LoRmvFChXz3wdta7a5iGvO7WDb2bgkY8B93zO7sqwD2mbCc98mV9PIZ3hL1HVC0935m7uz7qvz3otPg8dgqPt1t6tLzwnb08UYLjPKHccT1bFCw8gWi5u8bLaT0bJRS9vg33O-juhLzHJXM96a4tOtGFhzwaj4w6J1cIuwFvnrsmrI09Trj5OUEnKb1Z9sk8tRyDPCcHrb0XVmC89Pt-vJjCsz2lY4O9YqSyvM8DDj3feTi9Sw-3O6ovZj3WTOO83uoWvFUwqrwSdCo99lOMOw_wlD3gMFG88sPSO7JbdT3cZ3U9eAayuzMD8Lwp3AG9llCLvI510T1f4lm8myqOPAiSFz3B39S872QBPPxlQbyF7Nm7h0I6vIUntLwsRt08uZBkO63lxL2Fx-M8RcHGOpsbqD3HybM7TqgWO8XaKbxyLX-8Rmf0Ohfeiz0imcA7tyiSu68y5DtGW9W8ccE-ulbT9Ty5YJo98w4ruXgptbxKtlq9aOf_ubcp_Tp_ukY9NfpOOTni-7tYAR-8b3OsOeD4Fb1nU2S9UuspuHUulrzl0Q29i5iLuUa5L73cxQq9eEWzuUWNOD3BbAc9CtIeOdK-fr2ATgA6GdAyup1SNL03n389mISSuMkfCryR4YK8Yhq-uDF_YD3GK5o82Ar9OG0xyTwoSfK8tJ6sOIhQAL2uwt67tANauCLddLzXs5A7D7T4uHisI7yun349fQTTOBNjWb3Ouxs9P388OI1UKbwGKgO9zZiRN7-5nrofnbq8ea49N5RfR7oNZwY8HjFlN0TKSr1WC5G85lf_twexs7yBQRA7avJkN30geT2wIgI8z7etN7RVrjzuMUe8gEyft4-hmD3z3yi8lSceuRmbbL2JhOW8tErONw2fujvPXFG9oUWutlm0LTu7U3A704EhuEMiyDylTdW9UAd3uKAXDj0XJb09KH8AOR44gr0z8549nOfyuN4R37u-E7M8Wmitt720ErpZn5e98mYzuCAAOBNACUhtUAEqcxAAGmAzAQAiDRH9uAYl68vu8g0DIh_S-s8BAA4eAOUq788EGPjFBhP_EeTvBbcAAAAO_fgXHgD6ZsjW1hv64wfAt__7CH_mAArm_Ef6Ae4DAOb0Ek8EUUIAA-K9DyQB7zwJ7hkgAC2rqTk7OBNACUhvUAIqrwYQDBqgBgAAkEEAAMBAAADIQQAAYMIAAEBAAADAQQAAmkIAAODBAABQwgAA6MEAAFDBAAAkQgAAgMIAAODBAAAUQgAAAEAAAFBBAACgwQAAAAAAADjCAADOQgAAosIAAEBAAAAkQgAAdEIAADDCAACiwgAAkMEAAAxCAACEQgAAGMIAAGBBAABAwQAAiEEAABDCAAAgQQAATMIAAABBAABgwQAADMIAAIhBAABMQgAA4EAAAABAAADAwAAAgD8AAABAAAC4wQAACEIAALjBAADoQQAAUMIAAETCAABQQQAAgL8AAEDAAAAwwgAA4EAAAOBAAACaQgAAhkIAAGDCAACIwQAAssIAAKBBAAAgwgAAfEIAAETCAACSwgAAcEEAADBBAACgQAAAisIAAIhBAACAwQAAMMIAALBBAADgwAAAkEEAAEDAAABIwgAAIEIAAABAAACoQQAATEIAADjCAAAUwgAAPEIAADBCAAD4QQAANEIAABRCAACIwgAAqMEAABjCAAAAwwAAiMEAAJBBAADQQQAAQMEAAJDBAADoQQAAAEIAADjCAACQwgAAKEIAADBBAADYQQAAEEIAAOhBAADQwQAA4EAAACDCAAAcQgAAOEIAAKBBAAD4QQAAXMIAALTCAACgwgAA4MAAAJDBAAC4wQAAnMIAAKBBAAAAQgAAkEEAAIC_AAAowgAA4MAAAKjBAACQwQAAQEAAAKJCAAAAwAAAAEAAANhBAABAwQAAbMIAAEDCAACKQgAAkEEAAMjBAAAAQAAAEEIAAAhCAAAgwQAA2MEAAJhBAADgQAAAgEAAAIBBAAAAAAAAWMIAACRCAACIwQAAAMIAAJrCAABAwAAArkIAAHTCAAB8QgAAnEIAAFzCAADIQQAAdMIAAGBBAADwQQAAoMAAAGDCAAAIwgAA4EAAABzCAABUwgAABMIAACBBAAAgwQAAjMIAAEDAAAAAQgAAQMEAAIBAAADwwQAAqEEAAExCAACQwQAAYMEAAFBBAADAwQAAQEAAAGTCAAAAQgAAYEIAAKBBAAD4QQAAQMEAAIC_AAA4QgAAHMIAAABAIAA4E0AJSHVQASqPAhAAGoACAACCvgAAjj4AANg9AAA0PgAAdD4AAJI-AAC4vQAAB78AAAy-AACYvQAAor4AAMg9AAD4PQAAqD0AAFC9AAD4PQAA2D0AADA9AAA0PgAARz8AAH8_AADgvAAARD4AAOA8AACovQAALD4AACy-AABwPQAARL4AAHQ-AAD4PQAAuD0AANg9AABAvAAAiD0AABQ-AACCvgAAPL4AAKq-AAA0vgAABL4AAOC8AAAEPgAATL4AAKC8AAD4PQAAoLwAAHy-AAB0vgAAhr4AAOC8AACAOwAAPD4AADQ-AACOvgAAcL0AACk_AACePgAAoLwAAIo-AABMvgAAiD0AALi9AAB8PiAAOBNACUh8UAEqjwIQARqAAgAApr4AAIC7AABAvAAAf78AABA9AABwvQAAmD0AANi9AADIvQAABD4AALg9AABQvQAAyL0AAAy-AAAwPQAAQLwAAIi9AAA_PwAAFD4AAGw-AACgvAAAJL4AADQ-AAAsvgAAcL0AAGw-AABsvgAAQDwAAKA8AACIPQAAgLsAAKA8AADIPQAApr4AALg9AAD4vQAAiL0AAEA8AADovQAAFL4AACQ-AAAwPQAAoDwAAIC7AADIvQAAoDwAAH-_AAAcvgAA-D0AACQ-AACOPgAAML0AABw-AABcPgAAUL0AABC9AACgvAAA4LwAADA9AACOvgAAij4AAFA9AAAwvQAAuL0gADgTQAlIfFABMAk4AUoAYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=eYTumjgE2IY","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["100536450673434026"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"325282639"},"3704266759468091280":{"videoId":"3704266759468091280","docid":"34-9-6-Z5BE0AE48277C570E","description":"what is statistics...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3637709/39ae4c804038d1f360e86a1c3e01c1c2/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/0ZuEcAAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"5","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkyjlxsLW1Is","linkTemplate":"/video/preview/3704266759468091280?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Teach me Statistics in half an hour! Seriously.","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=kyjlxsLW1Is\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoVChMzNzA0MjY2NzU5NDY4MDkxMjgwWhMzNzA0MjY2NzU5NDY4MDkxMjgwapMXEgEwGAAiRRoxAAoqaGh2anl0eHVkbHF2ZnByZGhoVUM2QVZhMHZTckNwdXNrekdEREt6X0VREgIAEioQwg8PGg8_E-ATggQkAYAEKyqLARABGniB_BcL_QT8AO8F9fb9AAEA4AkNBPwBAQDp_Q74-f8BAAUI7fcAAQAA-QTwCQgAAAD28f0K9_8BAAv8CQn4AAAACvUBB_EBAAASEvn4_gEAAPnwAPcDAAAADvwFAP8AAAAECQACB_oC_xYKAw0AAAAABQH7BQAAAAAgAC33Y8Q7OBNACUhOUAIqhAIQABrwAX8A9QPBGPz-WvvoAeEEAwGPE_H_H__iALQDCQDZEOIA9AXXANru-QAT-xb__A0L_xjt_f8O8wkBCwoI_xEZ-gABEw4BG-D3ASr85gELAOv_-gP-_w3dBgAb7vcAEQgJ_w0IBADgBuMAFv3qAPYEBv8KBhADCvcLBgz88gL9CAAE79wM_gPgDwL8DPID_esS_vLvAvv5Ahb86fAIBP4N4wP96gP8IvwM_fvy-AoA6eT-CgYR_BEC9wEW-xoE9PvpByX8BQgV_vL60gT6AicTD_779hf2_OYH-_YU7_gD5RIB2QT7AusREv_k7AIBAgsE8yAALfclTTs4E0AJSGFQAirPBxAAGsAHDmgNv-qIDT3YWkm9d1EPPfwBmj0kMw-8qgVbPR1rED0chsW8PqnLvWFkkzwiNhi9l8eqvhPH7Du-EZ28_tWLPiDEnzyGqTE7dckovtpUnT2TkKM8m3YhvholOb0bUAg7B5oPPlbehLxFeMU8LfqkPXt8Zzy_oGA8qarIu7JdJr1fwQy9FmoNvp5OVTqROWA8ZeQcPoZisb3CVNC67a-IPYPuHL0u2mu79SVAPIe_prygbIq8Xi4ivk2PnDxYnaY8hNjZPdT1nzx3nTc6--TNPPZGDT00xfM6KDA4Pdbpm7xLy-U7fi4kvUpR-Dzeca88gjRoPSlVx7uBSPU83rDtvJvVMT3Z9iw8GyqbPVidRj3fTC-7F094Pfruhj3OWDA7TV7su1s2ZD3Tgxk6pWglPtj4p7xOSJY5QoiFvW0-CT1zJme5VOvzvMXMOb3tKPM8umMWPeT2yzym1Yy76kFhvS7oGLySXq883IsevQPSfjyJwAm8Rx8jPnCt27z-vve7OU_rvD8ZEjrvm1I7tn7hulcCTrzdyYy8JeJyPRYgwDwak4w4SzpKPCAKprzya1o8E-OrPJ1Rjj38o3O7TLpXvVHngLz5Miy8wUIcvCrESLt_pyS8GPpxPZP-3rsne7a72-MgvVgHm7z-eui7BKZYPeFwMD3yIIO7ic9dvbDbsTqK6565daKuPcbNnzw3Lue7qsiSvXe0q72SYmq5ZFkTOwSPDz3Johe7cHiRPTrAPb0jL626NLURPYXHiLxyH7G6j6hwvXpMKb1ZEDu5p8CTPFJVoj3mVS85VDbsPFlWNb3cxSM5a-M-PHQInLxttWy5ekMQvWsFMr1BaEK4QwiDvUOWoLxfpwG6mbj2ux6U5jyjHxE7_uYPPWMwmjxibca53zTgusNOrD3qCRW4atX0OwVOlr2gNjM4G5CuPf_q8bu29iY5oB8BvUksqTzrG1o5dJIyPZXFFLx7AB84LuKQvf4HHDyu5Qm5N0P9u9DKAj0L5EA5MGZLvPk04TtWwxu4j3gJO_6eyL3x7a84zMgKvbNPNr22j9U4vDrLu7hcmDy-0JI2c6PjvIJ2Ar11sT430GE-vD5WVb0teEa4gtWSPXME-rwL3zu2DqY8PDoC2bviNkE4bzr4vHEzIjtrrUs23wzIPBHJa7wr7AS4O_5LPYiBrjyCE8o24IIMvRDWtbwsE7S27AO9O3zUD74X-ty4ITK2PDs54z0EGwY54hiuPG-loj1MJ1K4_ANAPCJs3TzXIoy4-ckHvCCBGr1ufJ23IAA4E0AJSG1QASpzEAAaYFEHADntAAG38jDdFufg8_Ia--T_uuL_9h4A0h7t89ci-cAnLv9czt7wpwAAACPj7CszAP9_EsjLN9_jBebK2gsCbPIzIu7XC_7ADzYA1RsuJ9teSgDK7ZEUGtscPgQC7SAALQ7AGzs4E0AJSG9QAiqvBhAMGqAGAABgQgAAMMEAAFRCAABAwQAAMEEAAGDBAAAYQgAAiMEAAIjCAABYQgAA4MAAAAxCAACmwgAAQMEAAJhCAACQwgAAIEEAADzCAACYwQAAJMIAAAxCAACIwQAAoEAAAOhBAACWQgAAgEAAAFTCAAAwwgAAQEIAAJBCAAAUwgAASEIAAPDBAAAAwAAAusIAAIA_AAAwwgAAZEIAADBCAAAAwAAAwMAAAFRCAAAIQgAA8EEAAOBAAACYwQAAiMEAAHDBAAAEQgAAmMEAADTCAAAQwQAAwMAAABDBAAAwQQAAAEEAAEjCAADoQQAAYMEAABRCAABAQgAAwEEAABDCAABMwgAAoEEAAFBBAAC4QQAAVMIAADDCAACowQAAkkIAAJJCAACUwgAAPEIAAGxCAADmwgAAgEAAAKBAAADIQQAAsMEAAJLCAAAAQAAA2EEAADxCAAAIQgAAgEAAANDBAACIQgAAAEAAAEjCAABwwQAAqEIAAIhBAACWwgAAQEEAAKLCAADgwAAAikIAAIpCAACYwQAAHMIAAGBCAACGQgAAeMIAAIbCAAAIQgAAcEEAAAxCAADAQAAAHEIAAOhBAAC4wQAA6MEAAHDBAADoQQAAgL8AAHDCAAAQwgAA0MEAAKjCAABwwQAAiMEAAJDBAADIwQAAREIAAIZCAABgQQAAiMEAAAzCAAD4wQAAcMEAAEDAAAAwQQAAjkIAAABAAACAQAAAZEIAAChCAACWwgAAFMIAAEDBAADAwAAAoEAAANDBAAAgQQAAyEEAACzCAABAQAAA0EEAAFDBAAAIQgAAmEEAAGBBAACwwQAAkEEAAKjBAACIwQAAcMIAAABAAADIQgAA2MEAAKBCAAC4wQAAQMEAAIjBAACgwAAAEEIAAKhBAAAAQQAA0MEAADzCAABAwAAAgEAAANjBAADoQQAAwEAAAARCAABEwgAAREIAADhCAADwwQAAgMEAAODBAACAvwAAjkIAAATCAAA4wgAAgkIAAPjBAABAQAAAKMIAAADCAAAQwQAAMEEAAJDBAABAQgAA6MEAADhCAABIwgAAOMIgADgTQAlIdVABKo8CEAAagAIAADA9AACAOwAAFD4AADw-AAAUPgAA-D0AAOi9AADWvgAAiL0AABA9AADIvQAAyD0AABQ-AAAcPgAAoDwAAKK-AABkPgAAmD0AALg9AADyPgAAfz8AAIA7AABMPgAAJD4AABQ-AADIvQAAcD0AALg9AAAwvQAAqj4AAAw-AAAMvgAAyD0AAMi9AAAQPQAA6D0AAFA9AABMvgAArr4AABA9AAAEvgAAmL0AADw-AAA0vgAA4LwAAEQ-AAAkPgAAiD0AAJK-AACCvgAAVL4AAHA9AAD4PQAAgDsAAPg9AACgPAAAJz8AAJi9AAA0PgAAij4AAPg9AACovQAAQDwAAM4-IAA4E0AJSHxQASqPAhABGoACAACKvgAAir4AAHS-AABNvwAAqD0AADy-AACYPQAAor4AAFA9AABwPQAA6D0AAJi9AABwPQAAbL4AAJg9AABQPQAAUD0AACs_AAAMPgAAij4AAEQ-AABcPgAAFD4AAKC8AACIPQAAvj4AAEA8AAAkPgAAFL4AABA9AAAcPgAAJD4AAEA8AABcvgAAcD0AAAS-AABsPgAAJD4AAKK-AAAsvgAA1j4AADA9AAAQvQAAQLwAANg9AACCvgAAf78AAIK-AAC4vQAAMD0AAIg9AADgvAAA-L0AADA9AABMPgAAyD0AAIi9AAAsPgAAEL0AANi9AACKPgAAiD0AAOi9AACYvSAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=kyjlxsLW1Is","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3704266759468091280"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2935283968"},"10232929039292843262":{"videoId":"10232929039292843262","docid":"34-8-6-ZB4763DB3D0988944","description":"working out ideas and experiences. I'm Papa Fire aka D.A. Carter, and I write and perform music and words.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2966463/a3648c0dbac27c96763460d97573c417/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/Qpz6ugAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"6","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DU302i4pS0gY","linkTemplate":"/video/preview/10232929039292843262?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Justin Anthony of Zedstatistics and Jeremy's Iron on science and skepticism","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=U302i4pS0gY\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxMDIzMjkyOTAzOTI5Mjg0MzI2MloUMTAyMzI5MjkwMzkyOTI4NDMyNjJqtg8SATAYACJFGjEACipoaHNpbnB5cG55bnhyeXNiaGhVQ3JyZ0huOGZ6ZVpqUHF2aFZEbVN5NncSAgASKhDCDw8aDz8T0h-CBCQBgAQrKosBEAEaeIEEDQD9Av4A8_kM9v4BAQH1A_z3-f39APUA9PQDAv8ACvv3AQAAAAAT-gYAAAAAAO3-BQP4AQAAEuv7_AIAAAAX7_b2_QAAAAwO7gL_AQAA__v7_wP_AAAP_gEIAAAAAPUICAP__wAA_Q0A-QAAAAAjBgL7AAEAACAALW0Mzjs4E0AJSE5QAiqEAhAAGvABfwfqAor7D_le-ucBH_j7Acbk9gA_1fz_Aw3vANkD_AEQEwIB5fUDAf4LDQACAgcAAfsK__358ADn_A7_GRUQ_yQBBwAy9OgABAHq__XwBP7J7P3_B_wIAAIBCQItBdr-C-n8_S0KDgAS9fQC8v4BBO3r-QEI7vT__Orz_hP89wAi-wP84h33_tPZ4v7l_gcGBgTx_u0KA_0GAgAE-OYBBeJBCAIc9vUA_OD4A-368v7__PwD_wT6CO7mBgf0M-4DBuz5_xwGEgEGBvgA6y0SBhL8GADq-Q7_JhUC-hQAFP4LF_X_89wE9BL1_APsE-f1IAAtqRREOzgTQAlIYVACKnMQABpgPP4AJPMP_J_wOukK79fZCgw7I_zB1P_2AADjEe7xK_XkrBke__7v3jmtAAAADvD7FyEA82r2tfMc5Av59AEtARd_J_DfAA0K69YC8Rv1A2LY4ihaAK3-3BoO_M9MQSsVIAAtzNgnOzgTQAlIb1ACKq8GEAwaoAYAAABBAAAowgAAYEIAAIBAAADwwQAA2EEAAKBAAAA4wgAASMIAABRCAADowQAAEEIAADBBAAD4wQAARMIAAJhBAACAPwAADEIAAEDAAACuwgAAgkIAAGzCAAAgQQAAEEIAAHBCAAAQQQAAmMEAALhBAADEQgAAYEEAAMBBAAAQQgAAwMAAAJhBAAAUwgAAYMEAAGBBAABQQgAAQEAAAGDBAACAPwAAoEEAAMhBAAAYQgAAcEIAAHBBAACEwgAAMMIAALpCAAB8wgAAgMEAAEDBAACgwAAAmEEAAJjCAAAAQgAAIMEAAHBCAAAYwgAAPEIAANBBAACQwQAAwEEAACTCAADgwQAAREIAACDBAAA0wgAABMIAADBBAADAwAAAgMAAAIC_AABkQgAAikIAADzCAAC4wQAAgEEAAEDCAADgQQAATMIAAIDAAAAAQAAAYEEAADBBAABsQgAAisIAACDBAACOQgAAEEEAADBCAAAAwAAAyEEAAIDAAABgQQAAIMEAAGhCAAAAwQAAGEIAADDBAAAIwgAAjEIAAHhCAAAYwgAADMIAAEBBAACAwQAAdEIAANDCAACAQgAAoEEAAFxCAADowQAAAEAAALZCAACSQgAAsEEAAIC_AACgQAAA-MEAABjCAADowQAAEMEAABjCAADgQAAA8EEAAABAAACAvwAAGMIAAJ7CAACAQQAAkMIAAGhCAAAwQQAAAEEAABTCAACYQgAANMIAAODBAAAAAAAAgEIAAIBAAAD4QQAAIEEAAJBCAAAIQgAA4EAAAAhCAAAwQQAAUMEAAKhBAACQQQAAAMEAAHDBAABEQgAAgMEAAEhCAABswgAA6EEAAJhBAAAswgAAhEIAACzCAABQwQAANMIAAILCAACAQAAAoMAAAK5CAAAwQQAAgMEAABDCAACYwQAAcEEAACDBAAAoQgAAYMEAABzCAAAsQgAA1kIAANjBAAC0wgAAcMEAAEBAAACAQAAAfMIAAHTCAABkQgAAVEIAAFBBAAAswgAA6EEAAKDAAABIQgAAkkIAAJBBAAAAQQAAIEEAADjCAADAwCAAOBNACUh1UAEqjwIQABqAAgAA6L0AAJi9AABkPgAA4LwAAHS-AAAUPgAAEL0AAAm_AACIvQAAEL0AAJK-AAC4vQAAiD0AAJI-AAA0vgAAbL4AAKI-AADgvAAAHD4AAAs_AAB_PwAA6L0AABw-AAAcPgAAEL0AAMi9AAAQvQAAhr4AAIY-AACePgAA4LwAAHC9AAAkPgAAED0AANi9AABQvQAAEL0AAIq-AAB0vgAAmL0AAKa-AAAQPQAAZD4AADy-AAC4vQAAED0AADw-AADovQAAjr4AABS-AACgPAAA4DwAAIY-AAB0PgAANL4AABC9AABpPwAAHD4AAKC8AAA0PgAADL4AAAS-AAAQPQAAML0gADgTQAlIfFABKo8CEAEagAIAABy-AAA8vgAAoDwAAD-_AAC4PQAAyD0AALg9AACgvAAAFL4AADQ-AAAEvgAA6L0AAEQ-AAAsvgAA2D0AADC9AABUPgAAGT8AAKA8AACyPgAAqD0AABQ-AAAcPgAAgDsAABw-AACYPQAAcL0AAKg9AAAwvQAAoDwAAIC7AACAOwAAlj4AAKK-AACgvAAAqL0AAIA7AAAMPgAA4LwAAAw-AACKPgAAiL0AABQ-AADIvQAAQLwAAEy-AAB_vwAAuD0AAGS-AACSPgAAHD4AABC9AAA0PgAAFD4AAEy-AABwPQAAUL0AABA9AACovQAAbL4AAJg9AAD4PQAAQDwAAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=U302i4pS0gY","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["10232929039292843262"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2568940178"},"14342049205211543809":{"videoId":"14342049205211543809","docid":"34-6-13-ZD481D0B6EE81B405","description":"See all my videos here: http://www.zstatistics.com/videos/ 0:00 Introduction 2:25 Frequentist vs Bayesian 5:55 Bayes Theorum 10:45 Visual Example 15:05 Bayesian Inference for a Normal Mean 24:30...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/759210/ce5f3cca1d943cb350de32274b6360d1/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/fDO-gwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"7","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DPahyv9i_X2k","linkTemplate":"/video/preview/14342049205211543809?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Bayesian Statistics: An Introduction","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=Pahyv9i_X2k\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxNDM0MjA0OTIwNTIxMTU0MzgwOVoUMTQzNDIwNDkyMDUyMTE1NDM4MDlqkxcSATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8T-hGCBCQBgAQrKosBEAEaeIH2-gL-AQAA_gDuCP8I_QLtBQUG-___APj4EfYCA_4A_vPw_AQAAADxD_cH_AAAAOjzBgn8AgAADfsH-wUAAAAT-QL-9wAAAAwO7wL_AQAA5wH9AAMAAAASCggB_wAAAP4MCQT6_wAACwAAAQAAAAAD8AAFAAEAACAALa0-0Ts4E0AJSE5QAiqEAhAAGvABbPwRAYETFPhm-QsAMvjn_8cc5wBS--P_h_QEAuH08AERFQIBF_II_wH7_ADuAQcA4gny__4Q8wAT8Az_ARIIAO_8_QBB5wsBR_38ARcl-v_y_fb-_f4BABT5__4C9O4BJQIL__gJ5wL5FPIE3hMA_CwH-gPwBwcF7h4NA-UO__wD5A4BCvASB-f5CP_y7QIHFv_p_fAC8gQSDyP9Bu4N-AYGG_kIDgEE_gjd_fsg9fkXCAH8EwL2Aen5GgEUN_ID8Rb8-w7xBgjoAv4DOAkNBiHxEQL-9voB8yD-AvMJBQMFAQD87AEAB_AA-Q_h9Pf6IAAt_t81OzgTQAlIYVACKs8HEAAawAek4RC_wuD1OzIO5LzB4iA-byBuPARL_Tvo20I-jzo1Pez7S7xSSZi90_MTvYmmAr2Xx6q-E8fsO74RnbzGa6Y-yKpSPOmXLbzNAu29dhCFPeTAJj2OQKy9ofEpPZqpmLvNs009Rf1EvbYlvDw7lQI9n0Q6PCe0Ezupqsi7sl0mvV_BDL2YrWu9F-VDvbxJAr1GAJE9YcyxvQU2B722ZBq9s4JavRkIXbzxeCQ9yLQ2Pey-hLucbOO9bdjAvM1lGT2ZQ_c8Qjw3PTuWLbz_LCw9tOZnPdQWsjvZbDY93ACiPDYS1zt-LiS9SlH4PN5xrzzSo449maQNvVDfsjwDUgw9UmQtvetBHLu1jNA742hTPRvbpbqDz4W8658xPdGhnTvBTAC9f7RJPVN9grypMuw98T-DvREVsjtCiIW9bT4JPXMmZ7mdHV-9KHChvADNnDuRxP27NNDhPN3hgLyTfQa9aWhIPYjRGjxVcJM99arju-fT9Ds0R9Y99DY2vKFnPbp8vpG9Tn82ve1EiTz6ARk9s1Y5veX5Y7s9yWc9dz_4PFXIizwCZwQ9KE80PCJAHzuh-KE9HjiCPb-24Tt96EK98Dscvf2N9zk1-oc9Dv2uvOOZo7s5Who919yhPYPu_Tv9Opa9CDmUut29kroNNJ88rXewu-ykXzvM7rm90va5vK2vhTuZi648655mPWSiFLuGfMu9W0qhvSMdCLrqKKK8--4xPEckJztBCG09QmYdvQYkhrvGpD-85AS3vDz--bg3TzW9CCMxvTLRgLqQfwu9b02FPZJPmTgmXlQ89mE9vN7xCzoC7yk9zRm2vJ0lFThnASS8iXyXPINopTf-9YU9AW0Lve72HbrKU5Y8k4eqPBKvADp6kYQ99N2NPYiBiriO53G7EG5XPSBy3LnVpAU9MrkHvWPRmTj-gvg8oUeMPObm8Lj02Fu9Ml5OPH7s2jgOhMO73dyevZf9-bY69Iy89IBDvOXdibnyYFI6VysPvFVxhLc1Kza8rjB4vS6dArgyI5e9Mqoxvf3XpLeIJKO79aYdvUh2RDjW7By9UInQPJyqXTi0wEi96QAyvVIzlzdu1FQ8tESdvDPnADhIJpE9KEuYPYslHTeqH0W9Y9ANO4QIBTj9lHS9hUGJvWlpozcSMNo9QsV-O99wGzk7-2o90fmduzI8bziU2YW8TD5RvE94ELc9c5A9yK9kvSSyBDdFEtg8ILKIPdNhzzjBgI89o_q4PadtiLj_Fq48zeesPcDAFrjsrkK9OvGrvajeSzUgADgTQAlIbVABKnMQABpgaAsAK8fzCKk8JPzl-qn42fX37SyxCv_-B__hLtfF4iATuvkf_wXm5SGgAAAA7-_mPDsA2n8MzektwwELAtwbCgByETZHrfz7CKMQ9NfzACkd_0dcAO7PqhgZDuAnORvZIAAt2r4VOzgTQAlIb1ACKq8GEAwaoAYAAFhCAACQwQAAiEEAAJhBAAC4QQAAsMEAAJhBAAAcwgAAwMEAAOBBAACoQQAAUEEAAI7CAAAwwgAADEIAAJjBAAA4wgAAyEEAAEDBAABQwgAAgEIAAJbCAABQQQAABEIAACRCAABQQQAAoMIAALjBAAC-QgAAukIAABzCAADYQQAAEMIAAKDAAACWwgAAmEEAAODBAAAgQQAA4MEAAPBBAACAQAAAiEEAABRCAAA4QgAAoMAAAMDAAAAAwgAAAAAAAJ5CAAC4wQAAUMEAAAAAAAC4wQAALEIAAADBAAAwQQAALMIAAMJCAABUwgAAVEIAAMhBAADAwQAA6MEAAJ7CAABwwQAAQMEAAChCAADowQAAmMIAADBBAACwQQAAXEIAAJTCAABgQgAAoEEAAMDBAAAAAAAAgMAAAMBAAABgwQAASMIAALhBAAAUQgAAoEAAAAxCAAAUwgAAUMIAANBBAADQQQAACMIAAFDBAACQQgAAIEEAAODBAADgwQAAVMIAAJjBAADAQAAAKEIAAMjBAABAwQAAmEEAAI5CAADcwgAANMIAAFxCAACAwAAAmEEAAMBBAAAkQgAAGEIAAHBCAAAAAAAAsMEAAOhBAABEQgAACMIAAMjBAACkwgAAksIAADjCAADwwQAAyEEAAPDBAAAQQQAAQEIAANhBAABQwQAAYMIAAIrCAACgwAAAHEIAAPhBAACqQgAAYMEAAEDBAADgQQAASEIAAIjCAACEwgAAwMEAAKhBAACAvwAA4MAAANBBAACoQQAAAEIAADDBAAAgQQAAoMAAAKxCAADgwAAAmMEAAODAAABAQgAAHMIAAFhCAADMwgAA4MAAAIBCAAAYwgAA2EEAAABCAAAMwgAADMIAAGDBAADgQAAADEIAAADAAADAwQAAwMEAAIhBAACowQAAgMAAABxCAAAwQgAAEEIAAODBAABQQgAAgMAAAAAAAADwwQAAAEAAACBBAAC4QQAALMIAAAzCAADQQgAAQMEAAHBBAACIwgAAwMAAAAhCAADQQQAA-MEAAIA_AACEwgAAFEIAAGjCAABAwiAAOBNACUh1UAEqjwIQABqAAgAAmL0AAKg9AAAcPgAAML0AAOi9AADGvgAAHD4AAL6-AABMvgAAgLsAAOA8AADovQAA2L0AAPg9AADgvAAAxr4AAJg9AACgvAAAbD4AAAc_AAB_PwAA6L0AAAS-AAAEvgAA-L0AAHS-AABQvQAA6D0AALi9AABkPgAADD4AACy-AAA0PgAAgDsAADy-AABQPQAAbD4AAHy-AACOvgAAqD0AAOC8AAAUPgAADD4AAOi9AACAOwAALD4AAGw-AABcvgAAJL4AAGy-AADWvgAAZD4AAJ4-AADgvAAAQLwAAOg9AAAJPwAAEL0AAMg9AACSPgAA6L0AACQ-AAAQPQAAhj4gADgTQAlIfFABKo8CEAEagAIAAIK-AACAuwAA6L0AAEe_AAAsPgAAPD4AAJI-AADCvgAAMD0AADA9AACAOwAA-L0AAIg9AACgvAAAcD0AAHA9AADYPQAAEz8AABA9AABEPgAA5j4AAKI-AACiPgAAgDsAACS-AABMPgAAoDwAAII-AACAuwAAuD0AAJY-AAAMPgAAZL4AAJ6-AAA0vgAA2D0AAM4-AAAwPQAAjr4AAOK-AADePgAAnj4AAEQ-AAA8PgAAij4AAFw-AAB_vwAA2L0AAM4-AAANPwAARD4AAAQ-AADYvQAArj4AAIo-AABUPgAAEL0AAEC8AACIPQAATL4AAIo-AABkPgAA6D0AAGy-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=Pahyv9i_X2k","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["14342049205211543809"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1145903454"},"10019978606673494813":{"videoId":"10019978606673494813","docid":"34-1-11-Z121B7FEFD3C7A75C","description":"See all my videos at https://www.zstatistics.com/ Any donations via the Super Thanks button going to the Right To Learn Foundation: https://www.right2learnfoundation.org... Survival analysis...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4178371/59d5860c2f3b944789ecd06bb61f9c18/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/KdxlGQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"8","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzAdF8WSyfsA","linkTemplate":"/video/preview/10019978606673494813?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hazard and Survival Functions - [Survival Analysis 5/8]","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=zAdF8WSyfsA\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxMDAxOTk3ODYwNjY3MzQ5NDgxM1oUMTAwMTk5Nzg2MDY2NzM0OTQ4MTNqiBcSATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8TyAiCBCQBgAQrKosBEAEaeIEA9wX-_AQA6P4A-wT_AQATCfz89QICAOQF_QEA_AIA8QoC-_oAAAAFA_wJCQAAAPjt9P36_gAA__z1BAMAAAAIAAQE_AAAAP8I8v3_AQAA-wAC_QP_AAAO_gEIAAAAAAIOEQT_AAAA-Qn6_wAAAAD_B_7_AAAAACAALc5t3js4E0AJSE5QAiqEAhAAGvABWeMNAMkI8_4O8wwA4AvSAIHw-_8ADfsAxA4OAesd1QH3_QsA4e3rAQkFEP_qDSf_6vb2__L7IQAe4goANgsKAP4RIQAr5P4AIwEGAO4P9__oGg3__e0BAO73Fv4K_-sAB_YN--395AIICuwBC_8sARALBAER1PkA9QUJAfYEGwLrDPcECAD4B_sa6_zd-Af-_QvrBA0k9P_-_PwFCwYJBgD0CgH__wECDgbpBPcPEPbv9fP54hHq_Aj5CALnG-z_-ev__wHvFgEXBfn4DwIVBhD4CwMI-wb5_xXrBQjoCP0MDwj8-_v_8vcY-Q8J1QT9IAAtkPpOOzgTQAlIYVACKs8HEAAawAcv_eu-CmIFPd3U_jslm0Y9hHZDt0C2Fr34gbW8A6vPPGkU97xU15s9z5KRPK-49jv4wYG-f-j4vERpTz2dRoI-fxZLvL4SyLzv5U6-EKhDPRiswLv1oYO-PHfxOy7Flzu2LwA-lFB1PQmM9TurTaI9VNwdvQl2Er33VrQ9ZKAhPTKZIL0NQcQ8HnAYvd_-XLwFw3k9MM2-vbvnijwvUf09sQVgup-rrbz2mwm93XkFvJxWhjraXxG9x3Yovaa0_juE2Nk91PWfPHedNzq91L49Ac-HvHn0Frv6NhM9XtoQPf_GIrxC81S9nggCvVUphzzELL89UWmEvMx5qzzGKm-8t50xPcfj2DzkZvg9ZkzhPRgj1DudhZi83hB0u6UNZTrBTAC9f7RJPVN9grwKStE9JDxrvaq-Trzpjcm858LtPOTumLt24Qe9KjKfPRm0azy_Wlo8eRfJPcNQAbxjKBe-Ay5-vBjqMDwlL6G8o7mEPOeUW7xK3Fk9-hGavOsTyjzVKUo9urMAvUxap7whn8Y9YswnvQrOBzxlptQ9bGExvb1EKzyt1Jg83wbOOkB7PzzE1oU7mCpCvcjg9rvWyRk9dXtEvd7L3LvKPv68ivOGvRKOkztPHru81gGAPQC2E7tpN6o9qoMXPdgbCrywgok9_ZBtvH1wYzzMbJa980qTvQf_XDcwUJE55DewPTl3njs7PF88qtyfvbNgRjpiL1Q9KaPAvL93I7st5xc90ILrvN8MKzuewRW932VwPQxjRrqudAY8wTtZvdSvAbk7KxK84wgovRvUGrlG7y-8e7SjOjZ7Lzm50mE9Lt6UvXNP3TjDvAe-qT9svdp7ZTfwxEw9WJk-u2xfXTpvDWy8eQ1QvWwhbrk66f077XcNvYftbLktPR48OUlOvCHoc7gjk3098ymWvZsvLTkliCQ9Fl2NPNg15TjpwGg9QVCZvQk0hrieAzC9D_IqPr3F37i5Sr27I2oiPedyuTgJ3xs9hI83PVwp_Lhdrjg7gfOdPbMYYraE8gA8oHraPE7vabf1_0M7x3lkva9jtbdc-yc9lgaevVB1tDgtZAe8GBCAvR-SAjnaQkY8-PpavSjjGbj4pxQ-A_pOPR_07TaSEvE8Gw1AvfRmYziwNSC97EKdPchPnDdwpz68J9NtvXRBX7h87NM8ofIvvYneajgrrAq9-wJavcsOmLc1t4K8LDFqvbqhRriKllc9EFj5PY0XQDifnBe9d9XoPEoCQLgXDDM9gbZwPWUogLgLMU28rSHnvIMYyzcgADgTQAlIbVABKnMQABpgOBcAGvoU3vEJGu8K_e3vDAv9EfngBwD43wD4Dx7nCQ8I0QbsACj7FffPAAAA8gbeGe8A-EAZ_d0L9i7y5t0PAgF_Eg4S0dYE6uIM6DYK-RMEADkPAOro1hAg4OwbCwEOIAAtUnR2OzgTQAlIb1ACKq8GEAwaoAYAABRCAAAQwgAAFEIAAIA_AACYQQAAIMIAAJBBAABAwgAAmMEAACRCAABgQgAAuEEAAKrCAACiwgAAIEIAAADCAAAswgAA8EEAAMBBAAAkwgAAeEIAADzCAABwwQAAoEEAAExCAADAwAAAMMIAADDCAAB8QgAAfEIAAEjCAAAoQgAAZMIAAMBBAACMwgAAHEIAAEBAAACgQQAAgMAAAABAAACgQQAAkEEAAGBBAAA4QgAAQEAAALjBAAAcwgAAXMIAAKhCAACgwAAAAMAAAKDAAADAwQAAIEEAAABAAAAgwQAARMIAAFBCAACAvwAAeEIAACBCAACIwQAAJMIAAIjCAAAgwQAAwMAAABxCAADYwQAAbMIAAIA_AAAwQgAAwEAAAHDCAACAQgAAUEEAAFDCAAAQQQAAQMAAABTCAAAMwgAAgMEAAExCAAAgQgAAXEIAAIBAAABQwQAAcMIAACxCAADAQQAAOMIAAIBAAABAQgAAqMEAAODAAAAMwgAAQMEAAFBBAABQQQAAAEIAAADCAACgQAAArkIAAHhCAADOwgAAiMEAACBBAAAoQgAAwEEAAIA_AAAkQgAAcEIAALhBAADgQAAAJMIAAIRCAABQQQAAuMEAAIBBAACEwgAAqMIAACjCAAA0wgAAcEEAACDCAADYQQAA3EIAACDBAAAwwQAAHMIAAEzCAACAQAAAQEAAAKDAAACoQgAAAAAAACjCAAAcQgAABEIAACjCAACWwgAAQEAAADBBAACgwQAAFMIAAEDAAAAcQgAA6EEAAIhBAAAAAAAAgEAAAGhCAAC4wQAAYMEAAKBAAACAvwAA4EEAAK5CAADAwgAAIMIAANRCAADAwQAAoEAAAIBBAACgwAAAMMIAAEDCAABgQQAA8EEAACBCAACIQQAAQMEAAMDAAAAAwQAAAEIAAGBBAADAQAAACMIAAIjBAAAgQgAA2EEAAADBAAAYwgAA4MEAAABCAADYQQAAGMIAANDBAAC-QgAAMMEAAMDAAAD4wQAAmMEAAI5CAADQQQAAEMEAAKDBAACewgAAQEIAAJbCAACAwiAAOBNACUh1UAEqjwIQABqAAgAANL4AADS-AAA0PgAAED0AAJ4-AADKPgAAQLwAAEu_AACKvgAA2L0AAHA9AADYvQAAbD4AAGy-AAC2vgAAuD0AAEA8AAAQPQAAsj4AAAM_AAB_PwAAcL0AAIo-AADgPAAAQLwAALY-AAAcPgAAVD4AAAw-AAAQPQAArj4AAEC8AADovQAAZL4AADQ-AACYPQAAJD4AAGS-AACmvgAA4LwAABC9AAAwvQAAjj4AADA9AABEvgAAAT8AAGw-AADKvgAAuL0AABS-AABAPAAAoDwAAEC8AACGPgAAND4AAIA7AAARPwAA4DwAALg9AACYPQAAXD4AAHy-AACovQAAZL4gADgTQAlIfFABKo8CEAEagAIAAJK-AACIPQAAoLwAACG_AABAPAAAgLsAAEQ-AAC4vQAAdD4AAJI-AAC4vQAATD4AAJi9AAAEPgAAdL4AAOA8AACSvgAAHz8AAKa-AADGPgAAij4AAIK-AAAMvgAA-L0AAOC8AABkvgAAED0AABw-AADoPQAAlj4AALg9AADoPQAAnr4AAEC8AABUPgAAgLsAAAs_AAAwPQAAyr4AAJi9AABEPgAAFL4AAMg9AAAQPQAATD4AAHA9AAB_vwAAqj4AAKA8AADYvQAAiL0AABw-AAAUPgAAMD0AALg9AABUPgAAcL0AAGy-AACKPgAAyD0AAEC8AAA8vgAAEL0AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=zAdF8WSyfsA","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10019978606673494813"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1109292252"},"11204518298610420708":{"videoId":"11204518298610420708","docid":"34-11-6-Z5893020D2E68D09B","description":"Tutorial Question 1: Calculate the range, variance, standard deviation and coefficient of variation for the following sample of data: 5 7 12 14 15 15 17 20 21 24 Refer to the above sample of data...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4613253/c12ffa8395184df5e6aaa2f82ec2d795/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/cheAtgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"9","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dz_R1Yh0QFDk","linkTemplate":"/video/preview/11204518298610420708?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Quantitative Methods for Business - Tutorial 1","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=z_R1Yh0QFDk\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxMTIwNDUxODI5ODYxMDQyMDcwOFoUMTEyMDQ1MTgyOTg2MTA0MjA3MDhqkxcSATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8TzQuCBCQBgAQrKosBEAEaeIEEC_MBAAAA7hYLAPwCAAENBv8C9gAAAOgB-Pv5_gEA-wz8BvkBAAD7-wb8AwAAAP4D_xD3_gEADA37AgUAAAAa9vUI_QAAAAUVAPr-AQAABOsC9AEAAAAK_AHu_wAAAPkPBPH__wAABQcDFAAAAAAV_wP8AAEAACAALXgc1Ts4E0AJSE5QAiqEAhAAGvABf_TzAr7u2P8TFPIA5gr1AK74CgAwEc0Asg4mAqvlBf_VCfkAufva_v_l6f_8DiQA-xHV_wDf9wAbDe4ADiAUAAnTEgFK0PcBKvX6ANXr3_7_6xYA8wEMAjwJAf_0CvMDGhA0_x0E6QAZE9EBGusUAgYeJwjo__L99vkD--AbEwDo4_AACgD3CBYK8v_k9ioG7fEP_vjoBAIWBQ75CCT1_Pzv3fsG6PwBDuLuC_nfA_QK5gv7Gffp-fgREAbTEu7-_Nr_BfXy8wch-AwGMe0O_OfkFf0N7hbzGxHr_yPn-vX_Dgn25xUV_uEL9_7-8v4BIAAteAApOzgTQAlIYVACKs8HEAAawAd1ywK_hFUrPZhBBr1tQao9trkWPQBppDzvLXY8GUeLPebqR7wfptg7QZS5vB_f1jqXx6q-E8fsO74Rnbz-1Ys-IMSfPIapMTvfhzO-QYJCPbbcFD0VN06-rTTpvGU6T7y2LwA-lFB1PQmM9Tsb9gs-zEwEPLN36zz9s-67-HptvWMWcL2-UrG84YsCvH1By7w-sOM9n34IPAzuojztr4g9g-4cvS7aa7vFAOg73-aovN_fHjycbOO9bdjAvM1lGT33PxA-F6BtvJ9J8juWGus7qpm1ux8shLuebY89MwLDO7rqCbwZLRW8YLcdvC7gijxD8bk9zOFEPdxeFz0_byq9UU50PRFIMrvkZvg9ZkzhPRgj1DtPPAe9DXnKPYdg5jtW74I6a247PA6C8TpLD5k9IRisvD-IJru2H5q9bWugPSMNk7xyE_e7LLmKPHMyzDxEiqE9D7jOPcfibTzUChi9ymcePKPvCT3yh9W8pmlrPRj0ubxHHyM-cK3bvP6-97uKPp89_LgHPIBsSLwvTnw8HyQ1vQXIzDt5Bwg-ZN-PvWc66Dqs0QE9R1m_u35wRzpjXkc8pFA7PfmvPbtAjkE8LETHvLMSTrxbcgY9B1NePKTwyTtA3qu6rw9GvcSClDtSXxY97GqyvOGHObw3dfk81UIpPeAfgLtUcq69r14lvX7FWLvf-eU9TZSMu3kr4Dp0wyW8_IKHvZZS3Dl3dkM8hgqEPFHCp7rFQLI8D5vIvLJWh7m4yP08tuRHPYbvs7qfIfu7rwLhvPV9PLsop4w9w4x_PXdugTnRQl08SJAlvdVnlDgV14I9iU1avTnrkzjN1Fq9QEoRPVLmATnUG5S93drbu8GBcDjKegA9OahuPdwSmDoXj8G8G9QDvdeR9TlVhDu9VK0FPUgWnLjIdI08x5s8vcSgkLjF1Ew8j61CvOMfCLrc9bE6zPqDPKt5MTh0kjI9lcUUvHsAHzhDuUO9ck1BvXMQfDeVQVq8EmmbPCE1sDhk5NE8xQ-EPd6i_rfxnfs7oI8NvYLjgjjD0-s8Zyb4vSIkJLjZfJo7URGMvOcI6Dcqvsu9qLI-vedGlTcqWPe4rAk4vbZyazdevlC8OL3qO0pWsbiLAji9n6cmvS3qeDiaqgA9yd1MPTCORrhgkHS99V2bPJSkGLjVO4E87z2Hvc2TvzeNbnO85j1vu3Q1OLfsA707fNQPvhf63LiKllc9EFj5PY0XQDhgmpg8W5r7PYSt_bijYre86FjUPMTV87YuxA89HB0Bve2mqbcgADgTQAlIbVABKnMQABpgPP4AXhQA5d7TL-gOxOD--9kN2jmsEP_WCP8YK_fRyCjQpQQE_yrcD_qiAAAACPjyQ-MA8X_btvLRBsQk0rMA-hZ_AyMe_t8gHJ_17jjg-doa1DxXAPXZnxRM-ss9_Cz7IAAtEcoTOzgTQAlIb1ACKq8GEAwaoAYAANBBAADAQAAAyEEAANDBAAAowgAAMEIAAMJCAAAEwgAAOMIAAGDBAACAQAAAYMIAAFDBAACIwgAAHEIAALBBAAC4QQAAoMEAAFDBAADgQAAAqMEAACDCAACgwAAAAMAAAFDBAACIQQAAKEIAAKjCAACIQQAAoEEAAMhBAAAgwQAAjsIAABBBAADwwQAAdEIAAHDCAACwQgAAQEAAAGRCAAB0wgAAiEEAAMDBAADAQAAAwMAAADjCAAAQwgAAoEAAAIZCAAB4QgAA-MEAAEDAAABAwQAA8EEAAEhCAAD4wQAAgsIAAHDBAAAAQQAAQEIAAAxCAABAQQAA4MEAALzCAABgQQAACMIAAEDBAAD4wQAAEMEAALjBAABQQgAAIEEAALLCAAAAwAAAwEAAAMDAAAAMwgAAIEEAADBBAAA8QgAAyMEAABRCAAAEwgAAYEEAAExCAACIwQAAQEEAABBBAAAcQgAA4EEAAJhBAAAIQgAAUMEAALDBAADYwQAAnMIAAIRCAADIwQAA0kIAABTCAAAgwQAAIEEAABxCAAAAwAAAAMEAAMDBAACmwgAAFEIAAHDBAABMQgAA4MAAAAzCAADAQAAANEIAACRCAAAMwgAAoEAAAKjBAABAwQAAMEEAAJDCAADwwQAAQMEAAADBAADgQQAA-EEAAADAAAAAAAAA6MEAACDBAADgwQAATMIAAPjBAACYQQAApsIAALBBAADoQQAAgEAAAMDBAAAAQAAAgEAAACjCAABgQQAAkEEAAGRCAAAkQgAAEMIAAIZCAABcQgAAqEEAAM7CAAAgQgAA4EAAAMBAAAAUQgAABMIAAEDCAAAwwQAAAEIAAIZCAABQQgAAgEIAAHhCAAAgwQAAsMEAALDBAAB4QgAAmkIAABhCAAAUwgAAIEIAACBCAAAswgAAhsIAADBBAAAgwQAAoEIAAIC_AAAAQQAAAEIAADTCAAAAQgAAMMIAALDBAADIQQAABMIAALjBAABQwQAAMEIAAKDAAADgQQAAYMIAABxCAACgwQAAikIAACBCAACEwgAA8EEAADzCAAD4QSAAOBNACUh1UAEqjwIQABqAAgAAgr4AANi9AADoPQAAgDsAALg9AACYvQAAyD0AABG_AAB0vgAAUD0AAKA8AAAkPgAALL4AABA9AAB0vgAApr4AAPg9AADgPAAAtj4AAAU_AAB_PwAAUL0AAIA7AABQvQAADL4AAFC9AABEPgAAgDsAAIA7AACSPgAABD4AAI6-AAAQPQAAMD0AADA9AADgPAAAoDwAAKa-AACovQAAmD0AAIi9AAAkvgAAgj4AANi9AAB8PgAA-L0AAOg9AACavgAAkr4AALi9AAAwvQAALD4AAEA8AAA0vgAANL4AABC9AAAFPwAANL4AAOC8AACgvAAAQDwAAFQ-AACIPQAAor4gADgTQAlIfFABKo8CEAEagAIAAJa-AAAwvQAAor4AADG_AAD4vQAAHL4AAHy-AAAwvQAAoLwAAIA7AABwvQAAUL0AAFC9AACavgAA2D0AABC9AADgPAAAEz8AAIC7AACiPgAA4LwAAEA8AABQvQAAmL0AAEA8AAB8PgAAML0AADC9AADgvAAA4LwAAJg9AAAQPQAAFD4AABw-AABUPgAAiL0AALg9AABsPgAAdL4AAIA7AAD4PQAAgDsAADC9AACAOwAAJL4AACS-AAB_vwAA4LwAALa-AAD4vQAAUD0AAIK-AAA0PgAA-D0AAIC7AACgPAAAgLsAAAQ-AAAcvgAAuL0AAHC9AABAPAAAiL0AAIg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=z_R1Yh0QFDk","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["11204518298610420708"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1654211404"},"6166657995251540989":{"videoId":"6166657995251540989","docid":"34-0-13-Z860B43588628DB43","description":"Exte...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/403953/11fea67884395c297be16987ca47e086/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/OcxSCQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"10","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DNTHA9Qa81R8","linkTemplate":"/video/preview/6166657995251540989?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Chi-squared Test for Independence! Extensive video!","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=NTHA9Qa81R8\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoVChM2MTY2NjU3OTk1MjUxNTQwOTg5WhM2MTY2NjU3OTk1MjUxNTQwOTg5apMXEgEwGAAiRRoxAAoqaGh2anl0eHVkbHF2ZnByZGhoVUM2QVZhMHZTckNwdXNrekdEREt6X0VREgIAEioQwg8PGg8_E80JggQkAYAEKyqLARABGniB_BH4CP8CAPf3AQn4Bv4C_xL4Bvf-_gDt_QEECQAAAPQKCwUJAAAAAgoO_AQAAADxAPkJAQAAABcX_fsEAAAAFvD39_0AAAAGDPr9_gEAAAgW9gID_wAADfH5Df8AAAD3DBH7_wAAAP_8AwoAAAAAAvr2BgAAAAAgAC21k9Y7OBNACUhOUAIqhAIQABrwAX8ECQGxBNT9DQjcAOYK9QGJIAr_FQjoAI0LBwKxDQf_7xf4ANX7zv8A4AwA5RkZ_wYF9v4JDQv_KREI_yrr-QAa4SQAVOwAADry7gBE9Or_-hIG_w8GD_8W-wsA7wLj_yL9IP8L6eAADf_ZA_XwHQIhDzMA-Qz7BOr6CAPRQv0B99ryASAO9QT1-_kG5PYqBu_rA_oX-PL_7gMcBg306wDsEe_3B-XfAAju6gf44hADDPkO9xn36fk5Cxv-6xX6BAUMBQHuD_H2IQICASXq-AAA6wT70fYO-RAS8hD-5AIF9AQQ-swGCfPvAPkRBgQB-yAALc0dJzs4E0AJSGFQAirPBxAAGsAHjPb4vl4CJjzxDeq8v41-PR6uED00MM2804RtO4qCjbtepCs86lGCPBE-b7wH9ci8nE2Xvuo9XLlkjxa8xVWFPlQwb72bfyq8hzQqvp5pqD22cmW8FAdQvpN2fjyKmh69CYf-PX39ej04uBm9qcHUPeqoNDztSqa8bhsjPKomjb0-8fe8XamyvcGcKr09HkS81-rBPTfwlL0J6R88dzHtPY8AKb12lhE8WG7OPH8bHDvY1WQ8-hK1vWUja7yyDcE89z8QPhegbbyfSfI7uIOFO21F0TxmW7w8siiRuz7k0jz-zfC8fxd2vXL5zzxkldK8peK6PWA0pT3cHk48TPobvbPprTthzZa78H9sPWapwD3lZQk8Jgx0vV1Guz1MLLo8dUZqvanMIz0VS1u834iuPQSJEjxOGCC8F1z9vJQ8LT1f4e47Eg8LvCQUtjzuKK073gvCPe1WoDxT7hk64WKgO2yVvzsYJL87C7jnvXZQiTtbhJi8nPrgPUD9Ar0Mddg7ij6fPfy4BzyAbEi8RPO1PdjU2b06cSC8Yd6jPIY84r1ZSXG7XsWYPNfbZrzzYQa6jwyoPATHpbxfMgK8k64UvSieLr0QYt-7PZFxPfhhLr355oq7nv69PBkM5LwIoAG8_izWvGFcoLzzvju8y66lPQRIAz3-V4S7uc2vvLvQQb2iALy73_nlPU2UjLt5K-A6I5olPQDTiL1Ef4w5mbcLvO7kF7xK9y07ggtoPB3IurzzxBo8GAlNvQxZDT6xyao53j0gPQI6Xb3k5sg5KKeMPcOMfz13boE5J2a9PGnuFzw0ydC4p4dSPTm5X72sQYa45D5Dvcs4HL1AJNS4dJaZvHUWxzzGJ_C4TKWfOqaOn7xycHE31iOovAewbb1DbJy52vNrPQT2gj24PK-4nmeFu1Nicr1Hh623Hszgu9bxTr0_5iW5azOEPJuL5DyUDeW4i6sIPOgBAj1xNU43eOhgvPsvJr1DFik17YMsPN5kqj1e6b24nPKNPI46vjoPZVG3D5JPPdhStrw_K0O4nQ5HO3efA75D3oy3EcuBvEiTQTzKK-O332yjvfwtCbzNfaq2N1svPTJoMr28DgA4TQN1u_EaKjwI1L44P9advFhrbb2O_Mw31EP0PVZgTT2Ui125wKRCPN8DT7xudCW4FW9JvSnsEr603kw3QFwoPf-G_7xjyxu4HeMMPGdG371pUBK4ipZXPRBY-T2NF0A48LI1vVzMzz0MRgq5w5XYvL86WDx5m224-ckHvCCBGr1ufJ23IAA4E0AJSG1QASpzEAAaYHkYABL4LfLHClLtAdH28Az2HOvw4_z_CcQAABS39PQM3qz0KAAizQ_spgAAAA0C7C3sANV6zO7lHuUHLrjd2QBDfxIaJroBRfrH5_j-5QQgNSVf_gAp25wcQcjCLyYZ5iAALTcUGDs4E0AJSG9QAiqvBhAMGqAGAAAEQgAAgMEAABBCAAAAAAAAQMAAAKjBAACwQQAALMIAAIbCAAAoQgAAEEEAAEDBAAA8wgAACMIAAJZCAACcwgAAEMEAALjBAAAAwAAAMMIAACTCAABwwQAA6EEAAPBBAACIQgAAkMEAAEDCAADIwQAAoEEAAIxCAABMwgAAAEIAAATCAABwwQAAhsIAAOBAAACIwgAAmkIAAABAAAAAQgAAgD8AAChCAADgQAAAAAAAAPhBAAAwwQAA2MEAAATCAABgQgAAuMEAAFDCAACgQAAAQMEAANjBAACAQAAAQMAAALLCAADQQQAAIMIAADxCAADgQQAAJEIAAEzCAACQwgAA2MEAABDCAACYwQAAEMIAACDCAADAwAAAOEIAAGxCAAAUwgAAHEIAADBCAADOwgAAgMEAAHDBAABsQgAAcMEAAJ7CAAAEQgAAFEIAALBBAAAMQgAAAMAAAIjBAACYQgAAEEIAAGjCAAAMwgAAuEIAAOhBAACgwgAAUMEAAITCAABAQQAAeEIAAIRCAAAcwgAANMIAAJBCAAAAQgAAtMIAAAzCAAAIQgAAcMEAAFhCAACIQQAAiEEAAGRCAACYQQAAAEAAAEBBAADAQQAAnkIAAEzCAAAswgAAOMIAAJTCAAAgwgAA-MEAAMBAAAAowgAAbEIAAPBBAABAwAAAIMEAAIDBAAA8wgAAAMAAAABCAAAAwQAAuEEAAJBBAAAAAAAAGEIAAIhBAAAwwgAAeMIAAFDBAAAEwgAA0EEAACjCAAA8QgAAyEEAAPjBAABIQgAA4EEAAEBAAABoQgAAQMEAAJBBAACAwAAAAMAAAAzCAABAQAAAcMIAAIA_AADCQgAAKMIAAIpCAADAQAAADMIAAAzCAADAQQAAMEIAACxCAADoQQAACMIAACjCAADAQQAAiEEAAAAAAACwQQAAKEIAAABCAAAcwgAA-EEAADBCAACYwQAADMIAAFBBAAAQQQAAcEIAAMDBAAAMwgAAVEIAAFDBAAAcQgAARMIAADjCAAC4wQAAwMAAAIjBAACwQQAACMIAAABCAABAwgAAPMIgADgTQAlIdVABKo8CEAAagAIAAKC8AAB8PgAAJD4AAKg9AABAPAAA3j4AAEy-AAA7vwAAur4AADA9AADgvAAAzr4AAIA7AABsPgAAJL4AALK-AABkPgAAmL0AAJY-AAABPwAAfz8AALg9AADaPgAAsr4AAOg9AACgvAAAND4AADC9AAAMvgAAFD4AAIY-AABcPgAAcL0AAIi9AACgPAAAwr4AABQ-AAAcvgAA2r4AAO6-AABcvgAAEL0AAIY-AACovQAAUL0AAEQ-AAAUPgAAdL4AAGS-AAC4vQAAXL4AAMi9AACavgAAXD4AAIi9AADgPAAAPz8AANg9AAAsPgAAND4AAKi9AAAQPQAABD4AAKK-IAA4E0AJSHxQASqPAhABGoACAACGvgAAoLwAAKA8AABJvwAADD4AANi9AAB8PgAAyL0AAHC9AABAvAAAyD0AADy-AACYPQAAhr4AAKg9AACgvAAAmD0AADM_AACCPgAAXD4AACQ-AADYvQAAHD4AADA9AABwPQAA4DwAAIA7AACAOwAAQDwAAEC8AABAPAAA4DwAAEC8AABQPQAAcL0AAGS-AAAkvgAAqL0AABy-AAC4PQAAJD4AAEA8AACOPgAAEL0AABA9AABQPQAAf78AABS-AAAUvgAA4LwAAIg9AAAEPgAAlj4AAHC9AACKvgAAcD0AAFC9AAAcPgAAoDwAAGS-AAAQPQAALL4AAL6-AADgvCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=NTHA9Qa81R8","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["6166657995251540989"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2504487637"},"13831867315969486400":{"videoId":"13831867315969486400","docid":"34-7-2-ZA7637CF8164571E9","description":"Question: Gigi's Pizza regularly surveys its customers. On the basis of these surveys, the management of the chain claims that at least 75% of its customers rate the food as excellent.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2824449/14c9454640a2881b04eb9847ea28955c/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/9ofZHwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"12","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dbh_5Yr3YjO0","linkTemplate":"/video/preview/13831867315969486400?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyp testing #4: testing for the population proportion, p (or π)","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=bh_5Yr3YjO0\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxMzgzMTg2NzMxNTk2OTQ4NjQwMFoUMTM4MzE4NjczMTU5Njk0ODY0MDBqtg8SATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8TgAWCBCQBgAQrKosBEAEaeIH--fUF_QMAA_4K-_0D_wH9CPj9-P79APD4_QX_AQAA9P0KCPwAAAAFDP8FAwAAAO8HBf77AQAADQMB_gQAAAAA8gAB-QAAAAEQAAT-AQAA9v_0AgP_AAAM_QQA_wAAAPgJAAj8AAAA-gIDBwAAAAD8-voAAAAAACAALdby3js4E0AJSE5QAiqEAhAAGvABf_UYAa4h1_w4DfUA2g7JAI4eCf8rMuX_uPsXAMYD5gAADOUAx_Hr_wYTBADGBBMABPni_xb8_wAy4v0AHgT9Aez1CgAy3_0ASvz8AQwB6P_hDRf_9PvzABX5__4MFfT-HRcaAN7o7AMA2-IE_O8nAB8PMQD68xMD4-4VA-sSDQID8_n8C9_xBikM7wDi_ggH5QL4-PYG__8TQvYAIOruAvfw-foI-u0EIAoGDA_q8fnu3_P69u3oBxP6BQv1Aun5Bur4_ugG_PnyEgjyFwL-CPvnEwL-_QcAD-_0AQTgFQHyEwj_3RsM_AURBwQUA_0AIAAtD2wvOzgTQAlIYVACKnMQABpgHv0AIOg4Ad8BQPbsBP0N2tAOAibwA__w_wDmLNj0Fgnj5AUA_2_CA9SvAAAAHSHyH_4A7nEFzRP68x7i2bLjLih_EzMq1t4O-L0HBw3X-wj64gxkANzgpxVi1uwYIBIrIAAt4MEnOzgTQAlIb1ACKq8GEAwaoAYAAEhCAACAwQAA2EEAALjBAADgQAAAoEAAACxCAABQwgAAHMIAAOBAAADAQAAAwEAAAHjCAABQwgAAaEIAALDBAAA0wgAA4EEAAIBAAABEwgAAgMAAAKLCAABQwQAAQEIAALhBAACAvwAAosIAALjBAACcQgAAskIAAJbCAABgQQAAiMEAADBCAAB4wgAAYEEAAJTCAABMQgAAiMEAABBCAAAAQAAAoEEAAGhCAAAQwQAAgMEAAIA_AADgQAAAmMEAAGRCAAAUwgAA4MAAAKDAAAAQQQAABEIAAIA_AADgwQAACMIAADxCAAAAwgAAnEIAABxCAAC4wQAAYMIAAKzCAAAwwQAAwMEAABBCAAAYwgAAHMIAAEDBAAAEQgAAeEIAAIzCAAC6QgAA4MEAAFTCAABwwQAAoMAAAFBBAADgwAAAVMIAAAxCAABQQQAAwEAAAFBBAACIwQAAnsIAACRCAAAwQgAAyMEAAFDCAAA8QgAAIMEAAAjCAAAwwQAAQMIAAIA_AAAEQgAAaEIAAKDBAAAAwAAAQEIAAEBCAAC2wgAAhMIAAEhCAACQwQAAmEEAAKBAAAAUQgAAFEIAABRCAAAgwQAAAMEAAEBBAACYQgAAQMIAADTCAAAYwgAAisIAAGzCAACowQAAAMAAAIDBAAAUQgAAbEIAAIBBAAAwQQAAosIAAL7CAAAAwQAAAEIAAJhBAACmQgAAUEEAAHDCAACQQQAAoEEAAGzCAACawgAAgMAAAJhBAADgQQAA-MEAACBCAACgQAAAAAAAAERCAADAQAAAgL8AAIpCAACAwQAAEMEAAMjBAAAoQgAAHMIAAGBBAACWwgAAkMEAAEhCAAA8wgAAwEEAAExCAABwwgAASMIAAEDCAACAQAAA-EEAAHBBAAAgwQAA0MEAAODAAAAQQQAAAMEAALhBAADQQQAAAMEAAKDAAAC4QQAAiEEAABjCAADwwQAAAEAAAEDAAABwQQAAgMEAABzCAAC4QgAAsMEAABBBAACGwgAAAMEAAOhBAABwQQAA6MEAAIC_AABwwgAAYEIAAHDCAABYwiAAOBNACUh1UAEqjwIQABqAAgAAMD0AACQ-AAAMPgAAXD4AAKi9AAAMPgAAML0AAPK-AAAsvgAAgDsAACQ-AAC4PQAAiD0AABQ-AAC4vQAABL4AAFQ-AAAwvQAAgDsAAP4-AAB_PwAALD4AADQ-AAAMPgAA4LwAADC9AADgPAAAyD0AAJa-AAAwPQAARD4AAOi9AABEvgAAyL0AABQ-AABsvgAA6D0AAIi9AAC2vgAAuL0AAGy-AACAOwAAlj4AACS-AADIvQAA-D0AAJI-AACevgAA2D0AAK6-AAAkvgAAND4AAIA7AAAkPgAATD4AAMi9AAAlPwAAEL0AAEQ-AACmPgAAuD0AAKg9AACIPQAALD4gADgTQAlIfFABKo8CEAEagAIAAGS-AAAUPgAAhr4AAA2_AAAsvgAAoLwAAKg9AAAwvQAAML0AAL4-AACgvAAA-L0AAIi9AABUvgAAEL0AAOC8AADgvAAAGT8AAOA8AADuPgAAXD4AAOA8AAC4PQAADL4AADC9AADYPQAA4LwAAAw-AADYvQAAiL0AANg9AADgPAAAcD0AAPi9AAC4PQAANL4AADQ-AAC2PgAAir4AABA9AACOPgAA6D0AACw-AABsvgAA6D0AAOg9AAB_vwAAEL0AAKi9AACgPAAAuD0AAIi9AAAUPgAALD4AAIo-AADgPAAAML0AAKA8AAA0vgAAMD0AAIi9AAD4PQAAyD0AALg9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=bh_5Yr3YjO0","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["13831867315969486400"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3902488139"},"5943834911622760586":{"videoId":"5943834911622760586","docid":"34-5-8-Z9D3081EB18A224D4","description":"This video explores simple tests for categorical data - the z-test and chi-squared test.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4055290/67aaeb4e00041d34fd2e9c264e913732/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/zUM5NgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"13","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DhlwPL1S9wHg","linkTemplate":"/video/preview/5943834911622760586?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Categorical Data I: Proportions testing | Z test | Chi Squared test","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=hlwPL1S9wHg\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoVChM1OTQzODM0OTExNjIyNzYwNTg2WhM1OTQzODM0OTExNjIyNzYwNTg2apMXEgEwGAAiRRoxAAoqaGh2anl0eHVkbHF2ZnByZGhoVUM2QVZhMHZTckNwdXNrekdEREt6X0VREgIAEioQwg8PGg8_E60GggQkAYAEKyqLARABGniB-wQBAv4DAPz5BgcCB_wCDxMD-vUCAgDu_Ab6BgAAAPMACPz7AAAABgX9-wAAAAD38_0J-P8BAAwP7wADAAAAA_P-9foAAAD4CwEF_gEAAOz_AgkDAAAADP0EAP8AAAD7BAT9AAAAAAL59vwAAAAABgMBAAAAAAAgAC2ddds7OBNACUhOUAIqhAIQABrwAX_s_wPBMwX-LgEHAA8b1gKOAAH_OgjmAIz6HwHJA-cA6CEL_9j9AAAR7R8A8vwP__UV7__p-ggAIt8LAAYAEgD73_sAQOcLAR4LCgD_BO3_EAj7__8AFQD--wD_7vX__Qj7GgH94-UBAN3jBAAFFQInACABF-IO_t0L-ALuFdoC4Nrp_iD19QUWDeb_7vMUAwYE8P7mC-kBECsJBAkDA_4JAAcEBur8ARYc-Ar_9fgF6-3-_RT3_gQPDwUBF__eAgULBQEF8-0FDwIDAi0DAP0g3Rn85PgC-BsD6wX34AD9_RILBt8aDPzjAf4GDd7__yAALdhuNzs4E0AJSGFQAirPBxAAGsAHpOEQv8Lg9TsyDuS8eHvAPWlRn7uMgbe7E7gFPnwBlz2-vla8vD-OPd2TKDuJ4Cm9l8eqvhPH7Du-EZ28cXK3PsurqTzoESg9NXk6vg6rkTtKfkQ8Rbz1vWfoxDysuCe8saLmPVH6grwOMLM8k28GPm-wIT2ckA68zvoUPamVE72UOVG9nVI5PXXsu7w8q2A8_tVDPWA-eb181rU8I50Gvf2tE73OPuq8PAThOpicQTvo4SG7Gm2Fvte6ebxk4Mq8SwDePbiWAzwMELu8BHZwvV6sXjyo66S8HCMZPveNlDxL0xs9uKSUPSCFBr06Pc67HPD5vDF6jj2MTas8iPDUPDg0YD1zlbS7_c-7PXi5iD2rJoi8qBFEvDdtqTvrlY08zWEyPWVRWDz7Tl28C5YqPXCVJ7yqzDk8LOjHvD3awz1fDOW8D6-AvaA4ID3N9Ye8IzKXPQzlCT1dZEg7qOyqPKFeFT39HcC7QLTgPKWqpDxIbk28aVfMPaYTJD1tKws83B5uPYp3e72QCUI8-gEZPbNWOb3l-WO7Om9oPTc7rTxh9pe8iochvdiNKTvPs8A7louCPI95kzy04kC8MXZHvTq-jL2wfTe8qkRZPNkqGjx6i3k6HH0MveFs6TwZa4c7ZCe0OydTIju-gW68RYCTPE8wLT1t7bM7oVhdvQ5PCryWjh68w5v3uxV1gzqNlJC7PD6QPHpnvrxNTFC6x6FZPJQ2sLyimq87FQcLPWEwBD2ZasG6Yt4hu6Lq_LxvPhm69X6IPTPfAb1AfGw57rmHvQ-7yjzTltG4mzrPvbjuQTwtJwq57m-aPKMsMr2895u48EGZvCRz47n0-A26EUOhPHyInbt1NHo6xgLXO2IFib3tcAA5TBjNOljdsLv-F9W4nVI0vTeffz2YhJK4yN6BPEANST2o5lE4TYbjPEQ8yLzlHSq5AgNSPVqc8bwpvDW5fSCpPdU9sjz1SPU4rYprvYum87wCkLa4KvQrPfKdczstXe63zq-NuVc6hD39RhY4wUhZPaSRCr2N1iY49f9DO8d5ZL2vY7W3lF9Hug1nBjweMWU3AxpWvRcj97wztza3C89LvE6MWTmHCI-340LUPD-SrTzcL8G2bBPdPJBSJD2Ldek4Mc-KPAqAFj3bg5y4I0CHvd9BIj1xjsW2Av7fPJ-UpLxuPUw4ZhA_Pau0BT1gP4C4vE9AO6ZCvDz5BHa3o7m0Pch9iz2A8YM4BwunvL387j2DtB65_ANAPCJs3TzXIoy4egyAvSmAPTzEWbe3IAA4E0AJSG1QASpzEAAaYEAMABz9MN7iHEgC4-_3E_-v8Q4E1B3__AIAFBPjwOEO36bWJv807iDAogAAABj-6Q7tALN_Cpz9E_H__8fg2AQpYdxhPc2-Ue_yDuso0NctD-cIAwDoEpA0RPj1E1r75yAALRXzFzs4E0AJSG9QAiqvBhAMGqAGAAD4QQAAAMEAABRCAADgQAAAwEAAABDCAABQQgAAaMIAADTCAADoQQAAgMAAAADAAABcwgAAisIAAGBCAACQwgAAwMAAAEBAAAAQwQAAgMIAACDCAABAQAAAmMEAACRCAACcQgAA6MEAAGjCAAD4wQAASEIAAIZCAACmwgAAMEEAAMDBAAAwQQAAaMIAADhCAADIwQAAPEIAAMDBAABQQgAAVEIAABxCAAAQQgAAwEEAAIC_AAAwwQAARMIAABzCAADWQgAAQEAAAODAAAAMQgAAuEEAAKDAAACIwQAAQMAAAI7CAABgQgAAjMIAAIxCAADgQQAAYEEAACTCAABwwgAACMIAAODBAADgwQAAVMIAAKDBAAAQwQAALEIAAKBBAAB0wgAACEIAAIJCAADiwgAAgEEAAMDBAACeQgAAcEEAAFjCAAAAQQAAHEIAAARCAADwQQAA6MEAADDCAAA0QgAAZEIAACDCAABQQQAAcEIAACBCAACiwgAAwEAAAFzCAACoQQAANEIAABhCAAAEwgAAIMIAADhCAABYQgAAmsIAADDCAACAQAAA4MAAALBBAABQQQAA4EAAAOhBAABEQgAABEIAANDBAAAwQQAAokIAABzCAACAwQAAJMIAAGzCAAAQwgAAQMEAAIBBAABAwQAAZEIAAChCAAAIwgAA4MAAACTCAAAwwgAAAMEAANBBAABAwAAAeEIAACzCAADYwQAAiEEAALhBAAC4wQAAhMIAALDBAAAwwgAADEIAAKjBAAAQQQAAiEEAALjBAADwQQAAQMAAAMBAAABgQgAAEMEAALBBAAAsQgAAsEEAABzCAAAQQgAAoMIAACDCAACQQgAAoMAAAHhCAAAAQQAAQEAAACTCAABgQgAA2EEAANBBAABAQQAAIMEAADDCAACAQQAAgD8AAMBAAAA8QgAAkEEAABBBAABQwQAA8EEAAJBBAADAwAAA2MEAAJhBAAAQwQAAXEIAAKBBAAAkwgAAmEIAAHDBAAAQQgAAKMIAAMjBAACgQAAA6MEAAAzCAAAAQgAAJMIAALhBAACYwgAAcMIgADgTQAlIdVABKo8CEAAagAIAAOC8AACgPAAAfD4AADA9AABkvgAAoDwAAFA9AAAFvwAAVL4AAKA8AABEvgAAgLsAAOC8AABsPgAAUL0AALg9AAD4PQAAuL0AACw-AAAdPwAAfz8AAIo-AAAsPgAAHL4AAJg9AACovQAAXD4AAAS-AACAuwAAHD4AAFA9AADgPAAA6L0AANi9AACYPQAAlr4AANg9AACgPAAAfL4AAFy-AACqvgAADD4AAGQ-AAAEvgAAyL0AAJg9AABkPgAAyL0AAEQ-AABEvgAAiL0AAAw-AAA0vgAAHD4AABA9AACgvAAAXz8AANi9AACWPgAAjj4AAHA9AAB0PgAAFD4AADy-IAA4E0AJSHxQASqPAhABGoACAABkvgAAiD0AAEC8AAAjvwAAmD0AAMi9AAAsPgAADL4AABS-AACSPgAAFD4AAAy-AABQvQAAPL4AAAQ-AAC4vQAAUD0AACE_AACoPQAAwj4AAFA9AACIPQAA4DwAAJi9AABwPQAAUL0AAFC9AAAwPQAA4LwAAKg9AACgPAAAuD0AAKi9AADgvAAALD4AADy-AABQPQAAoDwAAHS-AAAUPgAAoDwAAIC7AAC4vQAAoDwAAAy-AAAwPQAAf78AAJi9AADYvQAAgLsAAHC9AABAPAAAcD0AAOg9AAAwPQAAED0AAIA7AAAwPQAA4LwAAKC8AAAQvQAAMD0AABQ-AABAPCAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=hlwPL1S9wHg","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1280,"cheight":720,"cratio":1.77777,"dups":["5943834911622760586"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2412700767"},"10270813852831219877":{"videoId":"10270813852831219877","docid":"34-9-11-Z8A77E64F54B19D4B","description":"Justin introduces two examples in order to explain the concept of conducting a formal hypothesis testing for μ when σ is known. The questions are provided below with time references.","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3490055/484998cf26dc8050de26fc7090913e27/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/ubThOwAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"14","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D2GU_R7G5m-8","linkTemplate":"/video/preview/10270813852831219877?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hyp testing #2: Testing for μ when σ is known.","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=2GU_R7G5m-8\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxMDI3MDgxMzg1MjgzMTIxOTg3N1oUMTAyNzA4MTM4NTI4MzEyMTk4NzdqiBcSATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8TwgeCBCQBgAQrKosBEAEaeIH59_wD-wUAA_4K-_0D_wECCwD_-P__APr98gMFBP4A9AAABv4AAAD6D_3--wAAAPgKBAH6_wAAEQUEBAQAAAD59_z9_AAAAAwG__r-AQAA8gT7_QMAAAAMAQoFAAAAAP4NBQkBAAAA-Qn6_wAAAAD_9_4G_Pb-ACAALc534zs4E0AJSE5QAiqEAhAAGvABf_kNA7Ig2fwh_fEAAQfOAJ8IIv_9KdsAruQOAtQS3wAQFQIBy-Pv_xIXAwDYGw8ABQzm_w_yCgEv4_0ACvsb_-31CgAs1A0BPxINARLu8f_PDAkB3vj1AAPu4gD4EOf_H_0d__T3-AAI78cHDP4yAScAIAEI6RL-4vUEANwRAgHp-OD-H_X1BTIMAQLtBh4BAgf5BgERAvsDJv8DAPn7Bu3rAAUADPcEFhz4CvwJAv7a8fn59u7pByLkGAL97-X9_QIBBPXnAfIJCBP3FuX_Ae_6_v7o-wEIAeL2_wnmCfwJGQIG4BD-_AUQBwQS9f8EIAAtZrM4OzgTQAlIYVACKs8HEAAawAe5HAO_ob-ru5pz-LvpNnc91MvUPP5ihr1JK748V7KjvJny37vM0k496OgnPJPlf7z8jLu-WlMPvMbqxbvFVYU-VDBvvZt_Krx6Fy--CDwwPSmf1LxPeJG-ZxVMPanmi7pkTFA9Rs-tPPuqnrqydZo9pcvRvC3oAbxmA6-9aPwMPYa5M70PWEO9PxljvGyJ5rzmy4s9fJYMvW48zjwEa8E9EJhBu2EeLb2rEAc8qXcHPSN8-bwjfpq9TXBlPW8wL7xzCLE9QL3ZvIXDnDyJAy29B0BhvZ6W_rtDbuu8OSy4PZ3JiDy5ALS8ZU2RPUysZ7xdTi49MQP6vK13rDuYzyg8oBCbPVepBT0bKps9WJ1GPd9ML7tsPi48xcXRPf_mqjy3som9buKBuvaRgLyqBmY9oeiLPRvVq7sJudw89LkkPEsTwLyQJBC8EN-jPaZiAz054Kk99fuZPeBoBbyqv_k88ilbPKRduzxWH9m8ygNsu2TayLyf0sc93pW4PAmOprwhjS88qkeaPLzPcTy2FAs9kVSAveVrhbzrPIU8D8-HvVjBtTsCZwQ9KE80PCJAHzt2NA49aYcEvbIyWLuFHna90LMZvchpPrw1KWU9oYG4vWpQDztUJT068FXGPCkT6br8ZUG8hezZu4dCOrwPqXg9qDCLPRgwVLsw31C9UrBrPGk_jDuB0gs9A2mFPZMbEbqxMMQ99UXnvMD2U7qWLx49rtiPvfY_4bpkq7C8lueGvYjk2Lr5jWU8JMxZvFzy7Lr1fog9M98BvUB8bDlZk108WFLyO3NgnLotyea83_TTPABpRbkV14I9iU1avTnrkzitL7c6_RLxvbwjiTkZoem8lDsCPbRd0bmH5P887rv9PPKdpznWI6i8B7BtvUNsnLlUoUu8xFYVPewmSrfCouI8BrigvB6xJLisNh89EGmnumfebrkPUia8YO7NukJYJziCv4Q9PohOPQ5rRzirzAo6y6spvQlVwrd5JTe4VGQePZ6okjg_yXg8ngG_PXtAh7ZI1qs8GxChPRH5bzfJy3o9-rYQvt1TpLgVRy896vtaPZ429LjCS7W9jU0CPA26Tza81hg8MbOPPLpFtTic5ao7FhWxPNNV27dLl1k9L-ZCvLeVwLejsRY-plWePUcjJLmM-j-9TNZyPbfolbi77YK8l-ahvfo4_7eA1ze4UtIDvao8_bYd4ww8Z0bfvWlQErhFEtg8ILKIPdNhzzhxfGO9-iUCPqmBLLkrpp29WPLCvPCopbc8CAk8TiraPKSsHTggADgTQAlIbVABKnMQABpgJQUADgYsB-L_O-_WBOYN4O31B__p-__tBADvE-njBQLb0A4I_03ZEea6AAAAHQbrIBQA42AN0wAY6Br948XQFxx__SEI1fUh8uMQCxPZ9h73EilSAPbmuQ9Z9eIsFwggIAAthilEOzgTQAlIb1ACKq8GEAwaoAYAADRCAACQwQAA2EEAANjBAADAQAAAQEAAACxCAABgwgAAFMIAAIBAAAAgQQAAwEAAAGTCAABMwgAAfEIAAJDBAABAwgAAwEEAAABBAABAwgAAUMEAAKTCAABAwQAAPEIAAMhBAAAAwAAAnMIAAPDBAACUQgAArkIAAJ7CAABgQQAAgMEAADBCAABswgAAYEEAAJDCAABUQgAAiMEAABBCAABAQAAAiEEAAFBCAAAAwQAAgMEAAMDAAAAQQQAAiMEAAHhCAAAQwgAAgMAAAIDAAADAQAAACEIAAOBAAADowQAAGMIAAEBCAAAAwgAAnEIAABxCAAC4wQAAVMIAALTCAAAAwQAA-MEAAPhBAAAYwgAAMMIAAIDBAAAUQgAAeEIAAIzCAADAQgAA6MEAAEDCAABgwQAAoMAAAHBBAACgwAAAPMIAAAxCAABAQQAAQEAAAHBBAACIwQAAlsIAABxCAABAQgAA6MEAAFzCAAA8QgAAAMEAAMjBAABgwQAAPMIAAABAAAAEQgAAgkIAAIDBAAAAAAAANEIAACxCAAC-wgAAgsIAAEBCAACQwQAAmEEAAABAAAAQQgAAMEIAACBCAABwwQAA4MAAAFBBAACYQgAARMIAADDCAAAYwgAAgsIAAGjCAADIwQAAAEAAACDBAAAEQgAAVEIAACBBAABgQQAArMIAALjCAABQwQAA6EEAAKBBAACmQgAAYEEAAHDCAACQQQAAuEEAAGTCAACawgAAgEAAAGBBAADgQQAADMIAADhCAADgQAAAgD8AAExCAADgQAAAAMAAAIhCAABQwQAAAMEAAMjBAAAAQgAAFMIAAJhBAACWwgAAoMEAAFxCAAAowgAA0EEAAGRCAAB8wgAAUMIAACjCAACgQAAABEIAAFBBAAAQwQAAwMEAAADAAAAwQQAAoMAAAKhBAADYQQAAEMEAAADAAACwQQAAkEEAABDCAAAAwgAA4EAAAADAAABQQQAAmMEAACDCAACqQgAAoMEAAEBBAACIwgAAMMEAAAhCAAAwQQAA4MEAAIA_AABswgAAdEIAAGzCAABgwiAAOBNACUh1UAEqjwIQABqAAgAAyL0AAIg9AABMPgAAuD0AADS-AABMPgAANL4AACG_AACCvgAA-D0AAIg9AAA8vgAAiD0AAEQ-AAAEvgAADL4AAAQ-AAAwPQAAvj4AAP4-AAB_PwAAgLsAAOg9AACIvQAAMD0AAPi9AAAwvQAAXD4AAJq-AAC4PQAAyD0AAKC8AACgPAAA-L0AAHC9AACIvQAATD4AAFA9AACWvgAAUD0AAKC8AAA0PgAArj4AAEC8AACYvQAAND4AABw-AADovQAAPD4AAIK-AAAwPQAAdD4AALI-AABkPgAA4DwAAKA8AAAHPwAAFD4AAHQ-AADYPQAAML0AAKg9AACYPQAABD4gADgTQAlIfFABKo8CEAEagAIAAJ6-AAAkPgAARL4AAPq-AADgvAAAgLsAACw-AABQvQAAqL0AAMo-AACoPQAAQLwAAOA8AAAcvgAAoDwAAOC8AACAOwAAOT8AAHC9AACqPgAAmD0AADC9AAAwPQAAiL0AAEC8AAAUPgAAQLwAAHA9AABAvAAAcL0AAFA9AABQvQAA4DwAAJi9AAA8PgAAqL0AAKg9AABEPgAAVL4AAKi9AABMPgAAoLwAADw-AAA0vgAA2D0AAIC7AAB_vwAAoLwAADS-AADgvAAAXD4AABA9AACCPgAAUD0AAMg9AACgvAAA4LwAAFA9AACIvQAAcD0AAKA8AADgPAAAUD0AAHA9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=2GU_R7G5m-8","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["10270813852831219877"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"1578421189"},"3890924451934912687":{"videoId":"3890924451934912687","docid":"34-5-13-ZCF14C8204DC3A180","description":"All my stats videos are found here: http://www.zstatistics.com/videos/ See the whole regression series here: • Regression series (10 videos) To download the jaybob.csv dataset, head over to the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3420919/a5678a2f837ee1e2f53c0c845711881d/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/X_A8AQAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"15","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DiQNRzHKjFw0","linkTemplate":"/video/preview/3890924451934912687?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"WHAT ARE Logit Models?? (Logistic models)","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=iQNRzHKjFw0\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoVChMzODkwOTI0NDUxOTM0OTEyNjg3WhMzODkwOTI0NDUxOTM0OTEyNjg3apMXEgEwGAAiRRoxAAoqaGh2anl0eHVkbHF2ZnByZGhoVUM2QVZhMHZTckNwdXNrekdEREt6X0VREgIAEioQwg8PGg8_E9AIggQkAYAEKyqLARABGniB9wT6_voGAAL_BQEMBf4B_wYI__n-_gD5BAv6AwP_APYB_AH2AAAA_AL-_P4AAADy_P0AAwAAAAAA__sDAAAADv0J8_0AAAAAB_0A_wEAAPXy_wED_wAABQEA_f8AAAAADQH6_f8AAPkJ-v8AAAAAA_EABQABAAAgAC1aVOQ7OBNACUhOUAIqhAIQABrwAXAZLgCfD_X8RAwIAB356AKB_uUAByrzANj76gH_E_UA1gn5ADrp3_4b6_ABN-QXAC_z6P8M6O4BNQ4V_xwnEAAF7wcBZgzuAEz8_AEu-wP_7wUJAPAG5QI26u_-FAoL_xTJHf8YH_b9IOjzAfcG-v4rACMB4Pv8BgUV__wCGA0C7-MCAR3i3QHoEOkC7AYhAQLg2QAfGQ_9NAn4ABkM2QL-Jhn7HiMOAPTR7_4gAwD_9_MH-yEE_gj-_AQIA_3v-_EF7gj55vYCGwUP-iLSAP0fBQsDAwkJDRvk7wvy8wr0CPUGAQPhDAL5_fb9EOcA7SAALQmXKTs4E0AJSGFQAirPBxAAGsAH6WLTvorwBT2QeMM8JqeGPR84_LuBMvg7guEcPU9x3jsMgCe8UbuvPZ7OOrwIoji8nE2Xvuo9XLlkjxa80dtpvctM6bynobw8ELD2vQikTj1Ht1K7bt9jvtVuRb0Gnhu9nRidPQh8mbx_xh68Ge2nPNokGj3rbI46paR3vhr7cr0U_AC8IhehvTucirwFK1O9xB21OyQlXb01P6O88-UVvtP1RLwvkqy8QT-4PeE7i71tOsK8GH0lvkmhrLwKL0G8tYwkPj--6bxka4c8QQuOPSdQRD2EsKQ8blOXvFhTeT23eeO7Y1apveXQtz1AQqC7RVYtPdvBSD19sA68-aAHvvQamz0vgYA7Xp0DPbvR5z24EBg8W4kqPYIDqj1D2cK7_VLcO6a2t7vkEZw8SYLwPWIW9TwqyuW8k6G0vSWczDzd1ac7CFmmvU1W-zxRskW7-SuJPQytHj5kllC6R2I4vG0bhjwnMpQ76fDQvWx6MD3p85G80ZPSPX1F8bvoyau8DSXJvLZ6OD2YFP65cAEtva9kkr04kCK7vjBJPtLbBL3OaRo5YsjAvdK3Ozy0ztc7pRNJPcgyoz3uC8e7JomKPAHUeb3Wj8m7za9mvMtYQz0HgEe7Tx67vNYBgD0AthO7OnlsPHzzdjwu1ia8HjJlPcc19Dy2YuY7eE3-vIAF-ry0xw-7XZwivdF7Pry0iO67izHVPNdDJb2o44K6ySzxPG6uML2vigE7LeCfPY480L33yb65Y8QvPZY3ET3rjZy7izhdPT_o9rs1loc3HHoLPeLGEjxNLyi6YZntPOlDvL0CAak28nwGPc-br719GeA4GdHRvN1cHbzj9a-5Bz7rvA9YQ715vQK6r9MDvQgUWrttWR05EZMLvVuIhDwQ_8o42aRxPb_IVT0NFtC3KuHJvdV7lb0uA284BB3NPVOAgzyibx83hbGJu5L6_Ds6jEK4w3iSPRRUiT2x_DU4CilkvOtDbb2kWfM2KfSwvHrQkj3ROUq3fEPhPCAvGj2sh6S4hPIAPKB62jxO72m389r2vAj5yr1ah3u2Af4EPWZfA7xW1E84Ywjju52r3LylKlE4eCOYPIJnDD2TEdE4vjA5PaNLrjzwjkY4BeHqvbu2N737KAO5mUrfPYBz0DxUuL64iM0RvXIPTj3-i-63DZ-6O89cUb2hRa62QUmRvZIls7wTvja3HZcMPUkPQ75UMU25VRimPW0LxT2Dx-c41OE3PdEm4rojMQ64mA-Nvd0fhD2Mw9E33SKVPVzkojtALXC4IAA4E0AJSG1QASpzEAAaYD0CABv--w0cCQfqBgXeFtz9He_t6RgA_SQA6DLh3Qf-F74GFP8fwd4NvAAAAATvAvsLABtaG9XcHeT97uqBABMhXCfuIvD8Aev61iT3CsMJGgz1QgD8FdoCA_TWOxf_GiAALTtOTDs4E0AJSG9QAiqvBhAMGqAGAACAQgAAEEEAAJRCAACgwAAACEIAAETCAABwwQAAIMEAAFDCAACAQAAAIMEAACBCAAB4wgAAgMEAAOBBAAAQwgAAEMIAAIBAAADYwQAA4MEAACRCAAAYwgAAAEIAADxCAADQQQAA8EEAACjCAAB0wgAAukIAAMhCAAAkwgAAqEEAADTCAACAQQAAJMIAAPhBAAB8wgAAhkIAALjBAACAQQAAgEAAACBBAACYQgAAYMEAAHDBAACgwQAAAMAAANjBAACEQgAAHMIAALDBAAAsQgAAAMEAAIBAAACAQAAAgEEAALDBAACCQgAAgEAAAHBBAADoQQAAAEAAACTCAACgwgAAAMIAAEDCAABoQgAARMIAAETCAACgwAAADEIAADBCAACkwgAAQEIAALBBAABAwgAAyMEAAGDBAABwwQAAEMIAANjBAAAAQAAA0EEAALjBAAAAQQAAuMEAAGDBAADgQAAAVEIAAJjBAAAkwgAAdEIAAIDBAACgwQAAkEEAAKDCAAAgwQAAQEEAALhBAAA0wgAAwMAAACxCAAAUQgAAzsIAABTCAACAQgAAsEEAAABCAABQQQAAUEIAAERCAAAIQgAAgMEAAETCAADAQAAA6EEAAJDBAAAgwgAAPMIAAFTCAAAMwgAAkMEAABDBAABAwAAAcEIAAOBBAADgQQAA-MEAABzCAABowgAAcEEAAERCAAD4QQAArkIAAJDBAADowQAAwEAAALBBAABMwgAAksIAAIBAAACAQQAAAMEAAKDAAAA0QgAAAEIAAPhBAAAwQgAAAMEAAKDBAACGQgAAEMIAAEDBAADYwQAAlkIAAHDBAAD4QQAAuMIAAFRCAACuQgAAmMEAAGhCAABwQQAAAMIAAGTCAAAgwQAAMEEAAABAAADYwQAAAAAAAAAAAABwQQAAGMIAAIhBAADIQQAANEIAAJBBAACgwQAAgEIAABBBAAAwwgAAEMEAAABAAAAswgAA8EEAAGzCAACowQAAjkIAACTCAABAQQAAdMIAAKDBAACWQgAALEIAAHDCAACwQQAA-MEAAIRCAACEwgAAgsIgADgTQAlIdVABKo8CEAAagAIAANK-AACaPgAAEL0AACw-AAB0vgAAgj4AADw-AAD6vgAAZL4AAOi9AACGvgAALL4AAEy-AACaPgAAXL4AAIi9AACKPgAAyL0AAIC7AAArPwAAfz8AAM6-AADgPAAAlr4AAOA8AAAMPgAAMD0AAGy-AACIvQAAbD4AAFw-AACoPQAARD4AAOg9AADgvAAA-L0AAHw-AABEvgAAsr4AABC9AAAcvgAA-L0AAAQ-AADoPQAAQLwAABw-AADoPQAA8r4AAGy-AADYPQAAyL0AAAS-AACWPgAA2L0AAOC8AADoPQAAHT8AAPg9AABkPgAApj4AAKa-AABAvAAAMD0AAFw-IAA4E0AJSHxQASqPAhABGoACAACAuwAAqD0AAIa-AAArvwAAUL0AAOg9AACmPgAAQLwAAOi9AAC4PQAAMD0AACy-AABcPgAAsr4AAAQ-AADgvAAAiD0AABU_AACYvQAAsj4AAOi9AACYPQAAHD4AAJi9AABAvAAAgDsAAES-AACgPAAADL4AAJK-AACgPAAAMD0AAFA9AAAkvgAAqL0AAHS-AAAwPQAAFD4AAOi9AABQvQAAyD0AAJi9AAAwvQAAcL0AAIC7AADYPQAAf78AAIq-AAA0vgAAJD4AAKI-AADIPQAAJD4AAJg9AAAcvgAAgDsAAMi9AABAPAAAyD0AAHC9AADoPQAATD4AAJi9AAAEviAAOBNACUh8UAEwCTgBSgBSCQgPEJICGAAwAWAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=iQNRzHKjFw0","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["3890924451934912687"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"2144498993"},"75649868075974832":{"videoId":"75649868075974832","docid":"34-8-8-Z68D1C828B50FF3D4","description":"See all my videos at https://www.zstatistics.com/videos 0:00 Intro 2:00 Coin example 8:52 History of p-values 13:06 One-tailed vs two-tailed p-values 20:02 Example of p-values in journal articles...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/3393492/ca333796e559e1154e78c0d4dfc71d58/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/gowFIQIAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"16","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D4XfTpkGe1Kc","linkTemplate":"/video/preview/75649868075974832?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"What are p-values?? Seriously.","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=4XfTpkGe1Kc\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoTChE3NTY0OTg2ODA3NTk3NDgzMloRNzU2NDk4NjgwNzU5NzQ4MzJqiBcSATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8TlwyCBCQBgAQrKosBEAEaeIH2_vQB_AQA9QILAAIE_gHnAQQG_AAAAPEAAvz-AQAA6gD7C_7_AADxFP7_BAAAAPgA9QL7_wAADQ39_vgAAAD5_QUK-QAAAAYDBPr_AQAA__z7_wP_AAD_8wj-_wAAAAAFCgMBAAAA_gn_AwAAAAD7-gcKAAAAACAALVAZ4Ts4E0AJSE5QAiqEAhAAGvABf_kNA9sIAgAC6fIA3AvsAZQdCf8pMOf_qwAkAsb40gAFFBgA2f0AACDtEv_YDB8AHQvp_wL-GQAkAxAAJx4JAPT_CAAs1A0BMxED_wwB6f_qEO7_GufrAAYG__4GCvH_EwAQ__cjz_4m8-oDGO0SAiIFDAIGFPf_GO7yAcsF-AHq7wH7JAHw__YFAPjgFRoB7QMB_fsiB_zy-QEC-Pv5_hvz_wb3-fH9_An5CP_1A_3lBQn3F_jr-v36EwnbGfkG8ff-Bv35Bv0WBPkDH9YA_vvoEgLN3gwAAwLtDgTiFAESIQUM5AIX_OQiCBAJ8PsGIAAtZrM4OzgTQAlIYVACKs8HEAAawAd1ywK_hFUrPZhBBr1ayK08M9xAPZ5ilbyazJ28612yvFzDFDwrUfY8c77YPDp0erwN47a-Bi5vvWsz5ztnYpo-TjqbvBrvWDwX8V2-xxrkPEQ_iTwVN06-rTTpvGU6T7xEo2s-04U4PWQU1TyydZo9pcvRvC3oAbxb2XQ9-twBPAXHwLx8zpK9Ji2mvHGNdLzlgHg9RyFEvRsLDrsg6wk-xW3ZvKqZNbxw8Yu87NiMukMiyDnxD3u9vhobPXTYt7rikgM-h6OQPDgPTDztfQo--c8kPbiU8zyyKJG7PuTSPP7N8LyZDp06XS4JPOOoXDthiw0-pPOrPKIZejwW89i8Qfm2Pa2nsbrshu09jPeDPXJbkTv866677h5lPYgDsjyzTeC8gv-MO-oFgrubVHQ9e7_RvS8b17soAus5FgarPRAWX7wIzUk9fm2iPOr_xTti3Gg94bKaPcrcPjswlnO98mZoPCaTrjzbARK9KJYAvepEG7o7xQo-VoMrvV_w5TtRdzQ9e8FHPcDwJbtgZ4Q9-RG_vT1rEjy_xyo8XZervBkyaLyyoww96qABvcr0sDyoMjE9_3fEPO5ExbsmiYo8AdR5vdaPybvaZN48_Oo-OkTEKDzxKQU9ennwPNdkFTxp9Z89acjlOMsI97sofqw9vXqLPH4tFju2vDK9K9YVve6udbueCc09h_SQPbt2kroAAIw3pU7AvLNe6zoX3os9IpnAO7cokrvONQo7v42OvbZB1Lp_ToG8KXumPFdKpbh8K9I86jijvDv9wTmBCkI9D9UQPGHNM7jvfiu9ShxpOo61czg5QbA9HjbxvZIS7Tiao429wDaMvbpRlrid9jS9dK2DuuqIf7lyE7m7Eo4PPSa3SrrSvn69gE4AOhnQMrqTm7K856YNPbEi57jaHl09CrRlvTtQxjfIF7495OrRvJa9AzjLL8M8IJXFu_yORTol1wO9BLS4Paonqrg7sBY8N9cbuxbpDLepZvs8tHGJPWDP67hR2fC8OeUbPZJKlDjfbY49tGAYvalzprbeWfs82PGfvRgNlzilJeA8QbH6PEA707jsJZe9A5vOvER4EThAi4A9O5eYvHWKBDhIJpE9KEuYPYslHTetY4G83M7jPFVxdTitTPg8PJo0PH7C67isG0-9cABivXH6orgrtD286ZoJvZ59TbfmMCk8N3AHva5jJTgvRQO9q-lavS0w9Lc7RXi99mHdPa21J7jwsjW9XMzPPQxGCrkv0lW84efkPGKkMrdHiLw7NYkGuvfDPDggADgTQAlIbVABKnMQABpgdxAAKSQo-OvsHN8G4Nv5BvzK3ubMBP8TL__7AAwH8g0R5Ozt_1vqLtamAAAAFNziKhAACn8R06wS9jUB35Pz-iB1yhEz8rci-b_zHTHwtBEBxw1ZAL7mlDUV9QcJ-RoDIAAtmOwZOzgTQAlIb1ACKq8GEAwaoAYAANhBAACAwQAAyEEAAJDBAAB0QgAAAMAAAFDBAADQwQAAQMAAAEBBAADgQQAAXEIAAGDCAAA8wgAAiEEAAADAAABEwgAA8EEAAARCAAAQwgAAvkIAABjCAACcQgAA2EEAALBBAAAgwQAAWMIAAATCAADcQgAApEIAAATCAABEQgAAMEEAAJhBAABowgAAgEEAACzCAACgwAAAQMAAAFBBAABgQQAAyEEAAHhCAADYwQAAfMIAAADAAAAIQgAAgMAAADRCAABIwgAA6MEAAEBAAAB0wgAAAEAAAIC_AABAQAAAmMEAAIxCAACQwQAAoEEAAEBAAAAwwQAAAMAAALLCAAAAwgAAKMIAAHBCAABAwgAAqMIAAJhBAABgQQAAqEEAAMbCAABUQgAAIEEAAKjBAAAAQQAAQEAAADjCAABQwQAAcMEAAPBBAAAsQgAAkMEAADBBAAAEwgAAKMIAAJJCAAAoQgAACMIAAJjBAACqQgAAgMAAAODAAADYwQAAmsIAAABBAAD4QQAAiEEAAAzCAABwwgAAOEIAAKJCAABIwgAA0MEAACRCAADoQQAAwEEAABBBAACAQQAAyEEAAIDAAAAAQAAAQEAAANBBAADoQQAAQMIAAFDBAABgwgAAbMIAAODBAACIwQAAmMEAACDBAACAvwAAIEIAAODAAABgQgAAtsIAAKzCAAAAAAAA8EEAAMhBAACKQgAAQMAAACBBAAAMQgAAHEIAAGDCAACAwgAA-MEAAABCAAAgQQAATMIAAEBAAAAEQgAAgL8AACxCAABAwAAAuEEAACBCAABgwQAAgMEAAJDBAABIQgAAsMEAAGBCAACEwgAAgMEAADxCAABkwgAAuEEAAOBBAABAwgAA8MEAADTCAACQwQAAEEEAAGDBAABgwQAAuEEAADTCAACAwQAA-MEAAKhBAAAYQgAAUEIAADDBAADQQQAAcEEAAOjBAAAswgAAIMIAAIBAAADAQAAAUMEAAEDCAADIQgAA2MEAAOBAAACqwgAA4MAAAJpCAAAQQQAAdMIAAABCAAB0wgAAiEIAAADCAABowiAAOBNACUh1UAEqjwIQABqAAgAAgDsAADA9AAB0PgAAgLsAAFC9AADgPAAAUL0AAPK-AADIvQAAoDwAANi9AACYvQAAHD4AADQ-AAAUvgAAXL4AANg9AACAuwAATD4AAOo-AAB_PwAAyL0AAHQ-AAAwPQAAgLsAAOA8AADYPQAAmD0AAOC8AABUPgAAyD0AAJi9AAAwPQAA-L0AAJg9AADIvQAABD4AAAy-AAAsvgAA6D0AAKi9AADovQAAwj4AAFA9AABUvgAAmD0AAAQ-AABsvgAAhr4AAOA8AAD4vQAA6D0AALg9AADoPQAAlj4AAIg9AADSPgAAmD0AADC9AAAkPgAAJD4AAIg9AAAEPgAAQDwgADgTQAlIfFABKo8CEAEagAIAACy-AACYvQAAyL0AAEW_AAAsPgAAiL0AAEQ-AABwvQAAqL0AAEQ-AADoPQAA-L0AAAQ-AAA0vgAALD4AABC9AAAcPgAAJz8AANg9AAB0PgAA4LwAADw-AAAsPgAAiD0AAKC8AAA8PgAAEL0AAEA8AAAQvQAAmD0AAIA7AACYPQAAcL0AABC9AAAMvgAABL4AAKg9AADYvQAADL4AAFA9AACgPAAAiL0AAHC9AAA8PgAAgDsAANg9AAB_vwAAPL4AAGy-AADoPQAAEL0AAJg9AABEPgAAqD0AAEy-AADIPQAAgLsAAHC9AAA0PgAAJL4AAAw-AAAQvQAAdL4AANi9IAA4E0AJSHxQATAJOAFKAGAAaAA,\"}","related_url":"http://www.youtube.com/watch?v=4XfTpkGe1Kc","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["75649868075974832"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"908787943"},"12463192261726464391":{"videoId":"12463192261726464391","docid":"34-4-7-Z08E5BA1B3C527E2A","description":"itunes.apple.com/au/podcast/j...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/218190/ac184777120da3a53021e2c873325fd0/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/emeVpgAAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"17","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D0MFpOQRY0rw","linkTemplate":"/video/preview/12463192261726464391?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Regression assumptions explained!","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=0MFpOQRY0rw\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxMjQ2MzE5MjI2MTcyNjQ2NDM5MVoUMTI0NjMxOTIyNjE3MjY0NjQzOTFqkxcSATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8TlBaCBCQBgAQrKosBEAEaeIH6BwAG-gYAC_34BfsH_gH9CPj9-P79APP7_fwGAQAA_QL_BP8BAAAC_QD5AgAAAPP6AQX9AAAADAIG_f0AAAAN_fwG-wAAAAsJB_f_AQAA_fv99wIAAAAH-wYL_wAAAPj--fz__wAA8gkL9gAAAAAF-vr--_b_ACAALSv14zs4E0AJSE5QAiqEAhAAGvABdvv1AYwJFfk0_eEA6_XRAIH-5QD9LdgAxOz0ANgV7wH1_Q0Avf_5_-YaEP_l5Sz_zv3d_wQMGAAt0R3_FuMAAfzhCAA03v0ANxMD__MQ6P_iIBD_9fYKAPkHKQAM_-cAJPAu_wkh3AEN_9oDDf42ASIcHQTx-AwD8wYLAeMGH__57v_-_fHwBB4d-gXd4g0A-PHm_Ps1BgH9KAz_2hIUBO78IwEJ9g78EAfkBP0S6Pzt3vL62APnA_36FQnYB9j-4_n8-wHrGwIgAgIBKQYT-A7kGgIC8Aj79vXk-hXtGPsSDfn0_PQP7uEL9_4Q5wDtIAAtCZcpOzgTQAlIYVACKs8HEAAawAc5K_q-GQMMvDbvtLphpBc-EYQQvIlkBrx4tAE-OeoNPQ4MRTsS1QA9GGZ8vBF_3jv8jLu-WlMPvMbqxbstC1Y-sIpcvUEtJr11dPy9LxOaPQsCEL0VHE6-rE3IPDWXHztssPA8CmuhOw7Zo7qrTaI9VNwdvQl2Er1viwi9Q0cHuiPYGL3yRsU7zgODvbSPNT3X6sE9N_CUvQnpHzzVuZi8lEOVPO0gYL3_Qqo8XzlMPb-pfrzyKMC9r63EPIVzETtmqjs9-KcUPTV_zLzlg3k9_4A9POAwUbxau809Ai7oPZfA0jwLhmm91KppuvN-ELzYnlm9foY8PQfMaLysONU9zLjEPJLVo7y2gFC8uFvSPZvuDLzGYaq9q1udPe7UmjvDOXm9HJNqvWt_KTsongM-rK1YvPHlzztrc627XOM4PQOdJLzg7AC94FiGPJ052jxVZIk99pfdPZjyRryfRxs9h1OWPdLoqTyrJqM8VFATvCe43LvjM9k9WWaGPdy5MDy4FEG96jPvuw8cwDtwCus8Re-5vfZH5bl_72A9iK2PvaHJFTwCZwQ9KE80PCJAHztWSQU8I0OTvTzwNTt5lZC88DU_vShgYDxtpJE8Xsh5vR-sNTtBuW092wNDPcUy5LvpC2G92c63vGTivbtHv4c9CeStPCv2OLtdFQ29S92fvEE78Tse-zm9EF5WPUkntzqap0Q9nBhSvT7-GLuWLx49rtiPvfY_4bq4dEy9IYfvOwSWWLrHEUu9IE6WvNfoC7sfotE9WPgfvXnRijhMswy8QKP0PMQV5bm6HZC8Jj6SPEW2OTpBmEA9ipP7vUxrdjhq9iO7752nvWJI3Lgif5o9wlMjvZ_98rh7i-I7DLLAvXq66bdff729Hxg7vQjVN7n8t_06Sy9_u2oJWbfD3ZO72gSzvd9hDLmsNh89EGmnumfebrnmpQs7U7s1vX3cwjinf0Q9vNK9PScq-za3yXI8bS0dvcujwrhRM6C7uA1ZPOeyGDdlhNy8rJeVPXovCTcxBxE-VSEUPS6m2Tfl4rm8cWibveWtCDbhanM9Zz1BPWX26bhzo-O8gnYCvXWxPjePKH69uH97va_F57eWJJ89mZBgPbVtozeNk-e85NPru3RXdTitTPg8PJo0PH7C67gUIZW9tgvyPKkNGzhyNAk7cI60vTjSjbbvmPA8ix8du5YXZjZRnwm98coBu2yg17dG5JA9gcYxPeWQjzg8Kfq7VSptPeAyjbiPr5i8VgNePZ3Zi7j0PG68JryePe-QhTggADgTQAlIbVABKnMQABpgRgEA9C382hAqWO3WqvHzzgITzgzeAP_y3f8HHwv_IPPttiLm_0blHs2kAAAA5ucqJNkA6X_tvOsKGAMXt_ryMCFoEj3xwOIV5bnqvinYyQwi3CBaAPLWlTM12uhA2S3-IAAtFe8YOzgTQAlIb1ACKq8GEAwaoAYAAGBCAAC4QQAAXEIAAKBBAADAQQAAaMIAAOBAAACgwQAAAMIAAJhBAAAQwQAA2EEAAHTCAACQwQAAFEIAABTCAAD4wQAAUEEAAODBAADQwQAAKEIAAPjBAAAUQgAABEIAADxCAACYQQAAMMIAAFDCAADgQgAA4EIAAOjBAAAAQQAAPMIAANBBAACEwgAAsEEAAGzCAABgQgAA2MEAAMBBAAAQQQAAAMAAAHBCAABgwQAADMIAAABAAABQwQAA-MEAAGhCAACowQAA0MEAALhBAACAwQAAUEEAAMjBAADIQQAAEMIAAJJCAACAwQAAAEAAAOhBAACgQAAA-MEAALzCAAAQwgAALMIAAEBCAADgwQAATMIAAMBBAADQQQAALEIAAIrCAAAEQgAAcEEAACzCAAAIwgAAEMIAAADAAACYwQAAqMEAADBBAACIQQAAmMEAAKBAAACAwQAAmMEAAADAAABEQgAAyMEAABDBAACWQgAAwMAAACDBAACwQQAAsMIAAGDBAACAQAAAwEAAAEDCAACwwQAAOEIAAAhCAADQwgAAQMEAAHRCAADIQQAA-EEAAKhBAABAQgAAGEIAAEhCAACIQQAAVMIAAOBAAADwQQAA8MEAADDCAABowgAAVMIAACjCAACIwQAAwEAAAABAAADIQQAAKEIAAFRCAADowQAALMIAAEDCAABQQQAAJEIAAKBBAACuQgAAkMEAAAjCAADgwAAAAEIAAHDCAACQwgAAQEEAAKBBAAAgwQAAAEEAACxCAAAUQgAA6EEAAARCAABQwQAAMMEAAJxCAADAwQAAAMEAAJjBAACUQgAAYMEAACRCAADWwgAAiEIAALJCAAAEwgAAYEIAAADAAABwwQAAVMIAACBBAAAgQQAA4MAAAKjBAAAAQQAAAEAAAIBAAAAMwgAAAEEAABRCAABIQgAAJEIAAIDBAACMQgAAQEEAALjBAACowQAAYMEAALjBAAAQQgAASMIAABjCAADMQgAAJMIAAMBAAACSwgAAEMEAAFxCAAAAQgAAbMIAAIBBAACgwQAAREIAAIDCAAAcwiAAOBNACUh1UAEqjwIQABqAAgAAXL4AAIa-AAAkvgAAMD0AAGy-AACAOwAAcD0AABW_AABUvgAAoLwAAHA9AAA0PgAAqD0AACw-AACWvgAAdL4AAKY-AACYPQAAyD0AABk_AAB_PwAA4LwAAEA8AACIPQAAJL4AAKC8AAAkvgAAML0AALi9AABAPAAAgj4AAAS-AADovQAAHL4AALg9AADIvQAAuD0AADC9AAB8vgAAoLwAAHA9AACAuwAAFD4AAOC8AAAkvgAAXD4AAMg9AAC-vgAAuL0AAAS-AAD4vQAAML0AANI-AADIPQAAfL4AADA9AABfPwAATD4AAJi9AACgPAAAqL0AAPg9AAC4vQAA7r4gADgTQAlIfFABKo8CEAEagAIAAJi9AAC4PQAAcL0AAFu_AADgvAAAmD0AAII-AACovQAA2L0AANY-AABsPgAAML0AABQ-AABEvgAAoLwAAIA7AACKPgAALz8AAGw-AADCPgAAoDwAAIg9AADWPgAAEL0AAES-AABEPgAAkr4AABw-AACAOwAAiL0AAFA9AABAvAAAHD4AACS-AACAOwAAML0AAOA8AACIvQAAED0AAOA8AACyPgAAUD0AAES-AABwvQAAmL0AAOo-AAB_vwAA-L0AAHC9AACGPgAAdD4AANg9AAAkPgAAyj4AAIK-AADoPQAAuL0AAGy-AAAUPgAA1r4AAKC8AABAvAAALL4AAIg9IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=0MFpOQRY0rw","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["12463192261726464391"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3926326268"},"5325715596660587711":{"videoId":"5325715596660587711","docid":"34-7-17-Z5EABE9247A9F1604","description":"See all my videos at https://www.zstatistics.com/ See the whole Hypothesis Testing playlist here: • Hypothesis testing...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/4447698/2f523a26fb498fc5365a8390c789ebe4/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/TYcZQQEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"18","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DCJvmp2gx7DQ","linkTemplate":"/video/preview/5325715596660587711?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Hypothesis Testing Basics: Type 1/Type 2 errors | Statistical power","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=CJvmp2gx7DQ\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoVChM1MzI1NzE1NTk2NjYwNTg3NzExWhM1MzI1NzE1NTk2NjYwNTg3NzExaogXEgEwGAAiRRoxAAoqaGh2anl0eHVkbHF2ZnByZGhoVUM2QVZhMHZTckNwdXNrekdEREt6X0VREgIAEioQwg8PGg8_E54HggQkAYAEKyqLARABGniB-wQBAv4DAPj-_QD5BP8BGfsG__YCAgDzAPkNBQL_AP8CBvn_AQAA_xMICgUAAAD39f3-_f8AAAoFAAgEAAAADPn5_P4AAAAGC_r9_gEAAPn4_gYD_wAAB_sHDP8AAAD6Dvz7_wAAAAQE_AYAAAAADAP7CgAAAAAgAC2ddds7OBNACUhOUAIqhAIQABrwAX8jCgPS0OUB6e3HAbwIDgGMFg3_EhfPAKMQLgLSD7cB9fz4Ad_M7P8b2gcA2_wgAPsVzP8N6P8ACAYBAFsfAAEZ9TAAP9f9ATPz-QAFB84BEgDy__4AGwEn5vMAHBzcAP8LHPy8FuL_Afn1_xD-QQEPCBgFIO0TAgL5-P7lFhECKPLzARsPBwTdJ98AATQiAermIQUBCP0J4-H2BhEl3v8v2OT9-OHr_yAS5wXawvX9DgkZ-v75-QDlAhQGv-z--fL2KAL98e757xYJ7yvm9gD1BPwDFe_8_zcH5PzsowkI0__588_xBvXYAw8K_RoJCSAALbb3DDs4E0AJSGFQAirPBxAAGsAHdcsCv4RVKz2YQQa9d1EPPfwBmj0kMw-8u9urvKUyID2T29s8S2fxPMeSAzuy2VG9_Iy7vlpTD7zG6sW7Ci9hPhdxsLxB08Y556fYvZxTyTwA4i47FTdOvq006bxlOk-8nb0jPni7uTxFw5i8-tXcPTd-cjyroBY8s652ves98LwggC-9839dvYGGDb0dkYy6BcP5PTGLWr0LiB89bM_MPUI6H7x3gVQ7QZ-DvQj7G73OZ8S7EwvcvaX8_zwh5Dw9K9nxPT19BL0vAVM8lhrrO6qZtbsfLIS7R1W4PCoIubzU-Qu9DRc5vUSRJLwqkFk8jz-MPRBl3jz4x5Y8FvPYvEH5tj2tp7G65Ib_PTl29TyMb548D-kcvc3TTz2JdQ89NLVRPWf_DT3Gie27CFTUN8AE7rzxCgq86O6EvMclcz3pri06aDoBPBnkLrxxgTo8D-frvKZNgD3j6te6dQzjvA2nDDwQy-o6HiUlvb_ZQbzaa-q7uakxPkiYuL0Jel68ij6fPfy4BzyAbEi8Ohv2O5mUTLzxLQ08rM0cu8R2nDxhEL28ZF5iPc761LzHHhA8NM6wPMQLYj17sFY88W6bvcnLmr1ebQG8bv-lPUiivLw6vqi7qOIEuwlZF7qWMjo8cMGIPAeVnbzwcBq8D6l4Pagwiz0YMFS7JLa7vdLEHDzB6LC6tGBYPc_56TzEL6s6UW1LPWHVC7u2hm87SKjZPC91iLsPlAA7KlkpvJtUVL1vHdI7asJ2PMOrNj2FTL25fQ1cvd-hi7t0DCe58E5ePXOyPj3BVkI5JUeVvPFIPL07mIw5eatTPJNxbL2qhgM5C-uLvX10YLr287C5z4HlvdVoqDwWpig5LrrpO8x5az0cvE05su2JvTTaqjwDi5a4d7bPO08Xkz3DaKa4noxbPcNiGLy1_my3CgGPPVnHbL0RQem52eR1PSdgxbxi9jm4t1cQPSq05jrePw05q8wKOsurKb0JVcK3eKwjvK6ffj19BNM4zU6gvZa6PzykC1U4cVpwPLr12r35nwo5sRODPLaxs70Vqek4eNs7vGSaBL1aiJI4yTirvfyUPr1TlPu30GE-vD5WVb0teEa4UMJMvC_pnjxbPIa4QihKvNuTdrxJnBQ49-tpPTCyDj0cwsO47CNhvb8nmLtdw-W3wyb9t7NDjL1Nig43k6csvAO8-7xb7Yk3w5wgvUoo3b3tIEm4ipZXPRBY-T2NF0A4fGKNvSED2T2BNTC5djbkvNaSCT2rfBG4CV24vAmZdb2R7jg4IAA4E0AJSG1QASpzEAAaYD_6ADUML-vqPj7pIAqw3-b6GOwdzw__6B3_6ynU3vo4BbD9agBO1-0HngAAAO4OxD0gACF_9eXeKOf31Mq9BR8KcRXrSs_iMgrXIzI7Avo8D955GQDS9502HrTDSCwu7SAALRuSDjs4E0AJSG9QAiqvBhAMGqAGAAAYQgAABMIAABxCAACAPwAAbEIAAMDAAADIQQAAiMEAAHzCAACYwQAA8EEAAMhBAACCwgAASMIAABRCAACowQAAAMIAABRCAACAvwAAwMEAAMBAAABswgAAgL8AACBCAAAwQQAAkEEAAHTCAAAgwQAApkIAAJhCAAB0wgAAWEIAABTCAAAAAAAAXMIAAPBBAAAcwgAA2EEAALjBAABgQQAAwEAAABxCAABQQgAAAAAAADjCAACAQAAAQEEAANjBAACeQgAAsMEAAADAAAAAAAAAQMEAAFBBAABAQAAAMMIAABjCAACUQgAA2MEAAGRCAACwQQAAKMIAAHDCAAC-wgAAaMIAAODBAACgQAAA8MEAABTCAAAAwAAA-EEAADhCAACQwgAAjEIAAJjBAABkwgAAYMEAAEBAAAAAQAAACMIAADzCAAAQQgAAsEEAADDBAADYQQAAAMEAADTCAAAAQgAAREIAAIDBAAB8wgAAREIAABDBAAAAwgAAmEEAAFjCAACAvwAALEIAAEhCAABYwgAAgMEAACBCAAA4QgAAIMIAAFjCAABkQgAAkEEAADBBAAAgQQAAwEEAAEBCAACwQQAAgEEAAPjBAAAQQQAAiEIAAMjBAACgwAAAaMIAAKLCAABowgAABMIAAEDAAABQwQAAIEIAAEhCAAAAQAAAgEAAAJjCAADUwgAAIEEAAChCAAAAAAAArkIAAJhBAADAwQAAiEEAAChCAAC4wQAAvMIAANDBAACoQQAA4EAAAEjCAADYQQAAyEEAAIA_AABEQgAAyMEAAEDBAABMQgAALMIAAIDBAACQwQAA8EEAADjCAAAwQgAAhsIAAIDBAAB8QgAAbMIAAEBAAABIQgAAqMEAAEDCAABgwgAA4EEAAMhBAADgwAAAcMEAALjBAAAAAAAAgMAAABBBAACYQQAA-EEAAKBAAACAPwAAmEEAAIBBAACgwQAAGMIAALjBAAAEwgAAUEEAANhBAACIwQAA_kIAAHDBAAAgQgAArMIAAIjBAAC4QQAAiEEAAHTCAAD4QQAA-MEAADBCAACmwgAAkMIgADgTQAlIdVABKo8CEAAagAIAAMg9AACmPgAAUL0AAM4-AADYvQAAcL0AAHC9AAA5vwAAUL0AAFw-AABkvgAAlr4AAKY-AACgPAAAqL0AAI6-AAC6PgAAmL0AAHw-AAB3PwAAfz8AAGS-AAAEPgAAfL4AABE_AAAwPQAAhj4AAGQ-AACAOwAAqD0AAGQ-AADoPQAApj4AAGQ-AAD6PgAA4LwAAJi9AADYPQAAlr4AAHy-AADYvQAADz8AAEM_AACavgAAPD4AAKI-AABwPQAAFL4AAFy-AACovQAAir4AABC9AABQPQAAfD4AAJ4-AACIPQAALT8AAAS-AACgvAAAMD0AADQ-AABMPgAA-D0AAIg9IAA4E0AJSHxQASqPAhABGoACAAAcvgAAgLsAABS-AAAPvwAAQDwAAJi9AABUPgAAhr4AALi9AAC4PQAA-L0AANi9AABAvAAAlr4AADA9AAAQvQAAyL0AADE_AAAwvQAAij4AABA9AAA8vgAAgLsAABC9AABQvQAA2L0AAOC8AACgvAAAqD0AABC9AACYPQAA6D0AAHy-AACYvQAAuD0AADA9AACSPgAAJD4AALq-AAA0vgAA-D0AAAw-AAAEPgAAoLwAAKg9AAA0PgAAf78AAHy-AACgvAAA-L0AACw-AADIvQAAVD4AAJi9AAAQPQAAoDwAAKA8AAC4PQAA6L0AABQ-AABwPQAABD4AAJi9AAAkviAAOBNACUh8UAEwCTgBSgBgAGgA\"}","related_url":"http://www.youtube.com/watch?v=CJvmp2gx7DQ","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["5325715596660587711"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"4154579006"},"15275030553566968996":{"videoId":"15275030553566968996","docid":"34-1-10-Z5761DFA5C9BE84AE","description":"All my stats videos are found here: http://www.zstatistics.com/videos/ See the whole regression series here: • Regression series (10 videos) To download the jaybob.csv dataset, head over to the...","preview":{"posterSrc":"//avatars.mds.yandex.net/get-vthumb/2360949/16a054f8cd09d642d3f01e114a19f0ed/564x318_1","videoSrc":"https://video-preview.s3.yandex.net/L4sDCAEAAAA.mp4","videoType":"video/mp4"},"target":"_self","position":"19","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","summary":{"fullTextUrl":"/int_search_summary?data=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DHSHcIHMxhbE","linkTemplate":"/video/preview/15275030553566968996?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics&t=%%timestamp%%&ask_summarization=1"},"isAdultDoc":false,"relatedParams":{"text":"Advanced Regression - Categorical X variables and Interaction terms","related_orig_text":"zedstatistics","related_porno":false,"related_less_3m_off":true,"client":"d2d","no_cnt":1,"related_src":"serp","related":"{\"porno\":false,\"vfp\":1,\"orig_text\":\"zedstatistics\",\"url\":\"http:\\/\\/www.youtube.com\\/watch?v=HSHcIHMxhbE\",\"src\":\"serp\",\"rvb\":\"EqsDChQxMDMzNzAyODcxMzk1MTQ2MzE5MgoTNDU0MDM0NTkxMDI4NDg5MDIwMgoTMTczMzE5ODc5NTY5Nzc4MDMwOQoSMTAwNTM2NDUwNjczNDM0MDI2ChMzNzA0MjY2NzU5NDY4MDkxMjgwChQxMDIzMjkyOTAzOTI5Mjg0MzI2MgoUMTQzNDIwNDkyMDUyMTE1NDM4MDkKFDEwMDE5OTc4NjA2NjczNDk0ODEzChQxMTIwNDUxODI5ODYxMDQyMDcwOAoTNjE2NjY1Nzk5NTI1MTU0MDk4OQoUMTM4MzE4NjczMTU5Njk0ODY0MDAKEzU5NDM4MzQ5MTE2MjI3NjA1ODYKFDEwMjcwODEzODUyODMxMjE5ODc3ChMzODkwOTI0NDUxOTM0OTEyNjg3ChE3NTY0OTg2ODA3NTk3NDgzMgoUMTI0NjMxOTIyNjE3MjY0NjQzOTEKEzUzMjU3MTU1OTY2NjA1ODc3MTEKFDE1Mjc1MDMwNTUzNTY2OTY4OTk2ChQxNjQ4MDYyMzQxMTcyMzE2NjU0MwoTMzA5ODQ2NjAyODU0ODk3ODA2NhoWChQxNTI3NTAzMDU1MzU2Njk2ODk5NloUMTUyNzUwMzA1NTM1NjY5Njg5OTZqkxcSATAYACJFGjEACipoaHZqeXR4dWRscXZmcHJkaGhVQzZBVmEwdlNyQ3B1c2t6R0RES3pfRVESAgASKhDCDw8aDz8T9QqCBCQBgAQrKosBEAEaeIHzCQcI_wIA9PgIAQIE_gELDPb39gAAAPb_CgAHAv8A8_0KCPsAAAAIBADwAwAAAPn2C_P8_gAAF_f7-fQAAAAT-QL-9wAAAAYD9gH_AQAA-AH8AQP_AAAD-v0EAAAAAPUHCAP__wAA7gkD_gAAAAAF_QL5AAAAACAALdl91js4E0AJSE5QAiqEAhAAGvABXgcYAckI8_7yCf8AEPHXAYHw-__0IvgB5er-AOgX-wHg-u4ALwDzACr75wAW9AQAGgnsABjy7wA36wcAHAUMAAX_CwA7Fwr_M_YDADf37v_kCPoAEP7dADDoCP8YEvj-Du8d_iES8_8i9O0C9AMSASL0DAH77f8FBBL__f8gGwDq9vT-Cu_uAOwN7QH1BxMJEfL1_RED-wUk-OoEEATv_v0lBgUbDhD_GNf1Ahj3EADr-QH6GQv6-hT_B_4D_vL80_kABP3a9f0IBxH4Jd70BRkECQPxCggHDfL2Afb7_vAJ4_wIE-IK-wEC_gAM8gj3IAAtkPpOOzgTQAlIYVACKs8HEAAawAe858C-FaPTO-7X0zzD5r09wUsavRtLGDyht9G48KdGPEsoM7ymDvI9lfQwvGTJZ7oceHW-anwQPXw40jzL-Ke90T1rvAEiszwZdKK9DKIfPYpBu7tu32O-1W5FvQaeG70mZ7I9szEGO9HTmzwZ7ac82iQaPetsjjo4FZG-gNJ1vDpX9zp8zpK9Ji2mvHGNdLyqGN28uAkSvQ2QorsOaxq-ostAvWNtwrxBP7g94TuLvW06wryXkC--tj_hO8EXS7xcH9Y9M99hvecHBL1r0Fw9QNjOuxblCD3DJlc8j_t2PeeibDljVqm95dC3PUBCoLut5H49bcLCPWlSL7zEzI69NpHZPWjsJrwtbk29x4MNPjdZfrsyIZY9Mqu3PZNVkbz9Utw7pra3u-QRnDxJgvA9Yhb1PCrK5bw3FgS-wZd4vKADM7gPr4C9oDggPc31h7wRTx083o8LPm7XCDrz5xu9sXmLuyAkMLwQB-m9H1VDPTyowDvKbKA9JAlnvGTkkbw5T-u8PxkSOu-bUju1Nm293P3gvDbpV7vrb4E--5ECvVBf0bliyMC90rc7PLTO1zt8txk9xuDhPT_2xDoffTg9EUGrvTFhNDyXLzm9m9VxPOPCIjwM1k27ceKAPdRb6rs6eWw8fPN2PC7WJrwkHEQ9GpgJulvk7Tmg-qi7e8BcvYRRpLv9mJC93wqXvJlDOjpYK4k8JJVOvd9tnDvVhnk8bMBWvWBd0zvcxco9lFCqvabEhbrUnDw9s8yXPYywzrgGmF49fus5vR4lzTkcegs94sYSPE0vKLpPHVA9y_W2vbqQ2Dd5q1M8k3FsvaqGAzmTI9c7oEBOPTqWUjpGuS-93MUKvXhFs7miVGy98l_gPAuglDmHGw28RbvpO6KRuDjr2oM9lZO1PAmlfTgq4cm91XuVvS4Dbziatp89BEe4vM0bBziFsYm7kvr8OzqMQrhs6fE9VosePRAlJjl7Zu68eIKYvJCgNbjYl1G9iuPlPBHUATl0Bqs9JNtPPZE7u7j2f448AC7SPL_z17jD0-s8Zyb4vSIkJLi6WyM9YANCvXJddrjEI9Q74dXRu3hL8zgW1Yc8XgiDO3NMlDimXIY9w5v1PDnBpLe0yNa9dEa_vd63vTjkZIc8_B1FPZWcsLgqBA-8jCJVPZZS3Dd6lwG9qwNlvbVi5rc-Vaq7K6skvYzg5jfsA707fNQPvhf63LhVGKY9bQvFPYPH5zh7QAo9e3q2OiiA-riYD4293R-EPYzD0TfFYLQ9JGe8O9CKKDcgADgTQAlIbVABKnMQABpgPBgAPRMSzNccEu_J-tHIJ7L_EPDZEv_m5P_0Ff7YTP4Mrv8j__qlLcubAAAABbAiJQcA5H8dsNEC_vQL4YkZJyxvzAAkoeNS3SnP7QHo3ygeDCEkAPQczRpBreBpFg8BIAAt8WkQOzgTQAlIb1ACKq8GEAwaoAYAAIJCAADgQAAAjkIAAIDAAAAUQgAASMIAAIDBAAAAwQAAUMIAAEBAAAAAwQAANEIAAHzCAACIwQAA4EEAAAjCAAAkwgAAQEAAAPjBAAD4wQAAOEIAACDCAAAMQgAAKEIAAMhBAADoQQAAJMIAAHTCAAC-QgAAxEIAACjCAACwQQAAIMIAAJhBAAAcwgAA6EEAAHzCAACEQgAAuMEAAEBBAACAQAAAUEEAAJJCAACIwQAAYMEAALjBAACgQAAA0MEAAHxCAAAYwgAAoMEAADBCAAAgwQAAEEEAAABBAABQQQAAoMEAAIRCAADAQAAAkEEAAOBBAACAPwAAJMIAAKjCAAD4wQAAMMIAAHBCAABEwgAAQMIAAKDAAAAQQgAANEIAAKzCAAA4QgAAuEEAADzCAADIwQAAUMEAAKDBAAAgwgAAyMEAAEBAAADQQQAAuMEAAABBAADIwQAAUMEAAMBAAABQQgAAgMEAADDCAABgQgAAkMEAAIjBAACQQQAAnsIAABDBAABgQQAAyEEAACjCAADgwAAAKEIAABRCAADEwgAAGMIAAIBCAACgQQAA-EEAAEBBAABMQgAAWEIAAPBBAACowQAATMIAAABBAAAAQgAAiMEAACDCAAAswgAATMIAAAzCAACYwQAAAMEAAKDAAABsQgAA2EEAAMhBAADwwQAAMMIAAHTCAABgQQAAPEIAAPBBAACuQgAAYMEAAADCAAAAQQAAwEEAAGDCAACUwgAAgL8AAEBBAADgwAAA4MAAADRCAAAAQgAA-EEAAChCAADAwAAAoMEAAIxCAAAUwgAAMMEAANDBAACMQgAAgMEAAARCAAC4wgAASEIAALBCAABwwQAAYEIAAJhBAAAYwgAAaMIAAFDBAAAQQQAAgD8AAPDBAACAvwAAoMAAAIhBAAAIwgAAYEEAAKhBAAAsQgAAgEEAAIjBAACEQgAA4EAAACTCAADAwAAAgD8AAETCAADQQQAAZMIAAKjBAACSQgAAGMIAAHBBAABswgAAcMEAAJpCAAAsQgAAdMIAAMhBAAAEwgAAhEIAAITCAACCwiAAOBNACUh1UAEqjwIQABqAAgAAtr4AACS-AACIPQAAZD4AAGy-AAAwvQAAqD0AABG_AABQvQAARD4AAEC8AACWPgAAFD4AAPg9AACKvgAAoLwAAIY-AABAPAAA6D0AAPY-AAB_PwAAMD0AAIi9AACoPQAA2L0AAI4-AABwPQAAgr4AAHy-AACYvQAAMD0AAHA9AAC4vQAALL4AAMg9AACIPQAAPD4AABC9AADIvQAA2L0AAFC9AABEPgAAPD4AAFA9AABwPQAAdD4AAAw-AAAQvQAAyL0AAIa-AADIPQAAyL0AAJ4-AAAsPgAAgLsAADC9AAAzPwAAoLwAAAy-AAAEPgAAyD0AAAS-AABwvQAAcL0gADgTQAlIfFABKo8CEAEagAIAALq-AAAEPgAAJL4AAEG_AACAOwAAQLwAAEA8AAAUvgAA6L0AANI-AABsPgAAML0AAAw-AACYvQAAqD0AAFC9AADYPQAAPT8AAFQ-AACmPgAAyD0AACQ-AADOPgAAFL4AALi9AAAEPgAAyL0AADQ-AAA8PgAA2L0AABA9AAAwvQAAiL0AAFS-AAD4PQAABL4AAIC7AAC4PQAAqL0AADy-AAAMPgAA-D0AAMi9AACIvQAA4LwAAK4-AAB_vwAAiL0AAIA7AAAcPgAAcD0AAOC8AAAQPQAA3j4AABC9AACoPQAAQLwAANi9AAAMPgAAvr4AAOC8AAAQvQAAFD4AABS-IAA4E0AJSHxQATAJOAFKAFIJCA8QkgIYADABYABoAA,,\"}","related_url":"http://www.youtube.com/watch?v=HSHcIHMxhbE","parent-reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","related_vfp":1,"relatedVideo":"yes"},"cwidth":1920,"cheight":1080,"cratio":1.77777,"dups":["15275030553566968996"],"episode":0,"season":0,"isEmbedOnly":false,"greenHost":"YouTube","hasTranslation":true,"contentTypeId":null,"censored":false,"videoContentId":"3187767081"}},"dups":{"10337028713951463192":{"videoId":"10337028713951463192","title":"What are "moments" in \u0007[statistics\u0007]? An intuitive video!","cleanTitle":"What are "moments" in statistics? An intuitive video!","host":{"title":"YouTube","href":"http://www.youtube.com/live/ISaVvSO_3Sg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/ISaVvSO_3Sg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/user/zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":943,"text":"15:43","a11yText":"Süre 15 dakika 43 saniye","shortText":"15 dk."},"views":{"text":"251,2bin","a11yText":"251,2 bin izleme"},"date":"6 şub 2019","modifyTime":1549411200000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/ISaVvSO_3Sg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=ISaVvSO_3Sg","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":943},"parentClipId":"10337028713951463192","href":"/preview/10337028713951463192?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/10337028713951463192?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"4540345910284890202":{"videoId":"4540345910284890202","title":"Descriptive \u0007[Statistics\u0007]: The Mode","cleanTitle":"Descriptive Statistics: The Mode","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=HUUyX80PUuI","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HUUyX80PUuI?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":595,"text":"9:55","a11yText":"Süre 9 dakika 55 saniye","shortText":"9 dk."},"views":{"text":"35,9bin","a11yText":"35,9 bin izleme"},"date":"14 oca 2019","modifyTime":1547424000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HUUyX80PUuI?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HUUyX80PUuI","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":595},"parentClipId":"4540345910284890202","href":"/preview/4540345910284890202?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/4540345910284890202?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"1733198795697780309":{"videoId":"1733198795697780309","title":"Descriptive \u0007[Statistics\u0007]: The Mean","cleanTitle":"Descriptive Statistics: The Mean","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bfQLNyiDPsk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bfQLNyiDPsk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":548,"text":"9:08","a11yText":"Süre 9 dakika 8 saniye","shortText":"9 dk."},"views":{"text":"130,7bin","a11yText":"130,7 bin izleme"},"date":"13 oca 2019","modifyTime":1547337600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bfQLNyiDPsk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bfQLNyiDPsk","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":548},"parentClipId":"1733198795697780309","href":"/preview/1733198795697780309?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/1733198795697780309?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"100536450673434026":{"videoId":"100536450673434026","title":"Learn Statistical Regression in 40 mins! My best video ever. Legit.","cleanTitle":"Learn Statistical Regression in 40 mins! My best video ever. Legit.","host":{"title":"YouTube","href":"http://www.youtube.com/live/eYTumjgE2IY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/eYTumjgE2IY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2424,"text":"40:24","a11yText":"Süre 40 dakika 24 saniye","shortText":"40 dk."},"views":{"text":"425,7bin","a11yText":"425,7 bin izleme"},"date":"22 mayıs 2023","modifyTime":1684713600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/eYTumjgE2IY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=eYTumjgE2IY","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":2424},"parentClipId":"100536450673434026","href":"/preview/100536450673434026?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/100536450673434026?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3704266759468091280":{"videoId":"3704266759468091280","title":"Teach me \u0007[Statistics\u0007] in half an hour! Seriously.","cleanTitle":"Teach me Statistics in half an hour! Seriously.","host":{"title":"YouTube","href":"http://www.youtube.com/live/kyjlxsLW1Is","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/kyjlxsLW1Is?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2528,"text":"42:08","a11yText":"Süre 42 dakika 8 saniye","shortText":"42 dk."},"views":{"text":"3,3milyon","a11yText":"3,3 milyon izleme"},"date":"1 ara 2018","modifyTime":1543622400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/kyjlxsLW1Is?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=kyjlxsLW1Is","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":2528},"parentClipId":"3704266759468091280","href":"/preview/3704266759468091280?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/3704266759468091280?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10232929039292843262":{"videoId":"10232929039292843262","title":"Justin Anthony of \u0007[Zedstatistics\u0007] and Jeremy's Iron on science and skepticism","cleanTitle":"Justin Anthony of Zedstatistics and Jeremy's Iron on science and skepticism","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=U302i4pS0gY","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/U302i4pS0gY?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDcnJnSG44ZnplWmpQcXZoVkRtU3k2dw==","name":"Papa Fire","isVerified":false,"subscribersCount":0,"url":"/video/search?text=Papa+Fire","origUrl":"http://www.youtube.com/@papafire","a11yText":"Papa Fire. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":4050,"text":"1:07:30","a11yText":"Süre 1 saat 7 dakika 30 saniye","shortText":"1 sa. 7 dk."},"date":"4 tem 2019","modifyTime":1562226803000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/U302i4pS0gY?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=U302i4pS0gY","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":4050},"parentClipId":"10232929039292843262","href":"/preview/10232929039292843262?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/10232929039292843262?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"14342049205211543809":{"videoId":"14342049205211543809","title":"Bayesian \u0007[Statistics\u0007]: An Introduction","cleanTitle":"Bayesian Statistics: An Introduction","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=Pahyv9i_X2k","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/Pahyv9i_X2k?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2298,"text":"38:18","a11yText":"Süre 38 dakika 18 saniye","shortText":"38 dk."},"views":{"text":"158,6bin","a11yText":"158,6 bin izleme"},"date":"30 eyl 2018","modifyTime":1538265600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/Pahyv9i_X2k?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=Pahyv9i_X2k","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":2298},"parentClipId":"14342049205211543809","href":"/preview/14342049205211543809?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/14342049205211543809?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10019978606673494813":{"videoId":"10019978606673494813","title":"Hazard and Survival Functions - [Survival Analysis 5/8]","cleanTitle":"Hazard and Survival Functions - [Survival Analysis 5/8]","host":{"title":"YouTube","href":"http://www.youtube.com/live/zAdF8WSyfsA","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/zAdF8WSyfsA?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1096,"text":"18:16","a11yText":"Süre 18 dakika 16 saniye","shortText":"18 dk."},"views":{"text":"49,1bin","a11yText":"49,1 bin izleme"},"date":"19 eki 2022","modifyTime":1666168138000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/zAdF8WSyfsA?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=zAdF8WSyfsA","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":1096},"parentClipId":"10019978606673494813","href":"/preview/10019978606673494813?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/10019978606673494813?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"11204518298610420708":{"videoId":"11204518298610420708","title":"Quantitative Methods for Business - Tutorial 1","cleanTitle":"Quantitative Methods for Business - Tutorial 1","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=z_R1Yh0QFDk","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/z_R1Yh0QFDk?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1485,"text":"24:45","a11yText":"Süre 24 dakika 45 saniye","shortText":"24 dk."},"views":{"text":"71,6bin","a11yText":"71,6 bin izleme"},"date":"2 ağu 2016","modifyTime":1470096000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/z_R1Yh0QFDk?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=z_R1Yh0QFDk","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":1485},"parentClipId":"11204518298610420708","href":"/preview/11204518298610420708?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/11204518298610420708?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"6166657995251540989":{"videoId":"6166657995251540989","title":"Chi-squared Test for Independence! Extensive video!","cleanTitle":"Chi-squared Test for Independence! Extensive video!","host":{"title":"YouTube","href":"http://www.youtube.com/live/NTHA9Qa81R8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/NTHA9Qa81R8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1229,"text":"20:29","a11yText":"Süre 20 dakika 29 saniye","shortText":"20 dk."},"views":{"text":"115,5bin","a11yText":"115,5 bin izleme"},"date":"19 oca 2020","modifyTime":1579392000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/NTHA9Qa81R8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=NTHA9Qa81R8","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":1229},"parentClipId":"6166657995251540989","href":"/preview/6166657995251540989?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/6166657995251540989?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"13831867315969486400":{"videoId":"13831867315969486400","title":"Hyp testing #4: testing for the population proportion, p (or π)","cleanTitle":"Hyp testing #4: testing for the population proportion, p (or π)","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=bh_5Yr3YjO0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/bh_5Yr3YjO0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":640,"text":"10:40","a11yText":"Süre 10 dakika 40 saniye","shortText":"10 dk."},"views":{"text":"51,5bin","a11yText":"51,5 bin izleme"},"date":"16 nis 2017","modifyTime":1492300800000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/bh_5Yr3YjO0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=bh_5Yr3YjO0","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":640},"parentClipId":"13831867315969486400","href":"/preview/13831867315969486400?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/13831867315969486400?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5943834911622760586":{"videoId":"5943834911622760586","title":"Categorical Data I: Proportions testing | Z test | Chi Squared test","cleanTitle":"Categorical Data I: Proportions testing | Z test | Chi Squared test","host":{"title":"YouTube","href":"http://www.youtube.com/watch?v=hlwPL1S9wHg","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/hlwPL1S9wHg?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":813,"text":"13:33","a11yText":"Süre 13 dakika 33 saniye","shortText":"13 dk."},"views":{"text":"83,7bin","a11yText":"83,7 bin izleme"},"date":"6 mayıs 2014","modifyTime":1399334400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/hlwPL1S9wHg?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=hlwPL1S9wHg","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":813},"parentClipId":"5943834911622760586","href":"/preview/5943834911622760586?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/5943834911622760586?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"10270813852831219877":{"videoId":"10270813852831219877","title":"Hyp testing #2: Testing for μ when σ is known.","cleanTitle":"Hyp testing #2: Testing for μ when σ is known.","host":{"title":"YouTube","href":"http://www.youtube.com/live/2GU_R7G5m-8","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/2GU_R7G5m-8?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":962,"text":"16:02","a11yText":"Süre 16 dakika 2 saniye","shortText":"16 dk."},"views":{"text":"122,7bin","a11yText":"122,7 bin izleme"},"date":"14 nis 2017","modifyTime":1492128000000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/2GU_R7G5m-8?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=2GU_R7G5m-8","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":962},"parentClipId":"10270813852831219877","href":"/preview/10270813852831219877?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/10270813852831219877?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"3890924451934912687":{"videoId":"3890924451934912687","title":"WHAT ARE Logit Models?? (Logistic models)","cleanTitle":"WHAT ARE Logit Models?? (Logistic models)","host":{"title":"YouTube","href":"http://www.youtube.com/live/iQNRzHKjFw0","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/iQNRzHKjFw0?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1104,"text":"18:24","a11yText":"Süre 18 dakika 24 saniye","shortText":"18 dk."},"views":{"text":"127,1bin","a11yText":"127,1 bin izleme"},"date":"13 ağu 2017","modifyTime":1502582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/iQNRzHKjFw0?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=iQNRzHKjFw0","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":1104},"parentClipId":"3890924451934912687","href":"/preview/3890924451934912687?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/3890924451934912687?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"75649868075974832":{"videoId":"75649868075974832","title":"What are p-values?? Seriously.","cleanTitle":"What are p-values?? Seriously.","host":{"title":"YouTube","href":"http://www.youtube.com/live/4XfTpkGe1Kc","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/4XfTpkGe1Kc?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1559,"text":"25:59","a11yText":"Süre 25 dakika 59 saniye","shortText":"25 dk."},"views":{"text":"209,4bin","a11yText":"209,4 bin izleme"},"date":"23 ara 2020","modifyTime":1608681600000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/4XfTpkGe1Kc?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=4XfTpkGe1Kc","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":1559},"parentClipId":"75649868075974832","href":"/preview/75649868075974832?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/75649868075974832?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"12463192261726464391":{"videoId":"12463192261726464391","title":"Regression assumptions explained!","cleanTitle":"Regression assumptions explained!","host":{"title":"YouTube","href":"http://www.youtube.com/live/0MFpOQRY0rw","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/0MFpOQRY0rw?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":2836,"text":"47:16","a11yText":"Süre 47 dakika 16 saniye","shortText":"47 dk."},"views":{"text":"278,9bin","a11yText":"278,9 bin izleme"},"date":"7 kas 2018","modifyTime":1541579075000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/0MFpOQRY0rw?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=0MFpOQRY0rw","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":2836},"parentClipId":"12463192261726464391","href":"/preview/12463192261726464391?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/12463192261726464391?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"5325715596660587711":{"videoId":"5325715596660587711","title":"Hypothesis Testing Basics: Type 1/Type 2 errors | Statistical power","cleanTitle":"Hypothesis Testing Basics: Type 1/Type 2 errors | Statistical power","host":{"title":"YouTube","href":"http://www.youtube.com/live/CJvmp2gx7DQ","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/CJvmp2gx7DQ?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":926,"text":"15:26","a11yText":"Süre 15 dakika 26 saniye","shortText":"15 dk."},"views":{"text":"170,7bin","a11yText":"170,7 bin izleme"},"date":"29 haz 2020","modifyTime":1593450092000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/CJvmp2gx7DQ?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=CJvmp2gx7DQ","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":926},"parentClipId":"5325715596660587711","href":"/preview/5325715596660587711?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/5325715596660587711?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false},"15275030553566968996":{"videoId":"15275030553566968996","title":"Advanced Regression - Categorical X variables and Interaction terms","cleanTitle":"Advanced Regression - Categorical X variables and Interaction terms","host":{"title":"YouTube","href":"http://www.youtube.com/live/HSHcIHMxhbE","playerUri":"\u003ciframe src=\"//www.youtube.com/embed/HSHcIHMxhbE?enablejsapi=1&wmode=opaque\" frameborder=\"0\" scrolling=\"no\" allowfullscreen=\"1\" allow=\"autoplay; fullscreen; accelerometer; gyroscope; picture-in-picture\" aria-label=\"Video\">\u003c/iframe>","playerId":"youtube","providerName":"youtube.com","sourceHost":"www.youtube.com","name":"youtube.com","secondPart":{"type":"CHANNEL","id":"d3d3LnlvdXR1YmUuY29tO1VDNkFWYTB2U3JDcHVza3pHRERLel9FUQ==","name":"zedstatistics","isVerified":false,"subscribersCount":0,"url":"/video/search?text=zedstatistics","origUrl":"http://www.youtube.com/@zedstatistics","a11yText":"zedstatistics. "},"faviconUrl":"//favicon.yandex.net/favicon/v2/http%3A%2F%2Fyoutube.com?color=255%2C255%2C255%2C0&size=32&stub=1"},"duration":{"value":1397,"text":"23:17","a11yText":"Süre 23 dakika 17 saniye","shortText":"23 dk."},"views":{"text":"138,6bin","a11yText":"138,6 bin izleme"},"date":"13 ağu 2017","modifyTime":1502582400000,"isExternal":false,"player":{"embedUrl":"https://www.youtube.com/embed/HSHcIHMxhbE?autoplay=1&enablejsapi=1&wmode=opaque","playerId":"youtube","videoUrl":"http://www.youtube.com/watch?v=HSHcIHMxhbE","reqid":"1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL","duration":1397},"parentClipId":"15275030553566968996","href":"/preview/15275030553566968996?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","rawHref":"/video/preview/15275030553566968996?parent-reqid=1769274371298204-2560112863867482520-balancer-l7leveler-kubr-yp-klg-168-BAL&text=zedstatistics","isEmbedOnly":false,"shouldPlayInstreamPreroll":false}}},"viewer":{"_isInitial":false,"clips":{"items":{},"dups":{},"loadingStatus":"None"},"internal":{"videoId":"","sandboxEventPrefix":"sandbox:","sandboxVersion":"0x001cd987dbd","isEmbedded":false,"from":"yavideo","service":"ya-video","hbPeriod":30,"table":"video_tech","isInstreamDisabled":false,"nonce":"5601128638674825207168","errorList":[],"isAdultAdv":false,"isImportantCommonAdv":false,"shouldShowAdvId":false,"advConfig":{"under-player":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"under-player-lite":{"regular":{"default":"R-I-48058-728"},"adult":{"default":"R-I-474674-103"}},"under-player-old":{"regular":{"default":"R-I-48058-725","mail":"R-A-13411721-6"},"adult":{"default":"R-I-474674-114","mail":"R-A-13426421-6"}},"video-list":{"regular":{"default":"R-I-48058-708","mail":"R-A-13411721-2"},"adult":{"default":"R-I-474674-101","mail":"R-A-13426421-2"}},"search-list":{"adult":{"default":"R-I-474674-135","mail":"R-A-13426421-23"},"regular":{"default":"R-I-48058-751","mail":"R-A-13411721-23"}},"search-grid-row":{"regular":{"default":"R-I-48058-718","mail":"R-A-13411721-4"},"adult":{"default":"R-I-474674-109","mail":"R-A-13426421-4"}},"search-grid-head":{"regular":{"default":"R-I-2120168-7"}},"search-list-right":{"regular":{"default":"R-I-8843654-1"}},"before-player-old":{"regular":{"default":"R-I-2120168-1"}},"before-player":{"regular":{"default":"R-I-2120168-1"}},"search-grid-inplace":{"adult":{"default":"R-I-474674-126","mail":"R-A-13426421-16"},"regular":{"default":"R-I-48058-742","mail":"R-A-13411721-16"}}},"shouldValidateSandbox":false,"sandboxInitTimeout":15000,"isSSROnlyMastheadEnabled":true,"query":"zedstatistics","queryUriEscaped":"zedstatistics","filterMode":1,"isUserChild":false,"advInstreamConfig":{"regular":{"default":{"category":"2","impId":"7","partnerId":"2216089","vmapScenarioId":"119"}},"adult":{"default":{"category":"3","impId":"4","partnerId":"1988486","vmapScenarioId":"119"}}}},"playbackQueue":{"currentIndex":0,"items":[]},"related":{"items":[],"pages":[],"loadingStatus":"None","nextPageNum":0,"ncrnd":0},"playlist":{"items":{}},"delayedViews":{"ids":[],"loadingStatus":"None"}}}